RAM EXPLORATION LTD.

GEOLOGICAL, GEOCHEMICAL, AND GEOPHYSICAL REPORT ON THE

FRONTIER - GEM CLAIM GROUP NEW WESTMINSTER MINING DIVISION SOUTHWESTERN BRITISH COLUMBIA

> Latitude = 49° 486' Longitude = 122°17' NTS: 92G16 E/W, 926 96,9W

FILMED

Owner / Operator = Danbus Resources Inc.

Mineral Claims

Gem 1 - 2687 (7) , Frontier 1 - 2692 (7)

Gem 2 - 2688 (7) , Frontier 2 - 2693 (7)

Gem 3 - 2689 (7) , Frontier 3 - 2694 (7)

2 B - 2690 (7) , Frontier 4 - 2695 (7)

0 2 B - 2691 (7) , Frontier 5 - 2692 (7)

Reported by: Carl von Einsiedel, BSc.

GEOLOGICAL BRANCH ASSESSMENT REPORT

14,845

TABLE OF CONTENTS

		Page
TERMS OF R	EFERENCE	1
INTRODUCTIO	ON	1
SUMMARY		2
CONCLUSION	s	3
RECOMMENDA	TIONS	4
SECTION 1	- GENERAL	
	Property Description Development History	1 - 2 1 - 4
SECTION 2	- GEOLOGY	
	Regional Geology Property Geology and Mineralization	2-1 2-1
SECTION 3	- GEOCHEMICAL AND GEOPHYSICAL SURVEYS	
3.2	Soil and Stream Surveys Results Geophysical Surveys Results	3-1 3-1 3-2 3-3
SECTION 4	- PROPOSED EXPLORATION PROGRAM	
	Exploration Targets Estimated Costs	4-1 4-1

REFERENCES

CERTIFICATES

APPENDIX A - Assay Results

APPENDIX B - Costs Incurred

LIST OF FIGURES

		Page
Figure 1	Location Map	1-1
Figure 2	Claims Map	1-3
Figure 3	Regional Geology and Mineral Occurrence Map	2-2
Figure 4	Property Geology and Geochemical Sample Location Map (1:10,000)	in pocket
Figure 5	Au Geochemistry Map (1:10,000)	in pocket
Figure 6	Ag Geochemistry Map (1:10,000)	in pocket
Figure 7	Zn Geochemistry Map (1:10,000)	in pocket
Figure 8	Pb Geochemistry Map (1:10,000)	in pocket
Figure 9	Cu Geochemistry Map (1:10,000)	in pocket
Figure 10	VLF-EM Profiles	in pocket
Figure 11	Fraser Filtered VLF-EM Data	in pocket

LIST OF TABLES

Table 1	Rock Sample descriptions	2-4
---------	--------------------------	-----

TERMS OF REFERENCE

AND

INTRODUCTION

TERMS OF REFERENCE

Danbus Resources was initially incorporated to carry out an evaluation of the Frontier - Gem Claim Group, a "grassroots" gold and massive sulphide prospect located near Harrison Lake in southwestern British Columbia. The claims were staked in July, 1985, to cover geologically favourable ground in the vicinity of recent discoveries made by Rhyolite Resources, Kerr Addison Mines, and others.

On December 15, 1985, the Company commissioned Ram Exploration Ltd. to carry out an evaluation of the property which was to include recommendations for follow-up exploration.

INTRODUCTION

During January, 1986, the authors supervised geochemical and geophysical surveys and carried out reconnaissance geologic mapping. Snow cover at higher elevations restricted exploration to the south central parts of the property.

The following report describes results of these surveys and outlines recommendations for continued exploration.

SUMMARY

AND

RECOMMENDATIONS

SUMMARY

Danbus Resources holds 10 located mineral claims comprising 165 claim units staked along Sloquet Creek Valley near the north end of Harrison Lake. The property consists of the Frontier 1-5, Gem 1-3 and 02 and 02B Claims recorded in the New Westmister Mining Division.

The claim group is underlain by Jurassic-Cretaceous aged Fire Lake Formation metavolcanics and metasediments which have been intruded by dioritic Coast Range Plutonics. Recent exploration of nearby properties has demonstrated that this geologic environment is favourable for the localization of several types of gold and polymetallic massive sulphide mineralization.

Rhyolite Resources Ltd. has recently announced drill indicated reserves of approximately 150,000 tons grading 0.1 oz./t Au at its Doctors Point (Nagy) Prospect, located south of the Claim Group. Gold mineralization at this prospect is associated with shallow dipping quartz veins localized within the hornfelsed aureole of a dioritic intrusive. Other important gold targets are broad (up to 300m wide), pyrite rich, silicified, sericitized zones in Fire Lake metavolcanics. Preliminary sampling of this type of minerization at the Hades-Brimstone Property (adjoins Frontier-Gem Claims on the northeast) returned assays of up to 1,950 ppb Au.

The recognition of jasper bearing exhalite horizons associated with Pb-Zn-Cu, mineralization in Fire Lake volcanics (Cominco, 1981) suggests potential for the discovery of massive sulphide mineralization stratigraphically analogous to the Brittania and Northair deposits located on the B.C. coast.

The current exploration program consisted of geological mapping and prospecting, contour soil geochemical and stream sediment surveys (approximately 700 samples). In addition, 14 line kilometers of flagged grid and geophysical (VLF-EM and magnetometer) surveys were conducted in the central part of the claim group. Technical data concerning adjoining mineral properties was compiled and an examination made of showings located several hundred meters east of the property.

CONCLUSIONS

Contour soil and stream sediment geochemical surveys proved most effective and outlined several strongly anomalous areas containing spot highs of up to 190 ppb Au, 5.7 ppm Ag, 2512 ppm Zn, 182 ppm Pb and 477 ppm Cu. Major geochemical anomalies have been identified in the western half of the 2B and 02B Claims; the south central part of the Frontier 3 and 4 Claims, and near the eastern edge of the property. The latter anomaly is roughly coincident with a wide (approximately 100 meters) pyrite rich, silicified, sericite schist unit (selected samples of which assayed: 0.35 oz/t Ag, 1.05% Pb, 0.86% Zn - CR-027).

Geophysical surveys (VLF-EM), identified a north trending conductor to the south of geochemical anomalies located on the Frontier 3 and 4 Claims. This conductor has been interpreted as a fault zone, possibly similar to structures at this orientation which host gold and sulfide bearing quartz veins located northwest of the Claim Group.

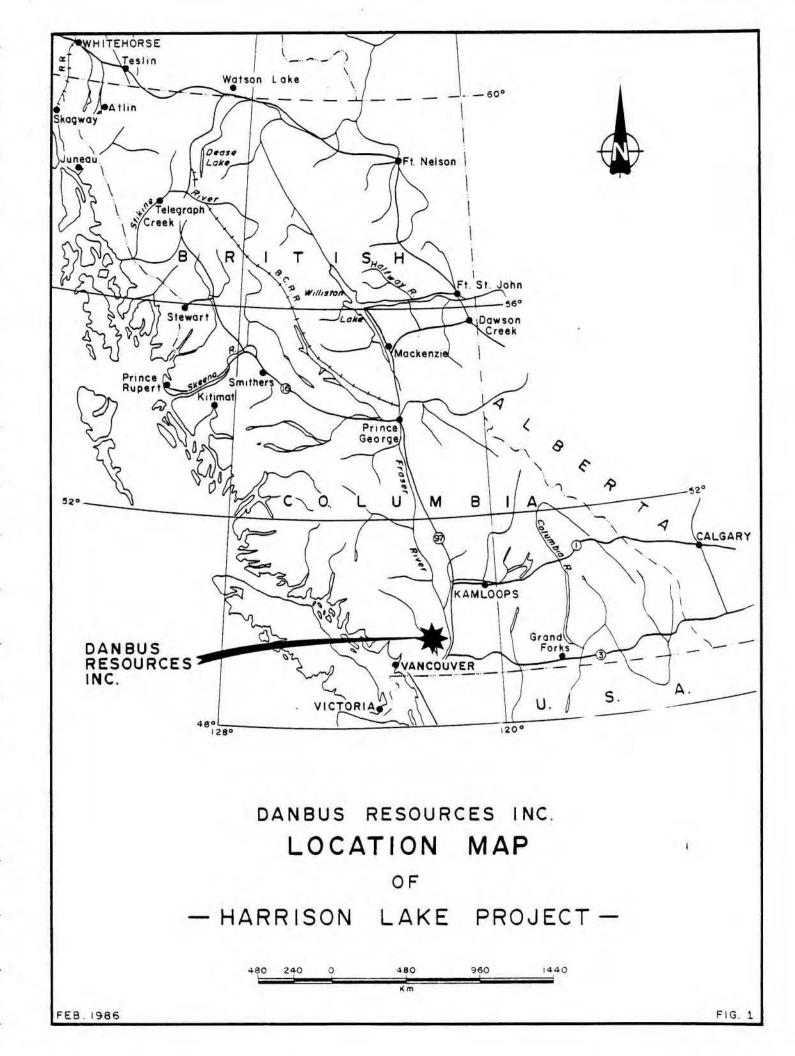
Geologic mapping confirmed that the Property is situated along a Fire Lake Formation / Coast Intrusive contact, an environment which has important controls on gold mineralization in the Harrison Lake Area.

RECOMMENDATIONS

Results of exploration to date clearly indicate that the Frontier-Gem Claim Group has potential to host mineralization similar to that at several recent discoveries in the Harrison Lake District.

It is recommended that Danbus proceed with a 2 phase follow-up exploration program. Phase I should include detailed propecting, geochemical sampling and wherever possible, geophysical surveys in anomalous areas. In addition, reconnaissance scale soil sampling should be carried out in those areas of the property not yet examined. Phase 2, wholly contingent upon successful results of Phase 1, would consist of detailed geophysics, geochemistry and trenching of anomalous areas detailed in Phase 1.

This program, more fully described in Section 4.1, is estimated to cost \$105,700.


Respectfully Submitted,

C. von Einsiedel, B.Sc.

Consulting Geologist

SECTION 1

GENERAL

1.1 Property Description (please refer to figures no.s 1 and 2)

The Frontier-Gem Claim Group is located some 75 km. southeast of Pemberton near the north end of Harrison Lake in southwestern British Columbia. The centre of the claims is located at 122 17' W longitude and 49 46' N latitude.

Access to Harrison Lake is by well maintained gravel roads along the Lilooet River from Pemberton or north from the settlement of Harrison Hot Springs. Access to Sloquet Creek and the property is via 4x4 track off the Lilooet Road.

The claims cover the moderately steep, heavily forested slopes of the Sloquet Creek Valley. The lower slopes are generally talus covered but locally break into cliffs. Elevations range from less than 500 feet in the valley to 5500 feet on the northern slopes.

The property consists of 10 located mineral claims comprising 165 claim units recorded on Map Sheet Numbers 92G16 East and 92G16 West in the New Westminster Mining Division.

Titles are recorded as follows:

Claim Name	No. of Units	Record <u>Number</u>	Registered Owner	Expiry Date
Gem 1	20	2687	Danbus Resources	July 25/88
Gem 2	18	2688	11	
Gem 3	15	2689	T .	11
2 B	16	2690	п	rt.
0 2 B	16	2691	п	n
Frontier 1	16	2692	m .	TI.
Frontier 2	16	2693	n	n n
Frontier 3	16	2694	u	n
Frontier 4	16	2695	*	
Frontier 5	16	2696	. 17	n ·

1.2 Development History (please refer to figure no. 3)

The Harrison Lake - Lilooet River Valley has undergone extensive mineral exploration since the late 1800's when it was used as the major transportation corridor for prospectors passing through the Chilcoten - Caribou on up to the Klondike.

Early workers discovered numerous, gold bearing, quartz-sulfide veins, carried out limited surficial and underground work and shipped small amounts of sorted ore. Better known prospects included the Doctor's Point, Providence, Money Spinner, Blue Pb Vein, Barkoola and King Claims.

Between 1983 and 1985, Rhyolite Resources, in conjunction with Harisson Lake Gold Mines, carried out a major exploration program in the vicinity of the Doctor's Point Prospect. Preliminary drilling delineated an estimated 150,000 tons of reserves at an average grade of 0.1 oz/ton Au.

In 1985, Kerr Adisson Mines, in joint venture with Abo Oils Ltd., drilled the RN Prospect to test gold bearing zones within the hornfelsed aureole of the James Stock. A previous drill hole reportedly intersected 64' of mineralization averaging 0.120 oz/ton Au (GCNC, 1984-164).

In the vicinity of the Frontier - Gem Claims, two prospects have recently been explored. In 1980, Cominco carried out geologic mapping and soil geochemical surveys on the Slo Claims which adjoin the Property on the west side. Results suggest potential for massive sulfide mineralization analagous to the Brittania and Northair Mines.

Between 1981 and 1984 Tenquille Resources conducted geological mapping, airborne geophysical surveys and geochemical surveys on the Hades and Brimstone claims which adjoin the property to the northeast. These surveys delineated broad (100-300 meter wide) zones of west-northwest to northwest trending sericite schist which returned assays of up to 1950 ppb Au (0.058 oz/ton Au).

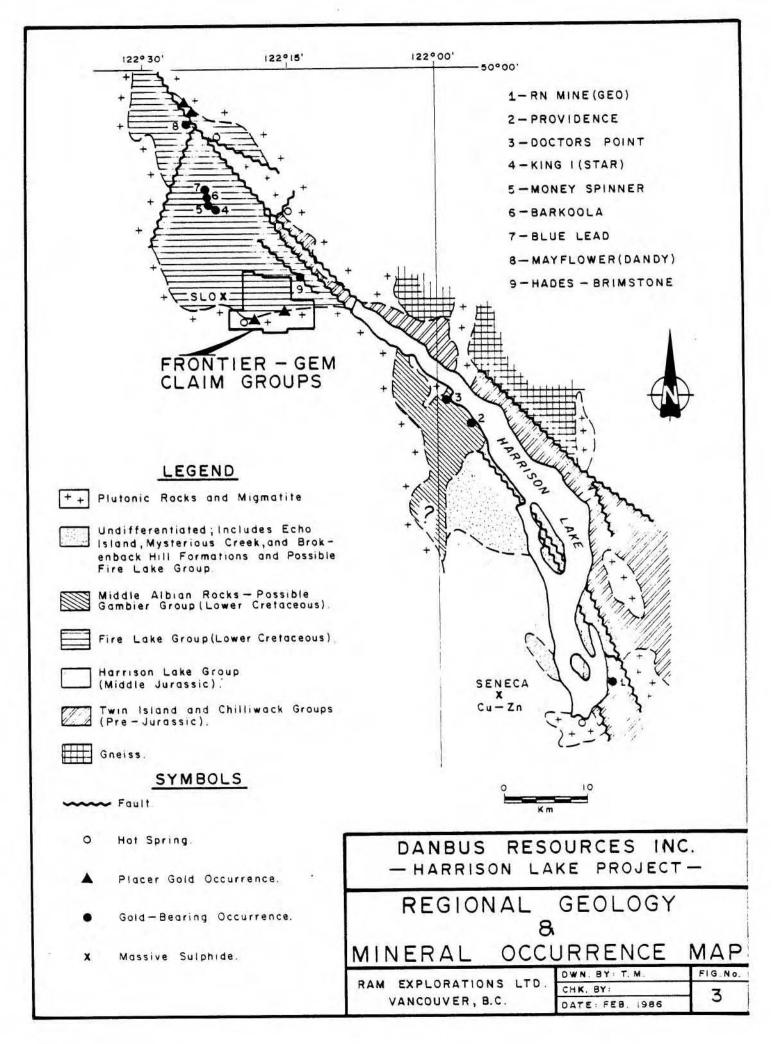
With the exception of the present survey no exploration work is known to have been carried out on the property.

SECTION - 2

GEOLOGY

2.1 Regional Geology (please refer to figure no. 3)

The geology and mineral deposits of the Harrison Lake area have been summarized by Monger (1969), Roddick (1985) and Combes et al. (1985).


Principal rock types include Upper Jurassic to Lower Cretaceous metavolcanic and sedimentary pendants preserved within Cretaceous Coast Range plutonics. A major northwest trending fault, associated with hot spring activity, occupies Harrison Lake Valley and the Lilooet River Valley.

The property of Danbus Resources straddles an east-west trending contact between the Fire Lake Group and a quartz monzonite to diorite stock of the Coast Range Intrusive Complex. It is along this type of contact that Rhyolite Resources and Abo Oil have identified gold mineralization on the Doctor's Point and RN properties.

2.2 Property Geology and Mineralization (please refer to figure no. 4)

Extensive snow cover restricted access to elevations below 2500' and consequently only scattered exposures and talus slopes along the Sloquet Creek were examined. A total of 50 talus and chip samples were collected and assayed for gold and a multi-element ICP scan. Sample locations are plotted on figure 4 with assay results and rock sample descriptions listed in Table 1.

The north central part of the Frontier - Gem claim group is underlain by a sequence of intermediate to felsic volcanics and associated sediments which have been tentatively correlated with the Lower Cretaceous Fire Lake Group (Ray et al.,1985). Rare sedimentary structures and top indicators suggest the sequence is "right way up" and striking north on the western portion of the property and east on the east side. Dips range from moderate in easterly directions to steep in northerly directions.

Scattered outcrops close to the intrusive contact consist of massive hornfelsed andesitic flows which show localized silicification and sericitization and contain minor quantities of pyrite and pyrrhotite. Talus and chip samples collected from this material returned anomlous gold values of up to 190 ppb with silver values as high as 5.7 ppm. One sample (CR 009) collected from a clastic sedimentary unit containing deseminated pyrite and pyrite enriched quartz stringers returned 159.0 ppm Ag (4.6 oz/ton). This result would normally be considered extremely anomlous, however at time of writing this assay result has not been verified.

Immediately east of the claims is a sequence of metasediments and greenstones which host broad alteration zones comprising west - northwest to northwest striking pyrite rich sericite schists. The core of these zones is typically silicified and lightly mineralized with pyrite, pyrrhotite and lesser amounts of galena and sphalerite. A sample of this material (CR 027) assayed .40 oz/ton Ag, 0.86 % Zn and 1.05 % Pb.

Coast plutonic intrusives dominate the area south of Sloquet Creek with compositions ranging from diorite to quartz monzonite. Textural variations suggest several intrusive phases, however these are as yet undetermined. The contact between plutonic and Fire Lake Group rocks was not observed in outcrop however, the hornfelsed aureole within the metavolcanics suggests an intrusive contact.

No prominent fault zones were mapped however, several small, north trending shears were noted and sampled but with negative results.

TABLE 1. ROCK SAMPLE DESCRIPTIONS

Sample #	Location	Туре	Width	Description	Au ppb	Ag	Cu ppm	Pb	Zn
CR-001	Frontier 1 N. Sloquet	angular float'	grab	siliceous, volcanic, dissem., py. + po.		0.5	22	9	129
CR-002		н	,	quartz, sericite schist, dissem. py.		0.6	10	13	11
CR-003	u	M	n	quartz-felspar fragmented tuff	1	0.1	13	2	80
CR-004	п	11	, a	siliceous chemical sediment- chert, brecciated dissem. py.		0.1	14	4	12
CR-005		talus		laminated siltstone-sandstone dissem. + fracture filled py. + po.		0.1	15	2	100
CR-006		ď	n	siliceous hornfels, dissem. po.	3	0.1	1.7	6	139
CR-007	Frontier 2 N. Sloquet	n	D	quartz-chlorite-sericite schist, dissem. py	2	0.1	28	2	72
CR-008	•	angular float		siliceous volcanic, 2-3% dissem. py.	1	0.1	14	2	84
CR-009		discont. chip	2.0m+	<pre>conglomerate -sandstone, graded contact, veined + dissem. py.</pre>	3	159.0	219	46	106
CR-010	u	talus	grab	siliceous volcanic - volcanoclastic, 2-3% dissm. py.	140	5.9	61	49	8 4
CR-011	T.	H ₁	W	fossiliferous, sillstone 1-2% dissem. + veined py.	6	0.2	86	2	5 1
CR-012	02B S. sloquet	angular float	II	quartzite (?), dissem. + veined py. + an unidenitified silver mineral	190	3.4	15	14	11

-

Sample #	Location	Туре	Width	Description	Au <u>PPb</u>	Ag	Cu ppm	Pb	Zn
CR-013	02B S. Sloquet	angular grab quartz-sericite rich rock, float chlorite + pyrite aggregates		7	0.7	19	8	25	
CR-014	,		<pre>" silicified + serictized rock coarse pyrite bands + dissem. py.</pre>		125	1.2	60	106	50
CR-015	•	11	siliceous hornfels, veined + dissem. py. + po.		20	1.1	98	13	34
CR-016	ü	sub-crop	sub-crop siliceous siltstone-chert 1-2% dissem. py.		14	0.1	73	4	99
CR-017	N.E. of Property	chip	chip 1.5 m quartz-sericite schist, sheared dissem. py.		2	0.1	30	2	19
CR-018	n	n	1.6 m		3	0.1	32	2	22
CR-019	н	outcrop	grab	quartz lens-vein, chlorite rich, 2% dissem. py.	8	0.7	331	88	7
CR-020	u	n		quartz lens, no sulphides	2	0.1	16	19	20
CR-021	n	п	"	quartz sericite chorite schist, dissem. + lens py. to 1%, minor quartz-chlorite veining	1	0.1	175	4	89
CR-022	*	н	п	quartz with chlorite, dissem. + patches of py.	4	0.1	26	3	91
CR-023	n	u	 quartz sericite chlorite schist, dissem. + veined py. + po. along fractures 		1	0.1	73	2	61
CR-024	,	discont. siliceous volcanic, chloritiz chip quartz with po. + py. veinlet		3	0.1	61	8	94	

Sample #	Location	Туре	Width	Description	Au ppb	Ag	Cu ppm	Pb	Zn
CR-025	Property veining with 10% po. + py. + minor cpy. possibly from 2.0 M wide po. zone in out of the control of the		grab	veining with 10% po. + py.	1-	0.7	413	11	19
CR-026			siliceous volcanic, dissem. po. + py.	3	1.0	220	80	158	
CR-027				siliceous volcanic po., +/-py. +/-gn. rich veinlets to 1 cm.	6	13.5	62	10429	8604
CR-028	Frontier 2 N. Sloquet	프로마이크 (1988년 - 1987년 - 1987년 1985년 1987년 1987년 - 1987년 1987년 - 1987년 1987년 1987년 1987년 1987년 1987년 1987년 1987년 		1	0.1	24	57	46	
CR-029			7.1 m	¥	4	0.1	33	8	88
CR-030	•		15.2 m	siliceous hornfels, chlorite, 1% dissem. po. + py., with veined py. to 5cm.	3	0.1	27	5	73
CR-0 11	•	talus	grab	siliceous hornfels, chlorite, 1% dissem. po. + py., with 2-3% sulphide	1.6	0.3	99	2	61
CR-032	•	*	•	siliceous + sericite rich volcanic + volcanoclastic, dissem. + veined py.	8	0.4	82	38	212
CR-033		outcrop	discont.	siliceous greenstone, hornfels, dissem, + veined py.	5	0.1	35	15	61
CR-034	+ py.		2	0.1	13	2	4 3		
CR-0 16			1	0.1	19	2	102		

Sample #	Location	Location Type Width Description		Au ppb	Ag	Cu ppm	Pb	Zn	
CR-037	N.E. of angular grab quartz chlorite sericite schi Property float py. +/- quartz vein		1	1.2	41	37	207		
CR-038	,	ij	**	quartz vein with py. siliceous volcanic with py., 8 po., +/-gn. seams sheared granite, dissem. + 4 veined py., minor quartz veining		0.8	117	5	36
CR-039	ú		n			1.9	102	512	801
CR-040	п	chip	2.0 m			0.8	217	58	87
CR-041		n ·	0.5 m	shear within siltstone, py. as pods + lenses	30	1.1	19	ı	37
CR-042	Frontier 5	angular float	grab	silicified, hornfelsed volcanic, dissem. py.		1.1	19	ţ	37
CR-043	•	•	W	silicified chemical sediment, quartz veinlets, dissem. py.	40	0.9	29	14	71
CR-044	u.		n	siliceous volcanic, dissem. py. + py. veinlets	1	0.9	29	8	63
CR-045				hornfelsed greenstone, quartz, chlorite, py. veinlets	1	1.1	15	8	70
CR-046	Gem 3	outcrop		greenstone, quartz, chlorite py. veinlets	1	1.2	20	6	65
CR-047	ů	angular float	ıı	hornfels, dissem. po. + py.	40	1.6	33	9	41
CR-048	11	outcrop	at .	siliceous volcanic, 1% dissem. py., veined py +/-po.	1	1.4	28	16	88

SECTION 3 GEOCHEMICAL AND GEOPHYSICAL SURVEYS

3.1 Geochemical Surveys (please refer to figure no.s 4 to 9)

To assist with isolating specific areas for follow up exploration, a reconnaissance scale contour soil and stream sediment sampling program was carried out. A total of 654 soil samples were collected at 50 meter intervals along parallel contours traversing the Sloquet Creek Valley (500 to 2500' elevations).

Silt samples were collected at 42 stream intersections with roads and contour soil lines. Sample locations are shown in figure 4.

Overburden along the valley slopes is light to moderate and consists of angular rock fragments in a matrix of finer, reddish brown material. Roughly 200 grams of material was collected at each of the sample sites and shipped to Vangeochem and Acme laboratories, Vancouver where they were dried and sieved to minus 80 mesh. Sample splits of 0.5 grams were then digested in a hot aqua regia solution and analyzed using atomic absorption spectroscopy for gold and ICP for a suite of 25 elements. Results of the scan showed that Ag, Pb, Cu, Zn and As could represent possible pathfinder elements.

3.2 Results

To determine anomoly thresholds the log versus probability graph approach of Sinclair, (1974), was used. Probability curves for Au, Ag, Pb, Zn, Cu and As were plotted and show distinct bimodal or polymodal frequency distributions.

Approximate anomaly thresholds were selected as follows:

	Possibly Anomalous	Probably Anomalous	Definitely Anomalous
Gold (ppb)	25-50	51-100	100
Silver (ppm)	0.6-0.9	1.0-1.5	1.5
Lead (ppm)	40-60	61-80	80
Zinc (ppm)	200-250	250-300	300
Copper (ppm)	50-100	101-150	150

Data for Au, Ag, Cu, Pb and Zn are plotted on 1:10,000 scale contour maps (figure no.s 5 to 9), with anomalous results shown as small medium or large sized circles according to the above table. Two principal anomalous areas were located within the claim group. These include the eastern half of the 2B and 02B Claims and the southern part of the Frontier 2 to 4 Claims.

Silt samples returned several anomalous results all of which are within the areas indicated above. Data is presented in appendix A.

3.3 Geophysics Surveys (see figures 10 and 11)

As part of the current work program, a grid was established in a relatively flat area of the Sloquet Creek Valley to test the response of magnetometer and VLF - EM instruments.

Fourteen kilometers of grid was flagged along east-west lines in the southern part of the Frontier 3 - 5 claims and the northern part of the Gem claims, (figure no.4 shows grid location).

The VLF - EM survey was carried out using a Geonics EM 16 receiver. This instrument measures the secondary electromagnetic fields generated by buried conductive bodies when subjected to a primary electromagnetic (radio) signal. The primary signal is provided by low frquency military radio transmitters located throughout the United States.

A total of 13.5 line kilometers were completed with station reading taken at 25 meter intervals on lines spaced at 100-200 meter intervals using Seattle, Washington as the transmitting station (24.8 Hz).

Data is presented in profile form (see fig. 10) and contoured from Fraser filtered data (see fig. 11).

A magnetometer survey was also performed using an MP-2 Proton Precession magnetometer. Unusual solar activity during the survey caused erratic readings and data was considered unreliable.

3.4 Results

An evaluation of "in phase" VLF profiles and contoured conductivity data, indicates one moderately conductive zone trending north-south located between stations $4+50~\mathrm{W}$ and $6+50~\mathrm{W}$ across lines $3+00~\mathrm{N}$ to $0+00~\mathrm{N}$.

Geological mapping in the vicinity of the grid suggests that the survey area is at least in part, underlain by massive volcanics of the Fire Lake Group. Since no exposures were noted along the conductive zone it has been tentatively interpreted as a zone of faulting or shearing.

Structures at this orientation northwest of the claim group are associated with gold bearing quartz - sulfide veins and it is therefore recommended that the survey be extended north into the geochemically anomalous, south central part of the Frontier 2 and 3 claims.

SECTION 4

PROPOSED EXPLORATION

PROGRAM

4.1 Exploration Targets

The following work program is recommended:

Phase 1.

The near term exploration objectives are to detail known anomalous areas and provide reconnaissance scale geochemical data for those parts of the claim group not yet examined.

This would include detailed geological mapping, closely spaced geochemical sampling and detailed geophysical surveys in the west half of the 2B and 02B claims and the southern part of the Frontier 2-4 claims.

Total estimated cost of Phase 1 exploration is \$44,200.00.

Phase 2.

This phase would include road access and trenching of targets detailed in Phase 1, as well as continued reconnaissance exploration of areas not covered in phase 1.

Total estimated cost of Phase 2 is \$61,500.00.

4.2 Estimated Costs

Phase 1

Engineering Supervision, Reports	5000.00
Trenching / Geological Mapping	10000.00
Geochemical Sampling - allow 500 samples @ \$25.00	12500.00
Geophysical Surveys (VLF) - allow 20 line kilometers @ \$250.00	5000.00
Equipment Rental	5000.00

Accomodation / Supplies	
- allow 60 man days @ \$45.00	2700.00
Contingency @ 10%	4000.00
Total	44200.00
Phase 2	
Engineering Supervision / Reports	5000.00
Geophysical Surveys (Horizontal Loop - EM)	
- allow 20 line kilometers @ \$500.00	10000.00
Geochemical Sampling	
- allow 200 samples @ \$25.00	5000.00
Trenching / Road Access	30000.00
Contigency @ 10 %	5500.00
Total	61500.00

Total estimated cost of Phase 1 and 2 is \$105,700.00.

REFERENCES

- Monger, J.W.H. Geology Hope, West half GSC Map 12 1969.
- Nagy, G. Soil and Rock Geochemistry of the Mayflower Prospect. 1981 BCDM Assess. Report 9326.
- Price, B.J. and Howell, W.A. Geochemical Report; Fire Lake 1981 Prospect; Hades and Brimstone Claims. BCDM Assess Report 9783.
- Ray, G.E. and Combes, S. Harrison Lake Project, Geological 1985 Fieldwork 1984. B.C.D.M. Paper 1985-1, pp 120-131.
- Roddick, J.A. Vancouver North, Coquitlam and Pit Lake Map-areas. 1965 BC GSC Memoir 335, p.
- Sharp, R.J. Geological and Geochemical Report on the Sloquet 1 1981 and 2 Mineral Claims. BCDM Assess. Report 9775.
- Siverty, G.W.G. Report on Airborne Geophysical and Airphoto 1984 Tectonic Surveys, on the Brimstone, Hades and Lela Claims for Tenquille Resources Limited. BCDM Assess. Report 12217.
- White, G.E. Airborne Magnetometer, VLF and Electromagnetic 1983 Surveys. Leon Oil and Gas Limited; Styx, Tip and Indy Claims; North Harrison Lake. BCDM Assess. Report 11991.
- Wojdak, P.J. Geochemical Assessment Report on the Sloquet Claims. 1980 BCDM Assess. Report 8423.

CERTIFICATE

- I, Carl von Einsiedel, of the city of Vancouver, British Columbia hereby certify that:
- I am a Consulting Geologist with offices at 210 470 Granville Street, Vancouver, B.C.
- 2) I hold a degree of Bachelor of Science in Geology from Carleton University in Ottawa granted April 1982.
- 3) I have completed undergraduate and post graduate courses in exploratiion geochemistry, geostatistics and geophysics.
- have been employed in my profession since 1979.
- 5) This report is based on results of geologic mapping carried out during January, 1986 and on results of geophysical and geochemical surveys carried out between January 3 and Feb 2, 1986.
- 6) I have no interest either direct nor indirect in the shares or securities of Danbus Resources Inc. nor do I expect to receive any interest.

Dated at Vancouver, British Columbia, this twenty fifth day of February, 1986.

C.von Einsiedel, BSc.

Consulting Geologist

APPENDIX - A

Assay Results

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR DNE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN.FE.CA.F.CR.MG.BA.TI.B.AL.NA.K.M.SI.ZR.CE.SN.Y.MB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: SOIL(P1-9) SILT(P10) ROCK(P11) AU ANALYSIS BY AA FROM 10 GRAM SAMPLE.

								RA	M EX	PLOF	RATI	ON	PRO	JECT	-	HLBA	-01	07	FIL	E #	86-	(ii) è	6							FAI	šΕ	t
SAMPLE	Mo PPM	Eu FPM	Fb FPM	In PPM	Aq PPM	PPM	Co PPM	Mn PPM	Fe 1	As PPM	PPM	Au FPM	Th PPM	Sr PPM	Ed PPM	Sb PPM	Bi PPM	FFM	Ca 1	P	La PPM	Cr PPM	Mg Z	8a PPM	Ti z	B FFM	Al Z	Na Z	1	₽ PPM	Au• FPE	
CSL 400-001	1	39	25	99	.2	13	13	468	3.14	8	5	NĐ	2	22	1	5	2	54	.30	.09	6	16	.71	92	.09	3	2.40	.01	.06	1	2	
CSL 400-002	2	44	20	64	.1	9	14	770		10	5	ND	1	31	1	6	3	59	.54	.05	7	15	.82	44	.11	3	1.75	.02	.00	1	1	
CSL 400-063	1	55	15	70	. 1	9	14		3.23	7	5	ND	2	42	1	4	6	56	.63	.69	9	15	.89	109	.12	2	2.00	.03	.09	1		
CSL 400-004	1	15	24	109	.1	9	10		2.58	6	5	ND	1	30	1	2	3	49	.42	. 16	5	15	.57	101	.06	2	1.54	.01	.04	1	1	
CSL 400-005	1	46	15	219	.1	10	15	641	3.65	26	5	ND	3	34	1	5	2	75	.43	.67	10	21	.72	160	.15	6	3.49	.03	.06	1	1	
CSL 400-006	1	22	19	132	.1	11	12		3.34	16	5	ND	1	21	1	5	2	58	.27	.18	1	18	.64	72	.09	4	2.25	10.	.06	1	4	
CSL 400-007	1	35	12	102	.3	15	16		3.75	12	5	ND	2	29	1	2	2	92	.42	.09	12	21	.77	164	.12	6	2.77	.02	.09	1	1	
CSL 400-008	1	10	10	61	.1	5	7		2.09	2	5	ND	1	23	1	2	2	51	.32	.05	4	12	. 36	39	.10		1.27	.01	.03	1	4	
CSL 400-009	1	50	18	83	. 1	13	13		3.03	6	5	ND	2	21	1	4	2	61	. 26	.08	7	16	.62	53	.14		2.23	.01	.04	1	ŧ	
ESL 400-010	1	32	19	118	.1	11	13	1078	2.76	6	5	ND	1	26	1	3	2	55	. 36	. 14	7	17	. 58	96	.11	2	2.37	.01	.05	1	3	
CSL 400-011	1	32	8	80	.1	8	9		2.52	6	5	ND	2	25	1	3	2	50	.32	.14	4	11	.54	80	.09		2.00	.01	.07	1	2	
CSL 400-012	1	14	15	67	. 2	7	6		2.18	2	5	ND	1	18	1	3	2	52	.23	.06	4	13	. 33	42	.10		1.44	.01	.02	1	1	
CSL 400-013	1	18	19	84	.1	7	7	581	2.62	4	5	ND	2	17	1	2	2	54	.21	.19	4	14	.34	45	.11		2.05	.01	-02	1	2	
CSL 400-014	1	34	17	112	.1	8	10		3.06	7	5	HD	2	27	1	4	2	55	. 28	. 48	5	15	.50	125	-11		2.35	.01	.05	1	4	
CSL 400-015	1	14	12	133	. 2	10	9	801	2.66	2	5	ND	1	17	1	3	2	64	.22	. 25	4	18	.45	97	.08	3	1.66	.01	.04	1	2	
LL 016	2	62	20	135	. 2	16	18	940	4.21	24	5	ND	2	28	1	4	2	77	. 36	.11	6	24	1.05	111	.11		2.56	.03	.17	1	11	
LL 617	2	79	27	166	. 1	15	19		4.55	27	5	ND	1	34	1	3	2	86	. 35	.10	7	26		131	.11		2.68	.04	.13	1	3	
LL 018	1	59	22	131	. 1	16		1233		18	5	MD	1	22	1	3	2	74	. 43	.10	6	23	. 98	101	.11		2.59	.03	.09	1	هٔ	
LL 019	3	96	26	185	. 3	17	23		4.54	22	5	ND	1	54	1	5	5	100	.69	.11	5		1.35	190	.16		2.73	.09	.21	1	29	
LL 020	3	101	21	188	.3	16	23	1022	5.23	36	5	ND	1	44	1	7	5	106	.65	.09	8	32	1.56	154	.16	5	3.02	.08	.20	1	18	
LL 021	3	71	19	149	.2	19	20	745	4.65	23	5	ND	1	49	1	4	9	93	-40	.10	6	28	1.14	124	. 15	6	3.10	.05	.17	1	31	
LL 022	3	52	26	162	. 2	16	15	782	4.56	15	5	ND	1	19	1	5	4	91	.24	.11	3	24	1.07	108	.13	3	2.92	.02	.07	1	20	
LL 023	1	15	16	114	.3.	7	6	840	2.18	5	5	ND	1	18	1	4	2	47	. 24	.12	4	13	.38	119	.08	2	1.36	.01	.04	1	6	
LL 024	2	16	14	172	. 3	12	11		2.99	7	5	MD	1	20	1	5	2	55	.32	.08	4	17	.50	72	-11	2	1.85	.02	.04	1	4	
LL 025	1	14	13	156	.3	7	8	2062	2.40	6	5	ND	1	18	1	3	2	47	. 29	.15	2	15	.55	106	.09	4	1.51	.01	.04	1	5	
LL 026	1	16	18	121	.2	9	9	1769	2.29	6	5	ND	1	22	1	3	2	43	.32	.09	3	11	.54	69	.10	4	1.43	.01	.04	1	1	
LL 027	1	12	8	284	. 2	15		1107		4	5	MD	1	23	1	6	2	60	.40	.05	3	22	.89	69	.20	4	2.16	.06	.05	1	1	
LL 028	1	25	9	121	.2	8		1159		13	5	ND	2	16	1	3	2	50	. 22	.18	4	15	. 65	91	.09	3	2.08	.01	.04	1	36	
LL 029	1	14	16	137	.4	6			2.06	6	5	ND	2	15	1	3	2	41	.20	.19	3	12	.51	102	.07	2	1.58	.01	.04	1	13	
LF 030	1	9	13	77	. 2	4	6	1183	2.15	6	5	HD	1	12	1	2	2	43	.18	.06	4	11	.34	79	.05	2	1.26	.01	.03	1	6	
LL 031	1	30	15	124	.1	10	10	1137	3.21	16	5	ND	2	14	1	2	2	51	.18	.31	4	16	.76	85	.06	2	2.35	.01	.04	1	4	
LL 032	2	45	60	187	. 3	18	19	1768	5.58	117	5	ND	1	14	1	6	2	62	.29	.11	6	29	1.31	81	.03	3	2.17	.01	. 05	1	55	
FF 033	1	23	41	128	.5	12	16	1297	5.04	63	5	ND	1	12	1	2	2	62	.19	.13	4	23	1.01	77	.02	2	2.00	.01	.04	1	36	
LL 034	2	55	46	198	.8	18	20	1088	5.95	108	5	NG	1	9	1	5	4	60	.14	.23	6	25	1.25	64	.01	2	2.52	.01	.05	1	41	
LL 035	2	51 _	59	168	.9	21	22	1329	5.76	100	5	MD	1	12	1	8	2	60	.18	.12	6	32	1.45	65	.01	6	2.38	.01	.05	1	66	
LL 038	2	41	56	226	.2	20	22	2722	6.00	75	5	ND	1	19	1	5	2	62	. 31	.20	6	32	1.51	122	.01	4	2.50	.01	.05	1	27	
STD C/AU-0.5	21	61	40	142	7.0	69	32	1220	3.96	43	19	8	33	48	19	16	20	60	.48	.16	38	61	.88	176	.08		1.72	. GE	.11	13	499	
																								E8655	200			11357	1.030	155		

SAMPLES	No PPM	Cu PPM	Pb PPM	In FPM	AQ FFM	N1 PPM	Co FPM	Mn FPM	Fe 1	As FFM	PPM	Au FFM	Th FPM	Sr PPM	Ed PPM	5b PPM	B1 PPM	V PPM	Ca 1	F	PPM	Cr PPM	Mg Z	Ba PPM	T ₁	B PPH	Al Z	Na I	K	PPM	Au+ PPB
LL 637	2	41	61	177	.5	16	1000		4.39	50	5	NO	- 1	17	1	3	2	53	. 27	.17	ì	26	.99	138	.02		1.99	.01	.06	1	19
LL 038	1	27	25	87	-1	В		2595		15	5	ND	2	27	1	2	2	50	.42	.23	7	15	.74	178	. 07		1.98	.02	.11	1	3
LL 639	1	29	27	143	.4	7	9	1467	2.57	15	5	ND	3	16	1	2	2	43	.21	.14	5	12	.54	83	.07		2.07	.úI	.05	1	130
LL 040	1	16	18	157	.1	5	8	505	2.17	7	5	ND	1	10	1	2	2	38	. 23	.14	5	12	.53	53	.06		1.64	.01	.03	1	12
LL 041	1	26	17	163	.2	7	9	1184	2.68	15	5	NO	2	17	1	2	2	44	.23	.31	5	13	. 58	97	.04	2	2.00	.01	.05	1	2
LL 042	1	13	17	100	.1	4		447	1.74	8	5	ND	2	16	1	2	2	35	. 25	.10	4	11	.43	63	. 05	4	1.43	.01	.03	1	2
LL 643	1	12	24	46	.1		4	327		18	5	ND	1	14	1	2	2	36	.19	.05	6	11	. 29	57	.03	2	.92	.61	.04	1	2
LL 044	2	20	38	119	. 3	6	10		3.84	32	5	ND	1	14	1	4	2	43	.18	.07	7	16	.81	100	.01		1.84	.01	.04	1	3
LL 045	2	37	61	172	.3	13	17		5.29	78	5	ND	i	20	i	5	2	41	.26	.13	11	18	1.03	111	.02		1.73	.01	.05	1	4
LL 046	2	15	28	105	.1	1	9		3.20	27	5	ND	1	11	1	2	2	38	.14	.11	5	13	.56	53	.02		1.48	.01	.04	1	3
LL 047	2	18	29	118	.3	7	9	666	3.89	36	5	ND	1	12	1	•	2	39	.14	.07	6	15	.73	77	.01	3	1.86	.01	.03	,	3
LL 04B	2	18	26	140	.1	11	11		4.29	28	5	ND	i	13	- 1	- 1	2	41	.13	.08	8	19	1.00	91	.01		1.98	.01	.04	1	22
LL 049	7	477	76	2512	5.2	55	36		4.57	32	7	ND	i	20	,	6	2	71	.24	.17	39	23	.78	120	.16		3.76	.02	.10	1	90
LL 050	3	42	61	298	1.7	12	9		3.62	16	5	ND	i	16	1	3	2	70	.20	.18	5	18	.47	106	.14		1.78	.02	.06	i	27
LL 051	7	79	118	269	2.B	14	11		4.38	30	5	ND	i	10	i	3	2	75	.11	.16	5	21	.80	69	.15		3.20	.01	.06	1	115
		1,54	10.00	10,		2.1	**	100		-	•		5.00		•	-	Š	0.5	***							-				100	
LL 052	3	43	56	164	1.9	10	8	480	3.49	23	5	NG	1	6	1	3	2	67	.10	.13	4	16	.44	44	.12	3	2.43	.01	.06	1	60
LL 053	3	29	30	72	1.0	13	6	1033	2.13	9	5	MD	1	19	1	2	2	43	.33	.10	2	21	.37	67	.06	2	.98	.02	.10	1	24
LL 054	2	29	32	89	1.6	7	5	326	2.92	12	5	ND	1	9	1	2	2	65	.12	.08	3	15	. 44	54	.12	2	2.37	.01	.06	1	34
LL 055	2	36	31	135	1.3	10	6	211	2.50	9	5	ND	1	8	1	2	2	56	.09	.08	3	15	.52	55	.12	2	2.05	.01	.03	1	39
LL 056	1	19	32	154	. 6	9	6	686	2.46	В	5	MD	1	9	1	3	2	53	.14	.10	1	11	.56	60	.14	2	1.67	.01	.04	1	38
LL 057	3	60	54	203	1.4	11	9	417	3.46	10	5	ND	1	12	1	3	2	62	.11	.09	4	23	1.19	80	.13	2	2.62	.01	.05	1	60
LL 058	3	65	71	226	1.7	11	11	829	3.62	14	5	ND	1	13	1	6	2	67	.15	.17	5	24	.89	94	.13	2	3.06	.01	.08	1	45
LL 059	2	43	41	166	1.5	9	8	494	3.07	12	5	NB	1	8	1	2	2	61	.12	.11	4	19	.60	66	.11	2	2.47	.01	.05	1	9
LL 060	2	35	25	144	.6	12	7	528	4.28	5	5	ND	1	11	1	3	2	102	.09	.09	2	35	1.17	120	.14	2	2.80	.01	.07	1	6
LL 061	7	114	17	149	.4	18	18	470	4.20	5	5	ND	1	22	1	4	2	82	.16	.09	5	31	1.26	166	.09		3.46	.02	.09	1	11
LL 062	4	59	15	115	.5	12	11	856	3.67	8	5	ND	1	16	1	3	2	79	.16	.15	3	23	.89	102	.06	2	2.68	.01	.06	1	ò
LL 063	3	82	7	165	.2	12	13		3.84	6	5	ND	1	26	1	4	2	89	.32	.15	4	22	1.07	105	.69		2.93	.02	.06	1	
LL 064	3	58	10	87	.4	10	9		2.77	5	5	ND	1	14	1	2	2	48	.12	.08	3	10	.55	80	.03		2.05	.01	.04	1	9
LL 065	1	20	14	90	. 2	1	7		2.74	4	5	ND	1	8	1	3	2	57	.09	.15	3	10	.46	88	.03		1.90	.01	.03	1	6
LL VAA	2	41	29	118	.4	7	8		5.10	6	5	ND	1	13	1	3	2	92	.17	.23	4	16	.60	85	.16		1.96	.01	.10	1	21
LL 067	3	42	12	109	.5	11	9	745	3.61	3	5	ND	1	17	1	4	2	75	.16	.08	4	17	.87	91	.13	2	2.88	.02	.07	1	9
LL 068	1	27	13	156	. 2	В		1078		2	5	ND	1	16	1	2	2	61	.16	.12	4	12	.73	100	.14		2.01	.02	.04	1	4
LL 669	2	33	41	142	.3	11		1177		61	5	ND	1	16	1	4	2	49	.20	.19	,	16	1.05	113	.05		1.79	.01	.06	1	5
LL 070	2	32	53	183	.2	10	1000	4176	120	55	5	ND	1	27	1	5	2	38	.19	.11	8	16	.88	149	.03		1.45	.01	.06	i	3
LL 071	2	51	91	245	.2	13		1830		98	5	ND	1	22	1	5	2	42	,30	.16	8	17	1.10	88	.02		1.97	.01	.05	i	9
LL 072	2	36	45	182	.1	12	13	1241	4 42	53	5	ND	1	23	1	5	2	36	.56	.13	6	18	1.14	59	.03	2	1.67	.01	. 09		3
SID C/AU-0.5	19	61	42	138	6.9	69		1182		37	18	8	33	47	17	15	21	59	.48	.15	36	59	.88	174	.07		1.72	.06	.11	11	190

ı

(

¢

(

(

42

73

61

20

SID C/AU-U.5

140 7.0

40

29 1201 3.97

33 46 18 15 21

8

59

.48 .16

38 61 .88 175 .07

40 1.72

.06

13 490

(

(

(

(

1

1

ţ

1

Ç

SAMPLES	PP M	Co FFM	PB PPM	In PPM	Aa FFM	N: PPn	Co PPM	PF R	fe 2	As PPM	U PFM	Au PPM	Th PPM	Sr PPM	E6 FPM	Sh PPM	B1 PPM	PPM	Ca 1	f	La PPM	Cr PPM	Mq Z	Ba PPM	Ti 1	PP#	Al I	Na 1	K Z	PPM	Au+ FPE
LL 109	3	32	23	214	.2	14	14	834	5.01	3	5	NO	1	14	1	9	,	160	. 20	.09	3	49	1.88	121	.34	3	3.22	.02	.12		8
LL 110	3	45	13	193	.4	7	13		4.15	10	5	ND	1	18	1	8	2	83	.31	.05	5	18	1.10	103	.19		3.00	.03	.15	i	2
LL 111	2	19	18	401	.1	8		2510		10	5	40	1	25	1	3	2	61	.24	.75		12	.57	471	.12		2.72	.02	.06	1	3
LL 112	3	51	16	231	.5	13	14		7.18	64	7	ND	1	41	1	6	1	59	.25	.39	4	9	.65	111	.09		3.03	.02	.05	1	12
LL 113	2	41	28	232	1.4	10	15	3670	6.97	47	6	NO	1	23	1	2	2	65	.16	.25	3	13	.43	145	.07		2.42	.02	.07	1	10
11 114	2	31	27	222	.3	13		2420		44	5	ND	1	44	1	5	2	66	.38	.28	5	17	.77	130	.09	2	2.65	.05	.13	1	2
LL 115	2	50	25	155	. 2	10		2668		77	5	MO	1	45	1	2	2	68	.36	.41	2	13	.69	177	.07		2.38	.05	.13	1	1
LL 119	2	66	25	177	.4	5	17		a.50	13	5	ND	2	13	1	2	2	119	.17	.15		8	.54	144	.17		7.00	.02	.07	1	5
LL 150	1	17	14	113	.3	1		2307		9	5	HD	1	17	1	7	2	49	.18	-12	4	11	.39	134	.10		1.51	.02	.04	1	2
LL 121	2	36	8	210	.2	9	10	587	7.85	8	5	NS	2	16	1	2	2	59	.25	.11		15	.54	59	.13	2	2.49	.01	.05	1	4
LL 122	2	32	13	215	.3	11	10		5.70		5	ND	2	16	1		2	83	.20	.12	4	19	.69	61	.16		2.72	.01	.04	1	3
LL 123	2	88	8	181	. 3	18	17		3.62	22	5	NO	4	18	1	5	2	13	. 24	.31	5	19	.84	109	-12		4.39	.02	.14	1	2
LL 124	1	19	9	141	.1	10	7		2.60	2	5	NO	1	16	- 1	2	2	58	. 22	.10	3	14	.41	54	.12		2.11	.01	.04	1	1
LL 125	2	21	7	120	.3	10	8		3.14	•	5	MO	2	17	- 1	4	2	66	. 20	.09	5	12	.46	71	.17		2.66	.01	.03	1	1
LL 126	2	37	12	162	.2	11	8	745	3.50	1	5	NO	2	12	1	4	2	48	.16	.23	5	23	.45	46	.16	2	1.00	.01	.01	1	2
LL 127	1	22	5	110	.2	10	7	422	7.63	5	5	MD	1	14	1	3	2	57	.18	.10		16	.42	44	.11	3	2.22	.01	.03	1	23
LL 128	1	16	23	99	.3	6	5	251	2.30	3	5	ND	2	13	1	2	2	46	.18	.07	2	11	.37	42	.09	2	1.90	.01	.03	1	2
LL 129	2	47	11	131	.2	16	9	414	3.44	29	5	ND	1	11	1	2	2	67	.15	.08	4	24	.61	46	.05	2	2.24	.01	.06	1	27
LL 130	1	15	8	68	. 3	11	6	277	2.35	12	5	MD	1	8	1	2	2	61	.15	.03	5	15	.48	29	.11	2	1.28	.01	.05	1	7
LL 131	1	21	9	173	.2	11	10	468	2.59	5	5	MD	2	15	1	2	2	53	.21	.18	5	16	.42	67	.10	2	2,15	.01	.03	1	1
LL 132	2	28	5	350	.2	19	16	855	4.52	7	5	ND	2	16	1		3	93	.25	.21	5	48	1.02	93	.26	2	2.80	.02	.07	1	1
FF 132	5	64	19	232	.2	19	19	996	4.90	30	5	NO	2	19	1	5	2	95	.36	.10	5	29	.99	67	.17	2	3.90	.02	.08	1	4
LL 134	3	20	6	167	. 4	10	10	404	3.74	10	5	ND	1	18	1	4	2	80	.33	.07	5	23	.57	55	.19	1	2.59	.02	.06	1	2
CL 135	2	10	5	88	.1	á	5	247	2.62	1	5	ND	1	17	1	2	2	86	.78	.07		14	.27	29	.14	3	.99	.01	.04	1	2
LL 136	9	38	15	141	.5	15	18	433	4.80	17	5	MD	2	19	2	5	2	93	.33	.04	5	25	.82	70	.21	2	3.86	.02	.08	1	3
LL 137	2	24	17	119	.1	9	11		3.18	12	5	ND	2	20	1		2	71	.32	.04	4	18	.52	42	.14	2	1,86	.01	.04	1	1
LL 138	1	71	20	85	.5	20	21	2007-0	3.31	206	5	NO	1	17	1	3	2	19	.47	.15	4	7	.32	18	.04	2		.02	.03	1	В
LC 139	3	52	16	180	.1	19	14		4.21	17	5	MD	2	18	1	6	2	72	.30	.09	5		1.05	53	.13		3.23	.01	.05	1	7
LL 140	3	47	16	211	.3	18	14		4.22	15	5	MO	1	16	1	5	2	72	.26	.09	5		1.00	53	.13		3.08	.01	.05	1	4
11 141	3	42	19	200	.3	17	16	535	4.08	14	5	ND	1	18	1	5	2	69	. 23	.09	•	25	.98	52	.13	2	3.04	.01	.05	1	2
LL 147		46	19	158	.3	17	14	.531		15	5	ND	2	17	1	5	2	71	.29	.09	5	25	1.03	50	.13		3.02	.01	.05	1	4
FF 143	3	42	12	190	. 3	16	14		4.05	15	5	MD	1	17	1	5	2	69	.30	.09	5	25	.98	50	.13		2.99	.01	.04	1	22
LL 144	4	43	20	207	.4	15	14		4.22	16	5	MD	1	17	1	2	5	71	.30	.10	5	25	1.00	52	.13		1.08	.01	.04	1	4
EL 145	1	29	1	118	.4	12	9		3.14	13	5	MD	2	12	1	7	2	57	.14	. 24	4	19	.67	52	.09		2.95	.01	.04	1	26
LL 146	2	48	6	116	.4	13	12	881	3.64	10	2	MD	2	15	1	4	2	68	.18	.17	5	21	.84	67	.14	2	3.41	.01	.07	1	5
LL 147	2	21	13		.2	11		1136		12	5	NO	2	12	1	3	2	49	.13		4	17	.48	55	.12		3.51	.01	.03	1	1
STR C/AH-0 S	21	4.4	10	141	1.0	72	to	1714	1 97	41	1.7		7.4	40	10	1.7	74	LA.	40	44	10	4.9	00	101	A.D.	41	1 72	AT	**	17	ABA

ι

.

(

ţ

(

SAMPLET	Mo PPM	Cu PPM	Pb PPM	in PPM	AG PPM	Ni PFM	Co PPM	Mn FFM	fe 1	As PPM	PPM	Au PPM	Th PFM	Sr FFM	Cd FPM	Sb	BI PFM	PPM	Ca	F	PPM	Cr FPM	Mq 1	Ba PPM	Ti Z	B PPM	Al Z	Na Z	K 1	PPM	Au. PPE	
LL 148	1	16	24	213	.1	10	16	1204	2.85	7	5	ND	2	20	1	3	2	60	. 29	.13	6	20	.62	100	.12	2	2.21	.01	.04	1	1	
LL 149	1	43	11	126	.3	8	10		4.64	13	5	ND	2	15	1	2	2	93	.20	.19	7	25	1.06	55	.15		3.65	.01	.06	1	3	
LL 150	1	27	21	180	.3	12		1630		11	5	ND	1	14	1	2	2	59	.19	.20	7	22	.60	68	.12	3	2.45	.01	. 05	1	1	
LL 151	1	32	26	131	. 6	12	9		3.67	24	5	NO	2	12	1	5	2	72	.14	.22	8	27	.72	51	.15		5.16	.01	.04	1	3	
LL 152	1	29	27	143	. 9	10	7		3.51	23	5	ND	3	15	1	1	2	68	.17	.20	7	25	.70	70	.14		3.12	.01	.06	1	5	
LL 153	1	29	15	153	. 4	12	9	559	4.19	14	5	NG	1	14	1	2	2	81	. 15	.15	7	24	.81	62	.16	9	4.50	.01	.04	1	2	
LL 154	1	13	18	δů	.4	4	3	539	2.00	15	5	NB	1	12	1	5	2	63	. 15	.06	6	16	.31	41	.10	6	1.20	.01	.03	1	2	
LL 155	1	19	28	145	.4	8	8	1334	3.65	15	5	ND	1	15	1	5	2	85	.20	.11	8	31	.96	65	. 16	2	2.45	.01	.04	2	3	
LL 156	1	40	18	175	.5	4	8	975	3.75	15	5	ND	3	16	1	4	2	92	.19	.10	7	23	1.12	75	.14	4	3.00	.01	.07	1	1	
LL 157	1	9	8	46	. 3	6	3	236	1.91	8	5	KD	1	15	1	2	2	67	.21	.05	5	19	. 35	23	.17	3	1.25	.01	.02	1	1	
LL 158	1	21	33	178	.8	8	8	1613	3.11	15	5	ND	1	14	1	3	2	63	. 20	.18	8	20	.73	85	.12	2	2.42	.01	.05	1	1	
LL 159	1	31	21	127	. 6	12	11	1642	3.68	16	5	ND	1	23	1	4	2	77	. 37	.12	6	23	.95	91	.10	5	1.95	.04	.07	1	4	
LL 160	2	65	35	242	.2	14	18	897	4.91	31	5	ND	2	30	1	3	2	87	.45	.12	8	27	1.45	65	.13	2	2.64	.05	.08	1	14	
LL 201	1	23	22	127	.2	6	8	2003	2.54	5	5	ND	2	26	1	2	2	49	.31	.30	5	13	.43	130	.09	2	2.03	.01	.04	1	1	
LL 202	2	17	22	95	.3	8	9	1519	2.66	15	5	ND	1	34	1	2	2	48	.49	.07	6	12	.49	91	.07	2	2.03	.01	.06	1	1	
LL 203	2	34	31	132	.6	12	19	1932	3.22	3	5	ND	2	42	1	2	5	56	.76	.13	21	19	.55	85	.11	1	3.71	.02	.06	1	1	
LL 204	1	23	24	97	.1	16	10	645	3.30	11	5	ND	1	30	1	5	2	70	.39	.08	6	21	.62	69	.11		2.04	.03	.08	1	11	
LL 205	2	31	19	107	.1	12	11	1082		17	5	ND	1	26	1	4	2	73	. 35	.13	6	21	.76	120	.13	3	2.52	.02	.07	1	1	
LL 206	1	31	19	152	.1	18		1009		12	8	NB	2	28	1	3	2	72	.40	.13	5	24	.90	69	.16		2.72	.02	.07	3	1	
LL 207	2	24	32	161	.1	12		5377		16	5	NO	1	54	1	4	2	64	.50	.09	5	16	. 52	266	.19	5	2.62	.02	.10	1	1	
LL 208	2	37	29	295	.3	16	54	3390	5.89	52	5	ND	1	38	1	3	2	58	.37	.47	6	16	.55	130	.10	•	3.67	.02	.07	1	1	
LL 209	1	18	35	244	.1	12	18	1483	3.70	33	5	NG	2	20	1	2	3	58	.23	.37	5	21	.51	111	.13	2	3.19	.02	.07	1	3	
LL 210	2	32	15	291	.1	19		4841		24	5	ND	1	60	1	2	2	53	.42	.37	5	17	.47	388	.11	6	3.20	.02	.09	1	1	
LL 211	1	41	29	155	.1	13		2301		15	5	NB	2	31	1	2	4	62	.40	.28	8	22	-81	103	.14	2	3.13	.01	.07	1	1	
LL 212	2	28	2	98	.1	13		1409		18	5	HD	2	25	1	5	2	63	.32	.17	13	19	.74	67	. 15	3	2.71	.01	.07	1	3	
LL 213	3	31	28	96	.1	11	12	446	3.92	51	5	ND	2	22	1	5	2	17	. 28	.15	6	23	.81	56	.17	2	3.79	.01	.07	4	1	
LL 214	2	22	29	167	.1	13	17	2685	4.11	30	5	ND	1	32	1	2	2	67	.40	.27	6	23	.43	143	.13	7	2.89	.01	.06	1	12	
LL 215	2	36	24	213	.2	11		1209		114	5	ND.	1	20	1	3	2	60	.22	.34	7	23	.40	107	.17	4	3.43	.01	.09	1	1	
LL 216	2	23	20	140	.1			2766		9	5	ND	1	48	1	2	2	49	.81	.16	19	20	.49	90	.12	2	3.49	.02	.06	1	1	
UL 1001	2	50	52	170	.4	13		1860		67	5	ND	1	26	1	4	7	70	.53	.13	11	17	1.42	107	.03	4	2.35	.02	.06	1	24	
UL 1002	2	41	30	113	.1	15	15	1260	4.16	30	5	ND	1	35	1	6	4	61	.67	.13	9	20	1.05	84	.08	4	1.88	.02	.12	1	4	
UL 1003	1	53	14	99	.2	13	14		4.05	27	5	ND	1	33	1	2	2	62	.50	.13	9	21	1.02	66	.12		1.95	.03	.12	1	2	
UL 1004	i	35	17	81	.1	11	11		3.46	16	5	ND	1	40	1	2	3	69	.63	.12	10	18	.90	57	. 14		1.70	.04	.12	2	3	
UL 1005	2	57	44	131	.3	15		1675		162	5	MD	1	19	1	7	6	65	.26	.14	19	15	1.20	53	.05		2.29	.02	.04	1	39	
UL 1006	2	71	44	139	.8	15		1531		217	5	ND	1	14	1	7	2	71	.19	.13	13		1.44	51	.02		2.55	.01	.06	1	115	
W 1007		70		167			12	1170				HO.		20		3	2	42	77	20	8	21	.85	PA	.08	,	2.29	01	.09	1	6	
UL 1007	2	46	16	167	.2	11		1178		55 39	5 18	ND 8	34	29 49	17	17	20	61	.37	.16	38	61	.88	80 181	.08		1.72	.01	.10	15	510	
STD C/AU-0.5	71	16	14	142	7.0	72	14	1/5/	1.71	7.4	1 11	H	3.4	47	1/	17	70	0.1	. 90	. 10	30	Oi	. 56	101	. UB	20	1.16	. 00		1.3	210	

SAMPLE	No PPM	Cu PFM	Pb PPM	in PPM	Aq FPM	N1 PPM	Co PPM	Mn PPM	fe 1	As PPM	PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	B1 PPM	V PPM	Ca Z	F	La PPH	Cr PPM	Mq Z	Ba PPM	li 1	6 FF#	AI	Na Z	1	PPM	Au* PFE	
UL 1008	2	52	20	113	.2	15	16	1599	4.11	77	5	ND	ī	21	í	2	2	57	.43	.14	12	19	.89	83	.06	2	2.40	.01	.09	r	7	
UL 1009	1	40	17	71	.2	15	11	558		11	5	ND	4	20	1	2	2	60	.30	.10	9	17	.79	51	.12		2.03	.01	.08	,	3	
UL 1010	1	38	10	75	.1	13	11		3.18	8	5	HD	3	22	1	2	2	56	.30	.11	10	18	.74	62	.10		1.92	.01	.07	1	1	
UL 1011	1	40	13	85	.1	16	11		3.25	В	5	ND	3	22	1	2	2	55	.31	.11	9	18	.80	73	.11		2.05	.01	.08	1	1	
UL 1012	1	47	14	79	.1	17	13		3.58	9	6	ND	3	25	1	2	2	41	.37	.11	10	19	.94	77	.12		2.30	.01	.15	1	4	
UL 1013	1	46	31	130	. 2	23	19	1739	4.96	88	5	ND	1	13	1	2	2	62	.20	.08	12	31	1.17	91	.02	3	2.52	.01	.05	1	3	
UL 1014	1	36	11	64	.1	15	12	1130	3.65	12	5	ND	2	23	1	2	2	61	.36	.08	8	19	.88	81	.12	2	1.90	.01	.06	1	3	
UL 1015	1	25	14	82	-2	15	13	831	3.23	8	В	ND	2	27	1	3	2	59	. 45	.10	7	17	. 87	66	.12	2	1.63	.02	.09	1	8	
UL 1016	1	28	7	80	.1	12	11	970	3.31	3	5	ND	2	25	1	2	2	59	.39	.08	7	18	.84	66	.13		1.65	.02	.08	1	2	
UL 1017	1	43	14	79	.1	15	11		3.42	9	5	ND	2	21	1	2	2	62	. 29	.10	6	19	.68	73	.13		2.53	.01	.04	1	1	
UL 1018	1	34	1	88	.1	12	11	474	3.32	6	5	ND	2	23	1	2	2	66	.33	.13	5	18	.70	70	.12	2	2.29	.01	.06	1	3	
UL 1019	8	41	23	216	-1	25	22	2084	6.03	8	5	ND	2	27	1	2	2	109	.35	-14	7	36	.86	145	.16	2	3.43	.01	.08	1	6	
UL 1020	6	57	16	220	.4	39	27	799	7.75	31	5	ND	2	12	1	2	7	143	.21	.12	9	43	.72	91	.17		3.56	.01	.09	1	31	
UL 1021	3	39	31	280	.2	30	34	2713	7.76	15	5	ND	1	18	2	2	10	92	.26	.16	7	34	. 65	91	.11	2	3.07	.02	.06	1	11	
UL 1022	2	49	15	166	.4	30	22	919	4.76	20	6	ND	1	35	1	2	2	88	.49	.06	6	34	1.17	80	. 18	5	3.17	.05	.07	1	4	
UL 1023	20	29	23	202	.1	23	40	864	7.15	7	5	ND	1	45	1	2	3	87	.47	.13	7	22	.67	39	.18	6	2.51	.02	.04	1	7	
UL 1024	5	58	21	233	. 3	39	28	733	4.74	7	6	ND	2	63	2	2	2	78	.53	.07	6	30	1.25	90	.19	2	3.75	.05	.11	1	49	
UL 1025	15	52	31	206	. 1	41	31	2143	5.33	11	5	ND	1	137	1	2	2	75	.50	. 16	6	21	.89	114	.13	2	3.80	.01	.08	1	8	
UL 1026	3	40	59	211	.1	21	24	5187	3.55	5	5	ND	1	82	1	2	2		1.28	.22	5	15	.40	113	.08		2.27	.02	.06	1	3	
UL 1027	2	25	28	210	.1	23	17	1541	3.61	4	5	ND	1	49	1	2	2	49	.53	.15	4	13	.48	49	.11		2.35	.02	.04	1	1	
UL 1028	1	14	40	227	. 1	20	12	626	3.27	3	5	ND	1	33	1	2	2	49	.40	.14	2	12	.41	27	-11	2	2.18	.02	.03	1	7	
UL 1029	1	13	41	301	.2	17	14	5570	2.92	4	5	ND	1	56	1	2	2	40	1.12	.16	3	12	.37	111	.08		1.51	.01	.05	1	7	
UL 1030	1	25	25	113	. 1	15	10			8	8	ND	2	19	1	2	2	61	. 28	.09	5	18	.74	83	.11		2.34	.01	.05	1	ε	
UL 1031	1	26	9	77	.1	11	9	412	2.66	2	5	ND	2	24	1	2	2	45	.32	.04	5	11	. 65	63	.12		2.22	.01	.05	1	1	
UL 1032	1	12	14	102	. 2	11	8	502	2.89	9	7	ND	2	14	1	3	2	49	.21	.18	5	15	.63	66	.08		1.93	. 01	.03	1	2	
NF 1023	1	13	9	121	.1	9	10	1597	2.90	13	5	ND	1	15	1	2	2	46	.19	. 36	5	14	.46	153	.06	2	1.96	.01	.04	1	5	
UL 1034	1	19	21	118	.1	12	11	1864	3.16	10	5	ND	1	21	1	2	2	55	. 32	.19	6	17	.64	201	.08		2.03	.01	.06	1	8	
UL 1035	- 1	25	13	156	.2	12	13	991	3.17	7	5	MD	3	21	1	2	2	51	. 33	.25	6	17	.81	85	.09		2.31	.01	.04	T	1	
UL 1036	2	44	63	158	.4	17		1735		114	5	ND	1	20	1	2	4	61	.42	.13	7	28	1.26	77	.02		2.09	.01	.05	i	29	
UL 1037	2	42	45	170	. 3	22		1622		55	5	ND	1	17	1	2	2	66	. 27	.16	10	24	1.13	138	.04		3.16	.01	.07	1	50	
DF 1038	2	39	63	181	.1	23	20	1901	5.89	71	5	ND	1	16	1	2	6	62	.28	.18	6	30	1.33	99	.01	2	2.43	.01	.05	1	29	
UL 1039	2	29	92	200	.2	22	26	5631		62	5	ND	1	27	1	2	4	69	.58	.33	5	36	1.29	135	.02		2.33	.01	.06	1	15	
UL 1040	2	53	74	166	.5	21	21		5.88	89	5	ND	i	17	1	2	2	59	. 30	.16	7	29	1.37	101	.02		2.34	.01	.05	1	20	
UL 1041	1	13	14	113	.4	8	7		2.28	8	5	ND	1	13	1	2	3	41	. 20	.11	5	13	.57	68	.05		1.48	.01	.03	i	44	
UL 1042	i	22	16	107	.1	8	9	2199		10	5	ND	1	16	1	2	2	43	.23	.16	4	11	.50	87	.07		1.85	.01	.04	i	3	
UL 1043	1	14	24	153	.2	10	7	451	2.36	7	5	ND	2	16	1	2	2	40	.22	.17	4	12	.44	64	.08	2	2.02	.01	.03	1	4	
STR C/40-0 5	20				7.1	75		1192			10												00		07		1 77	.04				

ı

.

t

(

.

1

SAMPLE	No PPM	Cu PPM	Pb PPM	In PPM	Aq PPM	NI PPM	Co PPM	Mn PPM	Fe 1	As PPM	PPM	Au PPM	Th PPM	Sr.	Cd PPM	St PP#	BI PPM	PPM	Ca 1	F	La PPM	Cr PFM	Mg Z	Ba PPM	li 1	B PPM	AL	Na Z	K	PPM	Au . PPE
DL 1044	21	17	13	150	.3		8	716	2.21	6	5	ND		22	1	2	2	43	.33	.15	5	11	. 39	92	.08	,	1.88	.01	.05	1	1
UL 1045	1	22	19	143	. 6	6	8			12	5	ND	3	20	i	2	2	44	.30	.14	5	13	. 48	94	.08		2.01	.01	.06	i	1
UL 1046	1	37	11	127	.4	11	11	619		17	5	HD	2	19	1	2	2	47	.26	.39	5	13	.78	76	.07		2.10	.01	.05	1	1
UL 1047	1	12	18	162	.1	6	7		- 700 (150)	13	5	ND	2	19	1	2	2	35	. 28	.13	6	14	.33	86	.08		1.56	.01	.04		1
UL 1048	i	19	13	134	. 2	6	7			11	5	ND	ı	24	1	2	2	36	.35	.19	5	12	.44	116	.09		1.75	.01	.04	i	1
UL 1049	1	32	26	182	.3	9	10	1468	2.95	23	6	ND	3	21	1	2	2	47	.29	.25	5	15	.70	144	.09	2	1.94	.01	.06	1	ì
UL 1050	2	50	93	238	.6	9	25	2006	5.45	82	7	ND	2	26	2	10	2	43	.36	.21	14	20	.99	97	.02	2	1.88	.01	.08	1	6
UL 1051	1	75	89	362	.9	9	27	3316	5.26	62	5	ND	1	38	3	2	2	41	.55	.28	8	17	.73	259	.01	2	1.75	.01	.08	1	7
UL 1052	1	47	49	198	.5	9	24	2341	5.43	76	5	ND	1	30	1	4	2	40	.29	.26	11	19	.88	150	.02	7	1.86	.02	.12	1	15
UL 1053	1	47	57	199	.3	9	20	1563	5.10	67	5	ND	2	23	1	2	2	40	.34	.16	7	21	1.04	74	.03	3	1.67	.01	.06	1	12
UL 1054	1	34	19	136	.2	11	11	1120	3.36	27	5	ND	3	22	1	1	2	55	. 31	.40	5	17	.72	80	.08	6	2.40	.01	.06	1	1
UL 1055	1	26	15	103	.1	8	9	1109	2.85	22	5	ND	4	24	1	2	2	46	.31	.56	5	13	.60	104	.08	2	2.28	.01	.06	1	1
UL 1056	1	27	19	169	.1	11	10	892	2.81	20	5	ND	1	22	1	2	2	49	.32	.14	6	16	.58	65	.11	3	2.24	.01	.04	1	50
UL 1057	1	14	12	86	-1	8	6	884	1.90	11	5	ND	2	27	1	2	2	37	. 36	.12	5	14	.44	76	.08	3	1.59	.01	.04	1	2
UL 1058	1	30	7	85	.1	8	10	563	2.77	11	5	ND	2	27	1	2	2	51	. 38	.08	5	14	.73	72	.12	2	1.90	.01	.07	1	1
UL 1059	1	12	9	124	.2	8	9	790	2.38	9	5	ND	2	33	1	2	2	48	.47	.12		13	.43	123	.10	5	1.78	.01	.07	1	1
UL 1060	2	61	28	564	.5	6	17	1825	3.47	76	5	ND	1	46	5	2	2	46	1.02	.07	16	19	. 68	100	.05	9	2.01	.01	.11	1	8
UL 1061	2	13	9	570	.1	6	10	2258	3.43	2	5	ND	2	13	1	2	2	63	. 25	.06	4	17	.39	96	.17	2	1.64	.01	.08	. 1	18
UL 1062	3	13	22	607	.1	6	10	1797	3.65	9	6	ND	2	13	1	2	2	64	.24	.06	5	17	.40	86	.18	3	1.74	.01	.09	1	3
UL 1063	3	15	13	363	.1	6	16	948	4.06	14	5	NO	1	16	1	5	2	79	.32	.07	7	19	.43	73	.16	1	2.78	.02	.06	1	12
UL 1064	2	20	6	196	.1	8	9	626	3.59	13	5	ND	1	16	1	2	2	79	.29	.11	5	20	.50	93	.16	4	1.96	.02	.06	1	1
UL 1065	2	33	10	229	.1	8	13	598	4.29	17	5	ND	2	15	1	4	5	96	.23	.15	5	25	.70	97	.17	8	3.49	.02	.07	3	40
UL 1066	2	22	3	130	.2	10	8	750	3.41	5	5	ND	2	11	1	2	2	66	.20	.38	5	19	.49	52	.15	2	3.33	.02	.05	1	28
UL 1067	4	22	2	181	.1	15	10	541	3.60	21	5	HD	1	12	1	2	6	78	.21	.15	5	26	.61	67	.16	6	3.64	.01	.04	2	8
UL 1068	3	16	17	157	.4	17	5	315	2.30	14	5	ND	1	27	i	2	5	61	.57	.10	2	23	.41	123	.09	10	.96	.03	.11	1	16
LL 1069	4	47	17	280	1.2	12	13	1041	5.30	20	5	KO	1	26	1	2	10	75	.42	.06	9	19	.63	159	.14	5	2.69	.02	.10	1	15
UL 1070	5	50	44	205	.9	29	18	923	5.03	22	5	ND	1	20	1	4	6	85	.22	.22	4	29	.66	126	.19	10	2.38	.03	.06	1	30
UL 1071	5	39	10	132	.7	12	10	361	3.98	9	8	ND	2	10	1	2	4	92	.14	.19	2	25	.65	73	.14	8	3.08	.01	.05	1	32
UL 1072	2	17	17	140	.4	12	8	622	3.18	8	5	HD	1	10	1	4	1	64	.18	.17	4	21	.51	59	.14	10	1.79	.01	.05	1	12
UL 1073	1	22	16	154	.2	6	8	377	3.11	7	5	MD	1	11	1	2	2	84	.17	.10	5	18	.50	66	.12	5	1.80	.01	.04	1	15
UL 1074	3	128	71	467	4.7	17	38	1214	4.41	31	5	ND	2	15	1	3	5	76	.20	.29	5	33	1.14	192	.14	10	3.62	.01	.07	1	95
UL 1075	2	42	30	214	.4	8	11	733	3.75	12	5	NB	1	14	1	2	2	95	. 20	.11	5	27	.72	106	.15	8	2.62	.02	.05	1	21
UL 1076	2	62	17	135	.4	12	13	344	3.77	13	5	ND	2	13	1	2	2	161	.18	.08	5	26	.48	71	.17	2	3.44	.01	.05	1	9
UL 1077	3	64	18	146	1.4	14	12	585	3.93	15	6	ND	2	22	1	2	6	94	.32	.15	5	31	.86	132	.14	2	2.80	.03	.14	1	32
UL 1078	4	36	10	199	.7	12	9		4.39	15	8	ND	2	8	1	5	3	79	.11	.16	6	37	1.00	121	.12		2.62	.01	.07	1	14
UL 1079	4	85	17	162	.6	18	16	654	4.59	20	5	ND	1	23	1	2	9	108	.24	.17	5	28	1.43	177	.13	13	3.98	.01	.09	1	8
SID C/AU-0.5	21	57			7.0			1191		41	17	8			17	16				.16	38		.88				1.72	.06	.11	12	510

(

(

(

TROJECT - HEBS 0107 FILE # 86-0086

RAM EXPLORATION

14 998 4.81

18 1742 7.03

18 795 7.32

35 3067 8.45

26 1295 7.38

20 1604 5.14

14 2125 3.82

36 1429 24.74

47 1024 4.71

34 8513 5.46

43 141 7.2 65 30 1227 3.97 43 16

11

4

10

7 5 ND

22

12

38

25

27

ND

7 ND

6 ND

5 ND

5 ND

5 ND

6 NG 12 27 1 17

5 ND

5 ND

39

63

22

22

21

1 44 1

1

1 59

1 34

1

1

1 31

8 33 48 20

2 2 72 .46 .08

3 2 97 .56 .19

2

3 2 80 .41 .22

3

1

1 4 2

1

1

1

1 5

1 , 4

2 148

2 113

6 201

2

104 .67 .31

92 .31 .18

87 .27 .14

2 104

.49 .16

.56 .20

.28 .57

.43 .10

UL 1105

UL 1106

UL 1107

UL 1108

UL 1109

UL 1110

UL 1111

UL 1112

UL 1113

UL 1115

SID C/AU-0.5

20

37

24

11 776

319

140

7 97 90 274

7 60

5 90 66 386

10

2

1 391

5 367

3 52 65 420 1.1

19

99 56 588

28 21 736

27 16 318

.1

.7 10

. 1

.7 16

.5

.2 18

. 7

.1 18

.5 22

24

4

8

20

(

FAGE 6

3 2.27

2 2.65

4 3.72

2 3.25

5 3.43

6 3.00

2 2.50

2 1.62

2 3.14

.02

.06 .10

.10 .07

.05

.02 .06

.04 .19

.02

2 2.72 .04 .10

.08

40 1.72 .06 .11 13 490

2

1 5

1 4

1 14

231 .14

181 .19

101 .16

180 .25

171 .15

408

. 18

20 1.11 242 .15

26 .80

29 .79 147 .20

12

7

8 9 .80

5

12 51 .62 143 .12

8 37 .86 136 .21

5

16 21 61 .48 .15 39 61 .88 178 .08

18 1.18

26 1.93

34 .75

37 .75

(

(

SAMPLEA	Mo	Cu	Pb	Zn	Aq	Na	Co	Ma	Fe	As	U	Au	Th	Sr	Ed	Sb	Bi	٧	Ca	P	La	Cr	Mq	Ba	Ti	В	Al	Na	K	W	Au+
	PPH	PPM	PPM	FFR	FFM	FPN	FPM	FFN	1	PPM	PPH	PPM	PPM	FPM	PPM	PPM	PFM	PPM	1	1	FPH	PPM	7	FPH	1	PPM	1	1	1	PPM	PPE
UL 1116	1	43	31	131	1.0	20	19	1480	3.72	84	5	NO	1	36	1	2	2	56	.63	.11	3	21	.77	88	.06	5	1.97	.06	.10	1	bû
UL 1117	1	15	54	217	.4	18	26	1016	5.66	60	5	ND	1	38	1	3	2	73	. 66	. 29	2	18	.79	57	.11	4	2.38	.11	.08	2	170
UL 1118	1	29	34	202	.5	26	21	2438	4.34	62	5	ND	1	53	1	2	2	62	.79	.24	3	18	.89	96	.07		2.29	.05	.10	1	31
UL 1119	1	30	3	154	. 2	21	23	1622	5.15	31	5	ND	1	46	1	2	2	71	1.45	.30	2	25	1.11	43	.12	2	1.97	.03	. 05	1	13
UL 1200	2	20	2	167	.1	13	9	2495	2.95	17	5	ND	2	32	1	2	2	48	. 48	.45	4	15	.50	154	.09	2	2.30	.01	.06	2	1
UL 1201	3	40	10	93	.2	9	9	691	3.64	15	5	MD	4	26	1	2	2	62	.40	.21	3	16	.69	58	.12	3	2.76	.01	.06	1	1
UL 1262	1	18	12	149	.1	7	9	709	3.36	13	5	ND	3	27	1	2	2	47	. 36	1.00	4	16	. 45	122	.07	3	2.79	.01	. 05	1	1
UL 1203	2	14	8	161	.1	11	9	2214	2.62	8	5	ND	3	31	1	2	4	42	. 45	.31	3	12	.43	166	.10	2	1.89	.01	.05	1	1
UL 1204	3	39	18	193	.5	22	21	1608	5.42	69	8	ND	1	39	1	2	2	83	. 55	.07	8	44	1.14	88	.08	2	2.90	.02	.08	1	1
UL 1205	2	20	2	100	.1	10	10	1009	2.82	10	5	MD	2	35	1	2	2	45	.49	.31	•	16	.58	84	.09	4	2.11	.01	.07	3	1
UL 1206	1	30	12	122	.1	10	8	554	3.08	9	5	ND	4	29	1	2	2	49	.41	.34	3	14	.55	64	.11	2	2.85	.01	. 05	1	1
UL 1207	2	18	2	129	.1	12	7		2.89	5	5	MD	4	25	1	2	2	40	. 35		4	14	. 50	110	.07		2.53	.01	.04	2	1
UL 1208	2	14	2	102	.1	10	6	1601	2.31	7	5	ND	1	32	1	2	2	43	.43	.05	4	10	.53	129	. 10	2	1.68	.01	.04	1	1
UL 1209	1	14	4	109	.1	12	10	1371	2.46	7	5	ND	- 1	34	1	2	2	47	. 44	.06	4	12	.53	93	.11	4	1.78	.01	.04	1	1
UL 1210	3	32	2	128	.1	21	16	751	4.70	54	5	ND	2	30	1	2	2	69	.41	.04	5	29	1.05	61	.09	3	2.41	.01	.06	1	1
UL 1211	1	16	8	122	.1	6	7	1093	2.10	14	5	ND	2	36	1	2	2	42	.46	.11	4	10	.41	136	.08		1.68	.01	.05	1	44
UL 1212	3	25	12	198	. 2	13	14	1579	3.65	24	5	ND	1	23	1	2	2	62	.33	.20	4	23	. 68	130	.11		2.45	.01	.08	2	4
UL 1213	2	40	9	177	.1	22	17	1615	4.40	24	5	ND	1	40	1	2	3	78	.57	.14	4	28	.96	134	.12	3	3.03	.01	.08	-1	1
UL 1214	1	25	3	134	.1	13	11	1465	3.38	14	5	ND	1	36	1	2	2	73	.47	.16	2	22	.56	183	.11	2	2.32	.02	.07	1	7
UL 1215	2	26	12	110	.1	12	12	676	3.59	13	5	ND	1	27	1	2	4	77	.42	.07	4	22	.76	97	.14	3	2.84	.02	.06	1	2
UL 1216	2	26	2	102	. 1	10	10		3.38	8	5	ND	1	29	1	2	3	69	.41	.04	3	17	.79	95	-14		2.57	.01	.07	1	3
UL 1217	2	26	19	103	.1	10	11		3.23	9	5	MD	1	38	1	2	2	56	.45	.06	2	14	.80	124	.11		2.63	.01	.08	1	1
UL 1218	2	21	12	137	.1	8	10	1802	2.90	16	5	ND	1	33	1	2	2	54	.43	.08	4	14	.65	137	.11		2.29	.01	.07	1	1
UL 1219	2	31	3	116	.1	15	14		3.82	50	5	ND	1	28	1	2	2	73	.46	.05	1	26	.89	96	.13		2.71	.02	-08	1	2
UL 1220	2	16	4	212	.1	12	11	1281	2.92	11	5	ND	1	25	1	2	2	64	. 39	.13	3	21	.54	159	.13	2	1.91	.02	.07	i	1
UL 1221	1	11	13	139	.1	12	9		2.36	10	5	ND	2	42	1	3	2	50	.49	.03	4	9	.63	105	.09		2.22	.01	.05	1	1
STD C/AU-0.5	22	56	37	132	7.0	76	28	1148	3.95	43	17	8	32	46	17	15	19	57	. 48	.15	35	59	.88	171	.07	37	1.72	.06	.11	14	480

								RA	M EX	PLOF	RATI	ON	PRU	JIC		i ii tar	÷1	07	FIL	L #	Bo-	doc.	4							FAG	ık.	: 1
SAMPLES	fio	Ç.	Po	In	Ag	H1	Co	ħn	Fe	As	u	Au	Th	Sr	Cd	Sb	Đ,	v	C.	F	4	Çr	Mq	84	T ₁	8	Al	Na			Au.	
	FFM	PFn	FFM	FFM	PFM	PPH	FFM	PPR	ı	FPM	PPM	PPM	PPM	FPH	PFH	FFR	FFM	FFR	1	ı	PPH	PPM	1	PPH	1	PPH	2	1	2	FFM	PP:	
565 001	1	26	14	85	.1	9	13	808	3.71	17	5	ND	3	37	1	2	2	81	,54	.07	9	22	.69	117	.14	b	2.27	.02	.07	1	5	
665 662	2	45	22	120	. 6	19	16	779	4.22	41	5	MD	2	51	1	2	2	89	. 94	.10		29	1.14	121	. 16	6	2.64	.09	. 20	3	7	
665 005	2	56	69	338	.9	15	19	1596	5.32	94	5	NO	2	3.0	2	3	2	41	.50	.11	31	20	1.08	78	.04	b	1.70	.01	.06	1	26	
665 603A	6	90	22	194	. 6	20	17	1260	3.04	7	5	NO.	1	63	1	2	2	72	1.91	.13	6	26	1.10	152	.09	2	2.21	.05	.14	1	15	
665 604	3	77	22	963	1.2	13	11	1515	2.08	51	5	NO	1	105	7	2	2	27	3.63	.19	15	12	.49	110	.02	20	1.31	.01	.06	1	17	
665 005	ě	52	41	185	. 6	24	11	905	1.98	,	5	ND	1	70	3	2	5	56	2.51	.11	4	20	.78	97	.07	10	1.32	.04	.10	1	1	
665 00e	4	490	2	2309	2.1	37	34	1005	1.90	11	5	HD	1	61	13	2	2	38	1.51	.09	79	12	.40	100	.07	2	1.67	.03	.06	1		
565 007	2	31	10	66	- 1	9	12	655	3.05	12	5	NE	3	41	1	3	2	63	.66	.06	7	16	.77	88	.15	6	1.80	.02	.09	1	47	
665 006	1	21	2	70	.2		7	491	2.41	13	5	MB	2	42	1	2	2	54	.72	.04	5	13	-61	60	.12	+	1.41	.04	.07	1	4	
151 601	7	78	43	347	.5	22	21	1321	5.04	21	5	ND	1	33	2	2	2	72	.57	.12	11	29	1.82	71	.12	8	2.27	.04	.10	1	4	
JST 002	3	49	69	326	.6	1	18	1468	5.20	88	5	MO	2	28	2	3	3	40	.45	.11	9	19	1.08	69	.04	11	1.67	.01	.06	1	22	
KK 661	2	29	55	163	.5	17	21	2597	4.72	57	10	MD	2	47	2	6	2	79	. 65	.07	14	42	.98	92	.08	8	2.39	.03	.08	1	11	
KK 602	2	29	11	114	.1	17	14	857	4.64	48	5	ND	2	29	1	2	2	64	. 18	.04	6	26	.94	64	.08	5	2.03	.01	.06	1	3	
KK 003	2	30	28	184	.3	17	14	1431	3.48	35	5	NO	2	35	1	2	2	53	.54	.06	10	22	. 96	93	.09	3	2.13	.01	.11	1		
FK 004	1	31	7	83	.3	11	9	712	2.54	7	5	ND	3	39	1	2	2	47	.65	.07	7	15	.75	56	.11	5	1.52	.01	.11	1	2	
KK 005	2	21	16	66	.2	7	16	631	2.98	25	5	ND	4	36	1	2	2	54	.58	.06	8	22	.83	60	.11	2	1.70	.03	.10	1	3	
56C 001	1	25	1.1	119	. 2	15	ę	483	2.62	25	5	ND	2	36	1	2	2	47	. 61	.08	7	17	. 65	53	.09	5	1.59	.01	.07	1	1	
S6C 602	1	26	9	85	. 2	11	9	615	3.02	30	5	HD	4	38	1	2	2	61	.61	.06	9	17	.74	69	.13	8	1.69	.02	.10	1	1	
S6C 003	1	31	4	83	.3	11	10	735	2,80	19	5	ND.	3	41	1	2	2	54	.69	.07	8	13	.67	72	.12	2	1.52	.01	.08	2	9	
SSC 664	1	26	1	62	.1	11	9	598	2.34	11	5	NO	3	37	1	2	4	45	.62	.06	7	12	.59	75	.11	6	1.32	.02	.07	1	8	
USS 001	3	92	33	234	.5	26	21	1059	5.89	44	5	HD	1	37	1	•	8	91	.58	.11	9	30	1.43	89	.13	8	2.46	.07	.14	1	40	
*** *						**	200	4 224	* 00	**			**	***	100	4.00	20.0	4.9	2.00	4.4	***	1.0	mn.	4 700	6.0		4 90			4.70	4000	

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT -------

CLIENT: RAM EXPLORATION

ADDRESS: 404 - 850 W. Hastinos St.

: Vancouver B.C.

: V6C 1E1

DATE: Jan 31 1986

REPORT#: 860022GA

JOB#: 860022

PROJECT#: NOT GIVEN

SAMPLES ARRIVED: Jan 23 1986

REPORT COMPLETED: Jan 31 1986

ANALYSED FOR: Au ICP

INVOICE#: 860022NA

TOTAL SAMPLES: 278

SAMPLE TYPE: 277 SOIL 1 ROCK

REJECTS: DISCARDED

SAMPLES FROM: RAM EXPLORATION COPY SENT TO: AZIMUTH GEOLOGICAL

PREPARED FOR: RAM EXPLORATION

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Au analysis for rock by FA/AAS

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 8600225A	JOB NUMBER: 860022	RAM EXPLORATION	PAGE 1 OF 8
SAMPLE #	Au		
	oob		
JW 1	25		
JW 1A	10		
JM 5	15		
JW 2A	10		
KK 006	5		
W 207	10		
KK 007	15		
KK 008 LL 161	15		
LL 162	10 20		
LL 163	10		
LL 163	10		
LL 154	20		
LL 165	20		
LL 166	20		
LL 167	25		
LL 168	25		
LL 169	20		
LL 170	20		
LL 171	10		
LL 172	20		
LL 173	15		
LL 174	10		
LL 175	10		
LL 176	15		
LL 177	10		
LL 178	20		
11 175	45		
LL 179	15		
LL 180 LL 181	20 15		
LL 182			
LL 183	15 10		
LL 103	10		
LL 184	25		
LL 185	20		
LL 186	10		
LL 187	20		
LL 217	10		
	3.0	*	
LL 218	20		
LT 519	10		
LL 220	20		
LL 221	5		
DETECTION LIMIT	5		
		w w w w w w w w w w w w w w w w w w w	

is = insufficient sample

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	REPORT NUMBER: 860022GA	JOB NUMBER: 860022	RAM EXPLORATION	PAGE 2 OF 8
	SAMPLE #	Au		
		oob		
	LT 555	15		
	LL 223	15		
	LL 224	20		
	LL 225	20		
	LL 226	15		
	LL 227	20		
	LL 228	15		
	LL 229	nd		
	LL 230	15		
	LL 232	10		
	077	25		
	LL 233	25		
	LL 234	10		
	LL 235	20		
	LL 236	15		
	LL 237	10		
	LL 238	20		
	LL 239	nd		
	LL 240	15		
	LL 241	20		
	LL 242	30		
	LL 243	25		
	LL 244	5		
	LL 245	10		
	LL 246	15		
	LL 247	25		
	LL 248	10		
	LL 249	15		
	LL 250	10		
	LL 251	10		
	LL 252	15		
	LL 253	15	4	
	LL 254	15		4
	LL 255	10		
	LL 256	20		
	LL 257	70		
	LL 258	10		
V	LL 259	10		
	LL 260	10		
	LL 261	30		
	DETECTION LIMIT	5		
	Shows over many many	SANSTANTI PERMANENTANI PER A		

is = insufficient sample

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

8

REPORT	NUMBER: 86002	2GA JOB NUMBER: 8	60022 RAM EXPLOR	ATION	1	PAGE	3	ű:
SAMPLE	#	Au						
		מפם	E9					
LL 262		15						
LL 263		10						
LL 264		20						
LL 265		15						
TT 566		10						
LL 267		10						
LL 268		5						
LL 269		20						
LL 270		20						
LL 271		5						
LL 272		5						
LL 273		10						
LL 274		10						
LL 275		10						
		15						
LL 276		13						
LL 277		59						
LL 278		5						
LL 279		15						
LL 280		5						
LL 281		5						
LT 585		20						
LL 283		15						
LL 284		10						
LL 285		10						
LL 286		15						
LL 287		nd						
LT 588		15						
LL 289		nd						
LL 290	950	10	9					
SGC 5		10						
SGC 6		10						
SGC 7		10						
SGC 8		10						i.
SGC 9		5						
SGC 10		5						
SGC 11		10						
SGC 12		10						
SGC 13		25						
SGC 14		15						
DETECT	ION LIMIT	5						
	one detected	= not analysed	is = insufficient	samole				
1.00			and the second of the second o					

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 8600225A	JOB NUMBER: 86	2022 RAM EXPLORATION	PAGE 4 OF 8
SAMPLE #	Au		
	doq		
SGC 15	5		
UL1222	15		
UL1223	15		
UL1224	25		
UL1225	5		
UL1226	10		
UL1227	20	9	
UL1228	10		
UL1229	10		
UL1230	20		
UL1231	10		
UL1232	5		
UL1233	20		
UL1234	5		
UL1235	10		
UL1236	10		
UL1237	10		
UL1238	10		
UL1239	10		
UL1249	10	300	
UL1241	10		
UL1242	5		
UL1243	10		
UL1244	15		
UL1245	10		
UL1246	10		
UL1247	nd		
UL1260	15		
UL1261	15		
UL1262	10		
UL1263	15		
UL1264	10		
UL1265	15		1
UL1266	10		
UL1267	10		
UL1268	10		
UL1269	15		
UL1270	10		
UL1271	20		
DETECTION LIMIT	5		
	= not analysed	is = insufficient sample	
	they are not the Selbert Market 1964		

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860022GA	JOB NUMBER: 860	022 RAM EXPLORATION	PAGE 5 CF 8
SAMPLE #	Au		
	daa		
UL1272	10		
UL1273	15		
UL1274	nd		
UL1275	20		
UL1276	10		
UL1277	15		
UL1278	10		
UL1279	5		
UL1280	10		
UL1281	10		
UL.1282	10		
UL1283	10		
UL1284	nd		
UL 1285	10		
UL1286	15		
52.255			
UL1287	5		
UL1288	10		
UL1289	5		
UL1290	nd		
UL1291	nd		
UL1292	20		
UL1293	5		
UL1294	25		
UL1295	15		
UL1296	10		
UL1297	5		
UL1298	10		
UL1299	5		
UL1300	10		
UL1301	15		
UL13 0 2	nd		
UL1303	10		
UL1304	10		1
UL1305	10		
UL1306	5		
UL1307	5		
UL1308	5 5		
UL1309	20		
UL1310	5		
DETECTION LIMIT	5		

is = insufficient samole

-- = not analysed

nd = none detected

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860022GA	JOB NUMBER: 860022	RAM EXPLORATION	PAGE 6	OF 8
SAMPLE #	Au			
	doc			
UL1311	20			
UL1312	15			
UL1313	10			
UL1314	10			
UL1315	5			
UL1316	10			
UL1317	nd			
UL1318	10			
UL1319	5			
UL1320	5			
UL1321	20			
UL1322	5			
UL1323	10			
UL1324	5			
UL1325	15			
UL1326	5			
UL1327	20			
UL1328	10			
UL1329	10			
UL1330	10			
UL1331	20			
UL1333	nd			
UL1334	5			
UL1335	20			
UL1338	25			
UL1339	15			
UL1340	20			
UL1341	5			
UL1342	nd			
UL1343	10			
UL1346	10			
UL1348	10			
UL1349	5			
UL1350	15			
UL1351	5			
UL 1352	15			
UL1353	5 15	4		
UL1354	15			
UL1355	200			
DETECTION LIMIT	5			

is = insufficient sample

-- = not analysed

nd = none detected

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860022GA	JOB NUMBER: 86	50022 I	RAM EXPLORATION		PAGE	7 0	- 8	
SAMPLE #	Au							
	daa							
UL1356	15							
UL1357	5							
UL1358	nd							
UL1359	5 .							
UL1360	15							
UL1351	10							
UL1362	5							
UL 1363	-10							
UL1364	10							
UL1365	10							
UL1366	10							
UL1367	20							
UL1368	20							
UL1369	15							
UL1370	10							
UL1371	15							
UL1372	15							
UL1373	5							
UL1374	15							
UL1375	nd							
	177							
UL1376	10							
UL1377	15							
UL1378	15							
UL1379	5							
UL1380	10							
LL1381	10							
UL1382	10							
UL1383	15			19				
UL1384	15							
UL1385	15							
UL1386	20							
UL1387	25					4		
UL1390	10					•		
UL1391	10							
UL1392	15							
	W.							
UL1393	15							
UL1394	nd							
UL1395	15							
UL1396	15							
AND MENONS CONTRACTOR OF THE STREET								
DETECTION LIMIT	5		V20					
nd = none detected	- = not analysed	is = insu	fficient sample					

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860022GA	JOB NUMBER: 860022	RAM EXPLORATION	PAGE & GF 8
SAMPLE #	Au		
	dqo		
UL1397	5		
UL1398	25		
UL1399	5		
UL1400	20		
CR 100	10		

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 2S3 PH: (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604) 251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED NITH 5 ML OF 3:1:2 HCL TO HHO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR SN, MM, FE, CA, P, CR, HG, BA, PD, AL, NA, K, N, PT AND SR. AU AMB PD DETECTION IS 3 PPN.
IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: RAM EXPLORATIONS

ATTENTION: PROJECT: REPORT#: 860022PA JOB#: 860022

INVOICE#: B60022NA

DATE RECEIVED: 86/01/23 DATE COMPLETED: 86/01/30

COPY SENT TO: RAM & AZIMUTH GED.

ANALYST W Proces

PAGE 1 DF 8

SAMPLE NAME	AG PPM	AL I	AS PPM	PPM	BA PPM	BI PPM	CA 1	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K	#6 1	PPM	HO PPM	KA I	NI PPM	. P	P8 PPM	PD PPM	PT PPM	SS PPH	SM PPH	SR PPN	U PPM	N PPM	IN PPM
JW 1	.3	2.15	3	XB	315	ND	.83	.1	9	10	26	2.84	.11	.44	908	1	.01	5	.06	13	KD	KD	KS	KD	36	31	ю	74
JW 1A	.3	2.46	5	ND	180	ND	. 67	. 1	13	18	31	3.09	.10	.77	543	1	.01	11	.06	1	MED	MD	KD	XD	47	MD	MB	86
JW 2	. 2	2.94	10	MB	204	KD	.91	.9	19	19	26	3.44	.12	.73	1192	M	.01	18	.07	26	ND.	MD	MD	X3	50	3	MD	159
JN 2A	.4	2.03	KO	MD	294	KD	.84	.4	9	15	18	2.81	-11	.62	702	1	.01	9	.06	7	MD	MD	KD	1	42	25	XB	62
KK 006	.3	2.24	20	MD.	133	KD	. 43	-2	11	17	18	3.09	.09	. 88	988	1	.01	13	.04	10	ND	KD	MD	XD	32	MB	MD	76
KK 007	. 4	2.67	44	ND	160	KD	.54	.2	13	19	24	3.38	.11	.95	812	1	.01	12	.05	13	MD	MD	MD	KD	39	KS	169	87
KK 008	. 3	2.06	31	MB	135	KD	.59	.1	11	16	18	2.83	.10	.76	682	1	.01	10	.05	11	ND	MD	MD	MB	38	MO	KD	73
LL 161	. 2	3.28	4	ND	137	MD	-21	.1	10	18	21	3.31	.07	-62	353	1	.01	12	. 16	5	MO	KD	MD.	MD	18	ND.	XS	104
LT 195	. 2	3.94	MD	MD	221	MD	.20	.1	9	15	19	2.98	.06	.42	2094	1	.01	8	.33	7	MD	MD	MS	1	17	KB	MD	131
FF 192	.2	2.81	ND	MD	249	MD	. 20	.5	9	14	15	2.67	.06	.45	1354	1	.01	7	. 38	5	NO.	MD	10	MD	16	MD	ND.	120
LL 164	.2	3.09	MD	ND	185	KD	.19	.1	10	15	18	2.65	.05	.51	492	ND.	.01	9	.15	2	ND	N3	100	MB	18	XD.	ND	107
LL 165	. 2	4.71	KB	MD	162	ND	. 26	.3	12	18	24	3.81	.07	. 69	730	1	.01	12	.16	6	MD	ND	MD	2	22	MD	3	102
LL 166	. 4	3.56	MD	MD	277	KD	.31	.4	13	17	15	3.20	.08	. 65	838	NB	.01	13	.05	8	ND	ND	ND	1	32	MS	MD	86
LL 167	1.	4.30	8	MD	218	ND	. 28	.1	14	24	34	4.15	.08	.68	854	ND	.01	11	. 29	10	MD	MO	ND	1	22	ND	KD	102
IT 168	.1	4.27	MD	MD	379	KD	. 26	.4	11	18	25	3.19	.08	. 53	4498	1	.01	13	.41	14	MD	KB	HD	1	22	KD	ND	154
LL 169	.2	3.54	5	KD	263	ND	. 29	.2	12	19	21	3.59	.07	.59	957	KO	.01	12	. 44	12	KD	KD	KB -	MD	24	NO	MO	206
LL 170	. 2	5.50	5	MD	212	KD	.23	.3	11	21	21	3.70	.08	.70	1509	1	.01	12	. 55	1-	ND	MD	ND	2	18	MD	15	161
LL 171	.5	4.14	13	ND	278	ND	.42	.6	12	20	36	3.66	.10	.79	733	1	.01	13	. 25	12	MD	KD	KD	2	32	MD	5	167
LL 172	.4	3.83	9	MD	197	ND	1.12	.8	22	20	34	4.02	.14	. 63	1075	1	.01	18	.07	14	MD	MD	ND	1	72	5	MD	264
LL 173	.2	3.12	NO	MD	702	*D	.61	.4	17	15	19	2.81	.09	.56	5167	MD	.01	13	. 35	12	MD	KD	MED	MD	63	ND	NO.	197
LL 174	. 6	3.34	3	MB	166	- ND	. 33	.8	13	19	37	3.27	.07	.72	614	1	.01	19	.07	17	MD	NB	NB	MS	24	MD	MD	112
LL 175	. 6	2.03	3	ND	136	4	. 34	. 4	10	12	14	2.41	.06	.62	538	ND	.01	10	.04	16	KD	MD	MD	ND	31	MD	KD	99
LL 176	. 4	2.78	MD	KD	272	N.D	.33	.7	13	19	20	2.97	.07	.73	1228	KI	.01	11	.19	18	ND	MD	MO	MD	33	MD	MD	169
11 177	.2	3.02	KD	ND	818	MD	. 32	. 8	14	16	22	2.94	.06	.54	3998	1	.01	9	. 64	21	MD	MD	MD	MD	43	MB	ND	224
11 178	.5	3.10	3	MD	195	MD	.27	.4	12	17	29	3.37	.06	.64	904	1	.01	11	.14	22	ND	MD	KD	MD	23	KD	MB	130
LL 179	.6	3.51	3	ND	137	MD	.27	.7	14	19	30	3.47	.07	.74	579	1	.01	13	.08	20	ND	ND	MD	1	23	MD	3	140
LL 180	. 4	2.00	10	MD	185	×D	.82	.4	11	11	22	2.14	.08	. 44	1297	ND	.01	9	.12	26	MD	MD	MD	ND	52	KD	KD	101
LL 181	.5	3.32	5	ND	167	MD	. 31	.5	11	18	27	3.33	.07	.61	941	1	.01	10	. 25	26	MD	ND	KD	MD	27	ND	ND	112
LL 182	. 3	3.03	MD	MD	629	ND	.60	.7	17	15	23	2.76	.09	. 55	5096	2	.01	12	. 34	22	MD	KD	MD	MD	72	3	KD	191
FF 183	.3	3. 35		ND	505	MD	.52	.6	18	16	23	3.23	.08	.58	3439	1	.01	15	. 26	24	MD	QK	MD	MD	62	KD	NO	171
LL 184	.7	1.95	MB	MS	119	ND	. 25	. 5	9	16	11	2.25	.06	.47	476	1	.01	8	.03	16	MD	KD	MD	MD	21	MD	KD	77
LT 182	.9	2.26	ND	ND	74	MD	. 35	.7	12	17	11	2.88	.07	.56	470	1	.01	9	.03	40	MD	ND	KD	1	22	ND	MD	117
TT 189	.7	3.02	3	MD	109	NB	.14	.7	10	22	35	2.75	.06	.52	1356	1	.01	11	.15	19	MD	MD	CM	ND	16	MD	MD	102
LL 187	. 6	2.28	- ND	ND	187	ND	-18	.6	9	14	16	2.60	.06	-42	1595	1	.01	6	.16	24	KD	MD	ND	ND	17	MD	MD	96
LL 217	.9	1.09	ND	ND	209	MD	.21	. 6	8	12	7	2.47	.07	. 28	446	2	.01	6	.03	19	MD	ND	3	MD	13	ND	KD	67
LL 218	.5	2.06	ND	ND	188	NO	.17	.8	10	16	13	2.54	.07	.42	289	1	.01	13	. 03	11	QM	ND	MD	ND	11	ND	NO	64
LL 219	.7	1.79	ND	MD	167	ND	. 22	.4	9	14	14	2.77	.07	.42	373	2	.01	11	.02	17	ND	MD	ND	MĐ	12	ND	KD	41
LL 220	. 8	2.81	12	MD	289	ND	. 23	. 4	12	15	27	3.85	- 09	.51	627	4	.01	10	.06	22	ND	ND	MD	MD	12	ND	XD	70
U 221	.1	.82	ND	NB	141	MD	.18	.3	7	11	9	2.09	.06	.20	1018	2	.01	4	.01	16	MD	MD	3	MB	10	MD	MD	45
DETECTION LINIT	. 1	.01	3	3	5 1 5	3	.01	.1	1	1		.01	.01	.01	1		.01		.01	2	3	5	2	2		5	3	

SAMPLE NAME AL AS AU BA 18 CA CD CO CR CU FΕ K MG MN 70 MA Mi P PB PĐ Pī 58 SR SN Ü 71 PPM Z PPM PPH PPM PPM 1 PPM PPM PPM 228 1 1 PPN PPN 1 1 PPN 1 PPN PPM PPM PPM PPN PPN PPN PPH PPH LL 222 .4 3.00 MB 194 NO .11 .5 9 10 22 2.77 .06 .30 1795 ΧĎ .01 14 NO NĐ 90 LL 223 .5 . 79 140 3 .16 .2 .13 1.62 .05 510 XB .01 . 05 16 MB 11 ND 32 LL 224 .5 2.59 73 ND 304 MĐ . 68 .4 8 17 16 2.15 . 10 . 35 591 8 .01 9 .06 10 ND MD ND MB 35 180 MB 56 LL 225 .5 3.74 22 ЖĐ 290 MD . 22 .8 14 20 13 .52 3.62 .10 831 å .01 16 .02 10 ND ЖB ND 2 14 30 ĸħ 87 LL 226 .5 2.65 3 ND 167 3 .17 . 3 9 15 16 2.61 .08 .44 248 ĸB .01 11 .04 11 ND KB MĐ MD 10 XD. MB 65 LL 227 .4 2.83 ND ИB 115 .22 13 2.58 .08 . 34 235 .01 .03 11 MD ND. MD. MÔ 14 12 KD 54 LL 228 .5 2.68 ĦΩ MD 174 MD . 24 10 15 11 3.15 .08 .46 487 .01 9 .02 11 MĐ Ю MD 15 KB 59 LL 229 .4 1.73 ХD KB 153 MD .08 . 3 7 10 2.09 .05 .17 838 M3 .01 2 .34 12 ĦĐ MB ND. NB 8 ND ΝD 62 LL 230 .5 .96 ×Đ KĐ 99 3 . 20 . 1 5 7 5 1.89 .05 .13 370 MĐ. .01 1 .04 17 МĐ NĐ ΧĐ X) 11 ND XD. 45 LL 232 .5 2.54 ND XB 113 XĐ .14 .3 . 9 16 12 2.84 .07 . 35 882 KD .01 8 .06 13 KΒ MB NĐ MB 11 MD ΑĐ 83 LL 233 .4 2.50 KD KD 188 ΝĎ .13 .4 9 12 18 2.70 . 05 . 36 300 MD .01 7 .08 10 ΝD MD XD. ĸĐ 11 XD ND. 69 LL 234 .4 1.88 ĦĐ KD 164 3 .14 . 2 10 2.16 .22 11 .05 804 .01 5 .04 15 ND 11 MD XD 75 LL 235 .4 3.49 NB MB 170 ΧĐ . 14 .3 11 12 16 2.97 .06 .38 487 MΔ .01 .12 12 MÔ ΧĎ ИĐ NĐ 12 ND ND 103 LL 236 ΚĐ NB .3 3.40 167 KD. .17 . 4 8 10 16 3.07 .06 . 38 507 ΚB .01 MB 5 .30 11 ΝĎ NB MD 14 ND ΝD 82 LL 237 .5 1.95 MO MD 140 ND .17 .5 10 14 9 2.59 .06 .38 555 2 .01 7 .04 14 XD ND XD. 16 ND H.O 86 LL 238 MB .6 2.16 XD. 108 4 .16 .4 14 12 3.37 .08 . 38 238 1 .01 7 .05 18 BM XD XD. 13 ND MD 74 LL 239 .4 2.65 ND ¥۵ 147 MD .19 10 14 2.70 .07 .36 658 .01 .08 14 ΚĎ 12 ×0 Ħ 120 LL 240 MB .4 2.00 ЖĎ 213 MB .32 .4 7 10 12 2.34 .07 . 30 1112 1 .01 .07 15 ND MĐ ND X) 27 KD MD 70 ΚĐ ND LL 241 .6 1.50 105 ĦĎ . 14 .3 8 12 7 2.43 .06 .39 823 MD HD i .01 6 .04 14 ND MB 11 #B MD 66 LL 242 .5 1.45 ЖD ND ND .13 114 . 1 12 6 2.37 .22 1093 X) .01 MD ND MB MB. .04 4 .08 15 10 ND MD 72 LL 243 .6 5.45 29 MD 472 ND . 25 17 20 20 5.73 .13 .53 897 15 .01 18 . 04 18 MΩ ĦĐ ЖĎ 3 23 MB 96 LL 244 .5 4.60 16 NB 648 ΧB .22 13 19 24 3.82 .11 . 59 442 3 .01 13 .03 10 19 10 ¥B. 65 LL 245 .6 2.45 ND 131 МĐ 8 .16 .6 9 14 14 3.17 .07 . 40 460 .01 6 .02 15 MD HĐ ND ĦĎ 13 KD KD 57 LL 246 .5 2.02 ND MB 190 MB .16 . 1 9 6 2.12 .05 .16 1065 1 .01 3 .11 15 MD Νð MD ND 13 MD ΚĐ 57 LL 247 ND MD 134 MĎ .4 2.22 .12 . 2 7 10 17 2.17 .06 .30 447 MD .01 .11 11 XĐ ND 10 ND ΧĐ 51 95 NB LL 248 .6 1.89 216 .46 17 14 21 3.22 .11 .88 641 2 .01 19 15 NĐ ND NĐ 38 ND .05 80 LL 249 .6 . 88 72 12 MB MB .07 . i 10 1.87 . 05 .14 150 .01 2 .04 14 30 LL 250 .6 2.12 33 NB 145 MB .27 . 6 13 17 21 3.45 .08 .78 694 XD .01 14 .10 16 ĦĐ ЖĐ N9 ΝĐ 23 NB ND 83 LL 251 .5 2.66 10 ΝĎ 67 NO .08 .4 5 9 2.49 246 MD KØ #D ΧĐ MB 11 .06 .17 .01 1 . 20 13 6 ND. XD. 48 LL 252 .4 6.80 MD ND 68 ЖD .07 .3 17 3.37 × 17 .07 . 22 196 .01 MB ND. MD 3 5 .13 5 ΝĎ MD 54 MĐ LL 253 .5 4.14 5 74 NB .08 7 23 14 3.08 MO ΧĎ .4 .07 .34 194 ĦĎ 17 12 .01 . 20 ΧĎ 54 LL 254 .6 5.19 5 #B 70 KB .08 13 3.06 . 27 184 .01 .32 11 65 11 255 .4 3.97 MB MD. 76 ΚĐ .08 .5 6 12 10 2.72 .07 .30 367 ΝĐ .01 5 .20 9 NO NB ND. KĎ 1 KD 47 LL 256 .6 4.51 3 MD. 108 MD .08 15 2.87 . 3 13 . 07 .22 196 ХĎ .01 . 20 15 ND MB MD ND ND 59 LL 257 .4 2.47 ND 91 ΧĐ .08 5 .i 3 ΧĐ ND ЖĎ MD 12 8 2.74 .06 .16 161 .01 3 .13 16 NO 10 MD KD 53 LL 258 .5 3.34 MB 98 ND .08 5 .5 13 10 2.70 .06 .27 ЖĐ MB KD ΝĐ 318 .01 5 .34 13 66 LL 259 .8 3.02 32 K D 102 MD .14 .5 11 19 17 4.08 .08 . 48 299 .01 .08 19 13 96

23 3.25

18 2.66

.01

.08

.07

.01

.41

. 20

.01

457

759

.01

.01

.01

.09

.01

2 .19

CLIENT: RAM EXPLORATIONS JOB#: 860022 PROJECT:

LL 260

LL 261

DETECTION LINIT

.5 2.27

.6 2.70

.1 .01

14

6

7

XD

ΝĐ

3

191

141

XB

MD:

3

.17

.13

.01

. 1

. 1

.1

8

6

6

6

1

ND

ND

3

16

17

ND

MD

2

ND

NĐ

19

12

ND.

MO

MD

97

72

ND

ND

5

REPORT: 860022PA DATE: 86/01/30

- 1

PAGE 2 OF 8

SAMPLE NAME AS AU BA 81 CA CD CO CR CU FE K M6 M M NI PB PD PT SB SH SR U ZX PPM PPM PPR PPM PPM 1 PPM PPM PPM PPM 1 PPH PPH 1 PPM 1 PPM PPM PPM PPM PPM PPM PPM PPH PPM LL 262 .5 1.43 12 369 . 20 54 2.82 .10 .51 856 2 .01 5 .06 14 M 41 MD MO 52 LL 263 1.04 4 ND 337 MD . 36 18 2.32 .09 .41 574 1 .01 .05 14 NO MD MD 38 3 ND 58 LL 264 . 5 1.78 349 30 824 .16 2.75 .08 .46 .01 6 .08 MB 25 59 LL 265 .5 1.94 MD HD 162 ND .06 22 2.57 .04 .15 MD MD MB 5 MD 6 617 .01 3 .14 10 KD ND 63 LL 266 .7 .54 ND MD 139 3 .10 .1 3 3 1.32 .06 .09 403 M3 .01 3 .02 7 3 KD 34 3 ND 32 NB LL 267 . 6 1.10 ×Đ ND 218 .10 .1 5 2.08 .06 .16 646 KD .01 5 .08 10 MD ND MD 11 ND ND 50 LL 268 .7 1.72 MD NB 261 ND . 40 .7 11 16 3.09 .10 .76 563 .01 24 .11 10 MD MD ND MO 86 KD KD 80 LL 269 .7 .84 NO NB 112 3 .16 .2 2.02 .07 .41 308 20 .01 10 .02 43 ND 41 LL 270 1.76 KD HD 424 .52 .3 12 18 2.89 1700 24 MB 99 . 6 11 .10 .84 MB. .01 .10 MO MB MD 4 ND 75 87 LL 271 .7 1.72 KD MD 179 ND .42 20 2.91 .09 .98 538 KD 31 MD MO KD MD KD M .4 13 14 .01 .04 74 LL 272 . 5 1.62 ND MD 243 KD .43 .09 604 19 19 KD MD KD 110 90 ND MB . 4 9 9 19 2.64 .80 .01 .04 7 51 LL 273 1.96 GK 206 MD .23 KD ND 23 NO . 4 MB . 1 10 13 3.25 .08 .46 887 KD .01 5 .13 5 10 MD KD 71 LL 274 1.68 MD 221 .25 12 .07 . 55 993 7 O 32 MD . 5 HD KB 11 10 3.20 NB .01 .07 65 MD 1.59 XD MD ND .19 .07 .48 1280 MB MD 25 MD LL 275 263 13 3.05 KD 12 ND N9 MD 95 . 6 .1 17 16 .01 9 .04 2.18 KD 197 KD .27 4.08 K K 28 MD LL 276 MD 15 .09 962 M3 .01 7 MA KD 10 . 4 .1 13 14 .61 .16 4 LB 267 KD KD HD 43 MD MD LL 277 . 6 1.79 3 HD .59 13 11 17 3.35 .12 .71 870 1 .01 8 .09 MD AD 91 .4 8 KB 187 MB 7.90 MB HB 9 MD KD LL 278 . 4 2.19 MD .10 .1 7 9 13 .07 .38 670 1 .01 .13 50 LL 279 4.03 KD ND . 05 10 . 06 .20 128 .01 2 .12 KB 5 H 64 3.09 .1 LL 280 1.92 13 MD 137 M .05 14 13 13 2.83 .08 .46 456 .01 .08 44 MB 113 ND 2 5 KD MB 218 1.3 8 .6 1.3 1.53 11 MD 161 3 .13 9 9 3.08 .07 .53 287 MD .01 9 . 05 25 MD KĎ MO KD D 108 LL 281 13 .4 ND MD MB 349 18 .98 10 26 MD XĐ ND 35 199 LL 282 . 8 2.20 1 ND .46 1.6 17 11 3.73 .14 881 X3 .01 .11 26 MD HO LL 283 .1 2.24 5 MD 335 ND .29 1.3 17 12 16 3.62 .10 .74 583 ND .01 9 .09 36 H5 232 32 LL 284 319 .29 12 528 7 15 N 109 .7 1.69 2 3.05 .10 . 81 .01 .06 44 MD LL 285 2.49 NO 362 KD .56 12 17 .13 1.20 676 7 .10 19 MD KB MD 3 192 . 8 6 .9 17 4.04 MD .01 6 10 36 ND KD 248 MD 470 KD .12 ND 50 MD MB MD 2 LL 286 .7 2.56 . .47 1.3 20 12 18 3.74 1.12 1519 .01 .11 24 MD MD 235 LL 287 1.0 2.53 9 ND 260 ND . 22 .7 22 17 16 3.89 .12 1.12 1594 MD .01 1 .06 28 ND MD MD 3 25 . MB MD 16 MD MD 157 LL 288 .7 2.08 MD 196 NO .21 12 12 13 3.47 .09 .76 655 NB .01 .11 MD 37 LL 789 .5 1.93 3 350 KD 13 19 .13 .90 MD .01 25 MD 148 .5 3.76 .11 MD 90 LL 290 1.64 ND KD 155 NB .18 10 15 6 3.44 .07 .36 572 KP .01 4 .04 15 NB MD MD KD 11 KD . 6 ND .79 ND 43 MD 153 SEC 005 .5 2.82 16 KD 291 NO .80 1.2 18 24 30 3.45 .12 1067 1 .01 20 .07 23 MD MD MO SEC 006 . 5 3.08 14 ND 305 MB .41 21 37 .91 659 .01 14 .06 11 MD KD MD MD 31 MD 3 95 .8 17 4.10 .11 1 MD 30 14 MB SEC 007 .5 2.87 MD MD 375 MD .55 25 .58 663 .01 12 .04 ND MD MD 75 .5 17 3.03 .11 1 54 SEC 008 . 3 1.21 494 ND 1.72 12 24 .12 .30 831 .01 6 .09 11 112 84 5 1.66 SEC 009 .4 1.73 NĐ MD 279 ND .84 .5 11 25 2.46 .10 .39 808 1 .01 7 .06 10 ND MD MD MD 36 31 MD 77 SEC 010 1.31 15 KD 281 ND 1.13 .9 12 11 1.68 .10 .31 884 2 .01 9 .06 6 XD ND KD 43 42 XD 93 . 4 2.72 ND KD 53 13 ND 86 S6C 011 .3 1.58 10 MD 209 MD .72 7 22 .10 .41 794 KD .01 1 .07 11 MD #D .3 11 MP 47 35 ND 60 SEC 012 1.50 MD MD 276 MD .96 7 2.52 .43 831 ND .01 .06 . 3 16 18 .11 44 96 S6C 013 . 6 2.19 122 MD 236 MD. .58 24 19 27 3.79 .12 .97 736 2 .01 26 .07 10 ND 19 SEC 014 1.78 96 ND 105 MD 1.60 9 25 28 2.55 .12 .62 781 4 .01 13 .09 NO ND MD 58 70 ND 89 . 4

.01

.01

.01

.01

1

.01

1

2

3

5

5

1

REPORT: 860022PA

DATE: 86/01/30

PAGE 3 OF B

から

DETECTION LIMIT

.01

.1

3

3

3 .01

CLIENT: RAM EXPLORATIONS JOB#: 860022 PROJECT:

SAMPLE NAME AS AU BA BI CA CO CO CR CU FE K 76 MM MO MA MI P PB PT PB 58 SR PPM 1 PPM PPM PPM PPM 1 PPH PPM PPR PPM 1 1 1 PPM PPM 1 PPM 1 PPN PPM PPM PPR PPM PPN PPN PPM PPM SGC 015 .2 1.10 155 .33 19 .53 .2 10 2.18 .08 347 MD .01 .05 MD 21 KD MD 35 UL 1222 .1 2.45 ND KD 103 ND .13 .1 7 11 21 2.23 .04 .47 341 1 .01 6 .21 7 HD K ND MB 12 MD MD 105 UL 1223 .1 2.67 MD 116 MD .13 , .1 6 7 14 23 2.35 .04 .49 520 .01 9 10 NO ND KD 1 . 28 MO 12 MP KB 116 UL 1224 .1 3.48 10 118 .15 8 14 2.75 .55 26 .05 553 30 .01 .43 13 X MB 127 UL 1225 MD .1 2.25 3 113 MD .13 .1 4 10 18 2.00 .03 .33 1181 ND 5 MD KB .01 . 24 . MD MD 13 MS ND 93 L 1226 .1 2.34 MD 96 KD MD .11 10 .33 17 2.04 .03 856 MB .24 5 MD KD .01 ND KD MD 88 UL 1227 .1 2.07 MD KD MD 93 .12 5 .32 .1 10 15 2.00 .04 MD 809 .01 5 . 20 NO ND 12 8 NO KB MD 87 LL 1228 HP .1 2.11 MD MD 225 .20 .1 7 19 2.06 .05 .53 10 MB 1320 .01 7 .04 11 MD MD ND MD 22 D MD 88 UL 1229 .2 2.10 MD ND 220 MD . 20 .2 10 19 2.09 .06 .55 1294 .01 8 .04 15 KO 22 KD 84 UL 1230 .2 2.11 3 MD 231 ND .20 .4 8 10 20 2.14 .06 .56 1241 1 .01 8 .04 15 ND NB ND MD 22 ND MD 83 UL 1231 .3 2.59 ND MD 145 MO .17 .6 10 12 32 2.56 .06 .64 614 2 .01 9 .04 11 MD MD ND NO 18 KD MD 81 UL 1232 KD .4 2.53 4 MD 149 .17 .4 10 12 32 2.52 .07 . 63 ND 575 1 .01 .05 10 MD MD MD 19 K MD 75 UL 1233 .2 1.99 MD KD 142 ND .19 .1 14 2.00 .05 8 9 .47 KD .01 .03 8 NO ER XD. 28 22 KD MB 83 .2 2.09 UL 1234 MD MD 127 MD L . 20 13 1.96 .05 .51 .01 .02 22 10 82 UL 1235 .2 2.28 5 ND 134 KD .18 .4 8 10 14 2.03 .05 .50 439 .01 8 .03 HD ND XD. MD 21 MA KD 86 UL 1236 .1 1.93 AD MD 146 NB .18 .2 8 10 14 7.10 .05 .49 655 K .01 7 .07 14 NO KD KD KD 13 19 MD 101 UL 1237 .2 1.94 MO MB 148 MD .19 .2 8 10 14 2.09 .05 .48 731 1 .01 8 .07 15 ND HD KD MD 19 KP KD 108 UL 1238 .1 2.03 MD ND 286 ND .23 .4 9 10 21 2.14 .06 .60 3016 MD .01 8 14 ND XD MD .12 MD 26 K MD 114 UL 1239 .1 1.98 MA ND 327 MD .23 23 2.04 .06 .57 3191 .01 .12 16 MD M 122 KD 26 MD MD UL 1240 .1 2.05 DK MB 335 KD .24 .4 8 10 23 2.13 .06 .59 3404 KB 1 .01 8 .13 17 ND MD EK 27 N9 KD 119 UL 1241 .2 1.88 10 KD ND 163 . 26 .4 8 11 15 2.09 .06 .50 970 .01 12 .04 10 KD MD MD MD 25 #D 1 KD 94 UL 1247 .2 2.30 MD MD 14 181 .23 .4 10 13 19 2.55 .06 .67 748 KD .01 10 .06 13 MD MD ND ND MD 24 MB 100 UL 1243 .2 2.17 9 KD 184 MD .23 17 2.45 .3 10 12 .07 .64 773 10 1 .01 .06 13 MD MD KO MD 24 3 #D 103 UL 1244 .4 2.70 63 MB 151 KD . 45 12 22 27 2.84 .10 .84 .04 .6 501 1 .01 12 14 Œ 34 5 HO 100 UL 1245 .3 7.54 ND MB 60 143 .45 .2 11 21 25 2.72 .09 .80 468 .01 11 .04 11 ND MD KD ND 33 KD MD 87 UL 1246 57 MB ND .2 2.62 147 .47 .5 11 21 25 2.74 .09 .82 471 12 MD NB ND MD 1 .01 11 .04 33 3 MD. 88 .4 2.54 UL 1247 60 ND 143 HD .45 .3 13 . 11 21 24 2.71 .10 .80 456 MD MD KD .01 12 .04 KD MD 32 5 NO 84 UL 1260 .2 5.39 23 KD 233 MD .40 .4 27 18 35 3.95 .79 .10 560 2 .01 29 .12 NO MD MB 16 1 67 ND MB 254 UL 1261 .3 4.08 70 143 MO. MD .24 33 .4 17 19 2.77 .07 .47 631 .01 24 . 09 62 30 MD 334 UL 1262 .1 3.42 22 MB 325 ND .19 .3 13 15 21 3.22 .07 .37 1761 1 .01 11 .75 14 KD KD KO 26 KO MD 187 UL 1263 .3 2.41 B MD 101 MD .17 .3 8 15 20 2.85 .06 .36 311 MD .01 8 .09 12 ND MD H ND 19 ND 78 UL 1264 .2 4.37 8 AM 88 KB .18 .1 12 16 47 3.07 .04 .62 358 2 .01 11 .10 . ND MB MD MD 19 KD MD 72 UL 1265 .1 4.44 13 MD 90 MD .40 .3 28 16 30 3.18 .09 .49 923 2 .01 17 .15 18 MD MD MD MD 27 MD MD 179 UL 1266 .7 3.29 7 ND ND 119 .42 .3 26 18 24 4.12 .09 .52 .01 21 .07 14 ND 41 MD. 154 MD UL 1267 .2 3.81 15 NO CH .69 .3 161 24 18 25 3.91 .11 .36 1172 ND .01 19 14 ND MD MD .04 MD 49 MD 185 UL 1268 .3 2.59 16 ND 120 MD .46 .3 18 15 15 3.18 .08 .46 760 1 .01 16 .20 12 ND ND MD 43 MD MD 216 UL 1269 .2 3.44 18 MD ND .45 218 .7 36 17 34 3.57 .09 .50 2111 .01 19 . 38 24 NO ND KD MD MD 55 ND 294 UL 1270 .2 2.54 23 ND 115 .47 3 .9 19 18 20 3.29 .09 .96 1320 MD. .01 15 .15 21 ND ND ND MD 40 KD ND 272 UL 1271 .2 2.20 25 ND 138 NO .73 . 8 22 27 60 3.33 .10 . 38 704 .01 29 .06 72 238 DETECTION LIMIT .1 .01 1 3 1 3 .01 .1 1 1 1 .01 .01 .01 .01 3 2 2 7 1 1

1 1 1 1 1 1

CLIENT: RAM EXPLORATIONS JOB#: 860022 PROJECT:

1 1 1

REPORT: 860022PA DATE: 86/01/30

1

1 1

PAGE 4 OF 8

SI SAMPLE NAME AL AS BA BI CA CB CO CR CU FE K M6 MO SM SR 714 PPN 1 PPH PPM PPM PPM 1 PPM PPM PPM PPR 1 PPM PPM PPM PPM PPH PPM PPM PPM PPM PPM PPH PPN 77 UL 1272 . 1 4.50 ND XĐ 98 . 43 1.2 24 23 46 4.42 .10 . 79 513 .01 17 .04 50 145 UL 1273 . 1 1.50 12 ND 89 ND 1.79 .5 17 9 37 2.35 .10 .54 874 XĎ .01 11 . 10 28 ND Øĸ ΧĐ XD 89 3 ΚĐ 152 14 MB 167 MD 18 .01 19 24 ΝD MB МB NB 77 ND UL 1274 . 2 3.34 .67 .8 29 22 4.57 .12 . 68 1934 1 .17 4 162 ND 150 3 1.30 27 2852 МĎ .01 20 ND MB ЖĎ ND UL 1275 .5 4.02 4 . 8 26 29 5.37 . 15 1.15 .15 20 112 142 UL 1276 3.05 XĐ 216 NB 18 33 4.06 .13 .96 3757 .01 . 22 KD ΧĐ 94 159 .1 1.64 70 18 11 UL 1277 . 1 3.20 8 ΧĎ 233 NB 1.47 .9 15 13 20 2.97 .12 . 66 5801 KD .01 14 . 21 21 ΝĐ KB МĎ MD 54 7 ΝĐ 131 UL 1278 . 1 . 58 10 XD 194 MD 1.73 .3 7 11 .78 .08 .19 1836 1 .01 5 .10 41 ND NB XB 77 6 ND 122 UL 1279 .1 4.36 MD ND 239 3 .56 .7 25 21 27 4.45 .11 . 98 1254 .01 23 . 14 13 В KĐ ΧĐ N9 53 МB NĐ 128 UL 1280 .3 6.13 NB XB 170 MB .37 1.1 26 22 29 4.47 .09 .57 510 1 .01 21 .11 13 ND XD ЖD 32 ND XB 118 47 132 UL 1281 2.83 ND 259 . 48 13 15 21 3.04 .08 .40 1319 MĐ .01 11 .10 ND MD. . 4 . 5 NS. UL 1282 . 2 3.70 MD XD 181 X9 .28 .4 15 19 28 3.42 .07 84. 576 NB .01 13 .13 14 MD KĐ ND 25 N.S ND 128 UL 1283 .3 3.20 NO MB 229 ND .47 .8 21 16 19 3.17 . 09 .42 1796 1 .01 11 . 26 20 МĐ NB KB MD 40 3 KD 199 XB NB UL 1284 .1 3.06 11 ХĐ 394 NB . 68 1.0 28 22 24 4.02 .11 .79 1940 NB .01 17 .12 35 ΧĐ XB 45 ΧĐ ΧĎ 237 AD. UL 1285 .1 1.69 5 ND 163 МB . 28 .2 11 13 13 2.13 .05 . 40 615 .01 . 07 10 ND NB MD) 25 МĎ MΩ 99 39 113 UL 1286 .3 3.96 15 ×B 193 ΧĎ . 55 . 9 19 20 29 3.84 .12 .91 1127 1 .01 19 .07 16 ΧĐ UL 1287 2.28 ĦĐ NO 205 MB . 38 .5 12 13 15 2.44 .06 . 63 1048 ĸĐ .01 11 .05 10 MD ND KĎ МĎ 34 ЖĎ МĎ 150 .1 МĎ ND XB ЖD XĐ MD NB 28 MD NB 150 UL 1288 .3 3.41 N D 250 .29 .6 14 16 29 3.13 .08 .60 1792 .01 12 .22 14 .1 2.40 ΝĎ ХD MD ЖB 31 ND ХĐ 219 UL 1289 ė MD 301 ΧĐ . 32 .8 11 15 13 2.53 .07 .46 1370 1 .01 11 .22 22 UL 1290 .3 2.91 κĐ 147 MD .30 .6 13 15 27 3.01 .07 . 56 683 K) .01 10 .04 13 ND ND MĐ Ю 28 K9 MD 109 3 UL 1291 .4 1.32 108 . 38 1.48 . 05 .31 676 . 01 10 .03 13 ND ND 28 120 3 .2 5 ND MD . 23 .49 558 .01 14 .07 9 KB KS. ΝĎ MS 22 NĐ XD 206 UL 1292 3.69 MA. 160 .4 14 25 3.19 .06 1 . 1 KB ¥Đ 76 МĎ .01 .08 13 MD MB ИD ND 24 UL 1293 .3 2.86 5 NĐ 130 KĐ . 24 .7 13 14 19 3.30 .07 . 43 506 9 MB ND 126 NB 12 18 MB ND. N. 22 ΧĐ UL 1294 .2 3.35 221 XI .26 .7 14 16 27 3.40 .08 .56 1056 1 .01 .10 4 KB ND 71 ND 223 KD . 4 . 27 471 3 .01 5 . 05 12 ĸĐ MB MO 15 KB UL 1295 .3 1.45 3 . 20 11 8 2.59 .06 MB MB MB 17 ND ΝĎ 84 UL 1296 .32 783 20 MB . 2 1.99 ND 310 MB .24 11 2.78 .01 .10 18 NB MD MD 15 6 NĐ 94 ND 8 .07 UL 1297 . 3 3.02 3 484 MD . 22 .4 14 13 41 3.61 .08 .44 602 3 .01 17 -ND ND ЖB 14 X0 98 8 .07 UL 1298 .3 3.05 3 MB 479 MB .21 .7 14 13 41 3.52 .08 .43 617 2 .01 ND 26 ND ΧĎ 3 ĦĐ 8 MD 3 .02 6 UL 1299 . i . 82 NB 101 ND .13 . 1 3 9 3 1.45 .02 .14 296 ND .01 МĎ ND NO 40 7 ND KĐ ХB 11 UL 1300 1.16 6 ND 198 X3 .19 . 1 11 6 1.81 .04 . 22 1363 .01 4 .04 9 NB MD 38 UL 1301 ND 94 NO. .03 .20 139 ND. .01 . 10 ٠.۱ 1.92 .09 8 2.15 ND MD ND ND 43 NB .09 . 20 142 МĎ .01 3 .10 8 ND ND 7 UL 1302 2.35 MB 96 10 2.40 .04 . 1 6 . 1 ND ΝĎ KD. NĐ ΝĐ 88 MD. 171 MB .17 . 35 441 MĎ .01 8 .09 9 MD 10 UL 1303 . 3 3.75 #B .8 11 19 3.22 .06 12 NĐ . 29 247 .01 7 .03 6 ND NB ND NB 8 ND ND 48 3 ND 103 .12 .04 UL 1304 .2 2.59 . 1 10 2.15 NB ХD 116 NĐ . 3 .06 .34 244 .01 .07 5 ND ND. ND 10 ND 66 UL 1305 .2 4.47 3 .14 8 13 15 3.39 UL 1306 9 .07 ND ND MD ND 64 . 2 4.62 MD 120 МĎ .13 13 16 .06 .37 249 .01 3.33 NĐ MĐ MD МĐ 9 ND ND 40 MD 91 MВ .12 8 . 05 .19 122 . 01 4 . 07 12 UL 1307 .4 1.62 6 . 2 5 2.65 ND 29 MD ND ND NB 7 ND 67 ΝB .10 2.24 .04 .14 101 NO .01 4 .02 8 UL 1308 . 3 1.41 8 MD ٤. Ь

8

7 2.85

3.13

.01

. 05

.05

.01

.18

.17

.01

160

157

2 .01

ND .01

.01

4 .08

4 .07

1

.01

12

13

REPORT: 860022PA DATE: 86/01/30

PAGE 5 OF 8

MD

ND

5

ND

ND

3

KD

NB

ND

ND

ХD

ND

7

МD

ND

56

50

CLIENT: RAM EXPLORATIONS JOB#: 860022

MD

ND

3

.4 2.65

. 2

.1 .01

2.20

UL 1309

UL 1310

DETECTION LIMIT

ND

ЖD

3

124

107

1

NB

ND .10

3

.11

.01

.7

. 1

.1

5

5

11

10

PROJECT:

	CLIENT:	RAM	EXP	LORA	TIONS	5 J	OB#:	8600	22	PROJ	ECT:				REPO	RT:	8600	22PA	DA	TE: E	36/01	1/30			PAG	E 6	OF 8			
	SAMPLE NAME		AG PPN	AL I	AS PPM	AU PPM	BA PPM	BI PPM	CA 1	CO PPM	CO PPM	CR PPR	CU PPN	FE I	K 1	M6 1	MM PPM	NO PPN	NA I	MI PPM	P	PB PPM	PD PPN	PT	SB PPM	SN PPN	SR PPM	U PPM	M PPM	IN PPM
	UL 1311		2	1 10	ND	ND	97	ND.	.12	,	6	11	8	2.25	.03	. 24	438	ND.	.01	1	. 05	13	ND	MD	MO	KA	11	ND	XD.	53
			. 2	1.69	3	KD	217	KD	.21	.2	i	9	17	2.07	.04	.29	1336	ND	.01	8	.06	8	ND	MD	ND	ND	15	ND.	ND	64
	UL 1312		. 2	2.06	ND	ND	187	NO	.17	.1	i	10	18	2.33	.03	.33	1141	ND	.01	i	.04	4	NO	XD	MB	MD	12	KD	NO	56
	UL 1313		.1			KD	345	ND	.25		24	17	22	3.79	.06	.70	584	2	.01	31	.06	3	ND	ND	ND	2	21	ND	ND	187
	UL 1314 UL 1315		.1	4.75	107	ND	303	ND	.23	.3	22	14	20	3.39	.05	.62	474	2	.01	31	.06	2	ND	MD	NO.	i	20	MD	ND	171
	OC 1313		••	1.1/	10	70	303	~~	.23		**	**		3.37						75		- 2			2.03					
	UL 1316		. 3	1.16	ND	NB	64	MD	.16	.1	5	8	5	1.79	.03	.27	219	MB	.01	5	.02	7	MD	XD.	NB	XB	10	ND.	MB	40
	UL 1317		. 2	1.42	MO	ND	85	ND	.12	.3	5	10	8	2.03	.03	. 29	157	MD	.01		.06	5	HD	MD	MD	KD	9	MD	ND	53
	UL 1318		. 3	1.60	MD	MB	102	NB	.14	.3	6	10	9	2.10	.04	.21	175	MB	.01	6	.08	8	MD	NB	MB	KB	10	ND.	MD	64
	UL 1319		.3	1.85	ND	D	187	ND	.14	.2	7	9	7	1.98	. 03	.23	377	×D	.01	6	.03	10	KD	MD	MD	MD	12	MD.	ND	78
	UL 1320		. 2	1.93	MD	MB	165	ND	.12	.3	7	9	8	1.96	.02	.22	236	ND	.01	7	.03	6	ND	NB	ND	KD	11	MD	MD	72
	UL 1321		. 2	2.29		QK	119	KD	.13	.4	9	14	32	2.82	.04	.44	320	1	.01	9	.03		MD	ND	MD	ND	10	ax	ND	41
	UL 1322		. 2	2.01	ND	HD	128	MD	.14	.2	7	15	15	2.62	.04	.39	436	1	.01	10	.05	6	MD	MD	ND	KD	11	MD	ND	58
	UL 1323		. 1	3.65	ND	CM	70	MD	.09	.3	7	14	16	3.20	.03	. 32	290	MD	.01	7	.13	5	KD	MD	MO	KB	1	ND	ND	65
	UL 1324		. 3	1.39	MD	MD	106	MD	.12	.1	5	11	7	2.39	.03	. 29	187	N9	.01	5	.03	11	MD	ND	ND	MB	9	MD	ND	41
	UL 1325		.1	4.13	53	ND	261	XD	.47	.9	28	29	83	5.50	.09	1.04	1060	4	.01	47	.10	20	CH	ND	MD	NB	32	ND	6	128
	UL 1326		.1	1.99	5	ND	84	KD	.10	.3	7	12	16	2.70	.02	.32	274	2	.01	10	.04	3	ND	NO	MD	X3	9	ND	CM	40
	UL 1327		.4	1.70	4	ND	103	MD	.12	.2	6	9	8	2.50	.04	.26	316	1	.01	6	.11	7	MD	ND	ND	1	8	NB	NO	41
	UL 1328		.4	2.68	MD	ND	68	MD	.09	.1	6	15	11	2.82	.03	.26	173	MD	.01	8	.11	7	MD	MB	MD	XB	7	MD	ND	52
	UL 1329		.2		MD	MD	75	MD	.08	.2	6	17	12	2.94	.02	. 25	881	MD	.01	8	.13	6	MD	MD	MD	1	6	NO	ND	49
	UL 1330		.2		XD	MD	105	ND	.12	.3	7	13	9	2.90	.02	. 26	166	ND	.01	7	.06	1	ND	ND	ND	KD	10	MB	MD	153
	DF 1331		.5	3.05	16	MD	181	ND	.09	.4	1	34	89	8.18	.08	.76	207	2	.01	18	.14	14	ND	MD	ND	2	15	ND	4	84
	OF 1322		.4	3.05	ND	ND	128	KD	.14	. 3	10	12	27	3.36	.04	. 40	323	1	.01	13	.10	7	KD	KD	KD	MD	13	MB	KD	105
	UL 1334		.3	3.17	6	ND	126	NO	.14	.2	9	12	25	3.35	.04	. 39	262	1	.01	12	.10	6	MD	MD	KD	1	13	ND	KD	101
	UL 1335		. 4	3.84	202	MD	121	ND	.47	.3	17	16	27	4.31	.07	. 65	329	3	.01	18	.07	7	MĐ	KD	MD	2	20	MD	2	125
	OF 1338		. 3		18	ND	380	MD	. 27	. 3	1	4	29	2.57	.09	.51	544	2	.01	6	.09	12	KD	MD	KD	MD	46	3	MD	50
	UL 1339		.2	1.38	9	NB	358	ND	.25	.3	7	4	43	2.58	.08	.51	543	2	.01	5	.07	13	KD	NO	NB	ND	47	XD	ND	47
	UL 1340		. 3	1.40	13	ND	344	ND.	.27	.5	1		49	2.57	.08	.50	572	2	.01	6	.06	12	- MD	ND	ND	MS	46	ND	KD	47
	UL 1341		.3		16	HD	351	NB	.29	.3	7	4	44	2.56	.09	.50	599	1	.01	5	.07	14	ND	KD	MD	ND	48	MB	MD	47
	UL 1342		. 3		7	ND	1133	ND	.80	.5	8	1	25	2.72	.10	.46	2504	2	.01	. 6	.11	17	MD	42	KD	NO	65	5	MD	87
	UL 1343		.1	1.41	5	MD	236	MD	.13	4	4	4	9	1.91	.03	.18	162	NB	.01	3	.15	9	ND	ND	MD	MD	14	MD	MD	43
	UL 1346		.4	1.61	5	ND	345	3	. 38	.3	9	13	11	2.58	.07	. 62	1726	1	.01	17	.10	19	MD	ND	MD	MB	76	4	ND	79
	UL 1348		. 3	1.42		NB	202	ND	.66	.6		9	14	2.50	.08	.61	705	HD	.01	16	.05	8	ND	NO	MD	MD	101	ND	MD	53
	UL 1349		.3	.42	MD	ND	125	ND	. 20	.2	3		4	1.25	.03	.10	138	MD	.22	5	.01	6	MD	NO.	4	MD	19	NB	MD	24
	UL 1350		. 4	2.10	7	MD.	170	ND	.18	.3	7	10	9	2.84	.05	.30	348	2	.01	6	.08	11	MD	ND	HD	2	17	MB	MD	78
	DF 1321		.5	2.84	12	MD	119	MD	.10	.7	14	13	19	3.84	.05	.43	220	2	.01	14	.08	12	DK	MS	KD	3	11	MD	NO	139
						wr.	122	un.	77			8	13	7 10	04	.53	549	1	.01	6	.09	9	ND	XD	ND	KD	26	X3	*D	49
	UL 1352		.3	1.65	5	KD KD	122	ND ND	.23	.6	11	10	11	3.18 2.95	.06	.28	375	i	.01	6	.09	11	KD	ND	ND	1	9	MD	MD	50
	UL 1353		.1	2.31		14.00	-	MD			6	8	7	3.36	.04	.30	210	i	.01	4	.03	8	- ND	ND	MD	i	11	KD	ND	42
-	UL 1354		. 4	1.72	5	ND	116		.12	.5	5	100	8	3.01	.04	.29	261	2	.01	6	.14	12	MO	MD	ND.	i	9	ND	MO	49
1	UL 1355	*17	. 2	1.73	3	MD.	101	MD 3	.10	.5	1	10	- 2		.01	.01	101	1	.01	1	.01	2	3	5	2	2	1	5	Z	1
- 1	DETECTION LI	nii.	.1	.01	3	7	1	2	.01	.1	1	1	1	.01	.01	.01	1		.01			-	,			•			•	

Mary in.

81 CD SAMPLE NAME AL AS AU BA CA CO CR CU FE MG MN PT SB SM SR U ¥ 21 PPM 1 PPM PPR PPM 1 PPM PPM PPM PPM PPH 1 PPR PPA PPH 1 I 1 PPM 1 PPM PPM PPM PPM PPM PPM PPH PPH UL 1354 .2 2.99 134 21 2.79 .04 .64 340 .01 13 .03 22 .18 .1 12 14 71 UL 1357 25 2.68 .59 .01 11 .03 12 21 .4 2.87 104 .16 .5 10 13 .04 324 47 . 2 MD NB 118 MB .17 14 27 2.78 .04 .54 366 X .01 12 .08 9 ND MS MO MD 28 MD 90 UL 1358 2.95 .3 11 . 3 ND KD 121 ND .16 19 13 21 2.74 .47 MD .01 11 .04 14 MD MD KD MD 25 MB ND UL 1359 3.04 .4 . 05 419 93 UL 1360 .3 2.30 8 ND 18 MD .14 . 4 11 12 33 2.62 .06 .63 328 XB .01 11 .03 12 MD KB NO MD 17 MD 56 27 UL 1361 . 2 2.87 ND ND 117 ND .15 . 2 12 2.66 . 05 .51 324 MD .01 10 .06 13 MD KB ND. ND 18 MD KD 71 UL 1362 . 3 7.63 106 MD .17 .3 13 13 23 2.77 .06 .52 310 .01 13 .03 13 81 UL 1363 . 3 5.26 10 MD 197 ND .95 .5 31 97 40 3.86 .09 1.79 900 KD .01 61 .05 7 MD MD MD 2 58 NO ND 75 MD .25 XB 13 MD MD 39 MD ND UL 1364 .3 3.78 NO. MD 140 .5 20 17 30 3.47 .07 .54 437 .01 15 .05 KD MB 114 22 MD 171 ND .22 13 18 KD MD MD 143 MD MD UL 1365 .4 3.56 .5 16 17 3.48 .07 .73 414 1 .01 .04 14 ND 91 MD XB 188 ND .20 18 38 3.50 KB 19 16 ND KD MD 63 XD ND UL 1366 .3 4.08 19 .07 .76 378 .01 .04 102 UL 1367 .3 4.13 235 17 MD 33 M9 MD MD . 18 .5 23 19 51 3.51 .08 .87 589 KD .01 .04 20 KD XD 78 X3 MD 162 MB 18 MB .01 .02 17 ND ND MB MD 16 KB MB 78 UL 1368 . 1 3.26 .15 .8 11 17 3.17 .06 .59 378 11 UL 1369 .2 4.04 MD MD 164 ND .19 .7 18 17 31 3.22 .07 .75 346 MD .01 16 .03 16 MD KĐ. HO ND 56 HD KD 101 UL 1370 .4 3.64 ND ND 135 ND. .24 .3 16 16 18 3.57 .07 .55 371 1 .01 14 .05 17 MD MD ND HD 23 10 ND 98 137 HD MD MD KD MD UL 1371 .2 4.07 KD MD ND . 20 .4 22 14 40 3.18 .05 .62 412 KD .01 22 .06 11 MD 26 97 87 UL 1372 . 3 3.71 280 .52 20 22 38 3.99 .10 1.11 1055 .01 .07 HĐ . 8 MO MD 131 27 MD 119 MS MD SE. MS UL 1373 .4 2.83 MD . 18 .7 10 12 2.63 .06 .65 333 .01 9 .01 18 MD 20 49 12 18 MD MS MD ND 24 15 MD UL 1374 . 3 4.16 XB 224 MB .17 .5 16 18 34 3.62 .07 1.03 441 1 .01 .01 15 74 28 MD KD KD 71 ×Đ NO IL 1375 .1 3.20 9 ND 282 MD .19 .2 18 12 3.41 .05 .50 1265 MD .01 13 . 19 18 MD 119 MB 33 UL 1376 3.22 18 ND 162 MD . 28 .7 20 18 45 3.76 .08 .93 665 .01 25 .04 21 NB KB MD XD MD 92 XD. 125 UL 1377 .1 4.19 16 382 KB .13 16 19 35 4.32 .07 1.06 708 .01 18 .04 34 18 13 MB 27 ND 193 45 MB 15 .07 30 MD KB MD MD 29 MB MB 121 UL 1378 .4 3.04 MD .34 .9 16 19 4.35 .09 1.23 900 .01 MD 14 18 MD MD ND KD 15 MD MB 92 UL 1379 . 2 4.16 12 370 NO. .15 .6 20 18 18 5.01 .09 .47 436 1 .01 .02 HD ND XD 20 MB MB 479 18 ND 110 UL 1380 . 1 3.56 10 XB ND .17 .6 14 17 18 4.25 .07 .51 1062 1 .01 .06 16 MD ND KD ND MD 66 DL 1381 .1 2.15 10 MD 264 MD .18 .3 11 13 21 3.39 . OB .54 546 1 .01 11 .03 18 MD 16 UL 1382 339 13 2.82 .38 397 .01 10 .03 14 18 ND 80 .1 2.55 ND .21 .2 11 .06 MD 84 UL 1383 2.53 16 MD 201 MD 80. 17 14 48 5.79 .09 .50 939 2 .01 17 .09 16 ND MD ND MD 9 ND .1 .4 KD UL 1384 2.72 3 MB 216 ND .08 .5 11 30 3.44 .05 .27 297 .01 12 .06 11 MD ND ND ND 11 MD 83 .1 9 MD MD #Đ KD 84 UL 1385 .1 1.93 7 ND 157 ND .16 .2 8 9 18 3.20 .05 . 28 557 .01 9 .03 19 ND 4 10 ND 23 MD 194 ND .08 10 30 3.42 .06 .77 599 .01 12 .03 54 ND MB MD MD 12 ND 144 UL 1386 .3 3.27 .6 143 UL 1387 .3 3.72 23 KD 220 MD .10 17 35 3.59 .07 .81 P28 .01 14 .04 54 MD MD .8 11 MD UL 1390 .1 2.70 CK MB 110 KD .16 .8 9 12 21 2.65 .04 .48 586 .01 .07 26 KD MD MD MD 18 MD 131 MD UL 1391 .2 4.62 ND MD 268 MD . 22 .4 15 18 45 3.95 .08 1.06 630 1 .01 15 .06 20 MD MD MD MD 24 ND 118 UL 1392 .5 - 5.18 ND ND 198 ND .20 .5 15 20 54 4.37 .08 .81 469 2 .01 13 .04 18 MD ND MB 2 23 ND ND 86 NO MD 147 MD .22 15 17 35 363 .01 12 16 ND QM. MD 20 MD ND 156 UL 1393 .5 3.32 .6 4.16 .07 .61 2 .10 43 3.61 24 169 UL 1394 .8 3.25 103 .32 16 .08 429 3 .01 13 .03 19 MD

.69

.71

.80

.01

388

457

2 .01

2 .01

.01

.08

.08

.01

13

14

.04

.03

.01

18

15

2

MD

ND

3

MD

ND

KD

ND

2

26

28

3

6

5

MD

MD

3

176

78

1

REPORT: 860022PA DATE: 86/01/30

PAGE 7 OF 8

CLIENT: RAM EXPLORATIONS JOB#: 860022 PROJECT:

12

12

19

1

.7 3.59

.5 4.78

.01

UL 1395

UL 1396

DETECTION LIMIT

MD

MD

NB

7

107

151

1

MD

MD

3

.34

.31

.01

. 6

.8

.7

.1

16

18

16

16

19

48 3.78

56 4.40

1 .01 CLIENT: RAM EXPLORATIONS JOB#: 860022 PROJECT: REPORT: 860022 DATE: 86/01/30 PAGE 8 OF 8

SAMPLE MAME	AG PPM	AL 1	AS PPM	AU PPM	BA PPM	BI PPM	CA I	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K I	K6 1	MM PPM	NO PPN	XA I	NI PPN	P	PB PPM	PD PPM	PT PPM	SB PPM	SM PPM	SR PPN	U PPM	N PPN	ZN PPN
UL 1397 UL 13 98 UL 1399 UL 1400 ER-100	.5	4.15 3.82 2.91 5.89	7 8 ND 76	MD MD MD MD	142 135 125 149 52	ND ND ND ND	.30 .29 .30 .53	.8 .6 .8 .5	18 18 13 18	21 20 13 28 25	36 34 37 56 5	3.50	.12 .12 .08 .24	.66 .60 .55 .93	478 453 429 888 870	ND NB 1 1	.01 .01 .01 .01	25 22 11 24 5	.04 .04 .04 .08	17 18 152 33	ND ND ND NB NB	MD OK OK OK	ND ND ND ND	ND 1 ND ND	25 24 22 28 30	3 ND 60 12	MD MD MD MD MD MD	143 150 346 106 48
DETECTION 1 THIT	.1	.01	3	3	1	3		.1	1	1	1		.01	.01	1	1	.01	i	.01	2	3	5	2	2	1	5	3	1

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX: 04-35257B BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L IL6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 SHAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HOL TO HNOT TO HZO AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR SH, MH, FE, CA, P, CR, HG, BA, PO, AL, NA, K, M, PT AND SR. AU AND PD DETECTION IS 3 FFM.
IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: RAM EXPLORATIONS

ATTENTION: PROJECT: REPORT#: 860026PA

JDB#: 860026 INVDICE#: 860026NA DATE RECEIVED: 86/01/27 DATE COMPLETED: 86/01/30

COPY SENT TO:

ANALYST CO Peccos

PAGE 1 OF 1

SAMPLE WAME	A6 PPM	AL 1	45 PPM	AU PPM	BA PPM	B) PPM	EA I	CB PPM	CO PPM	CR PPM	CU PPM	FE 1	K I	#6 2	MM PPM	MO PPM	NA I	MI PPM	P 1	PB PPM ·	PD PPM	PT PPM	SB	SN PPH	SR PPM	U PPM	N PPM	ZN PPM	
CSL 01	.6	2.52	NO	ND	56	HD	.10	.4	6	11	21	3.48	.08	.45	227	HO	.01	7	.05	12	ND	ND	KD	ND	10	ND	NB	44	
CSL 02	. 6	2.71	à	ND	87	4	.12	.7	11	12	33	3.54	.09	.55	610	ND.	.01	8	.06	17	NO	ND	NO	ND	12	NO	ND		
CSF 02	.8	3.78	MD	ND	85	ND	.07	.1	8	10	22	2.90	.08	.26	199	MD	.01	6	.OB	25	ND	ND	ND	MB	8	ND	HD	60	
OC 1114	1 1.5	7.37	11	ND	212	9	.31	3.1	22	31	54	4.51	.11	.78	1355	ND	.01	18	.08	156	ND	MD	ND	1	19	MD	HD ND	1176	
UL 1400	.8	4.31	70	ND	259	ND	,51	1.2	24	26	97	6.83	.26	1.20	2497	4	.01	19	.09	76	ND	NO	ND	NB	24	48	6	176	
UL 1401	1.2	4.22	72	ND	71	NO	.27	.7	20	29	58	5.02	.16	.61	763	5	.01	13	.02	36	NO	ND	ND	1	24	69	9	78	
UL 1402	1.0	4.75	56	ND	131	ND.	.82	1.4	23	42	25	5.21	. 22	1.09	899	1	.01	17	.04		ND.	NO	ND	2	36	61	5	116	
UL 1403	.6	3.45	10	ND	105	3	.33	.7	16	21	29	5.18	.12	1.02	482	3	.01	17	.03	8	ND	ND	ND	ND	25	ND	ND	145	
UL 1404	.5	4.22	HD	NO	172	ND	.14	.7	17	15	26	4.02	.11	. 57	1078	1	.01	15	.05	9	ND	ND.	ND	ND	15	ND	ND	234	
BL 1405	.8	4.01	44	ND	91	ND	.43	.7	17	15	37	3.56	.13	.64	348	NO	.01	12	.04	6	ND	NO	ND	ND	24	32	ND	108	
UL 1406	.8	3.25	50	N9	92	NO	.18	.7	16	18	26	3.94	.10	.60	291	2	.01	10	.04	10	ND	ND	NO	ND	16	3	ND	216	
UL 1407	.6	3.40	82	ND	109	ND	.63	.7	15	30	62	3.75	.15	.69	476	1	.01	16	.05	7	ND	HS	NO.	ND	22	72	MD	73	
UL 1409	. 6	3.48	33	HD	110	ND	.67	.9	15	31	65	3.79	.15	.69	497	1	.01	15	.06	7	ND	ND	HD	ND	32 32	77	ND	73	
UL 1409	.8	4.74	84	NO	158	ND	.43	1.0	19	22	82	6.05	.21	.53	834	2	.01	20	.08	35	NO	NB	ND	ND	23	82	NO	225	
UL 1410	.6	3.69	59	ND	211	MD	.16	1.5	18	28	67	4.74	.14	-66	2591	2	.01	14	.08	48	ND	MD	ND	ND	15	12	HD	244	
UL 1411	1.1	5,50	87	ND	362	ND	.46	1.4	18	28	92	4.65	.16	1.10	558	ND	.01	18	.04	10	ND	ND	NO	ND	43	33	8	178	
UL 1412	.9	2.65	15	ND.	115	NB	.21	.8	12	13	24	4.25	.10	.47	298	2	.01	9	.04	14	ND.	ND	HD	MB	21	ND	HS	99	
DE 1413	1.0	2.99	13	MD	112	ND	.18	.7	15	16	36	3.94	.10	86.	256	1	.01	11	.02	9	ND	ND	MD	HD	21	NO	ND	53	
UL 1414	.5	3.53	23	ND	217	ND	.14	1 .9	21	16	85	7.85	.15	.58	1522	ND	.01	15	.17	20	ND	ND.	NO	ND	19	3	3	224	
UL 1415	.7	3.52	43	NO	360	MD	.20	1.2	25	14	206	11.64	. 26	.63	2576	ND	.01	17	.14	35	HO	ND	ND	MD	26	5	ND	332	
UL 1415	.8	3.51	70	ND	300	ND	.15	. 8	18	11	125	6.27	.12	.59	882	1	.01	16	.08	19	ND	ND	ND	NO	13	ND	ND	149	
UL 1417	. 8	2.22	16	ND	99	ND	.16	.8	14	14	20	4.11	.08	.35	373	1	.01	9	.05	16	MD	ND	ND	ND	16	ND	NO.	262	
UE 1418	.4	5.07	19	ND	120	NS.	.12	1.0	14 21	18	75	5.60	.11	. 36	393	1	.01	25	.08	18	ND	NO	ND	ND	13	ND	MD	348	
DETECTION LIMIT	.1	.01	2	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1	

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: RAM EXPLORATION

DATE: Jan 30 1986

ADDRESS: 404 - 850 W. Hastinos St.

: Vancouver B.C.

REPORT#: 860026GA

: V6C 1E1

JOB#: 860026

PROJECT#: NONE GIVEN

SAMPLES ARRIVED: Jan 27 1986

REPORT COMPLETED: Jan 30 1986

ANALYSED FOR: Au ICP

INVOICEM: BEDORENA

TOTAL SAMPLES: 23

SAMPLE TYPE: 23 SOIL

REJECTS: DISCARDED

SAMPLES FROM: RAM EXPLORATION COPY SENT TO: RAM EXPLORATION

PREPARED FOR: CARL A. VON EINSEIDEL

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: None

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REP	ORT NUMBER: 860026GA	JOB NUMBER: 860026	RAM EXPLORATION	PAGE	1	OF	i
SOM	PLE #	Au					
OF II II	, , , , , , , , , , , , , , , , , , ,	ded					
CSL	01	59					
CSL		20					
CSL		5					
	1114	20					
	1400	25					
		P30A					
UL	1401	15					
	1402	25					
	1403	35					
	1404	15					
UL	1405	25					
UL	1406	35					
UL	1407	20					
UL	1408	20					
LIL	1409	20					
UL	1410	20					
7.2	72/90/0/(2/1	1000					
	1411	29					
	1412	20					
	1413	25					
	1414	25					
UL	1415	20					
111	1416	30					
	1417	20					
	1418	20					
UL	1410	LU					

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 BRAM SAMPLE IS DIGESTED WITH S ML OF 3:1:2 HC. TO HWO3 TO H29 AT 95 DEG. C FOR 90 MINUTES AND 15 DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN., MN, FE, CA. P., CR, MS, BA., PD, AL, MA, R., PT, AND SR. AU AND PD DETECTION IS 3 PPM.

15- INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: RAM EXPLORATIONS ATTENTION: CARL A. VONEINSIEDEL

PROJECT: NONE GIVEN

REPORT#: 860025FA JOB#: 860025

INVOICE#: 860025NA

DATE RECEIVED: 86/01/27 DATE COMPLETED: 86/01/29 COPY SENT TO: RAM

ANALYST W Semes

PAGE 1 DF 1

SAMPLE NAME	AG	AL	AS	AU	BA	81	CA	CD	03	CR	CU	FE	¥.	Mô	MM	no	NA	NI PPM	P	PB	PD	PI	SS	SN	SR	Ü		26
	PPM	1	PPM	PPM	PPM	PPM	1	PPh	PFM	PPM	PFM	1	1	1	FFM	PFF	1	PPM	1	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PFM	FFR
CON-A	1.1	2.38	20	NS	112	ND	31	1.2	10	34	24	3.03	. 09	.79	497	1	.01	14	.22	12	ND	MP	ND	No	26	NG	NG	478
CR-037	1.2	1.83	71	NE.	47	ND	.79	.6	18	50	41	4.43	.17	1.09	588	ND	.01	18	. 26	37	ND	ND	5	K!	50	ND	ND	20-7
CK-638	. 8	. 36	49	NS	67	NE	.06	.1	8	87	117	1.89	.06	. 24	241	ND	.01		.01	5	ND	ND		ND	30	MD	ND	3ė
CR-039	1.9	.85	5	NE	46	ND	.55	7.5	12	40	102	2.17	.12	.55	352	1	.01	14	.17	512	NS	KD	6	ND	35	ND	NE	601
CR-040	.8	.74	73	ND	141	ND	.18	.2	10	46	217	4.04	.12	.31	696	6	.01	12	. 05	58	ND	ND	9	ND	8	7	ND	8'
CR-041	1.1	2.71	ND	ND	8	ND	2.19	.3	10	71	19	1.67	.12	.86	305	ND	.01	23	.02	1	ND	MD	MD	ND		ND	ND	37
CR-042	1.1	3.19	10	ND	607	ND	.51	.5	14	48	21	3.59	.27	1.17	477	MD	.01	16	.04	5	ND	ND	NG	NI	48	MD	ND	73
CR-043	.9	2.32	4	ND	117	ND	.59	.4	10	31	29	3.57	.11	1.14	656	1	.01	13	.06	14	ND	ND	ND	NE	44	ND	ME	71
CR-044	. 9	1.31	5	NO	80	3	. 21	.4	13	32	29	3.11	. 65	.93	385	ND	.01	19	.04		ND	ME	3	ND	16	ND	ND	63
CR-045	1.1	3.93	8	ND	546	ND	1.09	.2	13	49	35	3.57	.24	1.32	609	1	.01	13	.06	8	ND	ND	ND	A.F	85	NL	Na	70
CR-046	1.2	3.54	ND	ND	661	ND	.87	.9	14	43	26	3.92	.18	1.49	587		.01	18	.06		ND	ND	ND		64	CM		65
CR-C47	1.6	1.57	4	NE	143	ND	.83	.3	17	33	33	4.18	.16	.62	333	1	.01	17	.12	9	ND	ND	3	NI NO	47	MD	ND	4:
CK-048	1.4	3.05	16	ND	27	ND	. 66	1.2	19	37	2E	5.46	.13	1.81	1046	ND	.01	17	.08	16	ND	ND	ND	1	34	ND	ND	93
EVE 001	1.9	-60	100	ND	4	ND	.86	.1	108	47	899	2.85	.10	.05	95	ND	.01	65	.05	13	ND	ND	5	2K	105	ND	NE	ç
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	2	5	2	2	1	5	3	1

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. VSL 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: RAM EXPLORATION

ADDRESS: 404 - 850 W. Hastinos St.

: Vancouver B.C.

: V6C 1E1

DATE: Jan 30 1986

REPORT#: 860025GA

JOB#: 860025

PROJECT#: NONE GIVEN

SAMPLES ARRIVED: Jan 27 1986

REPORT COMPLETED: Jan 30 1986

ANALYSED FOR: Au(FA/AAS) ICP

INVOICE#: 860025NA

TOTAL SAMPLES: 14

SAMPLE TYPE: 14 ROCKS

REJECTS: DISCARDED

SAMPLES FROM: RAM EXPLORATION COPY SENT TO: RAM EXPLORATION

PREPARED FOR: MR. CARL VON EINSIEDEL

ANALYSED BY: VGC Staff

SIGNED:

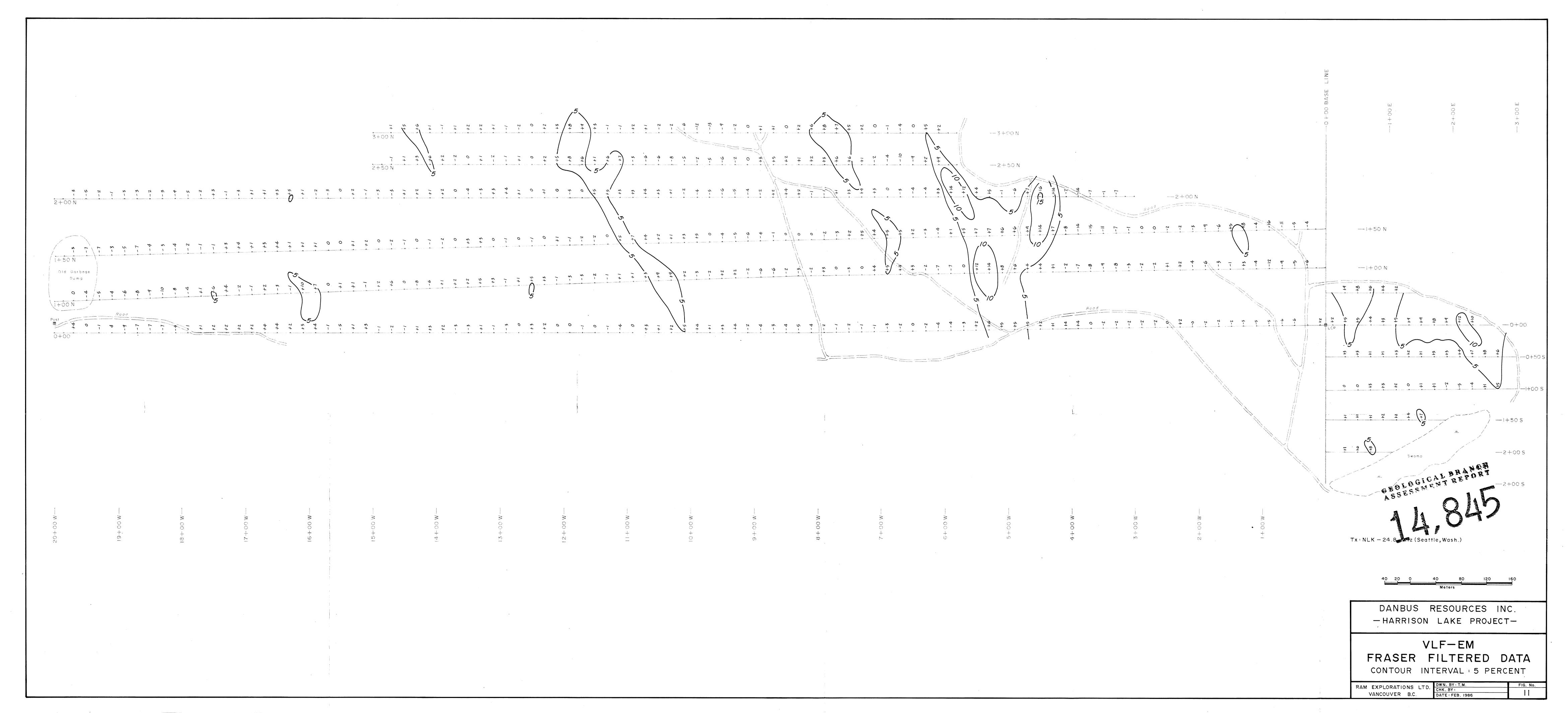
GENERAL REMARK: ICP report enclosed

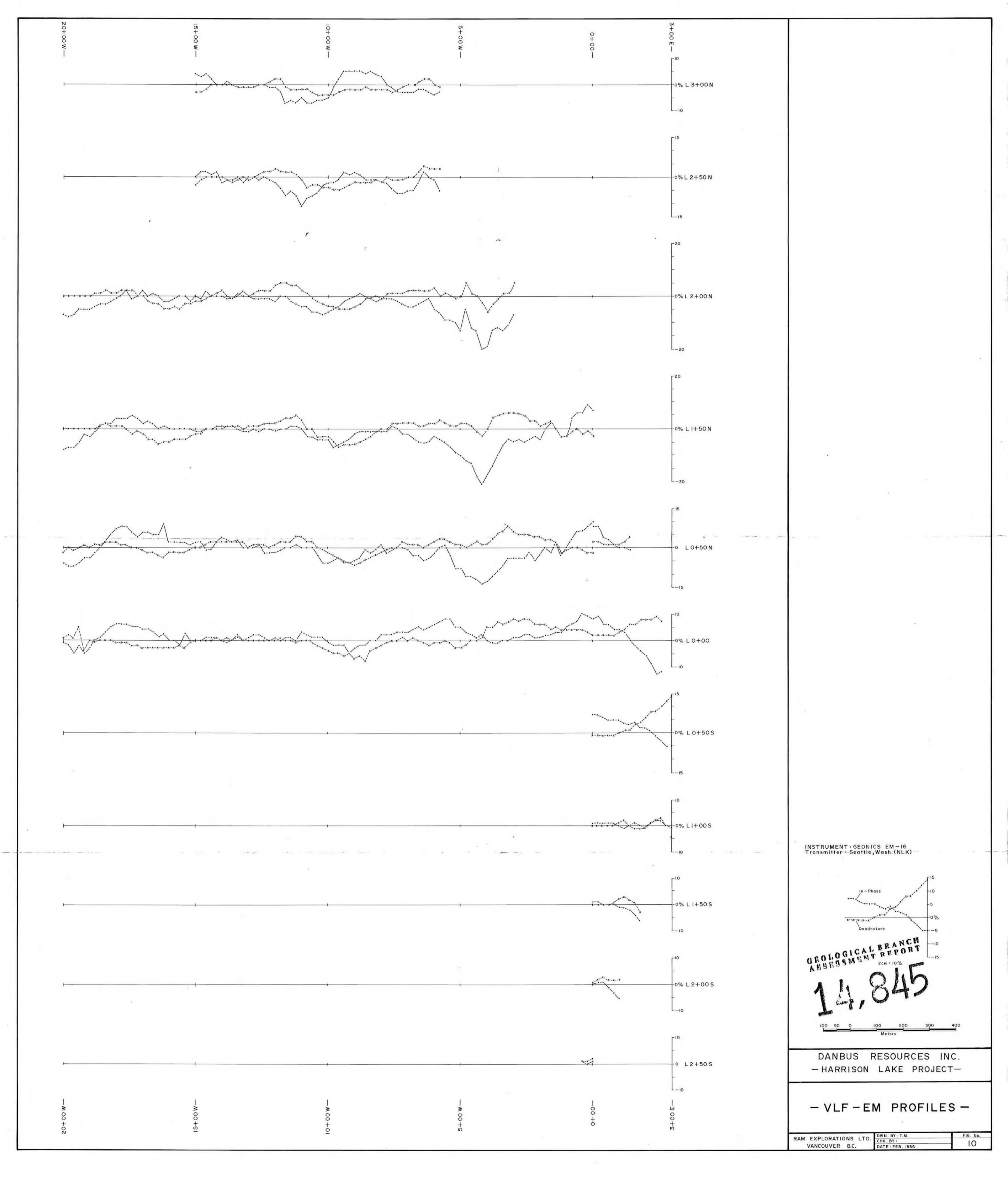
MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

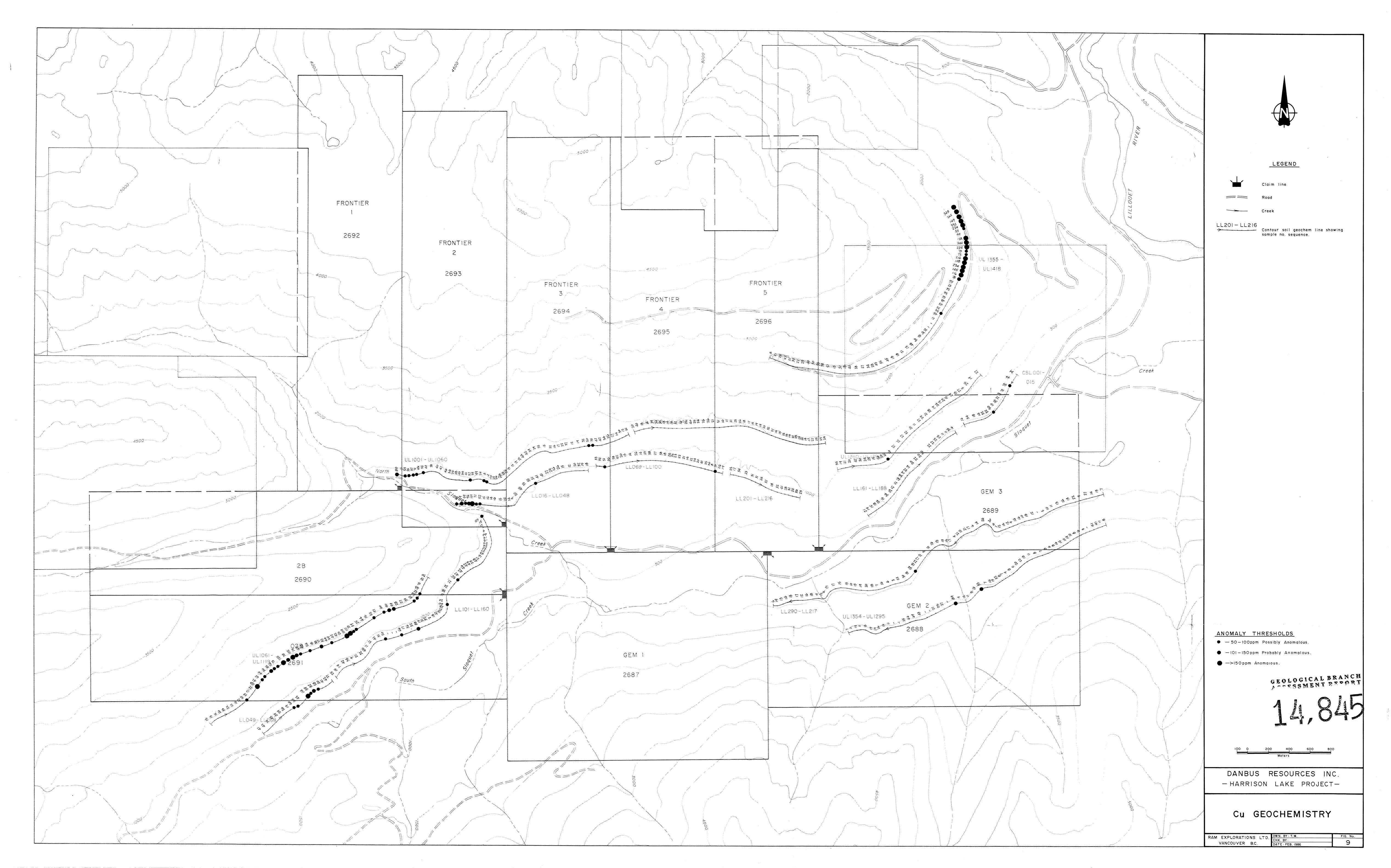
BRANCH OFFICE 1630 PANDORA ST VANCOUVER, B.C. V5L 1L6 (604) 251-5656

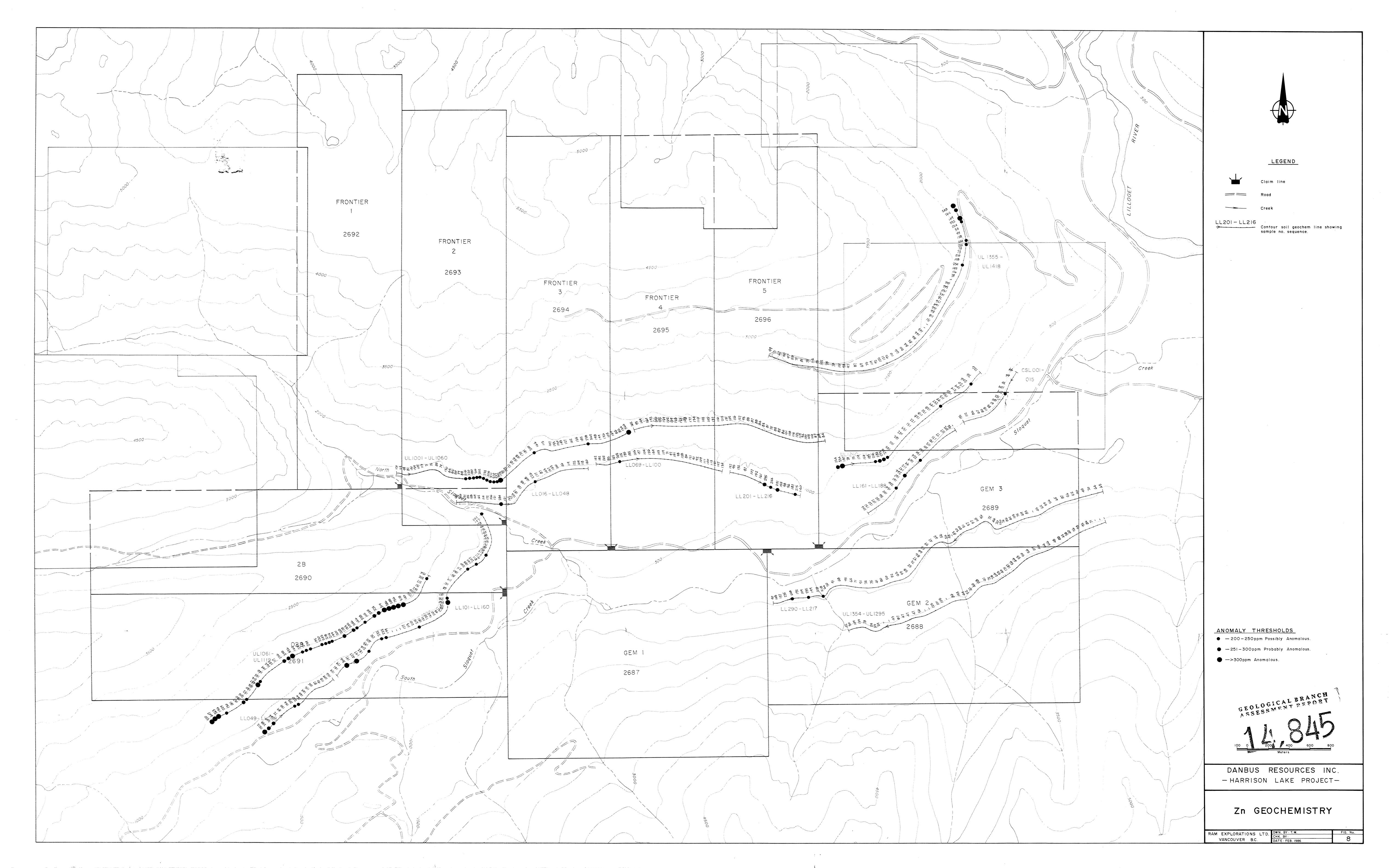
REPORT NUMBER: 860025GA	JOB NUMBER: 860025	RAM EXPLORATION	PAGE 1 OF 1
SAMPLE #	Au		
	oob		
CON-A	80		
CR 037	nd		
CR 038	nd		
CR 039	80		
CR 040	40		
		9	
CR 041	30		
CR 042	195		
CR 043	40		
CR 044	nd		
CR 045	nd		
CR 046	rid		
CR 047	40		
CR 048	nd		
CVE001	20		

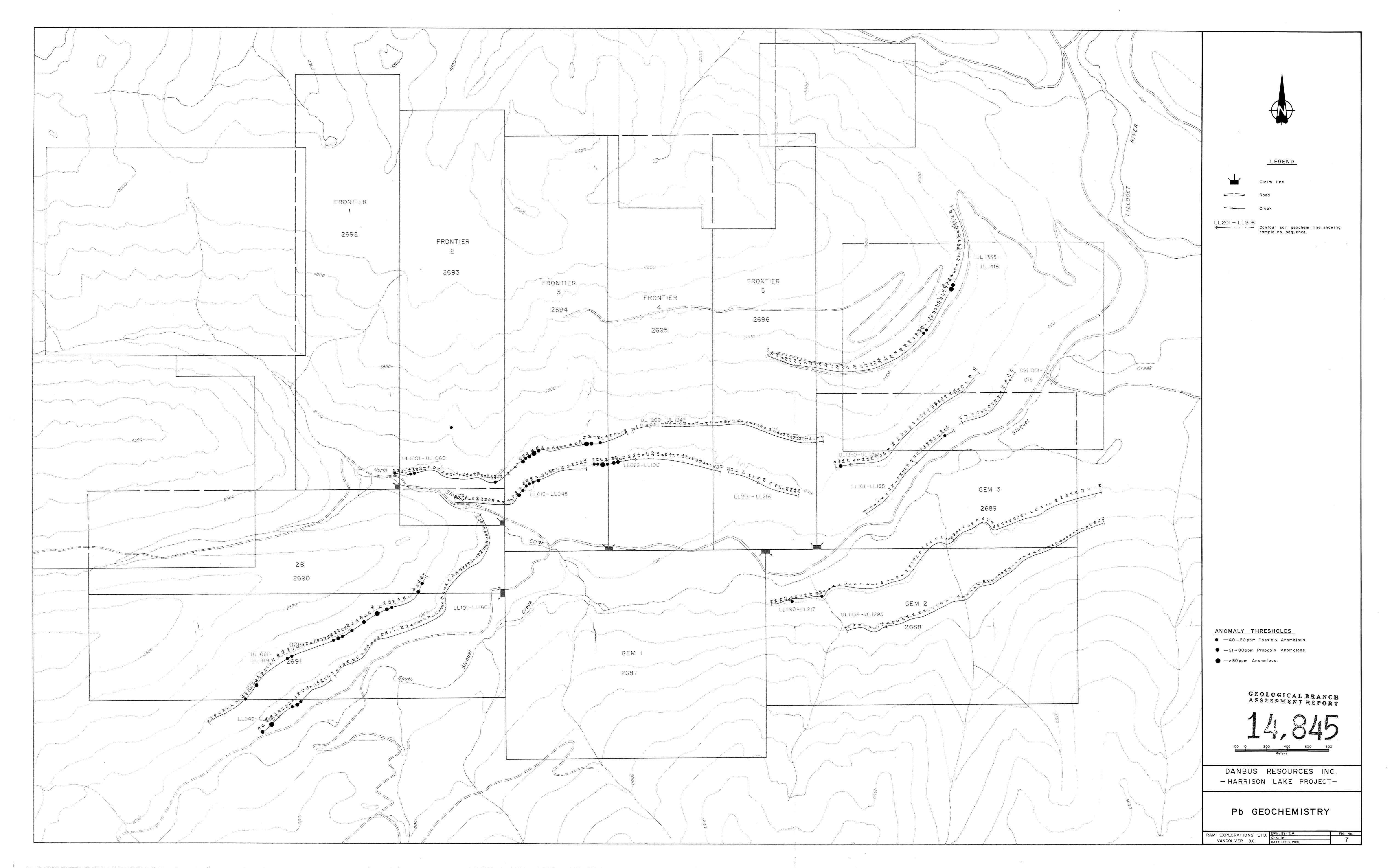
APPENDIX B


Costs Incurred


COSTS INCURRED


Re: Preliminary Evaluation of the Frontier Gem Claim Group.


Administrative Expense \$	1.500
(research, co-ordination, liability insurance	
Mobilization / Travel Expense	1,600
(Vancouver - Harrisson Lake rtn)	
Engineer	800
- M. Magrum - 2 days @ 400.00	
Geologist	8,400
- C. von Einsiedel - 28 days @ 300.00	
Geophysical Technician - 24 days @ 250.00	6,000
Technicians(3) - 24 days @ 225.00	16,200
Accommodation / Meals - 126 man days @ 45.00	5,670
Equipment Rentals	
- 4x4 - 26 days @ 70.00	1,840
- snowmobiles(2) - 26 days @ 30.00	1,560
- magnetometer - 26 days @ 46.00	1,190
- fuel, insurance	1,600
Field supplies, geochem supplies, misc	1,250
Assays	
- soil and silt - 650 @ 16.00	10,400
- rock samples - 50 @ 23.00	1,150
Report	
- C. von Einsiedel - 12 days @ 275.00	3,300
- drafting	1,700
- preparation of documents for assessment	200
credit (Ministry of Mines)	
- secretarial, printing	750


Total \$ 65,11

