GEOLOGICAL BRANCH ASSESSMENT REPORT

14,645

ON THE

PERRY 1 AND 2, MASON 1 AND 2, PICEAN DAVE, DREAM FR., DEAN'S FR., AND FAR SIDE FR.
(PERRY MASON GROUP)
TOODOGGONE RIVER AREA
Omineca Mining Division, B.C.
94E-6E
(57* 17^{*} N. Lat., $127^{*} 10^{*} W$. Long.)

FILMED
by

Mohan R. Vulimiri, B.Sc.(Hons.), M. Sc.
and
Grant F. Crooker, B. SC., F.G.A.C.
for

SEREM INC.
(Owners and Operators)
November 1985

TABLE_OF_CONTENTS

Introduction
General 1
Location and Access 1
Physiography 2
Property and Claim Status 2
Property History 3
Exploration Procedure 3
Geology 7
Mineralization and Alteration 8
Geophysics 12
VLF-EM Survey 12
VLF-EMR Survey 12
Conclusions and Recommendations 13
References 15
Certificates of Qualifications 16 17
Appendices
Certificates of Analysis Detailed Cost Statement Operating Manual EM-16
Operating Manual EM-16R
ILLUSTRATIONS
Figure 1. Location Map. Scale 1:250,000 follows pl
Figure 2. Claim Map. Scale 1:50,000 follows p1
Figure 3. Geology and Sample Plan. Scale 1:500 pocket Trenches
Figure 4. VLF-EM Survey, In-phase and Quadrature Data. Scale 1:1250 pocket
Figure 5. VLF-EM Survey, Fraser Filter Data, Scale 1:1250 pocket
Figure 6. VLF-EMR Survey, Apparent Resistivity and Phase angle, Scale 1:1250 pocketTABLES
Table 1. Chip Sample Resulta from Trenches p9

INTRODUCTION

General

Field work was carried out on the property by Grant Crooker, Mohan Vulimiri and Sheila Keilbach, geologists, from August 2nd through August $9 t h, 1985$.

Trenching, rock sampling, geological mapping, prospecting, VLF-EM and VLF-EMR surveying were carried out on the claims.

Location_and_Access

The Perry Mason Group is located between $57^{\circ} 1^{\prime}$ and 57*17' N. latitude and between $127^{\circ} 08^{\prime}$ and $127^{\circ} 1^{\prime}$ W. longitude in the Toodoggone River area, Toodoggone River map sheet, $94 \mathrm{E}-6 \mathrm{E}$, Omineca Mining Division (Figures 1 and 2).

Access to the property is by airplane from Smithers to Sturdee Airstrip, a distance of 280 kilometres, and from Sturdee Airstrip to the property by helicopter, a distance of 3 Kilometres. A 3 kilometre long cat trail leads from Baker Mine to the property providing alternate access.

Physiography

```
Topography is gentle to moderate; elevation ranges from 1480 to 1880 metres above sea level. Outcrop is generally less than 5\% on the property.
```

The property is open, with lichens, moss and a little buck brush.

Property_and_Claim_Status

The claims (Figure 2) are owned and operated by Serem Inc., Box 11175, Royal Centre, 1055 West Georgia Street, Vancouver, B.C. Upon acceptance of this report, all claims will be in good standing until 1987. They consist of the following:

Claim	Units	Record_No:	Record_Date
Perry 1	16	2365	28 November
Perry 2	6	2386	28 November
Mason 1	6	2387	28 November
Mason 2	8	2388	28 November
Picean Dave	2	5775	6 September
Dean's Fraction	1	5778	6 September
Dream Fraction	1	5777	6 September
Far Side Fraction 1	5776	6 September	

Property_History

Previous work carried out on the claims by Serem Inc. during 1980, 1981 and 1982 included soil sampling, silt sampling, preliminary geological mapping, prospecting and a proton magnetometer survey. Work during 1983 was carried out on the "Black Pete Zone" showing. This is a quartz-hosted precious metal prospect. Five hand trenches were dug, chip sampled and geologically mapped. A two hectare area around the showing was also geologically mapped. Gold values, across 1 metre, ranged from 0.001 to 0.110 (average 0.084) ounces per ton, while silver values ranged from 0.13 to 8.70 (average 1.16) ounces per ton. For detailed information the previous assessment reports can be referred to.

This property is located about 3 kilometres southwest of the Baker Mine (currently active).

EXPLORATION_PROCEDURE

A moderate exploration program was carried out on the property during 1985. The work was carried out to further delineate the mineralized zones.

Work in 1985 consisted of cat and back-hoe trenching, chip

```
sampling, geological mapping, prospecting, and VLF
electro-magnetic and electo-magnetic resistivity surveys.
```

A grid ang establimhod on the property. The baseline an run at $0^{\circ}-180$ for 40 metres. and cross lines were run at right angles to the baseline every 40 metres. A total of 8300 matres of cross lines were established with stations every 20 metres, except over the showings where stations were established every 10 metres.

Eight thousand three hundred i. etres of VLF-EM survey were carried out, with reading taken every 20 metres along lines. A Geonics EM-16 was used as a receiver, with NLK, Seattle, Washington, 24.8 Khz the transmitter. This transmitter was used due to its good signal strength and orientation to the geological structures.

The EM-16 measures In-phase and quadrature components of vertical magnetic field as a percentage of horizontal primary field (that is, tangent of the tiltangle and ellipticity). Both values are given in percentages. Field procedure requires to always face the same direction when taking readings. When appraching a conductor the readings will be positive, and when leaving a conductor the readings will be negative. The EM-16 is rotated in the vertical plane until a minimum signal is obtained. This reading in the "In-phase" and gives the

Abstract

tiltangle in degrees and the tangent of the tiltangle expressed as percent. Once this minimum signal is obtained, the "Quadrature" knob is rotated until the signal minimum is obtained. This reading is approximately the ratio of the vertical secondary field to the horizontal primary field.

The VLF-EM can pick up conductors caused by electrolyte-filled fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological boundaries as well as sulphide bodies.

The In-phase and Quadrature data were plotted as percentages on Figure 4 at a acale of 1:1250. The Fraser filter method was then applied to the In-phase data, and the results plotted at a scale of 1:1250 on Figure 5.

Eighty thousand three hundred metres of VLF-EMR (electro-magnetic resistivity) surveying were carried out with readings taken every 20 metres, except over the showings where readings were taken every 10 metres. A Geonics EM-16R was used as a receiver, with NLK, Seattle, Washington, at 24.8 Khz transmitter.

The EM-16R measures the horizontal components of the radial electric field and the tangential magnetic field (apparent resistivity), and the phase differences between the radial
electric field and the tangential magnetic field (phase angle).

Field procedures require that the instrument be oriented in the direction of the transmitter selected. Two probes are pushed into the ground 10 metree apart, in the direction of the transmitter. The resistivity control is then rotated until a signal minimum is located. The phase angle control is then rotated until a further signal mininmum is obtained. The apparent resistivity in ohm-metrea, and phase angle in degrees are then recorded from appropriate control. The apparent resistivity readings give the electrical resistivity of the ground, while the phase angles give conductivity of the overburden.

The apparent resistivity is high for siliceous, non-conductive rocks, and low for altered, kaolinized rocks.

The apparent resistivity and phase angles were plotted at a scale of 1:1250 on Figure 6.

Cat arid back-hoe trenching were carried out over the area of zhowings. A total of 7 trimches were cut, and approximately 1050 cubic metres of matrial removed: These trenches were systematically chip sampled and geologically mapped at a scale Gí 1:500 (Figures 3 and 4)

Forty-six chip samplea of quartz material taken at 1 metre sampling interval and were fire-assayed for gold and ailver. The results are shown on Figure 3 and in Table 1.

GEOLOGY

The Perry Mason Group of claims is underlain by Permian Asitka limestone, Triassic Takla volcanic rocks and Lower Jurassic Toodoggone volcanic rocks and Lower Jurassic intrusive rocks.

For detailed description of the general geology of the area assessment reports of 1982 and 1983 can be referred to.

Intensive trenching with the help of JCB back-hoe and DG Caterpillar bulldozer was agrvied out in the "Black Pete zone" showing area. The Ehawing was hand trenchea and samplea in 1983. Detail mapping of the trench area shows the presence of three distinct lithologic units.

1. Lower Jurassic Toodoggone feldspar porphyry unit
2. Epidote-actinolite-garnet skarn
3. Triassic Takla augite porphyry +/- gabbro

Geological mapping (Figure 3) auggeata the unita are intefively disrupted by steep-dipping northeast-southwest post-mineral faults. From the pattern of conjugate shears and
subsidiary faults, the movement on the major faults appear to be right lateral.

Skarn zones consisting of epidote, garnet and actinolite appear to occur within the Takla augite porphyry. The skarns are exposed along the creek between trenches 85-6 and 85-8 and in trench 85-11.

A small outcrop of gabbro is exposed on the road just east of trench 85-12. The gabbro body is probably of same age as the Takla volcanic rocks.

MINERALIZATION_AND_ALTERATION

Mineralization conaiating of galena, tetrahedrite and sphalerite with silver and gold values is associated with silicified and siliceous zones within the Takla augite porphyry and the Toodoggone feldspar porphyry. The silicified and siliceous zones basically contains quartz and minor chalcedony. No banding was observed. Only minor quartz veinlets in association with limonite and manganese oxide fracture fillings are present.

One distinct zone is delineated in trenches 85-8, 83-5, and 85-6 for a distance of approximately 65 metres. The zone carries values upto $13.55 \mathrm{oz} / \mathrm{ton}$ gold and $214.5 \mathrm{oz/ton}$ silver.

For detailed trench assays table 1 and Figure 3 can be referred to.

Several patchy zones were traced in trenches 85-6, 85-7 and 85-12 and in trenches dug in field season 1983. The strike of these zones could not be determined due to the intensive nature of post-mineral faulting.

The silicified zones are also associated with manganese oxide and limonite fracture fillings, and intense argillic alteration.

The assays from trench sampling are given in the table below.

TABLE_1

Trench_6

Sample_No.	Width	Au_(ozfton)	Aq_(oz/ton)	Mineralogy
25402	$0-1 m$	<0.01	1.5	
25403	$1-2 m$	<0.01	0.5	
25404	$2-3 m$	<0.01	0.4	
25405	$3-4 m$	<0.01	0.2	
25406	$14-15 m$	0.04	6.6	Gal, Tet
25407	$15-16 m$	<0.01	0.9	

25408	$16-17 m$	<0.01	0.5
25409	$17-18 m$	<0.01	0.3
25410	$18-19 m$	0.01	0.8
25411	$19-20 m$	<0.01	1.3
25412	$20-21 m$	<0.01	1.1
25441	$49-50 m$	<0.01	0.1
25442	$50-51 m$	<0.01	0.2
25443	$51-52 m$	<0.01	0.4
25444	$52-53 m$	0.04	4.0
25445	$53-54 m$	0.06	8.4

Trench_7

Sample_No. width Au_(ozfton) Ag_(ozfton) Mineralogy

25413	$5-6 m$	<0.01	0.5
25414	$6-7 m$	<0.01	0.5
25415	$7-8 m$	<0.01	1.4
25416	$8-9 m$	0.01	0.9
25417	$9-10 m$	0.01	2.8
25418	$10-11 m$	0.01	3.0
25419	$44-45 m$	0.01	0.6
25420	$45-46 m$	<0.01	0.5
25421	$46-47 m$	<0.01	0.6
25422	$47-49 m$	<0.01	1.5

Trench_8

Sample_No. ${ }^{\boldsymbol{\omega}} \underline{i d t h}$ Au_(oz/ton) Ag_(oz/ton) Mineralogy

25423	23	$-24 m$	0.05	7.0	Gal, Tet, Sph
25424	24	-25m	0.02	2.5	,
25425	25	$-26 m$	0.01	2.3	, '
25426	26	-27m	13.55	214.7	"
25427	27	-28m	0.47	14.4	"
25428	28	-29m	0.41	6.6	?
25429	29	-30m	0.01	0.4	
25430	30	-31m	0.01	1.4	
25431	31	$-32 m$	0.12	3.1	Gal, Tet
25432	32	-33m	0.04	1.9	"
25433	33	-34m	0.10	4.1	",
25434	34	-35m	0.05	2.1	',
25435	35	-36m	0.04	2.5	"
25436	36	-37m	0.01	2.5	"

Trench_12

25437
$6-7 m$
<0.01
1.6
25.43

25439
25440
$10-11.5 m$
<0.01
1.2

VLE=EM_Survey

The Frasきr Filter data was applied to all In-phase readings to allow contouring of the data. The results were contoured at 10 percent intervals on Figure 5.

Two moderate to strong VLF electromagnetic conductors were delineated. Conductor A extends from 0+80S;2+10W to $3+605 ; 3+70 \omega$. This conductor probably indicates a fault zone. Conductor B is a strong conductor extending from $1+605 ; 0+10 E$ to $4+805 ; 1+90 E$. Fault gouge was seen along this zone, indicating the conductor delineates a fault.

VLF-EMR_Survey

A number of resistivity highs and lows were indicated by the survey (Figure 6). Resistivity lows A and B are coincidental with VLF electro-magnetic conductors A and B. These zones probably represent faults.

The resistivity $h i g h$ at $85-11$ appears to be caused by a siliceous skarn zone. The resistivity highs around trench 85-6 appear to be caused by silicified zones. The silicified zone uncovered in trenches 85-5 and 85-8 is not delineated by the

```
resistivity survey. This may be due to extensive post-mineral
faulting in the area.
```


Abstract

Resistivity high A with values unto 11000 ohm-metree was delineated at location $3+605$ and $3+50 E$. No outcrop is exposed in the area. This resistivity high may be due to an extensively silicified zone.

CONCLUSIONS_AND_RECOMMENDATIONS

The VLF electromagnetic survey delineated two conductors which appear to indicate fault zones.

The VLF electromagnetic resistivity survey delineated several resistivity highs. These highs would appear to be caused by extensively silicified zones. Resistivity high A should be trenched by a cat and a back-hoe.

The cat and backhoe trenching exposed one strongly silicified zone (35-8) and several patchy zones with economically significant precious metal and base metal values (galena, tetrahedrite and sphalerite). Precious metal values ranged unto $214.7 \mathrm{oz} / \mathrm{t}$ on silver and $13.55 \mathrm{oz} / \mathrm{ton}$ An zones should be systematically diamond drilled at close spacing because of intense post-mineral faulting in the area.

Recommendations are to:

1. Geologically map the grid in detail.
2. Backhoe trench the electromagnetic resistivity highs. 3. Core drill the silicified zones to delineate grade and tonnage.

Respectfully submitted,
Motion 'Vision'
Mohan R. Vulimiri, B.Sc.(Hons.), M. Sc.

Grant F. Crooker, B. Sc., F.G.A.C.

REFERENCES

Crawford, S.A., \& Vulimiri, M.R. (1980) - Geochemical \& Prospecting Report on the Perry 1. Perry 2, Mason 1 and Mason 2 claims, Omineca Mining Division.

Stammers, M.A. (1983) - Geological Report on the Perry Mason Group, Omineca Mining Division.

Stammers, M.A., Crawford, W.J. and Keilbach, S.A. (1982) Geological. Geophysical and Trenching Report on the Perry 1,2 and Mason 1 and 2 claims, Omineca Mining Division

CERTIEICATE_OF_QUALIFICATIONS

I, Grant F. Crooker, B.Sc., Geology of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science degree in Geology.
2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
3. That I am a member of the Canadian Institute of Mining and Metallurgy.
4. That I am a Fellow of the Geological Association of Canada.
5. That I have no direct or indirect interest in the property

Dated at Vancouver, B.C. this 2 Bth day of November, 1985.

CERTIFICATE OF QUALIEICATIONS

I, Mohan R. Vulimiri, of 1120 Heywood Street, North Vancouver, B.C., hereby certify that:

1. I am a graduate with a B.Sc. (Hons.) degree form the Indian Institute of Technology, Kharagpur and a M.Sc. (Economic Geology) degree from the University of Washington.
2. I am involved in mineral exploration in British Columbia since 1970 and I have acted in responsible positions since 1974.
3. I have no direct or indirect interest in the property.

Dated at Vancouver, B.C., this 28 th day of November, 1985.

DETAILED_COST_STATEMENT

Wages

1 Geologist, G. Crooker
12 days at $\$ 300.00$ per day............... 53600.00
August $2-9,15-18,1985$
1 Geologist, M.R. Vulimiri
12 days at $\$ 300.00$ per day $\$ 3600.00$
August 2 - 9, 15-18, 1985
1 Geologist, S.Keilbach
8 days at $\$ 200.00$ per day..............$\$ 1600.00$
August 2 - 9, 1985
Gamp_Costs (include groceries, camp supplies, camp equipment, radio, expediting, etc.
G. Crooker, 8 days at $\$ 50.00$ per day...... $\$ 400.00$ August 2 - 9, 1985
M.R. Vulimiri, 8 days at $\$ 50.00$ per day... $\$ 400.00$ August 2 - 9,1985
S. Keilbach, 8 days at $\$ 50.00$ per day..... $\$ 400.00$ August 2 - 9, 1985

Transportation

Vehicle, Chev 4×4
8 days at $\$ 60.00$ per day................... $\$ 480.00$
August 2 - 9, 1985
Fuel, 20 gallons at $\$ 5.00$ per gallon...... $\$ 100.00$
Fixed Wing* (Smithers to Sturdee Strip)
8 days at $\$ 72.50$ per day................... $\$ 580.00$ August 2 - 9, 1985

Mobilization \& Demobilization
8 days at $\$ 78.25$ per day................... $\$ 626.00$
August 2 - 9, 1985
Supplieg (flagging, topofil thread, etc.)....... 550.00

Instrument Rental

Geonics EM-16R............................... $\$ 200.00$ 8 days at $\$ 25.00$ per day August 2 - 9, 1985

Assays

46 rock samples (Au, Ag) at $\$ 22.00 \$ 110.00$

Preegration_of Repgrt
Secreterial, draughting, reproduction, etc. $\$ 1100.00$
N.B. Trenching - 1047.3 cubic metres...........57000.00

$$
\$ 21,126.00
$$

* Mobilization and demobilization costs, and fixed wing costs are pro-rated over 7 projects in the Toodoggone Area covering 44 days

MIN-EN LABORATORIES LTD.
705 WEST 15 TH STREET
NORTH VANCOUVER, B.C.
Phone: 980-5814
Tertifitate of Azay
то: \qquad Mrhan Viutiomis

PROJECT No. \qquad date Alellsin, ince

File No... Sx-3

MIN-EN Laboratories Ltd.
Certified by $A 2$.aly Acherad

MIN-EN LABORATORIES LTTD.
25 WEST 15TH STREET
NORTH VANCOUVER, B.C
Phone: $980-5814$
Trextificate of Aszay
то: \qquad Motan Valimiti
project no. \qquad date Auzenti 9, ل190
\qquad
\qquad File No. $E K-2$

MIN-EN Laboratories Ltd.

GEONICS LIMITED

```
OPERATING MANUAL
for
```

```
EM16 VLF-EM
```

```
EM16 VLF-EM
```


EM16 SPECIFICATIONS

MEASURED QUANTITY	In-phase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).
SENSITIVITY	In-phase : $\pm 150 \%$
	Quad-phase : $\pm 40 \%$
RESOLUTION	± 18
OUTPUT	Nulling by audio tone. In-phase indication from mechanical inclinometer and quad-phase from a graduated dial.
OPERATING FREQUENCY	15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.
OPERATOR CONTROLS	On/Off switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.
POWER SUPPLY	6 disposable 'AA' cells.
DIMENSIONS	$42 \times 14 \times 9 \mathrm{~cm}$
WEI GHT	Instrument: 1.6 kg Shipping : 4.5 kg

PRINCIPLES OF OPERATION

The VLF-transmitting stations operating for communications with submarines have a vertical antenna. The Antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. (See Figures $3 \& 4$). This equipment measures the vertical components of these secondary fields.

The EM16 is simply a sensitive receiver covering the frequency band of the VLF-transmitting stations with means of measuring the vertical field components.

The receiver has two inputs, with two receiving coils built into the instrument. One coil has normally vertical axis and the other is horizontal.

The signal from one of the coils (vertieal axis) is first minimized by tilting the instrument. The tilt-angle is calibrated in percentage. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by 90°. This coil is normally parallel to the primary field, (See instrument Block Diagram - Figure 2).

Thus, if the secondary signals are small compared to the primary horizontal field, the mechanical tilt-argle is an accurate measure of the vertical real-component, and the compensation $\pi / 2-s i g n a l$ from the horizontal coil is a measure of the quadrature vertical signal.

Some of the properties of the VLF radio wave in the ground are outlined by Figures 4 thru 9.

ACCOMPANYING NOTES FOR FIGURES 2-9
FIGURE 2 is the block diagram of the EM16. The diagram is self-explanatory. Both the coils (reference and signal coil) are housed in the lower part of the handle. The directions of the axis of the coils are as follows: The reference coil axis is basically horizontal and is kept more or less parallel to the primary field during measurement. The signal coil is at right angles to the reference coil and its axis is, of course, vertical.

The signal amplifier has the two inputs, one connected to the signal coil and one to the reference channel. By tilting the coils, the operator minimizes the signal from the signal (vertical axis) coil. Any remaining signal is reduced to zero by the quadrature control in the reference channel. The signal amplifier has zero output

SELECTION OF THE STATION

The magnetic field lines from the station are at right angles to the direction of the station. Always select a station which gives the field approximately at right angles to the main strike of the ore bodies or geological structure of the area you are presently working on. In other words, the strike of geology should point to the transmitter. (See Figuz m^{2}). Of course, $\pm 45^{\circ}$ variations are tolerable in practice.

Tuning of the EMI6 to the proper transmitting station is done by means of plug-in units inside the receiver. The instrument takes two selector-units simultaneously. A switch is provided for quick switching between these two stations.

To change a plug-in unit, open the cover on top of the instrument, and insert the proper plug. (Figure 10) close the cover and set the selector switch to the desired plug-in.

On the following pages is a variety of information on the most commonly used (i.e. reliable) VLF Transmitters including transmission frequency, geographical location and their scheduled maintenance periods.

NAVY STATIONS OFF-AIR TIMES:

NAA Schedule off 1300 to 2300 UT daily 15 Nov. through Nov. 17
NDT Scheduled off twenty-four hours each day 28 Oct. and 29 Oct. (local); ten hours each day Mon. through Sat. (Local) Beginning 14 Jan. 1979 at 2300 UT and ending 6 Feb. at 0900 UT; Twenty-four hours each day Mon. 0900 UT; Ten hours each day Mon. through Sat. (Local) Beginning 7 Mar. at 2300 UT and ending 13 Apr . at 0900 UT .
NPM 19 Oct. 1800 to 2158 UT Scheduled off 1800 to 0200 UT Mon. through Fri. (Local) 15 Jan. 1979 to 17 Mar.
NSS Scheduled off 15 Oct. to 10 Nov. and 1200 to 2400 UT daily 21 Nov. through 24 Nov.
May be off intermittently untill 24 Nov.

NORMAL MAINTENANCE PERIODS:

NAA
NDT
be preformed on preceding Fri
First Thur./Fri. of month 2300 to 0900 UT, other Thur./Fri. 2300 to 0700 UT
Every Thur. 1600 to 2100 UT. During daylight saving time every Thur. 1500 to 2300 UT.
Every Wed./Thur. 1700 to 0500 UT.
Every Tues. 1200 to 2000 Ul.
Fivery Wed. 0000 to 0800 UT.

For further information the U.S. Nival Ohscrvatory, Time Scrvice livision, Washington D.C. may be contacted at (202) 254-4548.

REVISED

```
Sept. 22, }198
```

The frequency of NLK is now 24.8 kHz .

FIELD PROCEDURE

Orientation \& Taking a Reading
The direction of the survey lines should be selected approximately along the lines of the primary magnetic field, at right angles to the direction to the station being used. Before starting the survey, the instrument can be used to orient oneself in that respect. By turning the instrument sideways, the signal is minimum when the instrument is pointing towards the station, thus indicating that the magnetic field is at right angles to the receiving coil inside the handle.(Fig.11).

To take a reading, first orient the reference coil (in the lower end of the handle) along the magnetic lines. (Fig.12) Swing the instrument back and forth for minimum sound intensity in the speaker. Use the volume control to set the sound level for comfortable listening. Then use your left hand to adjust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal strength on both adjustments, read the inclinometer by looking into the small lens. Also, mark down the quadrature reading.

While travelling to the next location you can, if you wish, keep the instrument in operating position. If fast changes in the readings occur, you might take extra stations to pinpoint accurately the details of anomaly.

The dials inside the inclinometer are calibrated in positive and negative percentages. If the instrument is facing 180° from the original direction of travel, the polarities of the readings will be reversed. Therefore, in the same area take the readings always facing in the same direction even when travelling in opposite way along the lines.

The lower end of the handle, will as a rule, point towards the conductor. (Figs. 13 \& 14) The instrument is so calibrated that when approaching the conductor, the angles are positive in the in-phase component. Turn always in the same direction for readings and mark all this on your notes, maps, etc.

THE INCLINOMETER DIALS

The right-hand scale is the in-phase percentage(ie. Hs/Hp as a percentage). This percentage is in fact the tangent of the dip angle. To compute the dip angle simply take the arctangent of the percentage reading divided by 100 . See the conversion graph on the following page.

The left-hand scale is the secant of the slope of the ground surface. You can use it to "calculate" your distance to the next station along the slope of the terrain.
(1) Open both eyes.
(2) Aim the hairline along the slope to the next station to about your eye level height above ground.
(3) Read on the left scale directly the distance necessary to measure along the slope to advance 100 ($f t$) horizontally.

We feel that this will make your reconnaissance work easier. The outside scale on the inclinometer is calibrated in degrees just in case you have use for it.

PLOTTING THE RESULTS
For easy interpretation of the results, it is good practice to plot the actual curves directly on the survey line map using suitable scales for the percentage readings. (Fig.15) The horizontal scale should be the same as your other maps on the area for convenience.

A more convenient form of this data is easily achieved by transforming the zero-crossings into peaks by means of a simple numerical filtering technique. This technique is described by D.C. Fraser in his paper "Contouring of VLF-EM Data", Geophysics, Vol. 34, No. 6. (December 1969)pp958-967. A reprint of this paper is included in this manual for the convenience of the user.

This simple data manipulation procedure which can be implemented in the field produces VLF-EM data which can be contoured and as such provides a significant advantage in the evaluation of this data.

GEONICS LIMITED

1745 Meyerside Drive, Unit 8, Mississauga, Ontario, Canada L5T 1C5 Tel. (416) 676-9580 Cables: Geonics

OPERATING MANUAL
 for
 EMI6R VLF RESISTIVITY METER (Attachment to EM16)

MEASURED QUANTITY

RESISTIVITY RANGES

PHASE RANGE
RESOLUTION

OUTPUT

OPERATING FREQUENCY

INTERPROBE SPACING

PROBE INPUT IMPEDANCE $100 \mathrm{M} \Omega$ in parallel with 0.5 picofarads
DIMENSIONS

WEIGHT
$19 \times 11.5 \times 10 \mathrm{~cm}$.
(attached to side of EM16)

- Apparent Resistivity of the ground in ohm-meters
- Phase angle between E_{X} and H_{Y} in
degrees
- 10 - 300 ohm-meters
- 100 - 3000 ohm-meters
- 1000 - 30000 ohm-meters

0-90 degrees

- Resistivity: $\pm 2 \%$ full scale
- Phase

Null by audio tone. Resistivity and phase angle read from graduated dials.

15-25 kHz VLF Radio Band. Station selection by means of rotary switch.

10 meters
1.5 kg (including probes and cable)

FIELD PROCEDURE

1. Mounting of The EM16R Console To The EM16 Unit

Align the EM16R console, in respect to the EMl6 cover, so that the station selector on the console is close to the EM16R output receptacle on the EM16 control plate. See photograph on facing page.

To mount the console on the EMl6 use 4 stud fasteners.

To connect the EM16 console with the EM16 electrically, plug the EMl6R console output plug in the corresponding receptacle on the EMI6 control panel.
2. Orientation

The instrument measures resistivity along a line in the same direction as the station. After a VLF transmitting station has been selected EM16 is used to determine the direction to the transmitter.

The MODE selector switch is thrown to EM16, and the QUADRATURE/RESISTIVITY dial is turned to zero. With the two receiver coils in the handle of the EM16 in a horizontal plane, with the EM16R unit underneath, turn the whole instrument in a horizontal plane until the station signal goes to null. At this time the long axis of the EMl6 handle (signal coil) is pointing towards the station, and the short axis (reference coil) is maximum coupled to the magnetic field. Switch mode to EM16R.

The EM16 QUADRATURE Knob zero line is used as a cursor for the EMI6R RESISTIVITY Index ring, and the EMI6R RESISTIVITY Index ring zero line is the cursor for the EM16R QUADRATURE Knob.
All EM16 calibrations are in black, all EMl6R calibrations are in red.

3. Taking a Reading

To take a reading, orient the unit so that the shorter handle arm is at the right angle to the direction of the station and in the horizontal plane, as described in 2.

For convenience and stability the instrument can be laid on the ground during the reading, with the EM16R console beneath. Connect the probes to the EM16R console receptacle through the 10 meters long probe cable.

Ensure that the station selector switch on the EM16 and EM16R are both turned to the desired station frequency.

Push the probes into the ground 10 metres apart in the direction of the station, that is to say aligned with the long axis of the handle. The cable end with a red marker sleeve goes to the probe nearest the top of the EMl6 instrument case, the unmarked cable goes to the probe off in the direction of the EM16, coil handle. Set the resistivity multiplier switch to $x 1000$ position, rotate the EM16R RESISTIVITY CONTROL (same knob as for QUADRATURE when using EM16) for minimum sound intensity in the speaker.

Turn the phase control knob on the EMl6R console to further minimize the sound.

Resistivity is read from the position of the red zero line on the quadrature dial against the red numerals on the index ring. Multiply by 1000 in this case to obtain actual resistivity in ohm meters.

If the number on the resistivity index ring is 3 or less, use a lower resistivity multiplier scale and re-do the nulling procedure.

The xl0 resistivity multiplier scale should be used in the case of a resistivity reading of 300 ohm meters or less.

Record the phase angle by which the measured electrical field component leads the reference magnetic field component. This is 45° for homogeneous conditions, as when the depth of the layer being measured is more than one or two skin depths. When a lower layer more resistive is present the phase angle will generally decrease, and increases when a more conductive layer is present.

