86-103-14732 03/87

ASSESSMENT REPORT

1985 SOIL GEOCHEMISTRY REPORT ON THE

BLACK I, II, III AND IV MINERAL CLAIMS

Toodoggone River Area OMINECA M.D. NTS 94 E/63E Latitude 5701544/65 SESSMENT REPORT Longitude 12706344 02.5

For

Operator:

Toodoggone Syndicate 9251 Beckwith Road Richmond, B.C. V6X 1V7 Owner: Clive Ashworth

FILMED

By

Malcolm Bell Hi-Tec Resource Management Ltd. 1590 - 609 Granville Street Vancouver, B.C. V7Y IC6

January 15, 1986

Work Done: September 11 and 12, 1985

Claims Worked

Claim Name	Units	Record No.	Anniversary Date		
Black I	15	6922	March 25		
Black II	15	6923	March 25		
Black III	20	6924	March 25		
Black IV	12	6925	March 25		

TABLE OF CONTENTS

Page
Ĩ
1
 2
3
4 4
4
4 5
5
6
7
8
After Page
2
2
in pocket

4

APPENDIX I - Analytical Results

SUMMARY

The Black I, II, III and IV mineral claims are located in the Toodoggone River area, some 250 kilometers north of Smithers, B.C. The Toodoggone gold belt extends from the Stikine River to Thutade Lake and hosts numerous precious metal prospects.

Preliminary exploration work on the Black claims conducted in 1985 included reconnaissance silt and contour soil geochemistry. This work has delineated several areas that are anomalous in gold, silver, arsenic and copper.

INTRODUCTION

Property and Ownership

The Black group consists of the Black I, II, III and IV mineral claims, which together comprise 62 claim units (Figure 2). The claims were recorded on March 25, 1985 and are owned by the Toodoggone Syndicate.

The pertinent claim data are as follows:

Claim	Record No.	Units	Record Date			
Black I	6922	15	March 25, 1985			
Black II	6923	15	March 25, 1985			
Black III	6924	20	March 25, 1985			
Black IV	6925	12	March 25, 1985			

Location and Access

The Black claims are situated in the Toodoggone River area, 250 kilometers north of Smithers, B.C. and are approximately four kilometers southeast of the Baker gold-silver mine of Dupont of Canada Exploration Ltd. Access to the Black claims is by fixed-wing aircraft to the Sturdee River airstrip, and then by gravel road for 7 kilometers to the north.

Construction of a new gravel road into the area is scheduled to begin in 1986 and this road will cut the southwest corner of the Black II claim.

While conducting the work herein reported on, the crew stayed at a base camp at the Sturdee airstrip and accessed the property by helicopter.

History and Previous Work

The earliest record of exploration and mining in the area relates to placer mining activities on McClair Creek and Toodoggone River in 1930. There was sporadic exploration for gold, copper, lead and zinc between 1934 and 1960. The area was actively explored by Sumitomo, Umex and Texas Gulf Sulphur between 1963 and 1967, and in 1968 for porphyry copper and molybdenum deposits by Kennco Exploration (Western) Ltd., Cominco Ltd., and Cordilleran Engineering Ltd.

Kennco Exploration (Western) Ltd. recognized the precious metal potential of the area and staked the Lawyers and Chapelle claims and explored them until 1975. The Chapelle property was eventually optioned to Conwest Explorations Ltd. and then to DuPont of Canada Exploration Ltd. This lead to the discovery of the Baker deposit. The Baker mine was placed into production with indicated reserves of 70,000 tons and grades of 0.9 oz/T Au and 19.0 oz/T Ag in the A vein. The Baker deposit was mined out in 1983. The Lawyers property is presently held under option to Serem Inc. Surface and underground drilling has defined a deposit containing 1,000,00 tons grading 0.21 oz/T Au and 7.1 oz/T Ag (Schroeter, 1985).

Energex Minerals Ltd. has recently reported drill indicated reserves of 160,000 tons with a grade of 0.37 oz/T Au.

There is no record of previous work being done on the area now covered by the Black claims.

REGIONAL GEOLOGY AND MINERALIZATION

The Toodoggone gold camp is a 15 to 20 kilometer wide belt of volcanic, sedimentary and intrusive rocks extending northwesterly from Thutade Lake to the Stikine River, a distance of more than 100 kilometers. The oldest rocks in the area belong to the Asitka Group of Permian age. This group consists of cherts, argillites, limestone and greenstones. They are overlain by the Takla Group, which consists of intermediate flows and pyroclastics of Upper Triassic age. The Takla is characterized by abundant flows of augite andesite, basalt, porphyritic feldspar andesite and their volcaniclastic sedimentary equivalents.

The volcanic rocks lying stratigraphically above the Takla Group have been classified under two headings: i) the ToodoggoneGroup and ii) the Hazelton Group. The Toodoggone Group is of Lower Jurassic age and is equivalent to the base of the Hazelton Group (Panteleyev, 1984). The Toodoggone volcanics consist predominantly of subaerial dacite, latite, trachyte and rhyolite pyroclastic rocks more than 500 metres in thickness, which unconformably overlie the Takla. The majority of the epithermal precious metal occurrences in the area are associated with the Toodoggone volcanic rocks. However, the Baker deposit occurs in Takla volcanic rocks.

The Toodoggone volcanics are bordered on the east by, and are in fault contact with, the Hazelton Group rocks, consisting of intermediate volcanic conglomerate, breccia, lahar and abundant pink feldspar porphyry dikes and sills. These rocks range in age from Lower Jurassic to Upper Jurassic.

In addition to the abundant intrusive dikes and sills noted within the Toodoggone and Hazelton Groups, acid to intermediate and alkaline stocks and plugs intrude the Toodoggone area.

The Toodoggone camp exhibits at least four types of precious metal mineralization, the most common of which is epithermal in origin. The epithermal deposits occur as massive quartz veins such as at the Baker mine, or as silicified zones and amethystine breccia zones such as at the Lawyers deposit. They are generally proximal to major northwest faults and are associated with siliceous volcanic centres, exhalative vents and zones of alteration within the Toodoggone volcanics. Quartz, barite and carbonate are the chief gangue minerals. The vein minerals are acanthite, pyrite, electrum, chalcopyrite, native gold, sphalerite and galena. Grades range from 0.1 to 1.0 oz/T Au and 1.0 to 20.0 oz/T Ag.

Property Geology

No detailed geological mapping has been done on the Black group. Regional mapping by the British Columbia Ministry of Mines shows the claims to be underlain by three different rock units that are in fault contact with each other (Diakow et al., 1985). Portions of the Black Lake quartz monzonite stock are exposed on the western part of the claims. This unit is in contact with Upper Triassic volcanic rocks which occur as a thin wedge near the centre of the group. The most eastern portion of the claim is marked by acid to intermediate tuffs and breccias of the Toodoggone Group.

Mineralization

There are no known mineral occurrences on the Black claims. Despite this fact the presence of favourable Toodoggone Group volcanic rocks, and the property's location between two precious metal deposits make it a target worth pursuing. The results of the geochemical survey reported herein support this belief.

GEOCHEMISTRY

Sampling and Analytical Procedure

A total of 81 soil samles, and 5 panned concentrate samples were collected in 1985 for geochemical analysis from the Black group. This work was conducted by J. Ashenhurst, T. Archibald, B. Dent and T. Roocroft under the supervision of M. Bell of Hi-Tec Resource Management Ltd. during the period of September 11 and 12, 1985. Soil samples were collected at 50 metre intervals along two contour traverse lines at approximately 1,500 and 1,600 metre elevations. Samples were taken with a mattock from depths of 15 cm to 25 cm, placed in numbered kraft paper bags and shipped to Min-En Laboratories Ltd. in North Vancouver for analysis. Soil samples were dried at approximately 90oC and then sieved to minus 80 mesh. A 0.5 gram portion of each sample was extracted by digestion with nitric acid and aqua regia followed by six element ICP analysis. Panned concentrates were separated by heavy liquid and crushed before extraction and ICP analysis. Gold was extracted by aqua regia solution and measured by atomic absorption.

Presentation and Discussion of Results

The analytical results are presented in Appendix I. Significant anomalous values are plotted on Figure 3. It can be seen from this plot that a number of soils are anomalous for gold, with values falling in the range of 10-125 ppb gold. Values over 1 ppm silver and 10 ppb gold are considered anomalous. The four consecutive anomalous samples #15, 16, 17 and 18 were taken over the Toodoggone volcanic rocks in the eastern part of the Black II claim. Anomalous panned concentrate sample #4 (2,580 ppb Au and 1.4 ppm Ag) was collected from a creek draining the same area. By comparison the panned concentrate sample #44 (40 ppb Au and 8.4 ppm Ag) was taken on the main Chapelle Creek which drains from the Baker deposit.

CONCLUSIONS

The potential for the discovery of precious metal mineralization appears best in two areas of the property. The most attractive area lies on the eastern part of the Black II claim which is underlain by Toodoggone volcanic rocks. The second area of interest is along the northwest fault structures which separate the volcanic rocks from the Black Lake quartz monzonite stock.

RECOMMENDATIONS

A program of detailed geological mapping, soil sampling, VLF-EM surveying and rock chip sampling should be conducted to locate and define the main sources of gold, silver, arsenic and copper anomalies on the Black group.

Respectfully, submitted

Mahola Bell.

1

HI-TEC RESOURCE MANAGEMENT LTD.

STATEMENT OF COSTS

Personnel

J. Ashenhurst T. Archibald B. Dent T. Roocroft	day @ \$260.00/day day @ \$225.00/day day @ \$225.00/day day @ \$225.00/day	\$,260.00 225.00 225.00 225.00 225.00
	, e	\$ 935.00
Mobilization/Demobilization Materials Expediting Fixed Wing Charters Helicopter Meals Accomodation Camp Support Costs Assays – 88 soils @ \$1 – 3 pan concen Supervision (M. Bell) Drafting Assessment Report Writin	3 days @ \$50.00/day 3 days @ \$25.00/day 0.35 trates @ \$12.35	\$1,500.00 175.00 140.00 275.00 318.00 150.00 75.00 910.80 37.05 800.00 150.00 1,000.00
		TOTAL: \$6,465.85

4

STATEMENT OF QUALIFICATIONS

I, Malcolm Bell, of Vancouver, B.C., hereby certify that:

- 1. I have worked in mineral exploration since 1970.
- I am the president of Hi-Tec Resource Management Limited and have been supervising and directing exploration programs in Canada, Colombia, S.A., and Australia since Hi-Tec was established in May, 1980.
- 3 I have successfully completed studies in Survey Engineering at B.C.I.T. (1979).
- 4. This report is based on survey work completed by personnel under my direct supervision.

Dated at Vancouver B.C. this <u>9</u> day of <u>March</u>, 1986.

Makola Bell. MALCOLM BELL

APPENDIX I

Analytical Results

1

ATTENTION: HALLO	IN BELL			(604)980-	3014 UF	604/700-			F SOIL GEOLHEM . DATE: DC1 7. 198
IVALUES IN FPM	, 46	45	BA	CU	PR	74	AU-PPB		
001 40H	.3	1	87	22	22	50	10		
003	.7	1	78	23	18	47	5		
005 408	.4	4	66	15	18	60	5		
007 208	.5	19	38	11	27	47	5		
008	.2	5	66	15	19	35	10		
668	.4	1	81	19	32	45	10		
010	.6	1	78	15	34	63	5		
011	.7	2	82	11	35	49	5		
012	.6	1	74	11	27	62	5		
013		1	101	17	35	58	10		
Ú14	.2	3	90	15	26	51	5		
015	1.1	1	92	21	25	56	10		
016	.8	1	79	14	21	48	125		
017	.9	1	105	14	21	50	50		
618	.4	1	102	19	26	47	20		
019	.1	1	99	12	22	42	5		
020	.3	1	88	15	22	49	5		
021	.3	1	94	14	27	47	10		
022	.9	1	136	15	21	41	5		
023	.9	1	107		22	45	5		
024	.2	1	120	9	18	35	10		
025	.8	1	125	13	23	55	5		
026 20H	1.0	1	. 57	30	28	70	5		
PC044 40H	8.4	1	78	62	62	134	40		
PC045 40H	1.2	1	79	19	26	61	5		
5046	.5	1	57	103	39	56	5		
5047	.4	3	65	93	29	54	5		
304B	.3	1	150	23	23	58	10		
-5049	.5	1	103	33	30	87	5		
5050			110	12	21	40	10		
S051	.7	1	170	26	30	55	5		
5052	. 6	1	141	16	28	61	10		
5053	.3	,	210	23	26	54	5		
5054	.4	1	124	16	19	62	10		
S055	.3	!	105	10	18	36	5		
5056	.3	1	150	16	22	39	5		
5057	.5		116	18	27	55	5		
S058	.4	1	88	12	24	47	5		
5059	.5 .5	4	123	20	25 26	57 48	10 10		
5050			155		33		5		
5061	1.1	1	118	54		77	5		
5062	-8	1	120 95	39	40	68 40	10		
5063	.8	1		14	24	64	3		
5064	.3 .2	5	122	17	28 47		5		
5065		19	. 191	35		105	5		
5066	.5	2	218	24	33 36	66	10	NOTE	Complex #PCO// 1 O/F
S067	.5	7	217 190	35		63	5	NOTE:	Samples #PC044 and 045
S068	.4 .5	5	245	26 29	31 33	72 73	5		S 066-070 incl., and
5069	.5	1	231	20	25	66	5		421 - 440 incl. were
5070	.5			23	29	109	5		taken on the Black IV
421 422	.7	1	195	26	31	93	5		claim.
3	1.0	i	98	27	40	167	10		
-14	.7	18	103	57	41	71	5		
425 408	.4	1	95	31	32	98	5		
426	1.1		124	30	45	102	5		
423	.6	2	109	21	32	51	5		
428	.4	i	94	23	23	62	5		
429	.4	1	105	11	28	31	30		
	.9	31	195	183	80	91	5		2.

TYPE SOIL BECCHEM + DATE: OCT 7. 1				1604) 9E0 -			OLM FEL:		
	AU-FFE		FE	<u>(</u> 1)	FA	45	**********	ES IN FFM	
	5	51	39	76	1:5	12	1.9		431
	10	93	59	312	386	۵Ú	1		432
	5	115	76	227	329	53	1.0	40H	433
	5	88	57	169	202	23	.9	408	434 435
	5	51	26	43		1			
	10	61	35	33	78	4	1.0		425
	5	90	32	17	88	1	.9		437
	lý	65	22	12	137	1	.7		128
	5	75	29	24	104	1	. 9		139
	5	42	23						140
	5	43	21	25	157	11	,4		:25
	15	47	24	23	133	4	.5		1
	19	30	19	15	115	4	•:		28
	5	58	28	38	128	4	.*		529
	19	44	29	28	140	11			
	20	51	27	21	$2/\dot{\phi}$	1			31
	20	45	24	16	131	3	.5		32
	5	76	31	31	105	S	1.3		33
	10	45	24	18	125	1	!. ⊽		34
	5	5ů	39	25	193	11			35
	5	42	23	18	110	2	.4		35
	5	37	28	18	132	19	.3		33
	5	55	30	30	122	24			38
	10	47	25	lċ	127	9	.5		39
	10	29	23	12	97	1	. 3		40
***************************************	10	52	31	30	133	27	.5		41
	5	49	27	17	162	1	. 6		12
	20	108	42	34	162	23	.6		43
	5	50	25	15	129	10	.7		44
	10	57	18	15	178	1	.5		45
	5	58	37	46	141	27	.4		46
	5	50	25	28	177	13	.3		47
	10	59	30	18	189	4	.t		18
	5	54	29	107	131	10	.7		19
	5	38	37	54	91	24	.3		50
	5	48	31	83	123	2	.8		1
	5	77	38	53	136	17	.7		52
	1è	55	39	63	105	15	.7		3
	5	37	3.	21	93	13	.5		54
	5	30	38	40	91	29	.3		5
	5	31	28	39	195	19	.2	****	
	5	57	43	53	121	1à	1.4		
	5	32	31	20.	\$1	15	.5		.8
	5	39	40	40	195	26	.5		9
		29	1V 25	30	109	14	.1		9
	<u>1</u> ê 5	31		20	110	19			1
		35	45	32	84	34	.5		2
3	5 5	55 55	45	45	115	13	1.3		3
	-	00 49	45 51	43	110	39 39	1.3		4
	10			37	187	28	1.5		5
	·····	57			187	23	·····		5
	5	58	30	37	114	5			
64.1:25027) FASE 1 OF FILE NO: 5-7 • TAFE FAN 2000 1 - 0416:003 7, 143	1.C. V ⁻ N 112 24	COSVEF.	LABS TOP ICRTH VAN 114 OF 18		745 JEST		M FELL	inde titte at Otte titte at	erti Enti
		ZN	FE	CU	k-	R5	+6	5 Ju Ffm 1	al lié
	10	107	17	31	82	1	1.8		2
	256.9	32	30	25	100	1	1.4		4
	7	124	85	1-	1.9	1	2.1		6