FILMED

ASSESSMENT REPORT 1985 GEOCHEMICAL REPORT ON THE JOANNA I AND II MINERAL CLAIMS

Toodoggone River Area **OMINECA Mining Division** NTS 94 E/6E

> Latitude 57o283N Longitude 12706 W 03.8

Operator: Armor Development Corporation

Vancouver, B.Co. L. Ashworth ASSES

Owner: Clive Ashworth

Malcolm Bell Hi-Tec Resource Management Ltd. 1590 - 609 Granville Street Vancouver, B.C. V7Y IC6

January 20, 1986

Work Done: August 13, 14, 15, 16, 1985

Claims Worked

Claim Name	Units	Record No.	Anniversary Date			
Joanna I	20	6939	March 25, 1985			
Joanna II	20	6940	March 25, 1985			

TABLE OF CONTENTS

		Page
SUMMARY		1
INTRODUCTION		1
Property and Ow Location and Ac History and Prev	cess	1 2 2
REGIONAL GEO	LOGY AND MINERALIZATION	3
Property Geology Mineralization		4 4
GEOCHEMISTRY		5
	alytical Procedure Discussion of Results	5 5
CONCLUSIONS		6
RECOMMENDAT	IONS	6
STATEMENT OF	COSTS	8
STATEMENT OF	QUALIFICATIONS	9
REFERENCES		10
ILLUSTRATIONS		After Page
Figure 1: Figure 2:	Location Map, Joanna I and II Mineral Claims, Toodoggone River Area Claim Map, Joanna I and II Mineral	2
Figure 3:	Claims, 1:50,000 Geochemistry, Joanna I and II Mineral Claims, 1:10,000	2 in pocket

APPENDIX I - Analytical Results

SUMMARY

The Joanna I and II mineral claims are located in the Toodoggone River area, approximately 280 kilometers north of Smithers, B.C., and cover precious metal and base metal geological anomalies.

The Toodoggone gold belt encompasses an area stretching from Thutade Lake to the Stikine River, within which are numerous precious metal prospects. The gold-silver deposits of Dupont of Canada Exploration Ltd. (Baker Mine) and Serem Inc. (Lawyers) occur in the centre of this belt. The area is underlain by volcanic and sedimentary rocks of Permian, Triassic and Jurassic ages. Subvolcanic and plutonic intrusions of Jurassic age are also present.

Most of the known vein-type precious metal deposits and occurrences are adjacent to major northwest and north trending regional fault structures. Other important types of mineralization are the porphyry-type copper and gold, and the copper, silver, lead and zinc skarns associated with the Jurassic intrusions.

Preliminary exploration work during 1985 on the Joanna I and II claims delineated geochemically anomalous areas of interest using grid soil and stream silt geochemistry. These preliminary results indicate good potential by the discovery of precious metal deposits on the Joanna claims. A more detailed evaluation of the property is warranted.

INTRODUCTION

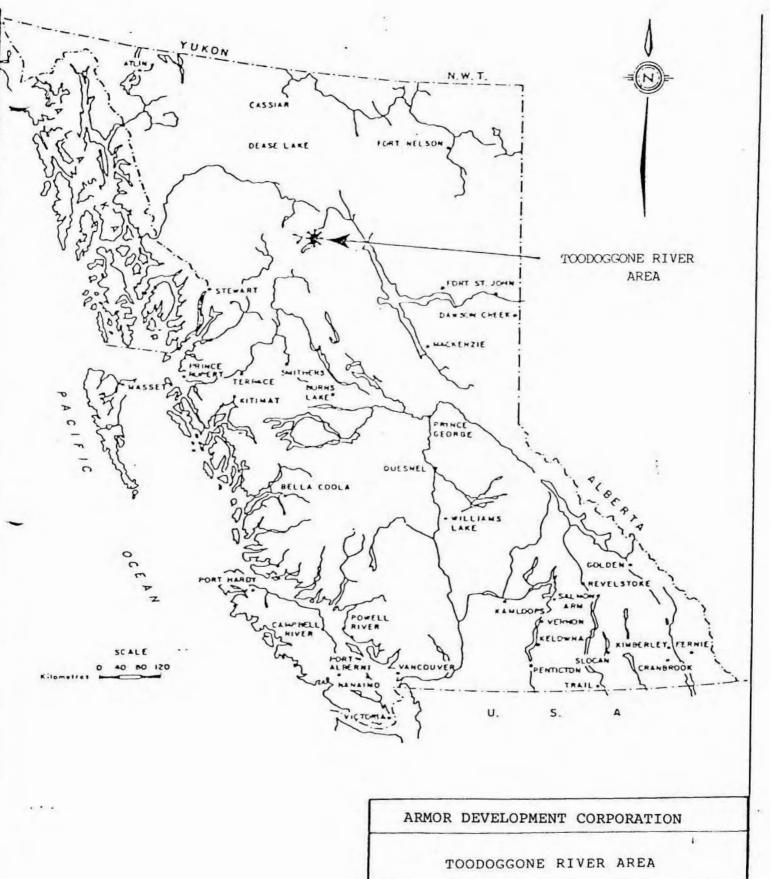
Property and Ownership

The Joanna I and II claims, each twenty units in size, are owned by Armor Development Corporation. The claims are situated on Belle Creek in the Omineca Mining Division (Figure 2) approximately 340 kilometers north of Smithers, B.C.

The pertinent claim data are as follows:

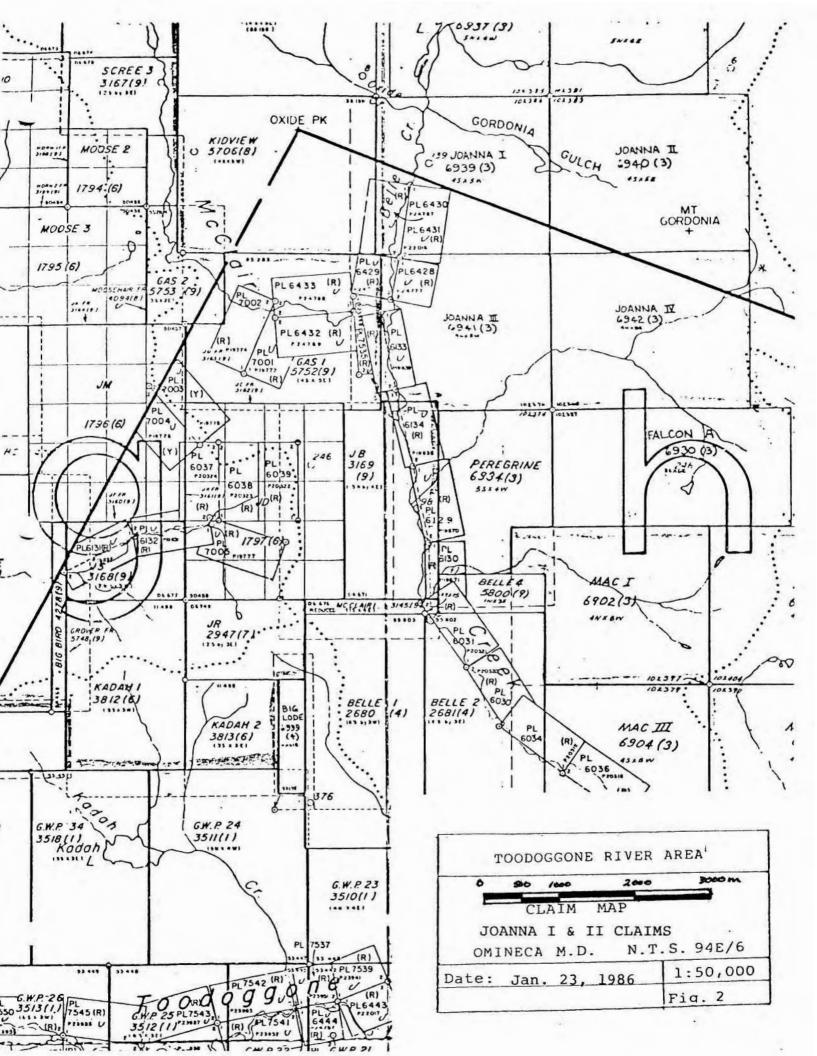
	Record No.		Record Date		
Joanna I	6939	20	March 25, 1985		
Joanna II	6940	20	March 25, 1985		

Location and Access


The property is situated in the Toodoggone River area, some 340 kilometers north of Smithers, B.C. (Figure 1). The claims are located on the upper reaches of Belle Creek (Figure 2). This area is 4 kilometers northeast of the JD property of Energex Minerals Ltd. Most of the claim area lies above timberline, but the lower areas are covered by scrub brush. The terrain is moderately rugged with areas barren of vegetation consisting of exposed rock and/or scree material.

Access is by fixed-wing aircraft on floats directly from Smithers, or on wheels to the Sturdee airstrip 290 kilometers north of Smithers, and then by helicopter 50 kilometers to the north.

History and Previous Work


The earliest record of exploration and mining in the area relates to placer mining activities on McClair Creek and Toodoggone River in 1930. There was sporadic exploration for gold, copper, lead and zinc between 1934 and 1960. The area was actively explored by Sumitomo, Umex and Texas Gulf Sulphur between 1963 and 1967, and in 1968 for porphyry copper and molybdenum deposits by Kennco Exploration (Western) Ltd., Cominco Ltd., and Cordilleran Engineering Ltd.

Kennco Exploration (Western) Ltd. recognized the precious metal potential of the area and staked the Lawyers and Chapelle claims and explored them until 1975. The Chapelle property was eventually optioned to Conwest Explorations Ltd. and then to DuPont of Canada Exploration Ltd. This lead to the discovery of the Baker deposit. The Baker mine was placed into production with indicated

TOODOGGONE RIVER AREA LOCATION MAP JOANNA I & II CLAIMS Omineca M.D. NTS 94 E/6

CHM BY: DATE:
CHK BY: FIGURE
SCALE AS SHOWN

reserves of 70,000 tons and grades of 0.9 oz/t Au and 19.0 oz/t Ag in the "A" vein. The Baker deposit was mined out in 1983. The Lawyers property is presently held under option to Serem Inc. Surface and underground drilling has defined a deposit containing 1,000,00 tons grading 0.21 oz/T Au and 7.1 oz/T Ag (Schroeter, 1985).

Energex Minerals Ltd. has recently reported drill indicated reserves of 160,000 tons with a grade of 0.37 oz/t Au.

REGIONAL GEOLOGY AND MINERALIZATION

The Toodoggone gold camp is a 15 to 20 kilometer wide belt of volcanic, sedimentary and intrusive rocks extending northwesterly from Thutade Lake to the Stikine River, a distance of more than 100 kilometers. The oldest rocks in the area belong to the Asitka Group of Permian age. This group consists of cherts, argillites, limestone and greenstones. They are overlain by the Takla Group which consists of intermediate flows and pyroclastics of Upper Triassic age. The Takla is characterized by abundant flows of augite andesite, basalt, porphyritic feldspar andesite and their volcaniclastic sedimentary equivalents.

The volcanic rocks lying stratigraphically above the Takla Group have been classified under two headings: i) the Toodoggone Group and ii) the Hazelton Group. The Toodoggone Group is of Lower Jurassic age and is equivalent to the base of the Hazelton Group (Panteleyev, 1984). The Toodoggone volcanics consist predominantly of subaerial dacite, latite, trachyte and rhyolite pyroclastic rocks more than 500 metres in thickness, which unconformably overlie the Takla. The majority of the epithermal precious metal occurrences in the area are associated with the Toodoggone volcanic rocks. However, the Baker deposit occurs in Takla volcanic rocks.

The Toodoggone volcanics are bordered on the east by, and are in fault contact with, the Hazelton Group rocks consisting of intermediate volcanic conglomerate, breccia, lahar and abundant pink feldspar porphyry dikes and sills. These rocks range in age from Lower Jurassic to Upper Jurassic.

In addition to the abundant intrusive dikes and sills noted within the Toodoggone and Hazelton Groups, acid to intermediate and alkaline stocks and plugs intrude the Toodoggone area.

The Toodoggone camp exhibits at least four types of precious metal mineralization, the most common of which is epithermal in origin. The epithermal deposits occur as massive quartz veins such as at the Baker mine, or as silicified zones and amethystine breccia zones such as at the Lawyers deposit. They are generally proximal to major northwest faults and are associated with siliceous volcanic centres, exhalative vents and zones of alteration within the Toodoggone volcanics. Quartz, barite and carbonate are the chief gangue minerals. The vein minerals are acanthite, pyrite, electrum, chalcopyrite, native gold, sphalerite and galena. Grades range from 0.1 to 1.0 oz/T Au and 1.0 to 20.0 oz/T Aq.

Property Geology

The Joanna I and II claims are situated in an area of varied geology (Gabriesle et al., 1976). The southeast part of Joanna II (Mt. Gordonia) is underlain by north-northwest striking Hazelton Group flows and pyroclastic rocks. A west-northwest trending fault along Gordonia Gulch terminates this sequence and massive basic volcanics of the Takla Group occur north of this fault. Gently dipping Toodoggone volcanics underlie the area west of Belle Creek on the Joanna I claim.

A report of work by Alakon Metals Ltd. in 1973 (McKelvie, 1972) in the area of the present claims refers to pyrite, specular hematite, some copper staining and numerous quartz veinlets occurring in the bottoms of creeks draining cirques on the west side of Mt. Gordonia. A grab sample from a 13 mm stringer of bornite reportedly assayed 6.7% copper and 133 grams/tonne silver.

Burgoyne (1974), reported two types of mineralization in Takla Group flows and pyroclastics in the area northwest of the Joanna claims. These included chalcopyrite in quartz-carbonate veinlets in fractured volcanics and chalcopyrite, galena, sphalerite and pyrite in bleached, silicified and carbonate altered volcanics reflected by prominent gossans. Two chip samples over 2 meter

widths of a quartz vein and a rust carbonate altered zone, both containing disseminated sulfides, returned precious metal values of 16 to 30 ppm silver. Apparently, no gold assays were done at that time.

Five kilometers southwest of Joanna I and II claims is the JD property of Energex Minerals Ltd. A number of mineralized zones occur at this location including the Gumbo zone where recent drilling by Kidd Creek Mines Ltd. has outlined a geological reserve of 27,000 tonnes averaging 5.48 grams Au/tonne within a thrust fault in Toodoggone volcanics.

GEOCHEMISTRY

A four-day program of grid soil and panned stream silt concentrate sampling was carried out on the Joanna I and II mineral claims during August 1985. This work was conducted by J. Ashenhurst, T. Archibald, B. Dent, T. Roocroft and O. Paeseler under the supervision of M. Bell of Hi-Tec Resource Management Ltd. A base camp was located on the Sturdee airstrip 50 kilometers south of the claims, which were accessed daily by helicopter.

A total of 229 soils, 8 panned concentrates and 2 rock samples were collected. Soil samples were collected at 50 metre intervals along east-west grid lines that are 200 metres apart (Fig. 3). Samples were taken with a mattock from depths from the brown, slightly sondy B Horizon and of 10 cm to 25 cm placed in numbered kraft paper bags and shipped to Min-En Laboratories in North Vancouver for analysis.

Soil samples were dried at approximately 90°C and then sieved to minus 80 mesh. The heavy minerals from panned concentrates were separated by heavy liquid. Separated concentrates and rock samples were crushed and pulverized. A 1.0 gram sample was then digested with perchloric acid. Samples were diluted to standard volume after cooling, and the solutions were analyzed for Cu, Zn and Ag by atomic absorption. Gold analyses were done using aqua-regia digestion followed by atomic absorption.

The analytical results are listed in Appendix I and sample locations are shown in Figure 3. Threshold values for gold, silver, copper and zinc in the Toodoggone area have been estimated to be 20 ppb, 2 ppm 100 ppm and 200 ppm respectively. The results show that 39 samples are anomalous in gold, 14 samples in silver, 3 samples in copper and 8 samples in zinc.

These anomalous samples are clustered in the northwest corner of the Joanna II claim and the south central part of the Joanna I claim. These areas are underlain by Takla Group flows which Burgoyne (1974) reported to contain two types of mineralization associated with silica and carbonate alteration to the northwest of the Joanna claims. It is possible that the geochemical anomalies on the Joanna I and II claims reflect similar types of minerlization.

CONCLUSIONS

The Joanna I and II mineral claims cover precious metal and minor base metal geochemical anomalies and hence good potential for the discovery of vein-type precious metal deposits. Base metals may also occur in association with gold and silver. The most attractive areas outlined to date seem to be within Takla Group volcanic rocks which are also known to be mineralized with base and precious metals in the vicinity northeast of the Joanna claims.

RECOMMENDATIONS

A follow-up exploration program is recommended for the Joanna I and II claims. During this program the existing grid should be extended to cover the remainder of the property. Soil geochemistry should be conducted on the new lines and all streams should also have panned concentrates taken along them. In addition to the geochemistry, magnetometer and VLF-EM surveys should be conducted over the entire property. Hand trenching and rock sampling will also be necessary in the areas of soil anomalies and of surface mineralization.

Respectfully, submitted

HI-TEC RESOURCE MANAGEMENT LTD.

STATEMENT OF COSTS

T. Ashenhurst T. Archibald B. Dent T. Roocroft O. Paeseler	4 days @ \$260.00/day 4 days @ \$255.00/day 4 days @ \$225.00/day 3 days @ \$225.00/day 4 days @ \$225.00/day	\$ 1,040.00 900.00 900.00 675.00 900.00
	Subtotal:	\$ 4,415.00
Mobilization/Dem Materials Expediting Fixed-wing Flight Meals/Accomodat Camp Support Helicopter Assays Supervision/Admin Drafting Assessment Repo	ts ion 19 man days @ \$50.00/day 19 man days @ \$25.00/day	\$ 3,400.00 430.00 140.00 675.00 950.00 475.00 849.75 1,926.05 2,400.00 450.00 1,000.00

TOTAL: \$17,110.80

STATEMENT OF QUALIFICATIONS

- I, Malcolm Bell, of Vancouver, B.C., hereby certify that:
 - 1. I have worked in mineral exploration since 1970.
 - 2. I am the president of Hi-Tec Resource Management Limited and have been supervising and directing exploration programs in Canada, Colombia, S.A., and Australia since Hi-Tec was established in May, 1980.
 - 3. I have successfully completed studies in Survey Engineering at B.C.I.T. (1979).
 - 4. This report is based on survey work completed by personnel under my direct supervision.

Dated at Vancouver B.C. this 9 day of March, 1986.

Malaka Bell

MALCOLM BELL

1

REFERENCES

- Burgovne, Alfred A. 1974. Geology, Geochemical Soil Survey, and EM-16 Survey on GORD 1-40 Mineral Claims, Omineca Mining Division, B.C. Ministry of Energy, Mines and Petroleum Resources (BCMEMPR) Assessment Report 5194.
- Carter, N.C. 1972. Toodoggone River Area and Chappelle, Geology, Exploration and Mining in British Columbia 1971, pp. 63-70.
- 1974. Lawyers, Geology Exploration and Mining in British Columbia 1973, pp. 458-461.
- Diakow, L.J. 1984. Geology between Toodoggone and Chukachida Rivers (94E), BCMEMPR Geological Fieldword 1983, Paper 1984-1, pp. 139-145.
- Gabrielse, H., Dodds, C.J. and Mansy, J.L. 1976. Geology of the Toodoggone River (94E) Map-Area, GCS Open File 306.
- Harron, G.A. 1981. Geological and Geochemical Report on the Air I and 2 Claims, Omineca Mining Division, BCMEMPR Assessment Report 9282.
- McKelvie, D.L. 1972. Geophysical Report on the ED 1-14, EHL 1-12, Belle 1-42 Mineral Claims, BCMEMPR Assessment Report 2506.
- Panteleyev, A. 1983. Geology between Toodoggone and Sturdee Rivers, BCMEMPR Geological Fieldwork 1982, Paper 1983-1, pp. 142- 148.
- _____. 1984. Stratigraphic Position of Toodoggone volcanics, BCMEMPR, Geological Fieldwork 1983, Paper 1984-1, pp. 136-138.
- Schroeter, T.G. 1981. Toodoggone River, BCMEMPR, Geological Fieldwork 1980, Paper 1982-1, pp. 122-133.
- _____. 1982. Toodoggone River, BCMEMPR Geological Fieldwork, 1980, Paper 1981-1, pp. 124-131.
- ____. 1983. Toodoggone River, BCMEMPR Geological Fieldwork, 1982, Paper 1983-1, pp. 125-133.
- _____. 1984. Toodoggone River, BCMEMPR Geological Fieldwork, 1983, Paper 1984-1, pp. 134-135.
- _____. 1985. Toodoggone River, BCMEMPR Geological Fieldwork, 1984, Paper 1985-1, pp. 291-297.

APPENDIX I

Analytical Results

MIN-EN _aboratories

Specialists in Mineral Environments
705 WEST 15th STREET NORTH "ANCOUVER, B.C. CANADA V7M 112

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MG85

ATTENTION: MALCOLM BELL

FILE: 51-21/P9

DATE: AUGUST 26/95.

TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 9 samples submitted.

Sahiri E	214	AG	AU	CU	PE	
NUMBER	PPH	PPH	PPB	PPM	FIPH	
HJB5 18 000H-29 (50E	86	1.0	30~ .	22		********
30+00E	94	1.4	40-	21		
30+50E	82	1.1	25-	16		
31+00E	360-	1.7	70-	102-		
31+50E	375-	2.0_	105-	107-		
32+00E	180	1.5	70-	60		40MESH
32+50E	275-	2.3~	75 -	89		
MJB5-18+00N-33+00E	164	1.3	70-	52		
HJ85-20+00N-7+50E	114	1.2	20-	45	53	却
····	2 Somples 2 Somples	14 Sumples > 200 ppm	39 Souples ≥ 20 ppb	3 Simples 2100 ppm		

Certified by

King mais

MIN-EN _aboratories ' td. Specialiscs in Mineral Environments

705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

FILE: 51-21/P8

PROJECT: MJ85

DATE: AUGUST 27/85.

ATTENTION: MALCOLM BELL

TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 30 samples submitted.

SAMPLE	ZN	AG	AU	CU		
NUMBER	FFM	I F'F'M	PFB	PPM		
MJ85-18+00N-14+50E	- 68	0.8	25 ~	. 8		
15+00E		0.7	300 ~	10		
15+50E		1.0	5	9		
16+00E	27	0.5	5	8		
16+50E	62	1.0	15	14		•
17+00E	31	0.8	5	8		
17+50E	15	0.8	10	6		
18+00E	52	1.2	5	12		
18+50E	62	0.6	5	12	- 3	
19+00E	72	1.2	5	18		
19+50E	48	0.6	10	10		
20+00E	NO	SAMPLE				
20+50E	80	1.0	5	17		
21+00E	74	0.B	5	14		
21+50E	31	0.6	10	8		Note a superior
22+00E	68	1.0	5	17		
22+50N	43	0.8	5	14		
23+00N	76	0.6	10	18	40MESH	
23+50N	42	0.8	60-	1.6		
24+00N	22	0.6	5	10		
24+50N	NO S	SAMPLE				
25+00N	56	0.6	10	12		
25+50N	84	0.6	5	12		
- 26+00N	80	0.6	5	15		
26+50N	74	2.2~	5	17	40MESH	
27+00N	42	0.7	5	12		
27+50N	46	0.5	10	11	40MESH	4
28+00N	72	0.B	5	16		
28+50N	138	0.6	10	14		
MJ85-18+00N-29+00E	157	1.6	5	32		

MIN-EN _aboratories 'td. Specialiscs in Mineral Environments

705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL

FILE: 51-21/P7

DATE: AUGUST 27/85.

TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 30 samples submitted.

SAMPLE	ZN	AG	AU	CU	
NUMBER	PPM	PPM	FFB	PPM	
MJ85-16+00N-18+5		1.4	5	16	
19+0		1.2	5	10	
19+5		0.7	5	8	
20+0			2.2	-	
20+5	OE 20	0.6	10	8	
21+0	OE 39	1.4	5	12	
21+5	0E 82-	1.2	5	14	
22+0	0E 76	1.0	5	16	
22+5	0E 82	1.0	3	18	40MESH
23+0		1.2	5	1.7	
~ 23+5	OE 83	1.0	5	21	######################################
24+0		1.1	5	22	
24+5		0.8	10	18	
25+0		1.0	5	24	
25+5		0.8	5	16	
MJ85-16+00N-26+0	OE 80	1.0	10	20	40MESH
1J85-18+00N-7+50		1.0	5	28	
8+00		0.6	15	26	
8+50		0.8	5	67	
9+00		0.8	5	30	
9+50	E 93	0.9	10	20	**************************************
10+0		0.7	5	20	
10+5					
- 11+0		0.8	5	10	
11+5		0.8	10	10	
12+0	DE 50	0.7	5	8	
12+5		0.9	5	9	
13+0		0.8	45-	8	
13+5		1.2	15	10	
1J85-18+00N-14+0		0.8	15	6	40MESH

Certified by

MIN-EN _aboratories | td. Specialiscs in Hineral Environments

705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCES MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL

FILE: 51-21/P6

DATE: AUGUST 27/85.

TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 30 samples submitted.

SAMPLE		ZN	AG	AU	CU	
NUMBER		PPM	PFM	FFB	PPM	
MJ85-14+00N-2	2+00E	90	1.8	1,0	34	
	2+50E	28	1.2	5	27	
2	3+00E	40	1.0	5	19	
2	3+50E	56	0.6	5	10	40MESH
2	4+00E	NO SAMP				Ja d
2	4+50E	26	0.8	5	10	
MJ85-14+00N-2	5+00E	24	0.6	5	10	40MESH
1J85-16+00N-7	+00E	150	0.8	10	60	
7	+50E	135	0.9	5	46	*:
8	+00E	118	0.9	5	37	
_ 8	+50E	86	0.8	20-	28	
	+00E	94	0.8	5	26	
. 9	+50E	154	0.7	5	74	
1	0+00E	78	0.7	5	15	
1	0+50E	61	0.6	5	10	
1	1+00E	13	1.1	5	25	40MESH
1	1+50E	72	0.6	10	10	
1	2+00E	NO SAMPI	_E			
1	2+50E	43	0.8	5	10	
1.	3+00E	68	1.2	70-	12	
1	3+50E	34	0.6	5	В	40MESH
1	4+00E	64	1.2	5	30	
1	4+50E	66	0.8	5	10	
- 13	5+00E	57	0.8	5	9	
1:	5+50E	52	0.8	5	9	
1.	6+00E	35	0.8	5	8	
10	6+50E	50	0.6	5	8	i.
1	7+00E	22	0.5	5	7	40MESH
1	7+50E	50	0.7	5	8	
1J85-16+00N-18	B+00E	30	0.6	10	6	

Certified by

Prie mis

Speciali s in Mineral Environments 705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL

FILE: 51-21/P5

DATE: AUGUST 27/85.

TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 30 samples submitted.

SAMPLE		ZN	AG	AU	CU		
NUMBER		PPM	FFM	PPB	PPM		
MJ85-14+00N-	7+005	102	1.3	5	29		
M089-14+00M-		100	1.2	10	33		
	7+50E				42		
	8+00E	136	2.3~	5		40MESH	
	8+50E	100	1.1	5	18	40MESH	
	9+00E	101	1.3	15	36		
	9+50E	146	1.4	5	50		
	10+00E	92 -	1.2	5	17		
	10+50E	128	1.0	35-	24		
	11+00E	90	2.0-	10	30	40MESH	
	11+50E	6	1.9	5	34	40MESH	
	12+00E	58	1.1	5	12		
_	12+50E	20	1.2	10	14	40MESH	
	13+00E	68	1.3	5	14		
	13+50E	54	0.9	5	10		
	14+00E	86	1.0	10	32		
	14+50E	50	1.5	5	34		
	15+00E	1.4	0.7	5	8		
	15+50E	73	1.2	5	12		
	16+00E	74	1.2	10	18		
	16+50E	50	1.3	5	10		
	17+00E	22	0.8	5	7		
	17+50E	38	1.0	5	6		
	18+00E	120	1.5	10	14		
	18+50E	64	1.4	5	12		
	19+00E	42	1.0	5	10		
	19+50E	56	1.3	10	10	# (X	
	20+00E	NO SAMP					
	20+50E	49	0.9	5	12		,
	21+00E	127	1.0	5	20		
MJ85-14+00N-		87	1.1	5	16		

Certified by

Bre mais

MINHEN _aboratories 'td. Specialiscs in Mineral Environments

705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL

FILE: 51-21/P4

DATE: AUGUST 27/85. TYPE: SOIL GEOCHEM

He hereby certify that the following are the results of the geochemical analysis made on 30 samples submitted.

and the second s	.5				
SAMPLE	ZN	AG	AU	CU	
NUMBER	PPM	PPM	FFB	PPM	
HJ85-10+00N-22+50E	53	1.6	15	10	
23+00E	60	1.4	5	16	
MJ85-10+00N-23+50E	54	0.8	5	12	
MJ85-12+00N-12+00E	64	0.7	10	13	
12+50E	76	2.5_	5	47	40MESH -
13+00E	62	0.7	5	12	
13+50E	45	0.8	5	11	
14+00E	61	0.7	30-	11	
14+50E	44	0.6	5	12	25
15+00E	25	0.7	10	14	
→ 15+50E	36	0.6	5	13	
16+00E	52	0.8	5	12	
16+50E	68	0.7	30~	16	
17+00E	38	0.9	15	11	
17+50E	56	1.4	10	11	0.World (0.00 - 2.70 - 10 World (0.00)
18+00E	40	0.9	45~	8	
18+50E	85	1.6	5	16	
19+00E	27	1.2	5	10	
19+50E	39	3.0~	10	14	
20+00E	NO SAMP	LE			
20+50E	30	0.9	5	10	
21+00E	52	0.9	5	15	
21+50E	44	1.0	5	9	
- 22+00E	53	1.0	10	11	
22+50E	59	0.8	5	10	
23+00E	45	1.2	5	26	
23+50E	16	0.8	5	21	40MESH
24+00E	97	1.2	2	24	
24+50E	50	0.7	10	15	
1J85-12+00N-25+00E	48	0.9	5	16	

MIN-EN .aboratories | to-Speciali.s in Mineral Environments

Speciali_s in Mineral Environments
705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7H 112

PHDHE: (694)980-5814 DR (604)988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL

FILE: 51-21/P3

DATE: AUGUST 26/85.

TYPE: SOIL GEOCHEM

He hereby certify that the following are the results of the geochemical analysis made on 30 samples submitted.

SAMPLE		214	66	AU	CU		
MUNDER		PPH	PPH	PPB	PPH		
				17			
BLOS TO COON		126	0.5	10	23		
	8+00E	130	0.8	5 5	38		
	8 (50E	81	1.0		25	40HESH	
	9+00E	97	1.8	5	36	40718.514	
	9+50E	94	0.8	15	15		
	10400E	48	0.9	30-	11		
	10450E	109	1.0	5	24	40HESH	
	11 FOOE	NO SAM	TE				
	11450E	26	1.6	10	22		
	12+00E	44	6.8	5	39		
~-	12+50E	108	3.4-	5	54		
	13+00E	32	0.9	5	7		
	13+50E	NO SAME	PLE				
	14400E	87	1.0	5	16	40MESH	
	14+50E	83	1.0	10	25		
	15100E	63	1.1	5	17	40MESH	
	15+50E	66	1.2	15	13		
	16+00E	67	0.8	5	14		
	16+50E	94	1.2	50-	16		
	17+00E	56	0.6	15	13		
	17+50E	60	1.0	5	15		
	18+00E	49	1.0	90-	10		
	18150E	53	0.9	10	14		
	19+00E	77	1.0	5	17		
	19+50E	104	2.2-	85~	21		
	20+00E	70	1.0	15	13		
	20+50E	58	1.2	30-	12		¥.
	21+00E	41	1.0	5	10		
	21+50E	45	0.6	70-	10		
1385-10+00N	기가 만든 경우 이 생각이 되었다고	33	0.5	5	69		

Certified by

Engmit

MIN-EN aboratories | Ed.

Specialists in Mineral Environments 705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL

FILE: 51-21/P2

DATE: AUGUST 23/85. TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 32 samples submitted.

SAMPLE	2.14		AG	AU	CU		78-72-2-3-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-
NUMBER	PPH		FFM	PPM	FFM		
4J85-8+00N-5+00	E 165		0.9	10	<u></u>		
5+59	E 142		1.5	5	70	40MESH	
6+00	E 103		0.7	5	1.7		
6+50	E 86		0.6	5	19		
7+00	E 74		1.3	5	29		
7-150	E 58		1.9	10	43	40MESH	
8+00	E 118		1.0	5	32		
8+50	E 112		0.8	5	27		
9+00	E 144		2.0-	5	48		
9+50E	E 22		0.8	5	21	,	
10+00E 10+50E	OE 113		1.2	10	33		
	OE 100		1.9	5	62	40MESH	
11+0	OE 89		1.0	5	30		
11+5	0E 80		0.9	10	18		
12+00	0E 23		0.7	20~	1.6	40MESH	
12+5	DE 42		1.2	5	30	40MESH	
13+0	0E 104		1.5	55 ~	28		
13+50	DE 64		0.7	10	15	40HESH	
14400	DE 62		1.1	5	1 1		
14+50	DE 89		1.8	150-	16		
15+00	DE 68		1.5	70-	14		
15+5	DE 40		0.6	20-	16	40MESH	
16+00	DE 50		1.1	10	10		
16450	DE 76		i.3	10	11		
17+00	DE 72		1.2	45 -	14		
17+50	DE 31		0.9	20 -	8		
18+00	DE 28		4.4-	40-	34		
18+50	DE 58		1.0	5	12		
19+00	DE 30		0.8	5	6		
19+50	DE 59	SOLEKAL W. Y	1.5	10	12		
J85-8+00N-20+00	DE 37		1.3	85—	9	40MESH	
JB5-10+00N-7+00	DE 142		0.7	5	46		

Certified by

MIN-EN .aboratories | td. Specialis.s in Mineral Environments

705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7M 112

PHONE: (604)980-5814 DR (504)988-4524

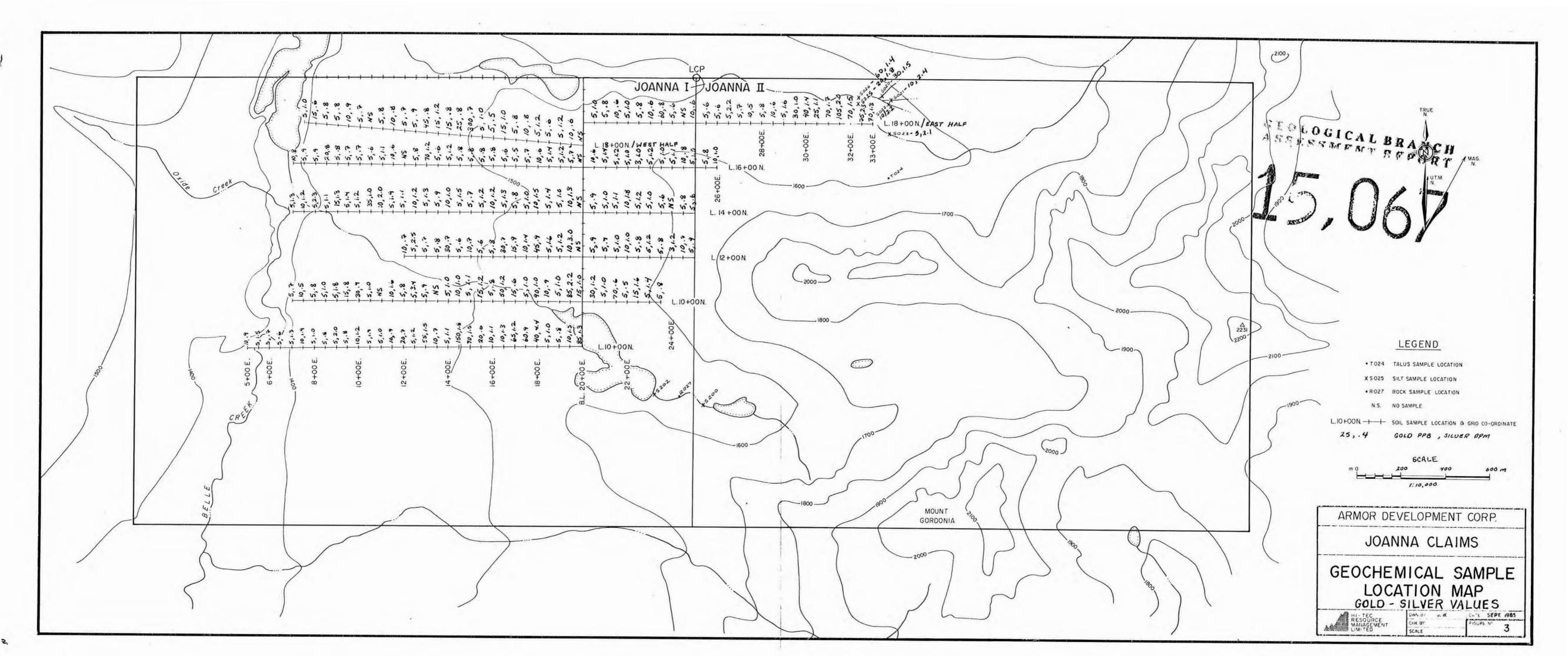
TELEX: 04-352828

GEOCHEMICAL ANALYSIS CERTIFICATE

COMPANY: HI-TEC RESOURCE MANAGEMENT

PROJECT: MJ85

ATTENTION: MALCOLM BELL


FILE: 51-21/P1

DATE: AUGUST 23/85.

TYPE: SOIL GEOCHEM

We hereby certify that the following are the results of the geochemical analysis made on 27 samples submitted.

BAMPLE	214	616	ALI	CFI	L.B	
JUMBER	PFH	F'F't'	PPB	PPH	F/F/M	
1385-001	49	1.0	5		17	
003	51	0.9	5		1.5	
004	87	0.9	, 10		22	
005	63	0.6	5		15	
007	60	0.7	5		19	E.
008	58	0.7	5		20	140 A 1 7 man / 0 m 117 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
009	92	0.9	5		16	
010	61	0.8	10		21	
A 011	60	1.1	5		21	4.0
/L 012	100	1.0	5		32	
€ 013	117	1.6	10		33	
NOGIC 014	28	1.1	5		12	
015	62	0.8	10		16	
016	59	0.7	20		15	
017	55	0.8	5		27	
y 018	7.4	1.0	5		27	Scientific
019	88	1.0	10		26	
020 \	130	1.5	30-	49		
anr 021	180	2.4~	10	70		
+I 022 (510-	2.2~	10	118 —		
023 7	350-	2.1~	5	82		
025	475 -	1.8	20-	87		
1385-026	310~	1.4	60-	60		
1J85-ST200	93	1.1	20-	39		20MESH
IJ85-ST203	330~	1.6	40_	84		40MESH

