REPORT
ON DIAMOND DRILL PROGRAM
TAY GOLD PROPERTY
PORT ALBERNI MINING DIVISION
BRITISH COLUMBIA
for
GLADIATOR RESOURCES LTD.
and
BOWES LYON RESOURCES LTD.

GEOLOGICAL BRANCH ASSESSMENT REPORT

14,601

FILMED

November 12, 1984

D.G. Hunder

D.G. HARDER, B.A., B.Sc.

Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TYPE OF REPORT/SURVEY(S) DIAMOND DRILLING:		* 96,201.01
AUTHOR(S) D. GLEN HARDER SIGN	IATURE(S) . D. Gler	in Harder
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILE		
B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN		
MINING DIVISION ALBERNI	0.01	
AO TOLINODEE	GITUDE 125	15' WEST
NAMES and NUMBERS of all mineral tenures in good standing (when wor (12 units); PHOENIX (Lot 1706); Mineral Lease M 123; Mining or Certified I		
TAY PROPERTY (18 units)	1	
		• • • • • • • • • • • • • • • • • • • •
OWNER(S)		
DALMATION RESOURCES LTD. (2)		
MAILING ADDRESS		
3585 East 46th Avenue		
Vancouver, B.C.		
OPERATOR(S) (that is, Company paying for the work) (1) BOWES LYON RESOURCES LTD. (2)	GLADIATOR R	ESOURCES LTD.
MAILING ADDRESS	er.	
413-475 HOWE STREET	413-475 HOW	E STREET
Vancouver, B.C. V6C-2B3	Vancouver,	
SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization, The Tay Gold Property is underlain by Triassic Karmutzen Formation. Gold moccurs in association with quartz-ca	size, and attitude): y volcanic rock ineralization o	n the property
REFERENCES TO PREVIOUS WORK		

TYPE OF WORK IN THIS REPORT		TENT OF WORK METRIC UNITS)			01	N WHICH CLAIMS		COST APPORTIONED
GEOLOGICAL (scale, area)							,	
Ground			.					<i></i>
Photo								
GEOPHYSICAL (line-kilometres)	* 1 1)							
Ground	1	No.	1			· :	.',	
Magnetic								
Electromagnetic	. <u> </u>							
Induced Polarization								
Radiometric	0.							
Seismic						1		
Other	.c2	. 39	.					
Airborne			.					
GEOCHEMICAL (number of samp	loo analyaad fas		.					
	nes analysed for	•				641		
Soil			.		• • • • • • • •			.`
Silt	· // · · · · · · ·		.			• • • • • • • • • • • • • • • • • • • •		
Rock					· · · · · · · ·			
Other			.					
DRILLING (total metres; number		$\frac{1}{2}$	Ì			. DDODNDMI		
Core	9 NO hole	s, 3512 feet	.		TA:	Y PROPERTY		\$ 96,201.01
Non-core								
RELATED TECHNICAL								
Sampling/assaying .			.					
Petrographic			.					 <i></i>
Mineralogic >4			.					
Metallurgic			.					
PROSPECTING (scale, area)				,				
PREPARATORY/PHYSICAL	. 30	,	į	73	t,			
	C (4)	. 4	,		, *: *	, ;		
Legal surveys (scale, area)		· · · · · · · · · · · · · · · · · · ·	.					
Topographic (scale, area)	,	· · · _/ · · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • • • • • • • • •	
Photogrammetric (scale, area)		\dots	.	· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • • • • •	
Line/grid (kilometres)						·····		
Road, local access (kilometres)			7)	\cdots				
Trench (metres)								
Underground (metres)				• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
		÷ ;				*	7074	6 06 201 01
· · · · · · · · · · · · · · · · · · ·			1			/	TOTAL COST	\$ 96,201.01
FOR MINISTRY USE ONLY	:-	NAME OF PAC ACCOL	INT	DEBIT	CREDIT	REMARKS:		
Value work done (from report) .								
Value of work approved	·							
Value claimed (from statement) .	***	1	.,			1		
Value credited to PAC account .		[Į.		•
		l .				1		
Value debited to PAC account	and the same of th	1		1				
Value debited to PAC account Accepted Date						Information Class		

TABLE OF CONTENTS

LIST OF FIGURES	
INTRODUCTION	1
LOCATION AND ACCESS	3
TOPOGRAPHY AND CLIMATE	4
HISTORY OF EXPLORATION	5
REGIONAL & PROPERTY GEOLOGY	6
GEOLOGY OF DRILL HOLES	8
DISCUSSION OF MINERALIZATION	14
CONCLUSIONS AND RECOMMENDATIONS	17
COST ESTIMATES	19
BIBLIOGRAPHY	20
STATEMENT OF QUALIFICATIONS: D.G. Harder	21
CERTIFICATE OF ENDORSEMENT: A.M. DE QUADROS	22
APPENDIX 1: DIAMOND DRILL LOGS, 84-1 TO 84-9	
APPENDIX 11: ASSAY CERTIFICATES	

____ MANWA EXPLORATION SERVICES LTD.__

LIST OF FIGURES

FIGURE 1,	GENERAL LOCATION MAP	After Page 1
FIGURE 2	TAY GOLD PROPERTY CLAIM MAP	After Page 2
FIGURE 3	DRILLING PLAN	In Pocket
FIGURE 4	CROSS SECTION 84-1	In Pocket
FIGURE 5	CROSS SECTION 84-2	In Pocket
FIGURE 6	CROSS SECTION 84-3	In Pocket
FIGURE 7	CROSS SECTION 84-4	In Pocket
FIGURE 8	CROSS SECTION 84-5,6,7	In Pocket
FIGURE 9	CROSS SECTION 84-8	In Pocket
FIGURE 10	CROSS SECTION 84-9	In Pocket

MANWA EXPLORATION SERVICES LTD. -

[·] This report may not be reproduced in whole, in part, or in summary without the written permission of Manwa Exploration Services Ltd.

INTRODUCTION

The subject of this report is a recent diamond drill program on the Tay Gold Property, jointly held by Gladiator Resources Ltd. and Bowes Lyon Resources Ltd. The diamond drill program was managed by Manwa Exploration Services Ltd. One-site supervision was by G. Harder and H. Shear. R.J. McGowan and A.M. deQuadros were involved in the planning phase, the overall management and interpretation of results.

The diamond drilling commenced on September 11, 1984 and was completed on October 22nd. Nine holes, totalling 3512 feet were drilled. The core size was NQ and the drill was a Boyles Bros. 25A. The drill contractor was M & B Drilling Ltd. of Powell River, B.C.

The drilling program was concentrated on the No. 1 showing previously drilled in 1980 and 1983. The drill holes were designed to test for any lateral extension and extension at depth of the known gold bearing structure, together with testing for possible parallel vein systems.

A total of 111 samples of drill core were split, representing 289.5 feet of section. The samples were fire assayed for gold by Acme Analytical Laboratories of Vancouver. Assays or geochemistry were done for silver and arsenic on most samples.

Selected samples were analysed for copper and zinc.

'The core was split and stored at a warehouse next to Mid-Island Realty on the corner of 3rd Avenue and Argyle Street, Port Alberni, B.C. The core is presently being stored there. The approximate weight of the core is 4.5 tons. Mr. N. McConnachie of Mid-Island Realty Ltd. should be contacted with regard to moving it.

_ MANWA EXPLORATION SERVICES LTD. _

LOCATION AND ACCESS

The Tay Gold Property is located on the southwestern part of Vancouver Island. The claims straddle the Taylor River, 3 kilometers west of Sproat Lake. The property is accessible from Port Alberni by Highway 4 which passes through the southern part of the claim group. Various forestry roads crisscross the property, some of these locally washed out.

The property is in the Alberni Mining Division at NTS 92F/6W. The claims are centered at latitude 49° 19' north and longitude 125° 15' west.

_ MANWA EXPLORATION SERVICES LTD. -

TOPOGRAPHY AND CLIMATE

The Tay group of claims is concentrated on the northern side of the Taylor River valley and is spread over elevations of 60 metres to 750 metres above sea level. Several horizontal benches occur between the valley bottom and the plateau to the north.

The climate of the area is characterized by hot summers, mild winters and abundant precipitation.

The lower part of the property has been logged, burned off and subsequently replanted. The higher elevations are covered by a thick forest of large cedar and fir trees.

HISTORY OF EXPLORATION

The following history of exploration is taken from Cukor (1984). The Tay Gold Property covers an area originally staked in 1974 and held by Lou-Mex Mines Ltd. Some regional geochemistry was performed in 1975 and limited bulldozer work in 1976.

In 1978, the claims were abandoned and restaked. Some limited EM-16 geophysics and mapping were conducted. The No. 1 showing was located but later buried by logging operations.

The 1979, a detailed geochemical soil survey was conducted along with additional EM-16 and geological surveys. The No. 1 showing was re-opened by a bulldozer and some diamond drilling was performed.

In 1980, a detailed magnetic survey and diamond drilling was carried out. In 1983, additional drilling was supervised by V. Cukor. The location of the holes drilled in 1980 and 1983 near the No. 1 showing is plotted on Figure 3.

REGIONAL AND PROPERTY GEOLOGY

The regional geology was mapped by J.E. Muller during the sixties on a scale of 1 = 250,000. (Muller and Carson, 1969). The Tay Gold Property is underlain by volcanic rocks of the Upper Triassic Karmutsen Formation. These volcanics are comprised of massive to pillowed andesites with lesser tuffs and a thin bed of intervolcanic limestone.

Jurassic intrusions in the form diorite are common on the property. Acid intrusions also occur in the southern part.

Narrow dacite dykes are common near the No. 1 showing.

These may be Tertiary in age (H.P. Wilton, B.C. Ministry of Energy,
Mines and Petroleum Resources, personal communication). They may
be related to a Tertiary volcanic centred farther west. The
dacite dykes are commonly associated gold mineralization in
the Kennedy Lake gold camp.

The No. 1 showing occurs as a vein system associated with a dacite dyke intruding altered, fractured andesite. West of the showing, Cukor (1983) has mapped a large pluton of quartz diorite. about 1000 feet wide. Drilling has shown the quartz-diorite-andesite contact to be quite complex and irregular. The quartz

diorite (hereafter referred to as diorite) appears to have been injected into the andesite at local zones of weakness with no particular preferred orientation. The diorite is variable in composition and degrees of alteration as seen in the following chapter.

Before 1984, 6 closely spaced holes were put down on the No. 1 showing. In 1980, 3 short holes were put down at varying angles at the same location. Significant gold values were obtained but all were less than 0.1 oz/ton. In 1983, 3 more holes were put down, of which one, 83-5, hit significant mineralization. Hole 83-5 obtained an intersection of 0.096 oz/ton gold over 93 feet which included an interval of 46 feet of .174 oz/ton gold. This hole was drilled obliquely to the vein.

Past exploration programs have disclosed mineralized boulders about 1500 feet west of the No. 1 showing. These boulders consist of rusty quartz similar to that at the showing. Samples of this float assayed from trace to as high as .38 oz Au/ton (Cukor, 1983, p. 10). Several drill holes have been put down near the float. In this same vicinity, Lou-Mex Mines reported in 1974 a quartz vein which ran as high as 1.3 oz/ton gold over 4 feet. The location of the vein has never been found.

GEOLOGY OF 1984 DRILL HOLES

The 1984 drilling program was designed to test the lateral and downdip extension of the No. 1 showing. All drilling was conducted on Claim TAY 2. Nine holes were put down over a strike length of 640 for a total of 3512 feet. All the holes were drilled at an azimuth of 360° with the exception of 84-1 which was drilled at an azimuth of 015°.

HOLE 84-1

Hole 84-1 was collared 280 south of the No. 1 showing and drilled at an angle of 10° for a total length of 529 feet. The hole was designed to hit the gold-bearing horizon at depth and east of the No. 1 showing and test for parallel structures to the south.

Hole 84-1 intersected fairly fresh diorite to 69 feet followed by fairly massive andesite. The andesite had numerous fault zones between 111 and 163 feet and between 424 and 429 where a major aquifer was encountered. Quartz-calcite veinlets are associated with the faulting. The rest of the section from 459 to 529, was massive andesite.

The only significant mineralization encountered was a narrow

quartz-calcite veinlet at 98 feet, which ran .188 oz Au/ton with 5% arsenic over 0.25 feet. The country rock was essentially barren on either side.

HOLE 84-2

Hole 84-2 was collared at the same location as 84-1 and drilled 360° at 10°. It was designed to drill directly below the favourable intersection obtained in Hole 83-3 in 1983.

The hole intersected fresh diorite to 73 feet, followed by andesite with various diorite intrusions. Narrow skarn zones and quartz-calcite veinlets are common in the andesite. Fault zones are associated with quartz-calcite veinlets. The major aquifer was hit at 422 feet.

The best intersection was .047 oz Au/ton from 204 to 211 feet, which includes an intersection of .065 oz Au/ton over 3.5 feet from 204-207.5 The mineralization is in an altered dacite dyke.

HOLE 84-3

Hole 84-3 was drilled 100 feet west of 84-1 and 2. It was designed to locate the vein at depth.

The hole intersected fresh diorite to 94.5 feet. The rest of the hole encountered mainly andesite with various diorite

_ MANWA EXPLORATION SERVICES LTD. _

and dacite dykes.

The best intersection was an average of .07 oz Au/ton over 11 feet in a quartz-carbonate zone from 348 to 359 feet. This zone appears to be the downdip extension of the No. 1 showing.

HOLE 84-4

Hole 84-4 was drilled parallel to Hole 84-3, at a dip of 20° and an azimuth of 360°. It was designed to test the western extension of mineralization encountered in 84-3.

Hole 84-4 intersected andesite to 134 feet followed by generally fresh diorite to 392 feet. The rest of the hole to 450 feet encountered mainly alternating bands of andesite and diorite.

The best intersection was an average of 0.111 oz Au/ton over 8 feet from 392 to 400 feet. The gold is in a quartz carbonate vein replacing dacite and appears to be an extension of the zone intersected in Hole 84-3.

HOLE 84-5

Hole 84-5 was collared between Hole 83-3 and 83-4 drilled in 1983. It was designed to locate the vein intersected in 83-3 but missed in 83-4.

The hole encountered mainly andesite, commonly altered

_ MANWA EXPLORATION SERVICES LTD. .

and fractured, with intrusions of diorite and dacite. A well-mineralized dacite dyke occurs between 118 and 141 feet followed by a quartz-carbonate zone and quartz veining from 141 to 160 feet.

The average gold assays are as follows:

- .113 oz/ton over 6 feet from 123-129 feet;
- .053 oz/ton over 16 feet from 129-145 feet; and
- .118 oz/ton over 15 feet from 145-160 feet.

HOLE 84-6

Hole 84-6 was collared at the same location as Hole 84-5 and was drilled to 412 feet at an angle 50°, azimuth 360°. It was designed to test the downdip extension of the mineralized zone in 84-5.

Hole 84-6 intersected alternating sections of diorite and andesite and several narrow dacite dykes. Overall, there appears to be little alteration in either the andesite or the diorite. No major mineralization was encountered. The best intersection was .066 oz Au/ton over 1 foot from 103.5 to 104.5 feet.

HOLE 84-7

Hole 84-7 was collared at the same location as Holes 84-5 and 84-6. It was drilled at the same azimuth of 360° but at an angle 10° for a total length of 144 feet. It was designed to determine the geometry and continuity of the gold-bearing horizon.

Hole 84-7 encountered mainly andesite with various narrow dacite dykes to 118 feet. The rest of the hole to 144 feet intersected diorite.

Several of the dacite dykes are weakly mineralized. The main gold bearing zone was encountered from 93.5 to 110 feet. The mineralization appears to be replacement of the dacite dyke in the form of quartz carbonate breccia. The best intersection was from 98 to 108.5, which averaged .07 oz Au/ton over 10.5 feet.

HOLE 84-8

Hole 84-8 was drilled 200 feet northwest of Hole 84-7, at an elevation 55 feet higher. The hole was designed to intersect any mineralization, 175 feet west of Hole 84-7. It was drilled at a dip 22° for a length of 378 feet.

The geology of 84-8 is mainly varieties of diorite, intruded by narrow dacite dykes. At the beginning of the hole, the diorite is fresh, medium grained and gradually becomes quite altered, fractured and broken. Several quartz-carbonate veins or breccia zones occur in association with altered diorite or dacite.

The best intersection was 0.108 oz Au/ton over 3 feet from 316 to 319 feet in a quartz-carbonate-chlorite breccia. The average from 313.5 to 319 feet was .068 oz Au/ton over 5.5 feet.

HOLE 84-9

Hole 84-9 was drilled to test for mineralization 150 feet west of 84-8 and to test for a possible source of the mineralized boulders to the west. It was drilled at a dip of 25° for a length of 520 feet.

The geology of the hole is mainly diorite intruded by several dacite dykes and one andesite dyke. No significant mineralization was encountered. The best assay was .016 oz Au/ton over 3 feet from 369.5 to 372.5 feet in a quartz-carbonate zone. Several other narrow quartz-carbonate zones were essentially barren.

DISCUSSION OF GOLD MINERALIZATION

Gold mineralization on the Tay Gold Property occurs in association with quartz-carbonate veins of varying size. Significant gold values occur only where there are appreciable sulphides (2-5%), namely pyrite and arsenopyrite. Gold values also appear to increase with a higher percentage of quartz over calcite in the vein.

Most of the high gold values are associated with a high arsenic content of several percent. The one notable exception was the quartz vein in Hole 5 where the quartz vein ran .23 oz Au/ton over 3 feet (the highest intersection of the 1984 program) and only .1% arsenic. The quartz here was unique to this program in that it was well fractured and contained very little calcite.

The most significant mineralization occurs in association with altered dacite dykes, particularly the thickest one at the No. 1 showing. Mineralization occurs both within the dyke and at the margins. The dyke is fine grained, sometimes porphyritic, brown or taupe in colour with a hint of lavender or mauve where mineralized. The better intersections have numerous quartz-calcite veinlets with appreciable sulphides. The best values come from the quartz-carbonate veins that have an appreciable thickness.

Some gold mineralization also occurs in quartz-carbonate veins within the andesite and diorite. The mineralization appears to have been the last event. Mineralizing solutions have been

injected into favorable structures and the dacite dyke contacts appear to have been one of best physical and chemical traps.

The gold-bearing structure at the No. 1 showing has now been traced over a distance of 480 feet. To the west it last appears in Hole 84-8 but not in Hole 84-9, 150 feet to the west of 84-8. The structure appears to strike east-west and dip steeply to the north.

Along the eastern 1/3 of the strike length, the vein does not appear to persist at depth. Holes 84-1, 84-2 and 84-6 failed to intersect significant mineralization 120 feet below the surface expression of the vein. In addition it now appears that 83-4 missed the vein because it does not persist at depth. The vein appears to either pinch out or more likely be faulted off at a shallow angle.

Most of the mineralized intersections in 1984 and previous years have produced subeconomic gold values. The silver values were very low. In 1984, two holes 84-4 and 84-5 have produced economic values over significant widths across the No. 1 showing vein. The most important intersections are summarized below:

	Au oz/ton	Width feet	footage
84-3	.07	11	348-359
84-4	.11	8	392-400
84-5	.11	6	123-129
	.05	16	129-145
	.12	15	145-160
84-7	.07	10.5	98-108.5
84-8	.07	5.5	313.5-319

. MANWA EXPLORATION SERVICES LTD. .

Nine surface samples were taken by H. Shear, P.Eng. Five samples were from boulders west of the No. 1 showing. The gold assays on these varied between .065 and 0.282 oz/ton.

Mr. Shear also discovered a small showing 3000 feet north-west of the No. 1 showing, just north of the upper road, apparently in the southwest corner of TAY 14. Chip samples returned gold assays as follows:

- .088 oz/ton over 1.75 feet;
- 0.010 oz/ton over 2.9 feet;
- 0.001 oz/ton over 4 feet and
- 0.001 oz/ton over 3 feet.

MANWA EXPLORATION SERVICES LTD. -

CONCLUSIONS AND RECOMMENDATIONS

The 1984 drilling program has traced the mineralization on the No. 1 showing over a strike length of 480 feet, between Holes 84-5 and 84-8. Hole 84-9, 150 feet west of 84-8, did not intersect significant mineralization.

The vein strikes approximately east-west and dips steeply to the north. Along the eastern 1/3 of the strike length, no significant mineralization was encountered 120 feet below the surface expression of the vein. A local thickening of the vein at shallow depth is indicated only in Holes 83-3 and 84-5. The grade of the vein is generally well below 0.1 oz Au/ton.

Because of the lack of extension at depth to the east, lack of continuity to the west and the generally low grade, the No. 1 showing does not appear to warrant further work at the present time.

Other gold-bearing structures probably occur on the property, as evidenced by the mineralized boulders. However, ground surveys available on the 18-claim block appear to be limited to the 2 1/2 claims in the immediate area of the showings. Therefore the entire claim block cannot be properly evaluated at the present time.

It is therefore recommended that ground studies should be carried out over the entire property. Some of the work in the immediate area of the showing also needs to be redone. This is because the geochemical and EM 16 surveys were run along east-west

_ MANWA EXPLORATION SERVICES LTD. -

lines, or essentially the strike of the mineralized zone.

Due to the steep topography, the instrument recommended would be Crone EM shootback units along north-south lines. Geological mapping and geochemical sampling should be carried out simultaneously. A proton magnetometer survey would be useful for delineating major structural features of the property.

MANWA EXPLORATION SERVICES LTD. __

STATEMENT OF COSTS

GLADIATOR RESOURCES LTD.

BOWES LYON RESOURCES LTD.

1984 ASSESSMENT REPORT

DIAMOND DRILLING

ON THE

TAY PROPERTY

The diamond drilling program was carried out on the Tay 1-18 mineral Claim, Alberni Mining Division, from September 11, 1984 to October 22, 1984. to the value of the following:

9 Holes, 3512 feet of NQ diamond drilling. (all inclusive):

\$ 61,713.92

Assays:

1,908.94

Associated costs:

6,387.88

Engineering, Supervision & Report:

26,190.27

\$ 96,201.01

COST ESTIMATES

Below is an estimated cost of ground surveys required to cover the entire Tay Gold Property Claim Block.

Grid	54 Km @ \$200.00	\$10,800.00
CEM	Survey 54 Km @ \$200.00	10,800.00
VLF EM	Survey 54 Km @ \$100.00	5,400.00
Proton Prece	ssion Magnetometer Survey	
	54 Km @ \$100.00	5,400.00
Soil Geochem	ical Survey	
	(1,500 samples)	30,000.00
•	•	
Geological m	napping	8,100.00
Prospecting		5,000.00
Supervision,	Interpretation, Report	9,000.00
Contingencie	es 15%	12,675.00
TOTAL COST C	F GROUND SURVEYS	\$97,175.00

Respectfully submitted,

D. G. Harder

D.G. Harder, B.A., B.Sc.

BIBLIOGRAPHY

Cukor, V.

1984: "Summary of Exploration Programs on Tay Gold Property, Port Alberni, B.C.", report for Gladiator Resources Ltd. and Bowes Lyon Resources Ltd.

1983: "Summary of Exploration Programs on Tay Gold Property", report for Dalmatian Resources Ltd.

Muller, J.E. and Carson, D.J.T.

1969: "Geology and Mineral Deposits of Alberni Map Area, British Columbia (92F)", G.S.C. Paper 68-50, accompanied by Map 17-1968, Scale 1 = 250,000.

_ MANWA EXPLORATION SERVICES LTD. _

STATEMENT OF QUALIFICATIONS

- I, DONALD GLENN HARDER, of #370 625 Howe Street, Vancouver, B.C., do hereby declare that:
- 1. I graduated from the University of Ottawa in 1976 with a B.Sc. (Hon.) in Geology. I also graduated from Queen's University in 1969 with a General B.A. in Arts and Science.
- 2. I am presently employed as a consulting geologist with Manwa Exploration Services Ltd. of 625 Howe Street, Vancouver, British Columbia.
- 3. I have practised my profession as an exploration geologist for the past 9 years, working for various mining companies across Canada. Prior to this time I spent four summers and one winter as a geological assistant.
- 4. I have been self-employed as a consultant and contract exploration geologist since 1976.
- 5. The information contained in this report is based on field supervision of the drilling program.
- 6. I do not have any interest nor expect to receive any interest in the subject property nor in the securities of Gladiator Resources Ltd. or Bowes Lyon Resources Ltd.
- 7. This report may be used by Gladiator Resources Ltd. and Bowes Lyon Resources Ltd. for all corporate purposes and including any public financing.

Respectfully submitted.

Donald Clenn Harder

Donald Glenn Harder Consulting Geologist

DATED at Vancouver, B.C. this 12th of November, 1984.

CERTIFICATE OF ENDORSEMENT

This is to certify that I, ANTONIO M. deQUADROS:

1. Have the following degrees in Geology:

B.Sc. Honours

M.S.

University of London
1964
University of California
1968
at L.A.

Ph.D.

University of Nairobi, Kenya 1972

2. Have the following affiliations:

Fellow, Geological Association of Canada Member, Canadian Institute of Mining and Metallurgy Member, Association of Professional Engineers of B.C.

3. Have known Mr. Glenn Harder professionally for two years and I am familiar with the quality of his work. I have supervised this project and visited Mr. Harder in the field on October 6th and 7th, 1984. I have inspected the data and read the report and find it a true statement of the work done.

Antonio M. Jenuaros, Ph.D., P. Eng. 370 - 625 Howe Street
Vancouver, B.C. V6C 2T6
12th November 1984

MANWA EXPLORATION SERVICES LTD.

This report may not be reproduced in whole, in part, or in summary without the written permission of Manwa Exploration Services Ltd.

MANWA EXPLORATION SERVICES LTD.

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Location	see d	rilling pl	an L	enath _	529			
		(relative)		nuth (015	_ Dip	-10°	
			Finish					

Company Gladiator Resources L	td. & Bowes Lyon Resources Ltd.
Name of Property Tay Gold	
	Sheet No. 1 of 2

storted .	Sept.	11,1984 Finished Sept. 18, 1984	Logged By	Н.	Shear					
F00'	TAGE			SAMPI			ANAL	YTICAL	RESULT	S
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL		Au OZ/I	1s%	Ag ^{OZ/} T
0	11	Overburden (casing to 14')								
							İ			
11	69	Quartz Diorite: 10-15% black mofic minerals slightly	4							
		chloritized; slightly magnetic; occasional calcite veinlet	_						1	
		1/16-1/4", minor diss. py		ļ	-				ļ	<u> </u>
		Quartz-calcite veins: @ 24'-4";	_	-						
		@ 29.5'-3", @ 42'-2", @ 66.75'-3" (well min py + aspy)	682	66.6	67	0.4		.017	.17	.03
		27-113-113-113-113-113-113-113-113-113-11	4						ļ	
69	212	Andesite: dark blackish-green; massive; very slightly magnetic			'					1
		in places- generally not magnetic; occa. 1/4" qtz-col veinlet;	_		 				-	
		Occa. sec with porphyritic texture (plag.); minor py throughout -							1	
		occa. py veinlet			1					
			-1							
		The section is characterized by containing numerous small								
ļ	-	intersections of fine grained dike or alteration which is light	_	 	 	1		+	-	
ļ		lavender to light green with ab. green chl. specks. These								1
		intersections are silicious and have commonly been brecciated		-		1		1	1 .	
	 	and healed. The section also contains numerous intersections	⊣ l							1
	 	of skarn containing K-feldspar, garnet, epidote, chlorite, qtz						1		1
	 	and col. Those appear to be associated with the f.g. material	_		 				+	
		noted above.								Ì
	-		-			'				
	+		-							
	1			- سلد.	. 1	1 11	'	1	1	

__ MANWA EXPLORATION SERVICES LTD.

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

FOO	TAGE	DECONOTION		SAMP	.E		ANAL	YTICAL F	RESULT	s
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE TO	FOTAL		OZ /T	As%	AgOZ/T
		86-119: and. disrupted by dike invasion along frac.s in several								
		dir.; dike grey, diorite in places	0029	95.75	98	2.25		.003	.05	.02
		98.25': 2½" vein - ab. py + aspy	683	98	98.25	. 25		.188	5.09	.06
			0030	98-25	99.75	2.5		-001	-01-	-01
***		Core very broken: 111-123.5; 181-193.5. Fault zones:								
		122-123.5 (50% core loss); 158.5-159 (fault gouge);		'						
		159-161 (50% core loss) 161-163 (60% core loss - contains		}			-			
		spotty qtz-col. veining with minor py + aspy)	684	161	163	2.0	 	-005	.05	01
		Qtzcal. veining: 151.75-152.25; 156.3-156.9 (minor py + aspy);								
		155-157.1 (several 1/4" veinlets with minor py + aspy)	685	155	157.1	2.1		.020	.23	.01
212	214	Qtz. Dio	_	<u> </u>						
214	459	Andesite (as described from 69-212)	-						,	
		numerous qtz-cal_veins 1"-2" @ 10°-80°								
		Fault zones: 229.25-229.5 (blackish gouge);	686	229	229.5	0.5		.003	.01	.01
		@ 408.5-3" (very chloritic); 424-427 (extremely broken-				0.,		.003	.01	.01
		major aquafer)							l	
459	529	371.5 - 373 skarn att. zone - no vietbie econ. Unaltered blackish-green Ardesite	687	3765	373	6.5		.001	.01	.02
	529	End of Hole							1	
		Acid Test at 529'-110							}	

<	
$\overline{}$	
ᅩ	
Z	
=	
<	
➣	
-	
MANWA EXPLORATION S	
\succeq	
ᢦ	
r	
Ć	
ORAT	
椌	
J.	
-	
≂	
2	
z	
SER	
\mathbf{x}	
2	
VICE	
12	
U,	
_	
\vdash	
\equiv	
:	

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

 Location
 see Drilling Plan
 Length
 476¹

 Elevation
 +5¹ (relative)
 Azimuth
 360⁰
 Dip 10⁰

 Storted
 Sept. 18, 1984
 Finished
 Sept. 22, 1984

AGE			SAMPL	.E		ANA	LYTICAL	RESULTS	5
то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au	Z/1 AS%	Ag OZ/1	
13	Overburden (casing to 14')			,,,	101.02			1,5	
73	Quartz Diorite: 10-15% black mafic minerals slightly								
	chloritized; slightly magnetic; minor diss. py; numerous								
	barren qtz-cal. veinlets 1/8" - 1/2" at all angles							_	
	(bleached halos ½" - 1" into qtz. dio.); occa. bleached		Ì						
	zone asso. with low angle qtz-cal. veinlet								
	At 45: rty harren f.g. dike @ 75°								
	At 61: 1½" vein @ 75° (minor py, hem & chloritized)							ļ	
	65.25 - 66.25: vein @ 55°, 5-10% py & minor aspy;	0001	65.25	66.25	1.0	.09	8	.03	
	composed of chloritized qtz & col. contact slightly								
	irregular @ 70°; andesite frag. 1" - 3" into qtz. dio.								
				<u> </u>					\vdash
				1					
	то 13	DESCRIPTION 13 Overburden (casing to 14') 73 Quartz Diorite: 10-15% black mafic minerals slightly chloritized; slightly magnetic; minor diss. py; numerous barren qtz-cal. veinlets 1/8" - 1/2" at all angles (bleached halos ½" - 1" into qtz. dio.); occa. bleached zone asso. with low angle qtz-cal. veinlet At 45: rt.y barren f.g. dike @ 75° At 61: 1½" vein @ 75° (minor py, hem & chloritized) 65:25 - 66:25: vein @ 55°, 5-10% py & minor aspy; composed of chloritized qtz & col. contact slightly	TO DESCRIPTION SAMPLE NO. DESCRIPTION SAMPLE NO. To Overburden (casing to 14') To Overb	TO DESCRIPTION SAMPLE NO. FROM 13 Overburden (casing to 14') 73 Quartz Diorite: 10-15% black mafic minerals slightly chloritized; slightly magnetic; minor diss. py; numerous barren qtz-cal. veinlets 1/8" - 1/2" at all angles (bleached halos ½" - 1" into qtz. dio.); occa. bleached zone asso. with low angle qtz-cal. veinlet At 45: rt.y barren f.g. dike @ 75° At 61: 1½" vein @ 75° (minor py, hem & chloritized) 65:25 - 66:25: vein @ 55°, 5-10% py & minor aspy; composed of chloritized qtz & col. contact slightly	TO DESCRIPTION SAMPLE NO. FROM TO 13 Overburden (casing to 14') 73 Quartz Diorite: 10–15% black mafic minerals slightly chloritized; slightly magnetic; minor diss. py; numerous barren qtz-cal. veinlets 1/8" - 1/2" at all angles (bleached halos ½" - 1" into qtz. dio.); occa. bleached zone asso. with low angle qtz-cal. veinlet At 45: rt.y harren f.g. dike @ 75° At 61: 1½" vein @ 75° (minor py, hem & chloritized) 65:25 - 66:25: vein @ 55°, 5-10% py & minor aspy; composed of chloritized qtz & col. contact slightly	TO DESCRIPTION SAMPLE NO. FROM TO TOTAL 13 Overburden (casing to 14') 73 Quartz Diorite: 10-15% black mafic minerals slightly chloritized; slightly magnetic; minor diss. py; numerous barren qtz-cal. veinlets 1/8" - 1/2" at all angles (bleached halos ½" - 1" into qtz. dio.); occa. bleached zone asso. with low angle qtz-cal. veinlet At 45: rt.y harren f.g. dike @ 75° At 61: 1½" vein @ 75° (minor py, hem & chloritized) 65:25 - 66:25: vein @ 55°, 5-10% py & minor aspy; composed of chloritized qtz & col. contact slightly	TO DESCRIPTION SAMPLE NO. FROM TO TOTAL ALL ALL ALL TO TOTAL TO DESCRIPTION SAMPLE NO. FROM TO TOTAL Au ^{OZ/} As% 13 Overburden (casing to 14') 73 Quartz Diorite: 10-15% black mafic minerals slightly chloritized; slightly magnetic; minor diss. py; numerous barren qtz-cal. veinlets 1/8" - 1/2" at all angles (bleached halos ½" - 1" into qtz. dio.); occa. bleached zone asso. with low angle qtz-cal. veinlet At 45: rt.y barren f.g. dike @ 75° At 61: 1½" vein @ 75° (minor py, hem & chloritized) 65:25 - 66:25: vein @ 55°, 5-10% py & minor aspy; occaposed of chloritized qtz & col. contact slightly	TO DESCRIPTION SAMPLE NO. FROM TO TOTAL A. OZ/ AS% Ag 7/2/1 AS Overburden (casing to 14') 73 Quartz Diorite: 10-15% black mafic minerals slightly chloritized; slightly magnetic; minor diss. py; numerous barren qtz-cal. veinlets 1/8" - 1/2" at all angles (bleached halos ½" - 1" into qtz. dio.); occa. bleached zone asso. with low angle qtz-cal. veinlet At 45: rt.y harren f.g. dike @ 75° At 61: 1½" vein @ 75° (minor py, hem & chloritized) 65.25 - 66.25: vein @ 55°, 5-10% py & minor aspy; composed of chloritized qtz & col. contact slightly	

__ MANWA EXPLORATION SERVICES LTD.

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company Gladiator Resources L	<u>td. &</u>	Bowes	Lyon	Resources	Ltd.
Name of Property Tay Gold Prope	rty				
Hole No	Sheet	No	2	of 5	

FOOT	TAGE		SAMPLE				ANALYTICAL RESULTS			
FROM TO DESCRIPTION S		SAMPLE NO.	FROM	FOOTAGE	JA101	Au ^{OZ} /	T As%	Ag ^{OZ} /T		
73	217	Andesite: dark blackish-green; massive; generally not mag but very								
		slightly magnetic in spots; occa. section with porphyritic texture			-					
		(plagioclose); minor diss. py throughout - occa. py veinlet (1/16");	0002	81.5	82	0.5	.090		.02	
		abundant hairline to 1/4" qtz - cal veinlets all angles								
		81.5-82 vein @ 85° visible py & aspy								
		92.5 93.75 f.g. greyish-white dio. dike								
		95 95.5 f.g. greenish dike with 1" bx zone & ½" with minor visible aspy & py (55°)								
		98.25 100.5 f.g. dike @ 55° with diss. py & minor aspy								
		115 120.5 dioritie texture (dike?)				•				
		Section is characterized by containing numerous small intersections								
		(3" = 1.5') of fine grained dike or alteration which is light								
		lavender to light green with ab. green chl, specks. These sections.			İ					
		are silicious and have commonly been brecciated and healed		 		1.				
	1		<u> </u>			1		l		

MANWA EXPLORATION SERVICES LTD.

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company Gladiator Resources Ltd. & Bowes Lyon Resources Ltd

Name of Property Tay Gold Property

Hole No. T-84-2 Sheet No. 3 of 5

F001	FOOTAGE		SAMPLE SAMPLE				ANALYTICAL RESULTS			
FROM	то	DESCRIPTION		FROM	FOOTAGE 10	TOTAL	AuOZ	T As%	Ag ^{OZ} /T	
73	217	Section also contains numerous intersections of skarm consisting	_							
conti	rued)	of K-feldsper, garnet, epidote, chlorite, qtz. and cal. Skarn	003	98.25	100.5		. 01	.027		
		may be related to zones above where they have invaded calcite	-∦						1 1	
		veinlets	-							
		Faults - badly broken: 121-122.5: 184-184.5						 		
		128-135.5: Spotty aspy visible; py mineralized gtz- col veins @ 129.5 (2"); 134.5-135 (600-700)	0004	128	131	3.0	.008	.07	.01	
		qtz- col veins @ 129.5 (2"); 134.5-135 (60°-70°)	_ 0005	131	135.5	4.5	.001	.01	.01	
		at core f.g. dike or alteration	_							
		145.5-147.5: Veins @ 145.5-146.1, 146.75-147.1	0006	145.5	147.5	2.0		11	.01	
		1" of well min aspy @147.1		ł						
		158.5-162: 158.5-158.8 vein @65°, 2½!!	- 0007	158.5	162	3.5	.03	.38	.01	
. 		well min with aspy, @161.5: 1" vein with ab. aspy	_] '''		
		189-193.5: f.g. dike or alt. with veins @ 189.5 (4").	0008	189	193.5	4.5	.006	.02	.01	
		192-193.5 (3" 5-10% py @ 192.5)	-							
		204-211: f.g. dike or alt with silicious sections,	0009	204	207.5	3.5	06	5 .14	.04	
		brecciated and sil. healed sec.s, ab py in sec.s, no	3007					1	1 .04	
		vis aspy	0010	207.5	211	3 5	.02	9 20	.01	
				T			- 1	1	"	
		211-217; and, with numerous f.g. dike-alt and sil.	0011	211	217	6.0	.00	1 .01	.03	
		sec.s, a few qtz-col. veinlets	_							
	-		_	1						
			1					1	1	

___ MANWA EXPLORATION SERVICES LTD.

Company .	Gladiator	Resources	Ltd.	&	Bowes	LYon	Resourc
Name of Pr	roperty	Tay Gold	i Prope	rty	,		
Hole No	T-84	-2 s	neet No.		4	of :	5

FOO	TAGE	DESCRIPTION	Ĭ	SAMPI	LE		ANAL	YTICAL	RESULT	5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	LIOTAL		!AuOZ/	As%	Ag ^{OZ} /T
_217	325	Mainly barren Andersite: occasional qtz-cal veinlets,					·	 	<u> </u>	, v
		porphyritic sections, sections with diorite texture,]				
		and small sections of skarn and f.g. dike-alt as			}			1		
		described at 73-217	_							
		244.75-245.25: vcin, 2-3% diss_py, minute_cp.	0012	244.75	245.25			.008	.03	.01
		262.5-268.5 and. with several f.g. dikes-alt. and broken zones	0013	262.5	268.5	6.0		.010	.15	.01
		(probable faults) 262.5-263.5 + 268-268.5'. 264-266: 'y'' vein along core with minor vis aspy.	-							
		Broken zones: 280.6-282.5, 284-285.5, 294-295, 316-317, (6" core loss) 321-325 (6" core loss)	-							
325	343	Mainly barren Quartz Diorite								
		@337.5: 1/4" dike with minute py + aspy. 339.1-342.4: Flat angle 1/2" vein along core for 1.5' with minor diss. py + aspy. Minor visible py + aspy in spots in balance of sec.	0014	339.1	342.4	3.3		.041	.86	.02
343	345.5	Barren Andesite	_							
345.	364.5	Quartz Diorite: Barren, @ 358: 1" qtz-col vein @ 600, 358-364.5: chill margin; 362.5-364.5: And. frags to 5" in qtz dio.	-							

MANWA EXPLORATION SERVICES LTD.

Company Cladiator Resources Lt	d. & Bowes	Ly	on	Resources	Ltd.
Name of Property Tay Gold Proper					
tote No. T-84-2	Sheet No.	5	of	5	

FOO	TAGE	DESCRIPTION		SAMP	LE		ANAL	YTICAL F	RESULT	s
FROM	то	DESCRIPTION	SAMPLE NO	FROM	FOOTAGE	TOTAL		AuOZ/T	As%	AgOZ/T
364.5	368	Barren Andesite: @ 365 2-1/4" dio. dikes								1
368	387.5	Barren Quartz Diorite: ab. qtz-cal veinlets all angles, spotty								
		ep: diss. in 1/11-1/8" blebs.	i			.				
		387-387.25: gouge + qtz cal;		<u></u>						
		387.25-287.5: altered (bleached) dio.								
387.5	425.5	Andesite : 1-3% diss py, numerous sil. alt. zones along fracs.								
		387.5-388: qtz-cal. vein; 388-399 bx broken and with diss py;	0015	387	392.25	5.25	Ì	.001	.03	.04
		389-391.25: f.g. dike-alt. vy broken and gougy seams; 391.25-					i			.~
		391.75: qtz-col. vein @ 60° gougy and 3-5% diss py; 391.75-								
		392.25: f.g. dike-alt. Several f.g. dike-alt. zones and 3		1		ı				
		small sk. zones	_							
		421-422: very broken, 6" core loss, major aquafer, 422-424.7:								
		f.g. dike-alt. with 2-3% py	0016	422	424.7	2.7		.001	.01	.01
425.5	432	Quartz Diorite					İ			
432	476	Mixed Andersite and Quartz diorite: Qtz. Dio invades andesite;								
		harren qtz-cal veinlets throughout								
	476_									
		DIP TEST AT 476 - 9°								

3		
	71117	
TXT CXX CTV CTV		
7		
)
<u> </u>		1

LocationSEE DRILLING PLAN	Length440'		
Elevation 5' (relative)	Azimuth 360	_ Dip_	100
Storted Sept. 22, 1984	Finished Sept. 26.	1984	

Company Gladiator Resources Lt	d. & Bowes	Lyon Resources Ltd.
Name of Property Tay Gold Prope	rty	
Hole No. 84-3	Sheet No	1 of 4
Logged By D. G. Harder		

FOO	TAGE	DESCRIPTION SAI		SAMPI	.E	ANALYTICAL RESULTS					
FROM	то			FROM	FOOTAGE	TOTAL	OZ T	As%	Ag Z/T		Γ
0	40	Casing till									<u> </u>
40	94.5	Diorite	1]
		40-70 med. gr. black anhedral hornblende green-black colour,									ĺ
		broken core 48-49 quartz veinlets 55-60'									l
		70-94.5 diorite has subhedral feldspar laths in a black fine									Г
		grain matrix	1								
94.5	99.5	Dacite dyke – porphyritic fine grain pyrite 1–2% feldspar	1								
		(medi. gr.) in grey silicious matrix	0021	94.5	99.5	5.0	.001	.01	.05		L
99.5	133	Andesite with local diorite Coarse carbonate vein (9") at 102 ft.	_								
		At 106', ander to fragment in dioritic matrix, local pink									İ
		carbonate with garnet	_								
133	137	Dacite dyke									\vdash
		Grey, fine grained, almost pink, very carbonitized			ŀ						İ
		carbonated portion of dyke, loc to 5%	0022	133.5	135.5	2. >	.001	.01	.02	·	
137	168	Andesite									
		Fine grained, black, hairling calcitic filled fracture ubiquitous									Γ
		dactte_dyke_166-166.5						į			
			-								

___ MANWA EXPLORATION SERVICES LTD.

Company Gladiator	Resources	Ltd. &	Bowes	Lyon	Resources	Ltd.
Name of Property	Tay Gold Pr	coperty				
Hole No	84-3	Sheet	No	2	of 4	

FOOT	TAGE			SAMPI	Æ				TICAL F		5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE.	TOTAL	Au OZ/	As%	Ag OZ/		
168	176	Dacite dyke									
		generally porphyritic with abundant medium grain feldspar.									
		Laths, lower contact 40° TCA	_								
		- local coarse calcite, pyrite 2-4%	0023	166	167	1.0	.001	.01	.01		
		- qtz-carbonate zone next to dyke, 2-5% fine grained pyrite	.0024	168.25	170.25	_2.0	-001_	-01	-01		
176	231	Andesite									
		black, fine grained, local hairline fractures 40-50° TCA,	_								
		local calcite veinlets 0.5-1" wide, sometimes pink	4								
		dacite_dykes_187_189,_226_227,_230_5_231		ļ				-	 -		
231	.255	Andesite and diorite or porphyry fractures generally 45° TCA							:		
255	312	Andesite									
		fairly massive, local fractures 50° TCA,	_								
		local pink feldspar veinlets (pegmatitic) at 286 and 300,		}							
		4" and 8" respectively.									
312	319.5	Diorite									
		Altered, medium grained, pale subhedral feldspar, greenish grey	_								
			_								
	L	<u></u>	1	<u> </u>	1	ļ	<u> </u>	L	<u> </u>	<u></u>	<u> </u>

MANWA EXPLORATION SERVICES LTD.

Company Gladiator Resources	Ltd. &	Bowes	Lyon	Resources	Ltd.
Name of Property Tay Gold Pro	perty				
Hole No. 84-3	Sheet No		3	of 4	

FOO'	TAGE			SAMP			L	ANALY	TICAL R	ESULTS	5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au I	As%	As OZ /I		
319.5	332	Andesite			1						
		similar to 255-312, variable calcite veinlets	_		1		ļ				
		-Silicified - pyritic zone, a little coarse	0025	323.5	326.5	3.0	.002	.01	.01		
		feldspar, carbonated, 327,5-328.5, pyrite along fracture			1						
		filling qtz-carbonate veinlets, pyrite 2-5%, veinlets 50° TCA			ļ	ļ	<u> </u>				
		- silic. zone, py - 2%, coarse veinlets at 330	0026	329	331	3.0	.005	.03	.02		
332	348	Diorite									
		fine to medium grained									
348	359	Quartz-carbonate zone		1							
		Irregular veining, breccia in part, lower contact 80° TCA,		ŀ							
		probably an altered diorite dyke									
		-grey to white quartz-calcite breccia, to		348	351	3.0	.068	1.72	.19		ļ
		5% fine grained pyrite and arsenopyrite	_		1				ļ		1
		- as above	0018	351	354	3.0	.091	2.32	.05		
	<u> </u>	-as above, gouge 355-357	0019	354	357	3.0	.063	2.04	.01		1
		-as above, zone ends 358.5, white quartz veinlets	0020	357	359	2.0	.060	1.47	.01		
359	369	Andesite									
		locally_carbonated_and_silicified,_several_bands 45°_TCA,	.		1						
		locally_digritic									i
	<u> </u>	-parrow_qtz-carbonate_vein (2cm)	0027	361	362	1.0	.092	1.86	.04		l
		45° TCA, py - 2%	l		<u> </u>	1	<u> </u>	<u> </u>			

____ MANWA EXPLORATION SERVICES LTD

Company Gladiator Resources L	td. & Bowes	Lyon Resource	s Ltd.
Name of Property Tay Gold Prop	erty		
Hole No. 84-3	Sheet No.	4 of 6	

FOO	TAGE			SAMPL	.E		ANALYTICAL RESULTS						
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAG	TOTAL	Au ^{OZ/} T	As%	Ag OZ/T		·		
359	369	-silic carbonated zone, weak pyrite	0028	366.5	369	2.5	.035		.04				
(conti	nued)	bands 60 TCA, py 1-2%	_	300.3	307	2.5	.055	.43	.04				
369	376	Diorite		•									
		Subhedral feldspar, rock is green medium grained, weak contacts				-	<u> </u>		-				
376	382	Andesite											
		Fairly massive, bairline cractures common at 50 TCA, at 381-382	_								1		
		pegmatitic with pink feldspar	_										
382	426	Diorite									 		
426	440	Andesite	-										
		Fairly massive, minor carbonate veinlets, fractures variable									ľ		
		but commonly 55 TCA	_			-					<u> </u>		
440		END OF HOLE											
			-										
						 					ļ		
				:									
	L			<u> </u>		<u> </u>			ļ 		<i>i</i> 1		

~	
_	
⋝	
٣,	
4	
<	
<	
➣	
-	
EXPLORATION	
х	
ידי	
ř	
۲.	
OR A	
Ŧ	
~	
₽.	
\vdash	
⇌	
\cap	
9	
L	
S	
m	ı
SER	
~	
<	
_	
\sim	١
÷	
CES	
U.	
_	
	١
_	
_	
$\overline{}$	
:	

ocotion see drilling plan	_ Length <u>450 feet</u>
Elevation O feet (relative)	
Started Sept. 27, 1984 Fir	nished Oct. 2, 1984

Company <u>Gladia</u>	tor Resource	s Ltd. & Bo	wes Lyon	Resources	Ltd.
Name of Property	Tay Gold P	roperty			
Hole No. 84-4		Sheet No	1 of	4	
Logged By D. C.	Harder				

F001	TAGE			SAMPI	.E			ANALY	TICAL R	ESULTS	,
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE.	TOTAL					
0	62	Casing, overburden is till or gravel									
<u>.</u>			4	<u> </u>	ļ	ļ					
62	80	Andesite quite fractured, broken core 80-83.5, 101-102									
]								
106	134	Andesite	4								
		Green, much hairline veinlets, variable orientation, broken core	1	İ		}					
		101-103, 109-110, 113-114, 121-122, 119.5-121.5 towards bottor	1	ļ	1						
		getting more diortic in appearance	-					}			i
134	163	Diorite									
		medium grained, quite altered, locally bleached, carbonated				ļ					
	-	broken core 141–142, 143–143.5						:			
163	203	Diorite	1								
		fractured but not as much as above, fine to med. grained,	_								
		anhedral feldspar laths, at 196-201 quite carbonated, broken					l l				
		core 200-202	_								
203	220	Diorite									
	ļ	medium grained, somewhat altered but generally massive									
	ļ										
			1								
									1		

_ MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company Gladiator resources Ltd. & Bowes Lyon Resources Ltd.

Name of Property Tay Cold Property

Hole No. __84-4 ______ Sheet No. __2 of 4

FOO'	TAGE			SAMPL	æ.		11		TICAL F		5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE 10	TOTAL	Au ^{OZ} /T	As%	Ag ^{OZ} / _J		
220	292.5	Diorite									
		quite massive, locally fractured, fine to medium grained,								1	
		local granular texture, chloritized, grey to green, av. grain									l
		size 0.5cm, calcitic veinlets 10°-40° TCA				l					
292.5	357	Diorite			-						
		medium grained, black and white, 0.7 cm grain size, loc.									
		-grey quartz diorite, disem pyrite 1%,	0031	309	311	2.0	.001	.01	.01		
		-from 330.5-331, qtz-carbonate vein with 3% py, 85° TCA,		327	331	4.0	_003_	-03_	01	ļ	
		rest silic. diorite									
		-diorite mineralized along fractures	0033	334.5	335.5	1.0	.001	-01	.01		
 357	392	Diorite									
		sim to diorite above but slightly more fractured, altered,		ļ			<u></u>		ļ	<u> </u>	
		calcitic veinlets 5-30° TCA			1						
		-diorite or dacite, silic., f.g. disem. py - 1%	0034	388	392	4.0	.001	.02	.01		ļ
	400_	Quartz-carbonate vein									į
	<u> </u>	-dacite grading into grey qtz-carbonate vein	0035	392	395	3.0_	.053	.35_	02	<u> </u>	!
		-quartz-carbonate vein, white to grey,	0036	395	399	4.0	.174	1.34	07	1	1
		py-aspy to 5%, black streaks of aspy, breeds form			}						
		_same_as_above	0037	399	400	1.0	.035	.36	.02		

_ MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

F001	TAGE			SAMPL	.E				TICAL I	RESULTS	
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE.	TOTAL	Au 021	A.S. Dipm	DDm		_
									-		
400	403	Dacite dyke, grey-green, fine grained	0038	400	403	3.0	.002	337	0.4		
		-alt. silicified andesite, minor pyrite	0039	403	404.5	1	.001	22	0.1		
404	414	Andesite									
		Silicified, local diorite texture									
-		-pyritized, silicified andesite, pyrite cubes 5%	0040	412	414	2.0	.001	17	0.1		
414	417.5	Diorite				ļ	1	<u> </u>			
		Quartz diorite variety, veinlets 25-45° TCA									
417.5	429	Andesite									
		Silicified, fractured generally 45° TCA, disem. pyrite									
		-silicified andesite, disem. pyrite 5%	0041	421.5	424_5	3.0	_001_	21	0.2	-	_
429	429.5	Quartz diorite									
429.5	430	Andesite									
		— black andesite, pyrite 5%	.0042	429.5	430.5	1.0	001_	54_	3	1	ļ
430	442	Qurtz diorite									
		variable_texture									
	†					1				!	

MANWA EXPLORATION SERVICES LTD.

Company Gladiator	Resources Ltd. & Bowes Lyon Resources Lt	td.
Name of Property	Tay Gold Property	
Hole No 84-4	Sheet No. 4 of 4	

F001	TAGE			SAMPI			ANALYTICAL RESULTS					
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	TO	TOTAL						
442	450	Diorite										
		quite massive, black with white altered feldspar						1				
		448-450 lost core, partly ground										
450		END OF HOLE										
											İ	
				<u> </u>						 		
				 			ļ	-		ļ	<u> </u>	
											Ì	
											!	

MANWA EXPLORATION SERVICES LTD

Location SFE DRILLING PLAN	Length 215 Feet
Elevation +140 (relative)	
Storted October 3, 1984 F	inished October 5, 1984

Company GLADIATOR RESOURCES L	TD & BOMES LYON RESOURCES LTD.
Name of Property TAY GOLD PROPER	TY
Hole No. 84-5	Sheet No. 1 of 4
Logged By D. G. Harder	_

FOOT	AGE			SAMPL	.E			ANALY	TICAL R	ESULTS	
FROM	то	DESCRIPTION	SAMPLE N	O. FROM	FOOTAGE	TOTAL	Au OT	AS ppm	Pom Pom		
0	16	Casing, Over burden									
16	61	Andesite			!	1		ļ			
		Black, hairline calcitic fractures, 10–50°				ļ					
		TCA, at 25 a 30° TCA			Į						
		Veinlet cuts off a 0° TCA one									
		Dacite dyke 46-51									
61	66.5	Dacite dyke									
		Pale green-grey, fine grained, calcitic				ł			Ì		
		Contacts around 20° TCA							ļ		
66.5	78	Andesite			•						
		Black, locally dioritic									
		- altered andesite, silicified, course	0056	76	78	2.0	.032	5917	1.0		
		Feldspar, epidote, calcitic veinlets, py-2%									
78	81	Dacite Dyke									
		2cm wide, 10° TCA, offset by 40° TCA fracture				1		<u> </u>			ĺ
81	84	Andesite		Ì							
84	86	Dacite Dyke									Ì
86	95	Andesite		-					1		
		- altered zone, sim to 76-78, several	0057	86	88	2.0	.040	1718	.8		
		quartz-calcite veinlets to 4cm with py						<u></u>			
		locally to 5%, qtz band 40° TCA									
		Andesite is black, locally dioritic									
									-		1
			<u> </u>		<u> </u>	<u> L</u>					

MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD & BOMES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-5 Sheet No. 2 of 4

F001	TAGE			SAMPL					TICAL F	ESULTS	;
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE TO	TOTAL	Au ^{OZ} T	p A S	ppm		
95	96.5	Dacite Dyke									
		- Upper contact 35° TCA, lower contact 50°	0058	95	96.5	1.5	-040	3445	1.1		
		py veinlets with calcite 0° TCA, py-3%									
96.5	105	Andesite			[
		Similar to previous					<u> </u>				
105	118	Diorite									
		Altered, weak grain boundaries, fine									
		to medium grained, grey to black									
		broken core 106-107									
118	141	Dacite Dyke, well mineralized									
		-grey fine grained, altered, py stringers	0043	118	123	5.0	.001	20	.4		
		10-20 ⁰ TCA with some white calcite									
		Pyrite 2-3%									
		- similar to above, pyrite 4-5% in	0044	123	125	2.0	.091	11848	2.2		
		stringers 30° TCA, with calcite			ļ		▋				_
		- similar to above, well mineralized	0045	125	129	4.0	.125	6489	3.1		
		from 126.5-127.5 (pyrite-calcite stringers)					H				ļ
		- Similar to above	0046	129	132	3.0	.035	1 -	.8		
		- Similar to above	0047	132	135	3.0	.014	987	1.0		
		- Very well mineralized, pyrite veinlets	0048	135	139	4.0	.115	10639	3.1	ļ <u></u>	L
		0°-20° TCA, quite calcite, minor								Ì	
		sea green carbonate (?)									
		- Similar to above, 25% coarse white calcite	0049	139	141	2.0	.010	718	.9		
	ļ	rest is fine grey with some gouge.		1			1				

_ MANWA EXPLORATION SERVICES LTD

Company GLADIAT	OR RESURCES	LTD. &	BOWES	LYON	RESOURCES	LTD.	_
Name of Property	TAY COLD P	ROPERTY					
Hole No. 84-5		She	et No. 3	of 4			_

F001	AGE	DESCRIPTION		SAMPI						ESULTS	
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	u ^{OZ} T	As ppm	As ppm		
141	150	Quartz-cabonate zone									
		- quartz-carbonate breccia, white	0050	141	145	4.0	.056	4472	1.4		
		disem. pyrite 2-3%, local green stain									
		- well mineralized qtz - carbonate breccia 3-10% py-Aspy	0051	145	149	4.0	.081	0034	1.8		
		_ Very well mineralized 10% pyrite - Aspy, sea green mineral	0052	149	150	1.0	.089	3556	2.1		
_150	157	- Oartz vein				1					
		Fractured grey and white quartz 5% pyrite, minor calcite	0053	150	153	3.0	.115	1013	1.5		
		- Similar to above	0054	153	156	3.0	.230	1343	2.5		
157	160	Quartz-calcite breccia									
		- Grey, generally 2-3% pyrite except much pyrite arseno pyrite	0055	156	160	4.0	.079	3510	1.4		
		158.75-159.75 where sulphides are 15%									
160	165.5	Andesite, silicified									
165.5	175.5	Diorite									
		Altered fire to medium grained							1		
175.5	180	Andesite		<u> </u>	<u> </u>						
180	183	Dacite Dyke									
		Coper contact 450 TCA, calcite veinlets 450 TCA									
					ļ		<u> </u>				L
				İ	1						
											1
						1					
	L				<u> </u>		1			1	

MANWA EXPLORATION SERVICES

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84–5 Sheet No. 4 of 4

FOO	TAGE			SAMP	LE		AN	ALYTICAL	DESI II T	_
FROM	to	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL		ICTICAL	ACSULT.	-
183	215	Andestre		1,10,7	10	TOTAL		_	 	╁
		Somewhat silicified, veinlets variable								
		local_dioritic_patches_and_minor_ dykes, broken core at 200.5								
	215	End of Hole								
										T
				Ì						
									-	H
										
				<u> </u>	 	┼			-	╀
-										
									ļ	L
				1	[1 1				

4	>	•
ς	_	•
	7	,
_	_	:
?	2	:
2	Þ	•
,		4
Ļ	×	ż
ï	τ	3
r	-	í
Ċ	_)
ì	Ī	j
٠	E	•
•	_	1
7	=	1
(_	
(1
()		CANTILLY TOTAL OF ATION O
()		
() ()		TION CED
() ()		TION SEDI
		TION SEDIN
		H1021 0 ED1110E
		HION CEDITIONS
111111111111111111111111111111111111111		TION SEDIMORS
***		TION SEDIMORS IN

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Location SEE DRILLING PLAN	Length <u>412</u>	
Location <u>SEE DRILLING PLAN</u> Elevation 140° (relative)	Azimuth 360°	Dip 50°
Storted October 6, 1384		

Company GLADIATOR RESOLRCES LTD. & BOWES LYON RESOLRCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-6 Sheet No. 1 of 6

Logged By D. C. Harder

FOOT	AGE			SAMPL	E					ESULT	S
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au ^{OZ} /T	AS DOM	nu nu		
0	17	Casing over burden									
17	58	Andesite									
		Black, fairly fractured, loc. quartz - epidite alteration at 30°	_}								
		Dacite dykes 42-43.5. u. contact 90°									
		Dacite dykes 42-43.5, 11. contact 90° TCA, low contact 45° TCA		ļ							
		Dacite dyke 50-51									
		Qtz - fields alteration at 53'	_								
58	-64	Diorite	_							1	
		Pale green - grey, weak contacts, loc.									
		porphyritic, a few quartz veinlets, gen. f. grained.					<u> </u>				
64	80	Andesite	_	}							
		Black, similar to 17-58	_	1							Ì
		- narrow min. dacite dyke, quartz - calcite zone, 5" wide with	0069	74.5	75.5	1.0	.084	20217	1.0		
		5% py-Aspy									
		gtz-fields-epidote alteration at 80'					ļ				
80	87.5	Dacite dyke	_				1				
		Fine grained to porphyrite, pale brown									
		- mineralized portion of dyke, 3% py-Aspy	0070	80.5	82.5	2.0	.093	12178	1.7		İ
		- mineralized portion of dyke, 3% py-Aspy - min. dyke, 7% py, py-col. veinlets 10° TCA	0071	82.5	86.5	4.0	.025	3450	1.0		
87.5	88.5	Andesite									
											Τ
						ł					
			}			1		l			
				1		1					
								1			

___ MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-6 Sheet No. 2 of 6

FOOT	AGE	4		SAMPL				ANALY	TICAL F	ESULTS	5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	AuOZ	As	Ag		1
88.5	95	Dacite dyke									
		fine grained to porphyritic near contact, loc, calcite veinlets 10° TCA									
95	103.5	Andesite]					1			
		Black, minor dacitic-portions		<u> </u>				ļ			
103.5	112	Diorite	_				ŀ				
		Medium grained, fairly altered grey-green, qtz-calcite veinlets Broken core 108.5-110	-								ļ. -
		-Min. portion of dyke, low angle	0072	103.5	104.5	1.0	.066	4924	1.2		L
		qtz veinlets, 3% py- Aspy	1		1						
		- Strong alteration of diorite coarse calcite veinlets 10° TCA	0073	108	112	4.0	.024	5310	.5		
		with py, Aspy, fine grained, 4%, sea green mineral, carbonate (?)	-								ļ
112	142.5	Diorite F-med. grained, dark grey-green, weak grain boundaries, 10 ⁰ TCA		<u> </u>							
112 14		fractures cut off by 550 TCA fractures weak lower boundary.	_								
142.5	177	Andesite	_	1	į		l		Į.		ļ
		Black, fairly massive	4	}		· ·		İ		l	
		Dacite dykes 147-147.75, 157-157.25, 162-163.5, contacts generally	-								
					<u> </u>				1	 	T
					ł						
				1	1	\		}			1
			_	1]	1	1		1		

MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-6 Sheet No. 3 of 6

F001	TAGE	DESCRIPTION		SAMP	LE				TICAL F	RESULTS	6
ROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Nu ^{OZ/} T	As ppm	Ag ppm		
		(Andesite)									
		qtz-felds-epid. alteration at 170-171.25, granodiorite dyke									
		172.5-173, 45° TCA									
177	180	Dacite dyke				<u>.</u>					
		F. gr. brown-grey, porphyritic, contacts 45° TCA									
180	183.5	Andesite						i			
		figr. Black						ĺ			
183.5	191	Diorite 500									
		Upper contact 45° TCA, low contact TCA fairly, massive, med. grained									
191	196	Andesite									
196_	218	Dacite:					[ĺ
		Porphyritic, anhedral felds, grey, upper contact 20° TCA									
		- Mineralized dacite, qtz-calcite veinlets V. fine grain py Aspy	0074	205	208	3.0	.017	192.5	.5		
		veinlets 10° TCA									
		- As above	0075	208	209.5	1.5	.034	3665	.5		
218	228	Andesite			1					l	
		Black, dacite dyke 218.5-219				1					
		Broken core 217.5-221.5			1						
228	253	Diorite		<u></u>		1					
		Fine to medium, pale feldspar, grey-black locally chloritized									
		last fatrly missive.			1						
			¥	1							İ

_ MANWA EXPLORATION SERVICES LTD.

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property TAY GOLD PROPERTY

Hole No. 84-6 Sheet No. 4 of 6

FOOT	TAGE			SAMPL	E.				TICAL I	RESULTS	3
ROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au OZ/T	As ppm	ppm		
253	265.5	Dacite									
		Fine grained, barren qtzcalcite veinlets 40° TCA, variable color									
		greige to green with hint of mauve			į			ļ	l		
		- Chlorite schist with coarse calcite 40%	0076	262.75	264.25	1.5	.001	137	.3		
265.5	274.5	Andesite	l								
		Black, pegmatitic at 271-271.5									
274.5	277	Dacite					Ì	1]		
		- Green-grey, low angle qtz stringers, py-2%	0077	2745	277	2.5	.001	84	.1		
277	279.5	Andesite		}			Ĭ.		1		
279.5	282	Diorite									
		f-med. grained, grey-green		1							
282	306	Andesite	1]					Ì		
		Black, loc qtz = calcite alteration at 295-296, 300-301	_				1				
306	316	Diorite	1	1	1					1	
		f- mod. grainod, grey, weak grain boundaries		ļ	ļ	l	<u> </u>	<u> </u>			L
316	317	Decite Dyke	_		İ		l	l			
			4								
			_		l						
	 		4							1	
	<u> </u>		_	ļ		<u> </u>	<u> </u>		<u> </u>		L
	 		-		1	1			Ì		
			-							1	

MANWA EXPLORATION SERVICES LTD..

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-6 Sheet No. 5 of 6

FOO	TAGE			SAMPI	LE			ANA	VII.C 4 :		
FROM	то	DESCRIPTION	SAMPLE NO.		FOOTAGE		, oz	ANAL	YTICAL Ppm	RESULT	S
317	328.5	Andesite	-	FROM	TO	TOTAL	AU I	ppm	ppm		+
		black, pink felds-qtz-epidote			Į						
		alteration at 322-333		ļ						1	
328.5	359	Diorite									-
		f-med. grained, grey to black, generally massive, hairline qtz									
		fractures 45-50° TCA, anhedral feldspar in dark matrix			<u> </u>		 	 	 	-	╁
		- Wavy 10° TCA calcitic veinlets cut off by 80° TCA fracture,	0078	349	351	2.0	.001	11	.1		
		locally much very fine grained py	_]	331	2.0	.001	11	1 .1		
359	362.5								1		
		Much calcitic veinlets gen. 20° TCA							ľ		
362.5	367	Diorite		 	-						ــــ
		altered, very carbonated, veinlets 30-50° TCA			,					ĺ	
		- 30% coarse calcite veinlets in diorite	0079	362.5	363.5	1.0	.001	20	.1		
367	390	Diorite	-	502.5	303.3	1.0	.001	20			
		dark grey 10-30% feldspar grains	-								
390	397.5	Andesite								ļ	
		Black	-								
	[- Silic.,green,calcite, 2% py	0080	390	391.5						
			_ 0000	390	391.5	1.5	.001	8	.1		
			_								L
						ĺ					
							i				
				l		1			1		

MANWA EXPLORATION SERVICES LTD.

Company	GLADIATO	R RESOUT	CES	LTD.	&	BOWES	LYON	RESOURCES	LTD.
Name of F	ropertyT	AY COLD	PRO	PERTY					
Hole No	846			She	el	No 6 c	f 6		

FOO	TAGE	DESCRIPTION		SAMPI	LE			ANALY	TICAL	RESULT	s
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	TOOTAGE	TOTAL	ALIOZ T	As	Ag ppm		Ť
397.5	401	Diorite			1	10121	 	PPIII	I PPIII		+-
		Similar to 367-390								1	.
401	412	Andesite									
		Black, fairly massive									
		- irregular white quartz vein (50%) with 2% py	0081	403.75	404.75	1.0	.001	4	١,		
	412	End of Hole		1	10.1.1		1	-	 		
				1			ļ				
							1				
				 			-		 	 	-
							l i				
				 							ļ
				}							
				}							
				 							
											-
		Contract to the contract of the second of th					.				

3		
	?	,
\ \ \		
כ	Þ	
Į	×	1
٤	7	į
ì	TXT)
:	Ž	,
		1
(_)
	•	_
Ì	0	ή
	7	
		•
	ί	r
	ן ר	_

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

 Location SEE DRILLING PLAN
 Length
 144 feet

 Elevation
 +140'(relative)
 Azimuth
 360°
 Dip 10°

 Started
 October 10, 1984
 Finished
 October 12, 1984

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property __TAY GOLD PROPERTY

Hole No. __84-7 ______ Sheet No. _1 of 3

Logged By _D.G.Harder ______

F001	OOTAGE DESCRIPTION			SAMPL			1	ANALYTICAL RESULTS						
ROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au ^{OZ} T	ppm	ppm		Γ			
0	14	Casing, over burden												
14	33	Andesite		1										
		Black, local veinlets		1										
33	34.5	Dacite dyke												
		- 15% qtz veinlets 45°-80° TCA	0059	33	34.5	1.5	.036	5065	1.3					
34.5	35.0	Andesite												
35.0	40.5	Dacite dyke						1						
		lower contact 45° TCA, qtz stringers		1							ĺ			
		30-40° TCA, cut off by fractures 70° TCA							}					
40.5	46.75	Andesite												
		Fractured 20-30° TCA, offset by 50° TCA fractures												
46.75	48.75	Dacite dyke			1									
		- fairly well mineralized	0060	46.75	48.75	2.0	.029	4979	.8					
48.75	49.25	Andesite		ŀ	İ									
49.25	55.5	Dacite dyke		1						l				
		Lower contact 45° TCA									-			
55.5	63.5	Andesite			ĺ									
63.5	65	Dacite dyke												
		has some pegmatitic material & coarse qtz, pink feldspar		}						l				
65	74	Andesite		1										
		Broken core 73-74									Г			

MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOMES LYON RESOURCES LTD

Name of Property TAY COLD PROPERTY

Hole No. 84-7 Sheet No. 2 of 3

FOO	TAGE			SAMP	LE				TICAL F	ESULTS	5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au I	AS ppm	ppm		
74	74.5	Dacite dyke							-3		
74.5	76.5	Andesite			ł						
76.5	81.5	Dacite dyke, porphyritic									
81.5	84	Andesite			ļ						
84	89.5	Dacite dyke, porphyritic			L						
		- Dacite dyke, mineralized fractures 65° TCA	0061	86	89.5	3.5	.022	2348	.5		
89.5	90.5	Andesite									ļ
90.5	92.5	Dacite dyke			ŀ						
		Upper contact 60° TCA, low contact 45° TCA		1							
92.5	93.5	Andesite			·						
93.5	110	Dacite - altered	0062	93.5	95.5	2.0	.001	67	.3		
		- altered dacite with quartz-carbonate bands, well mineralized,	0063	95.5	98	2.5	.005	401	.2		
		5%-py, Aspy sulphide rich gouge, breccia			l						
		- quartz carbonate breccia, mainly grey quartz with white calcite	0064	98	101	3.0	.056	4145	.7		
		5% figr. py.									
		- quartz carbonate breccia sim. to above	0065	101	103.5	2.5	.092	11707	.7		
		- altered dacite, locally much Aspy and gouge, green carbonate (?)	0066	103.5	105.5	2.0	.044	7757	.9		
		- qtz - carbonate breccia, mainly qtz, 6% py	0067	105.5	108.5	3.0	.067	5571	1.2		
		- qtz - carbonate breccia and altered dacite	0068	108.5	110	1.5	.013	2022	.8		
110	111.5	Andesite				l					
111.5	112	Dacite dyke		-							
			.1								
			_					[
			1	t	I	1	H	ſ	! .		

MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-7 Sheet No. 3 of 3

F001	TAGE			SAMPL	Æ		ANALYTICAL RESULTS					
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE.	TOTAL						
112	118	Andesite										
		black, narrow dacite dyke at 113 with 90° contact, diorite dyke at 114-114.5, contact 45°								ļ		
		at 114-114.5, contact 45 ^o	_									
118	144_	Diorite								İ		
		fine to medium grained, grey-green, fairly massive, locally						<u></u>			<u> </u>	
		qtz-feldspar at 123 and 128	_									
	144	End of Hole	_					1	•			
			_#		l							
								-				
											1	
				ł								
				-							1	
			-	İ							İ	
				-					1		1	
				†							 	
					İ							
			-1		İ				!			
										1	İ	
			-									
			-	 			-	 			+	
			-									
			ļ									
						1					1	

_ MANWA EXPLORATION SERVICES LTD.

MANWA	EXPLOR	ATION	SERVICES	LTD.
D	IAMOND	DRILL	RECORD	

Location SEE DRILLING PLAN	Length 378 feet	
	Azimuth	_
Storted October 13, 1984		_

Company CLADIATOR RESOURCES	LTD. & BOWES LYDN RESOURCES LTD.
Name of Property TAY GOLD PRO	PERTY
Hole No. 84-8	
Logged By D.C. HADDED	

FOOTAGE		DESCRIPTION		SAMPL	.E			ANAL	/TICAL	RESULT	5
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au ^{OZ/} T	As	Ag ppm	T	
0	59	Casing, overburden					1		PPIII	i —	
59	90	Diorite		ļ							
		light grey, medium grained, anhedral to subhedral, amphibole 30% in							ļ		
		a light matrix, rest probably feldspar almost grandiorite, quite	<u> </u>								•
		sive, locally chloritized		<u> </u>					1		
		Broken core 62-63, 74-74.5, 88.5-89.5, and 90.5-91									
90	95	Dacite dyke							1		[
		very fine grained irregular contact 20° TCA			ĺ				İ		
_95	164	Diorite		-			l	l			
		becoming more fractured, fractures generally 30°-50° TCA									
		Broken core 95-96, 99.5-101, 110-111, 112.5-115, 117-118									
		- qtz-calcite veining over 9", some Aspy	0082	117.75	119.75	2.0	.004	63	.2		
		Broken core 120.5-122.5, 138-140, 141-143, after 130, even more	 }		}	l I	l l	}	1		
		fractured, altered with weak grain boundaries									
		- quartz-calcite veinlets with py, in a chlorite schist	0083	144.5	146	1.5	.001	37	.1		
		diorite very carbonated after 153		1							
		Broken core 159.5-161									
					ĺ	ļ			ļ		
					ł			ļ		}	
				<u> </u>			1			1	
			1		1						
				1							

__ MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Company GLADIATOR RESOURCES LTD. & BOWES LYON RESOURCES LTD.

Name of Property TAY COLD PROPERTY

Hole No. 84-8 Sheet No. 2 of 4

F001	TAGE	With the second		SAMPL	.E		ANALYTICAL RESULTS						
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE TO	TOTAL	Auoz/	As ppm_	Ag ppm				
164	_170	Dacite dyke											
		well fractured, fine grained, grey-green											
170	182	Diorite .				ļ	l						
		very fractured and carbonated and chloritic, coarse calcite at 170											
		gouge at 171-171.5, Broken core at 167,172-174, 178-179		ļ		ļ	 						
182	188.5	Dacite dyke											
		grey-green, prophyritic				١	l		_				
		- mineralized dacite, carbonated, 1-2% py	0084	186.5	188.5	2.0	.011	433	.6				
188.5	213	Diorite		1			li						
		fine to medium grained, more melanocratic than 59-90, less distinct		<u> </u>	<u> </u>								
		grain boundaries, dark grey-except when chloritized, loc. calcite		1									
		veining at 191, 65° TCA at 191, at 200, band at 65° TCA											
213	221	Diorite - altered											
		- altered diorite with quartz-calcite veinlets (10%), chloritized	0085	213	218	5.0	.001	55	.3				
		sulphides - 1%											
		- similar to above but more qtz & py (2-3%)	0086	218	221	3.0	.001	25	. 2				
221	229.5	Diorite					1						
		generally similar to 188.5-213		İ		ì							
				ļ	1	1							
					ļ		<u> </u>		<u> </u>				
			.					ļ					
			ļ										
l													
		•		1		l				1			
		·		1									

_ MANWA EXPLORATION SERVICES LTD.

CompanyGLADIATOR	RESOURCES LTD. & BOWES LYON RESOURCES LT	D.
Name of PropertyTAY	GOLD PROPERTY	_
tole No. 84-8	Sheet No. 3 of 4	٦,

FOOTAGE		DESCRIPTION		SAMPLE				ANALYTICAL RESULTS				
FROM TO				FROM	TOOTAGE	TOTAL	Au ^{OZ/} T	AS	AG			
229.5	238	Quartz-carbonate vein							1			
		- strong altered diorite (?), carbonated, 2% very fine grained	0087	229.5	232.5	3.0	.001	ĄĄ	. 3			
		pyrite										
		- mixture altered diorite (?) with 15% qtz veining, 3% py	0088	232.5	234.5	2.0	.034	505	1.0			
		- quartz-cabonate as breccia with 15% chlorite, mostly broken core	0089	234.5	238.0	3.5	.008	174	.5			
238	281	Diorite										
		dark grey to light grey, bleached where fractured, veinlets 70°ICA									ĺ	
		at 265-281, calcitic veinlets 0°-10° TCA lower contact gradational										
81	283	Dacite dyke							İ			
		very fine grained, greige										
283	289	Quartz-carbonate vein										
		- Chloritic qtz-calcite breccia, 3% f. grained disem. py	0090	283	286	3.0	.009	216	.7		ĺ	
		- sim. to above but more quartz, pyrite in bands, 40° - 50° TCA	0091	286	289	3.0	.020	341	.8	l		
289	305	Diorite			1							
		grey, fine to med. grained				<u> </u>	<u> </u>		<u> </u>			
305	311	Diorite-altered			1							
		- white qtz veining 20%, 45° TCA, 3-4% sulphides	0092	305	307	2.0	.037	265	.5			
			_	İ								
			-				į					
			·	 			 				Ļ_	
			4									
			-									
	ļ		-			1						
			i	1	1	ł	H	!	1	'	,	

MANWA EXPLORATION SERVICES LTD.

Company GLADIATOR RESOURCES L	TD, & BOW	es Lyon	RESOURCES	LTD.						
Name of Property TAY COLD PROPERTY										
Hole No. 84-8	Sheet No	4 of 4								

FOOTAGE			SAMPLE				ANALYTICAL RESULTS				
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE.	LIDTAL	Auoz	As	Ag		
		- Chloritic rock with irregular qtz - carbonate, py 2-3%	0093	307	311	4.0	.001	-bbw	.3		
311	313.5	Diorite		-						- 1	
313.5	321	grey, similar to 289-305 Dacite - altered									
		- calcitic, silic, dacite, 2% py	0094	313.5	316	2.5	.002	96	. 3		
		- gtz-ca.vonate breccia with 15% chlorite, py-Aspy 5%	0095	316	319	3.0	.108	486	. 8		
		- weakly mineralized dacite	0096	319	321	2.0	.001	24	. 3		
321	342.5	Diorite			Ì	İ				1	
		Med. grained feldspar bleached, variable calcitic veinlets]					
342.5	346	Dacite dyke		1	-	Ì					
		grey, hairline calcitic fractures variable									
346	366	Diorite	1		1						
		Similar to 321-342.5, calcitic-qtz veinlets variable, very altered		1						İ	
		- extensive stockwork of qtz.veining (25%) with 2% v. fine	0097	361	366	5.0	.001	9	. 2		
		grained py									
366	372	Diorite									
		fairly massive, pale grey									
372	377	Dacite dyke	- 3			}					
		greige, porphyritic, massive)			j	
377	378	Diorite		1			li i			-	
	378	End of Hole									
			_		}	1					
					-	ł					
					1		·			Ì	

İ		
3	_	,
4 5		:::
5		;
	7	1
(7	
INDIANAD EXTENSION OF THE STATE		
!		
4		

Location SEE DEVILLING PLAN	Lenath	520 £	eet	
Elevation + 60 (relative)	Azimuth	360	Dip	25 ⁰
Storted October 27, 1984	inished Octo	ber 22,	1984	

Company GLADIATOR RESOURCES L	TD. & BOWES LYON RESOURCES LTD.
Name of Property TAY COLD PROPE	RTY
Hole No. <u>84-9</u>	Sheet No. 1 of 3

F001	TAGE		SAMPLE				ANALYTICAL RESULTS					
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	FOOTAGE	TOTAL	Au ^{OZ/} T	As DOM	Ag ppm	Cu ppm	Zn	
0	3	Casing, overburden										
3	292	Diorite								ļ		
		Massive, fairly fresh, local fractures		-					•			
		Broken core 19-20, 39.5-40.5, 72,		ļ	1							
		Locally schistose 84.5-86, calcitic bands 70° TCA			<u> </u>							
		Becoming more altered at 99]	ļ	107.5							
		- Chalky white qtz vein, 6" wide with minor py in alt. diorite	0098	106		1.5	.001	31	. 6	-	-	
		at 120, qtz veinlets 70° TCA at 155, becoming more bleached, cut		1								
		by calcitic veinlets 20 ^O TCA				İ					İ	
		- Strong qtz-calcitc banding 50° TCA with py 1-2% in alt. diorite	0099	179.5	181.5	2.0	.001	2	.4	68	38	
		after 190, fairly massive broken core 197-198, at 204, qtz band						•				
		80° TCA, 3" wide, locally fractures 50°-60° TCA after 204, after	1		1	1						
		145, becoming more fractured										
		Dacite dyke 261-261.75										
		Broken core at 252,277-277.5,278.5-280.5		1	ļ	<u> </u>					1	
		Andesite 282-283										
		At 288-291, strongly carbonated, foliated at 65° TCA				}	ł			1	1.	
			_				<u>.</u>					
						<u> </u>						
			_	}							1	
				1							1	
				1		ŀ	I	1		1		

MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

FOO	FOOTAGE		SAMPLE				ANALYTICAL RESULTS					
FROM		DESCRIPTION	SAMPLE NO.	I ROM	LOOTAGE	TOTAL	Au ^{OZ}	As ppm	Λς pbm	ppm	Zn ppm	
292	307	Andesite						l l]		
1./2		f. gr. black, fractured				·				1	ĺ	
		Broken core 292.5-295.5, 297										
307	357	Diorite		į	1]	1				ļ	
		Strongly altered, qtz cacitic veinlets 324-327,		ļ	<u> </u>		 			<u> </u>	-	
		Weak grain boundaries becoming more massive after 340										
_357	359	Dacite dyke				ļ					ļ	
		porphyritic, upper contact 40° TCA			Ì						1	
359	385.5	Diorite	1			Ì						
		Carbonated, calcitic veinlets, locally massive	<u> </u>	ļ		-	-	4.20	1.3	200	88	
		- several qtz-calcite veinlets (30%), 70° TCA, in altered diorite	0100	369.5	372.5	3.0	.016	138	1.3	390	000	
		py 2%	_						١.			
		- qtz-calcite vein (6") in altered diorite	0101	378.5	381	2.5	.005	138	.6	191	283	
385.5	397	Dacite dyke	1	1				ļ			-	
		greige, somewhat porphyritic		-	ļ	 	 	 	ļ			
		391-397 is broken core	-							1		
397	417	Diorite	_			1						
		quite altered, broken core 398-401	-	ł	}		1	ŀ	1			
417	430	Dacite dyke		}		1				Ì		
		greige, fairly massive			 			┼	 			
	<u> </u>	Lost core 423,5-429, 90% recovery	-		1	1	202	1	,	94	10	
		- mineralized dacite, grey, calcitic, with qtz veining 3% py	0102	424.5	428	3.5	.003	134	.3	744	10	
-		The second secon	-				Ī	1	i	1		

____ MANWA EXPLORATION SERVICES LTD

MANWA EXPLORATION SERVICES LTD. DIAMOND DRILL RECORD

Hole No. 84-9 Sheet No. 3 of 3

F00	TAGE			SAMPLE			ANALYTICAL RESULTS					
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	TOOTAGE.	TOTAL	AuOZ/T	As ppm	Ag	ppm	DDM	
		- well mineralized, 50% gtz-calcite, 5% py	0103	428	430	2.0	.009	337	.9	121	125	
430	517	Diorite										
		fairly massive except 443-448.5	_				1					
		- well mineralized, qtz-calcite breccia (50%), rest alt. diorite	0104	104 443	443	445 .	2.0	.007	160	.7	77	89
		5% py			ļ						<u></u>	
		- mineralized but less than above diorite is chloritized 465-469	0105	445	448.5	3.5	.001	68	.7	102	72	
517	519	Andesite	-1									
		u. contact 50° TCA, low contact 45° TCA	-	1								
519	_520	Diorite	_									
		massive, light grey	·					<u> </u>		<u> </u>		
	520	End of Hole	_						Ì		İ	
			4								1	
			-									
			4									
			<u> </u>	 	 	ļ	<u> </u>			<u> </u>		
		·	-									
			-1				ł		-		į	
											1	
			_							1		
				 			╂			ļ		
										i		
							1				-	
			-							:	Ì	
	 		-				1		!		•	
	<u> </u>		II	·			<u> </u>				!	

This report may not be reproduced in whole, in part, or in summary without the written permission of Manwa Exploration Services Ltd.

() him

CME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
PHONE 253-3158 TELEX 04-53124

C-681

DATE RECEIVED: SEPT 13 1984

DATE REPORT MAILED:

ASSAY CERTIFICATE

SAMPLE TYPE: ROCK CHIPS AU: 10 GRAM REGULAR ASSAY

ASSAYER: DEAN TOYE. CERTIFIED B.C. ASSAYER

PAGE MANWA EXPLORATION FILE # 84-2613 SAMPLE# CU AG AU OZ/T OZ/T float .01 .282 .17 C-673 C-674 .01 .06 .101 . 15 .088 C-675 .11 ch:p .02 .010 C-676 .01 11 .03 .001 C-677 .13 .02 .01 .001 C-678 float .02 .06 .195 C-679 .01 .02 .065 C-680

.01

.03

.180

TAY

DATE RECEIVED: SEPT 1

CME ANALYTICAL LABORATORIES LTD.

2 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6

PHONE 253-3158 TELEX 04-53124

DATE REPORT MAILED:

SEPT 17 1984 ED: SEPT 19/89

ASSAY CERTIFICATE

SAMPLE TYPE: CORES AU\$ 10 GRAM REGULAR ASSAY

ASSAYER: A DEAN TOYE. CERTIFIED B.C. ASSAYER

MANWA EXPLORATION FILE # 84-2647 PAGE AS SAMPLE# AG ΑU OZ/T DZ/T .03 84-1 C-682 .17 .017 .188 C-683 .06 5.09 .05 .01 C-684 .005 .23 .020 C-685 .01 C-686 .01 .01 .003 .01 .001 C-687 .02

104)

Qualican

FAGE

ACME ANALYTICAL LABORATORIES LTD.

852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
FHONE 253-3158 TELEX 04-53124

DATE RECEIVED: SEPT 24 1984

DATE REPORT MAILED:

ASSAY CERTIFICATE

SAMPLE TYPE: CORES AU\$ 10 BRAM REBULAR ASSAY

ASSAYER: N. JOHLBEAN TOYE. CERTIFIED B.C. ASSAYER

FILE # 84-2749 MANWA EXPLORATION SAMPLE# AG AS AU DZ/T OZ/T 84-2 0001 .03 .098 0002 .02 .090 0003 .027 .01 .07 0004 .01 .008 .01 .001 0005 .01 .008 0006 .01 . 11 0007 .01 .38 .035 .01 .02 .006 0008. 0009 .04 . 14 .065 .029 0010 .01 .20 0011 .03 .01 .001 .01 .03 .008 0012 0013 .01 .15 .010 0014 .02 .36 .041 0015 .04 .03 .001 0016 .01 .01 .001

5.51

.07

STD C-8

TAY

Jun Picale

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS. VANCOUVER B.C. FH: (604)253-3158 COMPUTER LINE:251-1011

DATE RECEIVED SEPT 28 1984

DATE REPORTS MAILED

ASSAY CERTIFICATE

SAMPLE TYPE : CORE - CRUSHED AND PULVERIZED TO -100 MESH.

ASSAYER __ N Selfly DEAN TOYE. CERTIFIED B.C. ASSAYER

MANWA EXPLORATION FROJECT# 644 FILE# 84-2805

FAGE# 1

	SAMPLE	AG	AU	AS
		OZ/T	OZ/T	%
84-3	0017	.19	.048	1.72
"	0018	.05	.091	2.32
//	0019	.01	.063	2.04
4	0020	.01	. 060	1.47

July 27 2

PAGE

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 TELEX 04-53124 DATE RECEIVED: OCT 2 1984

DATE REPORT MAILED: . OF 19184.

ASSAY CERTIFICATE

SAMPLE TYPE: CORES / AU\$ 10 GRAM REGULAR ASSAY

ASSAYER: N. JULY DEAN TOYE. CERTIFIED B.C. ASSAYER

MANWA EXPLORATION PROJECT # 544 FILE # 84-2877 SAMPLE# AS AU AG DZ/T % DZ/T 84-3 0021 .05 .01 .001 0022 .02 .01 .001 0023 .01 .001 .01 0024 .01 .01 .001 0025 .01 .01 .002 .03 0026 .02 .005 0027 .04 1.86 .092 0028 .04 .43 .035 0029 .05 .003 .02 0030 .01 .01 .001

ACME ANALYTICAL LABL ATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604) 253-315B COMPUTER LINE: 251-1011 DATE REPORTS MAILED Octoordisplay

DATE "TOEIVED OCT 4 1984

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE TYPE : WATER

M__ DEAN TOYE, CERTIFIED B.C. ASSAYER

PROJECT# 644) FILE# 84-2902A MANWA EXPLORATION

PAGE# 1

SAMPLE

AS

PPM

WATER-1

.08

ACME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
PHONE 253-3158 TELEX 04-53124

DATE RECEIVED: OCT 4 1984

DATE REPORT MAILED: OCT 10/89.

PAGE

ASSAY CERTIFICATE

SAMPLE TYPE: CORES AU\$ 10 GRAM REGULAR ASSAY

ASSAYER: W. Jeff. DEAN TOYE. CERTIFIED B.C. ASSAYER

MANWA EXPLORATION		FROJEC	T(# 64	4/ FIL	E # 84-2	2902B	
	SAMPLE#	AG	AS	AU			
		OZ/T	%	OZ/T			
84-4	0031	.01	.01	.001			
	0032	.01	.03	.003			
	0033	.01	.01	.001			
	0034	.01	.02	.001			
	0035	.02	. 35	.053			
	0036	.07	1.34	.174			
	0037	.02	.36	.035			

ACME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: 007 12 1984

DATE REPORT MAILED:

Oct 17/84

PAGE

ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNO3-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 FPM. - SAMPLE TYPE: PULP AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: N. JOHN DEAN TOYE. CERTIFIED B.C. ASSAYER

	MANWA EXPLO	RATION	FILE	# 84-3002
	SAMPLE#	Ag	As	Au
		-	ppm	5z∕t
84-4	0038	. 4	337	.002
,	0039			.001
	0040		17	
	0041		21	
	0042		54	
84-5	0043	. 4	20	.001
	0044	2.2 1		
	0045	3.1		
•	0046		3466	
•	0047		987	
	0048	3.1 1	0639	.115
	QQ49		718	
	0050	1.4	4472	.056
	0051		5034	
	0052		3556	.089
	0053	1.5	1013	.115
	0054	2.5	1343	.230
	0055		3510	
	STD C	6.6	39	-

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED

DATE RECEIVED OCT 18 1984

ASSAY CERTIFICATE

SAMPLE TYPE : CORE - CRUSHED AND PULVERIZED TO -100 MESH.

US__ DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER

PROJECT# 644) FILE# 84-3053B MANWA EXPLORATION

PAGE# 1

	SAMPLE	Au
		oz/t
84-5	0056	.032
	0057	.040
	0058	.042
84-7	0059	.036
	0060	.029
	0061	.022
	0062	.001
	0063	.005
	0064	.056
	0065	.092
	0066	.044
	0067	. 067
	0068	.013

ite

ACME ANALYTICAL LABORATORIES LTD.

852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
PHONE 253-3158 DATA LINE 251-1011

MANWA EXPLORATION

DATE RECEIVED: OCT 18 1984

DATE REPORT MAILED:

FILE # 84-3053A

Oet 19/84

FAGE

GEOCHEMICAL ICP ANALYSIS

FROJÉCT # 644

6.2

40

ASSAYER: ALLIA DEAN TOYE. CERTIFIED B.C. ASSAYER

STD C

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED

DATE RECEIVED OCT 23 1984

ASSAY CERTIFICATE

SAMPLE TYPE : PULP

__ DEAN TOYE, CERTIFIED B.C. ASSAYER

MANWA EXPLORATION 'PROJECT# 644 FILE# 84-3124A

PAGE# 1

	SAMPLE	Au oz/t
		0276
84-6	0069	.084
	0070	. 093
	0071	.025
	0072	.066
	0073	രന മ
		• .
•	9974	.017
	0075	.034
	0076	.001
	0077	.001
	0078	.001
	0079	.001
	9080	.001
	0081	.001
84-8	0082	.004
	0083	.001

We ale

FILE # 84-3124

CME ANALYTICAL LABORATORIES LTD.
52 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
HONE 253-3158 DATA LINE 251-1011

MANWA EXPLORATION

DATE RECEIVED: OCT 23 1984

DATE REPORT MAILED:

Oct 26/84

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR Mn.Fe.Ca.P.Cr.Mg.Ba.Ti.B.Al.Na.K.W.Si.Zr.Ce.Sn.Y.Nb and Ta. Au DETECTION LIMIT BY ICP IS 3 ppm.

PROJECT # 544

SAMPLE TYPE: DRILL CORE

PAGE

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED 2 Nov 1984

DATE RECEIVED OCT 25 1984

ASSAY CERTIFICATE

SAMPLE TYPE : PULP

DEAN TOYE, CERTIFIED B.C. ASSAYER

MANWA EXPLORATION PROJECT# 644 FILE# 84-3149A

PAGE# 1

	SAMPLE	ALI
		oz/t
84-8	0084	.011
_	9085	.001
	0084	.001
	0087	.001
	0088	- · · · -
	VVGG	.034
	0089	.008
	0090	.009
	0091	.020
	0092	.037
	0093	.001
	0094	.002
	0095	.108
	0096	.001
	0097	.001
	0098	.001

ACME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: OCT 25 1984

DATE REPORT MAILED:

2 Nov 1984

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR Mn.Fe.Ca.P.Cr.Mg.Ba.Ti.B.Al.Na.K.W.Si.Zr.Ce.Sn.Y.Nb and Ta. Au DETECTION LIMIT BY ICP IS 3 ppm.
- SAMPLE TYPE: CORE

ASSAYER: DEAN TOYE. CERTIFIED B.C. ASSAYER

MANWA EXPLORATION PROJECT # 644 FILE # 84-3149 PAGE 1

SAMPLE# Aq As ppm ppm 0084 433 0085 . 3 55 25 0086 .2 .3 0087 44 0088----1.0--505 ---0089 174 0090 .7 216 .8 341 0091 0092 265 .3 0093 90 0094 .3 96 0095 .8 486 0096 .3 24 .2 9 0097 0098 .6 31 6.7 40 STD C

Duplicale

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE:251-1011

DATE RECEIVED OCT 25 1984

DATE REPORTS MAILED

ASSAY CERTIFICATE

SAMPLE TYPE : PULP

ASSAYER ______ DEAN TOYE, CERTIFIED B.C. ASSAYER

MANWA EXPLORATION PROJECT# 644 FILE# 84-3141A

PAGE# 1

	SAMPLE	•	Au
			oz/t
84-9	0096		.001
•	0100		.016
	0101		.005
	0102		.003
	0103		.009
	0104		.007
	0105		.001

Oughtate

CME ANALYTICAL LABORATORIES LTD.
52 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6
HONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: OCT 25 1984

DATE REPORT MAILED:

Oct 26/84

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR Mn.Fe.Ca.P.Cr.Mg.Ba.Ti.B.Al.Na.K.W.Si.Zr.Ce.Sn.Y.Nb and Ta. Au DETECTION LIMIT BY ICP IS 3 ppm.

- SAMPLE TYPE: CORE

ASSAYER: ASSAYER

	MANWA EXPLORA	LION	PROJEC.	T # 644	FI	LE # 84-3141	PAGE 1
	SAMPLE#	Cu	Zn	Ag	As	W	
		bbw	ppm	ppm	bbw	bbw	•
84-	9 0099	68	38	. 4	2	2	
0 '	0100	398	88	1.3	138	2	
	0101	191	283	. 6	138	2	
	0102	94	101	.3	134	2	
	0103	121	125	. 9	337	2	
	0104	77	89	.7	160	2	
	0105	102	72	.7	-68	2	
	CID C	57	105	7 2	42	13	

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE RECEIVED: OCT 18 1984

DATE REPORT MAILED:

Oet 19/84

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H20 AT 95 DEG. C FOR DNE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR Mn.Fe.Ca.P.Cr.Mg.Ba.Ti.B.Al.Na.K.W.Si.Zr.Ce.Sn.Y.Nb and Ta. Au DETECTION LIMIT BY ICP IS 3 ppm.
- SAMPLE TYPE: PULP

ASSAYER: ALLIAN DEAN TOYE. CERTIFIED B.C. ASSAYER

MANWA EXPLORATION / FROJECT # 644) FILE # 84-3053A

FAGE 1

SAMFLE#	Ag	As
	bbw	bbw
0056 0057	1.0	5917 1718
0058	1.1	3445
0059	1.3	5065
0060	.8	497 9
0061	.5	2348
0062	.3	67
0043	.2	401
0064	. 7	4145
0065	.7	11707
0066	. 9	7757
0047	1.2	5571
0048	.8	2022
STD C	6.2	40

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253~3158 COMPUTER LINE:251-1011

DATE RECEIVED AUG 30 1984

DATE REPORTS MAILED

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PULVERIZED TO -100 MESH.

ASSAYER __ DEAN TOYE, CERTIFIED B.C. ASSAYER

MANWA PROJECT# TAY GOLD FILE# 84-2402

PAGE# 1

SAMPLE

AG AU

OZ/T OZ/T

1

.020 .020

(Duplicated

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE: 251-1011 DATE RECEIVED AUG 30 1984

DATE REPORTS MAILED

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PULVERIZED TO -100 MESH.

ASSAYER __ DEAN TOYE, CERTIFIED B.C. ASSAYER

MANWA PROJECT# TAY GOLD FILE# 84-2402

PAGE# 1

SAMPLE

AG AU

.02 .020

¥

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C.

FH: (604)253-3158 COMPUTER LINE: 251-1011

DATE RECEIVED SEPT 28 1984

DATE REPORTS MAILED

CERTIFICATE ASSAY

SAMPLE TYPE : CORE - CRUSHED AND PULVERIZED TO -100 MESH.

DULL DEAN TOYE. CERTIFIED B.C. ASSAYER

FILE# 84-2805 FROJECT# (644) MANWA EXPLORATION

FAGE# 1

SAMPLE	AG 02/T	AU OZ/T	AS %
0017	. 19	.068	1.72
0018	.05	.091	2.32
0019	.01	.063	2.04
0020	.01	.060	1.47

ACME ANALYTICAL LABO MORIES LTD. 852 E. HASTINGS, VANJUVER B.C. PH: (604) 253-3158 COMPUTER LINE: 251-1011

DATE FICEIVED OCT 4 1984

DATE REPORTS MAILED Oct 10

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE TYPE : WATER

LUL_ DEAN TOYE, CERTIFIED B.C. ASSAYER

PROJECT# 644) FILE# 84~2902A MANWA EXPLORATION

PAGE# 1

SAMPLE

AS

PPM

WATER-1

.08

i de

Ref. Line LEGEND QUARTZ VEIN qν DC DACITE DIORITE ANDESITE OB OVERBURDEN Road 84-1 -10° 020 00 23 529 D.G. Shider GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD. TAY GOLD PROPERTY

N.T.S. 92F-6W
ALBERNI M.D. B.C. CROSS SECTION -84-1

(FACING 105°)
0 20 40 100 FEET

MANWA EXPLORATIONS SERVICES LTD.

NOVEMBER 1984 FIG. 4

SCALE I": 40' D.G. HARDER ,

QUARTZ VEIN

DACITE

DIORITE

ANDESITE

OVERBURDEN

7-6 Ander

GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

TAY GOLD PROPERTY

N.T.S. 92F-6W
ALBERNI M.D. B.C.

CROSS SECTION -84-2

(LOOKING EAST)

0 20 40 100 FEET

MANWA EXPLORATIONS SERVICES LTD.

SCALE I": 40' NOVEMBER 1984 FIG. 5 D.G. HARDER

QUARTZ VEIN

DACITE

DIORITE

ANDESITE

D.G. Auder

GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

TAY GOLD PROPERTY
N.T.S. 92 F - 6 W ALBERNI M.D. B.C.

CROSS SECTION-84-3

(LOOKING EAST)

MANWA EXPLORATIONS SERVICES LTD.

SCALE I": 40' D.G. HARDER

NOVEMBER 1984 FIG. 6

QUARTZ VEIN qν

DC DACITE

DIORITE

ANDESITE

08 OVERBURDEN

pg , ps 101 01 03 000 01 01 03

D. G. Harden

GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

TAY GOLD PROPERTY

N.T.S. 92 F - 6 W ALBERNI M.D. B.C.

CROSS SECTION - 84-4

(LOOKING EAST)

0 20 40 IOOFEET

MANWA EXPLORATIONS SERVICES LTD.

SCALE |": 40' D.G. HARDER

NOVEMBER 1984

QUARTZ VEIN

DACITE

DIORITE

ANDESITE

Au in oz/ton, Ag in ppm, As in ppm

84 -6 -50° 410'

D. G. Ander

GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

TAY GOLD PROPERTY

ALBERNI M.D. B.C.

CROSS SECTION - 84-5,6,7

(LOOKING EAST)

MANWA EXPLORATIONS SERVICES LTD.

SCALE I" : 40' NOVEMBER 1984 D.G. HARDER

LEGEND QUARTZ VEIN DACITE DIORITE D ANDESITE OVERBURDEN 84-8 -23°

Ref. Line

D. G. speder.

GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

TAY GOLD PROPERTY

N.T.S. 92F-6W ALBERNI M.D. B.C.

CROSS SECTION - 84-8

(LOOKING EAST)

MANWA EXPLORATIONS SERVICES LTD.

SCALE 1" = 40' D.G. HARDER

NOVEMBER 1984

GLADIATOR RESOURCES LTD & BOWES LYON RESOURCES LTD.

CROSS SECTION - 84-9

(LOOKING EAST)

MANWA EXPLORATIONS SERVICES LTD.

NOVEMBER 1984