85-1023 -14607

ASSESSMENT REPORT ON GEOLOGICAL AND GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

ALPHA.....#3619(11) DELTA.....#3622(11)

located

45 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 22 minutes latitude 130 degrees 07 minutes longitude

N.T.S. 104B/8E

PROJECT PERIOD: Sept. 16 - 25, 1985

GEOLOGICAL BRANCH ASSESSMENT REPORT

FILMED

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER B.C. REPORT BY

D. Cremonese, P. Eng. 200-675 W. Hastings Vancouver, B.C.

Date: Dec. 13, 1985

TABLE OF CONTENTS

1. INTR	ODUCTION	1
A.	Property, Location, Access and Physiography	1
В.	Status of Property	1
C.	History	1
	References	2
E.	Summary of Work Done	2
2. TECH	NICAL DATA AND INTERPRETATION	3
A.	Regional Geology	3
В.	Property Geology	5
C.	Mineralization	5
D.	Geochemistry - Heavy Mineral Sediment Samples	6
E.	Field Procedure and Laboratory Analysis	7
F.	Conclusions	7

E. Field Procedure and Laboratory Analysis F. Conclusions

APPENDICES

- I. Work Cost Statement II. Certificate
- III. Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report body
Fig.	2	Claims Map	Report body
Fig.	3	Regional Geology (after Grove)	Report body
Map.	1	Sample Number Map	Map Pocket
Map.	2	Geology & Sample Results - Gold, Silver	Nap Pocket
Map.	3	Geology & Sample Résults - Base Metals	Map Pocket

Page

1. INTRODUCTION

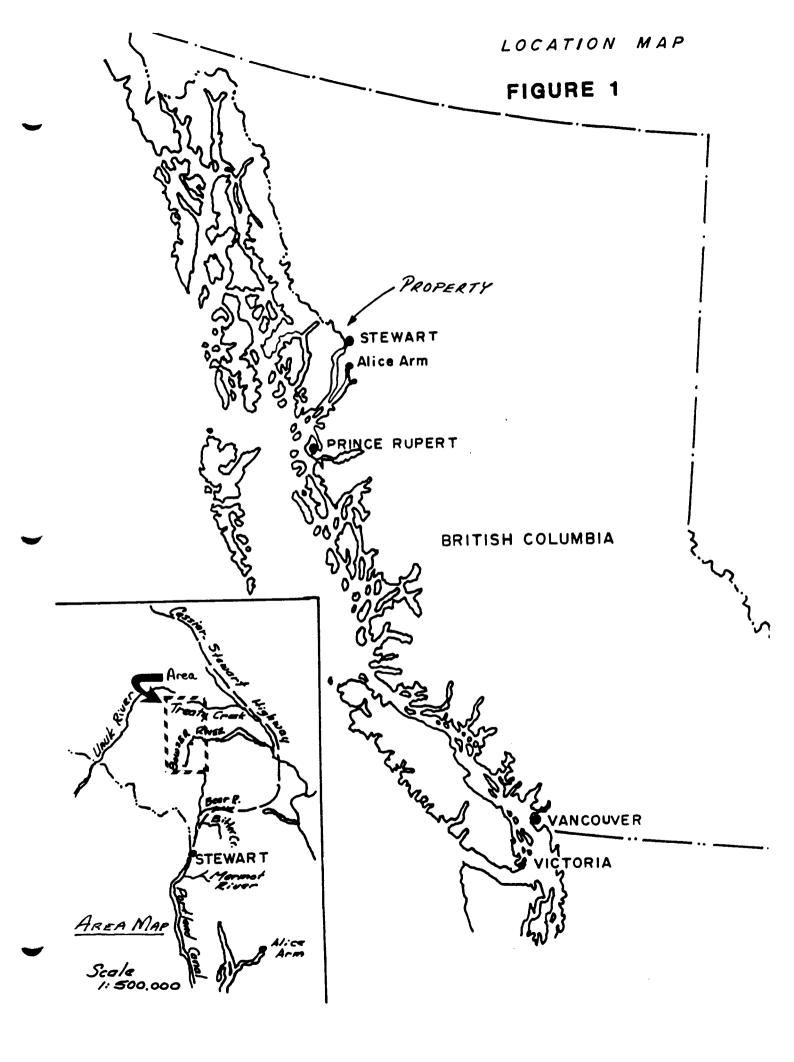
A. Property, Location, Access and Physiography

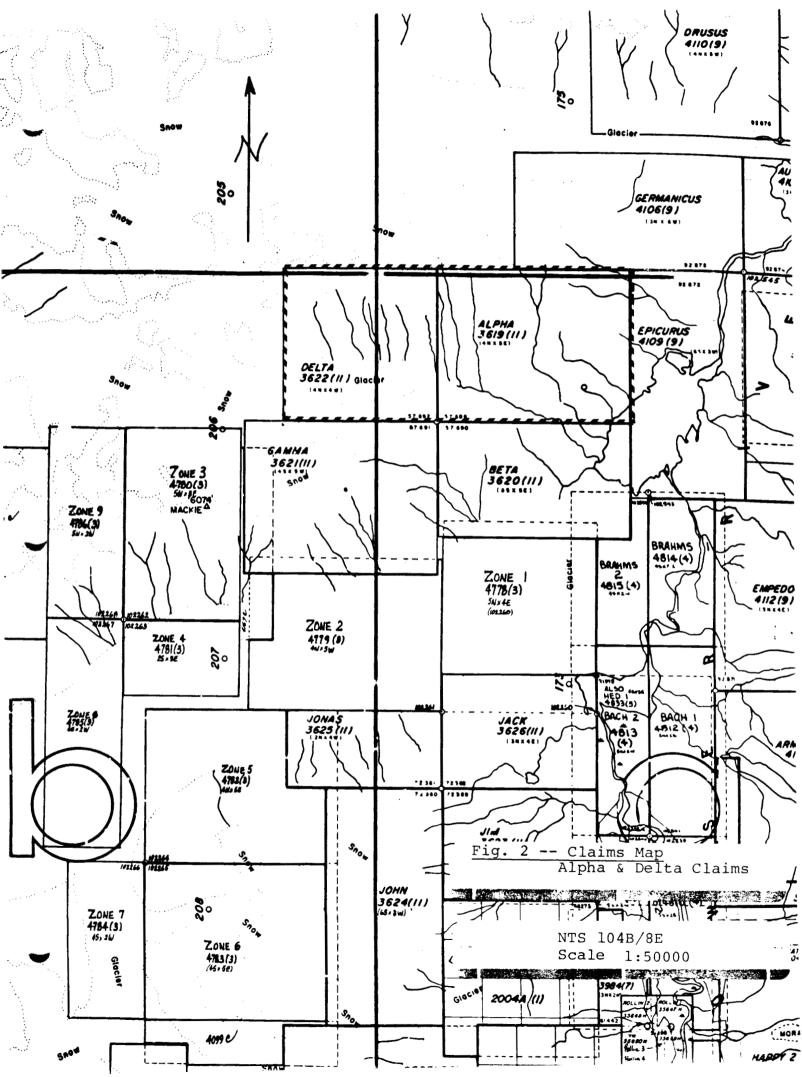
The Alpha and Delta claims are situated approximately 6 km north of the airstrip at Tide Lake Flats (just north of the old Granduc concentrator). Access from Stewart, 45 air-kilometers to the south, is by helicopter; alternative access is via the Granduc road to the aforementioned air strip and thence by helicopter. Access by foot is possible from the terminus of the Granduc Road system near the old East Gold mine, however this would entail a hazardous crossing over a highly crevassed glacier.

The claims follow an east-west trending ridge on the north side of a small valley glacier, the first glacier north of the giant Frankmackie Glacier. The southeast corner of the Alpha claim lies within Toe Lake, a local widening of the Bowser River due to the incursion of the Frankmackie Glacier. The western edge of the Delta claim abuts the large icefield feeding the Knipple, Sulphurets and Frankmackie Glaciers.

Terrain is steep throughout the claim area except on the topland near the 1,600 m level just below the icecap on the Delta claim, an area marked by gently sloping eskers and patches of glacially scoured rock. From the upland, sharply incised creeks drain southward in the valley glacier. Vegetation, consisting of mountain balsam and hemlock, thickens gradually downslope from treeline at the 1,300 m mark. Above this, alpine grass, dwarf bushes and mountain flowers gradually thin out until only lichens grow.

B. Status of Property


Relevant claim information is summarized below:


Name	Record No.	No. of Units	Record Date
Alpha	3619	20	Nov. 1, 1982
Delta	3622	16	Nov. 1, 1982

The claims are shown on Fig. 2 and are held in the name of the operator of the 1985 assessment program, Teuton Resources Corp..

C. History

Very little is known of the history of the claims during the early periods of exploration of the Stewart Complex, that is, during the span from 1900 to 1940. It is likely that the claims were just beyond the ambit of convenient exploration from the

supply center of Stewart. Also, extensive snow and ice cover in the area, which is marked by large ice and snow fields, was probably much more extensive then than now.

In 1966/67 the claims area formed part of a regional study the B.C. Department of Mines under the direction of bv E.W. Grove, P.Eng (Ref.3). The area remained dormant until the early 1980's when rising precious metal values prompted many exploration companies to initiate new reconnaissance programs. Teuton Resources Corp. staked the ground in 1982 under the presumption that geology similar to that occurring at the 15 km to the north would be exposed by Sulphurets property The assumption was partly confirmed by retreating ice. а prospecting expedition in 1983 (attended by the author) which uncovered a large alteration zone made up, among other units, of sericite schists and pyritized sediments. As was the case in program, extremely inclement weather severely this year's curtailed the scope of the work. In 1984, assessment work consisted of an airborne EM and Mag survey which, although not leading to any targets for further investigation, provided a useful base for alternate methods of exploration.

D. References

1. ALLDRICK, D.J.(1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.

2. GROVE, E.W. ET AL (1982); Unuk River-Salmon River-Anyox Area. Geological Mapping 1:1000000 B.C.M.E.M.P.R.

3. GROVE, E.W.(1982); The Frankmackie Glacier Property, A Summary Report Compiled for Teuton Resources Corp. (Private).

4. GROVE, E.W. (1971); Geology of Mineral Deposits of the Stewart Area. Bulletin 58, B.C.M.E.M.P.R.

5. CREMONESE, D. (1983); Assessment Report on Prospecting Work on the Following Claims, Alpha #3619(112) and Delta #3622(11). NTS 104B/8E.

6. GROVES, W.D. & SHELDRAKE, R.(1984); Assessment Report on Geophysical Work (Airborne EM and Mag) on the Bowser River Properties of Teuton Resources Corp. NTS 104B/8E

E. Summary of Work Done

Work was carried out from Sept. 16-25, 1985. The field crew consisted of geologist Chris Hrkac and geological assistant, Jake Herrero, both experienced mountaineers who had just returned from climbing the highest mountain in China. Personnel, camp and supplies were flown into the property via helicopter from the main base at Stewart. Because of unexpectedly early, severely inclement weather, a second geologist was flown into the property on Sept. 22, 1985 in order to accelerate the assessment work program before the entire property would be covered by winter snow. Unfortunately, unseasonal snowstorms beginning on the second day of the visit continued unabated, severely restricting the planned assessment work program.

Despite snowdrifts up to 1 m high on the uplands, the crew managed to find three significant mineral occurrences as well as several highly anomalous heavy mineral samples while carrying out a geological reconnaissance and heavy sediment sampling geochemical survey. In particular, the discovery of visible gold in quartz veins in an alteration zone near the midpoint of the northern border of the Delta claim deserves mention. Unusual massive antimony-rich mineralization was also found in place west of the previously mentioned gold discovery.

Geological observations in this report are largely derived from the field report of Chris Hrkac, an exploration geologist with over five years field experience in the Stewart Complex. Regional observations by W.D. Groves, Ph.D., P.Eng., who carried out 1985 assessment work on certain of Teuton's claims to the northeast and southeast, have also been incorporated. The author supervised Teuton Resource Corp.'s 1985 assessment program on all of its Bowser River area claims, of which the instant report forms a part.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

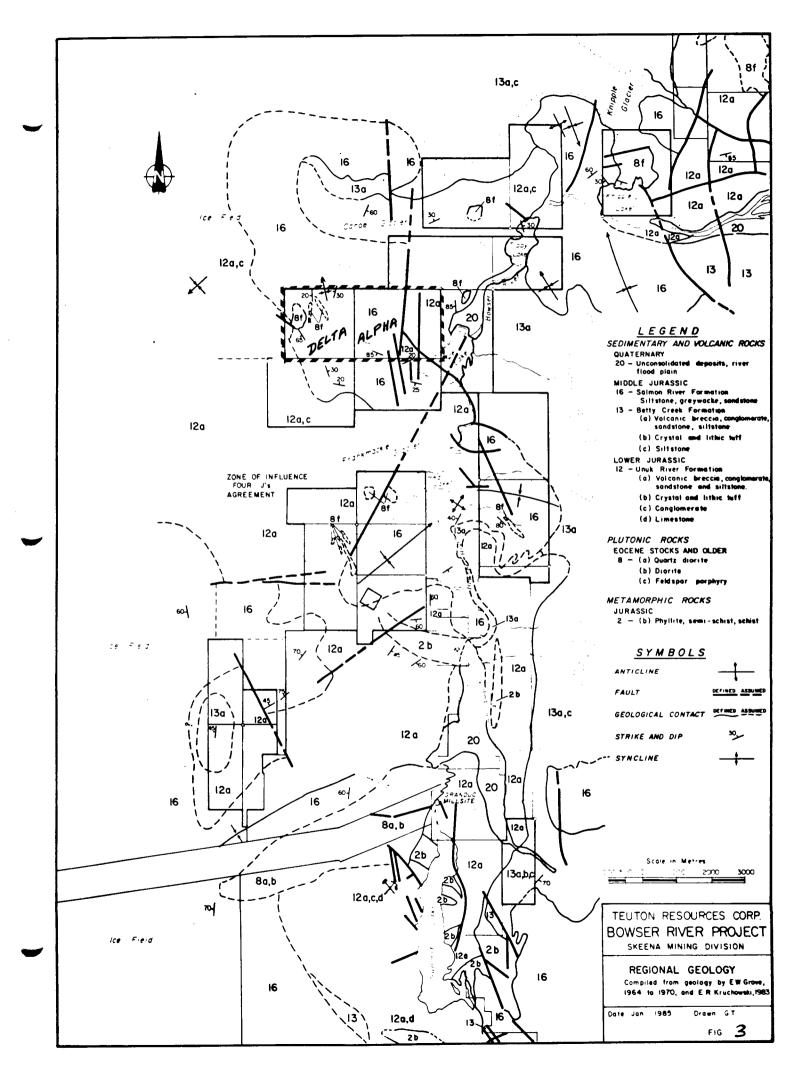
The Alpha and Delta claims lie in the Stewart area east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Hazelton Group and have been folded on regional NW-SE axes, cut by faults and selective tectonism, locally hydrothermalized and intruded by plugs of both Cenozoic and Mesozoic age.

Locally, within the Hazelton Group, Lower Jurassic volcanic and sedimentary rocks of the Unuk River Formation are unconformably overlain by the Middle Jurassic marine and non-marine volcanics and sediments of the Betty Creek Formation, the volcano-sedimentary Upper Jurassic Salmon River Formation, and the post-accretion fine clastic basinal Nass Formation.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the study area the Unuk River Formation is overlain by Lower Middle and Middle Jurassic rocks from the Betty Creek and Salmon River Formations, respectively. A variable to high angle unconformity is in places traceable between the underlying (steeper) Unuk River cycle of volcanics and overlying (flatter) cycle of often similar-looking Betty Creek volcanics. Geometry of the interface between the Betty Creek and overlying Salmon River is, at most, somewhat disconformable: the Nass Formation overlies as a sedimentary quiet basin-filling onlap with only a relatively minor erosional component from the island-arc and/or accreted terrane.

The Betty Creek Formation consists of submarine pillow lavas, broken pillow breccias, andesitic and basaltic flows, plus (emergent) green, red, purple and black volcanic breccia, conglomerate, sandstone and siltstone with minor crystal and lithic tuffs, chert, limestone and lava. The overlying Salmon River Formation consists of banded, predominantly dark coloured, silstone, greywacke, sandstone, intercalated calcarenite, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and flows.


According to Grove (Ref. 2 & 3), the majority of the rocks from the Hazelton Group were derived from the Hazelton age andesitic volcances subsequently rapidly eroding to form overlapping lenticular sedimentary wedges varying laterally in grain size from breccia to siltstone.

Intrusives in the region are dominated by the granodiorite of the Coast Plutonic Complex (to the west). Some of the smaller intrusive plugs in the study area range from quartz monzonite to granite and are likely related outlyer processes associated with the Coast Plutonic Complex.

Small Cenozoic feldspar porphyry dykes, sills and small plugs and related quartz-sulphide and epithermal pheonomena (e.g., gossans, silica/precious metal and Buchanan Funnel effects), reworking deeper metalliferous units, appear to be of prime economic importance in the area.

Regional geology after Grove (Ref. 2) is presented in this report as Fig. 3.

4

B. Property Geology

As mentioned in a previous section, an early snowfall severely restricted the planned investigation of the property's geology. After the first day, the geologically interesting upland was covered by a blanket of snow which obscured more than 95% of the outcrop. Observations were restricted to windswept rock exposures.

In general, the western margin of the property is underlain by Lower Jurassic volcanics and sediments of the Unuk River Formation. These rocks are unconformably overlain to the east by Middle Jurassic sediments of the Salmon River Formation. The sediments have been folded into synclines and anticlines with northerly trending fold axes. Small Eocene feldspar porphyry intrusions, important as mineralizers in the region, are found in the north-west corner of the Delta claim. A small northwest southeast trending fault was located in the west central part of the Delta claim.

C. Mineralization

On the tableland a large sedex pod containing jamesonite and siderite was observed outcropping in the sediments. Dimensions were not measurable because of snow cover. Two samples taken from this locality, #'s 9436 and 9437 (see Map No. 1) showed appreciable lead, zinc, iron and antimony, and appreciable gold and silver values:

	Lead	Zinc	Iron	Antimony	Golđ	Silver
#9436 #9437	6.09% 14.47%	3.50% 2.77%	17.76% 25.94%			2.12oz/t 2.13oz/t

East of this, in a 100-150m wide band of north-south trending sericite schists noted in the 1983 assessment program (Ref.5), several samples, #'s 9430-9434, were taken from small bands of pyrite, silicified sections and quartz veins. No significant results were obtained from the pyrite bands or from the silicified sections, however, the quartz veins produced samples carrying pyrite, chalcopyrite, bornite, tetrahedrite, argentite, sphalerite, galena, native gold, malachite and azurite. The veins sampled showed a maximum width of 20cm. Samples of note were #'s 9431-9433:

	Copper	Lead	Zinc	Antimony	Gold	Silver
9431 9432 9433	0.28% 0.45% 0.08%		1.35% 1.86% 1.23%	0.22% 0.34% 0.05%	1.880z/t	5.51oz/t 39.59oz/t 2.58oz/t

A third zone of interest was located just outside the Delta claim's western boundary (actually, a survey will be necessary to determine whether it is in or outside the claim). A sample (#9439) from a large gossan outcropping in the area, containing massive pyrite mineralization tinged with antimonial yellow stain, returned gold values of 0.06 and 0.074 oz/ton, the latter from fire assay. This sample also contained 0.09% arsenic and 0.05% antimony.

Two samples from an alteration zone exposed in the creek running just west of camp, returned minor, but significant, values in base and precious metals. These are:

	Copper	Lead	Zinc	Antimony	Gold	Silver
9428	0.02%	0.61%	1.24%	0.04%	0.001oz/t	2.78oz/t
9429	0.62%	0.69%	0.76%	0.01%	0.036oz/t	0.32oz/t

The samples appear to be from a continuation of the zone sampled lower down in the creek bed, near the glacier, in the 1983 program. Mineralization levels are quite similar.

A point of interest re samples #9428,9429,9436 and 9437 is that much of the mineralization, particularly iron, appears in the form of carbonates.

Gold and silver values for all samples taken are plotted on Map. No. 2. Base metal values of interest have been plotted on Map No. 3.

E. Geochemistry -- Heavy Mineral Sediment Samples

Eight heavy mineral geochemistry samples were taken from various streams draining the south slope of the Alpha and Delta claims. Sample numbers S-011 to S-014 and S-016 were taken from streams draining the ridge on which the gold and antimony showings are located. These five samples returned impressive gold values ranging from 1240 parts per billion to 6500 parts per billion, with an average value of 3605 parts per billion. Elevated levels of silver, arsenic, copper, lead, antimony and zinc were also noted, reflecting the type of mineralization observed on the tableland.

Sample S-015, from the creek draining the gossan on the western boundary of the Delta claim, returned a gold value of 920 ppb. While not as high as its eastern predecessors, it is still quite anomalous on a regional basis.

Samples S-009 to S-010 showed very muted metal values, for example, only 5ppb in gold.

6

Values for gold have been plotted on Map No. 2. A table is presented below:

	As ppm	Cu ppm	Pb ppm	Sb ppm	Zn ppm	Ag ppm	Au ppb
S-009	64	441	109	72	430	4.5	5
S-010	74	542	112	79	499	6.9	5
S-011	265	646	725	111	1308	20.0	1255
S-012	825	1072	300	128	339	23.0	6280
S-013	1005	1137	382	118	2018	30.5	6500
S-014	1385	1273	1471	277	2302	141.0	2750
S-016	686	650	602	134	722	36.0	1240
S-015	409	421	231	58	382	16.9	920

E. Field Procedure and Laboratory Analysis

Rock samples were analysed by Acme Analytical Laboratories of 852 E. Hastings Street, Vancouver, B.C.. Preparations for the 16 element multi-assay included: digestion of a representative 1.00gm sample with 50 ml of 3-1-2 HC1-HNO3-H2O at 95 deg C for one hour followed by dilution to 100ml with water. This method is sensitive to 0.01% on base metals upon subsequent atomic absorption analysis. Golds were treated separately by subjecting representive 10gm samples to standard fire-assay preconcentration techniques to produce silver beads which were then dissolved prior to the AA analysis.

Three of the rock samples were tested by conventional fire assay for gold values. One assay ton charges were used in order to make the samples as representative as possible (free gold was noted in certain of the hand specimens).

Heavy mineral sediment samples were collected in the field using a gold pan specially adapted for this purpose. The samples were treated by Min-En Laboratories of North Vancouver, B.C.. Heavy mineral fraction was separated by specific gravity flotation. The fractions were then subjected to 31 element analysis using standard ICP techniques. Golds were analysed by AA after standard preparation with aqua regia solutions.

E. Conclusions

Several promising areas worthy of further investigation have been identified.

Along the western edge of the Delta claim, a NW/steep major fault bounds a limonite/antimony "blond" gossan, reminiscent of the mineralization explored earlier in the year at the Tennyson claims (about 6km to the south). Preliminary rock and sediment geochemical sampling of the gossan area has returned significant values in gold. As this showing lies at low elevation, relative to the other discoveries on the Delta claim, it should be intensively prospected, trenched, sampled and mapped at the first opportunity in 1986.

Two separate zones of mineralization discovered on the upland south of the northern boundary of the Delta claim deserve a major follow-up to determine extent and grade. The gold-quartz veins discovered in the northwest trending sericite schist the Delta claim have tectonic zone crossing the topland of produced samples quite similar in appearance to samples from the "bonanza"-type electrum zones now under exploration at the Sulphurets gold-silver property a few kilometers to the north-northwest. The massive antimony-lead-iron-zinc mineralization located in place just to the west, although different in appearance to anything yet observed in the region, is stochio-metrically quite similar to antimony-rich samples discovered on the Four J's property, about 4 kilometers to the southeast. This new structure needs to be carefully defined in order to establish whether the mineralization is syngenetic "sedex" in type (in which case the mineralization will be facies-continuous with the dark sediments) or some form of pod-emplacement or remobilized deposit. This should shed some light on the relationship of background (more base) mineralization in the dark sediments to the more iron and/or precious metal rich mineralization in the two separate sericite schist zones now found in the area.

The heavy mineral sediment survey was very useful in defining areas of interest. Even with the extensive snow cover obscuring geological observations, the mineralized zones which were detected correlated well with the anomalous values found in several streams. That five creeks in a row showed highly elevated levels in gold augurs well for the discovery of new, or extensions of, gold zones in the upland. The same observation applies to the base metal highs recorded in the heavy mineral survey.

A major follow-up program should commence on the upland area showings as soon as snow melt permits. Because of the short season at this elevation, every effort should be made to maximize the time available during optimum weather conditions.

Respectfully submitted,

D. Lomoneu

D. Cremonese, P.Eng. Dec. 13, 1985

APPENDIX I -- WORK COST STATEMENT

Field Personnel:	
C.Hrkac, Geologist Sept. 16-25,1985	\$ 2,000
10 days @ \$200/day J. Herrero, Assistant Sept. 16-25,1985	\$ 2,000
10 days @ \$100/day	1,000
S. Bishop, Geologist Sept. 22-25,1985	
4 days @ \$200/day	800
Helicopter Vancouver Island Hel. (Stewart Base)	
1.3 hrs @ \$616.50	801
1.15 hrs @ \$616.50	709
Food 24 man-days @ \$30/man-day	720
Field supplies tent frame wood, kerosene, gas, etc.	180
Equipment and camp rental (includes plugger @ standby) 10 days @ \$25/day	250
IU days e \$25/day	250
4 X 4 rental 10 days @ \$20/day (all-found)	200
Base camp (Stewart) rental: 10 days @ \$10/day	100
Crew mob-demob VancStewart-Vanc.	
20% of \$2800	560
Assays Heavy Mineral SamplesS009-S016	
8 flotation preps @ \$20/prep	160
8-31 elem ICP and Au AA @ \$12/sample	96
16-16 elem multi-assay by AA @ \$22.75/sample	364
3-1 assay ton Au fire assays @ \$8.25/sample	25
16-check Au, Ag by fire assay @ \$13.50/sample	216
Report Costs	
Report and map preparation, compilation and researc	h
D. Cremonese, P.Eng., 2 days @ \$300/day	600
Draughting 10 hrs. @ 15/hr.	150
Word Processor - 4 hrs. @ \$25/hr.	100
Copies, report, jackets, topo blow-ups, etc.maps	60
TOTAL	\$9,091

-

9

P.C.

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 200-675 W. Hastings, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practiced my profession since 1979.
- 5. This report is based upon work carried out on the Alpha and Delta mineral claims, Skeena Mining Division in Sept. 1985.
- 6. I am a principal of Teuton Resources Corp., owner of the Alpha and Delta claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 13 day of December, 1985.

D. Lemonen

D. Cremonese, P.Eng.

APPEN IX TIL FIRE ASSATS I AUX AS JorLite Assay Co. Client: Box 26 Tenton Resources Corp. Stewart, B.C. ASSAY CERTIFICATE Suite 200 VOT 1WO 675 west Hastings St. Telephone 636-2404 Vancouver B.C No. F 169 Date: 05 3, 1985 V68 421 Sample Description Au. oz./ton Ag. oz./ton % Cu %Pb %Zn %Fe Remarks .012 女. 09426 太. 09427 ,008 09428 .010 2.02 t. 09429 1016 09430 .43 .016 4.85 09431 .012 1.202 09432 28.46 .014 1.87 09433 09434 ,012 .50 09435 t. 1014 ,012 2.01 09436 09437 .046 2.04 九 .016 09438 .074 09439 .0 .008 .95 09440 九 .016 09441

PHINTED BY TOTEM PRESS TERRACE LTD

Chief Assaver

16 element assay / AA

ACME ANALYTICAL LABORATORIES LTD.

852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6

PHONE 253-3158

TELEX 04-53124

ASSAY CERTIFICATE

DATE RECEIVED: OCT 16 1985 DATE REPORT MAILED: SAMPLE TYPE: ROCK CHIPS AU+ 10 GRAM REGULAR ASSAY A Rejuct

ASSAYER.

1

Ł

					TEL	JTON R	ESOURCES	5 F1L	.E # 83	5~28134)					PAGE	1
SAMPLE#	Mo X	Cu %	Pb	Zn X	Aq 0Z/T	Ni %	Co %	Mn %	Fe %	As %	U %	Th %	Cd %	Տհ %	Eti %	Au OZ/T	
9420	.001	.01	.01	.01	.08	.01	.01	.01	4.52	.01	.002	.01	.010	.010	.010	.001	
9421	.001	.01	.01	.01	.04	.01	.01	.01	6.64	.01	.002	.01	.010	.010	.010	.002	
9422	.001	.01	.01	.01	.13		.01	.01	30.11	.01	.002	.01	.010	.010	.010	.005	
9423	.001	.01	.01	.01	.01	.01	.01	.06	1.31	.01	.002	.01	.010	.010	.010	.001	
9424	.001	.01 1	.01	.01	.04	.01	.01	.08	7.51	.01	.002	.01	.010	.010	.010	.001	
9425 9426 *	5.004	\$.01 .01	· 01	.01	.09	.01	.01	.01	2.16	.01	.002	.01	.010	.010	.010	.002	Alpha / Delta
9442	47.001	§01	.03	.02	.13	01	.01		28.41	.23	.002	.01	.010	.010	.010	.020	
9443	. 057	.11	01	.05	.86	.01	.01		36.55	.02	.002	.01	.010	.010	.010	.080	
9444	.057	1.80	.18	1.17	5.82	.01	.01	.04	20.14	.02	.002	.01	.010	.010	.010	.518	
9445	. 001	.04	.01	.01	.14	. 01	.01	.01	22.28	.34	.002	.01	.010	.010	.010	.015	
9446	. 004	∰i . 01 ∶	.01	.01	. 11	.01	.01	.01	7.67	.02	.002	.01	.010	.010	.010	.024	
9447	6.002	.02	.01	.02	.08	.01	.01	.03	9.39	.01	.002	.01	.010	.010	.010	.015	
9448	3.001	2.01	.04	.11	.05	.01	.01	.01	5.39	.01	.002	.01	.010	.010	.010	.011	
9449	• - 991	.08	.02	.05	.36	.01	.01	.01	24.64	.03	.002	.01	.010	.030	.010	.028	
9450		E 07	.05	.08	.87	. O1	.01	.06	36.76	.07	.002	.01	.010	.020	.010	.039	
9451	£.001	2,77	.01	.01	.08	.01	.01		4.56	.02	.002	.01	.010	.010	.010	.031	
9452	.001	1.02	. 14	.14	.56	.01	.01		27.21	.04	.002	.01	.010	.010	.010	.915	
9453	.001	.08	.05	.28	.07	01	.01	.07	35.37	.05	.002	.01	.010	.010	.010	.018	
9454	.001 .001	.03	.02	.02	.12	.01	.01	.09	33.79	.06	.002	.01	.010	.010	.010	.011	
9455	.001	4.75	.01	.01	.23	.05	.01	.02	15.84	.04	.002	.01	.010	.010	.010	.068	
9456 .	.001	.08	.02	.01	.08	.01	.01		39.87	.07	.002	.01	.010	.010	.010	.012	
9457	.001	.05	.01	.01	.02	.01	.01		15.96	,02	.002	.01	.010	.010	.010	.009	
9458	.001	.05	.01	.06	.09	.01	.01		2.86	.01	.002	.01	.010	.010	.010	.011	
9459	.008	.43	1.54	. 86	6.82	.01	.01	.27	9.25	.02	.002	.01	.010	.350	.010	.018	
9460	.006	.02	.09	.03	.16	.01	.01		27.60	.04	.002	.01	.010	.010	.010	.015	
9461	. 001	.03	.01	.02	.06	.01	.01		6.29	• 01	.002	-01	.010	.010	.010	.009	
9462	.001	.11	.15	. 27	.22	.01	-01	.12	6.74	.05	.002	.01	.010	.030	.010	.007	
9463	.008	2.65		15.91	4.49	.01	.01		24.67	• 07	.002	.01	.070	.030	.010	.312	
9464	.001	.01	.08	, 15	.20	.01	.01	.29	6.65	1.03	.002	.01	.010	.010	.010	1.678	
2101	.001	.06	.22	.52	.27	.01	.01		16.73	.30	.002	.01	.010	.030	.010	.008	
2102	.001	-107	.04	.10	.17	.01	.01		12.36	.19	.002	.01	.010	.040	.010	.009	
2103	.001	.17	.62	1.10	1.13	.01	.01		13.85	.06	.002	.01	.010	.100	.010	.029	
2104	.001	. 17	.97	.70	1.09	.01	.01		25.76	.11	.002	.01	.010	.090	.010	.016	
2105	.001	. 14	.82	.54	1.45	.01	.01	.01	33.40	.10	.002	.01	.010	.130	.010	.014	
2106	. 001	.50	.05	1.06	2.72	.01	.01	.10	10.18	.07	.002	.01	.010	.210	.010	.039	
STD R-1		. 89	1.37		2.97	.03	.02		7.01	.94	.013	.01	.040	.160	.030		
	P & Pray	g															

Only # 9426 from Alpha / Delta - All others off property D.C. X

TEUTON RESOURCES FILE # 85-28136

	s'																
SAMPLEH	Maj Cu	1215	Zn	Aq	Ni	Co	Min	fie	As	U	Th	Cd	Sb	Bi	કોવે,⊑		
	. % %	7.	7.	UZ/T	%	7.	7.	7.	7.	7.	74	7.	7.	7.	0771		(
9427	.001 .01	.01	.01	.05	.01	.01	.01	8.25	. 04	.005	.01	.010	.010	.010	.004	1	
9428	.002 .02	.61	1.24	2.78	.01	.01	1.17	9.05	.01	.004	.01	.010	,040	.010	.001	1	(
9429	.001 .62	.69	.76	.32	.01	.01	.08	5.14	.01	.004	.01	.010	.010	.010	.036		
9430	.001 .03	.15	.12	36	.01	.01	.03	3.74	.01	.003	.01	.010	.010	.010	.006		
9434	.001 .02	.01		.68	.01	.01	.01	3.95	.01	.002	. 01	.010		.010	.004) All, Dette	1
9435	.00101	.01	.01	.12	.01	.01	.14	6.19	.01	.003	.01	.010	.010	.010	.001	Alphal	
19436	.004 .23	6.09	3.50	2.12	.01	.01	1.30	17.76	.04	.003	.01	.050	1.020	.010	.006	I rip	i
9437	.003 .06	15.47	2.77	2.13	.01	.01	1.79	25.94	.03	.002	.01	.030	6.170	.010	.054		
9438	.001 .01	06	.23	.06	.01	.01	.15	3.34	.01	.002	- O1	.010	.020	.010	.001		
9439	.001 .01	.11	.02	.31	.01	.01	.01	13.65	.07	.002	.01	.010	.050	.010	.060		t
9440	.001 .01	.01	.01	1.35	.01	.01	.01	5.94	.01	.002	.01	.010	.010	.010	.001		
9441	.001 .01	.03	.01	.15	.01	.01	.01	5.55	.01	.007	.01	.010	.010	.010	.004		(
STD R-1	.090 .89	1.37	2.38	2.95	.03	.02	.08	7.02	.93	.014	.01	.040	.170	.030	-	•	

PAGE II

(

€.,

1

							SOURCES		E # 85-								SE 4
AMPLE#	Mo X	Cu %	РЬ %	Zn %	Ag DZ/T	Ni %	Со %	Mn %	Fe ۲	As %	U %	Th %	Cd %	5b %	Bi X	Au OZ/T	(A T)
9431 9432 9433 970 R-1		.28 .45 .08 .89	.70 .64 .19 1.37	1.35 1.86 1.23 2.42	5.51 39.59 2.58 2.96	.01 .01 .01	.01 .01 .01	.01 .02 .03 .08	1.16 3.20 3.35 7.01	.01 .01 .01 .98	.002 .002 .002 .011	.01 .01 .01	.010 .020 .010 .040	.220 .340 .050 .160	.010 .010 .010 .030	.011 1.876 .042 -	Alpha/ Deita
. 4																	
					1												
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					· ·												
₹ 5 • •																	
	「「「「」」		. :							;							
···· • • • • • • • • •			·			• •				х							

. **

• •

۰.

1

(

(

(

I.

1

(

(

(

(

(

t

C

€ Ç

TARPARA: TENTON RES	SOURCES			HTH-F	N LADS	ICP REPORT				IACT:6		BE 1 DF 3	
PPOJECT NO:			705 WEST	15HI ST.	NORTH	VANCOUVER,	B.C. 97H	1 112			FILE	NO: 5-785	
ATTENTION: D. CROMM	IE SF			16041980-	5814 DF	(604)988-4	524	e Ty	PE NON MA	G KM +	DATE: OCT	18. 1985	
PAR VES IN PPH 1	6G	ÂL	AS	ß	BA	BE	BI	CA	ED	C0	[]]	FE	
		3970		<u>ę</u>		5,1	- 21	900		17	112	177440	1
	10.0	4700	- 11? -								+05-		
<u>Giiệặ</u>			<u>, , , , , , , , , , , , , , , , , , , </u>			<u>5,7</u>				75	277	168320	L0
6004	4.3	10000	<u></u>				20	<u> </u>		<u></u>			
	<u>5,</u>	755	f	<u>.</u>		7,2			2.9-	25		225410	1 p
560L	1.3	3606			27		21	1090	17.1			173110	.\`
G007	9.1	11490	77	14	37	<u> </u>	<u> </u>	8380		<u> </u>	403	194870	- 1
<u>paap</u>	4.7-	24710		27	79_					67			ר
5.009	4.5	9490	64	H	361	14.2	39	2780	.1	73	441	777970	1
5010	6.9	13090	74	14	767	15.1	42	3500	.5	111	542	279080	A
5611	20.0	11560	265	16	104	11.6	41	1510	28.0	60	646	286670	
5912	23.0	14390	825	18	142	8.0	43	6550	4.0	72	1072	282770	ĮP
5013	30.5	14040	1005	19	51	7.8	42	5260	52.2	56	1137	290420	1
5014	141.0	8750	1385	17	471	9.9	48	6600	27.0	85	1273	316320	
S015	15.9	8330	409	11	29	5,4	31	7550	9.2	43	\$21	187780	
5016	36.0	11680	486	14	302	8.2	35	6310	10.6	55	550	228450	1

1

٠.

•

•

hА

.

:

:

UMPANY: TENTON RESI	JUKLES					P REPORT				(ACT: BEC		2 DF 3	J
ROJECT NO:			705 MEST	15TH ST.,	NORTH VA	HCOUVER.	B.C. 47H	112		FILE NO: 5-785			
TTENTION: D. CROMME	SE			(604)980-5	814 OR 1	604)988-4	524	€ TVF	e non hag	HH + I	ATE: DCT 18	1985	
(VALUES IN PPM)	¥,	LI	HG	MN	HD	NA	HI	P	PR	SB	SR	TH	^
- \//			- 1849			<u> </u>						<u> </u>	1
# 92									174-	- 61			1 11
5002	<u>300</u>				23	120							JOTT
5441													
R665	300	2	<u>2580</u>	19	27								Proper
9444	330	2	2340						69			<u> </u>	111-1
5007	430	7	5840	<u>572</u>	27	70							1
8008	100	19	11550		36					63		y /	1
5009	390	9.	3810	3672	41	50	277	3290	109	72	131	14	
5010	520	17	4490	9847	45	60	286	3820	112	79	154	1	
5011	540	}3	4040	8473	66	60	115	2730	725	111	122	ī	АЦРН) _Д ег
5012	660	12	5030	1165	35	40	34	3550	300	128	121	1	1.1
5013	520	14	5060	2181	39	40	28	2040	382	118	128	1	D^{kr}
5014	780	3	4480	8483	37	30	52	3660	1471	277	141	il	-
R015	470	8	5110	458	22	50	22	1410	231	58	117	1	
5016	430	8	5630	2423	31	170	21	2270	602	134	100	·	1

÷

t

್ರಾಲ್ಯ ಪ್ರತಿಕೊಡಿತು. ಕೆ.ವಿ. ಸಿಕೆಯ ಗ್ರಾಂಕ್ ಗ್ರಾಂಕ್ ಕ್ರಾಮ್ ಹೊಡಿತು ಮಾಡುಗಳವರೆ. ಕೆ. ಎಂದು ಸರ್ವಾರ್ ಕ್ರಾಮ್ ಹೊಡಿತು ಮಾಡುಗಳವರೆ. ಕೆ. ಎಂದು ಸ್ವಾಮಿ ಹೊಡಿತು ಕ್ರೇಮ್ ಕ್ರಾಮ್. ಗ್ರಾಮ್ ನಿರ್ವಾಸ್ತ್ರಿ ಸ್ವಾಮಿ ಹೊಡಿತು.

.

and a second second

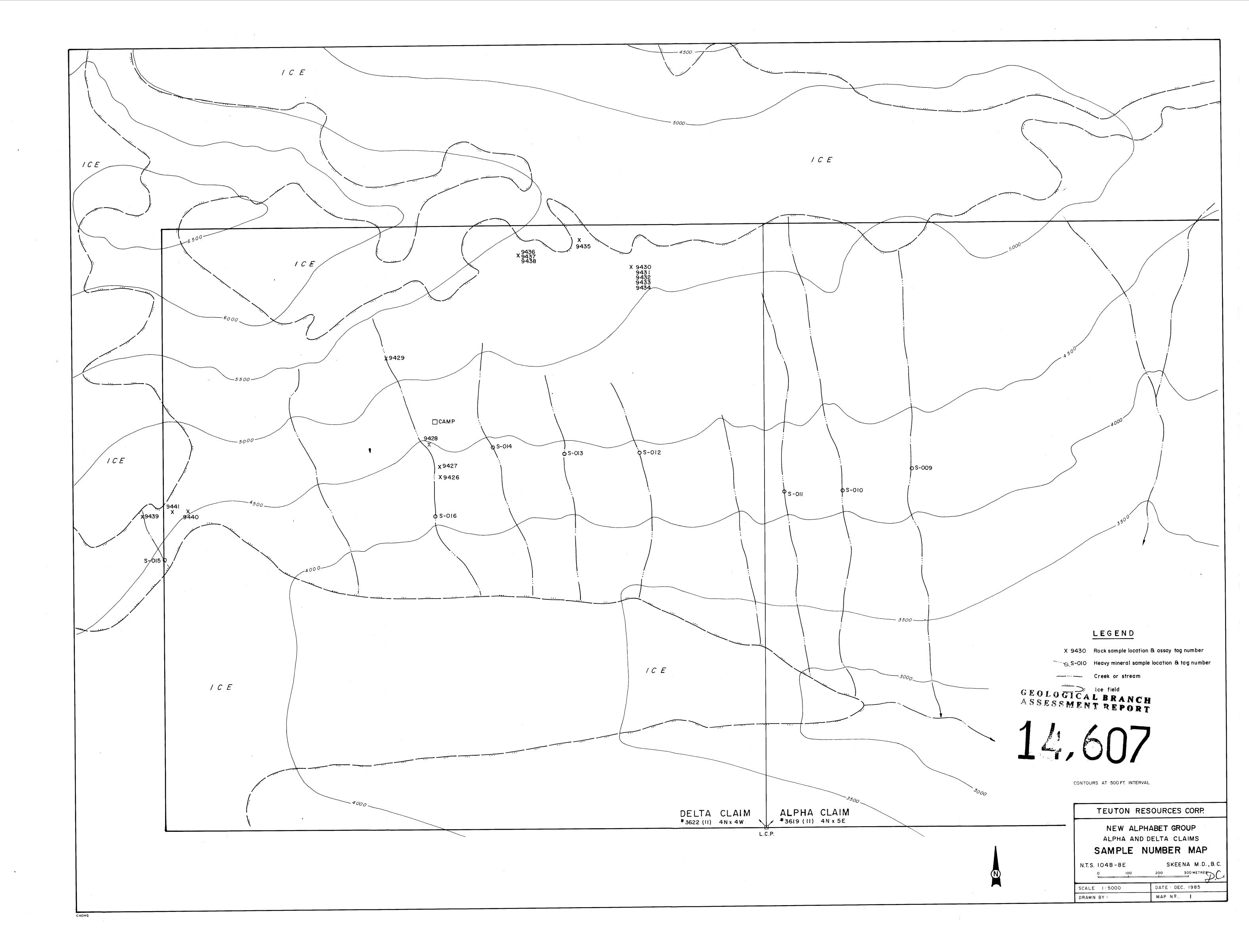
ļ

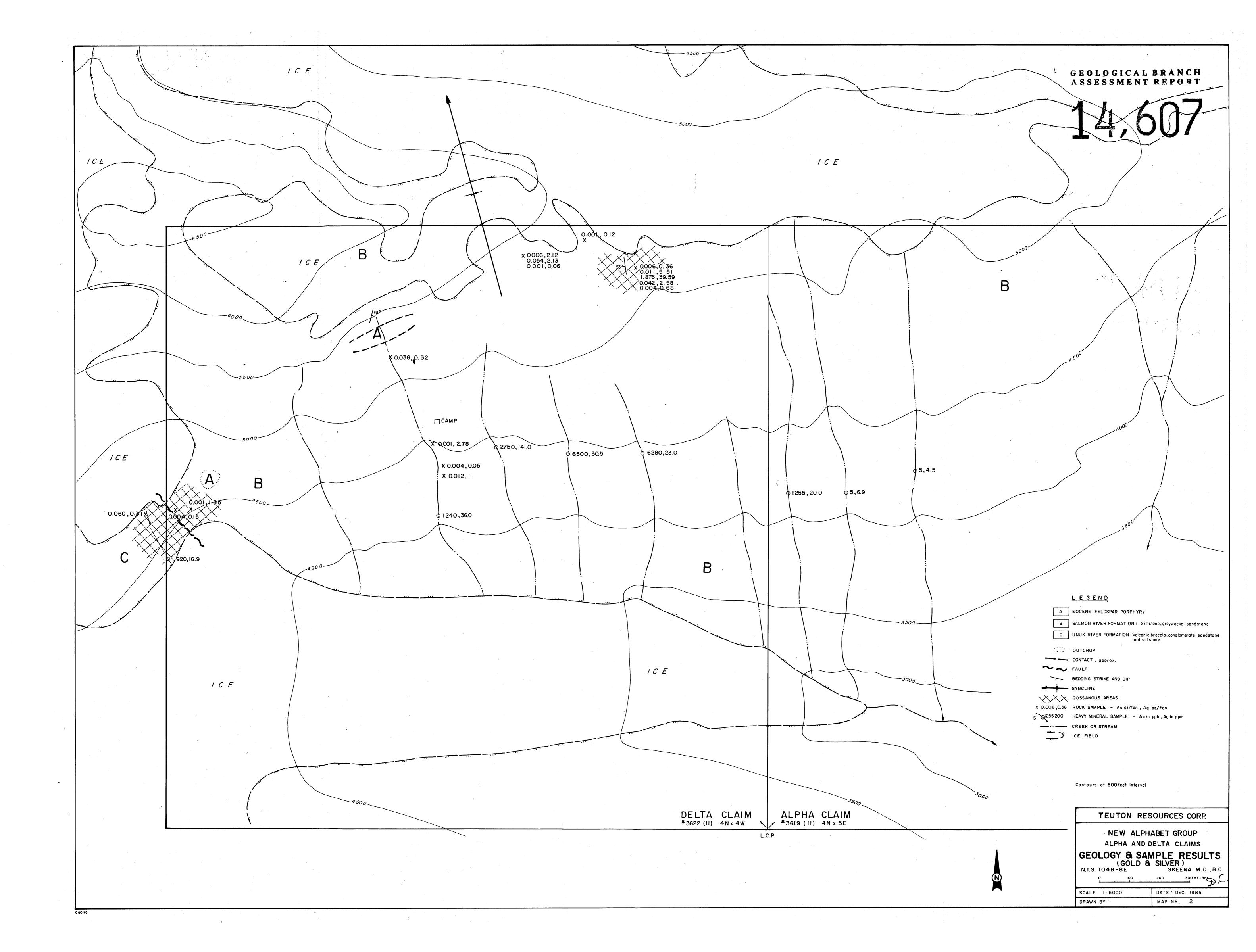
GED27) PAGE 3 DF	1401:6E0				REPORT	I LABS JCF	H1H-F1			IRCES	OHPANY: TENTON RESOL
FILE NO: 5-7			2	.C. V7H IT	ICOUYER, I	NORTH VAL	15TH ST.,	705 WEST			ROJECT NO:
DATE: DCT 18. 19	HH F I	PE NON MAG	E TY	24	(04)988-45	1814 DR 14	(604) 980-5			SE .	TTENITON: D. CROMMES
	HHZ	AU-PPB	¥	SH	SE	6E	64	2H	ų	บ	(VALUES IN PPN)
-'		<u></u>				13	4	135	11.2	<u>}</u>	- <u></u>
-						- te					
- I off	2.20	20				12	<u> </u>	229	40.9		5003
	- 2.06-		1	<u>q</u>							5004
- Propert	-6.11-	485						<u> </u>			<u>\$995</u>
-	6.99-	420		8	j			543			5044
-\	-1.83-	+240		9			f	94	63.8		5 007
1	74	5	-12				<u>j</u>				9008
	.80 (5	7	7	1	24	1	430	45.9	1	5009
	.68	5	11	8	j	28	1	499	57.0	1	5610
	1.23	1255	11	13	1	23	1	1308	53.8	1	5011
	1.59	628ú	1	16	1	19	1	339	66.4	1	S012
1 VV	1.71	6500	11	16	ł	19	i	2018	68.5	1	5913
	4.24	2750	13	15	1	24	i	2302	60,1	1	S014
	4.07	920	4	10	1	14	7	382	36.7	1	5015
-+	2.74	1240	7	8	·	16		722	73.8	<u>.</u>	5016

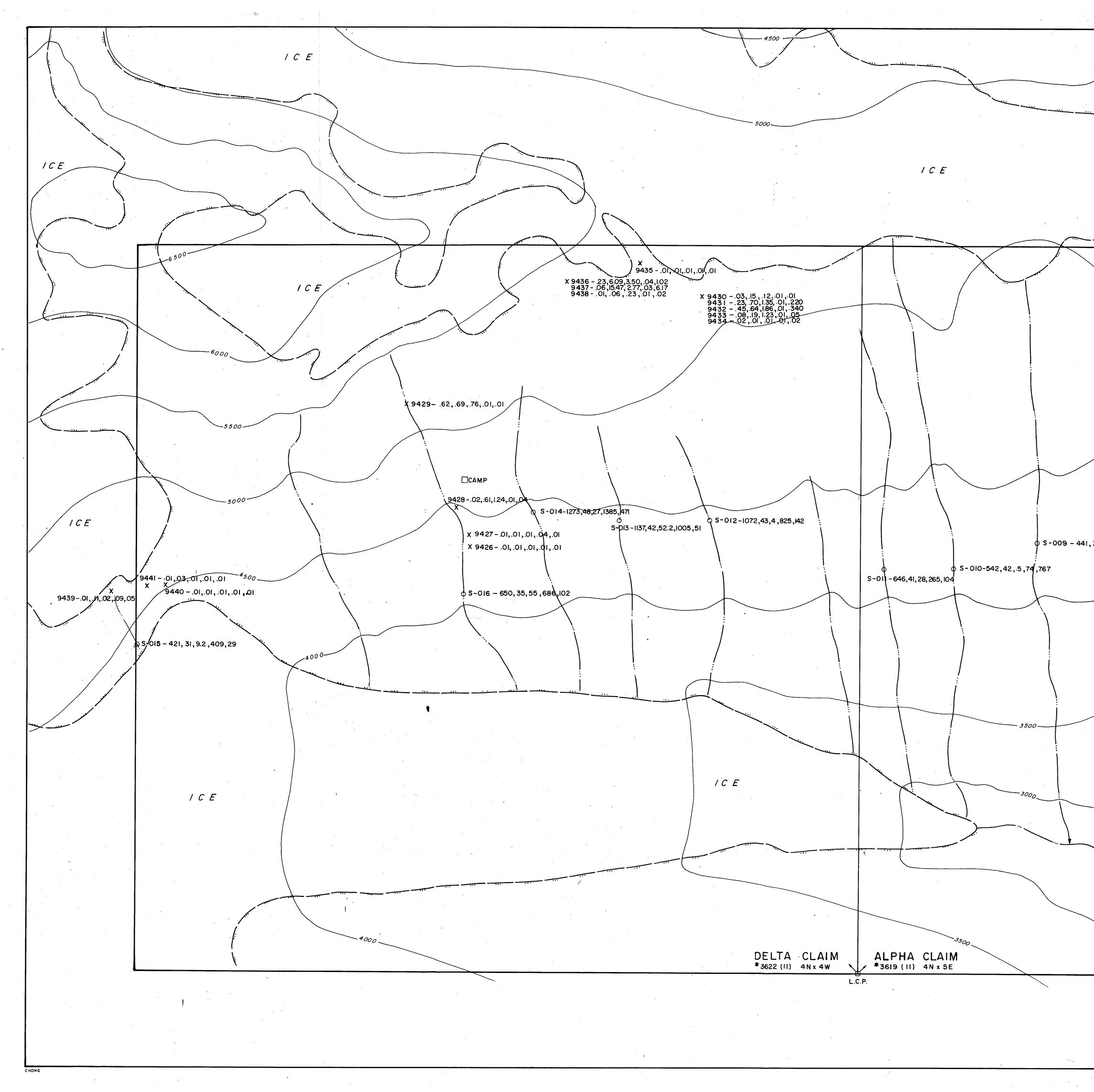
.

• •

్రాష్ట్ర సౌకర్యం సౌకర్యం స్రామించిన స్రామించింది. సౌకర్యం సౌకర్యం సౌకర్యం సౌకర్యం సౌకర్యం సౌకర్యం సౌకర్యం సౌకర్ సౌకర్యం స్టోట్ ప్రైవేటి సౌకర్యం సౌకర్యం


.


f


•••• ••• •••

.

\$ \$ -009 - 441, 39, 1, 64, 361 LEGEND X 9430 Rock sample location & assay tag number -.....QS-010 Heavy mineral sample location & tag number ----- Creek or stream ______ ice field METAL ANALYSES x 9426-.01,.01,.01,.01,.01 Sample Nº. - Cu, Pb,Zn,As,Sb in % ○ S-013 -1137,42,52.2,1005,51 • • - Cu, Bi, Cd,As, Ba in ppm GEOLOGICAL BRANCH ASSESSMENT REPORT TEUTON RESOURCES CORP. NEW ALPHABET GROUP

(N) SCALE 1:5000

ALPHA AND DELTA CLAIMS SAMPLE NUMBERS AND BASE

100

N.T.S. 104B-8E

DRAWN BY

METALS MAP

SKEENA M.D., B.C.

200 300 METREE

DATE : DEC. 1985

MAP Nº. 3

.