03/37

HOLES RG-58-60

REA GOLD OPTION (HN2 GROUP)

HN-9 Claim

NTS 82M/4W
Lat. 51°09.5' Long. 119°49'

GEOLOGICAL BRANCH ASSESSMENT REPORT

14,738

Owner & Operator Corporation Falconbridge Copper 6415 - 64th Street Delta, B. C. V4K 4E2

A. J. Davidson March, 1986

Table of Contents

		8-
INTRODUCT	CION	
	General	1
	Location & Access	1
	Vegetation	1
	Pauna	1
	Topography	
	Property & Ownership	3
	History	3
	Regional Geology	5
	Local Geology	5
	Work Done	5
PURPOSE	······	6
RESULTS		6
CONCLUSIO	ons	6
ITEMIZED (COST STATEMENT	7
STATEMEN	T OF QUALIFICATIONS	8
APPENDIX	I (Logs of RG58-60 with assays)	9
	Table of Figures	
Figure 1	Location Map	2
Figure 2	Claim Configuration	4
Figure 3	Max Min - 1777 Hz (in pocket)	

Table of Maps (in pocket)

RG-52 Location Map

INTRODUCTION

General

The Rea Gold property was optioned by Corporation Falconbridge Copper in November 1983 after the discovery of a massive sulphide outcrop. Since then two small but high grade sulphide lenses have been delineated with combined reserves of around 100,000 tonnes grading 17 g/T Au with values in Ag, Cu, Zn and Pb.

This report presents the results of a step-out drillhole designed to test for other massive sulphide lenses on the property.

Location and Access

The Rea Gold property is located approximately 40km east of Barriere, B. C. and about 100km northeast of Kamloops (Figure 1). The property lies on the northwest slope of Samatosum Mtn., straddles Johnson Creek and includes a part of Johnson Lake.

Access is by two or four wheel drive vehicle north from Skwaam Bay along the Adams Lake road to the Samatosum cutoff (28 1/2km) and up the Samatosum road for 21 kilometres. Alternatively, access may be had up the Johnson Creek road from Sinmax Valley.

Vegetation

The property is covered by douglas fir and lodgepole pine with lesser amount of spruce, balsam and cedar. However the immediate area of the Rea deposit has been recently (1980) logged over and active logging continues in several places.

Fauna

The area is classified as Class IV supporting little to no wildlife.

Topography

Relief in the area is moderate. The elevation at the deposit site is approximately 1400m and the peak of Samatosum Mountain is 1996m. Johnson Lake is at 1100m and Adams Lake is at 460m.

Property and Ownership

The Rea Gold property consists of 14 modified grid claims and fractional claims owned and operated by Corporation Falconbridge Copper (Figure 2). These are:

	Claims Name	# units	Month	Record #
	Rea 1	16	November	6422
	Rea 2	8	November	6423
1	- HN 1	20	0 ctober	4802
	ни 3	10	October	4790
	HN 8	16	October	4856
	HN 9	15	October	4857
	HN 10	15	October	4858
HN2 Group	HN 12 Fr	1	November	5031
	HN 13 Fr	1	November	5032
	HN 17 Fr	1	November	5036
	HN 18 Fr	1	November	5037
	HN 19 Fr	1	November	5038
	WG 4 Fr	1	December	5316
	WG 5 Pr	1	December	5373

Drilling was carried out on the HN 9 claim entirely.

History

Intermittent exploration activity in the area since the 1920's has resulted in the discovery of numerous occurrences of base and precious metal. sulphides, often accompanied by barite. Of these only one, the Homestake Mine, has any reported production.

Figure 2.

The Rea Gold mineralization was discovered in August, 1983, by Mr. A Hilton of Kamloops. The discovery was the result of a two year prospecting program based on recent government geological maps and using a field geochemical kit. Anomalous silt and soil samples localized the prospecting to an area on the NW flank of Samatosum Mountain. Active logging in the right area at the right time revealed a red, hematitic gossan subsequently found to overlie massive sulphides.

Regional Geology

The area is underlain by a complex assemblage of volcanics and sediments of the Upper Paleozoic (Carboniferous) Eagle Bay Formation. These have undergone several phases of deformation involving folding and thrusting and producing a moderate to strong foliation in most of the units. Deformation generally increases eastward towards the margin of the Shuswap Complex. To the north, the Eagle Bay is intruded by granite and quartz monzonite of the Cretaceous Baldy Batholith.

Local Geology

The Rea Gold property itself is mainly underlain by a sequence of mafic volcanics and volcaniclastics interbedded with siliceous exhalites, argillites and greywackes. Much of the sequence is overturned with strikes NW-SE and dips 30-60° to the NE.

Sulphide-barite mineralization is hosted by siliceous exhalites at or close to the contact between mafic volcanics and sediments.

Work Done

During the period January 23rd to February 1st, 1986 a total of 570.4m was drilled in 4 holes, as follows:

RG-58	196.6 m	
RG-59A	30.5m	(abandoned in overburden)
RG-59	143.3m	
RG-60	200.0m	

Logs for these holes are presented in Appendix 1. Locations are shown on Map 1 (in pocket)

PURPOSE

The holes were drilled to test a MaxMin 1 anomaly previously drilled in RG-52 (Map 1). The aim was to intersect massive sulphides on this known mineralized horizon.

RESULTS

Although the holes intersected the general package of rocks known to host mineralization elsewhere on the property, only minor amounts of sulphides were present. The area of RG-58 proved to be highly faulted but with relatively minor overall displacement.

CONCLUSIONS

The MaxMin conductor continues to follow favourable stratigraphy with patchy mineralization and should be extended to the west to develop further drill targets.

ITEMIZED COST STATEMENT

Direct Drilling Costs	30,310.20
(1871' at \$16.20)	
Man and Machine Hours	3,290.00
Materials	7,452.08
Core Logging, Sampling & Report	4,900.00
Writing	
A. J. Davidson	
14 days at \$350.	
Miscellaneous	500.00
(drafting, typing, office	
materials, etc.)	
TOTAL	46,452.28

STATEMENT OF QUALIFICATIONS

I, Alex J. Davidson hereby certify that:

- I hold a Bachelor of Science Degree (Geology Major) and a Master of Science Degree in Economic Geology from McGill University, Montreal, Quebec.
- I have practised my profession in exploration continuously since graduation.
- 3) I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience and the results of the field work conducted on the property.

Alex J. Davidson MSc.

Vancouver, British Columbia

APPENDIX I

RG 58,59,60 Drill Logs

CORPORATION FALCONBRIDGE COPPER

X METRIC UNITS

						DRILL HOLE REC	ORD			IMPERIAL	UNITS
OLE NUMBER RG-58	GRID		FIELD COORDS	11250	DEP 1100N	1210m	COLLAR BRNG, 2	25°	COLLAR DIP -63°	HOLE SIZE NQ	FINAL DEPTH 196.6
PROJECT 312	CLAIM#	HN9	SURVEY COORDS				DATE STARTED DATE COMPLET	Jan 25 /86 ED Jan 27/86	CONTRACTOR J.	T. Thomas	
PURPOSE			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							ROD LOG COLLAR SURVEY	PULSE EM SURVE MULTISHOT SURVE
	ACID	TESTS				TROPARI TESTS			MULTIS	нот рата	
DEPTH()	CORRECTED ANGLE	DEPTH: 1	CORRECT	ED	OEPTH: 1	AZIMUTH	DIP	DEPTH.	ı AZIM	IUTH	DIP
200'	63°							645'	21	10	64 ⁰
300'	62°										
400'	59°						(i.=.)				
500'	60°						*				
					5.0						
16.											
			T								
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
											111
									-10-	1	/ ///
										1/	11/1/20
										11/1	17
										// st/	/ /
HOLE NO	RG-58						_		/	LOGGED BYA	. J. Davidson

From To	Rock Type	Texture and Structure	Angle to Core Ams	Alteration	Sulphides	Remarks
0 to 44.5	Casing					
44.5 to 62.2	Fault	Fault zone intensely gouged (clay + rock frags) and brecciated with fragments mafic volcanics (dominant) quartz veins + poss. chert.		Moderate chlorite alt, in mafic vols.	Trace - 2% pyrite in quartz veins.	
62.2 to 87.0	Mafic Footwall Volcanics	Med-dk green, fine grained, prob. flow with zones of strong, breccia of chert frags, mafic fragments. Breccia Zones from 62.2 - 54.1 65.6 - 66.0 71.4 - 72.2 72.2 - Fairly homogenous med-dk green mafic flow. 79-87 - More frequent qtz py stringers.		Moderate to intense but patchy chlorite wk sericite. Breccia zone are more intensely chloritized. Cut by atz stringers with pyrite throughout. Some chloritization may be assoc. with qtz-py stringers. Patchy but mod-intense chlorite.	Tr - 10% pyrite in matrix in breccia zones. Tr - 5% py in qtz stringers throughout. Thin (1cm) veinlet qtz + galena at 82.5 and 83.0	
87.0 to 123.5	Footwall Mafic Volcanics	As above, med green, with qtz stringers. Beginning to look more tuffaceous from 94.1 94 - Fairly massive to f.g. ash tuff/flow 106 - Pale green-grey ash tuff/flow to 118.9	60°	Becoming moderately bleached + sericitized though still mod - intense chlorite assoc, with stringers. Wk-mod sericite + patchy chlorite. Becoming mod. sericite from 106. Green mica at 113.2 moderate sericite.	Tr - 1% py throughout. Tr - 3% py assoc. with qtz stringers + chl. Qtz sweat with tr cp and up to 5% galena 13cm at 109.8	
123.5 to 124.4	Qtz vein with Black: Argillite R Bx?	White crystaline qtz with black RBx-like argillite.			1-5% py in crosscutting fractures in white qtz.	
124.4 to 124.8	Fault Gouge	Clay white-beige fault gouge,		Sericite	No .	

<u>To</u>	Rock: Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
124.8 to 126.5	Maric Volcanics	Berge-yellow well foliated + intense sericite.	50°	Intensely sericitized altered a la immediate footwall to L100 - RG 8 zone.	5-10% py throughout.	
126.5 to 127.5	Fault Gouge	Intense clay gouge with frags of sericitized mafic vols. and HW seds.				
127.5 to 134.6	HW Seds. Greywackes	Fine to coarsely banded we'll bedded showing contorted + convoluted bedding, silty argillites and argillitic greywackes. Beds from 1mm to 5cm wide. Possible load casts at 131.5 indicates tops downhole.	20~60°	No .	No	
134.6 to 136.3	Fault Gouge	Strong clay gouge with all frags HW seds + poss mafic vols.				
136.3 to 138.4	Argillite (Graphitic?)	Very black, very fine probably very conductive. Badly broken up.				
138.4 to 143.0	Rea Breccia (Chert)	White to light grey chert. 140,9-141.1 - Very fine grained pyrite + argillite. Muddy Tuff?? 141.6-143.0 - Mix zone black argillite and pyrite rich (5-10%) grey chert.			Trace sph, gal ((1% 138.4-138.9 (3% py overall	
143.0 to 147.8	Rea Breccia Chert + Argillite	Mix grey chert and argillite, brecciated with some broken + convoluted bedding. Occasional small gouge 144.0-144.4		No	Tr - 5% py throughout with occasional blebs 145.0-145.2 - Semi massive py with chert.	
147.8 to 149.1	Fault Gouge	Badly broken up zone of clay gouge + frags of chert, argillite + pyrite bands. Still prob. RBx C+A				

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	<u>Remarks</u>
149.1 to 157.8	Tectonic Breccia (RBx)	Distinct breccia, unlike normal Rea Breccia matrix supported (argillitic or siltstone matrix) with up to 40% shardy, angular poorly sorted clasts of argillite, pyrite (including banded) chert and quartz. Like Rea Breccia has been transported or caught up in fault zone. Almost cataclastic breccia. 151.9-152.6 - Massive grey chert. 155.25-155.7 - Grey chert + chert + argillite RBx.			Py in frags (discrete)	
157.8 to 158.5	Fault Gouge Zone	Clay gouge + pieces of Rea Breccia (C+A)				
158.5 to 164.3	Rea Breccia Chert + Argillite	Usual chert and argillite RBx with contorted banding. No discrete frags, py white + black colour			Py in bands to 20% traces sph at Overall 5% py. Occasional sems massive py 12cm in patches	
164.3 to 167.9	Chert (RB _%)	Massive - brecciated It grey chert with significant clay or sericite (mafic vol) component. No significant argillite component.		Mafic volcanics component is sericitized + bleached.	(5% py From 166-167.9 py increases to up to 15% to 20% from 167.5-167.9 finely dissem. + banded.	
167.9 to 169.0	Fault Gouge	Clay, badly broken + gouged.				
169.0 to 172.2	Mafic Volcanic (footwall?)	Massive to ashy texture. Some qtz flooding. Lt. grey colour.		Bleached with qtz stringers + veinlets.	(5% overall	
172.2 to 176.3	Tectonic Breccia (RBx?)	As above with discrete poorly sorted angular clasts of chert, argillite, quartz, mafic volcanics + pyrite.		Mafic clasts are bleached.	Few py frags ((1%)	

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulpnides	Remarks
176.3 to 177.4	Intensely Altered Mafic Volcanics	Banded + foliated, beige to grey mafic vols. with up to 10-15% py. As intense alt. mafic immediately below lenses. Approx. 30% of rock is qtz in veinlets, bands + sweats?		Intense sericite + clay alt.	5-15% py in thin bands.	
177.4 to 182.3	Rea Breccia Chert	Chert - lt-med grey with minor argillite + py (MT?). Badly broken up + gouged. Some chert + argillite (contorted ctc)		Minor mafic vols are sericitized.	Py to 10% in fractures + bands with argillite.	,
182.3 to 185.6	Fault Gouge	Gouge + badly broken up + gouged mafics, chert + some argillite at 182.3		12		
185.6 to 196.6 E.O.H.	Mafic Volcanics and Quartz	Lt grey, bleached with abundant (up to 50% of rock) quartz in white veins. Still badly broken.		Bleached + mod sericitized mafics. Occasional chl along fractures.	Py (5% in fractures + thin (1-2mm) bands.	

LITHOGEOCHEMISTRY

						MA	JOR OXID	FC						TRACE E	EMENT	re						
SAMPLE NUMBER	FROM (m)	TO (m)	SiO _f	Al ₂ O ₁	CaO	MgO	Na;O	к.о	FeO	MnO	TiO,	Ba ppm	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	Zr Zr
3601	70	80	38.11	15.26	3.75	16.66	0.28	0.01	15.99	0.46	1.28	50	35	152					F 11110 28			.00
G 3602	124.8	126.5	60.85	14.91	0.60	3.06	0.46	3.65	9.95	0.36	1.31	2600	22	67								0.0
G 3603	138.4	139.0											61	2700	1200	4.7	15					
3604	167.35	167.9											80	305	510	2.3	110					1
3605	145.0	145.2				-							425	180	320	21.3	425					
45																						
																-						
														:								
	- 6767												-					7				

Logged by A. J. Davidson

Page No.

ZIPPY PRINT - BRIDGEPORT, RICHMOND

Hole No. _

RG-58

Entered by _

CORPORATION FALCONBRIDGE COPPER

X METRIC UNITS IMPERIAL UNITS

						DRILL HOLE REC	ORD			IMPE	RIAL UNITS
RG-59	GRID Ext.		FIELD COORDS	11550	1060N	ELEV -1210	COLLAR BRNG.	225°	COLLAR DIP -72°	HOLE SIZE NQ	FINAL DEPTH 143.3
PROJECT 312			SURVEY COORDS				DATE STARTED DATE COMPLE	Jan 29/86 TED Jan 30/86	CONTRACTOR CORE STORAGE.	ASING pulled	
PURPOSE										RQD LO COLLAR SURVE	G PULSE EM SURVE
	ACID 1	TESTS				TROPARI TESTS	i		ми	TISHOT DATA	
DEPTH! 1	CORRECTED	DEPTH: ;	CORREC	TED E	DEPTH: 1	AZIMUTH	DIP	DEPTH	, A	ZIMUTH	DIP
200'	71°	3111									
300'	67°										
400'	67°						-				
											= 3200

								1		*	
		1	1								1- //
			1								1111
										1	111/1
										1/1/	1 1
	 	1								1.11	A. J. Davidson

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
0 to 48.7	Casing					
48.7 to 97.0	Martic Volcanics	Med-dk green mafic lapilli tuff well foliated + banded.	70°	Isolated zone ((5cm wide) of mod-intense bleaching and sericitization + quartz veins or qtz flooding with py zones of qtz + py at 51,65,60,1-61,0	Pyrite up to 20% over (2cm in qtz py zone and from 1-3% overall in mafics.	
		57.9 - Mafic volcanics as above, now bleached to light-med green with more alt zone. Still good lap. tuff textures. 76.2 - Mafic volcanics lapilli tuffs. 83.2 - Badly broken up 85.1 - (Fault?) and 88.1-89.9 89.9 - Mod. alt. mafic lap. tuffs.	60°	Sericite becoming pervasive, not as localized, moderate overall with still some intense zones. Becoming more pervasively + intensely sericitized throughout, More qtz py zones + some traces green mica. Assemblage of Ser+py+qtz.	Pyrite becoming more pervasive + disseminated throughout especially now in beige sericite zones. Py to SMS over (1cm in qtz py ser zone 5-10% overall.	Ground core 60.1-61.0
97.0 to 107.7	Mafic Lapilli Tuff	Matrix as above but frags are now of felsic-intermediate comp with qtz eyes in sericite. Stockwork type text.		Strongly sericitized frags in chloritic matrix. Pseudo breccia actually is stockwork chlorite veinlets cutting qtz sericite tuff.	Tr-1% py except in qtz py zones where py is approx. 5%	
107.7 to 112.0	Mafic Tuffs	Becoming less sericite altered. Still mafic lapilli tuff with frags of chert, poss, felsic vols. 111.25 - Thin layer of argillite becoming interbedded with the mafics taking on a very sedimentary appearance.	70°	Less intense stockwork alteration now incipient though still strong chlorite.	(1% py	

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
112.0 to 116.6	Rea Breccia?	Argillite rich chert poor, Still a mafic component, 113.3 - Fault Gouge 113.5 - Argillite + chert (RBx?) Poorly bedded + foliated with quartz/chert zones. Poss. RBx. HW Seds???	70°		Py (5% with chert breccia.	
116.6 to 118.5	Argillite	Bedded + foliated, no chert. Prob. HW Seds.			No py	
118.5 to 120.7	Sericitic Tuff (HW Seds?)	Beige-yellow colour, well bedded. Poss original well bedded majic tuff or more likely is clay altered argillite or siltstone. Some white qtz veins (0.5m thick.	70°	Total sericite with some green mica.	Qtz py zones, py (5% assoc. with Tr gal in qtz at 119.1	
120.7 to 121.95	Argillite (HV Sed)	As above well foliated some coarse silty layers. Knife sharp contact with	50-79°			
121.95 to 128	Sericite Tuff	As above, qtz vein with py for first 30cm then well banded + foliated showing convoluted + contorted bedding. Could be alt. phase of a siltstone. Some more qtz rich or ??felsic?? parts,				
128 to 129,9	Argillite (HW Sed?)	As above with silty layers, convoluted bedding etc.	60°			
129.9 to 131.6	Sericite tuff (HW Seds)	As above with coarser more silty sections with qtz grain. Prob original greywacke.				
131.6 to 132.9	Fault Gouge Seds?				-	

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
132.9 to 136.8	Argillite HW Seds	Similar to above, black finely banded + foliated.				
136.8 to 137.2	Greywacke HW Seds	Unaltered but similar to parts of ser. tuff above.				
137.2 to 143.3 E.O.H.	Argillite & Greywacke HW Seds	Mix of fine argillitic layers to coarse silty or greywacke layers.				

LITHOGEOCHEMISTRY

						MA.	OR OXID	ES						TRACEE	LEMENT	5						
SAMPLE NUMBER	FROM (m)	10	SiO,	Al-O-	CaO	MgO	Na;O	K.O	FeO	MnO	TiO _r	Ba	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	Z
3606	77	81	40.74	13.87	9.69	6.91	0.64	2.62	9.63	0.36	1.19	700	78	77								.0
3607	106	109	37.59	11.83	7.05	11.02	1.48	0.01	9.69	0.31	1.17	500	105	140								.00
3608	122	125	51.93	22.64	1.95	4.36	0.87	5.28	10.32	0.18	1.16	1700	86	155								.04
														Ι								
											F1											
																-						
	T													1 :								

ZIPPY PRINT + - BRIDGEPORT, RICHMOND

X METRIC UNITS

СОВРОВАТІОМ FALCOMBRIDGE СОРРЕЯ

E NO	00.033	1								COCCED BA		
- 52	RG-60						war and the same of the same of	a and the same of		1	d .t .A	Davidson
								1_ 103		12/	20	. 1
									1	12	7 7	10/11
											1//	1111
											//	/////
									1		//	11/1
						8						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				-								
										-		
						9						
-												
			- 1									
_				-								
				_								
	- 1		*					- 1				
					-		1					
200.	088											
(Hid30	CORRECTED	0E6141	EDBRACO ANGUE	03	DEPTH:	HTUMISA	ala) HT930	A 1	HTUMIZA	DIP	,
		21231				STS3T IRA9ORT			nw	ATAG TOHZIT	9	
											_	
3804										COFFEE SUB-	AEA MI	YULSE EM SURVEY YANRUS TOHRITJUM
Z	NH	6	CCORDS				DATE COMPLETE	Jan 30/86	CORE STORAGE	J. T. Thoma.	CASING DU	palled
103M	CLAIM =			001.77	Macor	0777	G328V13 31V0	30/061		N and	1 7	
—90 Е илмеен	GRID		COORDS	11400	1035N	1510 ErEA	BEING		DIP -90°	32IS 370H	HT930	m0.00S HT9

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
0 to 42.7	Casing					
42.7 to 70.3	Mafic Volcanics	Lt-med grey green with abundant quartz veins and quartz-pyrite zones. Massive to weakly banded. 52.5 - Becoming more brecciated texture. Bx zone from 54 - 54.9 contains frags of chert, qtz, py. 58.6 - lapilli texture + foliated at 60 - Qtz veinlets, becoming very broken up giving pseudo banded, pseudo lapilli texture - poss flow texts.	50°	Moderate and patchy sericite and chlorite. Poss some carbonate. 52.5 - increase in sericite giving buff appearance. Also occasional bleaching. Mod to intense sericite in patches. Some sericitized frags with wispy outline may be pseudo frags.	Pyrite disseminated throughout 1-3% and up to 40% in bands ((5cm) with and in qtz rich areas. Py still approx. 5% overall with zones of 40% py (1cm with etz. Py still 1-3% overall. Much fewer to no qtz py zones.	
70.3 to 74.55	Diorite Lamp. Dyke?	Black f-m.g. with chill margins on both sides. Chills tend to have small (1mm) size white cte phenos ((10%) non foliated, very late.	10° top contact 35° bottom			
74.55 to 89.25	Mafic Volcanics	74.55-75.8 Qtz-py zone. 75.8 - Mafic vois, as above well foliated, lots broken up qtz veining, prob-flow. 76.6-77.0 - Diorite.lamp dyke 77-88.25 - Mafic vois well foliated.	40°	Mod sericite with occasional patches intense sericite with green mica.	Pyrite to 10% forming pseudo stockwork in fractures in 4tz. Still 3-5% py throughout.	
88.25 to 91.4	Diorite Lamp.	As above with 1-2mm cte phenos (5%. Black	Top at 30° Bottom 30°			
91.4 to 102.4	Mafic Volcanic	As above to 102 well foliated pseudo lap. tuff.	40°	Bleaching (mod) + occ. sil. flooding	1-3% py in occasional band .	

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
102.4 to 107.5	Quartz Pyrite Zone	Zone of complete qtz flooding with pyrite, brecciated.		Complete silica flooding	Up to 20% py in bands (2cm thick and in fracts in qtz.	Samples 3611, 3612
107.5 to 130.6	Mafic Volcanics	As above, interrupted by qtz py zone numerous to 113.3 then fewer + with less py. Med. green fairly massive no longer well foliated. Minor gouging at 128.5	50°	Mod sericitized and more etz stringers then above to 113.3 113.3 - relatively fresh to 130.6	3-5% py with qtz etc to 113.3 thereafter almost none.	- 4
130.6 to 139.9	Fault Gouge	Gouge zone, major fault. Breccia, all frags seem to be of HW seds, well bedded interbedded siltstone, argillite + greywacke.			No - tr	
139.9 to 149.2	HW Seds	Mix siltstone and greywacke with some argillite. Beautifully bedded. No obvious tops. Becoming more argillaceuous with less greywacke from 146.5	50°		No	
149.2 to 150.6	RBx Fault Gouge	Fault gouge of Rea 8x chert + argillite. Clay rich with frags chert, py, argillite.			Heavy py to 40% to 150.6 in gouge. No sph gal.	Sample 3614
150.6 to 152.4	RBx Banded C&A	150.6 Chert + argillite banded breccia some banding lots clay gouge.			Py 10-15% as bands + in fracts in cher rich zones.	
152.4 to 152.9	RBx Tectonic Breccia (Healed)	Rea Breccia, chert + argillite tectonic breccia as in RG-58 poorly sorted angular shardy frags of argillite, pyrite, chert.			Py as distinct shardy frags making up 5% of frag type.	
152.9 to 154.9	RBx Gouge	Gouge to 153,4 then chert + argillite breccia			Py in cubes in qtz rich areas + occasionally in fragment.	

From To	Rock Type	Texture and Structure	Angle to Core Axis	Alteration	Sulphides	Remarks
154.9 to 156.8	RB× Chert Pyrite	Dk grey to med grey chert with py in fractures and bands. Minor argillite 156.5-156.8 - Argillite + py.			Py 10% overall, occasional lcm S. massive band. Trace sphalerite.	Sample 3615
156.8 to 158.4	RBx Fault Gouge	Very clay rich fault gouge with frags of chert + arg. + chert + pyrite.			Py (10%	-51
159.4 to 163.0	RBx Banded C + A	Banded chert + argillite with occasional zones of clay gouge.	40°	Occasional soapy talcy mineral, it. green	Py 5-10% usually in distinct banded.	
163 to 167.8	RBx Chert + argillite breccia	White and black C + A bx with py in matrix + with chert zones. Still zone of clay gouge.			Py (5% overall but locally to thin S massive bands ((2cm)	
167.8 to 169.8	RB× Chert- Pyrite	Lt-dk grey chert with minor argillite and py in fractures.			Trace sphalerite py 5-10% in fractures + bands.	
169.8 to 170.9	RBx Gouge	Chert and clay gouge.		Talcy mineral in clay gouges.	Py to 5%	
170.9 to 171.5	RB× Tectonics	Gouge then grades into sorted angular tectonic breccia with argillite, pyrite + chert frags.			Py as discrete frags and in matrix <5%	
171.5 to 172.5	RBx Chert + Argillite	Breccia with numerous clay gouge zones as above + py.			Py in fractures (10%	
172.5 to 176.4	RBx Gouge	Major fault gouge with frags py chert + argillite clay matrix becoming pseudo banded at 174.8			Py as frags (5%	
176.4 to 181.2	RB× Chert	Lt-med grey massive to brecciated, minor py in fractures.			ру (3%	

From To	Pock Type	Texture and Structure	Angle to Core Axis	Alteration	<u>Sulphides</u>	Remarks
181.2 to 185.6	RBx Chert + Argillite Breccia	As above with mix black + white breccia, frags arg. chert, py becoming less brecciated + more banded at 182.4 thereafter banded.			Py 10-15% as frags, in fractures, as bands.	
185.6 to 189.2	RBx Chert	Lt-med grey, massive to brecciated.			Py <5% and usually <3% in bands + fractures.	-6
189.2 to 192.1	RBx Chert - Sericite Tuff	As above with significant ()25%) sericite tuff component giving a foliated "banded" look. Some argillite bands.			Py (5% overall as fractures	
192.1 to 200.0 E.O.H.	RBx Fault Gouge	Fault gouge heavy clay with frags chert, argillite + minor py. 195.9-197.8 RBx tectonic breccia. Mix tectonic bx and clay fault			py <5%	
		gouge to E.O.H. Some white - It grey chert bx at end of hole with tr sph.			Tr sph, tet? gal cp	

ASSAY SHEET

Sample Number	From (m)	To (m)	E	stimate u Zn	Length (³, Cu	₹° Zn	°e Pb	gm T Ag	gm T Au	9 ₀ 51O2	7.O2	°. Na2O	MgO	° ₆ Fe	PPM Cu	PPM Zn	PPM Pb	PPM Ag	PPB Au			
3611	102.4	103.7			1.3											134	56		1.0	415			
3612	105.2	106.7			1.5									9711		86	38		0.9	35			WE-3
3614	149.2	150.6			1.4											195	490		3.4	60			
3615	154.9	156.8			1.9											200	380		11:5	100			
3616	167.8	168.8			1.0											47	225		0.9	35			
1.00			T																		Ä		
- 733-00			1	1									-										
									_														
			1	T					1														
1-2001			\dagger	+																			
			+	+																			
			t	-						10													
		-	1	+					-						-	1			_		1		
-	-		+	+	-	<u> </u>	-	-	-	-	-	-			-								
UNISSEL TO THE OWNER.	-		+	+-	-					100						-			-	1			
_			-	+	-			1174	-	-	-			-	-		-			-			-
		į gieningos	-			-	-	-						-		-	-						
			+	-	-	-		-			-				-	-	-	-	-	-	-		
			-	_				-	-	-	-		-		12	-		-		-		1000	
								1											1				

RG-60

LITHOGEOCHEMISTRY

					MA.	JOR OXID	ES	20132		101500			TRACE E	LEMENTS	S						
	TO (m)	SiO,	Al:O	CaO	MgO	Na-O	K-O	FeO	MnO	TiO:	Ba	ppm Cu	ppm Zn	ppm Pb	ppm Ag	ppb Au	Rock Type	Alt	Min	Grid	Z
5	48	39.3	14.67	8.38	12.98	0.17	0.83	10.75	0.30	2.17	610	23	92	5							.0
8	81	39.03	15.47	9.84	7.30	1.66	1.85	8.57	0.30	1.21	720	73	220			L.				7	-00
19	122	49.55	16.23	4.89	9.49	2.97	0.42	10.29	0.20	1.31	310	84	116								.0
										Legille Co	-										
									7111												i i
										/*											Γ
															-			1			
				l			I						1 — T			1					
			L	L,,,_	L		L									I					_
													1			1		L	L		
	ROM m) .55	m) (m) 5 48	m) (m) SiO; 5 48 39.3	m) (m) SiO; Al-O; 5 48 39.3 14.67	m) (m) SiO; Al.O. CaO 5 48 39.3 14.67 8.38 8 81 39.03 15.47 9.84	ROM TO SiO, Al.O. CaO MgO 5 48 39.3 14.67 8.38 12.98 8 81 39.03 15.47 9.84 7.30	ROM TO SiO, Al.O. CaO MgO Na.O. 5 48 39.3 14.67 8.38 12.98 0.17 8 81 39.03 15.47 9.84 7.30 1.66	(m) (m) SiO, Al.O. CaO MgO Na.O K.O. 5 48 39.3 14.67 8.38 12.98 0.17 0.83 8 81 39.03 15.47 9.84 7.30 1.66 1.85	ROM (m) SiO, Al.O. CaO MgO Na.O K.O FeO 5 48 39.3 14.67 8.38 12.98 0.17 0.83 10.75 8 8 81 39.03 15.47 9.84 7.30 1.66 1.85 8.57	ROM (m) SiO, Al.O. CaO MgO Na.O K.O FeO MnO 5 48 39.3 14.67 8.38 12.98 0.17 0.83 10.75 0.30 8 81 39.03 15.47 9.84 7.30 1.66 1.85 8.57 0.30	ROM TO (m) SiO, Al.O. CaO MgO Na.O K.O FeO MnO TiO. 5 48 39.3 14.67 8.38 12.98 0.17 0.83 10.75 0.30 2.17 8 81 39.03 15.47 9.84 7.30 1.66 1.85 8.57 0.30 1.21	ROM (m) SiO, Al.O. CaO MgO Na.O K.O FeO MnO TiO. Ba 5 48 39.3 14.67 8.38 12.98 0.17 0.83 10.75 0.30 2.17 610 8 81 39.03 15.47 9.84 7.30 1.66 1.85 8.57 0.30 1.21 720	ROM 1 TO 1 SiO; AlO CaO MgO NaO KO FEO MnO TIO Ba PPM Cu 15 48 39.3 14.67 8.38 12.98 0.17 0.83 10.75 0.30 2.17 610 23 8 81 39.03 15.47 9.84 7.30 1.66 1.85 8.57 0.30 1.21 720 73 19 122 49.55 16.23 4.89 9.49 2.97 0.42 10.29 0.20 1.31 310 84	ROM 1 (1)	ROM 1 (1) SiO, Al.O. CaO MgO Na.O K.O FRO MnO TiO, Ba PPM Zn PPM PB 5 48 39.3 14.67 8.38 12.98 0.17 0.83 10.75 0.30 2.17 610 23 92 1 1 1 1 2 1 2 49.55 16.23 4.89 9.49 2.97 0.42 10.29 0.20 1.31 310 84 116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ROM (m) SO, AIO CAO MgO NAO KO FeO MnO TO, Ba PPM CA PPM PA	ROM 1 TO	ROM (m) (m) SiO AlO. CaO MgO NaO KO FeO MnO TiO Ba PPM PPM PPM PAGE NAO TIO BA PPM CU Zn PPM PAGE NAO TIO SO	ROM	ROM () SiO. AlO. CaO MgO NaO K.O FEO MGO TIO, Ba FEO MGO PEO PEO PEO PEO PEO PEO PEO PEO PEO PE	ROM 1 (R)

Hole No.	RG-60	Entered by	Logged by A. J. Davidson	Page No7

