86-99-15069

ASSESSMENT REPORT

PROSPECTING AND GEOCHEMICAL SURVEY ON THE

GACHO, SUET, CALI, YETI, PIKA, DALL AND PAW

MINERAL CLAIMS

Toodoggone River Area Liard Mining Division, B.C.

> NTS 94E/11 W Latitude 57o35'N Longitude 127o22'W

For

Operator: The Toodoggone Syndicate 1509 - 609 Granville Street Vancouver, B.C. V7Y 1C6

FILMED

1

Owner: Clive Ashworth

By

Malcolm Bell Hi-Tec Resource Management Ltd. 1509 – 609 Granville Street Vancouver, B.C. V7Y 1C6

December 200 1885 GICAL BRANCH Work Done: September 02 5 87,41985N T PFPORT

Claring

TABLE OF CONTENTS

	Page
SUMMARY	ī
INTRODUCTION	I
Location and Access Property and Ownership	2 2
REGIONAL GEOLOGY AND MINERALIZATION	3
Property Geology	4
GEOCHEMISTRY	4
Sampling and Analytical Procedure	4
PRESENTATION AND DISCUSSION OF RESULTS	5
CONCLUSIONS AND RECOMMENDATIONS	6
REFERENCES	6
APPENDIX I – Statement of Costs APPENDIX II – Statement of Qualifications APPENDIX III – Geochemical Results	
ILLUSTRATIONS:	

After Page 2

4

Figure 1	2	Location Map: Toodoagone River Area	2
Figure 2	-	Claim Map: Claw Mountain Group (1:50,000)	2
Figure 3	-	Soil Geochemistry; Ag, Au	in pocket
Figure 4	-	Soil Geochemistry; Cu, Zn, Pb	in pocket
Figure 5	-	Soil Geochemistry; Ba, As	in pocket

SUMMARY

The Gacho, Suet, Cali, Yeti, Pika, Dall and Paw claims, collectively known as the Claw Mountain Group, are held under joint venture by The Toodoggone Syndicate. The claims are located in the Toodoggone River area of northcentral B.C., approximately 300 kilometers north of the town of Smithers. Access is by fixed-wing aircraft and helicopter.

The Toodoggone River area is an epithermal precious metals district. Known deposits include the Baker gold-silver mine and the Lawyers deposit which has a reported reserve of more than I million tonnes with a grade of 7.27 grams/tonne gold and 254 grams/tonne silver. The Lawyers deposit and several other significant gold-silver prospects in the area are hosted by early Jurassic Toodoggone volcanic rocks. The Baker deposit is hosted by upper Triassic Takla volcanic rocks.

The Claw Mountain claim group lies approximately nine kilometers north of known gold accurrences on the Energex Minerals Ltd. property. The claim group is largely covered by overburden but significant areas of Toodoggone volcanic rocks of early Jurassic age are exposed at surface.

A reconnaissance soil sampling and prospecting program was conducted in 1985 to evaluate the precious metal and base metal potential of this property. The result of this program indicate the presence of scattered gold and silver anomalies in soil and rock as well as anomalous values in copper, lead, zinc, barium and arsenic.

INTRODUCTION

A prospecting and soil sampling crew completed a preliminary evaluation of the Claw Mountain claim group during the period of September 2 to September 7, ⁴ 1985. The work was performed by B. Dent, T. Roocroft and O. Paeseller under the supervision of M. Bell of Hi-Tec Resource Management Ltd. Soil sampling was done at 25 meter intervals along the contour traverse lines shown on Figure 3, 4 and 5.

Location and Access

The Claw Mountain claim group is situated in the Toodoggone River area, some 300 km north of Smithers, B.C. (Figure 1). More precisely, the claims are located at the headwaters of Moyez Creek, some 18 kilometers north of the Toodoggone River. The area covered by the claims is moderately rugged, with elevations ranging from 1,500 to 2,000 metres.

Access to the property is by fixed wing aircraft to the Sturdee airstrip and then by helicopter some 45 kilometers to the north-northwest. During the period of work the crew was lodged at a base camp beside the Sturdee airstrip and commuted to the claims by helicopter.

Property and Ownership

The property claims of the Gacho, Suet, Cali, Yeti, Pika, Dall and Paw claims comprising 114 units. These have been grouped into the Gacho and Suet (total 40 units) and the Cali, Yeti, Pika, Dall and Paw (Total 74 units) and are collectively referred to as the Claw Mountain group. The claims are owned jointly by The Toodoggone Syndicate. The pertinent data are as follows:

Claim Name	Units	Record No.	Anniversary Date*
Gacho	20	3288	March 1986
Suet	20	3286	March 1986
Cali	20	3284	March 1986
Yeti	20	3287	March 1986
Pika	4	3289	March 1986
Dall	20	3283	March 1986
Paw	10	3289	March 1986

* Prior to filing of 1985 expenditures for assessment credits.

REGIONAL GEOLOGY AND MINERALIZATION

The Toodoggone River epithermal precious metal district occurs near the eastern margin of the Intermontane tectonic belt. It extends for more than 100 km from McConnell Creek to the Stikine River as a 20 km wide zone of volcanic, sedimentary and intrusive rocks. The oldest rocks in the area are the Asitka limestones, argillites and cherts of Permian age. The Asitka Group are usually in fault contact with Takla volcanic rocks of Upper Triassic age. The Takla is characterized by abundant flows of augite andesite, basalt, porphyritic feldspar andesite and their volcaniclastic sedimentary equivalents.

The volcanic rocks lying stratigraphically above the Takla Group have been classified under two headings: i) the Toodoggone Group and ii) the Hazelton Group. The Toodoggone Group is of Lower Jurassic age and is equivalent to the base of the Hazelton Group (Panteleyev, 1984). The Toodoggone volcanics consist predominantly of subaerial dacite, latite, trachyte and rhyolite pyroclastic rocks more than 500 metres in thickness, which unconformably overlie the Takla. The majority of the epithermal precious metal occurrences in the area are associated with the Toodoggone volcanic rocks. However, the Baker deposit occurs in Takla volcanic rocks.

The Toodoggone volcanic rocks are bordered on the east by and are in fault contact with, Hazelton Group rocks, consisting of intermediate volcanic conglomerate, breccia, lahar and abundant pink feldspar porphyry dikes and sills. These rocks range in age from Lower Jurassic to Upper Jurassic and may include members of the Toodoggone Group. Acid to intermediate stocks and plugs of Jurassic age are intruded into the sedimentary and volcanic rocks of the area.

The Toodoggone camp exhibits at least four types of precious metal mineralization, the most common of which is epithermal in origin. The epithermal deposits occur as massive quartz veins such as at the Baker Mine, or as silicified zones and amethystine breccia zones such as at the Lawyers deposit. They are generally close to major northwest faults and are associated with siliceous volcanic centers, exhalative vents and zones of alteration within the Toodoggone volcanics. Quartz, barite and carbonate are the chief gangue minerals. The vein minerals are acanthite, pyrite, electrum, chalcopyrite, native gold, sphalerite and galena. Grades range from 0.1 to 1.0 oz/T Au and 1.0 to 20.0 oz/T Ag.

Property Geology

The Claw Mountain claim group is predominantly overburden covered. Portions of the Suet, Cali and Yeti claims do however have surface exposures of volcanic rocks believed to belong to the Toodoggone Group. Due to the lack of geological mapping on a suitable scale, little is known in detail about these rocks. Drainage patterns do however imply that the property as well as the surrounding area is cut by east-west and northeast-southwest fault structures.

GEOCHEMISTRY

Sampling and Analytical Procedures

A total of 303 soil samples and 3 rock samples were collected for geochemical analysis from the Claw Mountain claim group. Soil samples were collected along contour lines as shown in Figures 3, 4 and 5. Samples of the "C" soil horizon were taken with a mattock from depths of 15 cm to 25 cm, placed in numbered kraft paper bags and shipped to Min-En Laboratories Ltd. in North Vancouver for analysis.

Soil samples were dried at approximately 90°C and then sieved to minus 80 mesh. A 0.5 gram portion of each sample from the first batch was extracted by digestion with nitric acid and aqua regia followed by six element ICP analysis. Later in the program analysis was done only for silver and gold, employing atomic absorption determination. Rock samples were crushed before extraction by aqua regia solution and atomic absorption measurement.

PRESENTATION AND DISCUSSION OF RESULTS

The analytical results are presented in Appendix III. Significant anomalous values, determined by inspection and numerical calculations, are plotted for gold and silver in Figure 3, copper, lead and zinc in Figure 4, and barium and arsenic in Figure 5. Value ranges for moderately and strongly anomalous contents of the elements concerned are listed below:

	Moderately Anomalous Range	Strongly Anomalous Range
Au	15 to 30 ppb	+ 30 ppb
Ag	2.0 to 3.0 ppm	+ 3.0 ppm
Cu	300 to 400 ppm	+ 400 ppm
РЬ	47 to 65 ppm	+ 65 ppm
Zn	100 to 120 ppm	+ 120 ppm
As	30 to 45 ppm	+ 45 ppm
Ba	400 to 500 ppm	+ 500 ppm

Figures 3, 4 and 5 show moderately anomalous values in all 7 elements and strongly anomalous values in all but Pb and Ag. These values tend to be scattered throughout the area sampled with some clustering of anomalous Pb, Zn, As and Au values in the southern most area, i.e. the Yeti claim. Coincident anomalous values for Au and Ag occur in the northwest (Gacho) and easternmost (Dall) parts of the claim group and some base metal and arsenic values seem to be associated with them.

The area around the rock sample that ran 50,000 ppb Au warrants immediate follow-up sampling.

The extent and true magnitude of the geochemical anomalies cannot be defined until a more detailed survey is completed.

CONCLUSIONS AND RECOMMENDATIONS

Reconnaissance contour soil sampling has discovered anomalies in gold and silver as well as base metals (Cu, Pb, Zn) and pathfinder elements (Ba, As). These anomalies lie in areas believed to be underlain by Toodoggone volcanic rocks which host significant mineralization in relatively nearby locations.

It is recommended that a follow up program of detailed soil sampling be conducted to determine the extent and true magnitude of the geochemical anomalies. This program should also include prospecting, detailed geological mapping and a VLF-EM survey in order to establish the source and nature of the mineralization and to define future drill targets.

REFERENCES

Gabriesle, H., et al., (1976): Geology of the Toodoggone River (94E) Map Area, G.S.C. Open File 306.

Panteleyev, A., (1984): Geology between Toodoggone and Sturdee Rivers, BCMEMPR Geological Fieldwork 1983, Paper 84-1, pp. 136-138.

ntalita Bell.

APPENDIX I

Statement of Costs

STATEMENT OF COST

Period Worked: September 02 to 07, 1985

O. Paeseller 6	days @	\$225.00	\$	\$ 1,350.00
B. Dent 6	days @	\$225.00		1,350.00
T. Roocroft 6	days @	\$225.00		1,350.00
Mobilization/Demobil	ization		\$	\$ 2,370.00
Field Materials				,127.00
Camp Materials				,300.00
Expediting		6 days @ \$20.00		,120.00
Meals/Accomodation		18 man days @ \$50.00		,900.00
Camp Support Costs		18 man days @ \$25.00		,450.00
Administration				,500.00
Helicopter				1,339.00
Fixed Wing				,745.00
Assays				3,086.00
Assessment Report 4	Vriting, (Compilation, Copying		1,000.00
Drafting			-	,450.00
(R			TOTAL:	\$16,787.00

APPENDIX II

Statement of Qualifications

I, Malcolm Bell, of Vancouver, B.C., hereby certify that:

- 1. I have worked in mineral exploration since 1970.
- 2. I am the president of Hi-Tec Resource Management Limited and have been supervising and directing exploration programs in Canada, Colombia, S.A., and Australia since Hi-Tec was established in May, 1980.
- 3. I have successfully completed studies in Survey Engineering at B.C.I.T. (1979).
- 4. This report is based on survey work completed by personnel under my direct supervision.

Dated at Vancouver B.C. this <u>A</u> day of <u>NAKett</u>, 1986.

MALCOLM BELL Malalan Bell.

APPENDIX III

×.

51

Geochemical Results

ł

PROJECT NO: H9 85 ATTENTION: NALCOLM	BELL		705 WEST	157H ST. (604)980	, NORTH -5814 OR	VANCOUVER (604)788	. B.C. V71 -4524	1 1T2 FILE NO: 51-275/P1+2 * TYPE SOIL GEOCHEM * DATE:SEPT 27, 1985
(VALUES IN PPM)	46	AS	BA	CU	pg	7N	AU-PP8	
MB002	.3	1	114	38	25	51	5	
002 	1	1	125	25	21	ą a	100	
-112909 H5665		1	411	de.	28 18	28	2	
HEGAL	4 e V .E	1	121		22 12	2.2	10 F	
HRAAT	Q		••••• ••• •••			 DE		
MBOOR	3.7	1	371	41	10	- 1	r	
48699	1.1	3	104	21=	1	_=		
M2414	1.3	1	11	11.4	26	V.L	15	
MP-11	1.5 -	1	145		Ta	5,6		
Mun 1	1.7	1	1.1.1				16	
5B913	. 5	2	125	41	29	4.2	1	
NPAle	, ¢		5.5 B	5		= r,	钧	
MR015		3	12 m	24	21	54	Ę	
MB015			189			50	<u></u>	
MB017	. 4	1	112	ą	23	38	5	
MB018	•3	1	132	12	2e	52	20	
BB019 NB020	2	1	207	19	27	59	5	
MB020	.2	-	211	51		80	5	
MD021			193		16			
MBADZ	.4 1 (i	15	201	13	20	51 151	3	
MR624	0	13	323 716	6: 25	00 71	100	3	
MR025	0	5	573	22	25	17	10	
MB026	-11	18	1015	70	70	77	10	
MB027				10	79	47	 Ę	
MB028	.8	1	76	12	23	44	20	
029	1.5	2	97	36	43	92	230	
m8030	.3	1	139	9	ç	23	10	
MB031	1.0	4	105	64	26	37	5	
MB032	.5	Ģ	61	36	23	41	5	
MB033	. 4	4	55	64	25	39	10	
MB034	.7	13	808	434	22	36	20	
NB035	.5	Ģ	109	94	26	31	5	
MB036		5	114	88	43	58	5	
MB037	1.6	5	25!	200	46	64	10	
MB038	.6	i	102	34	18	46	10	
MB039	.2	1	65	32	1/	26	3	
MBOAD	•/	1	168	/4	29	55	3	
MBOAT			82	<u>4/</u>	7/			
MB042	.1	11	101	73	0V 25	40	10	
NRA44	.e	10	79	172	23	40	10	
MB045	1.1		94	102	17	45	5	
MB046		15	116	40	28	53	20	
NB047	1.7	1	114	273	24	64	15	
NB048	.8	1	101	88	23	57	10	
HB049	.5	2	101	109	19	49	5	
HB050	.4	11	91	102	20	39	25	L.
N9051	1.1	1	82	239	15	52	5	
MB052	.6	8	134	119	23	54	20	
MB053	.4	13	98	50	20	46	10	
~954	,9	15	205	48	29	68	5	
)55	.4	20	106	105	27	54	5	
MB056	.6	18	170	143	22	56	10	
NB057 40M	.6	15	98	36	21	44	5	
MB058	.?	14	155	272	29	65	10	
MB059	1.3	1	129	116	26	72	5	
MB060	1.5	9	110	105	33	100	5	
MB061	.5	13	115	58	24	66	5	

(VALUES IN PPM)	AG	AS	BA	CU	PB	IN	AU-PPB	
ME962	.0	2	124	82	19	71	5	
967	.7	1	138	76	19	66	- 5	
TEDE4 40M	1.0	1	111	50	18	79	5	
MBORE	.2	27	83	52	19	105	5	
MB066	. 3	11	98	39	20	53	5	
MB047	2		113	23	18	78	• • • • • • • • • • • • • • • •	
MBOER		1-	83	42	27	77	14	
18669 46H	· *	(1 1)	81	20	31	-5	5	
4507Q		17	345	28	24	58	÷	
18071	Se	5 .	127	22.6	47	97	41 a.	
1		11	124			47	1	n (
45 1 7 7	ĩ	25	145	\$77	25	4.2	5	
(2 ⁻ .)	- 2	25	143	35	201	+2	1	
4 <u>8</u> 75	1.12	1 ···	197	28	28	75	50	
997-	.5	24	127	23	34)	- 4	4	
15977		15	127	39	26	89	5	
18079	1.5	1	55	98	18	48	5	
IB) 7 €	2.5	1	75	143	3	74	26	
16080	2.5	1	57	70	10	73	5	
IB681	1.9	11	81	05	29	76	10	
18082	2.7	5	 60	34	20	62	5	
(B083	2.1	1	81	83	19	83	5	
B084	1.8	1	91	65	25	78	5	
18085	1.6	38	162	69	37	161	10	
B086	7.0	1	101	23	18	55	20	
8087	1.8	5	103	44	22	80	10	
19088	1.8	10	107	72	26	92	10	
989	1.4	71	119	34	30	68	10	
8090	1.1	40	147	41	40	103	5	
B091	1.2	37	138	33	35	97	5	
8092	.8	17	178	46	25	80	5	
8093 40M	. ç	15	90	68	20	53	10	
8094	1.3	0	101	35	21	74	5	
B095	1.4	1	04	39	22	84	5	
B095	1.3	o	171	50	21	82	5	
B097	1.7	<u>-</u>	83	43	21	89	40	
8098	1.7	15	94	74	22	48	5	
8099	1.3	7	130	35	25	73	5	
RIOO AOM	1.3	1	171	7.0	22	44	5	

.

PROJECT NO: ATRENTION:	CLAW 85 NALCOLM BELL		705 WEST		ALCONOMICS IN CO.			
AT PENTION:	NALCOLN BELL			1318 51.	NORTH	VANCOUVER	, B.C. V7H	112 FILE NO: 5-7385/P1+2
THAT HEE TH			antes prene	(604)980-	5814 OR	(604)988	-4524	* TYPE SOIL GEOCHEN * DATE: OCT 8, 1985
AMENCO IN	PPH) AG	AS	BA	CU	PB	ZN	AU-PPB	
10	.1	11	125	14	25	45	5	
-201	.1	8	150	13	24	44	10	
207 11-5								
203	.1	15	373	8	26	39	5	
204	.3	15	127	21	29	55	5	
205	.1	12	125	13	22	44	5	
206	.1	19	363	11	27	40	10	
207	.1	24	128	27	27	35	5	
208	.1	- 25	120	21	32	51	5	
209	.1	27	130	29	33	\$5	10	
210	.4	12	135	39	23	46	15	
211	.1	29	71	15	23	31	5	
212	.3	11	107	21	24	42	5	
213	.3	24	125	19	24	34	5	
214	-1	15	78	10	23	27	10	
215	.4	5	95	10	28	35	5	
716	.4	16	78	13	24	35	5	
217	.7	1	121	19	18	42	10	-
218	.5	1	169	14	23	55	5	
219	.1	51	280	45	33	76	5	
220	.3	37	104	89	36	48	5	
221	.4	36	90	102	37	54	10	
222	.6	35	329	86	38	70	5	
223	.6	33	100	115	33	53	5	
224		33	135	114	42	97	15	
225	1.2	31	154	160	51	96	5	
YA	.5	32	123	136	43	59	5	
- 227	.5	36	108	99	40	81	5	
229	1 2	27	99	295	41	77	10	
729		32	194	98	38	65	5	
230		25	89	82	35	51	5	
231		19	135	57	33	48	10	
237		25	189	97	44	57	5	
233	.5	75	121	124	10	71	5	
233		30	150	01	34	15	5	

- 4 di

•

PROJECT NO: NB 85		UIDE IN INT	705 WEST	15TH ST.,	NORTH	VANCOUVER	. B.C. V7N	1112 FILE NO: 5-7365/P1+2
ATTENTION: MALLULM	BELL		PA	(604) 980-	2814 UK	1604) 788	-9329 AU-000	A TITE SUIL BEUCHER * DHIETULT 7. 1783
TYPLUES IN FFR J		20	69 09	132	FD		MU-FF5	
1.00	. /	27	64	85	38	44	5	
~237	.3	31	71	83	32	37	5	
238	.6	33	112	105	42	59	10	
239	. 4	27	189	68	37	77	5	
240	.6	42	172	90	48	65	5	
241	1.2	31	122	123	45	108	5	
242	×7	30	109	95	42	88	5	
243	.1	20	150	43	32	45	5	
244	.÷-	32	144	113	46	66		
245	2.5	42	175	147	55	118	5	
246	• 4	34	241	49	43	43	5	
247	1.0	50	274	150	50	78	0	
248	.8	41	244	122	46	13	J 6	
749			138	191	44	10		
230	1	7	1.78	40	41	00	5	
201	1.0	29	115	47	41	54	5	
/3/		13	201	52	4.4	51	5	
250	.1	52	158	77	31	51	5	
2.19		15	113	45	50			
254	1.3	32	184	48	47	60	5	
257	1.0	29	165	43	41	56	5	
259		41	250	43	50	63	15	
250	.7	18	134	58	37	44	5	
260	.8	18	218	34	29	58	5	
261	.9	50	157	128	49	73	10	
2	.9	35	149	85	40	57	5	
263	1.1	57	188	315	59	80	5	
264	.9	27	146	47	38	62	5	
265	.7	9	370	85	32	46	15	
266	.5	24	213	54	34	52	5	
267	.8	\$7	122	81	37	56	5	
268	.5	15	163	47	34	44	5	
269	.8	20	157	71	43	63	10	
270	.7	22	356	24	31	59	5	
271	.5	13	362	19	30	65	5	
272	. 6	20	514	17	32	66	10	
273	1.5	1	177	60	24	78	5	
274	1.1	13	286	98	38	87	5	
275	.9	15	388	33	33	94	10	
276	2.8	13	386	428	28	70	5	
277	1.3	11	158	152	35	103	5	
278 20M	1.3	8	100	112	33	105	5	
219	1.5	1	201	76		86	5	
280	1.0	4	523	134	14	51	10	
281	1.2		134	/8	26	13	3	
282	1.4	1	149	234	20	42	3	4
283	2.1	1	68	220	28	114	5	
209	1.4		60	230	13	104		
203	1.0	14	107	50	30	70	10	
200		20	473	515	10	44	5	
- +88	1.0	19	195	79	33	69	5	
289	1.0	25	338	52	29	70	5	
290	1.3	20	380	43	26	54	5	
291	1.2	41	611	124	24	58	5	e
292 201	2.0	26	700	114	15	29	10	
293	1.2	44	301	16	33	56	5	X.
294	.8	26	185	13	28	71	5	

.

CONTRACT OF THE RESOURCE DEMADEMENT

tran LN LIND ALL REL WAR

INDIVELLET INCL I DE I

4

jo

ATTENTION. MALCOLM	DELL		705 WEST	151H ST.	SOLA OP	ANCOUVER	. B.C. V/N 1	TYPE COLL DEDEVEN & DATE, DET 2 4005
(VALUES IN PPN)	AG	AS	BA	CU	PB	2N	AU-PP8	· TITE SUIL BEULREN · DHIE: 0L1 7. 1983
295	.4	18	104	12	29	60	10	
76	.4	34	94	14	34	83	5	
-297	1.2	50	243	45	31	62	15	
298	1.5	11	303	25	25	73	5	
299	.8	22	202	40	30	o2	5	
300	.7	23	241	21	29	63	10	
301	.7	9	117	12	23	56	5	
302	.3	11	129	13	27	84	10	
303	. 9	12	107	15	28	67	5	
304	.7-	28	128	23	40	76	15	
305	1.0	27	158	36	37	72	\$0	
306	1.3	20	188	161	29	74	10	
307	.9	19	110	44	41	89	5	
308	.8	24	171	32	38	91	10	
309	1.0	18	146	28	35	96	10	
310	.9	31	125	24	37	83	5	*********
311	1.4	40	178	41	39	87	5	
312	1.0	21	148	38	34	84	10	
313	.9	21	216	28	30	108	5	
400	2.2	1	130	275	25	91	10	
401	1.8	1	128	186	27	85	10	
402	2.0	1	108	247	28	123	5	
403	1.4	10	119	179	34	71	10	
404	2.0	1	162	335	35	85	5	
405	2.2	1	138	272	36	98	5	
406	1.9	1	111	236	33	84	5	
407	1.6	20	104	206	32	75	20	
)8	1.9	13	147	305	38	90	5	
409 N/S								
410	1.6	8	131	222	33	53	5	
411	1.9	5	152	572	48	88	15	

1.1

INCIDENTI INDE A UN A

DEND MARY ALL TER REPORTER TRANSPOLITER

worn mini	 TEC RECOUNCE INMADERENT	

HIN CH LADD ILL BLIDHT

INCIENCULI FHUL I UP .

PROJECT NO: MB 85			705 WEST	15TH ST.,	NORTH 1	VANCOUVER.	B.C. V7M	172 FILE ND: 5-7365/P6
ATTENTION: MALCOLM E	ELL			(604)980-	5814 OR	(604)988-	4524	* TYPE SOIL GEOCHEN * DATE: OCT 7. 1985
WALUES IN PPH)	AG	AS	BA	CU	PB	2N	AU-PPB	
473	.]	12	91	9	33	59	5	
•	.1	13	75	9	24	42	5	
775	.3	17	96	12	30	62	10	
476	.6	19	104	11	29	72	5	
477	.7	33	123	10	34	82	5	
478	.4	30	111	9	35	79	5	
479	.6	22	239	10	33	98	20	
480	.7	14	135	8	35	67	5	
481	.8	37	224	9	35	79	5	λ.
182	.6 -	22	89	9	32	56	10	
483	.8	16	85	11	37	85	5	
484	.3	23	174	9	32	73	3	
485	.5	50	127	10	64	123	5	
486	.5	62	128	8	61	140	5	
487	.3	31	258	7	41	78	5	
488	.5	35	139	9	37	71	5	
489	.5	29	115	8	43	78	10	
490	.3	33	172	7	48	111	5	
491	.4	22	115	7	57	141	5	
192	.7	33	237	13	53	100	10	

-

(VALUES IN PPH)	AG	45	Đà	ព្រ	PB	28	HU-PPE		
u(i)	24.7	!	96	42976	85	107	50000	 	
1	4,0	1	27	232	12	40	22		
¥.	1.5	1	144	189	16	47	59		

+

-, , ĩ

-

 \sim

LEGEND

0 ²⁷³	Soil geochemical sample location, sample num
Ð	Soil geochemical sample – moderately anomal
Ð	Soil geochemical sample - moderately anomalo
\bigcirc	Soil geochemical sample – moderately anomal
Ð	. Soil geochemical sample – strongly anomalou
Ð	Soil geochemical sample – strongly anomalous
(421, -, 52)	Geochemical values – ppm Cu, ppm Zn, ppm Pb
	Legal corner post, tag number.

-_---

_.....

