86-383-14802

Province of British Columbia	Ministry of Energy, Mines and Petroleum Resources	ASSESSMENT REPORT TITLE PAGE AND SUMMARY
TYPE OF RE	PORT/SURVEY(S)	TOTAL COST 8.374.77
		12 2
AUTHOR J.Lisle		E(S) 0-6. () usle .
		45/52
DATE STATEMENT OF EXPLORA	JU TION AND DEVELOPMENT FILED	INC 18/80
PROPERTY NAME(S) MOON C	laims	
COMMODITIES PRESENT GO	1d. Copper.	
COMMODITIES PRESENT		
B.C. MINERAL INVENTORY NUM	BER(S), IF KNOWN	
MINING DIVISION . Atlin		NTS . 104J/4E
LATITUDE 58. 12!	LONGITUD	E 131.30
NAMES and NUMBERS of all minera (12 units): PHOENIX (1 of 1706): Min	I tenures in good standing (when work was de	one) that form the property [Examples: TAX 1-4, FIRE 2
The units, FROENIX (LOC 1700); Min	ton Lease in 120, minning of Certified mining i	Free In F In fording Handada'l -
Moon 1 to 4		
MOOII 1 10 4		
OWNER(S)	0.001	
(1) United Cambridge M	ines Ltd.	UGICAL BRANCH
	ADDES	SSMENTREPORT
MAILING ADDRESS		
1300-409 Granville	Street	
Vancouver, B.C.		
V6C-1T2		
OPERATOR(S) (that is, Company pay	(ing for the work)	
(1) United Cambridge M	ines, (2)	
		······································
MAILING ADDRESS		FILMED
As above		
SUMMARY GEOLOGY (lithology an	e structure alteration mineralization size a	nd attitude):
Veins and lenses of	f specularite magnetite p	write and chalconwrite contain
ing gold occur near	r the contact of monzonitic	intrusions and tuffaceous and
····volcanic ·rocks ·of ··	the Upper Triassic Stuhini	Group: Gold has also been
found in fault zon	es. Elevated levels of coba	lt, arsenic lead and zinc
in addition to cop	per are evident	
REFERENCES TO PREVIOUS WO	3K	
Assessment Reports	2554, 6835, 7482 and repor	t by T.E.Lisle, P.Eng, 1985

24 p.

		the second se
		MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES
		Rec'd JUN 3 0 1986
		SUBJECT
	CONTENTS.	FILE
		VANCOUVER, B.C.
INTRODUCTION		1
LOCATION AND ACCESS.		1
PROPERTY		1
HISTORY		2
WORK DDOCDAM		2
CENEDAL CEOLOCY		3
GENERAL OLOLOGI		3
GEULOGI OF THE MOON CLAIMS		5
GEOCHEMICAL SURVEY		5
SAMPLE RESULTS		0
CONCLUSIONS		/

MAPS

LOCATION MAP	Figure	1
CLAIM MAP. INDEX MAP.	""	2
'E' GOSSAN CREEK, SAMPLE LOCATIONS.	11	3A
'E' " GOLD PLOT.	**	3B
'D' SHOWING. SAMPLE LOCATIONS.	**	4A
'D' SHOWING. GOLD PLOT.		4B
HOFY PROSPECT . SAMPLE LOCATIONS.	"	5A
HOEY PROSPECT . GOLD PLOT.	**	5B

APPENDICES.

APPENDIX 1	CERTIFICATION
APPENDIX 2	COST STATEMENT
APPENDIX 3	ASSAY REPORTS.

INTRODUCTION.

United Cambridge Mines Limited acquired the Moon claims in 1984. The claims cover one of five porphyry copper prospects in the Sheslay area that have been extensively explored since 1969. The claims also cover the old Hoey gold prospect on which very little work has been completed.

In 1985, preliminary prospecting and geochemistry revealed a widespread presence of above background gold content in soils and rocks covered by the claims. The gold appears related to copper mineralization or to areas of alteration noted within the claims.

This report describes the work carried out in the vicinity of the gold showing in 1986. The work is preliminary in nature but should be useful in the further evaluation of the property's potential.

LOCATION AND ACCESS.

The Moon claims lie near the northwest end of Kennicott lake some fifty kilometers northwest of Telegraph Creek in northwest British Columbia. Latitude 58°12', Longitude 131°36', NTS 104J/4E.

The old Telegraph Creek trail passes north of Kennicott and Hatchau Lakes and connects to old bulldozer roads leading to an overgrown but useable airstrip at Sheslay about 13 kilometers to the northwest. The terrain is mainly subdued, however steep,locally precipitous slopes are present in creek drainages north of the lakes.

Current access to the property is by float equipped fixed-wing aircraft to Hatchau Lake, or by helicopter. Charter operators are located in Telegraph Creek and Dease Lake.

PROPERTY.

The property is comprised of the Moon 1 to 4 mineral claims located and recorded in the Atlin Mining Division. Record date was June 20,1984. Record numbers 2323,2324,2325, and 2326. The claims are held by United Cambridge Mines Limited under the terms of a prospectors agreement between the company and R,H.Seraphim Engineering Limited and related individuals who retain a prospectors interest.

Figure 2

HISTORY.

The gold prospect near Hatchau Lake was believed to have been initially staked by prospector Frank Hoey in 1963 who completed some hand trenching and sampling.

The prospect was included in the Pat Group in 1969 when Skyline Explorations Limited conducted widespread geochemical surveys in a search for porphyry-type copper deposits. (Assessment Report 2554).

The ground was again restaked in 1977 by prospectors for Utah Mines Limited. During 1978 that company cut 91.4 kilometers and collected 772 soil samples for analysis. In 1979, the company cut a further 52.5 kilometers of line, collected 1214 soil samples; ran I.P. and magnetic surveys over 122 kilometers of line; and surveyed 12 kilometers. Anomalous conditions found in the geophysics and geochemical work were partly investigated by bulldozer trenching in 1980. This program did not result in significant concentrations of porphyry-type copper mineralization and the company allowed the claims to lapse.

WORK PROGRAM.

The gold prospect does not appear to have been within the boundaries of the grid noted above. The prospect was briefly examined by the author in 1984. In 1985, E. Scholtes prospected and carried out limited geochemical survey work that was filed for assessment the same year.

During the period of June 8 to 16, 1986, three areas were examined by geochemistry. The location of these samples is shown on the index map presented as figure two to this report. The sites are referenced to the 1977-78 grid which was tied and referenced to the Moon claim boundaries.

During the course of the program, a total of 165 soil or talus fine samples, 1 silt sample, and 34 rock samples were collected for assay. Two additional rock samples were collected for fire assay. All sample sites and grid lines were belt-chained and flagged. Due to tie-ins to the 1325 North baseline, and to the rugged topography of Hoey Creek, grid northings vary on each side of the creek.

GENERAL GEOLOGY.

C.I.M.M. Special Volume 15, 'Porphyry Deposits of the Canadian Cordillera' shows the Sheslay area to be within or near a northerly trending belt of alkalic plutonic rocks. The plutonic rocks are believed to be related to regional faults and are comagnatic with thick complex sequences of subaerial and submarine volcanic rocks of the Upper Triassic Stuhini Group.

The Stuhini Group is part of a larger geological complex that includes the Takla and Nicola Groups and forms a prominent belt almost the full length of British Columbia. This belt is host to a significant number of British Columbia's Porphyry Copper deposits, commonly referred to as 'Alkaline Suite Deposits'. These deposits are marked by distinct mineralogical and alteration assemblages in areas of strong faulting, fracturing and brecciation; and contain significantly more gold and silver and less molybdenum than deposits of the Calc-Alkalic Suite.

Extensive exploration work carried out in the southern sections of the belt, particularly in the Quesnel Trough and its extensions, has revealed one well defined deposit and a large number of prospects where gold is the principal commodity. Drill indicated reserves at the QR deposit near Quesnel are reported close to one million tons grading about 0.20 oz/ton. The gold occurs in basaltic breccia below a sedimentary contact and is associated with pyrite and epidote above a strongly carbonatized zone flanking a zoned alkalic stock. (Saleken,L. and Simpson, R.). This environment is the focus of much of the current exploration work underway.

GEOLOGY OF THE MOON CLAIMS.

The geology of the Moon claims has been mapped by previous operators, however this data is not on public record. The author's knowledge of the area indicates the following:

The Stuhini Group rocks include an upper marcon (subaerial)? fragmental unit underlain by porphyritic to amygdaloidal basaltic flows that are locally pyritized. The lower valley slopes are underlain by andesitic to basaltic flows, and by a variety of sedimentary rocks ranging from cherty tuff, argillite, siltstone, sandstone to limy sediments. The volcanic-sedimentary assemblage is intruded by a large gabbroic-diorite stock, and by a number of smaller dyke or sill-like masses that range from diorite to syenite in composition. The claim area is disected by a number of northwest, northeast and northerly trending lineaments that are known in places to reflect faults. A number of the known mineral occurrences in the area are close to these structures.

Three areas of the claims were examined by limited geochemical survey work during 1986. Brief descriptions of these areas follow:

'E' (GOSSAN) CREEK.

This creek drains the Moon 3 and 4 claims toward Hatchau Lake and exposes the most conspicuous gossan in the Sheslay area. The gossan is a bright orange-yellow zone of alteration cut by numerous shears that, where measured, trend $\pm 110^{\circ}-130^{\circ}$, 045°, 250° or 360°. Host rocks include bedded tuff, green porphyritic volcanic, and lesser amounts of monzonite. The zone is brecciated, and veined by chalcedony, quartz, calcite and dolomite. The rocks are variably bleached and mkneralized with a low content of pyrite, chalcopyrite and lesser amounts of galena and sphalerite.

The 1986 work was concentrated over about 650 meters of the creek trending south-southwest. An outcrop on the east bank of the creek comprised of boulders cemented by calcareous sinter suggests an area of hot-spring activity likely related to the Level Mountain volcanic complex to the north.

HOEY PROSPECT.

The Hoey prospect is situated on the west-facing slope of a small steeply incised creek draining south to Hatchau Lake. The showings are about 120 meters (400 feet) above the lake and some 750 meters (2450 feet) above sea-level.

The showings consist of a number of veins and lenses of specularite with magnetite, chalcopyrite and pyrite, and are clustered on the steep valley slope. The area is also marked by a number of calcite veins variably mineralized with chalcopyrite and minor pyrite. Erythrite (cobalt bloom) has also been noted in the showing area. The mineralization occurs in an area of fine grained intrusive rocks ranging from diorite to monzonite in composition. Dark green andesite and cherty tuffaceous rocks are present and calcareous argillaceous rocks are reported at the lower elevations to the south. The best sample collected by the author in 1984 yielded 0.62 opt over 0.35 meters.

Approximately 600 meters to the north-northeast, a 1985 reconnaissance sample yielded 6600 ppb gold. This sample was from a northerly ? trending fault zone poorly exposed along a road trench near the flank of Big Creek. The fault is believed to roughly parallel the trench and its relationship to the main Hoey prospect is uncertain.

'D' SHOWING.

Three samples selected from a large trench area near 1515E and 1410 N in 1985 yielded 1320 to 3810 ppb gold. The trenches are believed to have been excavated in 1980 and appear to have partly investigated a large IP chargeability anomaly. Rock outcrops in the area are rare but those in the trenches include andesite, bedded tuff and porphyry that could be intrusive or extrusive. Material sampled from the trenches included limonitic rocks in part related to faults.

GEOCHEMICAL SURVEY.

A total of 165 soil samples, 1 silt sample, 34 rock samples were collected from the three sites described above. Two additional rock samples were also collected for fire assay for precious metals. The soil samples were dug with a grub-hoe from depths of 15 to 35 cm. The nature of the soil was recorded in field books, and the samples packaged in standard kraft soil envelopes appropriately marked with location. Attempts were made to collect soils that would reflect underlying mineralization if present, however, locally widespread swamp conditions or large areas of brown glacial soil made these efforts difficult. The rock samples were either taken from showings, or were collected from outcrops near showings.

All samples were shipped to Acme Analytical Laboratory in Vancouver. The samples were dried and screened, or crushed and screened and the 80 mesh fraction analyzed for gold by AA, and for the following ten elements by ICP. Mo. Cu. Pb. Zn.Ag. Co. As.Sb. W. Ni. The laboratory procedure is outlined on assay reports that accompany this report.

SAMPLE RESULTS.

(A) 'E' GOSSAN CREEK. (33 soil, 1 silt, 15 rock)

Gold content of soils ranged to 725 ppb , and of rocks to 650 ppb. The gold tends to occur in areas with high copper and silver. One rock sample with fractures containing a dark sulphide showed elevated levels of lead and zinc. Cobalt and arsenic are locally above background but do not indicate strong trends. The highest gold assays occur on the steep easterly banks of the creek valley.

(B) 'D' SHOWING. (61 soil, 6rock).

Bedrock is poorly exposed and much of this area is covered with brown glacial soil believed to have a high clay content. Its widespread presence and highly variable thickness often make it the only sampling medium.

Three selected samples from the trenches in 1985 ranged to 3810 ppb gold. (0.11 opt). Glacial soil over a sample site that yielded 1320 ppb Au is 0.65 meters thick. A sample from about the mid-point between the surface and gossan yielded 36 ppb gold. The gold content of other soils in the area ranged to125 ppb gold, and in rocks to 70 ppb gold. A number of soil samples in the trench area assayed in the 20 to 95 ppb gold and may also be indicative of higher bedrock mineralization.

(C) HOEY SHOWING. (71 soil, 15 rock)

A 1985 soil sample located about 600 meters north-northeast of the Hoey showing assayed 6600 ppb gold. This zone appears to be part of a poorly exposed northerly ? trending fault in a trench. The zone was re-sampled in 1986 and yielded 0.179 opt gold. Glacial drift above the zone is approximately 0.4 meters thick. A soil sample (HS2) collected 20 to 25 meters below the surface yielded 3 ppb gold.

Samples collected elsewhere included glacial soils and talus fines. The gold content of the soils ranged to 1700 ppb. The highest rock assay was from a calcite vein mineralized with chalcopyrite and trending about 135°. It assayed 1960 ppb gold (0.057 opt) over 0.5 meters. As in other areas, the gold correlates with high copper and silver, locally cobalt and arsenic, and rarely molybdenum. The higher assays are from the Hoey showing, or in the steep walled valley slope to the north.

CONCLUSIONS.

Preliminary geochemical work completed on the Moon claims during 1985 and 1986 has revealed important gold concentrations at the following points:

- (1) The Hoey prospect located north of Hatchau Lake. The best sample collected by the author in 1984 yielded 0.62 opt gold over 0.35 meters.
- (2) Approximately 600 meters north-northeast of the Hoey prospect, a sample of fault gouge with magnetite assayed 0.17 opt gold.
- (3) Approximately 1 kilometer further to the north-northeast, select samples from a trench area yielded up to 3810 ppb gold (0.11 opt).
- (4) Some 600 to 700 meters northwest of the Hoey prospect on the eastwest claim line of Moon 1 and 2 claims, grab samples of a mineralized fault zone assayed up to 2620 ppb gold (0.076 opt).

These zones of interest are in an area previously explored for large low-grade porphyry copper and copper-gold deposits. The configuration and extent of the zones is unknown, and their relationship to geological features and geophysical-geochemical expression of earlier work is uncertain. Because they have not been evaluated as gold targets, they require further investigation.

The 'E' or Gossan Creek geochemical work returned a low range of gold assays from a zone that displays many of the features of a high-level epithermal system. The zone is perhaps part of a larger area that extends southwest. 'B' series samples collected from the southwesterly area in 1985 returned comparable but slightly higher gold content. They also revealed elevated concentrations of arsenic, antimony, cobalt, silver, lead and zinc in addition to copper. For this reason, the geology of the larger area requires further study to determine configuration and possible zoning trends.

Respectfully submitted,
T.E.Lisle, and Associates Ltd.
Va thounce the
THE LISLE
Content - n
A CALERO ule
T.E.Lisle, Pring.

June 28, 1986

Figure SA

3B

T.E. LISLE & ASSOCIATES LTD.

GEOLOGICAL SERVICES

145 West Rockland Road, North Vancouver, B.C. V7N 2V8

Telephone 604-987-0821

I, Thomas, E. Lisle, of the District of North Vancouver, British Columbia, do hereby declare:

- That I am a geologist with business and residence at 145 West Rockland Road, North Vancouver, British Columbia, V7N-2V8.
- 2) That I graduated from the University Of British Columbia in 1964 with a Bachelor of Science Degree. I have practiced my profession continuously since that time, mainly in western North America.
- J I am a member in good standing of the following organizations:
 a) Association of professional Engineers of British Columbia.
 b) Geological Association of Canada.
 c) Canadian Institute of Mining and Metallurgy.
- 4) This report is based on data collected at the property in June, 1986, supported by exploration data collected over the past 10 years.
- 5) Along with Dr. R.H.Seraphim, P.Eng., the author retains a prospectors interest in the property described in this report.

Dated this 28 day of June, 1986, in the Distriction North Vancouver, British Columbia, Canada.

APPENDIX	K 2	COST STATEMENT		
Wages:	E. Scholtes, T.E.Lisle ,	June 8-16/86 9 at \$150. " 9-16/86 8 at \$250.	00 \$1350.00 00 \$2000.00	\$ 3,350.00
Transpor	rtation:	B.C.Yukon Air. Avis truck Rental C.P.Air.	701.84 465.45 284.90	, 1,452.19
Geochemi	istry:	165 soil, 1 silt, 36 roo		2,065.00
Freight	:			71,40
Field Su	upplies:			141.87
Fuel:				194.96
Board an Telephon	nd Lodging: ne:			499.14 21.78
Drafting	g and Report:			500.00
Photocop	pying:			15.47
Misc. ta	axi, airporter,	photos, etc.		62.91

8,374.72

June 28,1986

APPENDIX 3

Assay Reports.

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: JUNE 18 1986

DATE REPORT MAILED: June 21/86.

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK CHIPS AUL ANALYSIS BY AA FROM 10 GRAM SAMPLE.

> AUG. DEAN TOYE. CERTIFIED B.C. ASSAYER. ASSAYER:

	т.	E.	LISL	E	F1	LE	# 86	-10	53				P	AGE	1
SAMPLE	Mo PPM	Cu PPN	Pb PPM	Zn PPM	Ag PPN	Ni PPM	Co PPM	As PPM	Sb PPM	W PPN	Aut PPB				
												0			
5040 L10-25W	2	15	8	321	- 1	18	28	4	2	5	n	Brown	tall		
SD41 L10-50W	1	36	4	225	.5	22	20	5	2	1	2	"	Glac	101.	
SD42 L10-75W	1	39	12	183	.2	49	19	2	2	1	10	**	"		
SD43 L10-100W	1	35	12	145	.2	55	21	8	2	1	2		"		
SD44 L10-125W	2	40	8	102	.2	64	21	9	2	1	4	~	"		
SD45 L10-150W	1	41	10	177	.4	53	21	4	2	1	2		Glac	101 ?	
SD46 L10-175W	1	40	11	192	.4	60	24	7	2	1	2	1.		?	
SD47 L11-175W	1	54	9	93	.4	45	20	7	2	1	10	"	Glac	ial	
SD48 L11-150W	1	54	5	86	.3	48	20	7	2	1	1				
SD49 L11-125W	3	42	3	215	.3	55	24	7	2	1	1	**			
SD50 L11-100W	1	63	16	88	-1	55	23	9	2	1	3	vellow-b	rown		
SD51 L11-75W	1	57	3	130	.1	51	21	8	2	1	1		1.		
SD52 L11-50W	1	43	2	213	.3	67	20	4	2	1	i				
SD53 L11-25W	1	58	4	179	.2	65	23		2	1	1	Beama		"	
S054 L10-25E	ĩ	68	4	67	.3	53	21	14	2	i	i			?	
	3.			17			10						in is		
SUJJ LIU-JUE		170	7	03	-1	9/	10	11	4	1	4	Light D	rown.	a da	~
5036 LIV-/JE	-	132		89	.1	20	24	32	2	1		Near Voi	canic	0. C.	-61 =
503/ LIU-100E	1	4/	11	14	•4	02	24	15	4	1	1		G	lacia	1.
5038 L10-123E		80	12	80		62	24	12	2	1	1				
2034 FI0-130F	1	12		88	•2	60	23	п	2	1	6	L7. Brow	n	"	
SD60 L11-150E	2	139	12	156	.3	71	38	26	2	1	18	NEAD . J	VIDRITI	- 0.1	
SD61 L11-125E	2	311	9	172	.3	68	54	27	2	ī	95	TAINS	Pool	Sou	2
SD62 L11-100E	2	155	15	124	.4	57	35	32	2	i	29	THEU'S	C.	ACIAL	
SD63 L11-75E	2	45	11	199	.1	65	25	8	2	- î	1	ROOWN	C7-	"	
SD64 L11-25E	1	42	7	209	.1	73	24	10	2	i	î			n	
5000	2	127		740	7	51	20	0	2	2	17	RED BA	outer a	IGAD	8.0
5000	1	125	7	750		74	27	2	2	-	10	Reador	. E1	ALEC	
5001 CD02	2	141	0	150		50	10	40	2	-	12	BLDROU	- AN	~ 11	anti
5002	4	191	20	137	.0	30		20	2	-	42	BROWN	- 1104	a car	in the second
5003	-	10/	20	77	.4	30	51	20	4		21	GRAY-BI	2000	GLAC	ITTC II
-046	•	22	12	77	•1	23	21	12	2	1	2	13ROWN -	FICERIA	1283-	0.02
SD85	1	56	9	91	.1	53	20	8	2	1	4				"
SDB6	2	68	14	85	.3	59	25	19	2	1	8	**	••		
SD87	1	60	11	107	.2	55	22	13	3	1	6	"			"
SD88	1	45	10	125	.1	57	24	7	2	1	4	"			
5089	2	64	12	77	.2	44	21	8	2	1	7	••	11		"
SD90 91	1	62	7	139	.2	49	23	7	2	1	35		GI	acial	sor,
STD C/AU 0.5	20	60	38	127	7.0	67	28	37	16	13	500				

and the second second

T.E. LISLE FILE # 86-1053

-

SAMPLE	No PPN	Cu PPN	Pb PPM	Zn PPN	Ag PPM	Ni PPN	Co PPM	As PPN	Sb PPM	W PPN	Aut PPB	
6963	2	45	D	170		54	70	17		,	7	12-2- 4 4 4 1 4 4 4 4
5072	-	50	14	07	17	44	20	10	-	1		Receive "
5075	2	104	12	05		40	27	20	2	-	;	Becan II
5077	2	174	14	73	.3	70	27	20	2	i	5	Geog-BROWN "
SD96	1	129	8	84	.1	66	26	17	2	i	36	35cm helow surface \$ 300. a bove gosson.
SD97	1	56	8	91	.1	59	21	11	2	1	1	Read traverse
SD98	1	53	2	122	.2	64	22	14	2	1	1	Vallan han class
5099	1	63	11	84	.2	68	25	20	4	1	2	Terrew-brown graces
SD100	1	68	13	88	.2	63	24	12	2	1	1	
SD101	7	810	4	41	.1	164	35	12	2	1	ī	Cut on cat road.
50102	2	693	10	84	.1	80	21	16	2	1	29	Brown glueral.
SD103	8	631	735	185	.8	46	49	86	2	1	125	Gossan Fines
SD104	2	1076	14	98	.1	73	51	13	2	1	27	Roadeut on bedieci
SD105	. 2	243	10	88	.2	69	39	13	2	1	10	On bedroek-1.5mbde
SD106	2	67	11	86	.2	58	24	17	2	1	1	Yellow-Brown
SD107	2	63	10	101	.4	44	24	5	2	1	3	Brown - Boggy.
SD108	3	115	8	110	.2	55	19	11	2	1	2	11 11 gleacies
SD109	2	97	16	102	.4	67	27	19	4	1	11	" Glarial.
SD110	2	56	6	207	.6	65	25	9	2	3	18	Red brown "
SD111	2	64	14	86	.3	61	26	15	2	1	7	Grey brown "?
SD112	1	77	11	90	.4	59	23	17	3	1	3	4 1. 4
SD113	2	117	20	224	.8	74	36	18	3	2	4	Rad-heave Achbly - Gas
SD114	2	81	5	110	.4	62	24	9	2	1	16	"-Contraction
SD115	3	134	7	92	.3	56	20	10	2	1	5	Register Statian.
SD116	2	258	5	93	.2	63	23	8	2	1	2	0,000,000
86-S-1	1	195	10	42	.2	30	32	105	2	1	35	Gussan
86-S-2	4	265	16	65	1.1	58	48	26	2	1	49	Brown talus - Vole.
86-5-3	1	111	12	98	.3	58	29	15	2	1	255	Organic - new shear zon
86-5-4	9	3813	24	70	5.6	124	41	42	2	1	725	Lt. Grey brown tulus.
86-5-5	1	282	18	124	.4	50	32	13	3	1	40	DK. brown - Some humus
86-5-6	1	136	14	103	.3	96	32	23	2	1	18	Yellow-brown - glacia
86-5-7	2	127	17	149	.3	66	27	11	2	1	21	TK. Brown "
86-5-8	1	541	20	174	.9	44	58	41	2	1	7	Above vole O.C.
86-5-9	1	190	10	158	.2	59	30	12	3	1	6	Dr. brown - glacial.
86-5-10	1	294	14	152	.3	40	29	13	2	1	8	DK yellow brows .
86-S-11	1	109	13	156	.3	85	28	16	2	1	4	- DK Brown Glacial.
STD C/AU 0.5	20	59	43	126	7.2	66	27	38	16	13	500	

PAGE 2

T.E. LISLE FILE # 86-1053

	SAMPLE.	Ha PPN	Cu PPN	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	As PPN	Sb PPM	W PPN	Au t PPB	
	04-0-17		100	12			105		14	2			TI. C.
	00-3-12 04-6-13	2	54	5	57		110	40	15	1	-	5	Paros Fines
	00-3-13	11	107		13	.4	110	47	10	2	-		Gougy Timonivic fines.
	00-3-14		214		40	.4	107	10	14	2			Talus fines . Yellow
	00-3-13	-	210	1	40	12	63	47	10	4	+	10	limonitic talus fines.
	80-3-10	0	990	0	•/	.5	67	70	23	4	1	24	
	86-S-17	3	2175	31	33	2.2	49	103	118	3	1	210	
	86-S-18	2	344	36	97	.7	68	81	45	2	1	25	Talus fines
	86-5-19	2	725	18	64	.9	30	70	28	2	1	45	
	86-S-20	2	166	14	95	.2	76	42	26	2	1	9	
	86-S-21	2	416	46	133	.7	66	54	18	2	1	26	
	84-5-77	1	240	11	44	2	43	79	13	2			dere pau "
	84-6-23	1	425	12	42	2	27	41	12	2	i	22	7
	R4-C-74	2	707	50	140	5	73	41	21	2	1	25	Near monzonin O.C.
	04-6-25	2	417	24	40		12	50	21	2	-	15	lalos Fined
	06-3-23	-	440	10		.4	44	47	10	2		17	
	00-3-20		447	10	11		40	4/	ov	4	*	15	
	86-S-27	2	649	43	127	1.2	70	45	31	4	1	70	11 11
	86-S-28	2	471	14	94	.3	38	41	18	2	1	6	Fines - Shear zones
	86-5-29	2	293	13	54	.2	39	41	52	2	1	18	Talos fines.
	86-5-30	3	758	25	143	1.1	48	64	31	2	1	38	11 +1
	86-5-31	1	98	3	29	.1	25	34	12	2	1	4	n 11
	86-5-32	2	341	5	49	.5	32	62	19	2	ĩ	16	
	86-5-33	4	391	5	40	1.2	36	54	33	2	1	105	" "
	H-5-1	1	3751	7	45	.2	65	274	163	1	1	730	
*	H-5-7	i	76		86	.1	74	26	9	2	i	3	Limonific fines - Ireach F
	H-S-3	1	1303	14	46	.1	67	236	24	3	i	15	Greenist alt to fh. ? Glacial.
			10000		210-22		Control of						
	H-S-4	1	86	9	77	.3	54	18	13	3	1	4	Clacial soil.
	1455E 1175N	1	47	5	137	.2	52	20	8	2	1	1	
	1455E 1125N	1	31	9	185	.3	45	22	5	3	1	3	
	1455E 875N	1	95	5	176	.4	100	26	39	2	1	7	
	1455E 825N 🗸	1	71	10	187	.4	62	25	11	2	1	4	
	1455E 625N -	1	191	4	97	.2	78	37	31	2	1	18	
	1455E 575N /	1	318	5	187	.1	116	55	20	2	1	95	Fine soil + vole. Frags.
	1455E 525N ~	1	338	8	528	.6	123	56	16	2	3	33	
	1455E 475N /	1	254	7	168	.4	171	39	16	2	1	6	
	1457.5E 725N ✓	1	184	4	102	.2	150	39	14	2	i	8	GREY-BROWN TALOS.
	STD C/AU 0.5	21	57	42	131	7.0	70	29	43	15	13	510	

PAGE 3

	T	.Ε.	LISL	.E	F١	LE	# 86	5-10	53		FAGE 4
SAMPLE 4	No PPN	Cu PPN	Pb PP N	Zn PPN	Ag PPM	NI PPH	Co PPM	As PPN	Sb PPM	W PPM	Au t PPB
1457.5E 675N 🗸	2	336	9	102	.2	108	74	92	2	2	32' Apor soil - talus.
1457.5E 625N 🗸	4	1494	13	29	.3	68	26	18	2	1	17001 Fines - loose talus
1460E 925N 🗸	1	139	7	85	.1	66	26	10	3	2	18 By Creek-Transported.
1460E 825N 🗸	2	110	8	137	.2	84	32	9	3	1	23 - Brown Glacial.
1460E 775N 🗸	2	101	2	118	.1	64	28	11	2	2	4× 11 11
1460E 725+10N -	1	376	6	94	.4	129	42	24	2	1	61 Talus , Chile France
1460E 725N 🗸	2	409	18	159	.4	53	86	96	3	4	60 s Carbonate veralet -
1460E 625N 🗸	1	147	2	18	.1	15	20	18	5	2	28' Provisul - talus.
1460E 575N 🗸	2	498	10	74	.1	38	44	9	2	-	33 -
1460E 525N 🗸	1	719	11	171		95	72	27	2	3	250 -
	•		••	1/1	• 7		/2	21	2	v	200
1460E 475N 🗸	1	349	8	76	.1	199	64	25	2	1	60 · Edge of CK.
∕1462E 875N ✓	1	155	2	45	.1	138	35	4	2	1	3' Alear OC.
📝 🔨 🔨 🔨 🔨 🔨 🗸 🗸 🗸 🗸 🗸	2	145	2	61	.1	346	60	52	2	1	5-
✓1464.87E 625N ✓	6	282	2	38	.2	148	50	93	2	1	31-Talus fines
√1465E 925N 🗸	1	88	3	95	.1	41	15	9	2	1	5-
									_		. /
√1465E 8/5N ✓	1	44	4	53	.1	41	14	12	3	1	
1465E 750N	5	702	25	55	.2	123	77	109	2	1	20 V Tulus fines.
√1465+10E 725N	1	154	5	72	.1	216	41	21	2	1	1/
√1465+23E 525N	4	3535	13	67	.4	42	230	23	2	1	1400 /
1467+50E 575N	1	350	2	94	.1	56	41	20	2	2	60 -
1467+50E 465N	1	215	8	88	.2	53	29	12	2	1	10' Talus fines
1470E 925N	1	209	10	124	.3	75	31	11	2	2	5' Brown Glarial
1470E 875N	1	53	2	94	.2	57	22	17	2	1	3ª Brown - Clarging
1470E 775N	2	55	14	87	.1	53	22	14	3	1	" Ran Result
1470E 725N	2	209	16	178	.1	53	59	34	3	i	15- To Co Co
	-					•••	••	••	•	•	raids ornes + cally
1470E 625N	1	103	11	158	.3	59	27	13	2	3	11 Brown Glaciul+ pobl
1470E 575N	1	126	18	203	.1	47	30	13	2	5	30-
✓ 1470E 525N	1	99	9	98	.1	50	24	16	3	1	18- 0
1470E 465N	1	107	13	117	.1	42	34	15	2	2	32' Nov El abusul of
1470E 425N	1	189	7	133	.1	45	38	18	2	1	18- Fine soil near o.C.
1475E 1215N	1	74	13	76	.1	66	23	14	2	1	3' Brown - Glaciat
14/36 11/3N	1	52	6	110	•1	62	21	10	2	1	1 - " "
14/3E 1125N	19	221	14	51	.1	25	30	46	2	1	2' limonific + fragment
14/5E 1075N	2	67	10	105	.1	54	23	14	2	1	2' Brown - Glacia
1475E 1025N	3	63	5	142	.1	45	25	23	2	2	18- 11 - Close to oute
STD C/AU 0.5	20	60	41	127	7.2	67	28	39	16	15	510

т.е.	LISLE	FILE	#	86-1053	

		L .	LISL	- E -			- 00	5-10	00		THOL	ď .
SAMPLE	Ma PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPH	Co PPM	As PPM	Sb PPM	N PPM	Aut PPB	
1475E 975N	1	63	8	187	.3	54	26	11	• 2	1	5 Biowant Debbles	
1475E 925N	. 2	96	13	134	.1	65	42	41	2	1	7 11 with angular bull +	-
1475E 875N	2	168	10	132	.2	63	43	35	2	1	5 DARIE Brown + vole. Fran	
1475E 825N	2	211	12	201	.2	50	52	41	2	1	21	1.00
1475E 775N	2	105	12	142	.1	51	42	21	2	1	1 DK. Brown + vole . frag	£
1475E 725N	1	82	11	131	.2	64	31	17	2	1	6 DK brown + pebblan	
1475E 675N	2	71	10	255	.5	59	36	29	2	1	16 DK. broam - Vole. Frags	
1475E 625N	1	105	15	133	.1	59	28	17	2	1	6 ?	
1475E 575N	1	106	11	204	.2	65	34	18	2	1	19 Brown Glacial soch	<u>s</u>
1475E 525N	1	74	12	149	.2	58	26	12	2	1	24 Brown Glocial + frag	• 5
1475E 475N	1	86	2	117	.2	57	22	5	2	1	5 Finit brown soil	
1475E 425N	1	60	9	107	.2	53	22	13	2	1	2	
1480E 1175N	1	54	13	99	.2	59	23	12	2	1	5 Brown Glacial.	
1480E 1125N	1	75	7	114	.2	63	25	16	3	2	1 Brown Glacker.	
1480E 1075N	1	40	4	201	.3	53	25	9	2	1	1 Brown Glacial.	
1480E 1025N	2	.96	6	223	.2	57	37	15	2	1	11 Brown Glacial.	
1480E 925N	1	88	10	149	.2	46	33	25	2	1	2 Brown Glacial.	
1482E 925N	4	418	9	43	.2	27	46	24	2	1	2 Talos fines.	
1485E 1225N	1	78	11	104	.3	69	29	18	2	1	2 Brown Glacial.	
1485E 1075N	2	122	15	186	.2	62	39	26	2	1	11 Dark brown - Glaci	d
1485E 1025N	3	238	11	131	.1	54	47	67	2	1	6 Ran Brown - Glacia	P.
1490E 1225N	1	139	2	102	.1	76	28	13	2	1	3 Brown Glacial.	
1490E 1175N	2	865	6	91	.3	135	67	125	3	1	49 Talus Sines .	
86-SS-1	2	252	18	59	.1	46	43	37	2	1	18 . Silt - 'E' Greek.	
STD C/AU-0.5	21	57	41	132	7.0	69	29	39	15	15	490	

.

FAGE

		T.E. LISLE				FILE # 86-1053						PAGE		
SAMPLE		No	Cu	Pb	Zn	Ag	Ni	Co	As	Sb		Aut		
		PPM	PPR	PPR	PPA	PPR	PPM	PPR	PPR	PPR	PPN	РРВ		
HR-1		1	33	4	21	.3	13	9	4	2	2	2 Tuff. 38m costofk		
HR-4		1	143	14	74	.7	20	26	6	2	1	2 Rosalt?		
HR-5		1	300	9	21	.1	8	30	17	2	i	3 Auglish survitable?		
HR-6		1	116	11	44	.1	36	22	3	2	i	1 Hornbland - underik		
HR-7		1	101	12	27	.1	188	30	2	2	1	1 Volcanic .		
HR-8		1	86	15	54	.1	26	55	125	3	1	18 Sharred volcani		
HR-9		1	72	7	16	.1	36	35	63	2	1	9 Brow Green takk.		
HR-10		13	48324	11	240	6.1	129	278	745	8	1	1180 30 cm chia - Shans- M		
HR-11		7	12281	5	41	1.9	38	68	18	3	2	1960 DISM - Calciles Cardo		
HR-12		2	16981	18	83	.1	106	171	199	2	ī	85 30 cm - Mal- Gougy P		
HR-13		3	3829	4	11	1.0	12	37	14	3	1	835 7 cm Calcule vein		
HR-14		4	10328	10	89	1.4	35	43	60	4	1	315 10 cm st + C.		
HR-15		1	99	11	26	.1	27	17	4	2	1	12 EC interert cpy.		
RD-BO		1	148	6	16	.1	30	15	2	2	1	18 1. In full-Road		
RD-81		1	316	13	21	.3	15	26	9	2	1	14 Oxidized to the limon		
RD-82		1	164	7	18	.1	40	20	8	2	1	13 Brok Volc-Tr. av. chy		
RD-83		2	39	5	26	.1	10	43	2	2	1	A Miss chiai - Vals, Gass		
RD-84		1	139	16	37	.2	42	17	2	2	1	15 Baca (1. ?		
RD-85		2	174	9	38	.2	15	43	2	2	2	70 / line / alante		
86-R-1		3	61	7	127	.1	72	24	17	2	1	1 Silicified Breecing FI		
86-R-2		2	110	8	88	.1	32	17	42	2	1	1 1m - Statist Bac		
86-R-3		3	1659	24	53	2.5	38	91	78	7	1	19 Highly all Carrows Ma		
86-R-4		4	7067	22	171	8.1	32	67	28	2	1	650 Qt Chalcedony - Mal		
86-R-5		1	121	2	23	.3	13	13	2	2	1	16 011 1.11 1.1.1.		
86-R-6		2	418	4	35	.2	27	46	52	2	2	34 Green alt. volc.		
86-R-7		2	156	6	256	.6	28	24	3	2	1	17 Altered ?		
86-R-8		2	181	19	59	.1	37	26	16	2	1	1 7		
86-R-9		2	591	8	102	.4	57	22	67	3	1	90 Elast - Bx - Ca + OL . Co		
86-R-10		1	119	17	166	.1	32	19	10	2	1	1 of aller to allered		
86-R-11		2	42	21	74	.1	37	13	15	2	1	1 Ob-chalesdamyt Py+C		
86-R-12		5	23	873	1379	.8	30	19	39	2	1	Altered with dark sule		
86-R-13		1	1771	20	69	1.0	30	16	12	2	1	14 lan lit To dal		
86-R-14		2	1165	17	54	.7	22	18	15	2	1	18 11 11 - 0		
86-R-15		1	1008	10	28	.1	42	28	15	2	1	13 Highly Git. Ir. Hylley		
STD C/AU 0.	5	21	57	38	133	7.0	71	29	42	15	13	510 Shong limonific Sheet		
MPLE	Mo	0			n Ag	Ni	Co	As	Sb		Agtt	Autt		
	rrn	rr	n PP	n PP	n rrn	rrn	PPh	PPH	PPR	PPH	02/1	0271		
-2	7	350	1 2	5	6.3	17	53	25	2	3	.02	.044		
1-3	8	395	19 3	1	4 4.2	11	49	73	3	2	.15	.179		

H.R.Z. Large pieces limonific-magnetite-rich material H.R.3 Over 0.6 m across fault down heach wall.