02:87

ASSESSMENT REPORT

on the

CIG 100 CLAIM

Times Square Energy Resource Ltd. (owner / operator)

by

VIRGINIA KURAN, GEOLOGIST

April 27, 1986

FILMED

14

Nicola M.D. 92 I 8W 50° 19' 120° 20.

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

		Page
List List State	of Figures of Appendices ment of Expenditures	iii iii iv
1.0	Introduction	1
2.0	List of Claims	1
3.0	Location and Access	1
4.0	Physiography and Vegetation	1
5.0	Regional Geology	1
6.0	Property Geology and Prospecting	2
7.0	Soil Sampling 7.1 Introduction 7.2 Results	2 2 2
8.0	Rock Sampling 8.1 Introduction 8.2 Results	3 3 3
9.0	VLF-EM16 Survey 9.1 Introduction 9.2 Results	3 3 3
10.0	Conclusions and Recommendations	3
11.0	Recommendations	4

ii

LIST OF FIGURES

Figure	1	Claim Map
Figure	2	 Location Map
Figure	3	General Geology

LIST OF APPENDICES

Appendix	la	References
Appendix	1 b	Statement of Qualifications
Appendix	2	Soil Sampling Results - Acme Analytical
Appendix	3	CIG 100 Claim - Geology, Soil Sampling, Grid Loca- tion, Rock Sample Location Rock Geochemical Results
Appendix	4	CIG 100 Claim - Soil Geo- chemistry, Contoured Silver-Gold Values
Appendix	5	VLF - EM16

iii

STATEMENT OF EXPENDITURES

1.	Wag	es - Work Period June 12 to Jun	ne 28, 1985	
	la	Virginia Kuran, Geologist 14 days @ \$130/day	1,820.00	
	lb	R. Mueller, field assistant	000 00	
	10	12 days @ \$80/day C Mosher field assistant	960.00	
	10	12 days @ \$75/day	900.00	
		II salo c troyad		\$ 3,680.00
2	Acc	200		
2.	ASS	ays		
	2a	300 soil sample & 20 rock samp	ole preparations	
	2b	300 soil sample analyses for s	silver & gold	
	2c	300 rock geochemical assays fo	or copper, silver	
		and gold		2,173.95
3.	Exp	oloration Expenses		
	3a	Room & Board	867.02	
	3b	Field Supplies	159.05	
	3c	Maps	11.49	
	3d	Groceries	597.80	
	3e	Field Transportation	82.16	
	3f	Stationery	14.91	
				1,732.43
4.	V. K	uran - Report Writing & draftin	ng,	
	phot	ocopies, map reproduction		1,150.00
				\$ 8,736.38

iv

1.0 Introduction

Between June 12 and June 28, 1985 an exploration program consisting of geological mapping, prospecting, soil sampling and geophysical surveying was completed on the Cig 100 claim. Financing was provided by Times Square Energy Resource Ltd. and work was carried out under the supervision of Virginia Kuran, Consulting Geologist.

2.0 Claim Status

The Cig 100 claim is situated in the Nicola Mining Division and consists of 20 units:

Claim Name	Record No.	No. Units	Month
Cig 100	1361	20	3

3.0 Location and Access

The Cig 100 claim is located on the northwest corner of Peter Hope Lake, approximately forty kilometers northwest of Merritt, British Columbia. The property can be accessed from Highway 5 by 6 km of dirt road referred to as the Peter Hope access road.

4.0 Physiography and Vegetation

The property consists of open sage-brush country as well as widely spaced trees on hilly sections of the property.

5.0 Regional Geology

The general area of the Cig 100 claim is underlain by the Nicola Group, consisting mainly of volcanics of Triassic age which have been intruded by plutonic rocks of the Jurrassic Coast Intru-Gold-silver-lead-zinc-copper vein deposits occur in the sions. Triassic greenstones of the Nicola Group at Stump Lake located 6 kilometers to the northwest of the Cig 100 claim. The B.C. Department of Mines records production of 8,000 oz. gold, 250,000 oz. silver, 40,000 lb. copper, 2,200,000 lbs. lead and 360,000 lbs. zinc from 77,000 tons taken from the Enterprise and King William veins on Mineral Hill at Stump Lake. Underground development and production also took place on the Azela and Mary Reynolds claims located immediately northwest of the Cig 100 claim.

6.0 Property Geology and Prospecting

The Cig 100 claim is totally underlain by Triassic Nicola Group volcanics. Volcanic rocks vary from dark green biotite - hornblende porphyritic flows (Unit 1) to pale green, pitted weathering, porphyritic flows with biotite and hornblende phenocrysts altered to chlorite (Unit 2). Two main directions of jointing in the volcanics strike north-northeast to north-northwest and dip vertically. Volcanic outcrop patterns were mapped at a scale of 1:5000 over an area of 4 square kilometers along 36 km of line laid out for control. (Appendix 3 - Cig 100 Geology)

7.0 Soil Sampling

7.1 Introduction

A north-south baseline was established along the eastern boundary of the Cig 100 property. A total of 300 soil samples were taken at 20 meter intervals along lines spaced 100 meters apart from a 20 cm to 50 cm deep B soil horizon. Samples were packaged in Kraft envelopes, dried and sent to Acme Analytical in Vancouver.

Samples were dried further at Acme if required and then sieved to -80 mesh. A 0.5 gram sample of the -80 mesh material was digested in hot aqua regia solution and then analyzed by Inductively Coupled Argon Plasma for lead, zinc and silver. Gold analyses were done by atomic absorption from a 10 gram sample.

7.2 Results

Results for gold and silver analyses are listed in Appendix 2 and plotted on Appendix 4. All values have been contoured. Soil sampling on the property was restricted to areas where mapping and prospecting outlined quartz veins and old trenches or workings.

Rusty quartz veins exposed in trenches along LOS from station 10W to 13W could not be traced to the south by prospecting. However, geochemical sampling outlined a 300 meter southerly extension of the quartz vein system from LO to L3S at approximately station 10W. All of the gold anomalies of greater than 100 ppb occur with 50 meters of old trenches, except for one sample of 420 ppb gold that occurs in an area of cover on L4S at station 7+80W. All silver values greater than 0.5 ppm are also associated with the old trenches in the northwest corner of the property except for location L4S at station 7+80W.

8.0 Rock Sampling

8.1 Introduction

A total of twenty rock samples were analyzed for silver and gold and eleven samples were analyzed for copper. Sampling was restricted to quartz veins in old trenches where pyritic, malachite stained veins occurred.

8.2 Results

None of the gold, silver or copper analyses were of economic interest. However, two samples had interesting values: No. 47765 1.7 ppm Ag and 170 ppb gold, located at L0 8+00 west and No. 47772 analyzed at 290 ppm Cu, 5.7 ppm Ag and 60 ppb Au located at L1+00s 4+20 west. Both of these samples were taken from veins which had been previously trenched.

9.0 VLF - EM16 SURVEY SEATTLE VLF TRANSMITTER

9.1 Introduction

A total of 7.3 kilometers of VLF-EM16 Survey was completed on 6 lines from L1N to L4S. These lines were spaced 100 meters apart and readings were taken every 20 meters. The survey was confined to known areas of trenching on veins to see if those structures could be outlined by a VLF-EM16 Survey.

9.2 Results

A total of nine conductors were outlined by the Survey. (See Appendix 5 - Cig 100 VLF-EM16 Survey) Conductor "a" and "C" appear to be caused by swamps. Conductor "A" is spatially related to a well defined gulley which may be a fault structure. Conductors "e", "f" and "g" are associated with veins exposed in trenches that are associated with anomalous gold geochemistry. Conductor "g" suggests that the gold anomaly extends 300 meters to the south. Anomalies "b", "B" and "D" cannot be explained.

10.0 Conclusions

 Geological mapping and prospecting has located various old workings on vein structures in the northwest corner of the Cig 100 claim. The actual showings occur on the boundary of the Cig 100 and the PV claim. No further showings were found on the property.

- 2. The geochemical survey has shown that anomalous gold values extend 200 meters to the south of the known trenches.
- 3. Conductor g extends 300 meters to the south of the trenches and may indicate the vein structures exposed in the trenches extend to the south.
- No economic values have been obtained from rock sampling of the veins in the old trenches.
- 11.0 Recommendations
- A limited prospecting follow-up program of the soil geochemistry is recommended. The cause of the 420 ppb gold soil anomaly at L4S 7+80W should be determined.

Cig 100

FIG. 2

LOCATION MAP

1:2,000,000 (1"=30 miles)

LEGEND

12

13

10

Valley basalt: mainly vesicular basalt

MIOCENE OR EARLIER

KAMLOOPS GROUP 11. Rhyolite, andesite, and basalt: associated tuffs, breccias and agglomerates. May include some younger basalts 12. TRANQUILLE BEDS: conglomerate, sandstone, shale, tuff; thin coal seams

COLDWATER BEDS: conglomerate, sandstone, shale, and coal. 10a. similar to 10, but may include younger beds

CRETACEOUS OR TERTIARY

Andesite, basalt: picrite, agglomerate, breccia, and tuff; minor conglomerate and sandstone

Conglomerate, sandstone, and shale

Hard. reddish lava

JURASSIC AND(?) LATER

COAST INTRL'SIONS: granite, granodiorite, gabbro; 4a, Iron Mask batholith; syenite, monzonite, diorite, gabbro; 4b, pyroxenite and peridotite. Probably not all of the same age, and may be in part post-Lower Cretaceous

TRIASSIC

2

UPPER TRIASSIC NICOLA GROUP

OZOIC

Greenstone: andesite, basalt: agglomerate, breccia, tuff; minor argillite. limestone, and conglomerate

CARBONIFEROUS AND PERMIAN

- CACHE CREEK GROUP (?)
 - Greenstone. generally slightly sheared. May include some Triassic rocks (3)

Arnillite, quartzite, hornstone, limestone, sheared conglomerate, breccia, greenstone, and serpentine; 1A limestone

Chlorite schist, quartz-mica schist, amphibolite, and granitic intrusions: commonly gneissic and largely of Palæozoic age

Heavily drift-cov	ered area	rite and
Fault		min
Synclinal axis	The second	+-
Fossil locality	$\ g(x,y)-y_{i}\ _{L^{\infty}}^{2}=\ g(x,y)-y_{i}\ _{L^{\infty}}^{2}\ g(x,y)-y_{i}\ _$	(F)

NICOLA KAMLOOPS AND YALE DISTRICTS BRITISH COLUMBIA

> Scale, 253,440 or I Inch to 4 Miles Miles

Approximate magnetic declination, 24°30' to 27° East.

TIMES SQUARE ENERGY

CIG 100 CLAIM

GENERAL GEOLOGY

FIG 3

APPENDIX la

REFERENCES

- Vollo, N. B. P. Eng. Report on the Cig 100 Claim for Times Square Energy Resource Ltd. Prospectus - Times Square Energy Resource Ltd. 1984.
- Cockfield, W. E. Nicola Kamloops and Yale Districts, British Columiba. Map 886A Scale 1" = 4 miles. 1947 (Reprinted 1971).

٠.

APPENDIX 1b

STATEMENT OF QUALIFICATIONS

I, Virginia M. Kuran, of 25630 Bosonworth Avenue, R.R. #1, Maple Ridge, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- I am a graduate of the University of British Columbia with an Honors Bachelor of Science Degree in Geology.
- 2. My primary employment since graduating in 1980 has been in the field of mineral exploration, as a Field Geologist.
- 3. This report is based on work which was performed between June 12 and June 28, 1985 in which I actively participated.

DATED at Vancouver, British Columbia, this <u>22nd</u> day of <u>May</u>, 1986.

Virginia Kuran

Virginia Kuran Consulting Geologist

Appendix 2

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 HONE 253-3158 DATA LINE 251-1011 DATE RECEIVED: JUNE 28 1985

DATE REPORT MAILED:

July 4/85-

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. CARBON AND SULFUR DETERDINED BY LECO ANALYZER. SAMPLE TYPE: P1-9 SOILS P10-ROCKS AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER . T. Manualy DEAN TOYE OR TOM SAUNDRY. CERTIFIED B.C. ASSAYER

TIMES SOU	ARE ENERGY PROJ	ECT - CIG 100	FILE # 85-1148	FAGE 1
	SAMPLE#	Ag Au PPM PPB	ļ	
	05 12+00W	.3 24		
	05 11+80W	1 37		
	05 11+404	1 5		
	05 11+40W	- 12		
	05 11+70W	.2 .2		
	03 11+20W	0		
	OS 11+00W	.2 8		
	05 10+80W	.3 9		
	OS 10+60W	.3 3		
	05 10+40W	.2 14		
	OS 10+20W	.2 1		
	05 10+000	.7 14		
	05 2+804	1 7		
	OS 8+60W	1		
	OS P+40W	1 0 205		
	05 9+400	1.0 275		
	05 7+20W	.2 5		
	05 9+00W	.2 17		
	05 8+80W	.5 10		
	05 3+60W	.3 11		
	05 8+40W	.3 23		
	05 8+20W	2 3		
	05 8+00W	.1 1		
	05 7+80W	.1 1		
	05 7+60W	.1 4		
	05 7+40W	.1 1		
	05 7+20W	.1 1	1	
	05 7+004	1 1		
	05 4+20W	· · · ·		
	05 4+404			
	05 4+404	· · · ·		
	05 6+40W	• • •		<u>.</u>
	05 8+20W	•• •		
	05 6+00W	.2 1		
	OS 5+80W	.2 1		
	05 5+60W	.3 1		
	05 5+40W	.2 12		
	05 5+20W	.1 3		
	00 5.000			
		7 1 1/0		
	510 C/AU 0.5	/.1 400		

÷

SAM	FLE#		Ag FFM	Au* FFB
os	4+80W		. 1	2
OS	4+60W		. 1	1
OS	4+40W		. 1	1
OS	4+20W		. 1	1
os	4+00W		.2	2
os	3+80W		. 1	2
OS	3+60W		. 1	8
OS	3+40W		. 1	4
OS	3+20W		. 1	5
os	3+00W		. 1	2
05	2+80W		.1	1
OS	2+600		. 1	4
OS	2+40W		. 1	2
OS	2+20W		.2	1
os	2+00W		. 1	1
15	12+004	J	. 1	2
15	11+804	1	. 1	1
15	11+604	J	. 1	27
15	11+404	1	. 1	1260
15	11+200	J	. 4	100
15	11+004	J	. 6	42
15	10+804	J	2.4	155
15	10+604	J	1.6	55
15	10+404	V	.3	4
13	10+204	J	.2	400
15	10+000	J	.2	4
15	9+80W		. 1	1
15	9+60W		.2	8
15	9+40W		.2	1
15	7+20W		.3	2
15	9+00W		.2	1
15	8+80W	- and	. 1	2
15	8+60W		.3	2
15	8+40W		. 4	8
15	8+20W		.2	1
15	8+00W		. 5	42
STI	D C/AU	0.5	6.9	510

SAMFLE#	Ag F'F'M	Au¥ FFB
15 7+80W	.3	2
15 7+60W	.2	1
18 7+20W	. 1	4
15 7+00W	. 1	1
15 6+80W	.2	1
15 6+60W	. 1	1
15 6+40W	. 1	1
15 5+20W	. 1	1
15 6+00W	. 1	1
15 5+80W	. 1	З
15 5+60W	. 1	2
15 5+40W	. 1	10
15 5+20W	. 1	1
15 5+00W	. 1	9
15 4+80W	. 1	12
15 4+60W	. 1	2
1S 4+40W	. 1	1
15 4+20W	. 1	1
15 4+00W	. 1	1
15 3+80W	. 1	1
15 3+40W	.2	2
15 3+20W	. 1	1
15 3+00W	. 1	1
15 2+80W	. 1	1
15 2+60W	.2	2
15 2+40W	. 1	1
15 2+20W	. 1	1
15 2+00W	.2	1
15 1+80W	. 1	1
15 1+60W	. 1	2
15 1+40W	.3	1
15 1+20W	.2	1
15 1+00W	. 1	3
25 12+00W	.3	1
25 11+80W	. 1	2
25 11+60W	. 4	1
STD C/AU 0.5	6.8	490

TIMES SQUARE ENERGY PROJECT - CIG 100 FILE # 85-1148

FAGE 4 ...

SAMPLE#	Ag PFM	Au* FFB
25 11+40W	. 4	4
25 11+20W	.3	12
25 11+00W	.8	11
25 10+80W	. 1	7
25 10+60W	. 1	3
25 10+40W	.5	10
25 10+20W	.2	15
25 10+00W	. 1	4
25 9+80W	. 1	2
25 9+60W	. 1	1
25 9+40W	. 1	15
25 9+20W	. 1	1
25 9+00W	.1	1
25 8+80W	.2	10
25 8+60W	. 4	5
25 8+40W	.3	5
25 8+20W	. 1	7
25 8+00W	.2	2
28 7+80W	.3	4
25 7+60W	.2	4
28 5+00W	. 1	2
25 4+80W	. 1	2
28 4+60W	. 1	3
25 4+40W	. 1	4
25 4+20W	. 1	1
25 4+00W	.2	1
28 3+80W	. 1	2
25 3+60W	. 1	3
25 3+40W	- 1	3
28 3+20W	. 1	4
25 3+00W	. 1	1
25 2+80W	.2	2
25 2+40W	. 1	2
25 2+20W	. 1	3
25 2+00W	. 1	1
25 1+80W	. 1	4
STD C/AU 0.5	6.7	480

TIMES SQUARE ENERGY PROJECT - CIG 100 FILE # 85-1148 PAGE 5

.

SAMFLE#	Ag PFM	Au* PPB
25 1+60W	.2	1
25 1+40W	.2	2
25 1+20W	. 1	1
25 1+00W	. 1	1
35 12+00W	. 1	2
3S 11+80W	.3	1
3S 11+60W	. 4	3
3S 11+40W	. 1	1
3S 11+20W	. 1	2
35 11+00W	. 1	1
35 10+80W	. 1	1
3S 10+60W	.3	1
35 10+40W	.3	12
35 10+20W	. 1	2
3S 10+00W	. 1	14
35 9+80W	.2	1
35 9+60W	.2	1
35 9+40W	.2	1
38 9+20W	. 1	1
35 9+00W	. 1	2
35 8+80W	.3	1
3S 8+60W	.2	1
35 8+40W	. 1	1
35 8+20W	. 1	1
35 8+00W	.2	5
35 7+80W	. 1	4
35 7+60W	.4	7
38 6+50W	.3	32
38 5+00W	. 1	2
35 4+80W	. 1	1
35 4+60W	. 1	1
35 4+40W	.2	3
35 4+20W	.2	1
35 4+00W	. 1	1
28 2+80M	.2	1
35 3+60W	.2	1
STD C/AU 0.5	6.8	485

SAMPLE#	Ag PFM	Au x FFB
35 3+40W	. 1	1
35 3+20W	. 1	1
38 3+00W	. 1	1
35 2+80W	. 1	1
3S 2+60W	.2	1
35 2+40W	.2	1
35 2+20W	. 1	9
38 2+00W	.2	1
3S 1+80W	.2	2
38 1+60W	. 4	1
3S 1+40W	.2	1
35 1+20W	. 1	1
3S 1+00W	. 1	1
45 12+00W	. 1	2
45 11+80W	. 1	2
45 11+60W	. 1	75
45 11+40W	.2	1
45 11+20W	. 1	24
4S 11+00W	• 3	1
4S 10+80W	. 1	4
45 10+60W	. 1	2
45 10+40W	.3	1
45 10+20W	.2	3
45 10+00W	. 1	1
45 9+80W	. 1	1
45 9+60W	.3	1
45 9+40W	.2	1
45 7+20W	. 1	2
45 9+00W	. 1	1
45 3+80W	. 1	52
45 8+60W	. 1	1
45 8+40W	.2	3
45 8+20W	. 4	1
45 8+00W	- 7	28
4S 7+80W	12.4	420
45 7+60W	1.4	70
STD C/AU 0.5	6.8	500

5

SAMPLE#		Ag PPM	Au* FFB
45 5+00W 45 4+80W		.1	30
45 4+60W		. 1	2
45 4+40W		.2	1
45 4+20W		. 1	1
45 4+00W		. 1	Ξ
45 3+80W		.2	1
45 3+60W		- 1	3
45 3+40W		. 1	1
45 3+20W		• 1	1
45 3+00W		. 1	2
45 2+80W		• 7	1
45 2+60W		.1	1
45 2+40W		• •	1
45 Z+20W		- 1	2
45 2+00W		. 1	1
4S 1+80W		. 1	1
45 1+60W		•2	1
45 1+40W		. 1	1
45 1+20W		• 1	2
45 1+00W		. 1	1
55 5+00W		.3	8
5S 4+80W		. 1	2
55 4+60W		.3	1
55 4+40W		. 1	1
55 4+20W		.2	1
55 4+00W		.3	1
55 3+80W		.3	7
53 3+60W		• 3	15
55 3+40W		. 1	1
55 3+20W		. 1	1
55 3+00W		.2	2
55 2+80W		. 1	1
55 2+60W		. 4	1
58 2+40W		. 1	1
55 2+20W		. 1	1
STD C/AU	0.5	7.2	475

54

 \mathbf{x}

SAMPLE#	Ag FFM	Au* FFB
55 2+00W 55 1+80W 55 1+60W 55 1+40W 55 1+20W	.1 .1 .1 .2	1 1 2 1 2
55 1+00W 65 5+00W 65 4+80W 65 4+60W 65 4+60W	.1 .1 .2 .2 .1	1 1 2 1
65 4+20W 65 4+00W 65 3+80W 65 3+60W 65 3+60W	.1 .1 .2 .1	2 1 2 1
65 3+20W 65 3+00W 65 2+80W 65 2+60W 65 2+40W	.1 .1 .2 .2 .1	1 5 2 1
65 2+20W 65 2+00W 65 1+80W 65 1+60W 65 1+60W	.1 .2 .1 .1	1 32 2 2 1
65 1+20W 65 1+00W 75 5+00W 75 4+80W 75 4+80W	.1 .1 .2 .1	1 8 5 1 1
7S 4+40W 7S 4+20W 7S 4+00W 7S 3+80W 7S 3+80W	.3 .1 .1 .1 .2	2 3 1 5 2
75 3+40W STD C/AUU 0.5	.1 7.0	1 480

10

TIMES SQUARE ENERGY FROJECT - CIG 100 FILE # 85-1148 FAGE 9

SAMFLE#	Ag	Au*
	FFM	FFB
75 3+20W	.3	1
75 3+00W	. 1	1
75 2+80W	.2	1
75 2+60W	.2	2
75 2+40W	. 1	1
75 2+20W	.1	1
75 2+00W	.2	2
75 1+80W	. 4	2
75.1+60W	.2	1
75 1+40W	.2	1
75 1+20W	.2	1
75 1+00W	. 1	1

TIMES SQUARE ENERGY FROJECT - CIG 100 FILE # 85-1148 FAGE 10

SAMPLE#	E CU Ag PPM PPM		Au≭ PPB
047759	-	. 1	3
047760	622	. 1	10
047761	381	.2	1
047762	-	. 1	1
047763	-	. 1	1
047764	-	. 1	1
047765	-	1.7	170
047766		.2	3
047767	-	. 1	2
047768	-	. 1	12
047769	-	.6	5
047770	215	.2	7
047771	65	.2	5
047772	290	5.7	60
047773	92	. 1	1
047774	79	.9	12
047775	53	.2	1
047776	104	. 1	2
047777	99	.3	8
047778	53	.3	13
STD C/AU 0.5	59	6.9	480

1

i mari

I W		> LI	13 L	.23 1	.35 L4	S 15	3
I W		-					
IW				**			
IW							
	1 -	÷	1, 3			.1,1	.1,1
			2,1	1,1	- 1,1	.1,2	.2,2
			3,1	.2,2	2, 1	· . ₅	.1,1
			.1,1	.1,4	.2,2	.1,1	. 1, 1
24	N	1, 1	.2,1	1, 1	.2,1 -	.1,1 -	.1, 1
		.2, 1	l,l l .	1,3	1,9	-1,2 -	.1,1
			.2.2	, NIS	.2,1	.1,1	.4,1
	1	1, 1	.1,1	.2,2	.1,1	.2;1	.1,1
31	W	.1,2		1,1	/;1	1,2	. 2,2 .
		1,5 -	.1,1	.1,3	1,1		
X		.1, 8	- NB	1,3	.2,1	.1,3	.3.15
		.1,2	-1,1	1,2	2,1	.2,1	.3,7
ų r	w	.2,2	· ·/› ·	+ .2,1	.2, 1	,2	.2,1
		1, 1	i,i	1,4	.2, 3	.2,1	.1,1
	4	1,1	.1,2	.1,3	.1, 1	.1,2	.3,1
51	W	1,2	1,12	.1,2	1.1.2	.1,3	. 3,8
		1,3		1			
		.2,12	1,10	+			a.
		.3, 1	1,2	t	1.		
61	W	.2,1	1.1,1	1			
		- del -	elle a			• · · · · · · · · · · · · · · · · ·	x
		ارا. ا		İ	.3,32		
		.,,1	.2,1	4	1	*	
71	W	.1,1	.1,1	ł		4	
		-1,1	1,4	t	-1		
	· .	.1,4	2,1	.2,4	.4,7 /1	1.4, 70	- 14
		.1,1	.3,2	3,4	+,4 /iC	12.4, 420	
81	W	1 1,1	6,42	.2,2	.2,5	1,28 75	
		3,23	.4,8	.3,6		.2,3	
	1 A A	3,111	.3,2	4,5	.2,1	.1,1	
9	.5-	5,10	1,2 (- 2,10	1.3,1 1,12	.1,52	
	n	2.5	.3,2	1,1	.1,1	.1,2	•
	.5	1.0,295	.2,1	.1,15	.2,1	2,1	
		10,61	.2,8	.1,1	.2,1	.3,1	14
10	0W	2,14	.2,4	.1,4	PILIT.	.1,1	
		1.2,1)	100,2,400	1.2,15 C	.1,2	2,3	-
		.2,14	3,4	15,10 10.		.3,1	
		3.9 /	19,155	.1,7	.1,1	.1,4 .	
11	W	.2,8 10	1:6,42	8,11		3, 1	
		.3,8'	.4,100	3,12	1,2 C	.1,24	
		1.5	1.27	.4,4	.4,3 C	1,75 10	
		1,37	1,1	.1;2	3,1	.1,2	
12	2W	. 3,24	1.1,2	1.3,1	.1,2	1 .1,2	'

A.F. M

		34.3			and a second
163	L73	BASELINE		North	A
	-				
	1 A.				
	1.			a.	-
1,8	.2.1				
1,1	.2,1				- E
.1,2	.2,1		* *	1.04	14 A
10 -1, 2	.2,2				*
-1,1	- 1,1				
1,1	1,1				
.2,5	.2,1		3		
	-1,1				
. 1,2	.3,1			S	YMBOL LIST
.2,1	.2,2			(100)	≥ ppb Gold
.1,2	.1,5			C10~	10-99 Gold
.1,1	.1,1				10 11 000 0010
1,1	.3,2			5.	≥ .5 ppm Silver
.2,1	· 1/2 /				
.2,2	.1,1				
			-		
	1 1 1				*
	***		n maa aan tanahi sa ka ka da		and the second
				1	14
	-			GE	OLOGICAL BRANCI
					SESSMENT REPORT
				1	1
					L /Xh
				and the second s	1100
4. P					
				-	SCALE 1:2500
				0 50	100 150 200
1					
	4				2
				TIMES SQUI	ARE ENERGY RESOURCE
- 12					10 100 01
				C.	6 100 Claim
		4		Soil	Geochemistry
•				Contour	ed Silver - Gold Values
				11. Kuran	May 5, 1986 Ann
	a standard a se				

