ASSESSMENT REPORT

FOR THE

1986 DIAMOND DRILLING

ON THE

TAN 1 AND T 46

MINERAL CLAIMS

OMINECA MINING DIVISION

NTS 93 L/1W

LATITUDE 54 +0 LN, LONGITUDE 126 15 LMED

OWNED BY: EQUITY SILVER MINES LIMITED

WORK BY: EQUITY SILVER MINES LIMITED (Operator)

REPORT BY: R. B. PEASE
APRIL 1986

GEOLOGICAL BRANCH ASSESSMENT REPORT

14,942

TABLE OF CONTENTS

INTRODUCT	TION	PAGE
(i)	Location and Access	1
(ii)	Claim Ownership and Status	1
(iii)	Purpose	2
PROPERTY	DESCRIPTION	
(i)	Geology	3
(ii)	Mineralization	5
(iii)	Alteration	6
DRILLING	PROGRAMME	8
RESULTS		9
STATEMENT	T OF EXPENDITURES	10
AUTHOR'S	QUALIFICATIONS	11
REFERENCE	ES	12
ADDENDIV	DRILLHOLE LOCS AND ASSAVS	

FIGURES AND TABLES

LIST OF FIGURES		PAGE
Figure 1	Minesite Location	3
Figure 2	Minesite Access	3
Figure 3	Drillhole Locations	4
Figure 4	Property Geology	7
Figure 5	Property Alternation	7
LIST OF TABLES		
Table 1	Claims in Group 86-1	1
Table 2	Drillcore Geochemistry	9
Table 3	Statement of Expenditures	10

INTRODUCTION

(i) Location and Access

The Equity Silver minesite is located 40 km southeast of the town of Houston, British Columbia (see Figure 1). The minesite lies in the gentle, and occasionally steep, hills of the Nechako Plateau physiographic region. Access is gained to the property by an all-weather gravel road from Houston (see Figure 2). The drillholes discussed in this report are located on the Tan 1 and T 46 mineral claims, approximately 4.5 km south of the Equity plantsite (see Figure 3). Access to this area of the property is via the old Buck Flats logging road from the minesite, and recently constructed 4 x 4 winter trails.

(ii) Claim Ownership and Status

The drilling was conducted on the Tan 1 and T 46 mineral claims. For the purpose of recording assessment, several adjoining claims have been grouped to form the 86-1 group. Table 1 lists the claims in group 86-1. All of these claims are wholly owned by Equity Silver Mines Limited and their boundaries are shown on Figure 3.

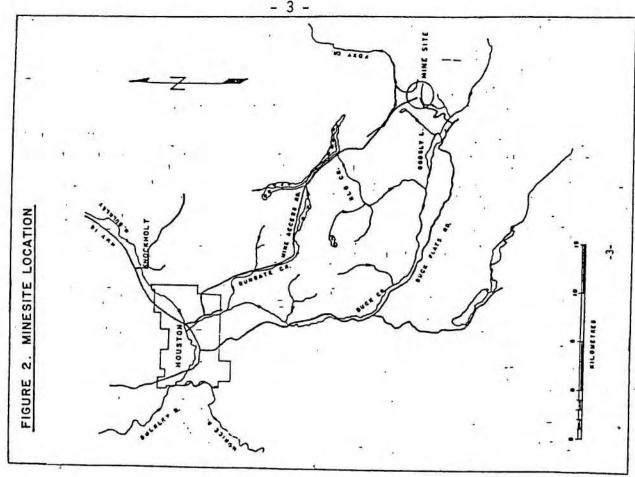
TABLE 1 - Claims in Group 86-1

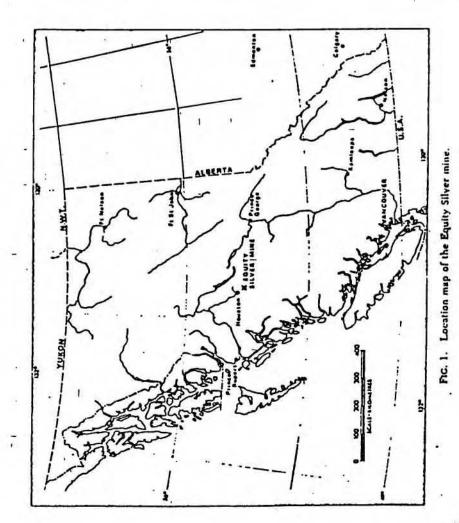
Name	Record #	Name	Record #	Name	Record #
Net 1 Fr.	99657	T 41	65525	T 226	65806
Net 2 Fr.	99658	T 46	65530	T 227	65807
Net 3 Fr.	99659	T 47	65531	T 228	65808
Tan 1	99650	T 48	65532	T 229	65809
Tan 2	99651	T 49	65533	T 230	65810
Tan 3	99652	T 50	65534	T 231	65811
Tan 4	99653	T 51	65535	T 232	65812
Tan 5	99654	T 52	65536	T 233	56813
Tan 6	99655	T 53	65537	T 234	65814
Tan 7	99656	T 178	65626	T 235	65815
T 31	65515	T 179	65627	T 240	65820
T 33	65517	T 190	65638	T 241	65821
T 35	65519	T 191	65639	T 242	65822
T 37	65521	T 192	65640	T 243	65823
T 38	65522	T 193	65641	T 244	65824
T 39	65523	T 224	65804	T 245	65825
T 40	65524	T 225	65805	10% C 75 76.700	

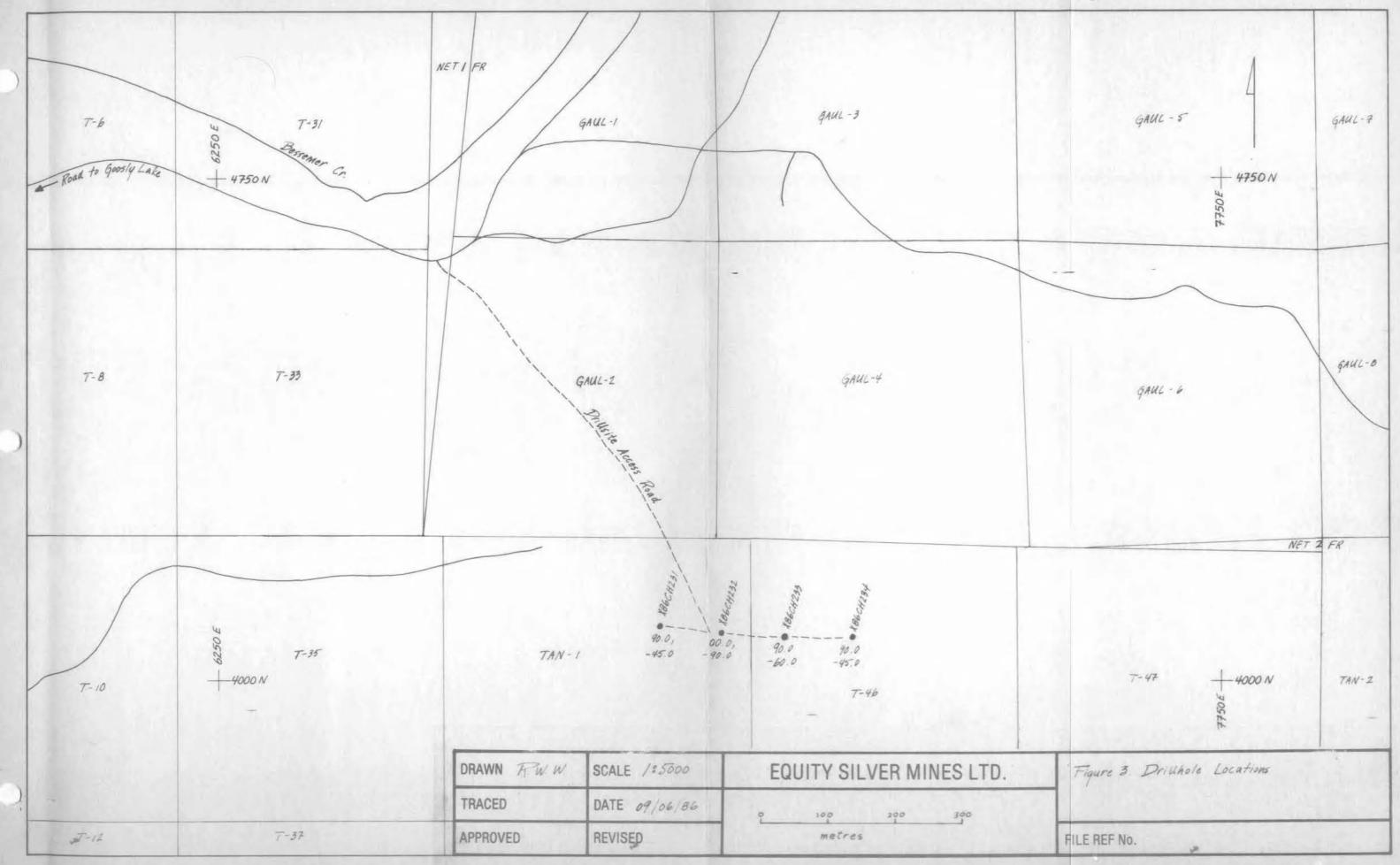
Claim Ownership and Status (Cont'd)

The company has been continuously operating a 5500 tpd open pit mining and milling complex at this location since mid 1980. Current plans call for production to be increased to 7700 tpd by mid 1986. Three ore deposits are known to occur on Certified Mining Lease No. 1. The Southern Tail deposit has been mined out to the economic limit of an open pit. The Main Zone deposit is currently being mined by an open pit, and the Waterline deposit has yet to be developed. Proven ore reserves, as of January 1986, were approximately 17.8 million tonnes at a grade of 0.35% copper, 106 g/t silver, and 1.04 g/t gold.

(iii) Purpose


Four NQ size diamond drillholes, totalling 531.4 metres, were drilled to test possible extensions of mineralized structures known to occur further to the north.


PROPERTY DESCRIPTION


(i) Geology

The geology of the Equity Silver property is briefly described below and illustrated on Figure 4. The reader is referenced to Cyr, et al. (1984) for a more detailed description.

The deposits occur in a homoclinal Upper Jurassic to Cretaceous inlier consisting of sedimentry, pyroclastic, and volcanic rocks flanked by intrusions and surrounded by younger, unconformable Tertiary andesitic to basaltic flows and flow breccias. Four stratigraphic conformable subdivisions, termed the Goosly Sequence, are recognized in the inlier and consist of a basal conglomerate and argillite (clastic division); intercalated sub-aerial tuffs and breccias (pyroclastic division); interbedded volcanic conglomerate, sandstone, and bedded tuff (sedimentry-volcanic division); and andesite and dacite flows (volcanic flow division). The Goosly sequence has an overall strike of 015 and dips 45 degrees to the west.

Geology (Cont'd)

A quartz monzonite stock (58 m.y.) on the west, and a gabbro-monzonite complex (49 m.y.) to the east, intrude the Goosly sequence. Post-mineral andesite and quartz latite dykes (49 m.y.) crosscut the Goosly sequence and the gabbro-monzonite complex.

(ii) Mineralization

Economically significant Cu-Ag-Au mineralization occurs in three distinct zones designated the Main, Waterline, and Southern Tail orebodies (see Figure 4). Pyrite is the most abundant metallic mineral throughout the Goosly sequence regionally, and within the zones of Cu-Ag-Au mineralization in particular. The principal silver mineral is tetrahedrite with minor values contributed by a variety of argentiferous minerals. Chalcopyrite is the principal copper mineral and a smaller but significant portion is in tetrahedrite.

The ore minerals are generally restricted to tabular zones subconcordant to host rock stratigraphy. They occur as disseminations, veins, fracture fillings, and locally as massive pods and matrix material in breccia zones. The primary ore control is structural, since sulphides are concentrated best in zones of intense fracturing and brecciation.

It is believed the Cu-Ag-Au mineralization is epigenetic in origin. Intrusive activity resulted in the introduction of hydrothermal metal-rich solutions into the pyroclastic division of the Goosly sequence. Sulphides introduced into the more competent and permeable ash and lapilli tuffs of the Main and Waterline zones formed as stringers and disseminations which grade randomly into zones of massive sulphide. In the Southern Tail Zone, sulphides formed as veins, fracture fillings, and breccia zones in the brittle, less permeable fine grained dust tuff. Emplacement of postmineral dykes into all types of sulphide-rich pyroclastic rocks resulted in remobilization and concentration of sulphides adjacent intrusive contacts. Remobilization, concentration, and contact metamorphism of sulphides occurred in the Main and Waterline zones at the contact with the postmineral gabbro-monzonite complex.

(iii) Alteration

Alteration assemblages in the Goosly sequence are characterized by minerals rich in alumina, boron, and phosphorous. The distribution of various alteration zones is illustrated on Figure 5. Four types of alteration are recognized and briefly described below. The reader is referenced to Wojdak and Sinclair (1984) for a more detailed discussion.

- 1. Aluminous alteration is characterized by a suite of aluminous minerals including analusite, corrundum, pyrophyllite, and scorzalite. These alteration zones show a systematic spatial relationship to areas of mineral deposits.
- 2. Boron-bearing minerals consisting of tourmaline and dumortierite occur within the ore zones and in the hangingwall section of the Goosly sequence.
- 3. Phosphorous-bearing minerals including scorzalite, apatite, augelite, and svanbergite occur in the hangingwall zone, immediately above and intimately associated with sulphide minerals particularly in the Main and Waterline zones.
- 4. The sericite-quartz zone is a zone of abundant sericite-quartz alteration at least 600 m long and 80 m wide. It appears to coincide with development of coarse-grained tetrahedrite and pyrite veining in intensely brecciated dust tuffs in the Southern Tail zone.

DRILLING PROGRAMME

The programme consisted of 531.4 m of NQ wireline diamond drilling spread over four (4) holes. The collar locations of the drillholes are show on Figure 3. The holes were drilled in a fence pattern along an east-west line.

The drill set-up pads and access roads were constructed prior to drill mobilization by Equity's D6 tractor. The drilling contractor was G & D Diamond Drilling of Kamloops, B.C. A skid-mounted Longyear Super 38 wireline drill rig was used. The contractor supplied a tractor

Figure 4 Property Geology

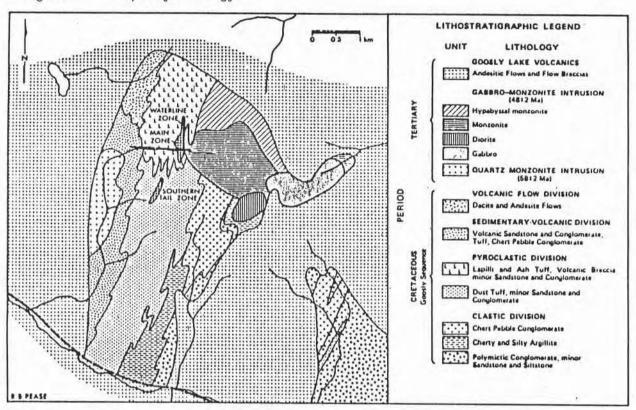
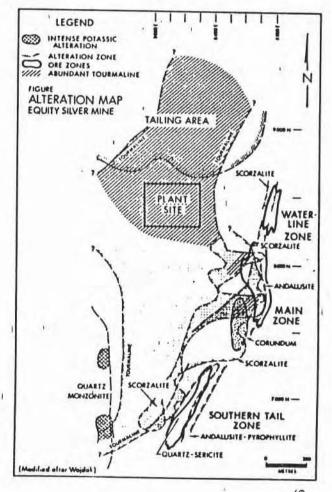



Figure 5 Property Aleration

Drilling Programme (Cont'd)

to move and assist the drill. The drilling commenced on February 11, 1986 and finished on March 01, 1986. However, no drilling was done in the period from February 18 to February 25, due to severe cold weather.

The core was transported to the logging facilities at the minesite. The core was logged by the author and Mr. Daryl Hanson, a geologist temporarily employed by Equity. Mr. Hanson has prevalent academic and practical training, holding a B. Sc. degree in geology. The drillhole logs have been reproduced and are included in this report as an appendix. Assays and geochem results for the sampled intervals are recorded at the end of the logs. All assay results are in percent, except silver and gold which are reported in grams/tonne. All geochem results are recorded in part per million.

The core was sampled top to bottom in 3.0 metre intervals. Sampling was done by a hand operated core splitter. One half was placed in plastic sample bags and delivered to Equity's minesite laboratory for assay, and the other half was returned to the core box for permanent storage. The core is stored in the facilities at the minesite.

The core samples were assayed for the metals Cu, Ag, Au, Sb, As, Fe, and Zn. In Equity's assay procedure, 1 gram of pulverized material is dissolved in 10 ml of nitric acid and 30 ml of hydrochloric acid. This solution is boiled for fifteen (15) minutes, after which 10 ml of 10% tartaric acid is added and the sample is returned to the hot plate for five (5) minutes. The solution is allowed to cool and quantitative analysis is done on an atomic absorption machine, except for Au which is fire assayed first.

The drillcore sample pulps were sent to the Placer Development Laboratory in Vancouver for geochemical analysis for the elements Cu, Zn, Pb, Ag, Au, As, and Sb. The pulps were subjected to an Aqua Regia digestion and quantitative analysis was done on a direct current plasma spectrometer, except for Au which was analyzed on an atomic absorption machine.

RESULTS

The results of the diamond drilling program were discouraging. The overburden was found to be 65 to 80 m thick, which was much more than expected, and caused problems in completing the holes as planned. Drillholes X86CH231 and X86CH232 intersected unaltered and unmineralized interbedded volcanic sandstones and conglomerates. Drillhole X86CH233, collared further to the east, intersected mainly lapilli tuffs. Some of the lapilli fragments were altered to sericite. Drillhole X86CH234 failed to reach bedrock after all the drill casing had been used, and therefore was abandoned.

All the rocks intersected can be correlated to Unit 3 of the "Goosly Sequence". Bedding observed in the vertical hole (X86CH232) indicated a dip angle of -60 degrees. No mineralization, except for minor amounts of disseminated pyrite, was intersected. Also, no well developed zone of intense fracturing or alteration was encountered. Geochemical analysis of the drillcore displays relatively "normal" background metal concentrations (see Table 2).

TABLE 2 - Drillcore Geochemistry

Element	Minimum	Maximum	Mean	Std. Dev.
Cu	19	132	40	17
Zn	40	107	67	15
Pb	8	28	14	4
Ag	0.1	1.0	0.4	0.2
Au	0.01	0.01	0.01	
As	1	45	16	11
Sb	1	16	2	2

TABLE 3

STATEMENT OF EXPENDITURES

	STATEMENT OF EAR ENDITORES	
1.	Drill Site Pads and Access Roads - D6 Tractor 65 Hours @ 45.00	\$ 2,925.00
2.	Diamond Drilling 531.4 metres @ 35.27/m	18,742.48
3.	Sample Assaying 73 @ 15/sample	1,095.00
4.	Geochem 73 @ 12/Sample	876.00
5.	Salaries R. Pease, logging and supervision Feb. 3, 4, 11, 12, 13, 14, 17, 18, 19, 25, 26, 27, 28, March 3 14 Days @ 185.00	2,590.00
	D. Hanson, logging Feb. 11, 12, 13, 14, 17, 18, 19, 25, 26, 27, 28, March 3 12 Days @ 165.00	1,980.00
	G. Saretsky, sampling Feb. 3, 4, 12, 13, 14, 17, 18, 19, 20, 21, 26, 27, 28, Marhc 3 14 Days @ 115.00 L. Davies, surveying	1,610.00
	Feb. 3, 4, March 3 3 Days @ 145.00	435.00
6.	Vehicle Rental and Gas 14 Days @ 50.00/day	700.00
7.	Report Preparation	2,000.00
		\$ 32,953.48

AUTHOR'S QUALIFICATIONS

- I, Robert B. Pease, do hereby certify that:
- I am a geologist residing a R.R. #1, Kerr Road, Telkwa, British Columbia.
- I am a 1981 graduate of the University of Waterloo, Waterloo, Ontario, with an Honours Bachelor of Science degree in Earth Sciences.
- 3. As a student, I spent some twenty (20) months employed in the mineral exploration field with several mining companies in various regions of Canada.
- 4. I was employed as an exploration geologist with Duval International Corporation in Vancouver form May, 1981 to January, 1982.
- 5. Since February of 1982, I have been continously employed as an exploration geologist with Equity Silver Mines Limited in Houston, British Columbia.
- I am an Associate Member of the Geological Association of Canada, and a Member of the Canadian Institute of Mining and Metallurgy.
- 7. I personally supervised the work programmes as described in this report.

Respectfully submitted,

EQUITY SILVER MINES LIMITED

R. B. Pease, B. Sc. Exploration Geologist

REFERENCES

Cyr, J.B., Pease, R.B., and Schroeter, T.G. (1984):

Geology and Mineralization at Equity Silver Mine. Journal of Econ. Geol., Vol. 79, pp. 947 - 968.

Wojdak, P.J. and Sinclair, A.J. (1984):

Equity Silver Ag-Cu-Au Deposit: Alteration and Fluid Inclusion Studies. Journal of Econ. Geol., Vol. 79, pp. 969 - 990.

APPENDIX

Diamond Drillhole Logs
Assay and Geochem Results

COORDINATES: Latitude= 4077.12 Departure= 6907.08

TRUE AZIMUTH OF HOLE: 090.0 VERTICAL ANGLE: -45.0

COLLAR ELEVATION: 990.47 TOTAL DEPTH OF HOLE: 113.4 mt. Logged by: RBP on ... 14FE886

THIS IS THE FIRST HOLE OF THE 1986 DRILL PROGRAMME

FROM 0.0 MT. TO 93.3 MT.

UNIT:

LITH: OVERBURDEN ,

FR & BX: ALTN:

CASED TO 60.7 M. CORED CLAY RICH TILL AND BOULDERS TO 93.3.

FROM 93.3 MT. TO 99.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey, with BUARTZ , CHLORITE ,

FR & BX: MODERATE FRACTURING ALTN: STRONG PROPYLITIC

Textures noted: MICRO VEINS , BRECCIATED

10% MUSCOVITE as floading 10% CHLORITE as flooding

2.5% QUARTZ as interstitial fillings

trace PYRITE as disseminations and scattered crystals

5.100 MT. was the core recovery over the above interval

CORE IS VERY BROKEN, CRUMBLY, SOFT. NO OXIDE ZONE.

MINOR PATCHES OF ARGILLACEDUS RX. MAIN CLASTS ARE DTZ AND

ARGILLITE.

FROM 99.3 MT. TO 101.7 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE light grey, with GUARTZ, CHLORITE, CLAY

FR & BX: WEAK FRACTURING ALTN: STRONG PROPYLITIC

Textures noted: MICRO VEINS , MASSIVE

10% MUSCOVITE as flooding .3% CHLORITE as microveins

.03% PYRITE as disseminations and scattered crystals

2.200 MT. was the core recovery over the above interval CORE VERY BROKEN. POSSIBLE SS ON SOME <<.

FROM 101.7 MT. TO 106.5 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

COORDINATES: Latitude= 4077.12 Departure= 6907.08

cont'd

LITH: VOLCANIC CONGLOMERATE light grey, with CLAY, CHLORITE.

FR & BX: WEAK FRACTURING ALTN: STRONG PROPYLITIC

Textures noted: MICRO VEINS, BRECCIATED Structures noted: CONTACT dip 60

trace PYRITE as disseminations and scattered crystals

4.300 MT. was the core recovery over the above interval

CORE STILL VERY BROKEN, CRUMBLY IN PATCHES, CLASTS AS ABOVE.

FROM 106.5 MT. TO 108.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE pale grey, with CLAY . .

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS, MASSIVE

1.500 MT. was the core recovery over the above interval

OCCASIONAL CLASTS, MAINLY SST. MINOR CLAY ZONE 0.5 M WIDE.

FROM 108.4 MT. TO 111.5 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE dark grey, with CARBONATE, CHLORITE, CLAY

FR & BX: MODERATE FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS , BRECCIATED

5% CARBONATE as microveins

2.800 MT. was the core recovery over the above interval

CORE STILL BROKEN. CB IN FRACTURES AND MATRIX.

FROM 111.5 MT. TO 113.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: SILTY ARGILLITE extremely dark grey, with CARBONATE, CHLORITE,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS . MASSIVE

1.600 MT. was the core recovery over the above interval

CORE STILL BROKEN. GRAPHITIC IN SPOTS. COARSER GRAINED IN SPOTS. HOLE ABANDONED AT 113.4 M DUE TO SQUEEZING OF THE RDDS. DRILLERS ONLY HAD ENDUGH CASING TO 60.7 M., AND

THEREFORE CORED OVBN TO REACH BEDROCK. THE OVBN DID NOT HOLD

AND STARTED TO SQUEEZE.

END OF HOLE.

A001 ALAB

EQUITY MINESITE LABORATORY

ATYP ASSAY

COORDINATES: Latitude= 4077.12 Departure= 6907.08

cont'	ď										
AMTH		WET	EXTRACTION A.A.	- AU	FIRE ASS	SAYED FI	RST				
AUMM			RCOV SAMPLE	RQD	% CU	G/TAG	G/TAU	% SB	% AS	% FE	% ZN
A001	93.30	97.00	5001		.005	10.0	.040	.005	.005	2.500	.030
A001	97.00	100.00	5002		.005	.5	.050	.030	.010	2.090	.005
A001	100.00	103.00	5003		.005	.5	.440	.005	.010	2.400	.005
A001	103.00	106.00	5004		.005	.5	.020	.010	.005	3.240	.005
A001	106.00	109.00	5005		.005	.5	.005	.005	.005	1.920	.005
A001	109.00	112.00	5006		.005	.5	.070	.005	.005	1.810	.005
A001	112.00	113.40	5007		.005	.5	.120	.005	.005	1.930	.005
			PECT PRIMARY CRU OF ASSAYS	SHER	CONTAMINA			5001			-600
A002											
ALAB		PLA	CER DEVELOPMENT	LABOR	ATORY						
ATYP			CHEM								
AMTH		WET	EXTRACTION DCP,	A.A.	FOR AU						
AUMM			SAMPLE	CU	ZN	PB	A6	AU	AS	SB	
A002	93.30	97.00	5001	49	90	22	1.0	.01	22	1	
A002	97.00	100.00	5002	39	75	13	.6	.01	22	1	
A002	100.00	103.00	5003	34	68	13	. 4	.01	9	1	
A002	103.00	106.00	5004	32	84	21	.6	.01	36		
A002	106.00	109.00	5005	27	61	13	. 4	.01	13	2	
A002	109.00	112.00	5006	23	47	10	. 4	.01	45	2 2 2	
	112.00	113.40	5007	26	52	12	.5	.01	35	1	
			OF GEOCHEM - EN								

COORDINATES: Latitude= 4069.71 Departure= 6998.35

TRUE AZIMUTH OF HOLE: 090.0 VERTICAL ANGLE: -90.0

COLLAR ELEVATION: 988.59 TOTAL DEPTH OF HOLE: 196.6 mt.

Logged by: DJH on ... 17FEB86

FROM 0.0 MT. TO 65.5 MT.

UNIT:

LITH: OVERBURDEN ,

FR & BX:

ALTN:

TRICONED - NO CORE

FROM 65.5 MT. TO 66.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

.5009 MT. was the core recovery over the above interval

POSSIBLY UNIT 1: NO BEDDING: NO OXIDE ZONE

FROM 66.3 MT. TO 67.8 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 20% MUSCOVITE as clasts 1% CARBONATE as microveins

1.500 MT. was the core recovery over the above interval

BUFF WHITE AND DARK GREY ROUNDED CLASTS TO 20 MM DIA. IN A

LIGHT GREY SANDY MATRIX -MS ALT'N IN BUFF CLASTS

FROM 67.8 MT. TO 73.2 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 1% CARBONATE as microveins

5.400 MT. was the core recovery over the above interval

20% INTERLEVED 3D

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

FROM 73.2 MT. TO 74.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% CARBONATE as microveins

1.100 MT. was the core recovery over the above interval

AS ABOVE 66.3 - 67.8 M

FROM 74.3 MT. TO 83.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

8.800 MT. was the core recovery over the above interval

10% PEBBLES

FROM 83.1 MT. TO 86.6 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

3.500 MT. was the core recovery over the above interval

AS ABOVE 66.3 -67.8 M WITH 15% DARK GREY SILICEOUS ARGILLITE CLASTS AND 30% LIGHT GREY AND BUFF COLOURED TUFF CLASTS

FROM 86.6 MT. TO 91.8 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

5.200 MT. was the core recovery over the above interval

AS ABOVE 74.3 - 83.1 M WITH 5% PEBBLES :10% INTERLEVED 3D

INTERBEDDED SEQUENCE OF VOLCANIC SANDSTONES AND CONGLOMERATES

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

NO SMALL SCALE BEDDING OBSERVED

FROM 91.8 MT. TO 93.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% CARBONATE as microveins

1.300 MT. was the core recovery over the above interval MS ALT'N IN CLASTS ONLY: 1-2% CB IN MATRIX

FROM 93.1 MT. TO 94.8 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

1.700 MT. was the core recovery over the above interval

15% INTERLEVED 3D

FROM 94.8 MT. TO 96.6 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% CARBONATE as microveins

1.800 MT. was the core recovery over the above interval

FROM 96.6 MT. TO 99.2 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

2.500 MT. was the core recovery over the above interval

10% INTERLEVED 3D : GR ON FRACTURE AT 98.1 M

EQUITY SILVER MINES LTD.

DRILLHOLE: X86CH232 NQ

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

FROM 99.2 MT. TO 104.6 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SILTSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

5.400 MT. was the core recovery over the above interval

GOUGE AND BROKEN CORE 99.2 -100.5 M

FROM 104.6 MT. TO 108.2 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

3.600 MT. was the core recovery over the above interval

1-2% CB IN MATRIX

FROM 108.2 MT. TO 111.2 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

3.000 MT. was the core recovery over the above interval

10% INTERLEVED 3D

FROM 111.2 MT. TO 116.9 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

Structures noted: BEDDING dip 035, BEDDING dip 027

2.5% CARBONATE as microveins

5.700 MT. was the core recovery over the above interval

MINOR INTERLEVED 3D AND 31

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

FROM 116.9 MT. TO 125.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

Structures noted: BEDDING dip 030,

10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

8.300 MT. was the core recovery over the above interval 10% INTERLEVED 3E

FROM 118.2 MT. TO 118.2 MT.

100% of this subinterval is the same as 116.9 MT. to 125.4 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: VEIN dip 036,

10% MUSCOVITE as veins

90% CARBONATE as veins

FROM 124.6 MT. TO 124.6 MT.

100% of this subinterval is the same as 116.9 MT. to 125.4 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 039,

0.2 M BXIA : MINOR GRAPHITE DN FAULT SURFACE

FROM 125.4 MT. TO 127.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

2.000 MT. was the core recovery over the above interval

MINDR GYPS ON <<

FROM 127.4 MT. TO 130.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

3.000 MT. was the core recovery over the above interval 15% INTERLEVED 3E

FROM 128.0 MT. TO 128.0 MT.

100% of this subinterval is the same as 127.4 MT. to 130.4 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 034,

MINOR GRAPHITE ON FAULT SURFACE

FROM 130.4 MT. TO 133.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

trace MUSCOVITE as microveins

trace CHLORITE as microveins

2.5% CARBONATE as microveins

2.600 MT. was the core recovery over the above interval

15% INTERLEVED 3D : MINOR GYPS ON <<

FROM 132.3 MT. TO 132.3 MT.

100% of this subinterval is the same as 130.4 MT. to 133.0 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT,

CLAY GOUGE

FROM 133.0 MT. TO 136.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

3.100 MT. was the core recovery over the above interval 1-2% CB IN MATRIX : MINOR GYPS ON <<

FROM 136.1 MT. TO 138.2 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

2.100 MT. was the core recovery over the above interval

5% INTERLEVED 3D : 10% PEBBLES IN 3E : 1-2% GYPS IN <<

FROM 138.2 MT. TO 139.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% QUARTZ as microveins

1.100 MT. was the core recovery over the above interval

NOTE QUARTZ IN <<

FROM 139.3 MT. TO 142.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

2.700 MT. was the core recovery over the above interval

10% PEBBLE CLASTS

FROM 141.5 MT. TO 141.5 MT.

100% of this subinterval is the same as 139.3 MT. to 142.0 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 034,

GYPS AND BXIA IN FAULT ZONE

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

FROM 142.0 MT. TO 145.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

3.100 MT. was the core recovery over the above interval

FROM 142.5 MT. TO 142.5 MT.

100% of this subinterval is the same as 142.0 MT. to 145.1 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 018,

SLICKENSIDES ON FAULT SURFACE

FROM 145.1 MT. TO 147.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

Structures noted: BEDDING dip 040,

2.5% CARBONATE as microveins

1.900 MT. was the core recovery over the above interval

10% INTERLEVED 3D

FROM 147.0 MT. TO 148.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

1.300 MT. was the core recovery over the above interval

FROM 148.3 MT. TO 150.4 MT.

UNIT:

SEDIMENTARY - VOLCANIC DIVISION

VOLCANIC SANDSTONE light grey, with MUSCOVITE,,

FR & BX: MODERATE FRACTURING

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

ALTN: MODERATE PHYLLIC Textures noted: MICRO VEINS 40% MUSCOVITE as flooding 5% CHLORITE as microveins 2.5% QUARTZ as veins 5% CARBONATE as microveins

2.100 MT. was the core recovery over the above interval NOTE MORE INTENSE FRACTURING AND ALT'N

FROM 150.4 MT. TO 152.5 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

2.100 MT. was the core recovery over the above interval GRADES LOCALLY TO 31

FROM 152.5 MT. TO 154.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

1.500 MT. was the core recovery over the above interval 3-5% CB IN MATRIX : 20% INTERLEVED 3D

FROM 154.0 MT. TO 155.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

UNALTERED ALTN:

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% CARBONATE as microveins

1.300 MT. was the core recovery over the above interval

FROM 155.3 MT. TO 161.8 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

COORDINATES: Latitude=

4069.71 Departure= 6998.35

cont'd

ALTN: UNALTERED

Textures noted: MICRO VEINS
2.5% MUSCOVITE as microveins
2.5% CARBONATE as microveins

6.500 MT. was the core recovery over the above interval 30% INTERLEVED 3D: GRADES TO 3E20 LOCALLY

FROM 156.1 MT. TO 156.1 MT.

100% of this subinterval is the same as 155.3 MT. to 161.8 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 045,

FROM 157.2 MT. TO 157.2 MT.

100% of this subinterval is the same as 155.3 MT. to 161.8 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE .

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 030,

FROM 161.8 MT. TO 164.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% CARBONATE as microveins

2.200 MT. was the core recovery over the above interval

FROM 164.0 MT. TO 167.6 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

10% MUSCOVITE as clasts

2.5% QUARTZ as microveins

2.5% CARBONATE as microveins

3.600 MT. was the core recovery over the above interval 20% INTERLEVED 3E : .5-1% CB IN MATRIX OF 3D

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

FROM 164.5 MT. TO 164.5 MT.

100% of this subinterval is the same as 164.0 MT. to 167.6 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE .

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT .

CLAY GOUGE ZONE : NO ANGLE OBTAINABLE

FROM 167.6 MT. TO 171.6 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

4.000 MT. was the core recovery over the above interval

15% INTERLEVED 3D

FROM 171.6 MT. TO 178.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

6.400 MT. was the core recovery over the above interval

10% INTERLEVED 3E

FROM 178.0 MT. TO 184.8 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

6.800 MT. was the core recovery over the above interval

SOME CLASTS WITH CHL+MS ALT'N RIMS

FROM 184.8 MT. TO 186.6 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

DRILLHOLE: X86CH232 NO COORDINATES: Latitude=

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

LITH: VOLCANIC SANDSTONE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 2.5% CARBONATE as microveins

1.700 MT. was the core recovery over the above interval

FROM 185.9 MT. TO 185.9 MT.

100% of this subinterval is the same as 184.8 MT. to 186.6 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT,

BXIA AND GOUGE ZONE : STEEPLY DIPPING

FROM 186.6 MT. TO 191.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts 2.5% QUARTZ as microveins

2.5% CARBONATE as microveins

4.500 MT. was the core recovery over the above interval

FROM 188.2 MT. TO 188.2 MT.

100% of this subinterval is the same as 186.6 MT. to 191.1 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE .

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 025,

FROM 191.1 MT. TO 193.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE medium grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

2.5% CARBONATE as microveins

1.800 MT. was the core recovery over the above interval 5% INTERLEVED 3D

COORDINATES: Latitude= 4069.71 Departure= 6998.35

cont'd

4001

FROM 193.0 MT. TO 193.0 MT.

100% of this subinterval is the same as 191.1 MT. to 193.0 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE , FR & BX: WEAK FRACTURING ALTN: UNALTERED

Structures noted: FAULT dip 053,

FROM 193.0 MT. TO 199.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE med. dark grey,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS 10% MUSCOVITE as clasts

2.5% CARBONATE as microveins

6.300 MT. was the core recovery over the above interval

FROM 196.6 MT. TO 196.6 MT.

100% of this subinterval is the same as 193.0 MT. to 199.3 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC CONGLOMERATE ,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Structures noted: FAULT dip 020,

END OF HOLE.

A001											
ALAB		EQU:	ITY MINESITE LAB	DRATOR	8Y						
ATYP		ASS	AY								
AMTH		WET	EXTRACTION A.A.	- AU	FIRE ASS	SAYED FIR	RST				
AUMM			RCOV SAMPLE	ROD	% CU	G/TAG	G/TAU	% SB	% AS	% FE	% ZN
A001	65.50	67.80	5008		.005	.5	.050	.005	.005	2.530	.005
A001	67.80	70.80	5009		.005	.5	.050	.005	.005	2.850	.005
A001	70.80	73.20	5010		.005	.5	.005	.020	.005	2.990	.005
A001	73.20	76.00	5011		.005	.5	.070	.005	.005	2.860	.005
A001	76.00	79.00	5012		.005	.5	.140	.005	.005	2.570	.005
A001	79.00	82.00	5013		.005	.5	.100	.005	.005	2.190	.005
A001	82.00	85.00	5014		.005	.5	.180	.005	.005	2.470	.005
A001	85.00	88.00	5015		.005	.5	.040	.005	.005	2.320	.005
A001	88.00	91.00	5016		.005	.5	.040	.005	.005	2.440	.005
A001	91.00	94.00	5017		.005	.5	.050	.005	.005	2.710	.005
A001	94.00	97.00	5018		.005	.5	.180	.010	.005	2.740	.005
A001	97.00	100.00	5019		.005	.5	.050	.020	.005	2.760	.005
A001	100.00	103.00	5020		.005	.5	.030	.040	.020	3.130	.005
A001	103.00	106.00	5021		.005	.5	.080	.050	.005	2.160	.005
A001	104.00	109.00	5022		.005	.5	.080	.005	.005	1.700	.005

COORDINATES: Latitude= 4069.71 Departure= 6998.35

				Depart	Lui L	0774400					
cont'	d										
AUMM			RCOV SAMPLE	ROD	% CU	6/TAG	G/TAU	% SB	% AS	% FE	% ZN
	109.00	112.00	5023	100000	.005	.5	.060	.005	.005	2.580	.005
	112.00	115.00	5024		.005	.5	.090	.005	.005	3.250	.005
	115.00	118.00	5025		.005	.5	.040	.005	.005	1.900	.005
	118.00	121.00	5026		.005	.5	.020	.005	.005	1.870	.005
	121.00	124.00	5027		.005	.5	.010	.005	.005	2.900	.005
A001	124.00	127.00	5028		.005	.5	.020	.005	.005	2.930	.005
A001	127.00	130.00	5029		.005	.5	.010	.005	.005	2.860	.005
A001	130.00	133.00	5030		.005	.5	.060	.005	.005	2.610	.005
A001	133.00	136.00	5031		.005	1.0	.020	.005	.005	2.460	.005
A001	136.00	139.00	5032		.005	.5	.060	.005	.005	2.670	.005
A001	139.00	142.00	5033		.005	1.0	.040	.005	.005	2.820	.005
A001	142.00	145.00	5034		.005	.5	.060	.005	.005	2.720	.005
A001	145.00	148.30	5035		.005	.5	.100	.005	.005	2.650	.005
A001	148.30	150.40	5036		.005	.5	.020	.005	.005	1.850	.005
A001	150.40	153.00	5037		.005	1.0	.020	.005	.005	2.940	.005
A001	153.00	156.00	5038		.005	2.0	.080	.005	.005	2.440	.005
	156.00	159.00	5039		.005	1.0	.010	.005	.005	2.940	.005
	159.00	162.00	5040		.005	2.0	.090	.005	.005	2.660	.005
	162.00	165.00	5041		.005	1.0	.090	.005	.005	2.500	.005
	165.00	168.00	5042		.005	1.0	. 430	.005	.005	2.720	.005
	168.00	171.00	5043		.005	1.0	.370	.005	.005	3.540	.005
	171.00	174.00	5044		.010	1.0	.010	.005	.005	3.130	.005
	174.00	177.00	5045		.005	.5	.040	.005	.005	2.470	.005
	177.00	180.00	5046		.005	2.0	.170	.005	.005	2.690	.005
	180.00	183.00	5047		.005	1.0	.150	.005	.005	2.900	.005
	183.00	186.00	5048		.005	1.0	.010	.005	.005	2.940	.005
	186.00	199.00	5049		.005	1.0	.010	.005	.005	2.910	.005
	189.00	192.00	5050		.005	.5	.640	.005	.005	3.100	.005
	192.00	195.00	5051		.005	.5	.060	.005	.005	3.010	.005
	195.00	197.00	5052		.005	.5	.010	.005	.005	2.590	.005
A001	197.00	199.30	5053		.005	1.0	.010	.005	.010	2.690	.005
4000		END	OF ASSAYS								
A002		DI AC	SED BELIEF CONCUE								
ALAB			CER DEVELOPMENT	LABUR	ATURY						
ATYP		6600			COD AII						
AMTH		WEI	EXTRACTION DCP,			nn.				n.r.	
AUMM A002	65.50	17 00	SAMPLE	CU	ZN	PB	AG	AU	AS	SB	
A002	67.80	67.80	5008	30	60	13	. 4	.01	19	2	
A002	70.80	70.80 73.20	5009 5010	39 35	75 73	17	.5	.01	19	2 2 1	
A002	73.20	76.00	5011	39	61	16 13	. 4	.01	8	1	
A002	76.00	79.00	5012	30	55	12	.4	.01	2	1	
A002	79.00	B2.00		37	69	14	.4	.01	4	2	
A002	82.00	85.00	5014	34	55	15	. 4	.01	17	2	
A002		88.00	5015	35	64	15	.2	.01	18	2	
A002	88.00	71.00	5016	44	86	22	. 4	.01	13	3	
AND PROPERTY.		1000	W. K. A. W.			4.4		.01	10	0	

DRILLHOLE: X	86CH232 NO								
COORDINATES:		4069.71	Departu	re= 8	6998.35				
cont'd									
AUMM		SAMPLE	CU	ZN	PB	AG	AU	AS	SB
A002 91.00	94.00	5017	25	56	14	.3	.01	26	1
A002 94.00	97.00	5018	25	59	13	.5	.01	27	3
A002 97.00	100.00	5019	28	56	16	.3	.01	27	3
A002 100.00	103.00	5020	49	78	16	.3	.01	16	1
A002 103.00	106.00	5021	40	65	13	.3	.01	17	2
A002 105.00	109.00	5022	29	53	13	.3	.01	20	1
A002 109.00	112.00	5023	33	57	9	. 1	.01	12	2
A002 112.00	115.00	5024	39	63	15	.2	.01	13	1
A002 115.00	118.00	5025	35	62	19	. 2	.01	14	1
A002 118.00	121.00	5026	28	42	14	.3	.01	28	1
A002 121.00	124.00	5027	28	61	14	.3	.01	29	3
A002 124.00	127.00	5028	34	70	15	.3	.01	20	1
A002 127.00	130.00	5029	34	54	14	. 2	.01	20	2
A002 130.00	133.00	5030	50	90	28	.6	.01	17	3
A002 133.00	136.00	5031	30	50	9	.2	.01	9	2
A002 136.00	139.00	5032	46	63	14	. 4	.01	11	3
A002 139.00	142.00	5033	28	59	13	.2	.01	9	2
A002 142.00	145.00	5034	32	63	10	. 2	.01	17	2
A002 145.00	148.30	5035	34	59	15	.3	.01	14	3
A002 148.30	150.40	5036	19	56	11	.2	.01	14	2
A002 150.40	153.00	5037	35	75	10	.3	.01	13	3
A002 153.00	156.00	5038	29	59	12	.5	.01	26	3
A002 156.00	159.00	5039	29	61	11	.3	.01	27	1
A002 159.00	162.00	5040	46	67	11	.8	.01	17	2
A002 162.00	165.00	5041	23	50	10	.3	.01	39	2
A002 165.00	168.00	5042	42	49	13	.5	.01	32	4
A002 168.00	171.00	5043	45	71	10	.3	.01	16	1
A002 171.00	174.00	5044	132	60	10	. 4	.01	41	1
A002 174.00	177.00	5045	26	40	12	.3	.01	28	1
A002 177.00	180.00	5046	35	51	8	.2	.01	30	4
A002 180.00	183.00	5047	31	53	8	.2	.01	32	1
A002 183.00	186.00	5048	37	58	9	. 4	.01	22	5
A002 186.00	189.00	5049	26	56	11	.3	.01	35	4
A002 189.00	192.00	5050	22	54	9	.2	.01	15	3
A002 192.00	195.00	5051	35	65	12	. 1	.01	13	1
A002 195.00	197.00	5052	41	60	13	.1	.01	17	3
A002 197.00	199.30	5053	33	52	15	.1	.01	32	3
	END DE	GEOCHEM - I	END OF LE	16					

END OF GEOCHEM - END OF LOG

COORDINATES: Latitude= 4063.39 Departure= 7090.31

TRUE AZIMUTH OF HOLE: 090.0 VERTICAL ANGLE: -60.0

COLLAR ELEVATION: 994.44 TOTAL DEPTH OF HOLE: 133.0 mt.

Logged by: RBP on ... 27FEB86

FROM 0.0 MT. TO 75.0 MT.

UNIT:

DVERBURDEN , LITH:

FR & BX:

CASED TO 70.1 M. CORED TILL TO 75.0 M.

FROM 75.0 MT. TO 80.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC COMGLOMERATE medium green, with CHLORITE,,

FR & BX: WEAK FRACTURING

ALTN: UNALTERED

Textures noted: MICRO VEINS

Structures noted: BEDDING dip 55,

.1% QUARTZ as microveins

.1% PYRITE as disseminations and scattered crystals

1% CARBUNATE as microveins

4.200 MT. was the core recovery over the above interval

VERY LITTLE OXIDE. CORE NOT BADLY BROKEN. CLASTS DOMINANTLY BLACK SILTY ARGILLITE AND ACIDIC VOLCANICS, WELL ROUNDED.

FROM 80.3 MT. TO 97.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF medium grey, with CHLORITE, ,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS

Structures noted: BANDING dip 25,

.1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

15.80 MT. was the core recovery over the above interval

FROM 80.3 MT. TO 80.3 MT.

100% of this subinterval is the same as 80.3 MT. to 97.1 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF ,

FR & BX: WEAK FRACTURING

COORDINATES: Latitude= 4063.39 Departure= 7090.31

cont'd

ALTN: WEAK PROPYLITIC (CHL-CLAY) Structures noted: FAULT dip 50,

FROM 89.5 MT. TO 89.5 MT.

100% of this subinterval is the same as 80.3 MT. to 97.1 MT. except as noted

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF , FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)
Structures noted: FAULT dip 55,

SMALL ZONE OF VOLC. SANDSTONE FROM 89.0 TO 89.3 M. SOME

LAPILLI ARE ELONGATED, ABUNDANT BLACK SHARDS.

FROM 97.1 MT. TO 100.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF dark grey, with CHLORITE,,

FR & BX: MODERATE FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)
Textures noted: MICRO VEINS , BRECCIATED
Structures noted: BANDING dip 30,

.1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

2.5% CARBONATE as microveins

3.000 MT. was the core recovery over the above interval ROCK CHANGED VERY LITTLE, HIGHER DEGREE OF FRACTURING.

FROM 100.4 MT. TO 102.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF medium grey, with CHLORITE,,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS

Structures noted: BANDING dip 25,

.1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

1.400 MT. was the core recovery over the above interval

FROM 102.0 MT. TO 105.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF dark grey, with CHLORITE,,

FR & BX: MODERATE FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS, BRECCIATED

CODRDINATES: Latitude= 4063.39 Departure= 7090.31

cont'd

.1% QUARTZ as microveins trace PYRITE as disseminations and scattered crystals 1% CARBONATE as microveins

2.900 MT. was the core recovery over the above interval MOTTLED PURPLE COLOUR IN ROCK.

FROM 105.0 MT. TO 106.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF dark grey, with CHLORITE,,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS

Structures noted: BANDING dip 25.

.1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

1.100 MT. was the core recovery over the above interval SOME FRAGMENTS HAVE SERICITE ALTERATION.

FROM 106.1 MT. TO 109.3 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: DUST TUFF medium purple, with CHLORITE,,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS , BRECCIATED

.1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

3.100 MT. was the core recovery over the above interval MAYBE COARSER THAN DUST TUFF, BUT VERY FEW FRAGMENTS.

FROM 109.3 MT. TO 115.2 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF med. dark grey, with CHLORITE,,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS , BRECCIATED

Structures noted: BANDING dip 20, BEDDING dip 35

1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

5.700 MT. was the core recovery over the above interval

SANDSTONE FROM 111.1 TO 111.5 AND AGAIN FROM 112.2 TO 112.4 M.

DRILLHOLE: X86CH233 NQ COORDINATES: Latitude=

4063.39 Departure= 7090.31

cont'd

FROM 115.2 MT. TO 120.4 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF medium grey, with CHLORITE,,

FR & BX: MODERATE FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS , BRECCIATED

Structures noted: BANDING dip 25,

1% MUSCOVITE as clasts

1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

4.900 MT. was the core recovery over the above interval

ABUNDANT SHARDS. SOME SERICITE ALTERED LAPILLI, SOME ALTERED

RIMS ON LAPILLI.

FROM 120.4 MT. TO 126.1 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: VOLCANIC SANDSTONE light grey, with CHLORITE,,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS, BRECCIATED

2.5% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

5.400 MT. was the core recovery over the above interval

UPPER CONTACT GRADATIONAL OVER 0.3 M. MAINLY TUFFACEOUS DEBRIS.

FROM 126.1 MT. TO 128.5 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF dark grey, with CHLORITE, ,

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS, BRECCIATED

Structures noted: BANDING dip 30, CONTACT dip 65

.1% MUSCOVITE as clasts

1% QUARTZ as microveins

trace PYRITE as disseminations and scattered crystals

1% CARBONATE as microveins

2.200 MT. was the core recovery over the above interval

LOWER CONTACT VERY SHARP.

FROM 128.5 MT. TO 131.6 MT.

COORDINATES: Latitude= 4063.39 Departure= 7090.31

cont'd

LITH: DUST TUFF med. light mauve, with CLAY , , FR & BX: WEAK FRACTURING ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS 1% QUARTZ as microveins

1% CARBONATE as microveins

2.700 MT. was the core recovery over the above interval CORE VERY SOFT. "RED TUFF".

FROM 131.6 MT. TO 133.0 MT.

UNIT: SEDIMENTARY - VOLCANIC DIVISION

LITH: LAPILLI TUFF med. dark grey, with CHLORITE, .

FR & BX: WEAK FRACTURING

ALTN: WEAK PROPYLITIC (CHL-CLAY)

Textures noted: MICRO VEINS

Structures noted: BANDING dip 40, 1% QUARTZ as microveins

1% CARBONATE as microveins

1.100 MT. was the core recovery over the above interval CORE VERY BROKEN.

5069

5071

5072

5073

END OF HOLE.

A001 EQUITY MINESITE LABORATORY ALAB ATYP ASSAY

A001 120.00 123.00

A001 123.00 126.00 A001 126.00 128.50

A001 128.50 131.60

A001 131.60 133.00

AMTH WET EXTRACTION A.A. - AU FIRE ASSAYED FIRST AUMM RCOV SAMPLE ROD % CU G/TAG G/TAU % SB % AS % FE 5054 A001 75.00 78.00 .005 2.0 .050 .005 .001 2.530 .005 .005 A001 78.00 81.00 .001 2.560 5055 .005 3.0 .020 .005 A001 B1.00 B4.00 5056 .005 2.0 .060 .005 .001 3.210 .010 .005 .001 3.910 .010 A001 84.00 87.00 5057 .005 2.0 .060 .005 3.0 A001 87.00 90.00 5058 .100 .001 3.460 .010 .005 A001 90.00 93.00 5059 .005 .005 2.0 .090 .001 3.510 .010 A001 93.00 96.00 .005 .001 3.370 .010 5060 .005 4.0 .060 A001 96.00 77.00 A001 99.00 102.00 5062 105.00 5063 .005 4.0 .080 .005 5061 .001 3.490 .010 .005 4.0 .040 .001 3.630 .005 .010 .005 3.0 .090 .010 .005 .001 3.560 5064 A001 105.00 108.00 .005 2.0 .020 .005 .001 3.590 .010 .005 A001 108.00 111.00 5065 .005 3.0 .070 .001 3.680 .010 A001 111.00 114.00 5066 .005 2.0 .030 .005 .001 3.350 .005 A001 114.00 117.00 5067 .005 3.0 .080 .005 .001 3.340 .005 A001 117.00 120.00 5068 .005 2.0 .040 .005 .001 3.640 .005 5069 5070 507

.005

.005

2.0 .060 .005 .001 2.340 .005

2.0 .080 .005 .001 3.170 .010

.005 3.0 .050 .005 .001 2.140 .005

.005 2.0 .060 .005 .001 2.050 .005

.005 2.0 .040 .005 .001 3.240 .010

COORDINATES: Latitude= 4063.39 Departure= 7090.31

ГП			

	END	OF ASSAYS							
	PLA	CER DEVELOPMENT	LABOR	ATORY					
	6EO	CHEM							
	WET	EXTRACTION DCP.	A.A.	FOR AU					
		SAMPLE	CU	ZN	PB	AG	AU	AS	SB
75.00	78.00	5054	26	80	16	.3	.01	5	4
78.00	81.00	5055	45	72	19	.8	.01	7	2
81.00	84.00	5056	46	85	17	.2	.01	1	1
84.00	87.00	5057	61	101	20	.3	.01	3	1
87.00	90.00	5058	56	93	16	.2	.01	4	1
90.00	93.00	5059	61	93	22	. 4	.01	5	1
93.00	76.00	5060	79	107	21	.6	.01	4	1
96.00	99.00	5061	72	103	19	.5	.01	8	2
99.00	102.00	5062	72	99	19	.7	.01	2	2
102.00	105.00	5063	71	95	20	.5	.01	2	2
105.00	108.00	5064	60	86	16	. 4	.01	3	1
108.00	111.00	5065	59	88	18	.6	.01	4	3
111.00	114.00	5066	45	71	15	. 4	.01	1	1
114.00	117.00	5067	48	61	15	.3	.01	3	1
117.00	120.00	5068	52	71	14	.3	.01	2	1
	123.00	5069	34	62	13	.5	.01	4	1
123.00	126.00	5070	33	55	12	. 4	.01	1	2
126.00	128.50	5071	57	65	12	. 4	.01	1	4
128.50	131.60	5072	49	56	18	. 4	.01	5	2
131.60	133.00	5073	43	92	16	.5	.01	1	16
	END	DF GEOCHEM - EN	D OF	LOG					
	78.00 81.00 84.00 87.00 90.00 93.00 96.00	75.00 78.00 78.00 81.00 81.00 84.00 81.00 84.00 87.00 90.00 90.00 93.00 93.00 96.00 96.00 97.00 102.00 105.00 105.00 108.00 111.00 114.00 117.00 120.00 120.00 123.00 126.00 128.50 128.50 131.60 131.60 133.00	GEOCHEM WET EXTRACTION DCP, SAMPLE 75.00 78.00 5054 78.00 81.00 5055 81.00 84.00 5056 84.00 87.00 5057 87.00 90.00 5058 90.00 93.00 5059 93.00 96.00 5060 96.00 97.00 5061 99.00 102.00 5062 102.00 105.00 5063 105.00 108.00 5064 108.00 111.00 5065 111.00 114.00 5066 114.00 117.00 5067 117.00 120.00 5068 120.00 123.00 5069 123.00 126.00 5070 126.00 128.50 5071 128.50 131.60 5072 131.60 133.00 5073	PLACER DEVELOPMENT LABOR GEOCHEM WET EXTRACTION DCP, A.A. SAMPLE 75.00 78.00 5054 26 78.00 81.00 5055 45 81.00 84.00 5056 46 84.00 87.00 5057 61 87.00 90.00 5058 56 90.00 93.00 5059 61 93.00 96.00 5060 79 96.00 99.00 5061 72 99.00 102.00 5062 72 102.00 105.00 5063 71 105.00 108.00 5064 60 108.00 111.00 5065 59 111.00 114.00 5065 59 111.00 117.00 5067 48 117.00 120.00 5068 52 120.00 123.00 5069 34 123.00 126.00 5070 33 126.00 128.50 5071 57 128.50 131.60 5072 49 131.60 133.00 5073 43	PLACER DEVELOPMENT LABORATORY GEOCHEM WET EXTRACTION DCP, A.A. FOR AU SAMPLE CU ZN 75.00 78.00 5054 26 80 78.00 81.00 5055 45 72 81.00 84.00 5056 46 85 84.00 87.00 5057 61 101 87.00 90.00 5058 56 93 90.00 93.00 5059 61 93 93.00 96.00 5060 79 107 96.00 99.00 5061 72 103 99.00 102.00 5062 72 99 102.00 105.00 5063 71 95 105.00 108.00 5064 60 86 108.00 111.00 5065 59 88 111.00 114.00 5066 45 71 114.00 117.00 5067 48 61 117.00 120.00 5068 52 71 120.00 123.00 5069 34 62 123.00 126.00 5070 33 55 126.00 128.50 5071 57 65 128.50 131.60 5072 49 56 131.60 133.00 5073 43 92	PLACER DEVELOPMENT LABORATORY GEOCHEM WET EXTRACTION DCP, A.A. FOR AU SAMPLE CU ZN PB 75.00 78.00 5054 26 80 16 78.00 81.00 5055 45 72 19 81.00 84.00 5056 46 85 17 84.00 87.00 5057 61 101 20 87.00 90.00 5058 56 93 16 90.00 93.00 5059 61 93 22 93.00 96.00 5060 79 107 21 96.00 99.00 5061 72 103 19 99.00 102.00 5062 72 99 19 102.00 105.00 5063 71 95 20 105.00 108.00 5064 60 86 16 108.00 111.00 5065 59 88 18 111.00 114.00 5066 45 71 15 114.00 117.00 5067 48 61 15 117.00 120.00 5069 34 62 13 123.00 126.00 5070 33 55 12 126.00 128.50 5071 57 65 12 128.50 131.60 5072 49 56 18 131.60 133.00 5073 43 92 16	PLACER DEVELOPMENT LABORATORY GEOCHEM WET EXTRACTION DCP, A.A. FOR AU SAMPLE CU ZN PB AG 75.00 78.00 5054 26 80 16 .3 78.00 81.00 5055 45 72 19 .8 81.00 84.00 5056 46 85 17 .2 84.00 87.00 5057 61 101 20 .3 87.00 90.00 5058 56 93 16 .2 90.00 93.00 5059 61 93 22 .4 93.00 96.00 5060 79 107 21 .6 96.00 99.00 5061 72 103 19 .5 99.00 102.00 5062 72 99 19 .7 102.00 105.00 5063 71 95 20 .5 105.00 108.00 5064 60 86 16 .4 108.00 111.00 5065 59 88 18 .6 111.00 114.00 5066 45 71 15 .4 114.00 117.00 5067 48 61 15 .3 117.00 120.00 5069 34 62 13 .5 123.00 126.00 5070 33 55 12 .4 126.00 128.50 5071 57 65 12 .4 128.50 131.60 5072 49 56 18 .4 131.60 133.00 5073 43 92 16 .5	PLACER DEVELOPMENT LABORATORY GEOCHEM WET EXTRACTION DCP, A.A. FOR AU SAMPLE CU ZN PB A6 AU 75.00 78.00 5054 26 80 16 .3 .01 78.00 81.00 5055 45 72 19 .8 .01 81.00 84.00 5056 46 85 17 .2 .01 84.00 87.00 5057 61 101 20 .3 .01 87.00 90.00 5058 56 93 16 .2 .01 87.00 90.00 5058 56 93 16 .2 .01 90.00 93.00 5059 61 93 22 .4 .01 93.00 96.00 5060 79 107 21 .6 .01 96.00 99.00 5061 72 103 19 .5 .01 99.00 102.00 5062 72 99 19 .7 .01 102.00 105.00 5063 71 95 20 .5 .01 105.00 108.00 5064 60 86 16 .4 .01 108.00 111.00 5065 59 88 18 .6 .01 111.00 114.00 5066 45 71 15 .4 .01 114.00 117.00 5067 48 61 15 .3 .01 117.00 120.00 5068 52 71 14 .3 .01 117.00 120.00 5069 34 62 13 .5 .01 123.00 126.00 5070 33 55 12 .4 .01 128.50 131.60 5072 49 56 18 .4 .01 131.60 133.00 5073 43 92 16 .5 .01	PLACER DEVELOPMENT LABORATORY GEOCHEM WET EXTRACTION DCP, A.A. FOR AU SAMPLE CU ZN PB AG AU AS 75.00 78.00 5054 26 80 16 .3 .01 5 78.00 81.00 5055 45 72 19 .8 .01 7 81.00 84.00 5056 46 85 17 .2 .01 1 84.00 87.00 5057 61 101 20 .3 .01 3 87.00 90.00 5058 56 93 16 .2 .01 4 90.00 93.00 5059 61 93 22 .4 .01 5 93.00 96.00 5060 79 107 21 .6 .01 4 96.00 99.00 5061 72 103 19 .5 .01 8 99.00 102.00 5062 72 99 19 .7 .01 2 102.00 105.00 5063 71 95 20 .5 .01 2 105.00 108.00 5064 60 86 16 .4 .01 3 108.00 111.00 5065 59 88 18 .6 .01 4 111.00 114.00 5066 45 71 15 .4 .01 1 114.00 117.00 5067 48 61 15 .3 .01 3 117.00 120.00 5069 34 62 13 .5 .01 4 123.00 128.50 5071 57 65 12 .4 .01 1 128.50 131.60 5072 49 56 18 .4 .01 5 131.60 133.00 5073 43 92 16 .5 .01

COORDINATES: Latitude= 4066.27 Departure= 7200.40

TRUE AZIMUTH OF HOLE: 090.0 VERTICAL ANGLE: -45.0

COLLAR ELEVATION: 1012.52 TOTAL DEPTH OF HOLE: 88.4 mt.

Logged by: RBP on ... 28FEB86

FROM 0.0 MT. TO 88.4 MT.

UNIT:

OVERBURDEN , LITH:

FR & BX:

ALTN:

CASED TO 88.4 M AND DID NOT REACH BEDROCK. HOLE ABANDONED.

END OF HOLE.

A001

ALAB

EQUITY MINESITE LABORATORY

ATYP

ASSAY

AMTH

WET EXTRACTION A.A. - AU FIRE ASSAYED FIRST

AUMM

RCOV SAMPLE RQD % CU G/TAG G/TAU % SB % AS % FE % ZN

NO CORE - NO ASSAYS

END OF ASSAYS - END OF LOG