86-46-14477

ASSESSMENT REPORT on the CEDAR I, VI, VII-XVIII, XIX, XX MINERAL CLAIMS

Kamloops Mining Division Little Fort, British Columbia

> NTS 92P / 8¥,9W 51° 29' N. Latitude 120º 17' W. Longitude

> > Prepared for:

Operator: CRAVEN RESOURCES INC. Vancouver, British Columbia Owner: Estey Agencies Ltd. Prepared by:

D. A. Caulfield, Geologist EOLOGICAL BRANCH C. K. Ikona, P.Eng. ASSESSMENT REPORT

Janaury 1986

14.477

FILMED

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	.1.
2.0	LOCATION AND ACCESS	.1.
3.0	LIST OF CLAIMS	.2.
4.0	HISTORY	.2.
5.0	GEOLOGY	.2.
	5.1 Mineralization	.3.
6.0	GEOCHEMICAL SURVEY	.4.
7.0	GEOPHYSICAL SURVEY	.5.
8.0	CONCLUSIONS	.7.

LIST OF APPENDICES

-

.

,

Appendix I	Geochemical Certificates
Appendix II	Geonics EM-16 Data Sheets
Appendix III	Statement of Qualifications
Appendix IV	Engineer's Certificate
Appendix V	Cost Statement

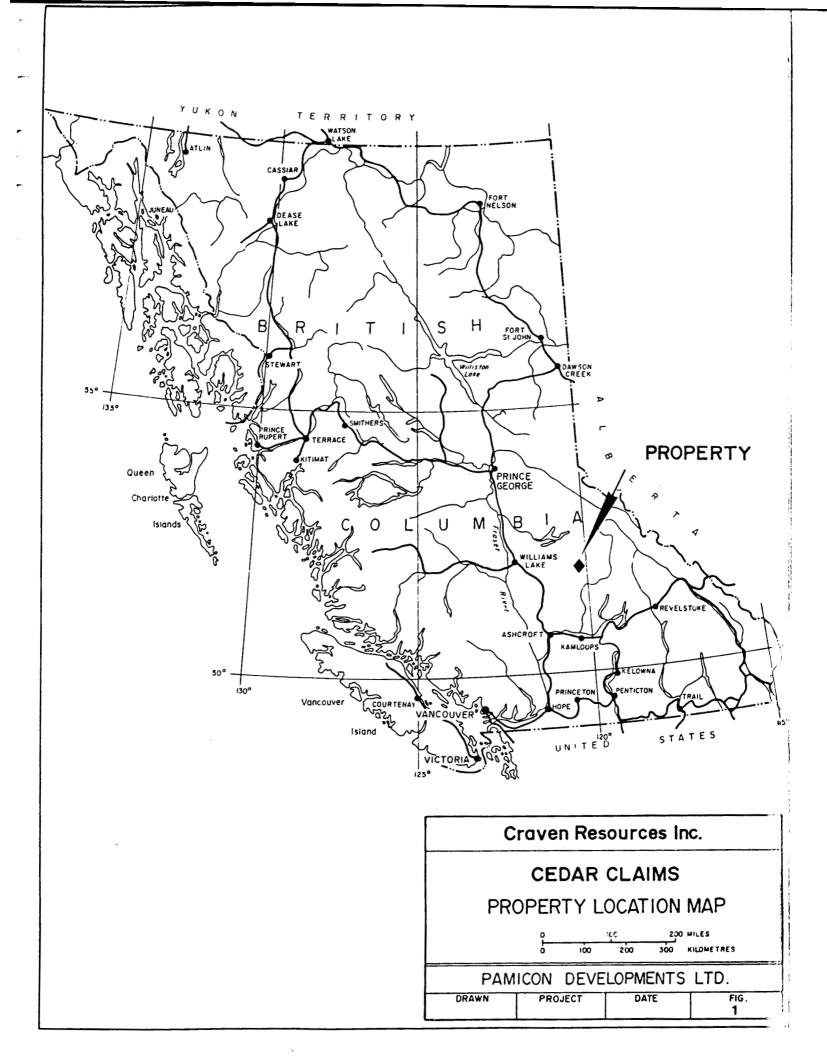
LIST OF I	LIST OF FIGURES			
Figure 1	Property Location May	.1.		
Figure 2	Claim Map	.2.		
Figure 3	Grid Location Map	.4.		
Figure 4	Soil Geochemistry	.4.		
Figure 5	VLF - EM Survey, L31+00N to L37+00N	.6.		
Figure 6	VLF - EM Survey, L13+00N, L14+00N, L15+00N,			
	L17+00N and L19+00N	.6.		
Figure 7	VLF - EM Survey, L48+00N to L52+00N	.6.		

1.0 INTRODUCTION

The Cedar claims were staked in 1983 through 1984 to cover known mineralization and favourable geology. The claims lie 8 kilometers northwest of Little Fort, a small community to the north of Kamloops, B.C.

.1.

In November 1985, a program of geophysical and geochemical exploration was carried out by K. Milledge and J. Boutwell. Due to the snow conditions, geological mapping could not be completed. A total of 7.1 kilometers were surveyed by VLF-EM geophysics and 30 soil samples were collected from beneath the snow cover for Cu, Ag and Au geochemical analysis.


2.0 LOCATION AND ACCESS

The Cedar claims lie on NTS Sheet 92-P/8, 9 and are centred approximately 8 kilometers northwest of the town of Little Fort, B.C., a small community on Highway 5, 100 kilometers north of the city of Kamloops, B.C. A secondary road which runs west from Little Fort up Eakin Creek passes through the claims and eventually joins Highway 97 some 15 kilometers south of 100 Mile House. Another secondary road follows up Nehalliston Creek which crosses the northern section of the claims. A further network of forestry and logging roads makes excellent access to most portions of the property area.

Little Fort has motels and a restaurant for crew accommodation as well as outlets for basic supplies.

Elevations on the claims range from 610 meters (2000 feet) to 1220 meters (4000 feet) ASL with moderate to rugged topography. The most extreme topographic relief occurs in the deeply incised V-shaped valleys of Eakin and Nehalliston Creeks where slopes drop steeply for some 300 meters. Above the 1150 meter elevation the topography becomes more gentle and rolling.

Vegetation on the property varies, but is mainly of fir timber cover with light to moderate undergrowth.

3.0 LIST OF CLAIMS

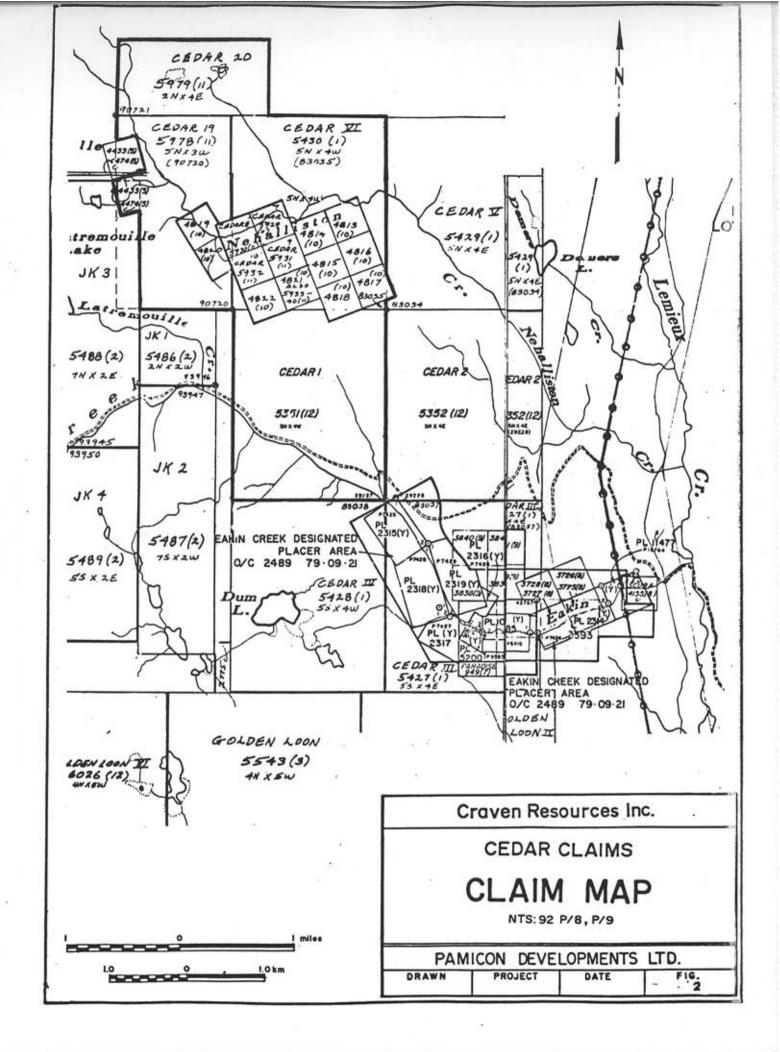
The following table lists the mineral claims which make up this property. This group is a reduction in size from the original claim package.

<u>Claim Name</u>	Units	Record No.	Record Date
Cedar I	20	5351	December 29, 1983
Cedar VI	20	5430	January 10, 1984
Cedar VII-XVIII	12	5929-5940	November 6, 1984
Cedar XIX	15	5978	November 22, 1984
Cedar XX	8	5979	November 22, 1984

The writer was unable to visit all claim lines and posts; however, those examined appear to comply with regulations outlined in B.C. Mineral Act.

4.0 HISTORY

Earliest activity in the area was sparked by the discovery of placer gold deposits in Lemieux and Eakin Creeks. During the 1960s and early 1970s, exploration was directed at exploring for porphyry copper deposits.


The property was staked for its gold potential and a geological work program was carried out during the 1984 field season under the direction of R. Yorston, Geologist. The program consisted of grid soil sampling, geological mapping and prospecting (Geological Report on the Cedar I thru VI Mineral Claims by R. Yorston, C.K.Ikona, P.Eng., January 1985).

The 1985 exploration program was instituted to expand the soil geocemistry to the north and complete preliminary geophysics over areas on the grid.

5.0 GEOLOGY

The regional geology of the area is shown in two map series. R. B. Campbell and N. W.Tipper mapped the Bonaparte Lake geology in 1964 and 1965. Their work is described in G.S.C. Memoir 363, and illustrated on Map 1278A. A further compilation by A. V. Okulitch on the Thompson-Shuswap-Okanagan area geology included the Little Fort area. This information is found in G.S.C. Open File 637.

Pamicon Developments Ltd..

The mapping shows the Cedar property to be located in the Thompson plateau on the northeast margin of the Early Jurassic Thuya Batholith. The claims are divided into two groups by a major northwest-trending fault zone. Andesitic volcanics of the Triassic Nicola Group underlie the western half of the property whereas silicified volcanics, phyllites, chert, and limestone units occur east of the fault. This package of rocks was originally thought to be part of the Eagle Bay Formation (Yorston, Ikona, 1984); however, it appears that these units are part of the Thompson Assemblage of Carboniferous and Permian age. This assemblage, in part, correlates to the Permian Cache Creek Group.

Minor diorite intrusive bodies were mapped throughout the grid area. A detailed discussion of the Cedar geology was undertaken by R. Yorston and C. K. Ikona in their 1984 report.

5.1 Mineralization

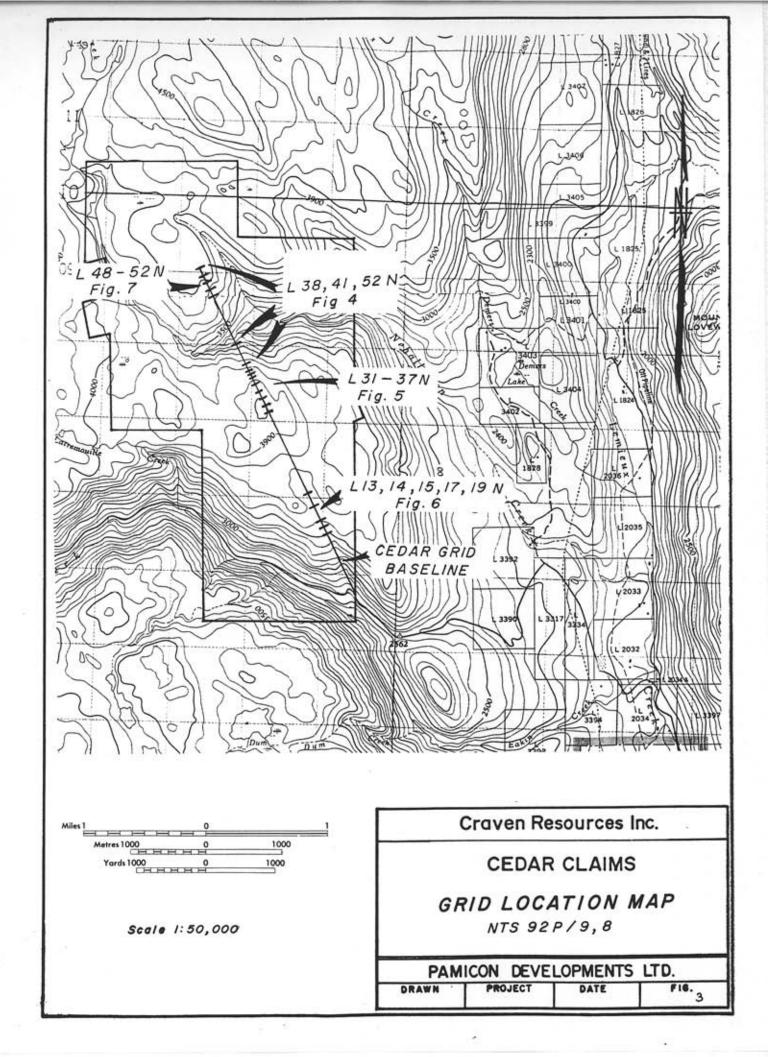
None of the mineral showings were examined due to snow conditions. Yorston described the different mineralization types discovered through prospecting. His description is as follows:

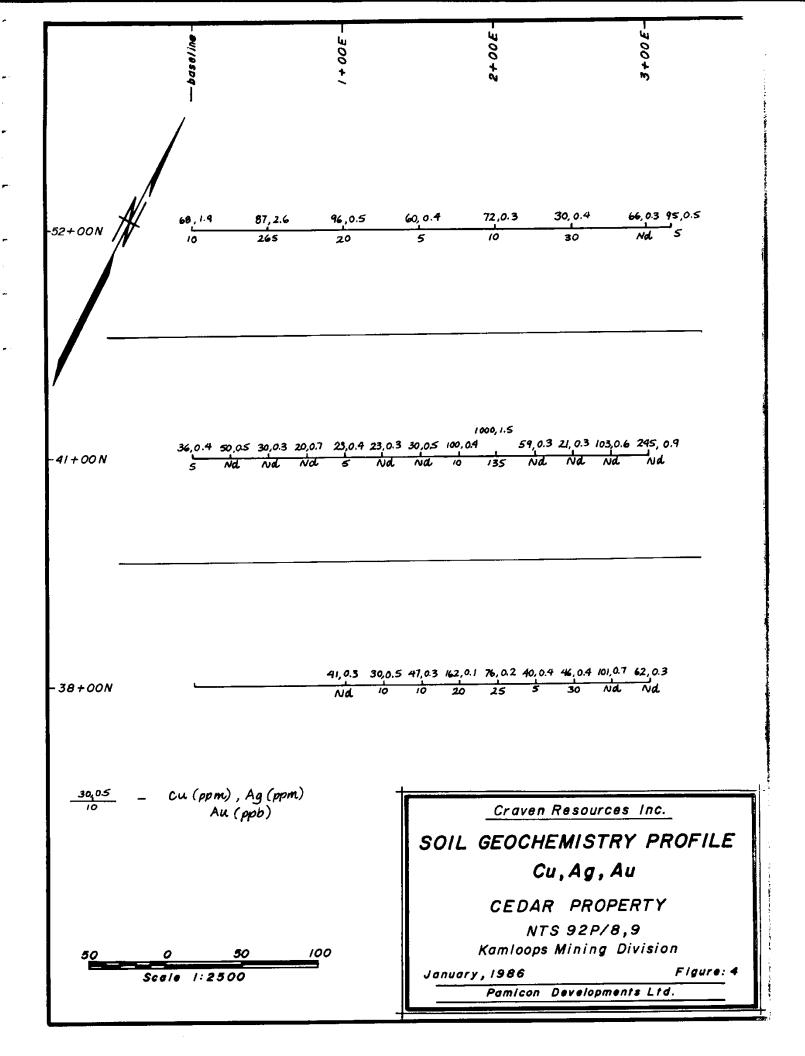
"The most significant mineralization within the Cedar claim group discovered to date is that exposed in the new highway 24 road cut...

"Two sulphide zones, each approximately 1 metre in width, occur within a silicified andesite unit on the footwall side of the large fault structure. The sulphides consist of pyrite, pyrrhotite and chalcopyrite and can make up to 35% of the material in some 1 metre widths within the zones. The sulphides exist as penetrating veins and lenses and disseminations within the andesite. The andesite is silicified but apart from narrow quartz veinlets, major quartz veining is absent.

"Mineralization was not present in the hanging wall limestonechert unit in the road cut area but some hand dug pits revealed minor chalcopyrite within this unit underlying a soil geochemical anomaly south of the new road cut. "Within the fault zone on the old highway 24, several quartz veinlets and lenses generally around 1 to 5 cm in width contain minor chalcopyrite and galena.

"The fractured diorite north of the old highway 24 is locally mineralized in several areas with chalcopyrite coating some fractures up to widths of just below 0.5 centimetre. The skarn zones adjacent to the diorite also locally contain minor disseminated chalcopyrite where exposed. Chalcopyrite mineralization also occurs in skarnified zones north of the Nehalliston creek canyon.


"It is apparent that the mineralization is associated with the fault system over a strike length of some 4 to 5 kilometres and that massive sulphides occur in the structure.


"Anomalous gold values are associated with the sulphides."

6.0 GEOCHEMICAL SURVEY

In 1984, a grid with a 4.4km baseline was established and reconnaissance scale soil sampling was completed. The baseline was extended in 1985 from 38+00N to 52+00N, and three crosslines were chained (slope corrected) and flagged to the northeast (Figure 3). These lines were oriented to intersect the extension of the mineralized fault exposed in the new highway rock cut. Line 38+50N and line 41+00N were sampled at 25-meter intervals whereas line 52+00N was sampled every 50 meters along the line. Stations from the baseline to 1+00E on line 38+50N could not be sampled due to the underlying rock cut and road bed. Samples were taken with a mattock from a combination of B and C soil horizons (20 to 30cm), packaged in brown Kraft bags, air dried and shipped to Vancouver for analysis. Each sample was analyzed for Cu, Ag and Au by standard atomic absorption analysis with mixed HC104 - HN03 hot acid digestion.

The sample line spacing is too great to consider contouring. Therefore, the lines are shown strictly as profiles (Figure 4). It was found through the 1984 sampling that values with Cu greater than 100ppm, Ag greater than 0.5ppm and Au greater than 50ppb represent anomalous targets. Several of the samples showed anomalous results:

Element	Number of Samples (and Values)							
Cu	6	(162, 101, 100, 1000, 103, 245 ppm)						
Ag	10	(0.5, 0.7, 0.5, 0.7, 1.5, 0.6, 0.9, 1.9, 2.6, 0.5 ppm)						
Au	2	(135, 265 ppb)						

.5.

Two spot highs at line 41+00N, 2+00E (1000ppm Cu, 1.5ppm Ag, 135ppb Au) and line 52+00N, 0+50E (2.6ppm Ag, 265ppb Au) are on strike from the showing exposed in the new road cut and likely reflect a similar type of mineralization. Two prospecting samples discovered during 1984 contained chalcopyrite and other sulphides; their locations lie just north of Nehalliston creek on line from the anomaly on line 41+00N and the road cut showing.

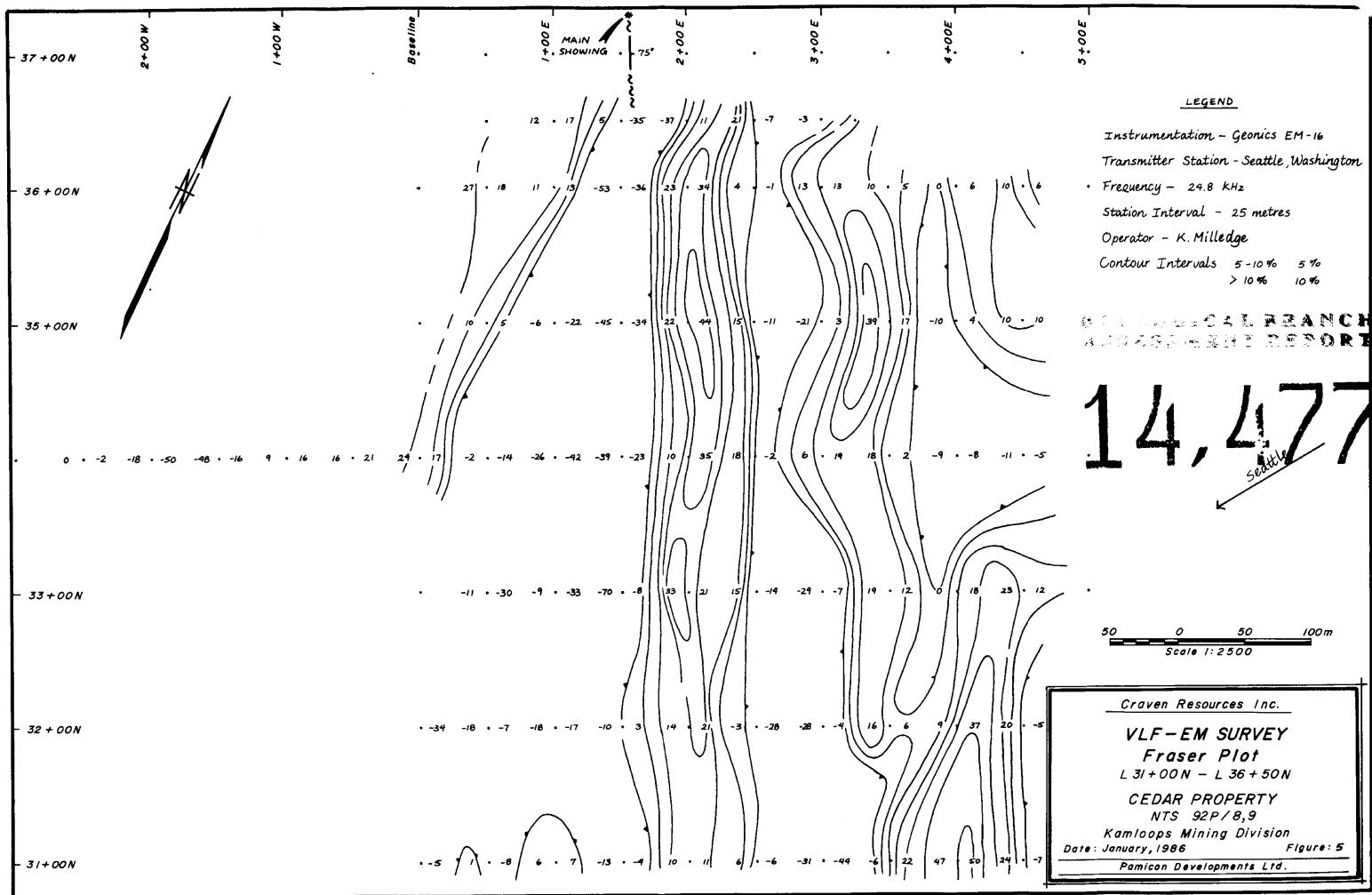
7.0 GEOPHYSICAL SURVEY

A number of reconnaissance VLF electromagnetic survey lines were conducted over the Cedar grid. Two sections of the old grid were surveyed to cover the anomalous soil geochemistry between line 13+00N to line 19+00N (Figure 6) and to trace the new road cut showing south to line 31+00N (Figure 5). In addition, four lines were placed to the east from line 48+00N to line 52+00N to locate further conductive zones. All three areas were originally tested by a Phoenix VLF-2. After examining the data, it was decided to retest one of the areas, line 31+00N to line 36+50N, with a Geonics EM-16. The second instrument proved far superior and is recommended for any further surveys.

These instruments act as receivers only. They utilize the primary electromagnetic fields generated by VLF (very low frequency) marine communications stations. These stations operate at a frequency between 15 to 25 KHz, and have a vertical antenna current resulting in a horizontal primary field; thus, the VLF electromagnetometer measures the dip-angle of the secondary field induced in a conductor.

For maximum coupling, a transmitter station located in the same direction as geological strike should be selected since the direction of the horizontal electromagnetic field is perpendicular to the direction of the transmitting station.

Annapolis, Maryland (21.4 KHz) was chosen as the transmitting station for the Phoenix VLF-2 whereas Seattle (24.8 KHz) proved to be a successful transmitting station for the Geonics EM-16. Due to the nature of the Phoenix data, profiles showing North and South % Dip Angle were used. Data over lines 31+00N to 37+00N was best represented by a Fraser plot. Field data for this area is appended.


For the Fraser plot, readings were taken at 25-meter intervals and the data was filtered in the field by the operators as described by D. C. Fraser, Geophysics, Volume 34, Number 6 (December, 1969). The advantage of this method is that it removes the dc (background noise) and attentuates long spatial wave lengths to increase resolution of local anomalies, and phase shifts the dip angle data by 90° so that cross-overs and inflections will be transformed into peaks to yield contourable quantities.

The survey over line 31+00N to line 37+00N delineated two strong, parallel, northwest/southeast trending conductors (Figure 5). One of these, running parallel to the baseline at 2+00E, is on line with the mineralized fault exposed in the new road cut. A second EM conductor lies east of the fault zone conductor. Towards the south end of its expression, the anomaly is offset slightly. This feature may be a result of a northerly-trending fault. The cause of the second conductor is unknown at this time. The general area of both anomalies is underlain by strong Cu, Ag and Au soil geochemistry (1984).

The survey for line 13+00N to line 19+00N indicated rather inconclusive results (Figure 6). A weak cross-over is found on line 17+00N and line 19+00N at 2+25E. The area is underlain by a weak copper soil anomaly. Two other isolated cross-overs occur on the east side of line 17+00N but more data is needed to present a meaningful interpretation.

A continuous conductor indicated by a cross-over or phase shift spans line 48+00N to line 51+00N (Figure 7). Since no geochemistry has been conducted in this area, one can only postulate that this trend could be a structural feature (fault) paralleling the main fault to the east. It is expected that this anomaly would be shown more clearly with the Geonics EM-16.

.6.

8.0 CONCLUSIONS

The 1985 geochemical and geophysical program has demonstrated the continuation of a mineralized fault system to the south and north of the new road cut. It occurs along an andesite-chert/limestone contact and the mineral suite consists of pyrrhotite, pyrite and chalcopyrite, with anomalous precious metal values.

VLF electromagnetic surveying has proven to be very useful in delineating known mineralized bodies and in indicating potential areas to be prospected.

It is recommended that the rest of the grid be surveyed by Geonics EM-16 and the data evaluated. More sophisticated electromagnetics employing a transmitter/receiver type system should be carried out to better define conductive zones. Further geological mapping, geochemical sampling, and prospecting would be conducted at the same time.

Respectfully submitted,

aufield

D. A. Caulfield, Geologist

C. K. Ikona, P.Eng.

.7.

APPENDIX I

.

.

GEOCHEMICAL CERTIFICATES

_ Pamicon Developments Ltd. __

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD. ADDRESS: 215 - 543 Granville St. : Vancouver B.C. : V6C 1X8 DATE: Nov. 28 1985

REPORT#: 85-01-115 JOB#: 85574

PROJECT#:	CEDAR
SAMPLES ARRIVED:	Nov 21 1985
REPORT COMPLETED:	Nov. 28 1985
ANALYSED FOR:	Cu Ag Au

INVOICE#: 9196 TOTAL SAMPLES: 30 SAMPLE TYPE: 2 Slit 28 Soil REJECTS: DISCARDED

SAMPLES FROM: PAMICON DEVELOPMENT LTD. COPY SENT TO: PAMICON DEVELOPMENT LTD.

PREPARED FOR: MR. K. MILLEDGE

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

REPORT NUMBER: 85-01-115

r

VANGEOCHEM LAB LIMITED

PANICON DEVELOPMENT LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 85574

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 1 OF 1

	Cu	Ag	Au
	ppm	ppm	daa
1+00NE	41	.3	nd
1+25NE			10
1+50NE	47		10
1+75NE	162		20
2+00NE	76	.2	25
2+25NE	40	. 4	5
2+50NE	46	. 4	30
2+75NE	101	.7	nd
3+00NE	62	.3	nd
0+00NE	36	.4	5
0+25NE	50	.5	nd
0+50NE	30	.3	nd
0+75NE	20	.7	nd
1+00NE	23	.4	5
1+25NE	23	.3	nd
1+50NE	30	.5	nd
1+75NE	100	.4	10
2+00NE	1000	1.5	135
2+25NE	59	.3	nd
2+50NE	21	.3	nd
2+75NE	103	.6	nd
3+00NE	245	.9	nd
0+00NE	68	1.9	10
0+50NE	87	2.6	265
1+00NE	96	.5	20
1+50NE	60	.4	5
2+00NE	72	.3	10
2+50NE	30	.4	30
3+00NE	66	.3	nd
3+16NE	95	.5	5
	1+25NE 1+50NE 1+75NE 2+00NE 2+25NE 2+50NE 2+75NE 3+00NE 0+25NE 0+25NE 0+25NE 1+25NE 1+25NE 1+75NE 2+25NE 2+50NE 2+75NE 2+50NE 2+75NE 2+50NE 1+00NE	PDB 1+00NE 41 1+25NE 30 1+50NE 47 1+75NE 162 2+00NE 76 2+25NE 40 2+50NE 46 2+75NE 101 3+00NE 62 0+00NE 36 0+25NE 50 0+50NE 30 0+75NE 20 1+00NE 23 1+25NE 20 1+00NE 23 1+25NE 30 2+75NE 100 2+25NE 59 2+50NE 21 2+75NE 103 3+00NE 245 0+25NE 59 2+50NE 21 2+75NE 103 3+00NE 68 0+50NE 87 1+00NE 96 1+50NE 60 2+00NE 72 2+50NE 30 3+00NE	DDH DDM 1+00NE 41 .3 1+25NE 30 .5 1+50NE 47 .3 1+75NE 162 .1 2+00NE 76 .2 2+25NE 40 .4 2+50NE 46 .4 2+50NE 46 .4 2+75NE 101 .7 3+00NE 62 .3 0+25NE 50 .5 0+25NE 50 .5 0+25NE 20 .7 1+00NE 23 .4 1+25NE 20 .7 1+00NE 23 .4 1+25NE 20 .5 1+75NE 100 .4 2+400NE 1000 .5 2+25NE 59 .3 2+50NE 21 .3 2+75NE 103 .6 3+60NE 245 .9 0+50NE 67 .

APPENDIX II

GEONICS EM-16 DATA SHEETS

_ Pamicon Developments Ltd. _

Project N	o. <u>ce</u>	DAR		. Date _	
Station _	Sel	TTLE		Line _	31+00N
Operator	<u> </u>	MILLED	GE	_ Facing	W S E
Station	%Dip A.	Sum	Fraser	% Quad	Topo notes
<u>/////////////////////////////////////</u>					
Q+25W	-5	-1		+13	
Bir	+4	+8	5	-14	
0+25E	+4	+8		414	
0+90E	0			+8	
0+75E	+7	-+7	-8	0	
1+00E	+5	+12	6	-8	
1+25E	-4		-13	-12	
1+50E	+9.	+5		-6	
1+75E	+5	+14	- 4	-5	
2+00E	+4	+9	10	-2	· · · · · ·
2+25 E	0	• + 4	+11	+2	
2+50 e	- 2	-2	+6	+4	
2+75 E	0	- 2.	-6	+12	· · · · · · · · · · · · · · · · · · ·
3+00 E	44	14	-31	-18	
3+25 E	+25	+ 2.9	-44	. 0	······
3+50E	+23	+48	-6	0	
3+75 E	+12	+ 35	22	·	·,
4+00 E	+4	+16	47	-4	
4+25 E	-16	-12	50		
4+50 E	- 18	- 34	24		
4+75E	-18	-36	-7		
5+00E	-11	- 27		-4	
<u>9.00 E</u>	- //				
				}	
	<u>+</u>			}	
, .	· 			}{	
]	·
			1	┣───┤	
<u>_</u>			Î		
L	ļ		1	1	

					• .
	VLF	- EM	SURVE	Υ	
Project No	م خ	PAC		_ Date _	
Station _	SEA	TTLE		_Line_	36+50 N
Operator _	K. 1	41LLED	G E	. Facing	
Station	% Dip A.	Sum	Fraser	% Quad	and the second
	(////	· · · · · · · · · · · · · · · · · · ·	 	1 ¹	
0+25E	+4	······································	┠────		
0 + 50E	0	<u>.4</u> -2	+12		
0+75E	-2	-8	+		
1+008	-6	+19	+17 +5		
11256	-13	-13	- 35		
1+50E	. 0	16	-31	i	
1+75E	+ 16	24	+ 11	<u> </u>	
2100E	18	5	+21	!	
2+2.56	- 3	3	=7	<u> </u>	
2+50E	+6	12	-3	l	
2+75E	+6	6	<u> </u>	ļ	
3100E	0			 	
	ļ			∮Å	
			<u> </u>	╞────┤	
			<u> </u>	1	
	ļ.,,		1	Í	
			· · · · · · · · · · · · · · · · · · ·		
	ļ	·	1	1	
		·························	<u> </u>	 	
L	 		+	<u> </u>	
	L	· ·	<u>†</u>	 	
	 		1	1	· · · · · · · · · · · ·
			1	1	
ļ	ļ		1	1	
	 		1	 	
			<u>†</u>	 	
	ļ		<u> </u>	ļ	
·			1	1	
			1	 	
1111111			1	∮	
	<u> </u>	A	1	1	

	VLF	- EM	SURVE	Y	
Project N	o. <u> </u>	EDAR		Date _	
Station _	SEPT	77LE		Line	L 33 +00N
Operator				_ Facing	<u> </u>
Station	%Dip A.	Sum	Fraser	% Quod	Topo notes
	1////				
. B,L	-16	-'43	<u> </u>	+2	
0 125E	-27			- 8	
0150E	-21	- 48 -32	-1/	- + 18	
0175E	-1]		-30	+17.	
1400E	-7	-18	-9	- 38	
1+250	-16		-33	-6	
1+50E	+31	+15	-70	- 2	
1+15E	+16	+47	-8	-13	
2+00E	+7	+23	+ 33	-4	
2+25 E	+7	+14	+ 21	-2	
2+50 E	-5	+ 2	+15	-0-	
2+75E	+4	-1	- 14	- 4	
3+00 E	+12	+16	-29	-4	
3+25E	+16	128	-7	0	
3+50 E	+7	+23	+19_	. 0	
3+75€	+2	+9	+12	0	
4 too e	+9	+11	0	0	
4 ¹ 250	0	+9	+18	-4	
4250 E	-7	-7	+23		
4+756	-7	-14	+12	- 13	· · · · · ·
STROE	-12	-19	L	- 8	
<u> </u>	····	L	ļ		
	1	 	ļ	 	
	<u> · · · · · · · · · · · · · · · · · · ·</u>	ļ	ļ		
	+	ļ	1		
	+	l	<u> </u>	<u>├</u> ──	
		<u> </u>			
		1			
	+	ļ			
*	<u> </u>	1		<u> </u>	
7/1/11	177777			<u> </u>	
	<u> </u>	1			

	<i>^</i> -		SURVE	EY	
Project No		DAR		_ Date _	
Station _		ATTLE			L 32+00N
Operator _	K. M,	ILLEDO	; E	_ Facing	₩ ^N E
Station	% Dip A.	Sum	Fraser	% Quad	Topo, notes
	(////	-	∱		
0+2.5W	- 14 -	39	t		·
B.L	-25-	- 25	- 34	+10	
0 +25E	0	-5	-18	+16	·
0+50E	-5	-7	- 7	+10	
0+75E	-2	+2	-18	-2	
1+005	+4	+11	-17	-4	
1+25E	_+7	+19	-10	-15	
1+ 505	+12	+21	+3	- 3	
1+75E	+9	+16	+14	+4	
2+ 00E	+7	+7	+21	+1	
2+25-	0			-5	
2+50 e	-5	-5	+3	+2	
2+756	+9	+4	-28	_ +7	
3+00 4	+14	+23	-28	·+ 2	
3+255	+18	+32	- 4	- 4	
3+500	+9	+27	+16	- 12	
3+756	+7	+16	+6	-5	
4+004	· +14 -7	+21	+9	+5	
4+25 F	-7	+7	+37	-5	
4+506	-9	-16	+20	-6	
4 + -54	-4	-13	-5	-5	
5+000	-7	-11	 	-2	
			<u> </u>		
	1			4	
	1		ļ		
· · · · · · · · · · · · · · · · · · ·	†				
	 		ļ	<u> </u>	
				}	
· · · · · · · · · · · · · · · · · · ·	<u> </u>			Jİ	
7777777	1111				
					i

Project No	. <u> </u>	EDAR		Date _	• •
Station _				_Line _	35+00N
Operator					₩ ^N s E
Station	%Dip A.	Sum	Fraser	% Quad	Topo notes
<u>/////////////////////////////////////</u>				L	
. <i>B.L</i>	-4	-9	<u> </u>	+2	
0+25E	- 5	-14	+10	0	
0+50E	- ?	-19		- +6	·
0+75E	-10		+5	16	
1+00E	-9	-19	-6	16	
1+255	-4	-13	-22	+1	
1+ 50E	+7	+3	- 45	3	
1+75E	+25	+32	- 34	-4	
2 +00E	+12	+37	+22	-10	
2+25E	-2	+10	+44	-8	
21505	-5	-7	+15	-19	
2+755	8	-5	- 11	+2	· · · · · · · · · · · · · · · · · · ·
= 3+00E	+4	+4	-21	- 2	
31055	+12	+16	+3	+1	· .
3-506	- 11	+1	+39	10	· · · · · · · · · · · · · · · · · · ·
3+756	-/2	-23	+17	-4	
4 + 00E	- 4	-16	- 16	-2	
4 +25E	- 9	-13	+4	- 4	· · · · · · · · · · · · · · · · · · ·
4 450E	- 11	-26	+10	- 2	· · · · · · · · · · · · · · · · · · ·
4 +75E	-17	-23	+10	0	• •••••••••••••••••••••••••••••••••••••
5+00E	- 18	-36		+2	
	0				
.				┟───┤	
<u> </u>				┟───┤	
· · · · · · · · · · · · · · · · · · ·				┟╌──┤	
	· · · · · ·			┟───┤	*
]	
]	
				}	
·		{		┣━━━━┥	
///////////////////////////////////////				٦	

and a second
.

			SURVE	Y	99. 19. junio (m. 1
Project No). <u> </u>	EDAR		_ Date _	
Station	5 8197	TLE		_Line _	34+00N
Operator _	K. MILL	LEDGE	· 	_ Facing	W S E
Station	% Dip A.	Sum	Fraser	% Quad	Topo, notes
3+0,0W	-25			+18	
2 +75W	-25	52		141	<u> </u>
2 +50W	- 27	- 54	0	+ 0	
2+25W	-25	-52	-2	-2	····
2+000	-25	- 52	-18	-5	
1+75W	-7	- 34	- 50	-4	
1 + 15W	+5	- 2	-48	-3	
1 + 250	+9	+ 14	-16	-6	······
1+000	+7 +5	+14	+9	- + Z	
0,4750		+5	+16		······································
0+50W	- 2_	-2	+16	0 + 5	
0+256	• • • • •	-71	+21		
0+25W B,L	-7 -14	-23	+24	+ 5	
0+25E	-74 -21	-35	+17		
0+23E 0+50E	1	-1/6	-2	1-5	
	-19	- 33	-14	1 10	······
0+75E	-14	- 26	-26	+9	
1+00E		- 7	- 42	- 8	
1+255	+5	+16	- 39	+5	
1+502	+11	+ 32	-23	5	\
1+ 75E	+21	+39	+10	-10	ļ
2+005	+18	+22	+35	-6	
2+25E	+#	+ 4	+ 18	- 7	
2.+50E	0	+4	-2	- 7	
0.+ 75E	+4			-2	
3+00E	+2	+6	+6	2	
3+256	-4	-2	+19	+ 2	
3+50E	-9	- 13	+18	-3	
3 +75E	- 11	-20	+2_	-3	
4+00E	- 4	-15	- 9	- 4	
4-255	-7	- //	- 8	-6	
ΠΠΠ	1111	-7	-//		

	VLF	- EM	SURVE	۲	
Project N	oe	DAR		Date _	
Station _					34 +00 N cont
Operator					W S E
Station	%Dip A.	Sum	Fraser	% Quod	Topo notes
(//////////////////////////////////////	V////	· · · · · · · · · · · · · · · · · · ·			
4+50E	0	. 7		-2	
4+75E	- 2	2	- 5	-2	
5+00E	- //	-13		4	
			 		
			┠		
			<u> </u>		
·			ļ		
			ļ		
}	·		<u> </u>		
h					
	1		ļ		
}	<u>} · </u>				
···	<u> </u>			·	
		_			
	}]	
					
	╂━───	1		┠────┤	
 	_		1	 	· · · · ·
			1	1	
	╂────		1	┠────┤	
 	<u> </u>	ļ	1	1	•
ļ	<u> </u>	-	1	 	-
ļ	<u> </u>		1	 	
		l	1	l	
		┟─────			
ļ		<u> </u>	1	 	
·			1		
		<u> </u>	+	┫	
11111	X/////	┟────		1	

``

-

•

1

1

	VLF	- EM	SURVE	EY .	
Project No)			_ Date _	
Station _	SEA	TTLE	•	Line	36+00N
	K. HILLEDGE				
Station	% Dip A.	Sum	Fraser	% Quad	Topo, notes
B.L.	+12			+4	
OT2SE	+3	.+15	+27	+6	
+50E	- 3		+18	+4	
+75E	-9	-12	1	+4	
ITOBE	-9	-18	+11	+4	
1+250	-14	-23	+13	-2	
1+50E	+9	-5	- 53	-2	
1+75E	+21	+30	-36	-4	
2400 E	+10	+31	+23	-6	· .
2+25 E	- 3	+7	+ 34	-10	
2+50 E	0	-3	+4	-4	
2+75 E	+ 3	+3	-1	0	
3+00	-5	-2	+13	0	
3+25E		-10	+13	- Z	
3+50 E		- 15	+10	-/2	
3+75 E	1	-20	+5	-4	
4+00 E	1	-20	0	-4	
4+25E		-26	+6	-10	
4r50E	1	-26	+10	+2	
4+75 E		- 30	+6	-3	
5+00E	1	- 30		-2	
	- '8	ţ	 		
		f			
	<u> </u>				
			L		
}	<u> </u>	t	Ļ	<u>↓</u>	
	<u> </u>	1	ļ	<u>↓</u>	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	<u>ا</u>	ļ	<u> </u>	
		L		<u> </u>	
	<u> </u>		l	}	
777777	1111				

GEONICS

EM16 SPECIFICATIONS

MEASURED QUANTITY Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).

SENSITIVITY Inphase: ±150% Quad-phase: ± 40%

RESOLUTION

1

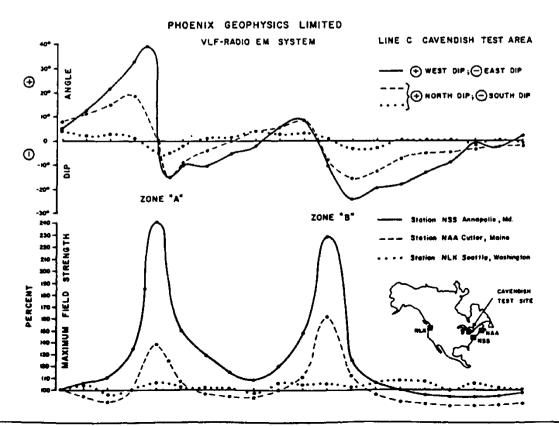
OUTPUT Nulling by audio tone. Inphase indication from mechanical inclinometer and quad-phase from a graduated dial.

±1%

OPERATING FREQUENCY 15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.

OPERATOR CONTROLS ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.

POWER SUPPLY 6 disposable 'AA' cells.


DIMENSIONS 42 x 14 x 9cm

WEIGHT Instrument: 1.6 kg Shipping: 5.5 kg

Specifications		PHOENIX VLF - 2 ELECTROMAGNETIC	UNIT	
Parameters Measured	:	Orientation and magnitude of the major and minor axes of the ellipse of polarization.		
Frequency Selection, Front Panel	:	Dual channel, front panel selectable (F1 or F2) each with independent precision 10-turn dial gain control.		
Frequency Selection, Internal	:	F1 and F2 can be selected by internal switches within the Allof the established sta range 14.0 to 29.9 kHz in 100 Hz increments. Iocal VLF transmitter ma		tively, a
Detection And Filtering	:	Superheterodyne detection and digital filtering provide a much narrower bandwidth and thus greater rejection of interfering stations and 60 cycle noise than conventional	which transmits at any f in the range 14.0 to 29	• •
		receivers.	VLF Station Fre	quency
Meter Display	:	2 ranges: 0 to 300 or 0 to 1000. Background is typically set at 100. Meter is also used as dip angle null indicator and battery test.	Bordeaux, France Odessa (Black Sea) Rugby, U.K.	(kHz) 15.1 15.6 16.0
Audio	:	Crystal speaker. 2500 Hz used as null indicator.	Moscow, U.S.S.R. Yosamai, Japan	17.1
Clinometer	:	\pm 90°, \pm 0.5° resolution. Normal locking, push button release.	Hegaland, Norway Cutler, Maine Seattle, Washington	17.6 17.8 18.5
Battery	:	One standard 9v transistor radio battery. Average life expectancy - 1 to 3 months (battery drain is 3 mA)	Malabar, Java Oxford, U.K. Paris, France	19.0 19.0 19.6 20.7
Temperature Range	:	-40° to + 60° C.	Annapolis, Maryland Northwest Cape, Australi	21.4
Dimensions	:	8 x 22 x 14 cm (3 x 9 x 6 inches).	Laulualei, Hawaii Buenos Aires, Argentina	23.4 23.6
Weight	:	850 grams (1.9 pounds).	Rome, Italy	27.2

Field Data

The results below illustrate the need for using two orthogonal stations when the strike of the prospective conductor is not well-known. The dip angle and amplitude data measured using station NLK in Seattle, Washington, show only a very weak anomaly associated with the two conductive sulphide zones at Cavendish, Ontario. The results obtained using Cutler, Maine reveal a more prominent anomaly, but the best response was obtained using Annapolis, Maryland since the station lies almost due south and the transmitted electromagnetic field is thus maximum-coupled with the North-South trending conductors.

APPENDIX III

r

.

STATEMENT OF QUALIFICATIONS

------ Pamicon Developments Ltd. __

STATEMENT OF QUALIFICATIONS

I, DAVID A CAULFIELD, of 3142 Gambier Avenue, Coquitlam, in the Province of British Columbia DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments 1. Ltd., with offices at Suite 215, 543 Granville Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology,
- 3. THAT my primary employment since 1978 has been in the field of mineral exploration,
- 4. THAT my experience has encompassed a wide range of geological environments and has allowed considerable familiarization with geophysical, geochemical, and diamond drilling techniques,
- 5. THAT this report is based on field data generated by K. Milledge, under the direction of C. K. Ikona,
- 6. THAT I have no interest in the property described herein, nor in securities of any company associated with the property; nor do I expect to acquire any such interest.

DATED at Vancouver, British Columbia, this 3^{-1} day of ______ FEB_____, 1986.

David A. Caulfield, Geologist

APPENDIX IV

*

.

ENGINEER'S CERTIFICATE

_ Pamicon Developments Ltd. __

STATEMENT OF QUALIFICATIONS

I, CHARLES K. IKONA, of 5 Crowley Court, Port Moody, in the Province of British Columbia DO HEREBY CERTIFY:

- THAT I am a Consulting Mining Engineer, with offices at Suite 215, 543 Granville Street, Vancouver, British Columbia,
- 2. THAT I am a graduate of the University of British Columbia with a Degree in Mining Engineering,
- 3. THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia,
- 4. THAT this report is based upon data from an exploration program conducted under my supervision by K. Milledge for Pamicon Developments Ltd. and a review of all available data by myself and D. A. Caulfield,
- 5. THAT I have no interest in the property described herein, nor do I expect to acquire any such interest.

DATED at Vancouver, British Columbia, this $\frac{3}{2}$ day of Fib . 1986.

Charles K. Ikona, P.Eng. CHARLES K. IKON

APPENDIX V

.

COST STATEMENT

COST STATEMENT CEDAR CLAIMS

OCTOBER 28th - NOVEMBER 5th

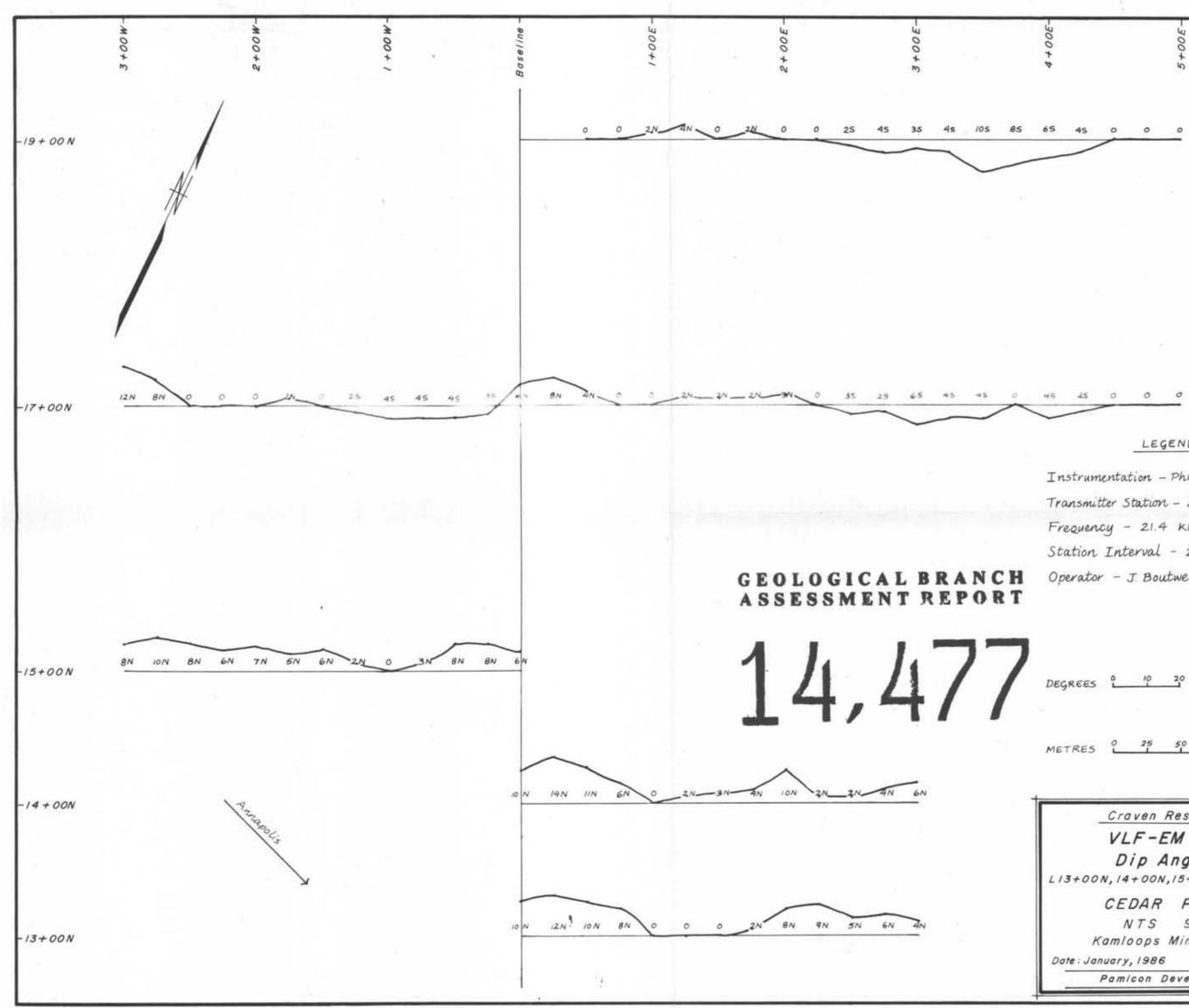
WAGES

~

-

•

....


, er , ,

K. Milledge (Labourer) 215 - 543 Granville St. Vancouver, B.C. Oct. 28th - Nov. 5th 8 Days @ 250.00/day	\$ 2,000.00
J. Boutwell (Prospector - Labourer) 215 - 543 Granville St. Vancouver, B.C. Oct. 28th - Nov. 5th 7 Days @ 175.00/day	1,225.00
D. Caulfield (Geologist) 215 - 543 Granville St. Vancouver, B.C. 2 Days @ 250.00/day	500.00
R. Darney (Geologist) 215 - 543 Granville St. Vancouver, B.C. 1.25 Days @ 250.00/day	312.50

\$ 4037.50

EXPENSES

Telephone	83.59	
Truck Rental - 7 Days @ 250.00	525.00	
Accommodations, Meals, Gas, Etc.	820.18	
Map Reproductions - (Norman Wade)	184.34	
Equipment Rental -(VLF - EM)	210.00	
Expendible Supplies	100.00	
Assays - (30 Samples Au, Ag, Cu)	250.50	
Report	1,800.00	
Adminisration & Supervision	596.04	4,569.65
TOTAL COST		\$ 8607.15

+ 00E +00E 0 0 25 0 LEGEND Instrumentation - Phoenix VLF-2 Transmitter Station - Annapolis Frequency - 21.4 KHz Station Interval - 25 metres Operator - J. Boutwell METRES 0 25 50 100 Craven Resources Inc. VLF-EM SURVEY Dip Angle Data L13+00N, 14+00N, 15+00N, 17+00N, 19+00N CEDAR PROPERTY NTS 92P/8,9 Kamloops Mining Division Date: January, 1986 Figure: 6 Pamicon Developments Ltd.