$$
85-646-14599
$$

BULLDOZER TRENCHING PROGRAM
(Ridge Mercury Zone)

LOCATION AND PHYSIOGRAPHIC POSITION 1
REGIONAL GEOLOGICAL SUMMARY 1
SUMMARY OF WORK COMPLETED 2
METHODS 2
DETAILED TECHNICAL DATA \& INTERPRETATIONS 2
COSTS 3 3
AUTHORS QUALIFICATIONS 4
LOCATION MAP
ROCK CHIP GEOCHEMISTRY Gold-Mercury
ROCK CHIP GEOCHEMISTRY Gold-Arsenic
ROCK CHIP GEOCHEMISTRY Gold-CopperROCK CHIP GEOCHEMISTRY Sampling PlanGEOCHEMICAL CERTIFICATES
PETROGRAPHIC DESCRIPTIONS

Location and Physiographic Position:
The Beekeeper claim group is located approximately five (5) kilometers northwest of Horsefly Lake in central British Columbia. The claim occurs in a moist vegetative zone dominated by combinations of coniferous fir-pine-(cedar) and deciduous poplar-birch-willow. Considerable adjacent land has been cleared and converted to improved pasture. Soils are predominantly luvisolic in type and derived from ablation tills, basal tills, and lacustrine deposits. Soils generally are neutral to slightly acidic in reaction and are usually heavy in soil texture (loams to clay loams predominating). (Geochemical expression of underlying mineralization can be expected to be poor). The terrain is moderately undulating with elevations ranging between 825 and 950 meters (2,750 to 3,050 feet).

The property is accessable by pickup truck along a bush road that connects with an all-weather road approximately ten (10) kilometers from the property.

Regional Geological Summary

The most significant single geological structure in the Horsefly area is called the Quesnel Trough. The Quesnel Trough is a Mesozoic tectonic feature that occurs between the Paleozoic Omineca Crystalline Belt to the east and the oceanic deposited rocks of the Paleozoic Cache Creek group to the west. Deposition within the trough has been predominantly by Triassic - Jurassic volcanics and their minor intercalated volcaniclastic sediments. The volcanic pile, in large, is derived from phreatic eruption and submarine laharic activity. Phreatic centres are identified by the presence of comagmatic felsic intrusives (often with a subvolcanic habit). The Quesnel Trough is an extensive feature, thought to be formed by an Upper Triassic to Lower Jurassic active island arc system. It more or less extends from the United States border to the Yukon border where it becomes known as the Whitehorse Trough. Throughout its length, composition of rocks varies between calc-alkaline and distinctly alkaline. In the Horsefly area the trough has a higher alkaline habit. During the late nineteenth century, major placer gold occurrences were worked in several locations within the Horsefly River watershed.

At the Beekeeper claim a zoned syeno-dioritic stock intrudes coeval basic volcanic breccias. Adjacent to the intrusive these volcanic breccias are pyritic and have been hornfelsed. Propylitic alteration assembleages are present and sporadic mercury gold and copper values occur. Strong magnetometer anomalies occur both in association with the stock and in the centre of the hornfelsic zone. Soil geochemical work completed on the area between 1981 and 1982 had outlined a persistent soil mercury anomaly. This anomaly was partially tested in 1984 by way of a bulldozer trenching program. A zone of epithermal style carbonate-clay alteration and sulfide stockwork veining was identified. This epithermal zone was more completely tested in 1985 by a more extensive bulldozer trenching program.

Summary of Work Compeleted

- 90 meters of bulldozer trenching.
- 64 rock chip samples and 2 soil samples were collected.

Methods

Continuous rock chip samples were collected over the interval indicated in the sampling plan (Figure 5). The two soil samples were collected from the center portion of trench E where the bulldozer failed to expose bedrock. Samples were sent to Acme Analytical Labs in Vancouver for analyses by multielement I.C.P. methods with gold and mercury by atomic absorption techniques. Lab procedures are included with the geochemical certificates in the Appendix of this report.

Detailed Technical Data and Interpretations

Epithermal mineralization and alteration has occurred within a volcanic pile that includes fine grained trachy-andesites and porphyritic latite. Alteration consists of calcite replacement and the development of clay minerals. Epithermal mineralization is evidenced by a stockwork development of micro quartz and pyrite veinlets and the wide-spread occurrence of disseminated cinnebar in the most easterly trench (trench E). While gold values are moderately anomalous in zones of epithermal alteration arsenic values are anomalous and mercury values are extremely anomalous.

Manpower: J.W. Morton	May 29-June 2	5 days @ \$200/day	\$ 1,000
T. MacKenzie	May 28, May 30-June 2	5 days © \$110/day	550
R. Boase	May 27, May 30-June 2	5 days @ \$75/day	375
D. Dunlop	May 27, May 30 -June 2	5 days @ \$75/day	375
Room \& Board	20 man days © \$45/day		900
Vehicle Costs	5 days @ \$60/day		300
Geochemical Costs			1,050
Report Preparation \& Dra	ting		500
Bulldozer Costs			750
TOTAL			\$ 5,800

AUTHOR'S QUALIFICATIONS

I, JAMES W. MORTON, CERTIFY THE FOLLOWING:

I graduated from Carelton University in 1971 with a Bachelor of Science in Geology.

I graduated from the University of British Columbia in 1976 with a Master of Science in Soil Science.

I have worked for various mining and exploration companies since 1968.

I am presently a permanent staff geologist with Imperial Metals Corporation of Vancouver, B.C.

I supervised all of the work described in this report.

This sample is a porphyritic volcanic rock consisting of squat subhedral orthoclase phenocrysts (??) in a groundmass of plagioclase laths and fine K-spar. Quite intense pervasive alteration by calcite and biotite has occured. The phenocrysts have been completley altered to an intimate? intergrowth of very fine calcite and biotite; biotite is disseminated throughout the groundmass. Diffuse patches of kaolinitic clay and sericite remain within the latered phenocrysts which suggests the feldspathic origin. Minerals are:

phenocrysts	40%	(100% altered to biotite-calcite, minor clays)
plagioclase	35	
biotite	10	
K-spar	10	
hematite	4	(after magnetite)
calcite	1 (mainly vein)	
apatite	minor	
sericite	minor	
Fe-Ti oxide	minor	
quartz	trace	

Phenocrysts form squat subhedral to euhedral grains 1 to 3 mm in size which have been completely altered to biotite and calcite. The biotite forms extremely fine grains which are intimately and uniformly intergrown with fine calcite, and tend to form in a very fine network within and between the calcite grains. Fine diffuse patches of extremely fine kaolinitic clay and sericite occur in some of the phenocrysts. Calcite is dominant in all the altered phenocrysts and alteration is similar in all of them.

The groundmass consists of euhedral to subhedral plagioclase laths 0.2 to l.0mmin size with small patches of very fine interstitial k-spar. Acicular apatite grains up to 0.3 mm in length are included in the plagioclase and often pass across grain boundaries. Pervasive alteration by biotite has occured in the groundmass. This forms flakes less than 0.05 mm in size which are disseminated throughout but tend to be concentrated in small diffuse, partly interconnected patches between the laths. Some plagioclase laths have been mostly altered to sericite.

Sometimes there is very fine calcite intergrown with the biotite patches but apart from the altered phenocryst most of the calcite occurs in a vein about 0.5 mm in width which cuts through the rock. At the edge of this there are a few small patches of of quartz.

Hematite occurs in ragged subcubic to subrounded grains 0.1 to 0.4 mm in size which are iintergrown with the plagioclase in the grondmass; smaller ones sometimes occur included in the phenocrysts. Clusters of a few grains are common. The hematite is replacing original primary magnetite, remants of which occur in many of the grains. The alteration occured during the addition of calcite and biotite. Extremely fine $\mathrm{Fe}-\mathrm{Ti}$ oxides are disseminated throughout and these also formed at this time.

C-4: ALTERED (CALCITE) ANDESITE.

This is a very fine grained volcanic rock originally consisting mainly of a mass of fine shapeless to subhedral plagioclase grains. Intense pervasive alteration by calcite has resulted in replacement of much of the plagioclase. The carbonate has been introduced in a system of veinlets which also contain quartz and pyrite. Minerals are:

| calcite | 60% |
| :--- | :--- | :--- |
| plagioclase | 20 |
| sericite | 11 |
| quartz | 5 |
| pyrite | 2 |
| limonite | |
| Fe-Ti oxide | 2 |
| | |

The original rock consisted of a mass of interlocking shapeless to subhedral plagioclase grains about 0.05 mm in size. There were a few phenocrysts (fragments ??) about 0.5 mm in size but these have been completley altered to fine sericite. Pervasive alteration has resulted in "flooding" of the mass of plagioclase by calcite. This forms very fine grains occuring in small, closley spaced or touching, ragged patches averaging about 0.2 mm in size which have been superimposed upon the mass of plagioclase; occasionally more massive patches occur. The remnant plagioclase has been partly altered to fine sericite. Extremely fine Fe-Ti oxide is disseminated within the sericitic parts.

Calcite also occurs in a criss-crossing system of veinlets 0.1 to 0.5 mm in width. The veinlets are dominantly quartz which forms highly irregularly shaped, sometimes elongated, interlocking grains 0.05 to 0.3 mm in size. Small patches of calcite are intergrown with it. Clusters rounded to subcubic pyrite grains up to 0.3 mm in size are also intergrown with the quartz and there are also a few massive pyrite vein-fillings. The pyrite also occurs disseminated within the rock. The pyrite is altering to goethite and this has allowed limonitic stain to develop, particularly in the calcite.

GEOCHEMICAL ICP ANALYSIS

THIS LEACH IS PARIIAL FOR MN.FE.CA.P.CR.MG.EA.TI.B.AL. MA.K. H.SI.IR.CE.SN. Y.NB ANO TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
SAAPLE TYPE: ROCXS/SOILS AU: AKALYSIS BY AA FROM 10 GRAM SAMPLE./ HG AKALYSIS BY FLAMLESS AA.

IMPERIAL METALS FROJECT - EEEKEEFEF FILE \# 85-0日12

SAMPLEI	Ho	Cu	Pb	ln,	Ag	Mi	Co	Mn	fe	As	U	Au	in	Sr	cd	Sb	$8 i$	v	Ca		Ld	Cr	Mq	Ba	Ii	B	Al	Ha	k	*	Aus	Hg_{9}
	ppa	pp:	pp\%	ppa	ppa	ppı	ppa	ppa	1	gpa	pp:	ppi	ppa	ppı	ppa	ppa	ppa	ppı	2	$\underline{1}$	ppa	ppe	2	ppa	1	ppa	2	1	1	not	pet	ppd
E-1	1	80	2	37	. 2	17	18.	553	5.04	7	5	ND	1	11	1	2	4	155	. 82	. 17	1	32	1.70	37	. 21	2	1.48	. 06	. 53	1	17	300
E-2	1	81	2	34	. 3	13	- 19	506	4.79	10	5	ND	1	43	,	2	3	152	. 89	. 17	6	24	1.52	35	. 24	6	1.46	. 08	. 47	1	¢	560
E-3	1	58	6	17	. 4	14	19	592	5.34	19	9	NO	2	13	1.	2	2	174	. 82	. 11	4	28	2.00	51	. 25	,	1.68	. 06	. 70	1	15	110
E-4	1	98	5	48	.	$1 ?$	22	712	5.41	15	5	ND	1	74	.	2	2	171	2.34	. 17	7	33	1.91	197	. 19	7	1.83	. 06	. 51	1	21	6300
E-5	1	19	5	17	. 2	13	19	1005	4.71	54	5	N0	J	102	1	2	2	109	8.42	. 11	8	22	2.95	57	. 07	8	1.40	. 04	. 38	1	16	3500
																															,	
E-6	1	60	6	60	. 2	16.	20	989	5.47	18	5	No	1	72	1	2	2	161	3.46	. 16	8	39	2.26	107	. 13	5	2.09	. 04	. 60	1	12	27900
E-7	2	266	9	17	. 2	$1)$	40	997	1.73	205	5	ND	1	45	1	2	2	141	3.70	. 19	6	38	1.45	14	. 01	9	1.12	. 02	. 19	1	22	18400
E-8	1	116	6	52	. 2	19.	30	1083	. 6.17	44	5	N0	1	63	1	2	2	170	J. 80	:19	11	51	1.86	111	. 05	9	1.33	. 02	. 37	1	9	85000
E-7	3	118	4	61	. 3	22	33	1306	7.28	71	5	ND	1	45	1	2	2	177	3.97	. 18	8	59	1.83	104	. 01	8	. 65	. 01	. 09	1	17	19600
E-10	1	91	7	50	. 1	20	25	1094	6.37	18	5	NO	1	74	1	2	2	160	3.31	. 17	9	55	1.88	312	. 08	,	1.24	. 02	. 46	1	10	212000
E-1!	1	67	3	44	. 1	13	19	1204	5.00	5	5	ND	1	101	1	2	2	136	4.63	. 16	6	12	2.28	291	. 12	5	1.45	. 03	. 62	1	12	50200
E-12	1	86	4	51	. 2	18	25	1014	5.28	10	5	ND	1	. 100	1	2	2	161	3.97	. 17	9	15	2.55	157	. 16	9	2.16	. 05	. 83	1	16	12400
E-13	,	138	4	51	. 3	20	30	966	5.36	10	6	N0	2	66	,	2	2	171	3.15	. 17	9	50	2.95	83	. 18	8	2.27	. 04	. 84	1	33	30000
E-14	1	107	2	43	. 1	$1)$	20	605	1.96	8	5	N0	1	52	,	2	2	160	. 88	. 20	5	45	2.21	81	. 22	5	1.71	. 01	. 72	1	17	4300
E-15	2	122	1	31	. 2	18.	25	592	4.95	11	5	N0	1	25	1	2	3	149	. 79	. 19	8	48	1.93	47	. 20	1	1.54	. 04	. 67	1	19	1300
E-1t	2	81	2	33	. 1	23	23	621	5.18	3	5	ND	1	30	1	2	2	159	. 82	. 17	5	50	1.97	48	. 23	2	1.52	. 07	. 40	1	8	1100
£-1]	2	80	5	14	. 1	22	20	812	5.04	7	5	No	1	45	,	2	2	157	1.89	. 18		64	2.55	47	. 19	6	1.92	. 05	. 59	1	13	1200
E-10	2	111	6	43	. 1	14	22	935.	1.60	11	5	ND	1	39	1	2	2	143	2.15	. 17	10	13	2.31	53	. 17		1.80	. 04	. 82	1	24	900
E-19	2	81	3	55	. 1	19.	24	935	5.89	16	5	N0	1	46	1	2	2	159	2.09	. 19	11	53	2.52	70	.13	9	2.13	. 03	. 62	1	16	665400
E-20	1	96	2	61	. 1	23	29	1145	6. 64	21	5	N0	1	13	i	2	2	171	3.11	. 19	10	58	1.82	392	. 06	11	2.12	. 02	. 10	1	19	210700
E-2]	2	105	5	58	. 1	29	33	1084	7.05	13	5	ND	1	39		4	2				1	61	1.30	122	. 01	12	1.72	. 01	. 10	1	18	35900
E-72	2	112	2	63	. 1	29	35	1505	7.65	05	5	ND	1	39.	i	4	2	207	2.40 2.32	. 10	1	61	. 1.96	220	. 01	12	1.28	. 01	. 12	1	10	25000
¢-23	1	92	θ	60	. 2	23	28	1331	6.41	51	5	N0	2	45	- i	3	2	149	3.99	. 06	3	39	1.68	204	. 01	1	. 81	. 01	. 08	1	$2 ?$	14000
-24	1	165	3	64	. 1	21	31	1274	6.70	43	5	ND	1	48	1	2	2	175	2.56	. 15	6	51	1.63	314	. 10	7	1.47	. 0 ?	. 57	1	3 ?	102000
[-35	2	43	10	52	. 1	21	27	1201	6.18	58	5	NO	1	50	i	5	2	157	2.26	. 12	9	54	. 95	195	. 02	14	1.17	. 02	. 12	:	I2	696700
E-26	2	159	6	54	. 2	30	32	1304	6.95	78	5	ND	1	43	1	8	2	154	. 08	. 03	2	41	. 15	161	. 01	7	. 92	. 01	. 01	1	19	11600
E-27		170	5	61	. 1	10	32	1453	8.25	114	5	N0	,	39	1	8	2	164	. 29	. 10	7	56	. 69	117	. 01	8	1.26	. 01	. 06	1	28	16000
$\mathrm{E}-\mathrm{i}$	2	75	6	52	. 1	63	27	1142	5.73	79	5	ND	J	65	1	3	2	160	4.72	. 27	14	148	1.65	271	. 04	15	1.19	. 02	. 28	1	23	61900
E-29	3	143	8	61	. 1	10	35	1229	1.79	133	5	No	1	43	1	6	2	171	2.21	. 34	16	101	1.16	19	. 01	11	1.63	. 01	. 07	?	25	15000
E-36	J	127	10	58	. 1	58	31	1077	6.82	135	5	NO	2	38	1	4	2	164	2.91	. 24	,	113	1.10	159	. 01	10	1.64	. 01	. 13	1	24	34010
E-31	4	150	6	99	. 2	46	39	1150	8.66	146	5	ND	1	24	1	7	2	166	. 34	. 16	2	125	. 91	134	. 01	6	2.57	. 01	. 06	1	30	8800
F-1	1	83	3	42	. 1	23	24	1164	5.21	17	5	ND	,	47	1		,	109	9.37	. 15		39	1.00	211	. 06	11	1.53	. 01	. 28	1	13	1900
f-2	1	80	4	42	. 1	23	24	1180	5.37	12	5	ND	3	4	. 1	2	2	121	8.21	. 18	8	55	1.34	201	. 09	9	1.16	. 01	. 38	1	3	850
$f-3$,	117	5	40	.1	22	29	1068	5.33	8	5	No	2	51	1	2	2	136	6.60	. 16	9	42	1.64	305	. 09	12	1.30	. 02	. 38	1	6	700
F-4	1	100	13	15	. 1	21	24	1027	6.03	11	5	ND	2	42	1	2	2	158	3.72	. 21	9	63	1.69	170	. 12	11	1.93	. 02	. 37	,	3	780
f-5	2	124	8	17	. 1	23	30	161	6.17	6	5	ND	1	34	1	2	2	158	3.10	. 20	12	63	1.97	145	. 11	9	2.22	. 02	. 42	1	2	560
STO C/AU-0.5	21	61	39	136	6.9	68	27	1169	3.92	39	17	7	31	53	16	15	20	59	. 48	. 15	10	62	. 88	172	. 08	39	1.71	. 06	. 12	11	510	1400

