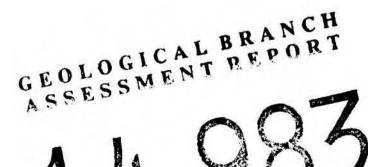
REPORT ON 1986 DIAMOND DRILLING


SNOWFLAKE OPTION
Aspen Grove, B.C.
NTS: 92H/15E
NICOLA MINING DIVISION

Latitude: 49°50'N Longitude: 120°35'W

R. M. Cann July 1986

> 74.99 X 30.77 X

DIAMOND DRILLING 1986
SNOWFLAKE OPTION
Aspen Grove, B C
NTS: 92H/15E
Nicola Mining Division

Latitude: 49° 86'04 58.6', Longitude: 120° 88'W 34.5'

Operator:

Lornex Mining Corporation Ltd 1650, 609 Granville Street Vancouver B C V7Y 1G5

Owner:

Quilchena Resources Ltd and Laramide Resources Ltd. 904, 675 West Hastings Street
Vancouver B C V6B 1N2

FILMED

R M Cann July 1986

TABLE OF CONTENTS

		Page
	SUMMARY	(iii)
1	INTRODUCTION	1
	1.1 General	1
	1.2 Location, access and Physiography	1
	1.3 Claim Status	2
	1.4 History	3
2	GEOLOGY	4
	2.1 Regional Geology	4
	2.2 Local Geology	4
	2.3 Mineralization and Alteration	7
3	DIAMOND DRILLING	8
	3.1 General	8
	3.2 1986 Results	8
4	DISCUSSION	10
5	RECOMMENDATIONS	11
6	REFERENCES	12
7	STATEMENT OF QUALIFICATIONS	13
	LIST OF APPENDICES	
Α	Cost Statement	
В	Geochemical Analyses	
C	Drill Logs	

LIST OF FIGURES

	Figure		Page
e)			
*·I	1	Location Map	1a
	2	Claim Map	2a
	3	Surface Rights	2b
	4	Drill Section SF86-1	8a
	5	Drill Section SF86-2	8b
	6	Drill Section SF86-3	8c
	7	Drill Section SF86-4	8d
	8	Drill Section SF86-5	8e
	9	Drill Section SF86-6	8f
	10	Geology and Drill Hole Locations	Pocket

SUMMARY

The Snowflake Option consists of 10 claims optioned from Quilchena Resources Ltd in February 1986 and is located in rolling terrain 23 km southeast of Merritt in south-central British Columbia. The exploration target is a moderate size gold ± copper deposit similar to Dome's QR deposit located in central B C.

Claims lie within the Central Belt of the Upper Triassic Nicola Group. Copper and gold mineralization within this belt occurs in highly fractured and faulted basaltic flows, breccias and volcaniclastic sediments in close spatial association with coeval alkaline stocks.

In the area of interest, Nicola rocks consist of a west dipping homoclinal sequence of basalt augite porphyry flows and tuffs, overlying volcanic sandstone, conglomerate and shale and a cap of basaltic agglomerate. These units are intruded by a coeval monzonite stock. Gold mineralization, initially discovered in 1967, occurs as fracture- controlled quartz-carbonate-chalcopyrite-pyrite veinlets within a volcanic conglomerate horizon.

Six diamond drill holes, totalling 576.7m were drilled between May 26 and June 12 1986 to evaluate the tenor of gold-copper mineralization within volcano-sedimentary rocks. The best gold values averaged 4.49 g/t Au, 21.94 g/t Ag over 2 m and were intersected 200m south of previous intersections. Two drill holes located further south intersected anomalous (100-400 ppb) gold values and two holes failed to interest the favourable horizon.

The geological setting at Snowflake is very similar to the setting of Dome's QR deposit, in central British Columbia, where gold mineralization occurs at a basalt-argillite contact in association with strongly propylitized basaltic flows and breccias.

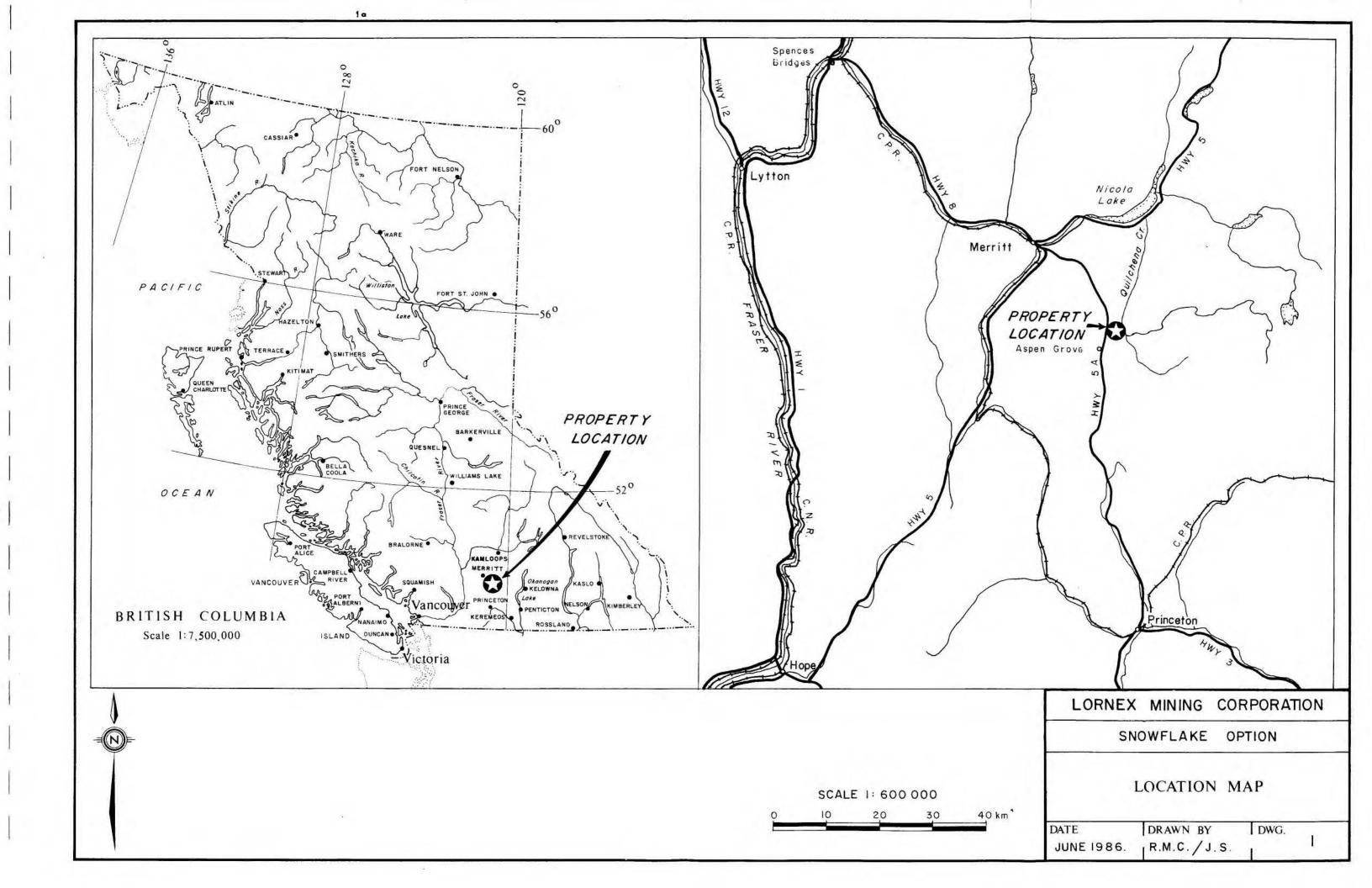
Based on a "QR model", further drilling is recommended to locate a sedimentary-volcanic contact above strongly propylitized basalts intersected in drill hole SF86-1.

1 INTRODUCTION

1.1 General

Diamond drilling on Snowflake was conducted to test a strong IP chargeability/resistivity anomaly and to test gold mineralization in basaltic tuffs underlying a shaley horizon. This report discusses the results from the six diamond drill holes and describes the local geology as now known. An IP survey conducted in early May 1986 is described in a separate report by Phoenix Geophysics.

1.2 Location, Access and Physiography


The centre of the claim group is located 23 km southeast of Merritt, within the Nicola Mining Division of British Columbia, (NTS: 92H/15E).

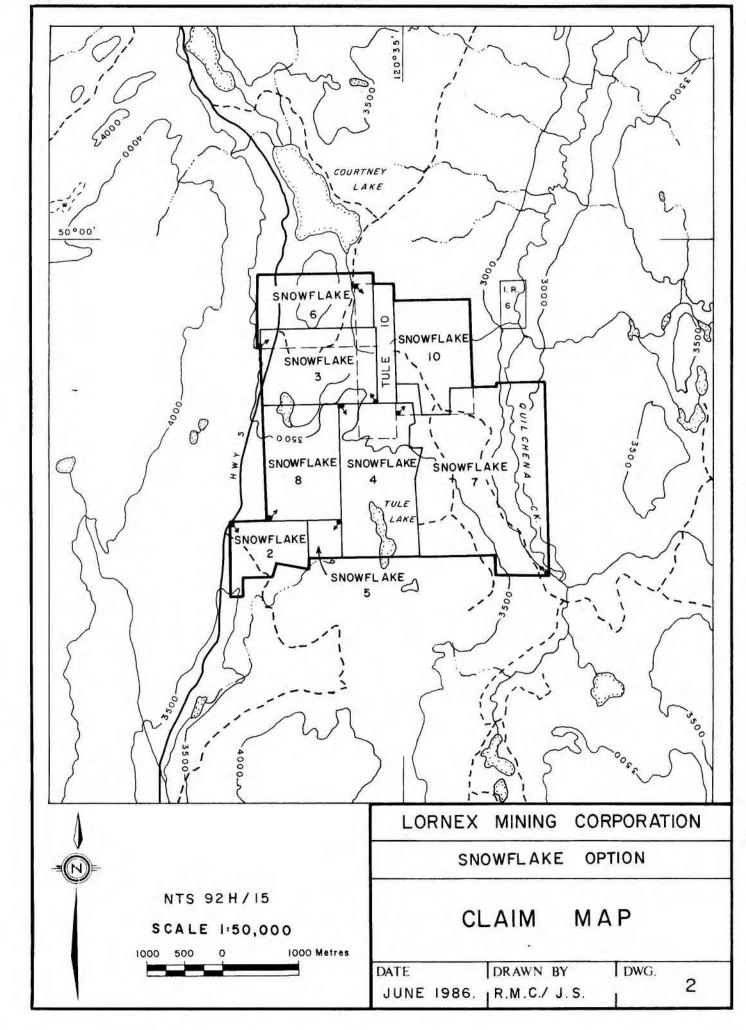
Excellent access to the property is provided by two interconnected ranch roads which leave Highway 5A, 4.5 and 5.5 km north of Aspen Grove. Entrance to the better, most northerly road is controlled by Douglas Lake Cattle Company Ltd, while free access may be gained through the more southerly road.

Four-wheel drive trucks are required if roads are muddy.

Physiographically, most of the property consists of low, northerly trending hills and ridges with a relief of approximately 100m. The east half of Snowflake 7 covers a steep 200m high slope leading down to Quilchena Creek.

Much of the property consists of natural grass land which is used for cattle grazing. Forested areas consist of fairly open clumps of aspen, pine and fir.

1.3 Claim Status


Snowflake consists of nine claims (Figure 2) owned by Quilchena Resources Limited but subject to an option agreement dated February 1 1986 with Lornex Mining Corporation Ltd. Current status of these claims is tabulated below and reflects work filed on June 20 1986 for assessment credit but not yet approved.


Claim		Units	Record No:	Recorded	Expires
Snowflake		6	8	May 13 1975	1994
Snowflake	2	4	93	Apr 14 1976	1996*
Snowflake	3	6	167	Aug 20 1976	1994
Snowflake	4	8	211	Feb 11 1977	1996*
Snowflake	5	2	212	Feb 11 1977	1996*
Snowflake	6	6	321	Sep 16 1977	1994
Snowflake	7	20	470	Jun 15 1978	1996*
Snowflake	10	6	514	Oct 25 1978	1996*
Tule 10		4	322	Sep 16 1977	1994

^{*} Not officially approved

Approximately two-thirds of the property is located on land whose surface rights are held by Douglas Lake Cattle Company Ltd. The remaining land is Crown Land which is partly covered by grazing leases. Surface right distribution is shown on Figure 3.

The west-half of Snowflake is covered by a recent mineral reserve (o/c 2116/85) covering the Phase 3 Coquihalla Highway right-of-way. This reserve forbids interference in the construction, operation or maintenance of the Coquihalla Highway.

1.4 History

Exploration on Snowflake and the Aspen Grove area in general dates back to 1900 when exploration was conducted on numerous veins and shears carrying high copper values. No significant production resulted from this work.

More recently, the western portion of the Snowflake property was originally staked as the Blue Jay claims in 1958 and was worked until 1975 when the Snowflake claims was staked by F Gingell and R Yorke-Hardy. The area now covered by Snowflake 7 and 10 was originally staked in 1965 as the CM claims which were then acquired in 1966 by Vananda Explorations Ltd. In 1966, Vananda drilled nine percussion holes totalling 189m. During 1967, in a joint venture with Merritt Copper, three diamond drill holes totalling 438m and one 128m percussion hole were drilled. An 18m section in a diamond drill hole was reported to assay 5.14 g/t (0.15 oz/t) Au and 0.20% Cu over 183m [GCNL No 101 (1967)].

From 1977 to 1979, Cominco staked the Snowflake 4 - 10 claims and also optioned the Snowflake and Snowflake 2 and 3 claims. Cominco drilled 34 percussion holes and conducted IP and magnetometer surveys.

Laramide Resources optioned the property in 1983 on the basis of the 1967 news release and conducted IP and magnetic surveys, and drilled 12 diamond holes totalling 995.7m in an attempt to duplicate the intersection of Merritt Copper. Laramide's DDH SF83-1 intersected 1.5m averaging 7.20 g/t Au and DDH SF83-8 intersected 1.5m grading 36.00 g/t Au. Both intersections are associated with fracture controlled mineralization within a volcanic conglomerate. Additional IP surveys were completed in January 1985.

2 GEOLOGY

2.1 Regional Geology

Snowflake lies within the Upper Triassic Nicola Group, part of a 40 km wide belt of alkaline and calc-alkaline volcanics extending from the US border into northern British Columbia. Between Merritt and Princeton, Preto (1979) has divided the Nicola Group into three north-south trending fault bounded belts. The Central Belt, which hosts mineralization at Snowflake, is dominated by andesitic and basaltic flows and comagnatic intrusive rocks. The Eastern Belt is similar in composition but is dominated by volcanic sediments, lahar and tuff which has probably shed off the Central Belt during formation. In contrast, the Western Belt is composed mainly of dacitic to andesitic flows and associated sediments which appear to have a westerly source.

Copper-gold mineralization is generally concentrated in the highly faulted and fractured Central Belt and is associated with alkaline to sub-alkaline, coeval, subvolcanic intrusives or breccia pipes.

2.2 Local Geology

Local geology is shown on Figure 10, modified from Preto (1974). This discussion and synthesis of geology is restricted to the area covered by the geophysics grid on the north-half of Snowflake 7 and the southwest corner of Snowflake 10. Descriptions are based on personal examination and reports by Preto (1979) and Dawson (1984).

Nicola Group volcanic and sedimentary rocks in this area appear to form a homoclinal sequence generally striking northwesterly and dipping from 30° to 80° west. The average dip is approximately 60° west. For descriptive purposes, the sequence can be divided into a sedimentary sequence (unit le), overlying agglomerate (part of 1d) and underlying massive porphyritic flows and tuffs (part of 1d). These formations are intruded by a 400 x 800m monzonite stock (unit 5). Extensive overburden restricts exposures to the monzonite and scattered outcrops of hornfelsed sediments.

The lower volcanic unit, lying east of Unit le, consists of massive, dark green basaltic flows and/or tuffs. Augite porphyry is most common, but feldspar augite porphyry dominates in SF86-5 and 6 and feldspar porphyry occurs in SF86-3. Pervasive epidote forms 5-10% of the rock and locally occurs in amounts to 50% as at the top of SF86-1. Pyrite disseminations and veinlets do not exceed 3%. This unit is generally non-magnetic but is strongly magnetic in SF86-4.

The middle sedimentary sequence is laterally and vertically lithologically variable. Because the rocks are recessive, most information is from drill core.

To the north, in holes SF86-5 and 6, the sequence consists of a 30 to 50m thick lower mixed volcanic sandstone and volcanic conglomerate unit which locally hosts significant copper-gold mineralization. Gradational to, and overlying this lower unit, is an approximately 20m thick section of massive black, calcareous, locally carbonaceous shale 1-5% disseminated, syngenetic pyrite is ubiquitous and results in a linear IP anomaly. Overlying the black shale on SF86-5 is 20m of well-sorted volcanic sandstone.

Further south, near SF86-2, the sedimentary sequence increases in thickness to approximately 400m, apparently because of a thick, lower volcanic sandstone unit. Near drill holes SF86-3 and 4, conglomerate is less common and calcareous thinly bedded siltstone appears.

The overlying agglomerate consists of closely packed, rounded clasts in a greywacke matrix. Clasts consist of porphyritic volcanic fragments and pink-grey monzonite fragments which are generally less than 10 cm in diameter but are locally up to 100 cm in size. West of unit 5, the agglomerate consists mainly of pink monzonite clasts apparently derived from the adjacent stock. Epidote commonly replaces all or part of the clasts.

Intrusive into Unit le and partly intrusive and partly coeval with overlying agglomerates is a body of fine-grained equigranular monzonite (unit 5a) and intrusive breccia (unit 5b). No sulphides were observed in this unit but pink K-spar flooding and epidote veinlets and clots are common.

Hornfelsing and pyritization of sediments is evident near the monzonite stock and results in broad, moderate chargeability anomalies.

Faulting and brecciation of volcanic and sedimentary rocks is common south of DDH SF86-1 where it may be related to emplacement of the monzonite stock. Two east-west tending faults are interpreted in this area based on surface geology and IP data.

2.3 Mineralization and Alteration

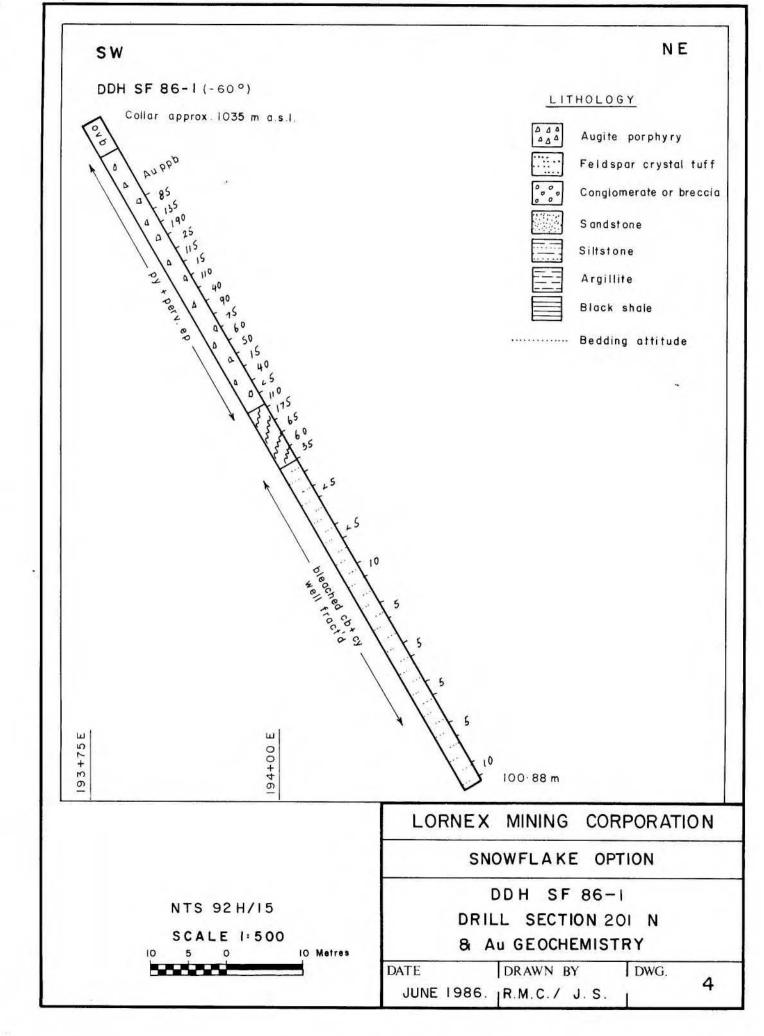
Copper-gold mineralization is associated with 1-6cm wide quartz <u>+</u> carbonate-pyrite-chalcopyrite veins within volcano-sedimentary breccias underlying a carbonaceous shale unit. The best gold values occur within 15m of the breccia-shale contact. Previous microscope studies indicated that the gold occurs as electrum within pyrite. Chalcopyrite and minor sphalerite occur with the electrum-bearing pyrite.

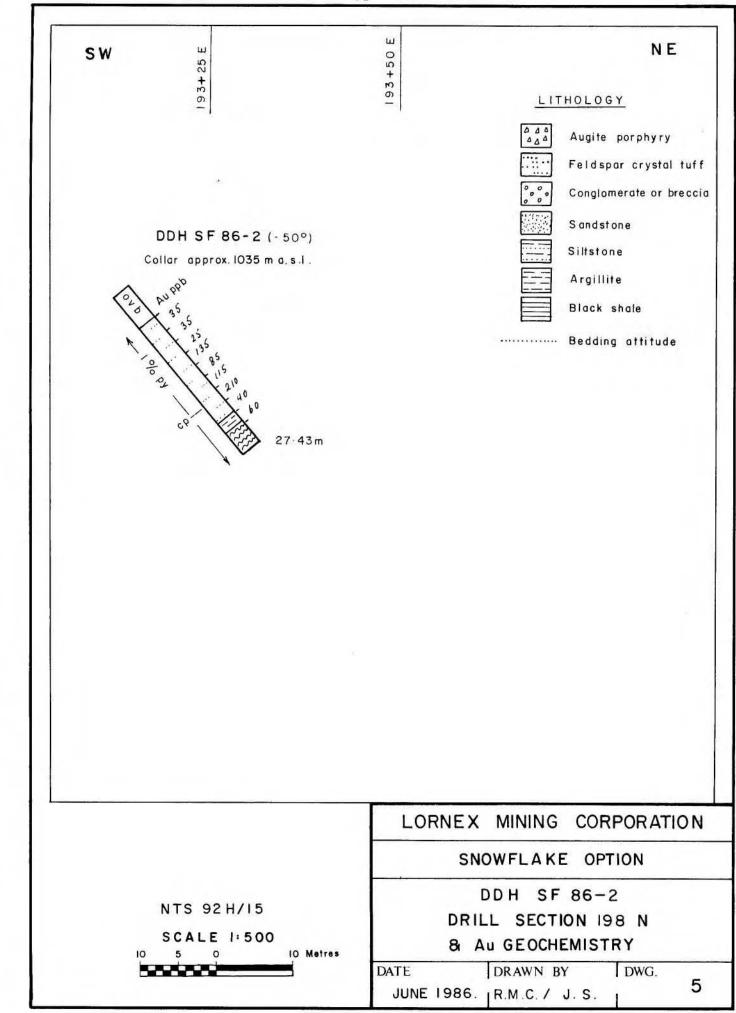
Pervasive bleaching of volcanics or volcano-sedimentary rocks is common but generally forms an envelope around quartz-carbonate-pyrite mineralized shears or fault zones.

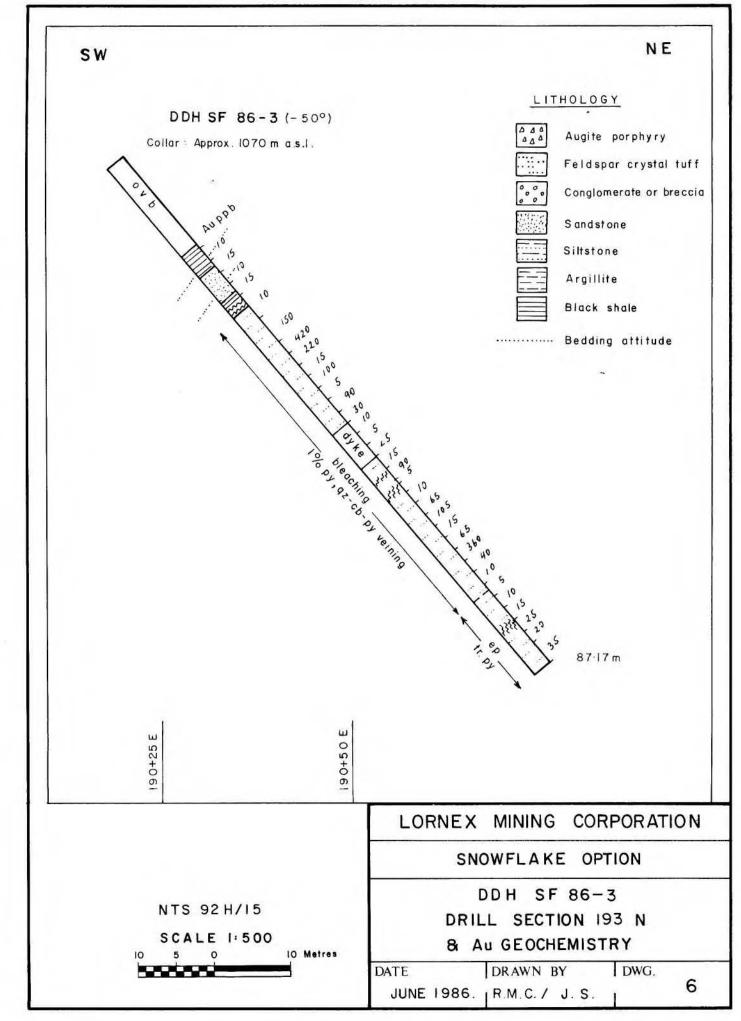
Weak epidotization is ubiquitous but strong epidotization replaces up to 50% of the rock toward the top of SF86-1.

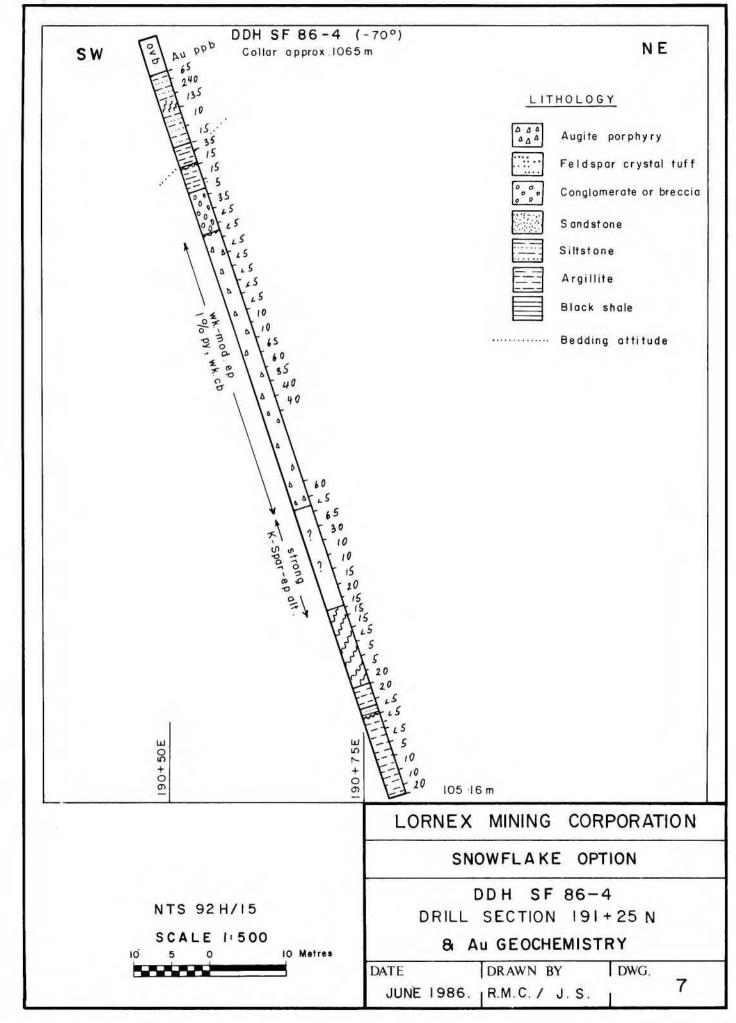
3 DIAMOND DRILLING

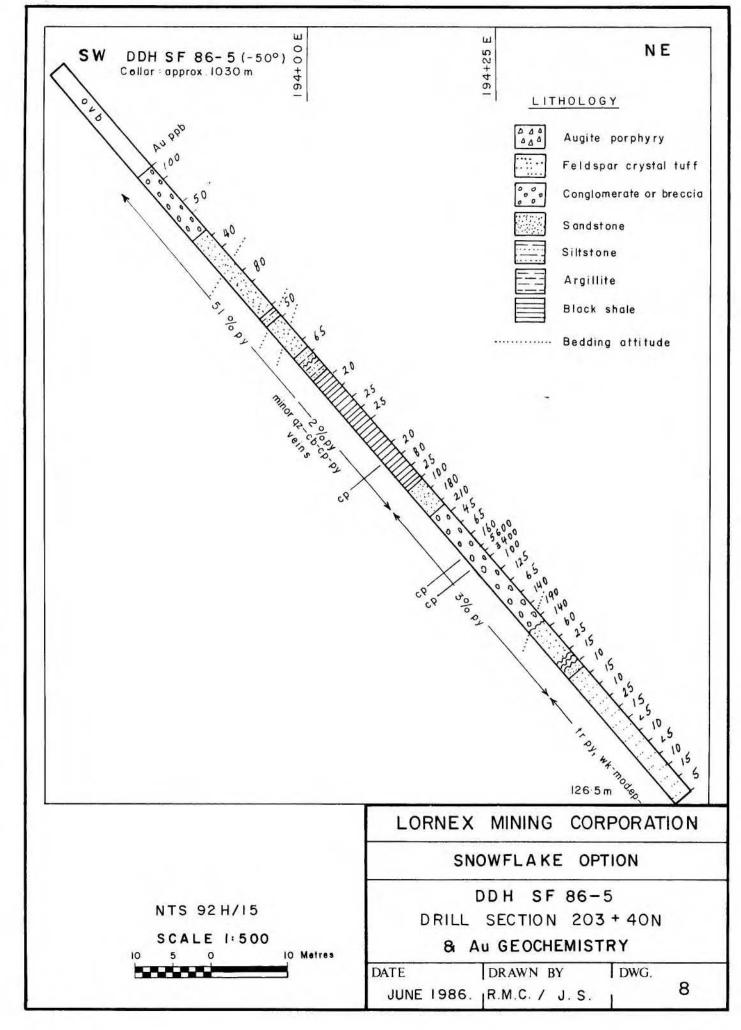
3.1 General

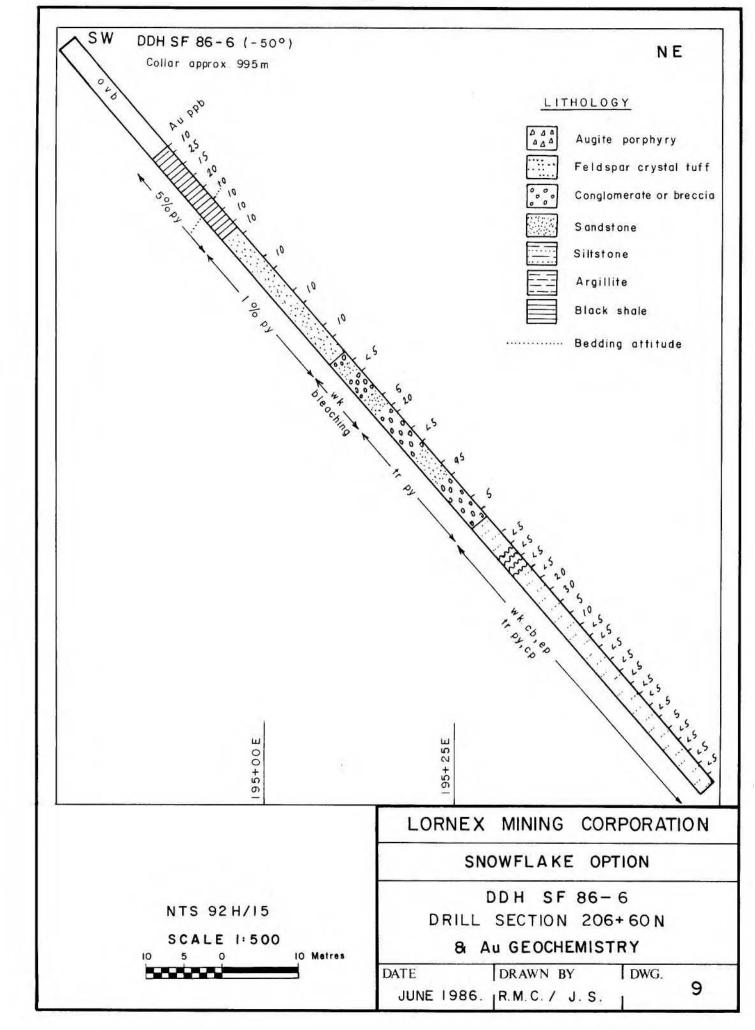

Six NQ diamond drill holes totalling 576.7m were drilled between May 26 and June 12 by Beaupre Drilling Ltd of Princeton, B C. Due to environmental considerations the Longyear S-38 drill was truck-mounted. Water was pumped from a pond located 600m west of SF86-4 and from a small stream approximately 700m west of SF86-1. This stream had ceased flowing at the end of drilling.


Core was logged and split on the property. Samples were shipped to CDN Resource Lab in Delta, B C for Au, Ag, Cu geochemical analysis (Appendix B). Split core is currently stored at Willow Heights Ranch in Aspen Grove.


3.2 1986 Results


Drill holes are located on Figure 10 and results are shown on Figures 4 to 9 as schematic drill sections and gold geochemistry. Complete geochemical results are compiled in Appendix B and detailed core logs are attached as Appendix C.


The 1986 drilling programme was designed to test for gold-copper mineralization in volcanic breccias and conglomerates underlying a carbonaceous shale. The position of the shale unit was interpreted from IP results, surface geology and 1983 drilling. The shale was intersected in drill holes SF86-3, 5 and 6. Drill hole SF86-2 was abandoned in argillite at a shallow depth while SF86-4 intersected sediments overlying volcanics but did not intersect carbonaceous shale. Drill hole SF86-1 was collared in augite porphyry flows or tuffs underlying the sediments.



Gold values in the drill holes (Figures 4 to 9) are extremely erratic. Fresh to weakly altered rock with few sulphides and quartz-carbonate stringers generally contains less than 20ppb gold (eg. SF86-4 and 6). Values from 100 to 200ppb gold appear to be associated with stronger pyritic alteration, traces of chalcopyrite, strong fracturing and scattered quartz-carbonate stringers.

The best mineralization, intersected in SF86-5 from 84 to 86m, averaged 4.49 g/t Au, 21.94 g/t Ag and 2.10% Cu. These values are associated with quartz-pyrite-chalcopyrite veins cutting volcanic conglomerate below the carbonaceous shale. Gold values decline sharply to less than 200ppb on either side of this intersection. Similar veining and gold mineralization was intersected 200m north in 1983 drill holes SF83-1 and 8

4 DISCUSSION

Diamond drilling has indicated that volcano-sedimentary rocks near a subvolcanic monzonite stock are variably but weakly mineralized with gold. The geological environment at Snowflake is very similar to the setting of Dome Mines QR gold deposit (950,000 t @ 6.8 g/t) near Quesnel River, central British Columbia, QR consists of three separate deposits which are patchy to semi-massive pyritic zones within strongly propylitized Upper Triassic basalt flows, tuffs and breccias at or near the contact with overlying argillite. Alteration and mineralization is spatially related to a monzodiorite stock intruding the volcanic-sedimentary pile. Gold values at QR decrease toward the essentially barren stock. Differences between QR and Snowflake include: (1) a thicker sedimentary pile at QR which is of regional extent rather than local as at Snowflake, (2) basaltic rocks at QR are strongly carbonatized outside the propylitic zone whereas rocks at Snowflake are generally limey sediments or tuffs, (3) mineralization at Snowflake, is fracture controlled whereas mineralization at QR is associated with pervasive propylitic alteration zones.

The strongest propylitic alteration at Snowflake was encountered toward the top of SF86-1 (30-50% epidote); however, associated pyrite averaged 1% or less. This hole was entirely in augite porphyry flows or tuffs which appear to stratigraphically underlie the sedimentary (unit le). If a QR model is used, presumably, the best gold mineralization would be within this propylitic alteration zone near or at the sedimentary-volcanic contact.

5 RECOMMENDATIONS

Additional drilling is recommended to locate and test the volcanic-sedimentary contact near SF86-1.

6 REFERENCES

- Dawson, J. (1984): Report on the Diamond Drilling
 Programme, Snowflake Property, B.C. Private
 Report for Laramide Resources Ltd.
- Preto, V.A. (1974): Geology of the Aspen Grove Area, B.C., B.C.
 Ministry of Energy, Mines and Petroleum
 Resources, Preliminary Map No. 15.
- Preto, V.A. (1979): Geology of the Nicola Group between Merritt and Princeton, B.C. Ministry of Energy, Mines and Petroleum Resources, Bull. 69.

7 STATEMENT OF QUALIFICATIONS

- I am a geologist residing at 6075 Eagleridge Drive, West Vancouver British Columbia and am employed by Lornex Mining Corporation Ltd of 1650, 609 Granville Street, Vancouver, British Columbia.
- I am a graduate of the University of British Columbia with a B Sc (Geology) in 1976 and and M Sc (Geology) in 1979.
- 3 I have practiced my profession with Rio Algom, Lornex and other companies since graduation.
- 4 I am a Fellow of the Geological Association of Canada.
- I personally supervised the drilling programmes conducted on the Snowflake claims from May to June 1986.

fulla C.

Robert M Cann

Vancouver B C July 1986

APPENDIX A

COST STATEMENT

1986 COST STATEMENT

R Cann May 15 - June 14	\$ 4,424.00
J Kozij May 26 - June 14	1,700.00
Head Office Supervision	600.00
Truck rental May 15 - June 14	1,163.25
Room and Board May 23 - June 14	2,700.00
Diamond Drilling 576.67m @ \$48.50/m	27,968.49
Geochem 99 @ \$11.35 (Au, Ag, Cu)	1,124.00
Assay 4 @ \$15.50 (Au, Ag, Cu)	62.00
Shipping - Greyhound	193.70
Drafting	260.00
Sub-total	\$40,195.44
<pre>IP - 12 km Phoenix Geophysics Ltd Line-cutting (12 km)</pre>	13,575.00 2,350.00
TOTAL	\$56,120.44

APPENDIX B

GEOCHEMICAL ANALYSES

CDN RESOURCE LABORATORIES LTD.

#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

** GEOCHEMICAL REPORT **

To: Lornex Mining Corporation

P.O. Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D. R. Budinski

Number: 86160

Date: June 3, 1986

Proj.: 5414

		Au	Ag	Cu	DDH SF86-1	
2		ppb	ppm	ppm		
-	14001	85	0.3	165		
	14002	135	0.4	20		
	14003	190	0.5	29		
	14004	25	0.4	146		
	14005	115	0.3	84		
	14006	15	<0.1	18		
	14007	110	0.2	375		
-07	14008	40	0.1	48		
	14009	90	0.1	42		
	14010	75	0.2	178		
•	14011	60	0.1	113		
	14012	50	0.1	99		
	14013	15	0.1	188		
	14014	40	0.2	72		
	14015	< 5	0.1	35		
	14016	110	0.1	113		
	14017	175	0.5	660		
-	14018	65	0.9	1320		
	14019	60	0.3	575		
	14020	35	0.2	350		
-	14021	< 5	<0.1	11		
	14022	< 5	<0.1	25		
	14023	10	<0.1	68		
67	14024	5	<0.1	18		
	14025	5	<0.1	7		
	14026	< 5	<0.1	18		
	14027	5	<0.1	48		
-	14028	10	<0.1	9		
	14029	35	0.1	670	DDH SF86-2	
	14030	35	0.3	88	DDN 3F00-2	
_	14031	25	0.4	330		
	14032	135	0.8	177		
	14033	85	0.5	133		
_	14034	115	0.2	108		
40	14035	210	1.7	1320		
	14036	40	1.7	1150		
	14037	40	0.6	169		
-	14038	60	2.0	2200		
	14039	50	0.5	330		
	14040	60	0.6	380		

Dunca Sanderson

CUN RESOURCE LABORATORIES LTD.#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D. R. Budinski

Number: 86168

Date: June 6, 1986

Proj.: 5414

		Au	Ag	Cu	DDH SF86-3	
		ppb	ppm	ppm	AND THE THE PARTY OF THE PARTY	
_	14041	10	0.8	109	III.	78.4
	14042	15	0.5	105		
	14043	10	0.1	94		
_	14044	15	<0.1	107		
	14045	10	<0.1	130		
	14046	150	<0.1	42		
200	14047	420	<0.1	38		
	14048	220	<0.1	10		
	14049	15	<0.1	5		
	14050	100	<0.1	13		
_	14051	5	<0.1	6		
	14052	90	0.2	52		
	14053	30	0.5	154		
_	14054	10	<0.1	26		
	14055	5	0.1	3		
	14056	< 5	<0.1	7		
	14057	15	0.2	65		
_	14058	90	0.6	23		
	14059	5	0.2	16		
	14060	10	<0.1	25		
-	14061	65	<0.1	42		
	14062	105	0.2	75		
	14063	15	<0.1	84		
_	14064	65	0.5	178		
	14065	360	0.3	191		
-	14066	40	0.1	24		
	14067	10	0.1	34		
_	14068	5	0.1	10		
	14069	10	<0.1	16		
	14070	15	0.2	25		
_	14071	25	0.1	44		
	14072	20	0.1	37		
	14073	35	0.3	38		
_	and the second		1202.2			

FIGURE ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D. R. Budinski

Number: 86169

Date: June 9, 1986

Proj.: 5414

		Au	Ag	Cu	DDH SF86-4
_		ppb	ppm	ppm	
_	14074	65	<0.1	104	
	14075	240	<0.1	79	
	14076	135	2.2	1450	
_	14077	10	0.1	415	
	14078	15	0.2	142	
	14079	35	<0.1	197	
200	14080	15	<0.1	109	
	14081	15	<0.1	171	
	14082	5	0.4	53	
	14083	35	<0.1	216	
-	14084	< 5	<0.1	153	
	14085	< 5	<0.1	93	
	14086	< 5	<0.1	260	
_	14087	< 5	<0.1	320	
	14088	< 5	<0.1	210	
	14089	< 5	<0.1	190	
ALIEN	14090	< 5	<0.1	92	
_	14091	10	<0.1	72	
	14092	10	<0.1	174	
	14093	65	<0.1	150	
	14094	60	<0.1	210	
	14095	35	<0.1	130	
	14096	40	<0.1	171	
-	14097	40	<0.1	103	
	14098	60	<0.1	188	
	14099	< 5	<0.1	50	
-	14100	65	<0.1	107	

CUN RESOURCE LABORATORIES LTD.#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

Lornex Mining Corporation Ltd.

Box 10335, 609 Granville Street

Vancouver, B.C.

V7Y 1G5

Attn: D. R. Budinski

Number: 86170

Date: June 9, 1986

Proj.: 5414

		Au	Ag	Cu	DDH SF86-4
		ppb	ppm	ppm	
-	14101	30	<0.1	103	
	14102	10	<0.1	8	
	14103	10	<0.1	22	
_	14104	15	<0.1	125	
	14105	20	<0.1	54	
	14106	15	<0.1	64	
	14107	15	<0.1	205	
	14108	15	<0.1	156	
	14109	< 5	<0.1	129	
	14110	5	<0.1	69	
_	14111	5	<0.1	77	
	14112	< 5	<0.1	85	
	14113	< 5	<0.1	230	
_	14114	< 5	<0.1	157	
	14115	5	<0.1	43	
	14116	10	<0.1	6	
	14117	10	<0.1	4	
_	14118	20	<0.1	187	
	14119	20	<0.1	79	
	14120	20	<0.1	16	
_					

Duncan Sanderso

#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D.R. Budinski

Number: 86173

Date: June 11, 1986

Proj.: 5414

		Au	Ag	Cu	DDH SF86-5	
		ppb	ppm	ppm		
1	14121	100	0.1	415		
1	4122	50	0.1	500		
1	14123	40	<0.1	133		
1	14124	80	0.5	84		
1	14125	50	0.4	97		
1	14126	65	0.3	81		
1	4127	20	0.6	140		
1	4128	25	0.7	115		
1	14129	25	0.9	166		
1	4130	20	0.6	565		
1	14131	80	1.7	1600		
1	14132	25	0.3	104		
1	14133	100	0.1	30		
1	4134	180	0.2	28		
1	14135	210	0.5	156		
	4136	45	0.5	275		
	14137	65	0.6	565		
	14138	160	0.9	500		
	14139	4600	24.2	>5000		
	4140	2800	22.0	>5000		
	4141	100	1.0	420		

CDN RESOURCE LABORATORIES LTD

#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

*** ASSAY REPORT ***

To: Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D. R. Budinski

Number: 86180A

Date: June 13, 1986

Proj.: 5414

		Au oz/T	Ag oz/T	Cu %	DDH SF86-5
_					
	14138	0.004	0.01	0.05	
	14139	0.163	0.67	2.70	
-	14140	0.099	0.61	1.50	
	14141	0.004	0.01	0.04	

Suncas Sandersa Licensed Assayer of British Columbia

CUN RESOURCE LABORATORIES LTD.#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D.R. Budinski

Number: 86176

Date: June 11, 1986

Proj.: 5414

		Au	Ag	Cu	DDH SF86-5
		ppb	ppm	ppm	
	14142	125	0.6	560	
	14143	65	0.6	415	
	14144	140	0.7	440	
-	14145	190	0.8	540	
	14146	140	0.8	450	
	14147	60	0.4	151	
and the	14148	25	0.2	14	
	14149	15	0.2	30	
	14150	10	<0.1	48	
	14151	15	0.1	27	
_	14152	10	0.2	7	
	14153	25	0.3	110	
	14154	15	0.2	91	
_	14155	< 5	0.2	48	
	14156	10	0.2	9	
	14157	< 5	<0.1	15	
	14158	10	0.1	11	
_	14159	15	<0.1	39	
	14160	5	0.1	40	

Duncan Sanduson

CDN RESOURCE LABORATORIES LTD.

#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

To: Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

THE REPORT OF THE PARTY OF THE

Attn: D.R. Budinski

Number: 86180

Date: June 13, 1986

Proj.: 5414

	Au	Ag	Cu	DDH SF86-6
	ppb	ppm	ppm	
14161	10	0.5	191	
14162	25	0.4	157	
14163	15	0.4	173	
14164	20	0.5	161	
14165	10	0.1	117	
14166	10	0.2	100	
14167	10	0.1	81	
14168	10	<0.1	89	
14169	10	<0.1	82	
14170	10	<0.1	88	
14171	10	<0.1	87	
14172	< 5	<0.1	104	
14173	5	0.2	106	
14174	20	0.2	100	
(F. F. A.) (F.	57.5		7 7 7	

Duencan Sanders

CDN RESOURCE LABORATORIES LTD. #8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

* GEOCHEMICAL REPORT *

Lornex Mining Corporation Ltd.

Box 10335

609 Granville Street

Vancouver, B.C., V7Y 1G5

Attn: D. R. Budinski

Number: 86182

Date: June 17, 1986

Proj.: 5414

					DDH SF86-6
		Au	Ag	Cu	
		ppb	ppm	ppm	
-	14175	< 5	0.1	105	
	14176	95	0.5	114	
	14177	5	0.1	118	
-	14178	< 5	0.1	73	
	14179	< 5	<0.1	107	
	14180	< 5	0.1	77	
	14181	< 5	0.1	125	
_	14182	20	<0.1	88	
	14183	30	<0.1	135	
	14184	5	<0.1	380	
-	14185	10	0.2	270	
	14186	< 5	0.1	210	
	14187	< 5	<0.1	10	
_	14188	< 5	<0.1	11	
	14189	< 5	<0.1	9	
	14190	< 5	<0.1	6	
	14191	< 5	<0.1	5	
_	14192	< 5	<0.1	18	
	14193	< 5	0.5	10	
	14194	5	0.5	8	
-	14195	< 5	<0.1	8	
	14196	< 5	<0.1	4	
	14197	< 5	0.1	6	
_	14198	< 5	<0.1	4	
	14199	< 5	<0.1	5	
			N. 5 - 40 - 10 - 10 - 10 - 10 - 10 - 10 - 10		

Duncan Sanderso

APPENDIX C

DIAMOND DRILL LOGS

ABBREVIATIONS USED IN DIAMOND DRILL LOGS

CL - Chlorite C/A - core axis

PX -- Pyroxene // - parallel

EP - Epidote V - vein

PY - Pyrite mV - micro-vein

CB - Carbonate

CY - Clay

CP - Chalcopyrite

FL - Feldspar

QZ - Quartz

CL - Chlorite

LI - Limonite

HE - Hematite

C\$ - Chalcocite

GN - Garnet

HB - Hornblende

PAGE 1 OF 4

PROPERTY: SNOWFLAKE

LATITUDE: 201+00N

AZIMUTH: 0450

HOLE NO: SF86-1

NTS: 92H/15

DEPARTURE: 193+76E

DIP: -60°

STARTED: May 26. 1986

LOGGED BY: RMC /

ELEVATION: approx. 1035m

DEPTH: 100.88m

COMPLETED: May 28, 1986

INTERVAL(m)	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	TAIPPRINT	SAMPLE NUMBER				ASSAYS	(ppm exc	except ppb		
MICHANC(m)	HOUR TIPE / ACTENATION	A STATE OF THE STA	INTERVAL .	NUMBER	Recov	Au	AR	Cu		-		
					(m)							
0-4.88	CASING				1			l		- 1		
4.88-43.62	Epidotized augite porphyry flow(3)					1	1				
	Green-grey massive flow(s) with							1		- 1		
1 1	speckled "dioritic" appearance	3		*****						- 1		
1 1	from 30% mafic specks (CL after PX?) Rock locally has pink-		12-14	14001	2.10	85	0.3	165	1	- 1		
1 1	brown hue from K-spar flooding.		14-16	002	1.70	135	0.4	20		- 1		
	Rock is pervasively epidotized		197 198	1,900%	1		annex.			- 1		
1 1	from 102 to 502. EP is gener- ally accompanied by stringers		16-18	003	2.00	190	0.5	29		- 1		
1 1	and clots of f-gr Py to 5-10%.	V	18-20	004	2.00	25	0.4	146		- 1		
1 1	Core non-magnetic.		10.20			1700		Cores I				
			20-22	005	1.97	115	0.3	84		- 1		
	Fractures limonitic to 11m		22-24	006	1.73	15	KO.1	18	ll			
1 1	9.45-11.0m Strong EP'n (30-50%)	1% PY	24-26	007	1.93	110	0.2	375				
1 1	CB veinlets common.	500,000				200	2.37 3.47			- 1		
1 1	12-22m Mod. EP'n	3-5% wisps + clots PY	26-28	008	1.70	40	0.1	48	1 1	- 1		
	40.05.01.05.03.14.4.400.000	Speck CP @ 18.3m CB veinlets @ 20°, 75°, 80° to	28-30	009	2.20	90	0.1	42	1 1	- 2		
1 1	23.85-24.35 Bleaching (CB+MS?)	C/A	30-32	010	1.82	75	0.2	178	1 1			
1 1		24.6-26.36 Core broken with HE	32-34	011	1.94	60	0.1	113	1 1	- 1		
1 1	26.36-43.62 Wk to mod. EP'n	slips sub// to C/A	34-36	012	1.90	50	0.1	99	1 1			
1 1	20.30-43.02 WK to mod. Er n	CP speck @ 31.95m	34-36	012	1.50	30	0.1	1 ,,	1 1	- 1		
1 1		PY veinlets 30.0m,21.0-31.2m,	36-38	14013	2.03	15	0.1	188	1 1	- 1		
		33.35-33.65m, 38.0-38.2m				+						
		28.0m 10cm gouge; shearing @30°			do	14	1					
1 1	3:											

PROPERTY: SNOWFLAKE

AZIMUTH: 045° LATITUDE: 201+00N
DEPARTURE: 193+76E
ELEVATION: approx. 1035m

HOLE NO: SF86-1

WTS: 92H/15 OGGED BY: RMC

DIP: -60°

STARTED: May 26, 1986
COMPLETED: May 28, 1986

DEPTH: ______100.88m

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER				ASSAYS	
		The first interest in the first interest in the first ind		THIRKARL	NUMBER	Recov	Au	Ag	Cu	
		Ground core 40.23m	30.03m 2cm wide CB V @70°	38-40	14014	(m) 1.70	40	0.2	72	
				40-42	015	2.05	<5	0.1	35	
			Generally 2-4mm CB veinlet every 25cm; sub// to 70° to C/A but density of veining increases toward fault @/43.6m	42-44	016	1.85	110	0.1	113	
	43.62-52.42	Fault/fracture zone		44-46	017	1.85	175	0.5	660	
		Pale grey-tan sheared, broken core. Perv. CB + CY alt. Abundant 2-5mm CB veinlets @45-	47.15m CP veinlet @ 20° to C/A CP veinlet cut by younger	46-48	018	1.75	65	0.9	1320	
		80° to C/A	CB veinlets.	48-50	019	1.80	60	0.3	575	
		46.4m 3cm vuggy CB veinlet with honey-brown mineral?? Locally less bleached, green, epidotized volc. visible eg 47.3-47.5.49.38-50.44. Fractures	PY generally 2-3mm blebs-tr. amounts to 3% within EP'd volcanic CP occurs in tr amounts generally within PY veinlets	50-52	020	1.55	35	0.2	350	
	52.42-57.45	Bleached Tuff(?) Similar to above but core less broken & sheared. 0.5-lmm FL crystal charged pink-brown altimatrix 5% mafics. Could be subvolc. intrusive. Locally green, epidote sections eg 54.6-55.5 CB abundant as uV's & V's	Fractures red-brown-HE'c 56.37 - 10cm gougey core perp. to C/A 57.15 gauge, shearing// to C/A No sulphides noted.	56-58	021	1.55	< 5	4 0.1	11	

PAGE 3 OF 4

PROPERTY: SNOWFLAKE

LATITUDE: 201+00N

AZIMUTH: _045°

HOLE NO: _SERG=1

NTS: 92H/15

DEPARTURE: 193+76E

DIP: _-60°

STARTED: May 26, 1986

OGGED BY: RMC

ELEVATION: approx. 1035m

DEPTH: _100.88m___

COMPLETED: May 28, 1986

cT	INTERVAL	BACK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE				ASSAYS						
	INTERVAL	ROCK TYPE / ALTERATION	MILIALIZATION / STRUCTURE	- Mantan	NUMBER	Lengtl	Au	Ag	Cu	$\overline{}$					
1	57.45-89.61	Fault/fracture zone	Fract. HE Most shears sub// to 30° to C/A	62-64	022	2.15	5	<0.1	25						
		variably bleached, sheared broken tuff (?). Core is pink- brown where mod. alt white-	59.3-60.4 very sheared and gougey Gouge-pink-grey in color.	68-70	14023	1.90	073	40.1	68						
1		green where strongly sheared. Bleaching is CY + CB.	No sulphides noted.	74-76	024	1.40	5	<0.1	18						
Ì		Original rock appears to be a green-grey, epidotized, FL xstal in a grey, aph., perv. epidotize matrix. Original rock rarely	Dominant fract & CB veinlets @ 65° and 40° d Most slips are sub// to C/A but	80-82	025	1.97	5	<0.1	7						
		visible because core is shattered & sheared & bleached with a maroon-brown staining throughout.	slickenside lineation is generally 20° to C/A.												
		CB is pervasive in alt'd rock.	Extremely shattered and gougey sections @ 65.07-65.33m	86-88	026	1.63	€ 5	<0.1	18						
			QZ-CB V @ 81.9m 1cm wide @ 60° Tr. PY noted in one QZ-CB vein												
1		GC.													

PAGE 4 OF 4

PROPERTY: SNOWFLAKE 92H/15

LATITUDE: 201+00N

HOLE NO: SF86-1

NTS:

DEPARTURE: 193+76E

STARTED: May 26, 1986

LOGGED BY: RMC

ELEVATION: approx. 1035m

DEPTH: 100.88m

COMPLETED: May 28, 1986

c	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	Length Au Ag			ASSAYS	
4	With All the Control	Mark A Ma		INTERVAL	NUMBER	Lengt	Au	Ag	Cu	
	89.61- 100.88	Similar to above but original rock appears to be more massive andesite-possibly flow.	Dominant fract's & CB veinlets @ 450 & 600	92-94	14027	1.85	5	< 0.1	48	
		Generally olive coloured matrix with 5-10% FL xstals and 20% scattered EP spots & seams	97.05m 15cm white QZ v @ 50° no sulphides. Bottom contact gougey.	98-100	028	1.40	10	₹0.1	9	
		Where sheared and brecciated rock is bleached to pale grey to tan with abundant maroon-brown staining along fractures, CB V's. and in gouge.	97.8-100.9 core gougey and extremely sheared and broken. CB perv. in gouge and bleached rock. No sulphides noted.							
1		Core massive and unsheared from 89.61-91.0m.								2
		DIP TEST 100.9m - 58°								
	100.88	END OF HOLE.								
							¥.			

PROPERTY: SNOWFLAKE 92H/15

LATITUDE: 198+06N
DEPARTURE: 193+14E
ELEVATION: approx. 1035m

AZIMUTH: 045°

DIP:

HOLE NO: SF86-2

STARTED: May 28, 1986

LOGGED BY: RMC

DEPTH: 27.43m

COMPLETED: May 30, 1986

INTERVAL(m)	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	ASSAYS (ppm except p					
(m)	, and the free transfer			NUMBER	Recov	Au	Ag	Cu		
-5.70	CASING									
.70-21.80	Green-grey massive, fine-grained andesitic tuff or flow. Rock has a fine-grained equigranular dioritic texture. 2-5% perv. carb.	Fractures commonly @ 60° to C/A 3% dissem. PY. Core is generally well fractured and broken.	6-8	14029	1.40	35	0.1	670		
	Core bleached 5.70-10.8m 14.0-21.8m	Brecciated + gouge 9.90-10.80m 12.5-13.2m 17.2-19.9m	8-10	30	0.80	35	0.3	88		
		Shearing 30-60° to C/A 5cm QZ-CB-PY vein @ 60° to C/A @ 6.95m	10-12	31	1.83	25	0.4	330		
		7.5-7.8m Sheared QZ-CL-CP vein @ 30° to C/A 13.8-14.0m large blebs PY-CL	12-14	32	1.82	135	0.8	177		
	14.67-15.07 Grey-tan cherty section 1% dissem. PY Lower contact 1cm QZ-CB	16.1 5mm QZ-CB + perv. silic. 16.65m 13mm QZ-CB V @ 50°	14-16	33	1.20	85	0.5	133		
	vein at 30°	18.2 30mm white QZ frag sheared, 1% PY.	16-18	34	1.70	115	0.2	108		
		18.3-19.0 Sheared brecciated QZ-CB and PY (10%)								
						(*a				
	i i									
	*									

PAGE 2 OF 2

PROPERTY: SNOWFLAKE

LATITUDE: 198+06N

HOLE NO: SF86-2

NTS: 92H/15

DEPARTURE: 193+14E

OGGED BY: RMC

ELEVATION: approx. 1035m

AZIMUTH: 045°
DIP: -50°

DEPTH: ____

STARTED: May 28, 1986 COMPLETED: May 30, 1986

% REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	THEFTOTIAL	SAMPLE NUMBER			-	ASSAYS	
P. Diller			THE STREET OF THE STREET	INTERVAL	NUMBER	Recov	Au	Ag	Cu	=
	21.8-27.0	Grey & tan chert or siliceous argillite.	5% very finely dissem. PY							
		5% QZ-CB stringers	QZ-CP V 20.2m	18-20	14035	1.31	210	1.7	1320	
	23.10-26.40	LOST CORE - FAULT		20-22	36	0.74	40	1.7	1150	
	26.40-27.0	Gouge & gravelly core - bleached - abundant QZ-CB veining.	- bleb CP @ 26.6m	22-24	37	0.80	40	0.6	169	
		Repeated section 19.20-21.34 because casing driven to 80 ft. wandered from original hole.	19.3m parallel 3mm & 5mm QZ-CB veins with 10% blebs CP.							
		-siliceous argillite as above	19.66 8mm irregsheared @ 30° QZ-CB + CP stringer which is cut	19.20-21.34	38	1.30	60	2.0	2200	
			by salmon coloured QZ-CB vein.	cuttings from	39		50	0.5	330	- 1
				bottom	14040		60	0.6	380	
	27.43	END OF HOLE LOST IN FAULT.								
		<u>\$</u>					4 4			

PROPERTY: SNOWFLAKE

LATITUDE: 192+98N

AZIMUTH: 045°
DIP: -50°

HOLE NO: SF-86-3

NTS: 92H/15

DEPARTURE: 190+20E

OGGED BY: RMC

STARTED: May 31, 1986

ELEVATION: approx 1070m

DEPTH: 87.17

COMPLETED: June 3, 1986

INTERVAL(m)	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE	Recov	- A	1 An	-		cept ppb	
				NOMBER	Recov	Au	Ag	Cu		+	
	NOTE: NQ core to 24.38m BQ core 24.38-87.17										
0-14.94	CASING										
14.94-15.54	Overburden - clay and boulders							1 1			
15.54-18.90	interbedded volc. sandstone. Shale is black, thinly laminated with beds sandst. generally	Black shale -3.10% finely dissem. Py. Sandstone 1-2% dissem. PY Bedding consistently @ 75° to C/A	16-18	14041	1.50	10	0.8	109			
	grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains.	CB veinlets 25° to C/A 18.60-18.90 core gougey	18-20	042	1.05	15	0.5	105			
	veinlets < 1mm thick		20-22	043	2.00	10	0.1	94		1	
18.90-23.54	Generally massive med. grey	Bedding 75° to C/A Graphitic slip @ 21.79m CB stringers @ 15° to C/A 1-7mm thick.	22-24	044	1.85	15	₹0.1	107			
		Few 2-5mm blebs PY @ 23.34m	24-28	045	0.90	10	<0.1	130			
	6	7.7			4						
	.5.54-18.90	Shale is black, thinly laminated with beds sandst. generally 3-10mm. Sandstone fine-coarse grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < 1mm thick Volc sandstone Generally massive med. grey coarse grained volc SS containing approx. 50% 0.5-2mm FL xstals Local interbeds black carb shale i.e. 21.6-22.0m	Shale is black, thinly laminated with beds sandst, generally 3-10mm. Sandstone fine-coarse grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < 1mm thick Volc sandstone Generally massive med. grey coarse grained volc SS containing approx. 50% 0.5-2mm FL xstals Local interbeds black carb shale i.e. 21.6-22.0m Minor to no perv CB. Black shale -3.10% finely dissem. Py. Sandstone 1-2% dissem. PY Bedding consistently @ 75° to C/A 18.60-18.90 core gougey Black shale -3.10% finely dissem. Py. Sandstone 1-2% dissem. PY Bedding consistently @ 75° to C/A 18.60-18.90 core gougey CB veinlets 25° to C/A 18.60-18.90 core gougey CF application of CA CB veinlets 25° to C/A CB veinlets 25°	.5.54-18.90 Brack carb. shale with minor interbedded volc. sandstone. Shale is black, thinly laminated with beds sandst. generally 3-10mm. Sandstone fine-coarse grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < 1mm thick 8.90-23.54 Volc sandstone Generally massive med. grey coarse grained volc SS containing approx. 50% 0.5-2mm FL xstals Local interbeds black carb shale i.e. 21.6-22.0m Minor to no perv CB. Black shale -3.10% finely dissem. PY Bedding consistently @ 75° to C/A CB veinlets 25° to C/A 18-20 18-21 18-20 18-2	Since the state with minor interbedded volc. sandstone. Shale is black, thinly laminated with beds sandst. generally 3-10mm. Sandstone fine-coarse grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < lmm thick 8.90-23.54 Volc sandstone Generally massive med. grey coarse grained volc SS containing approx. 50% 0.5-2mm FL xstals Local interbeds black carb shale i.e. 21.6-22.0m Minor to no perv CB. Black shale -3.10% finely dissem. PY Bedding consistently @ 75° to C/A CB veinlets 25° to C/A 18-20 042 18-20 043 20-22 043 CB veinlets 25° to C/A 18-20 044 CB veinlets 25° to C/A 18-20 045 18-20 046 CB veinlets 25° to C/A 18-20 047 18-20 048 18-20 048 18-20 049 18-20 040 18-20 041 18-20 042 18-20 043 18-20 043 18-20 044 18-20 045 18-20 046 18-20 047 18-20 048 18-20 048 18-20 049 18-20 040 18-20 041 18-20 043 18-20 043 18-20 044 18-20 045 18-20 046 18-20 047 18-20 048 18-20 049 18-20 040 18-20 041 18-20 042 18-20 043 18-20 043 18-20 044 18-20 045 18-20 046 18-20 047 18-20 048 18-20 049 18-20 040 18-20 041 18-20 042 18-20 043 18-20 043 18-20 18-20 043 18-20 18-20 044	Since the state of the state o	S.5.54-18.90 Brack carb. shale with minor interbedded volc. sandstone. Shale is black, thinly laminated with beds sandst. generally 3-10mm. Sandstone fine-coarse grained with occ. graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < 1mm thick Volc sandstone Generally massive med. grey coarse grained volc SS containing approx. 50% 0.5-2mm FL xstals Local interbeds black carb shale i.e. 21.6-22.0m Minor to no perv CB. Black shale -3.10% finely dissem. Py. Sandstone 1-2% dissem. PY Bedding consistently @ 75° to C/A 18-20 16-18 14041 1.50 10 10 1.50 10 10 1.50 10 10 1.50 10 10 1.50 10 10 10 10 10 10 10 10 10	Black carb. shale with minor interbedded volc. sandstone. Shale is black, thinly laminated with beds sandst. generally 3-10mm. Sandstone fine-coarse grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < 1mm thick 8.90-23.54 8.90-23.54 Black shale -3.10% finely dissem. PY Bedding dissem. PY Bedding consistently @ 75° to C/A CB veinlets 25° to C/A 18-20 042 1.05 15 0.5 18-20 042 1.05 15 0.5 18-20 042 1.05 15 0.5 18-20 043 2.00 10 0.1 1.85 15 16-18 16-	Black carh. shale with minor interbedded volc. sandstone. Shale is black, thinly laminated with beds sandst. generally 3-10mm. Sandstone fine-coarse grained with occ.graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets < 1mm thick 8.90-23.54 8.90-24 9.04 9.05	Shale is black, thinly laminated with beds sandstone. Shale in the beds sandstone fine-coarse grained with occ. graded bedding indic. strat. tops up. SS immat. with mostly angul. broken FL xstals for grains. Perv. CB in matrix plus few CB veinlets climt hick 8.90-23.54 Volc sandstone Generally massive med. grey coarse grained volc SS containing approx. 50% 0.5-2mm FL xstals Local interbeds black carb shale i.e. 21.6-22.0m Minor to no perv CB. Black shale -3.10% finely dissem. PY Black shale -3.10% finely dissem. PY Black shale -3.10% finely dissem. PY Bedding consistently @ 75° to C/A 18-20 042 1.50 10 0.8 109 100 100 100 100 100 100 10	

PAGE 2 OF 5

PROPERTY: _	SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-3
NTS:		DEPARTURE:	DIP:	STARTED:
OGGED BY:		ELEVATION:	DEPTH:	COMPLETED:

% REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	1100000			ASSAYS	
(6,5)	MILITARE	HOOK THE PARTENATION	MINE DELETION / STITUSTONE	INTERVAL	NUMBER	Recov	Au	Ag	Cu	
	23.54-24.38	Black shale with minor volc. sandstone. Upper contact sheared @ 40 ⁰ Core extremely broken.	Tr. dissem. PY.							
	24.38-25.98	FAULT - black gouge with rock frags								
	25.98-29.8	ALT'd VOLC (?) massive aphanitic tan-coloured rock. Abund. perv. CB	1% dissem. PY.							
		Core extremely broken and fract'd -often gravel size pieces -appears to be intense CB altered equiv. of underlying FL porphyry as indicated by similar alt'n envelopes in lower sections.	@ 35° to C/A	28-32	046	1.05	150	0.1	42	
	29.87-45.9	Feldspar porphyry-CRYSTAL TUFF Pink-tan, aph. matrix containing 1-2mm stubby FL xstals Textures are generally fuzzy and core has green tint from perv propyl. alt'n - CB,EP,CL non-magnetic	Few PY mV's Shear 35.81-36.58, sub// to C/A LI + CB veining Fract's LI' from 35-44m	32-34	047	1.00	420	0.1	38	

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE				ASSAYS	
	HILLIAME	HOOK TITE / ALTERATION	mineral Electricity amounts	an and the	NUMBER	Recov	Au	Ag	Cu	
		40.15-40.27m tan, bleached section-appear to be related to sheared QZ-CB veins	40.18m-8mm QZ'v @ 40° tr PY?	34-36	14048	1.25	220	<0.1	10	
		also 4cm bleached section @42.95-tr BQ,:cuprite?along selvage. 43.05-43.40 - bleaching		36-38	049	1.65	15	< 0.1	5	
		44.0-45.72m - core cream coloured - probably MS alt'n	Shear 45.21-45.40 // to C/A Few QZ-PY veinlets @ 55° 1-2% dissem. PY	38-40	050	1.73	100	<0.1	13	
		Recrystmargin 45.72-45.95m		40-42	051	1.53	5	<0.1	6	
	45.95-52.00	MONZ DYKE - pink-brown aph. matrix with 40-50% 1-3mm euhedral KF xstals and 5% negucoysts to 15mm	No sulphides noted.	42-44	052	1.75	90	0.2	52	
		3-5% 2-5mm rounded QZ phenos Cores of KF commonly - green CY		44-46	053	1.65	30	0.5	154	
				46-48	054	1.35	10	<0.1	26	
		*		1			-			

 PROPERTY:
 SNOWFLAKE
 LATITUDE:
 AZIMUTH:
 HOLE NO:
 SF86-3

 NTS:
 DEPARTURE:
 DIP:
 STARTED:

 OGGED BY:
 ELEVATION:
 DEPTH:
 COMPLETED:

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE				ASSAYS
	MIENVAL	HOOK TIPE / ALTERATION	MINICIPLE ATTOMY OTHER OTHER	- AT A SPAN TANAS	NUMBER	Recov	Au	Ag	Cu
	82.00-87.17	CRYSTAL TUFF - as 29.87-45.95m -CB veinlets common -core very fract'd broken	- PY veinlet @ 52.7m - dissem. PY near fault - 3cm QZ-PY vein @ 54.10 - slips @ 70° to C/A	48-50	14055	1.70	5	0.1	3
		-non-magnetic Textures obscured by alt'n. In freshest rock pink-grey matrix charged with green < 0.5mm FL xstals and elongate CL ized HB.	54.10-55.02 FAULT-pyritc gouge, CY rock frags-shearing // to C/A	50-52	56	1.30	< 5	<0.1	7
		Wk perv CB alt'n + CB veinlets. lcm volc frags, similar to groundmass @ 62.7m	56.49-58.06 FAULT - sub// to shears + gouge	52-54	57	1.00	15	0.2	65
- 1	56.85-58.06	NO CORE		-1 -1		2.05	00		22
1		58.2-58.4 bleaching, PY mV's	58.4-59.45 pebbles, ground core CB stringer @ 35°	54-56	58	1.35	90	0.6	23
		Bleaching 65.23-66.45m tr PY, CP with 5mm QZ-CBv @ 40°	Ground QZ-CB-PY vein 61.2-61.7m 66.85 Gouge, shearing @ 40°	56-56.85	59	0.65	5	0.2	16
		Bleaching 68.9-73.55m QZ-PY tr CP vein @ 69.7 @ 35° 1% dissem. PY (no perv CB in bleached zones .: CY+MS?)	70.25 Grey sulph (CB & PY) morg. to QZ veinlets Sheared QZ-CB vein // to C/A 71.8-72.24	58~60	60	0.80	10	<0.1	25
		Maroon HE staining 73.55-75.29	Shear // to C/A 73.7-74.0	60-62	61	1.20	65	₡0.1	42
		75.34-87.17 No bleaching noted Core perv green colour from 30% EP spots-rock has granular text but is probably xstal tf still					*		

PAGE 5 OF 5

PROPERTY:snowflake	LATITUDE:	AZIMUTH:	HOLE NO: SF86-3
NTS:	DEPARTURE:	DIP:	STARTED:
OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:

EC INTER	RVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER			to the state of the state of	ASSAYS	
	, ivac	HOOK THE / RETENATION	MINELE PROPERTY OF THE OFFICE AND ADDRESS OF	INTERVAL	NUMBER	Recov	Au	Ag	Cu	
		CB veinlets less abundant where core not as fract'd or sheared - few CB veinlets @ 50° - odd f-gr clast	Tr. dissem. PY 79.25-81.99 shear // to C/A Sheared QZ-CB veins, CL slips, CL + CB & gouge. Tr PY & CS in	62-64	14062	1.50	105	0.2	75	
			veins.	64-66	63	1.00	15	<0.1	84	
		Weak bleaching and tr PY 84.60-87.17	81.99-87.17 Core extremely fract'd broken.							
		ACID TEST 87m 46°		66-68	64	1.60	65	0.5	178	
87.1	1.7	END OF HOLE		68-70	65	1.67	360	0.3	191	
		- abandoned becasue of caving.		70-72	66	1.66	40	0.1	24	
				72-74	67	1.33	10	0.1	34	
				74-76	68	1.50	5	0.1	10	
				76-78	69	1.87	10	<0.1	16	
				78-80	14070	2.00	15	0.2	25	
				80-82	71	2.00	25	0.1	44	
				82-84	72	1.41	20	0.1	37	
				82-87.17	14073	1.15	35	0.3	38	
							+			

PROPERTY: SNOWFLAKE

LATITUDE: 191+22N

AZIMUTH: 045° DIP: -72°

HOLE NO: SF86-4

NTS: 92H/15

DEPARTURE: 190+48E

OGGED BY: RMC

ELEVATION: approx 1065m

DEPTH: 105.16m

STARTED: June 4, 1986 COMPLETED: June 6, 1986

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	1000000			ASSAYS	(ppm e	except	ppb
12.7	MICHAE	HOOK THE / ALTERATION	MINERALIZATION / STROUTURE	INTERVAL	NUMBER	Récov	Au	Ag	Cu			\sqsubseteq
	0-4.88m	CASING - NO CORE	8.58-8.7 Blebs PY & CP	4.88-6	14074	0.45	65	4 0.1	104			
	4.88-15.00	Dk grey <u>calc siltstone</u> Core limonitic, extremely broker and pebbly to 15.0m-probably	FAULT 8.77-10.06m CB v'g LI gouge, strong shearing @ 350 to C/A. Blebs PY&CP	6-8	75	0.73	240	< 0.1	79			
		rotten weathered bedrock	in gouge	8-10	76	1.25	135	2.2	1450			
1		Strong EP'n 11.0-11.3m (40%) EP possibly with pink-brown	FAULT/GOUGE 13.65m	10-12.5	77	1.15	10	0.1	415			
	1	garnet rims.		12.5-15	78	0.38	15	0.2	142			
	15.00- 17.62	Thinly bedded cherty argillite,										-
		volc sandstone. Argillite generally green-grey; SS generally brown-grey.Matrix	Bedding @ 65°	15-16	79	0.70	35	< 0:1	197		-	
		calc. Laminations 2-20mm thick. Selective replacement of some silty-SS beds by EP + PY + GN Seds cut by numerous 1-3mm CB	Tr. PY	16-18	80	1.83	15	< 0.1	109			
-		veinlets @ 40° to C/A		18-20	81	1.77	15	< 0.1	171			
- 1	17.62-		ř	20.00	82	1.60			53			
١	17.98 17.98-	FAULT-Grey gouge, broken rock	The state of the s	20-22	82	1.60	5	0.4	33			
	21.34	Massive grey, cherty argillite Extremely fract'd and brittle- breaks in hand. Abundant CB veinlets.	1-2% dissem. PY Vague bedding locally visible @ 55°									
1		vermets,	20.1 Small gouge slip @ 15-20° C/A	22-24	83	2.00	35	<0.1	216			
			21.20-21.34 Gougey fault - approx. 60° to C/A.				2					

PAGE 2 OF 6

PROPERTY: SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-4
NTS:	DEPARTURE:	DIP:	STARTED:
OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:

INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	100			ASSAYS	
			21122117211	NUMBER	Recov	Au	Ag	Cu	100
21.34- 26.95	Massive dark grey sedimentary breccia. Angular grey-brown and pink-brown volc frags in	1% diss & patchy PY - 3% where EP abundant.	24-26	14084	1.90	< 5	<0.1	153	
	grit matrix. Clasts appear to increase in size to about 26.5m 10% EP + PY as clots. Bxx matrix supported. Mod. Perv. CB 1-3mm CB veinlets @ 150-600	Fault 27.74-28.4 - CL slips + HE gouge running // to C/A 2mm PY veinlets with slips	26-28	85	1.97	< 5	< 0.1	93	
	Core much less broken as shown by rec. EP & PY nore abundant 27.22-	Zama 11 vernices with 512ps	28-30	86	1.80	< 5	<0.1	260	
	29.05m - up to 10% PY & 25% EP		30-32	87	1.98	< 5	< 0.1	320	
26.95- 27.22	FAULT-gouge, CL'k slips, PY seams sub // to C/A								
27.22- 29.88	Sheared, broken flow-top brxx(?) EP up to 25%, PY up to 10% as clots. Abundant CB veining Flooding with pink-brown K-spar? GN (?)	Shearing // to C/A 27.74-28.4 - CL'k slips + HE'c gouge - 2-4mm V's PY with slips	32-34	88	1.90	< 5	<0.1	210	
29.88- 65.35	Massive augite porphyry flows(?) Green-grey rock with about 5% 1-2mm dk green augite xstals		34-36	89	1.99	< 5	<0.1	190	

PAGE 3 OF 6

ROPERTY:	SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-4
NTS:		DEPARTURE:	DIP:	STARTED:
GGED BY:		ELEVATION:	DEPTH:	COMPLETED:

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER				ASSAYS	
_	no de la constanta			INTERVAL	NUMBER	Recov	Au	Ag	Cu	
		EP as clots, patches and seams; averages approx 10% to 41m. Core strongly magnetic	PY 1% as blebs + EP + CB	36-38	14090	2.15	« 5	<0.1	92	
		Very minor fracturing Large patches EP often rimmed by pink-brown GN	33.38 small fault-gougey seam	38-40	91	2.00	10	<0.1	72	
		CB weakly perv to 41m CB veining weak @ 35° -veinlets often irreg & with EP	36.0m HE+CL slips @ 30° 39.2 Talcose seam @ 30°	40-42	92	2.05	10	<0.1	174	
-		selvage	43.8 Talcose slip @ 25°	42-44	93	2.15	65	<0.1	150	
		EP averaging 5-10% as seams (+CB) and spots 41-61.5m	PY 1% as veinlets and blebs with EP \pm CP,	44-46	94	1.86	60	<0.1	210	
1		PY <1% 41-61.5m CB+EP veining 60.35-60.55m 30° & 10°	55.7m HE+CL slip // to C/A Core very broken 60-60.35m	46-48	95	2.05	35	40.1	130	
1		Several EP seams @ 25° 60.35- 61.lm	HE&CL slips @ 45°	48-50	96	1.96	40	<0.1	171	
1		Below 43.89m core is less obviously a HB porph-more fine-grained and dioritic in	62m gougey slip @ 15°	50-52	97	1.84	40	<0.1	103	
		texture-possibly tuff(?) Still strongly magnetic		52-54		1.85			s n	
1			ķ	54-56	52-62 not split because	2.00				
				56-58	boxes spilled by cows.	2.30		1		
				58-60		1.83	*1			
							Ť			

PAGE 4 OF 6

PROPERTY: SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-4
NTS:	DEPARTURE:	DIP:	STARTED:
OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:

INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER				ASSAYS	
IIV) ENVA	NOON TITE / ALTERATION	MINISTREET TOTAL STRUCTURE	INIEKVAL	NUMBER	Recov	Au	Ag	Cu	
65.35- 79.1	Altered, augite porphyry (?) Sharp contact with above.	1% dissem. PY	60-62		1.95				
	Pink K-spar flooded rock mottled with 10-50% EP+CL+CB Mottling gives rock a brecciate	69.0-69.2 HE+CB+CL+PY shear // to C/A	62-64	14098	1.89	60	< 0.1	188	
	appearance. Weakly to non-magnetic	also 69.6-69.8m Numerous HE'c slips @ 60-65°	64-66	99	1.94	< 5	<0.1	50	
	5% CB overall		66-68	100	1.41	65	<0.1	107	1
	CB veining more abundant 75.5- 76.3 Most veins @ 60°		68-70	101	1.86	30	۷0.1	103	
	MOSE ASTUR & OO		70-72	102	1.78	10	<0.1	8	
			72-74	103	2.43	10	< 0.1	22	1.
			74-76	104	1.60	15	<0.1	125	
70.10			76-78	105	2.00	20	40.1	54	
79.10- 89.		Shear foliation 3540° to C/A 1% dissem PY	78-79.10	106	0.90	15	40.1	64	
			79.10-80	107	0.76	15	<0.1	205	
			80-82	108	1.54	15	∠0.1	156	
			82-84	14109	1.04	4 5	<0.1	129	
						3			
	6					8	0		

PAGE 5 OF 6

ROPERTY:	SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-4
NTS:		DEPARTURE:	DIP:	STARTED:
GGED BY:		ELEVATION:	DEPTH:	COMPLETED:

1	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE		SAMPLE	7.7			ASSAYS	
_	WY E I TO THE	TOOK THE FREE MICH	miletine Extractly of the oyen.	INTERVAL	NUMBER	Recov	Au	Ag	Cu	
	89.77- 92.60	Pale tan, cherty argillite (?) similar to 17.98-21.34m	No sulphides	84-86	14110	1.28	5	40.1	69	
		Highly fract'd and brittle Wk perv CB, numerous CB mV's	92.47 2cm crushed rock - shearing at 40°	86-88	11	1.12	5	<0.1	77	1 1
l				88-90	14119	1.56	20	۷0.1	79	
	92.60- 94.40	Hematitic tuffaceous siltstone- sandstone. Perv marroon HE'c colour with	Numerous HE+CB slips @60-70°	90-92	14120	2.07	20	<0.1	16	
		mottled patches of EP (10-20%) Also pale tan patches from perv CB(?)		92-94	14112	2.05	< 5	40.1	85	
l		CB veinlets abundant		94-96	13	1.60	< 5	40.1	230	1 - 1
	94.40- 94.79	Fault - gouge, crushed rock		96-98	14	1.18	4 5	40.1	157	
	94.79-			98-100	15	1.65	5	<0.1	43	
	105.16	Fine-grained tuffaceous siltstone and argillite. Generally light green-grey (v.f. grained) to med. green- grey (f-med. grained)	1% dissem. PY	98-100	15	1.03	3		43	
		massive seds. Laced with CB veinlets		100-102 102-104	16 17	1.54 2.16		<0.1 <0.1	6	
		98.62-100.12 HE'c staining - similar to 92.6-94.4 Staining appears to prefer coarser seds - fine-med. sandy laminations	Bedding @ 50°,55°	104-105.16	18	1.05	20	40.1	187	

PAGE 6 OF 6

PROPERTY:SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-4
NTS:	DEPARTURE:	DIP:	STARTED:
_OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:

NTERVAL ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	-22400000000000000000000000000000000000	SAMPLE NUMBER				ASSAYS	
TION TIPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Au	\perp
Pale seds 100.12-102.4 have oval to lense shpaed HE'c spr-possibly sandy-silty chips tuffs 102-3-104.3 Med-grey-green for greywacke with fine tuffac lamitions @ 25°, Minperv EP Sharp contact with under lying tan coloured chert brittle argillite. END OF HOLE - abandoned becard of caving. Acid Test 88m - 70°	CB veinlets 40° ots in fine local ina- nor r- ty,	INTERVAL	NUMBER	Recov	Au	Ag	Au	

PAGE 1 OF 6

SNOWFLAKE PROPERTY:

LATITUDE: 203+42N

DEPARTURE: 193+68E

AZIMUTH: 045°

HOLE NO: SF86-5

NTS: 92H/15 LOGGED BY: RMC

ELEVATION: approx 1030m

DIP: -50 DEPTH: 126.49

STARTED: June 7, 1986

COMPLETED: June 9. 1986

c	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	600	-		ASSAYS	(ppm ex	xcept	ppb
-			manufacturing of the other	ALL DITTED	NUMBER	Recov	Au	Ag	Cu			
1	0-17.98	CASING-Overburden, no core.										I
	17.98- 28.71	Green-grey, volc breccia (probably conglomerate). Pink-grey rounded monz frags to llcm across and variety of grey & marroon porph volc frags in med grained, green greywacke	Fract's @ 20° & 60° Fault 21.29-21.70m CL gouge, shearing @ 30°	17.98-20	14121	1.89	100	0.1	415			
		matrix. Frags closely packed. 5% EP as small clasts and replacing FL xstals in frags Limonitic fract's to 29m Wk to med perv CB Few CB veinlets	PY 1%, locally to 3%	24-26	122	1.99	50	0.1	500			
1	28.71-										. 6	1
	42.46	Vague contact due to fract'd rock Well sorted, generally fine- coarse grained, grey volc sand- stone. Texture appears as fine- grained diorite.	PY veinlet 29.64m @ 15°	30-32	123	1.75	40	<0.1	133			
		Tr to wk perv CB. Bedding locally visible as grey, thinly laminated cherty argillite. CB veinlets lmm thick-generally sparse. Minor EP as selvage with PY veinlet and locally as 15% spots in core. ie28.7-32m	Bedding (15~20°) 70-75° to C/A CB V's 25° & 85°	36-38	124	1.93	80	0.5	84			
		3					13					

 PROPERTY:
 SNOWFLAKE
 LATITUDE:
 AZIMUTH:
 HOLE NO: SF86-5

 NTS:
 DEPARTURE:
 DIP:
 STARTED:

 OGGED BY:
 ELEVATION:
 DEPTH:
 COMPLETED:

Т	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE				ASSAYS	
4	iii.enine	noon in Exact and	mine person, officered	THILKYAL	NUMBER	Recov	Au	Ag	Cu	
	42.46- 43.45	Thinly laminated black shale, siltstone, sandstone, Laminations generally 2-5mm Mod. perv CB	5% finely dissem. cubic PY Bedding @ 65° to C/A Numerous syn-depos, small scale faults	42-44	14125	1.75	50	0.4	97	
-	43.45- 51.82	Thickly bedded, well sorted med- coarse grained grey volc sandstone as 28.71-42.46m Local grey argillaceous beds Wk perv CB Wk CB veining	Bedding at 60° to C/A 1% dissem PY	48-50	126	1.96	65	0.3	81	
-	51.82-	Below 49.37m shale & siltstone laminations become increasingly abundant forming grad contact with underlying unit	Fault 50.5-51.05m-black gouge, lost core.	54-56	127	1.30	20	0.6	140	
	52.88	Thinly laminated sandstone&shale Grad unit with overlying and underlying unit	1% PY as dissem. & veinlets	58-60	128	1.18	25	0.7	115	
	72.2	Black carb shale-generally massive except for thin beds sandstone towards top of section Mod perv CB & CB veining Core brittle and well fract'd	CB veinlets 40° 59.3-59.44 Shear-black gouge with 4cm QZ-CBv @ 45°	60-62	129	1.26	25	0.9	165	
l		Locally 5-10mm sandy laminations	Sheared 2cn wide QZ-CB-PY vein @ 62.03m abd 30° to C/A	42			7			

PROPERTY: SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO:	SF86-5
NTS:	DEPARTURE:	DIP:	STARTED:	
OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:	Œ.

RVAL		MINERALIZATION / STRUCTURE						
	ROCK TYPE / ALTERATION	mile relation, emorale	INTERVAL	SAMPLE NUMBER	Recov	Au	Ag	Cu
	Rock weakly brecciated and laced with CB veins 67.6-72.2	CB V's @ 20° 2-3mm OZ-CP+PY stringers running	66-68	14130	1.70	20	0.6	565
		sub// to C/A 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets	68-70	131	1.92	80	1.7	1600
	Core very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets	68.78-69.23 sheared-brecciated QZ-CB-CP+PY vein with 3% CP. Numerous drusy vugs	70-72.2	132	1.08	25	0.3	104
76.85	Fine-grained <u>tuffaceous sandstone</u> Massive pale green-grey rock with	2-5% dissem. & mV PY	72.2-74	133	1.10	100	0.1	30
	local f-gr clastic texture		74-76	134	1.80	180	0.2	28
	76.26-76.85 appears to be more an intermediate felsic tuff with 5-10% patchy PY		76-78	135	1.97	210	0.5	156
	Foli/lam. @ 35° 2% patchy EP		78-80	136	2.02	45	0.5	275
-78.38	Poorly sorted coarse-grained volc greywacke and breccia. Dk grey- green. Med green coarse-grained grit matrix with angular 1-10mm volc + intrus frags	2% PY blebs						
	1% CB veinletsGradational Lower contact							
						** **		
						÷		
	0.200.700	Core very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets 76.85 Fine-grained tuffaceous sandstone Massive pale green-grey rock with local f-gr clastic texture visible. Local bleaching. 76.26-76.85 appears to be more an intermediate felsic tuff with 5-10% patchy PY Foli/lam. @ 35° 2% patchy EP 78.38 Poorly sorted coarse-grained volc greywacke and breccia. Dk grey- green. Med green coarse-grained grit matrix with angular 1-10mm volc + intrus frags 1% CB veinletsGradational Lower	2-3mm QZ-CP+PY stringers running sub// to C/Ā 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets Core very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets 76.85 Fine-grained tuffaceous sandstone Massive pale green-grey rock with local f-gr clastic texture visible. Local bleaching. 76.26-76.85 appears to be more an intermediate felsic tuff with 5-10% patchy PY Foli/lam. @ 35° 2% patchy EP 78.38 Poorly sorted coarse-grained volc greywacke and breccia. Dk greygreen. Med green coarse-grained grit matrix with angular 1-10mm volc + intrus frags 1% CB veinletsGradational Lower	with CB veins 67.6-72.2 2-3mm QZ-CP+PY stringers running sub// to C/Ā 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets Core very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets Abundant (5%) CB veinlets Abundant (5%) CB veinlets G8.78-69.23 sheared-brecciated QZ-CB-CP+PY vein with 3% CP. Numerous drusy vugs QZ-CB-CP+PY vein with 3% CP. Numerous drusy vugs C76.85 Pine-grained tuffaceous sandstone Massive pale green-grey rock with local f-gr clastic texture visible. Local bleaching. 76.26-76.85 appears to be more an intermediate felsic tuff with 5-10% patchy PY Foli/lam. @ 35° 2% patchy EP 78-80	Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-78.7 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with 67.6-78.7 Rock Weakly brecciated 47.6-79-68.7 Rock Weakly brecciated 47.9-68.7 Rock 67.6-8.7 Rock 67.9-68.7 Rock 68-70 Rock	Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Capture very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets Core very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets Core very broken, poor recov. 69.6-72.2. 2-3% PY as veinlets Abundant (5%) CB veinlets CB v's @ 20° 2-3mm QZ-CP+PY stringers running sub// to C/Ā 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets 68.78-69.23 sheared-brecciated Q2-CB-CP+PY vein with 3% CP. Numerous drusy vugs 2-5% dissem. & mV PY 70-72.2 132 1.08 70-72.2 133 1.10 74-76 134 1.80 76-78 135 1.97 76-78 78-80 136 2.02 2% PY blebs 2% PY blebs	Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated 68.78-69.23 sheared-brecciated Q2-CP-PPY vein with 3% CP. Numerous drusy vugs Rock weakly brecciated 68.78-69.23 sheared-brecciated Q2-CP-PPY vein with 3% CP. Numerous drusy vugs Rock weakly brecciated 68.78-69.23 sheared-brecciated Q2-CP-PPY vein with 3% CP. Numerous drusy vugs Rock weakly brecciated 68.78-69.23 sheared-brecciated Q2-CP-PPY vein with 3% CP. Numerous drusy vugs Rock weakly brecciated 68.78-69.23 sheared-brecciated Q2-CP-PPY vein with 3% CP. Numerous drusy vugs Rock defends 68-70 Rock defends 68-70	Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated and laced with CB veins 67.6-72.2 Rock weakly brecciated of CB V's @ 20° 2-3mm QZ-CP+PY stringers running sub// to C/A 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets Rock weakly brecciated of CB V's @ 20° 2-3mm QZ-CP+PY stringers running sub// to C/A 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets 68.76-72.2 Rock weakly brecciated of CB V's @ 20° 2-3mm QZ-CP+PY stringers running sub// to C/A 67.9-68.7 Irreg stringers with blebs CP along center. 1% PY as veinlets 68.76-72.2 Incomplete Calculation Cal

PAGE 4 OF 6

PROPERTY: SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-5	
NTS:	DEPARTURE:	DIP:	STARTED:	
OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:	

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER			,	SSAYS
4.55	MILENTAL	HOOK TIPE / ALTERATION	MITCHELENION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Cu
	78.38- 96.85	Heterolithic volc breccia/ conglomerate Closely packed angular to sub- rounded volc + intr. clasts, to	3% blebs & dissem PY overall	80-82	14137	1.54	65	0.6	565
		5cm across, in a variably altered wacke matrix. Clasts often vague due to perv alt'n.		82-84	138	2.02	160	0.9	500
		79.65-80.20 Bleaching, perv CY+CB 3% PY, shearing @ 45°	84.15m 5-6cm wide QZ-CP-PY vein with 25% CP @ 150	84-85 85-86	139 140	1.99	5.59* 3.39*	22.97 * 20.91 *	2.7% 1.5%
		CB stringers generally every 5-10cm @ 40°	85.83 3-4cm wide QZ-PY-CP vein at 25° 40% PY, 15% CP	86-88	141	1.87	100	1.0	420
		EP averages 10% as blebs &	70% 11, 13% 01	88-90	142	2.00	125	0.6	560
		irreg. patches		90-92	143	2.00	65	0.6	415
		86-90 3-5% EP CB veining weak.	3% PY-blebs & patches tr CP with PY&EP ie 87.78 88.80	92-94	144	1.93	140	0.7	440
		90-96.85 Similar to 86.90	3% PY as irreg patches with EP	94-96	145	2.00	190	0.8	540
		5-10% EP		96-98	146	1.94	140	0.8	450
		96.74-96.85 core bleached around QZ-CB-PY vein/shear @50°. Blebs CP in bleached zone. Lost core.		98-100	14147	1.74	60	0.4	151
		Fault contact		48 48			,*gra	m/tonn	e
		*					+		

PROPERTY: SNOWFLAKE LATITUDE: AZIMUTH: HOLE NO: SF86-5

NTS: DEPARTURE: DIP: STARTED: COMPLETED: COMPLETED:

EC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	TANDENNALE	SAMPLE NUMBER		W7047.A		ASSAYS
1	INTERVAL	HOOK TIPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Cu
	96.85-98.35	Pale green-grey, v.f. grained volc sandstone & siltstone & tuffaceous siltstone. Mod. perv CB	1% dissem. PY CB veinlets 45°	100-102	14148	1.31	25	0.2	14
		Tuffs locally thinly laminated eg 97.5m	Bedding 60°	102-104	149	0.92	15	0.2	30
1	98.35-		4	104-106	150	1.72	10	<0.1	48
	105.86	Volcanic grit-varibly alt'd 93.35-100.43- strongly EP'd & CL'd. drab olive green colour - fract's hematitic - mod. perv. carb.	2-3% dissem PY	106-108	151	1.60	15	0.1	27
1		100.43-105.86-strongly CY alt'n related to fault @ 102.2- 103.3	102.20-103.33 FAULT ZONE -white gouge, broken rocks						
		- weak CB	shearing @ 20° -minor PY (1%) as stringers	108-110	152	1.95	10	0.2	7
	105.86-		,						
	126.49		Tr. diddem, PY	110-112	153	1.70	25	0.3	110
		- generally 5% EP as 1mm seams	Fault 117.35-118.2m, broken rock, HE'c shears/gouge @ 400	112-114	154	2.00	15	0.2	91
		- locally to 20% EP over ½ metre - local 2-3mm K-spar E's around EP-CB v	Fault 124.0-124.7 CL/HE gouge sub// to C/A	114-116	155	2.15	∢ 5	0.2	48
		- fract's HE'c - wk CB veinlets @ 35°		£			-		
		- fract's HE'C - wk CB veinlets @ 35°		*					

PAGE 6 OF 6

% REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE	ASS	SAYS
	DI	ELEVATION: _		CF1N:			
OGGED	RV.	ELEVATION:	n	EPTH:		COMPLETED:	
'n	ITS:	DEPARTURE:		DIP:	_	STARTED:	
PROPER	TY:SNOWFL	AKE LATITUDE: _	AZI	MUTH:	_	HOLE NO:	SF86-5

INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE		A 100		ASSAYS	Taking Comments
MILETURE	HOOK THE / RETERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ağ	Cu	
	- no perv. CB - core generally weakly fract'd		116-118	14156	1.67	10	0.2	9	
	- fract's 35°/55°		118-120	157	1.80	< 5	<0.1	15	
126.49	END OF HOLE		120-122	158	1.88	10	0.1	11	
	Acid Test 52°		122-124	159	1.34	15	۷0.1	39	
			124-126.49	160	2.30	5	0.1	40	
				•					
									1 1
									1
						ė.			
									1 1
						4			
	1					-			
	126.49	- no perv. CB - core generally weakly fract'd except around faults - fract's 35°/55° 126.49 END OF HOLE Acid Test 52°	- no perv. CB - core generally weakly fract'd except around faults - fract's 35°/55° 126.49 END OF HOLE Acid Test 52°	- no perv. CB - core generally weakly fract'd except around faults - fract's 35°/55° END OF HOLE Acid Test 52° 116-118 118-120 120-122 122-124 124-126.49	- no perv. CB - core generally weakly fract'd except around faults - fract's 35°/55° 118-120 157 126.49 END OF HOLE Acid Test 52° 122-124 159 124-126.49 160	- no perv. CB - core generally weakly fract'd except around faults - fract's 35°/55° 126.49 END OF HOLE Acid Test 52° 122-124 159 1.34 124-126.49 160 2.30	- no perv. CB - core generally weakly fract'd except around faults - fract's 35°/55° 126.49 END OF HOLE Acid Test 52° 124-126.49 160 2.30 5	116-118	116-118

ROPERTY: SNOWFLAKE

LATITUDE: 206+58N

AZIMUTH: 45°

HOLE NO: SF86-6

NTS: 92H/15 GGED BY: RMC

DEPARTURE: 194+75E

ELEVATION: approx. 995m

DIP: _______ DEPTH: 129.54 STARTED: June 10. 1986

COMPLETED: __June 12, 1986

EC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE			40.00	ASSAYS
	INTERVAL	HOCK TIPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Cu
٦	0-18.90	CASING - No core.							
	18.90- 32.92	Massive, <u>black, carb shale</u> . Strong perv. CB but few CB veinlets	No bedding Fract's 50°/70°	18.90-20	14161	1.10	10	0.5	191
		CB cemented brecciated zone 21.5-21.8m	19-27m dissem PY + few PY veinlets eg-20m 3mm PY stringer @ 25° - 23.17m 2mm veinlet @15°	20-22	162	1.69	25	0.4	157
I			24.3m 3mm PY veinlet @ 20° 25.5m 3mm PY veinlet @ 15° PY often forms dissem along lamin	22-24	163	1.70	15	0.4	173
١			26.1 11mm CB V @ 40° . 27.35 25mm sheared CB+PY @ 20°	24-26	164	2.15	20	0.5	161
1		Below 28.55-black carb shale becomes med grey in colour due		26-28	165	1.60	10	0.1	117
		to increased silt and fine sand content. Core is very finely laminated. Still strong-mod perv CB	Bedding 75° to C/A PY 1% 28.8m 18mm CB V @ 25°	28-30	166	1.80	10	0.2	100
			Fault 32.4-32.9 - broken rock CB Veining	30-32	167	1.42	10	0.1	81
	32.92	Arbitrary contact- Black carb shale gradually changes to fine- med grained well sorted ss with decreasing shaly lam.		32-34	14168	2.00	10	k 0.1	89
							72		
1									
							*		

PAGE 2 OF 6

PROPERTY: SNOWFLAKE	LATITUDE:	AZIMUTH:	HOLE NO: SF86-6
NTS:	DEPARTURE:	DIP:	STARTED:
OGGED BY:	ELEVATION:	DEPTH:	COMPLETED:

INTE	RVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE		SAMPLE NUMBER				ASSAYS	
INTE	HANC	HOOK TIPE / RETERATION	MINCHALIZATION / OTNOTOTAL	INTERVAL	NUMBER	Recov	Au	Ag	Cu	
32.92	?- 6.22	Med-grey <u>fine-grained volc sand-</u> <u>stone</u> .Well sorted. Generally massive except for shaley lamin.	34.64 shaley lenses @ 85° to C/A 1% dissem. PY few mV PY	38-40	14169	1.80	10	<0.1	82	
		toward top of section. CB stringers every 5-10cm Mod. perv. CB	CB veinlets @ 35° 34.64-35.1 CB cemented BRxx zone 35.1-35.3 Fault gouge sub// to C/A	44-46	170	1.90	10	<0.1	88	
46.22	2- 54.60		36.62 Clay gouge. 42.24 1cm gouge, shear @ 70°							
1		becoming coarse grained below approx. 53m. Med. perv. CB	1% PY as blebs & mV's 53.2-53.79 gouge, broken rock. FAULT.	50-52	171	1.98	10	<0.1	87	
54.60)- 55.72	Heterolithic conglomerate. Clasts sub-rounded to sub-angular, close-packed, 0.5-4cm across Frag's generally pale grey-green, tan-possibly bleached tuffs.	55.02- FAULT. shear @ 20° 55.72 FAULT - shear, CB veining @ 20°							
							£.			
				Ψ.			(9)			

 PROPERTY:
 SNOWFLAKE
 LATITUDE:
 AZIMUTH:
 HOLE NO:
 SF86-6

 NTS:
 DEPARTURE:
 DIP:
 STARTED:

 LOGGED BY:
 ELEVATION:
 DEPTH:
 COMPLETED:

	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	THERDINA	SAMPLE	A AUGUST			ASSAYS	
	INTERVAL	HOCK TIPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE NUMBER	RECOV	Au	Ag	Cu	
	55.72- 57.61	Med. grained well sorted sand- stone similar to above but more bleached. Strong perv CB. Shale and silt lense @ 56.54m	1% PY	56-58	14172	2.03	< 5	<0.1	104	
1	57.61-	The College Committee of the College						1 3		
77.	60.75	Poorly sorted, chaotic conglom. Similar to 54.6-54.7. Volcanic wacke matrix. Assorted angular frags from gravel-70mm across, mostly bleached volc. + some shaley chip. Med. perv. CB	1% dissem. PY							
1	60.75-					1				
	63.60	Poorly sorted volcanic sandstone Med-grey f-cse grained. Locally dark, carb., with shaley wisps	tr PY to 3% in carb section	62-64	173	2.00	5	0.2	106	
1		and chips.		64-65	174	1.00	20	0.2	100	
	63.60- 70.83	Chaotic sedimentary breccia- similar to 57.6-60.75, except clasts less bleached-mostly grey to black crowded FL porphyry Breccia close packed, 10% matrix	tr PY 64.7-65.0 5% blebs PY in bleached zone	68–70	175	1.95	∠ 5	0.1	105	
- 1	70.83-	0								
	75.44	Fine-grained volcanic sandstone to 73.09m Mod. perv. CB. Shaley wisps and swirls towards top. 73.01-75.44 abrupt change to	tr PY 73.82-73.92 FAULT - gouge				71 21			
		corse-grained, poorly sorted volc grit	shear @ 35° 75.3-75.4 FAULT-broken rock, grave	1 74 -7 6	176	1.43	95	0.5	118	

 PROPERTY:
 SNOWFLAKE
 LATITUDE:
 AZIMUTH:
 HOLE NO: SF86-6

 NTS:
 DEPARTURE:
 DIP:
 STARTED:

 OGGED BY:
 ELEVATION:
 DEPTH:
 COMPLETED:

INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE		SAMPLE			No.	ASSAYS	
MICHERE	NOOK TITE / NETERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Cu	
75.44- 83.06	Heterolithic sed. breccia-as 63.6-70.8. Breccia bleached- clasts-pale-tan (CY). Several CB V's from 10-30mm from 75.44- 76.74; 78.14-78.35, Bleached sections look-like felsic pyroclastic brxx. 82.2-83.06 Bleached as above CB on fract's. Minor QZ-AB(?) V @ 80° to C/A Core very broken.	CB V'x @ 65° Shear 76.44 @65° Tr PY - 1% PY v's	80-82	14177	2.00	5	0.1	118	
83.06-	33.0 (21) 213.00.0			4					1
129.38	Feldspar-hornblende (?) crystal tuff								
	Med grey matrix crowded with 80% 0.1-2mm FL xstals and 10% elongate HB needles now EP. Generally weak	88.30-92.50 FAULT ZONE. sand, gouge, very broken rock. Shearing @ 20° to C/A.	86-88	178	0.86	< 5	0.1	73	1 7
	perv. CB. EP gives rock spotted appearance.	No sulphides generally except as noted	88-90	179	0.50	< 5	< 0.1	107	
	Core non-magnetic to 108m and then weak-mod mag. below 108m.	Fracts 45°/70°	90-92	180	0.92	< 5	0.1	77	
	Core bleached 97.3-105.16 due to		92-94	181	0.94	< 5	0.1	125	
	numerous, branching 2-5mm QZ-CB V's. Locally vuggy and forming matrix of brecciated tuff. Extremely broken core -	Tr CP marg. to V's	94-96	182	1.37	20	<0.1	88	
	101.7-105.16m		96-98	183	1.93	-30	<0.1	135	

PAGE 5 OF 6

LORNEX MINING CORPORATION LTD. - DIAMOND DRILL LOG

 PROPERTY:
 SNOWFLAKE
 LATITUDE:
 AZIMUTH:
 HOLE NO:
 SF86-6

 NTS:
 DEPARTURE:
 DIP:
 STARTED:

 LOGGED BY:
 ELEVATION:
 DEPTH:
 COMPLETED:

REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	200000000000000000000000000000000000000	SAMPLE NUMBER				ASSAYS	
	HIENVAL	HOUR TIPE / ALTERATION	MINISTRALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Cu	
		EP more abundant as perv patches & veinlets 112.0-113.1m (20%EP) also more EP veining 114.86- 115.55	Fract's HE'C 111-114m Small EP'C gougey zone 111.55m @55	98-100	14184	1.93	5	40.1	380	
		CB veinlets very sparse below 106m		100-102	185	1.30	10	0.2	270	
				102-104	186	0.40	∠ 5	0.1	210	
				104-106	187	1.00	< 5	<0.1	10	
				106-108	188	1.93	< 5	∠0.1	11	
				108-110	189	1.85	< 5	<0.1	9	
				110-112	190	2.05	<5	∠0.1	6	
				112-114	191	2.00	∢ 5	<0.1	5	
							*1			
							2			

16

PAGE 6 OF 6

 PROPERTY:
 SNOWFLAKE
 LATITUDE:
 AZIMUTH:
 HOLE NO:
 SF86-6

 NTS:
 DEPARTURE:
 DIP:
 STARTED:

 OGGED BY:
 ELEVATION:
 DEPTH:
 COMPLETED:

EC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	TAMOUTONIAT	SAMPLE NUMBER				ASSAYS	
-	11 1 TO 10 1 1 1 1 5 5			INTERVAL	NUMBER	Recov	Au	Ag	Cu	
				114-116	14192	2.10	<5	<0.1	18	
				116-118	193	2.00	<5	0.5	10	
				118-120	194	2.00	5	0.5	8	
		,		120-122	195	2.10	< 5	< 0.1	3	
				122-124	196	2.00	<5	<0.1	4	4.
			Small CL'C gougey slip 125.3	124-126	197	1.80	< 5	0.1	6	
	129.54	Acid Test 51° (Corrected) END OF HOLE.	Small gougey fault 128.1m @ 35°	126.128	198	1.80	< 5	<0.1	4	
				128-129.54	199	1.37	₹5	<0.1	5	
							50			
		55								

PROPERTY: SNOWFLAKE

LATITUDE: 201+00N

AZIMUTH: 045°
DIP: -60°

HOLE NO: SF86-1

NTS: 92H/15 LOGGED BY: RMC

DEPARTURE: 193+76E ELEVATION: approx. 1035m

DEPTH: 100.88m

STARTED: May 26, 1986

COMPLETED: May 28, 1986

0-4.88	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE								t ppb A
0-4.88			INTERVAL	SAMPLE NUMBER	Recov	Au	Ag	Cu		
WELL STORY	CASING				(m)		1			
A real residence									- 1	1
4.88-43.6		s)								1
	Green-grey massive flow(s) with speckled "dioritic" appearance									
	from 30% mafic specks (CL after PX?) Rock locally has pink-		12-14	14001	2.10	85	0.3	165		l l
	brown hue from K-spar flooding. Rock is pervasively epidotized		14-16	002	1.70	135	0.4	20		
	from 10% to 50%. EP is generally accompanied by stringers		16-18	003	2.00	190	0.5	29		
	and clots of f-gr Py to 5-10%. Core non-magnetic.		18-20	004	2.00	25	0.4	146		
			20-22	005	1.97	115	0.3	84		
	Fractures limonitic to llm		22-24	006	1.73	15	KO.1	18		
	9.45-11.0m Strong EP'n (30-50%) CB veinlets common.	1% PY	24-26	007	1.93	110	0.2	375		
l.	12-22m Mod. EP'n	3-5% wisps + clots PY	26-28	008	1.70	40	0.1	48		
	23.85-24.35 Bleaching (CB+MS?)	Speck CP @ 18.3m CB veinlets @ 20°, 75°, 80° to	28-30	009	2.20	90	0.1	42		
	23.03-24.33 Breaching (CB/Ha:)	C/A	30-32	010	1.82	75	0.2	178		
		24.6-26.36 Core broken with HE slips sub// to C/A	32-34	011	1.94	60	0.1	113		
	26.36-43.62 Wk to mod. EP'n	1% PY + tr CP CP speck @ 31.95m	34-36	012	1.90	50	0.1	99		
		PY veinlets 30.0m, 21.0-31.2m, 33.35-33.65m, 38.0-38.2m	36-38	14013	2.03	15	0.1	188		1
		28.0m 10cm gouge; shearing @30°								

PAGE 2 OF 4

PROPERTY: SNOWFLAKE

LATITUDE: 201+00N
DEPARTURE: 193+76E
ELEVATION: approx. 1035m

AZIMUTH: 045°

HOLE NO: SF86-1

NTS: 92H/15

OGGED BY: RMC

DIP: -60° DEPTH: 100.88m

STARTED: May 26, 1986
COMPLETED: May 28, 1986

INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	TAMBUDITAY	SAMPLE NUMBER				ASSAYS
INTERVAL	ACCK TIPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Recov	Au	Ag	Cu
	Ground core 40.23m	30.03m 2cm wide CB V @70°	38-40	14014	(m) 1.70	40	0.2	72
			40-42	015	2.05	< 5	0.1	35
		Generally 2-4mm CB veinlet every 25cm; sub// to 70° to C/A but density of veining increases toward fault @/43.6m	42-44	016	1.85	110	0.1	113
43.62-52.42	Fault/fracture zone		44-46	017	1.85	175	0.5	660
	Pale grey-tan sheared, broken core. Perv. CB + CY alt. Abundant 2-5mm CB veinlets @45-	47.15m CP veinlet @ 20° to C/A CP veinlet cut by younger	46-48	018	1.75	65	0.9	1320
1	80° to C/A	CB veinlets.	48-50	019	1.80	60	0.3	575
	46.4m 3cm vuggy CB veinlet with honey-brown mineral?? Locally less bleached, green, epidotized volc. visible eg 47.3-47.5,49.38-50.44. Fractures HE below 51m	PY generally 2-3mm blebs-tr. amounts to 3% within EP'd volcanic CP occurs in tr amounts generally within PY veinlets	50-52	020	1.55	35	0.2	350
52.42-57.45	Bleached Tuff(?)							
	Similar to above but core less broken & sheared. 0.5-lmm FL crystal charged pink-brown alti matrix 5% mafics. Could be sub- volc. intrusive. Locally green, epidote sections eg 54.6-55.5 CB abundant as uV's & V's	Fractures red-brown-HE'c 56.37 - 10cm gougey core perp. to C/A 57.15 gauge, shearing// to C/A No sulphides noted.	56-58	021	1.55	€.5	6 0.1	11

PROPERTY: SNOWFLAKE

LATITUDE: 201+00N

AZIMUTH: _045°

HOLE NO: _SESS_1

NTS: 92H/15

DEPARTURE: 193+76E

DIP: __60° DEPTH: __100.88m

STARTED: May 26, 1986

OGGED BY: RMC

ELEVATION: approx. 1035m

COMPLETED: May 28, 1986

% REC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	SAMPLE				ASSAYS	
12000	MICHAL	HOCK TIPE / ALTERATION	MINERALIZATION / STRUCTURE	INIEKVAL	NUMBER	Lengtl	Au	Ag	Cu	
	57.45-89.61	Fault/fracture zone -as 43.62-52.42	Fract. HE Most shears sub// to 30° to C/A	62-64	022	2.15	5	40.1	25	
		variably bleached, sheared broken tuff (?). Core is pink- brown where mod. alt white-	59.3-60.4 very sheared and gougey Gouge-pink-grey in color.	68-70	14023	1.90	10	≼ 0.1	68	
		green where strongly sheared. Bleaching is CY + CB.	No sulphides noted.	74-76	024	1.40	5	<0.1	18	
	1	Original rock appears to be a	Dominant fract & CB veinlets							
		green-grey, epidotized, FL xstal in a grey, aph., perv. epidotize	d .	80-82	025	1.97	5	<0.1	7	
		matrix. Original rock rarely visible because core is shattered & sheared & bleached with a maroon-brown staining throughout.	Most slips are sub// to C/A but slickenside lineation is generally 20° to C/A.							
			Extremely shattered and gougey sections @ 65.07-65.33m	86-88	026	1.63	< 5	<0.1	18	
							3			
		*					(3)			

PAGE 4 OF

LATITUDE: 201+00N

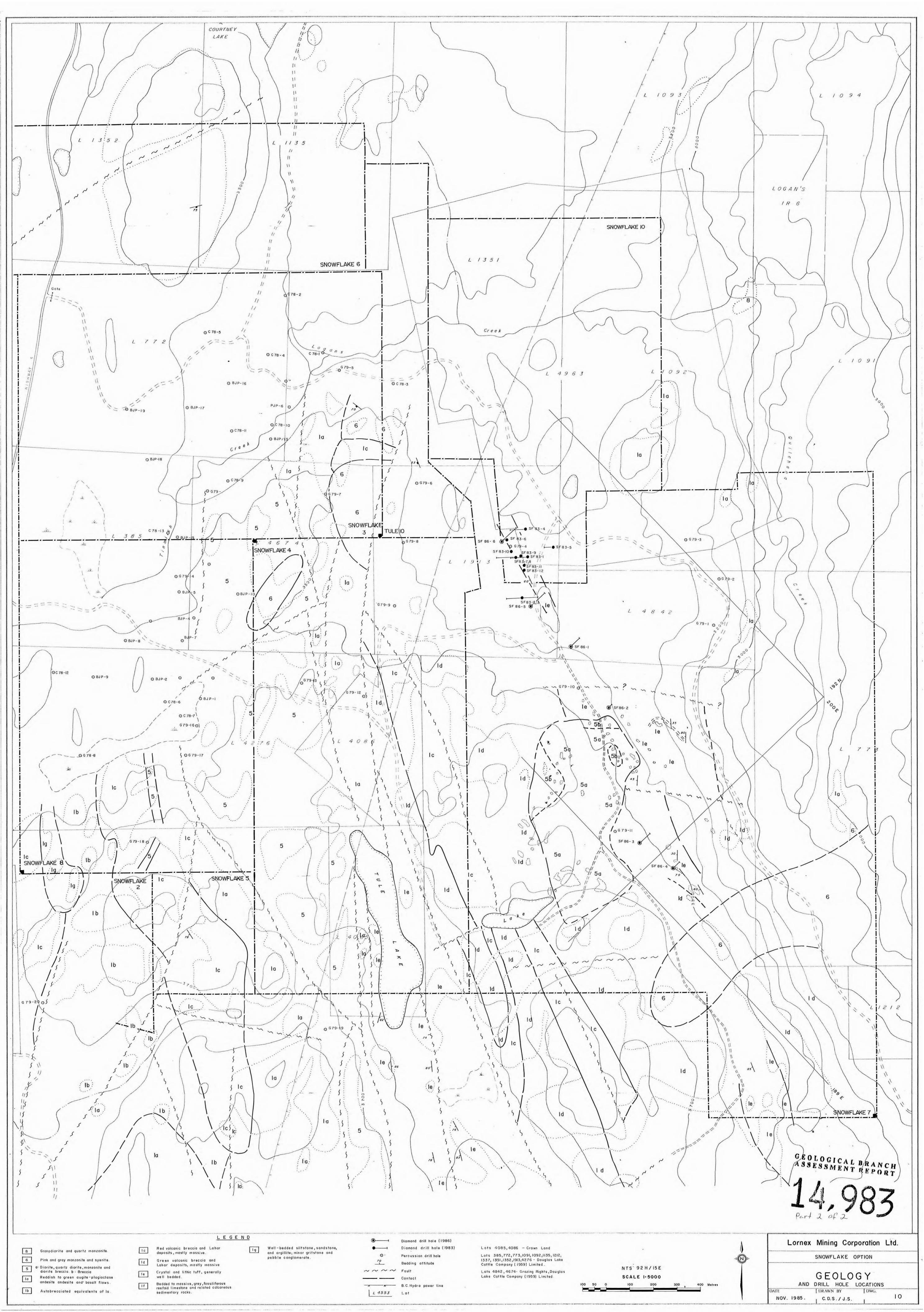
AZIMUTH: _045° DIP: _-60°

HOLE NO: SF86-1

DEPARTURE: 193+76E

STARTED: May 26, 1986

PROPERTY: SNOWFLAKE
NTS: 92H/15


DOGGED BY: RMC

ELEVATION: approx. 1035m

DEPTH: 100.88m

COMPLETED: May 28, 1986

% REC	aurenius :	DOOK DATE I MITTONTON	MINERALIZATION / STRUCTURE	TAMPONIA	SAMPLE NUMBER		40.72		ASSAYS	
* NEC	INTERVAL	ROCK TYPE / ALTERATION	MINERALIZATION / STRUCTURE	INTERVAL	NUMBER	Length	Au	Ag	Cu	
	89.61- 100.88	Similar to above but original rock appears to be more massive andesite-possibly flow.	Dominant fract's & CB veinlets @ 45° & 60°	92-94	14027	1.85	5	< 0.1	48	
		Generally olive coloured matrix with 5-10% FL xstals and 20% scattered EP spots & seams	97.05m 15cm white QZ v @ 50° no sulphides. Bottom contact gougey.	98-100	028	1.40	10	<0.1	9	
		Where sheared and brecciated rock is bleached to pale grey to tan with abundant maroon-brown staining along fractures, CB V's. and in gouge.	97.8-100.9 core gougey and extremely sheared and broken. CB perv. in gouge and bleached rock. No sulphides noted.							2
		Core massive and unsheared from 89.61-91.0m.								=
		DIP TEST 100.9m - 58°								
	100.88	END OF HOLE.								
							ên .		1	
							• •			
		*					4			

