GEOCHEMICAL

and

GEOPHYSICAL

REPORT ON THE

GOLDEN GROUP CLAIMS

MEDLEY, B. C.

OSOYOOS MINING DIVISION

BRITISH COLUMBIA

TABLE OF CONTENTS
SUMMARY1
LOCATION 3
ACCESS AND PHYSIOGRAPHY 3
CLAIMS 4
HI STORY 4
REGIONAL GEOLOGY 6
PETROGRAPHIC ANALYSIS 6
GEOCHEMI STRY 7
GEOPHYSICAL SURVEY 8
MAGNETOMETER 9
VLF-EM 9
WESTERN BOUNDARY SURVEY 10
SHAFT REHABILITATION 11
CONCLUSIONS 11
RECOMMENDATIONS 12
DETAILED COST STATEMENT 15
CERTIFICATE OF QUALIFICATIONS 16
BIBLIOGRAPHY 17
MAP 1 - LOCATION 24
MAP 2 - CLAIM MAP 25
MAP 3 - SOIL AND ROCK GEOCHEMISTRY In PocketMAP 4 - GOLDEN ZONE FR and GOLD 1 VLF-EM PROFILES
In Pocket
MAP 5 - B.C.FR: VLF-EM PROFILES
MAP 5 - B.C.FR. VLF-EM PROF ILES 26
MAP 6 - GOLDEN ZONE FR: WESTERN BOUNDARY SURVEY 27
APPENDIX 1 - PETROGRAPHIC ANALYSIS 28
APPENDIX 2 - SOIL AND ROCK GEOCHEMISTRY 34
APPENDIX 3 - B.C. FR: CORRECTED MAGNETOMETER READINGS 39
APPENDIX 4 - B.C. FR: MAGNETOMETER PROFILES 40
APPENDIX 5 - GOLD 1: VLF-EM FILTERED READINGS 48
APPENDIX 6 - GOLDEN ZONE FR: VLF-EM FILTERED READINGS 50
APPENDIX 7 - B.C. FR: VLF-EM FILTERED READINGS 52

GEOCHEMICAL and GEOPHYSICAL

REPORT ON THE

GOLDEN GROUP CLAIMS

SUMMARY

The Golden Group Claims are located approximately 31 kilmetres west of Penticton, B.C. (see Map l) in the Osoyoos Mining Division at $49^{\circ} 26.1^{\prime} N$ Latitude and $119^{\circ} 59.5^{\prime} \mathrm{W}$ Longitude (NTS 82E/5W). Altitude ranges from 1550 metres to 1900 metres. Terrain is gently rolling, heavily treed with second growth timber and drainage is west to Hedley Creek. Good road access to and through the claims is from the Mascot Gold Mines road.

The claims are underlain primarily by granitic rocks of the Okanagan Batholith near its contact with Nicola Group of Upper Triassic metavolcanics. Both groups are host to the Hedley Mining camp to the south with the Nicola series the more favourable.

Reconnaissance geochemical, geophysical surveys, prospecting, surveying of a claim line and partial rehabilitation of an old shaft were completed. Eight-eight soil and rock samples were taken, 10.35 line kilometres of VLF-EM readings completed, 2.7 line kilometres of magnetometer results recorded, a section of claim boundary surveyed and a shaft collar stabilized. This work continued the program started in 1984 to establish a basis for a more intensive exploration committment in the future.

Anomalous concentrations of Au and Ag occur on the GOLDEN ZONE FR, GOLD 1 and the NICKEL 3 with additional secondary targets identified. The VLF-EM survey concurred with work by others on adjacent ground and was coincident with a geochemical anomaly on the GOLDEN ZONE FR. A northwest-southeast trending structure is evident on the B.C. FR claim. Further investigation on the GOLD 1 of two VLF-EM targets is warranted. A strong VLFEM conductor correlated with the airborne geophysical survey (Mark, 1985) across the B.C. $F R$ and GOLD 1 claims and supported the airborne survey results and conclusions. A western boundary survey established that an old shaft is located on the GOLDEN ZONE FR. The shaft corresponds with geochemical anomalies and rehabilitation at the collar was initiated.

Sufficient work was completed, data obtained and targets identified to recommend a comprehensive program of mapping, geochemical and geophysical exploration of the property with followup investigation of anomalous areas to include diamond drilling. A Three Phase program is recommended totalling \$441,800 with the First Phase estimated at $\$ 96,800$. All phases are contingent on an engineer's report and recommendations.

LOCATION

The Golden Group claims are located approximately 31 kilometres West of the town of Penticton B. C. (see Map 1) in the Osoyoos Mining Division at Latitude of 49 degrees 26.1 min utes North, Longitude 119 degrees 59.5 minutes West. NTS mapsheet is $82 \mathrm{E} / 5 \mathrm{~W}$. Altitude ranges from 1550 meters to 1900 meters ASL.

ACCESS AND PHYSIOGRAPHY

Good road access to much of the property is available by four wheel drive vehicle over a rough track leading northwesterly from the Mascot Gold Mines road. This access, which traverses the claim group, leads eventually to the Golden Zone property (a former gold mine), which is adjacent to the claim group. About one kilometer from the minesite, an old sideroad leads down to Hedley Creek. At one time this road was a main route up from the town of Hedley to the Golden Zone, but the track is now heavily overgrown with small saplings. The road is barely passable to $4 \mathrm{x} 4^{\prime}$ s as far as Hedley Creek where an old bridge is washed out.

The claim group is heavily treed with second-growth timber interspersed with swampy patches and old burn areas. The terrain is gently rolling high plateau with infrequent rock outcrop. Drainage is to the west into Nickel Plate or Strayhorse Creeks, tributaries of Hedley Creek. Snowfall is probably considerable in winter months (the Apex ski area is nearby) thus restricting access in this season to snowmobile or snowshoes. The area is generally dry in summer with warm days and cool nights.

CLAIMS

The Golden Group claims are registered to Raymond B. Stewart of West Vancouver, B. C. The group is comprised of the

CLAIM NAME

NICKEL 2
NICKEL 3
NICKEL FR.
HEDLEY
HEDLEY 1
HEDLEY 2
GOLD FR.
GOLD 1
GOLD 2
B. C. FR.

GOLDEN ZONE FR.

RECORD
NUMBER

$2177(1)$	January	28,	1985
$2180(1)$	January	29,	1985
$2153(1)$	January	7,	1985
$2121(10)$	October	16,	1984
$2122(10)$	October	16,	1984
$2123(10)$	October	16,	1984
$2124(10)$	October	17,	1984
$2141(11)$	November	14,	1984
$2142(11)$	November	14,	1984
$2130(10)$	October	19,	1984
$2129(10)$	October	19,	1984

HI STORY

The Hedley area in the late 1800 's and early part of this century has been the scene of extensive gold mining and exploration activities. The ore deposits were first discovered in 1896 and by 1899 a wagon road had been constructed up to the portal on Nickel Plate Mountain and a tramway built to deliver ore to the mill in the Similkameen Valley. The mines operated until the 1950's. Gold production totalled about $1,500,000$ ounces at an average grade of $0.45 \mathrm{oz} / \mathrm{ton}$.

In 1900, a satellite camp was established several miles north to develop and explore a gold-bearing fissure vein deposit. This vein system trends east-west for over 1200 feet into the 1×4 mile roof pendant of Hedley metavolcanics. The property,
now called the Golden Zone consisting of four Crown Crants, is near the northern end of the claim group. By 1910 two shafts and some drifting were in place along with a stamp mill. The property lay dormant until the mid-1930's when additional development was undertaken, including upgrading of the road up Hedley Creek for automobile traffic. Various reports have described the deposit which has in previous years assayed gold as high as $1.9 \mathrm{oz} / \mathrm{t}$ on. Accessory mineralization consists of arsenopyrite, pyrite, sphalerite and chalcopyrite.

Midland Energy Corporation purchased three of the Crown Grants and in preliminary surface sampling obtained values to $.568 \mathrm{oz} /$ ton Au and $6.56 \mathrm{oz} /$ ton $\mathrm{Ag}(\mathrm{Cruz}, 1982)$. Drill intersections as high as . $414 \mathrm{oz} /$ ton Au and $5.37 \mathrm{oz} /$ ton Ag across 5 feet were encountered at 60-65 feet (Peto, 1983).

The area surrounding the Golden Zone Camp had not been investigated until the current work was undertaken to explore specific areas in a large claim block staked by R.B. Stewart of West Vancouver, B.C. An AIRBORNE GEOPHYSICAL SURVEY (Mark, 1985) of this claim block suggested a more southerly (200 to 2000 metres) location of the Nicola/Nelson contact than has been heretofore expected. This coupled with several VLF-EM conductors and lineations established the purpose of the current program of prospecting, soil and rock sampling and geophysical surveys to develop a data base and familiarity with the property.

Recently, the entire Hedley area has been experiencing a revival of exploration interest. Only 2 km south of the claim block, Mascot Gold Mines is developing an open pit gold mine on the site of the original Hedley Mascot operation and this has spurred exploration throughout the area.

REGIONAL GEOLOGY

No mapping was undertaken in 1985. Bostock's regional mapping in 1927 (Olalla mapsheet) show the claim group to be underlain primarily by granites and granite porphyries of the Okanagan Batholith. A roof pendant of marine deposited sediments and volcanic tuffs belonging to the Nicola Group of Upper Triassic Age underlies the northern part of the property. As noted above the contact, as suggested by the airborne geophysical survey, could be further south. Both groups are host to the Hedley Mining Camp with the Nicola being regarded as the more favourable.

Outcrops are not plentiful and are generally, highly weathered. The intrusives in this area are coarse to mediumgrained and occassionally prophyritic with feldspar phenocrysts. Magnetite is commonly present as small crystals and as coatings on fracture surfaces.

PETROGRAPHIC ANALYSIS

Three petrographic analyses (see Appendix 1) on rock samples taken on the GOLDEN ZONE FR (see Map 3) describe the altered volcanics in detail. They are classifed as altered andesitic tuffs. Minerals are:

tic tufty Mitarals	L19 $3+05$ EAST PIT	L17 $2+50 \mathrm{~N}$ SHAFT	$\begin{gathered} \text { L13 } \\ 3+75 \mathrm{~N} \\ \hline \end{gathered}$
plagioclase	60\%	38\%	45\%
tremolite		22	20
diopside	17	18	20
quartz vein		8	
quartz	12	6	7
garnet		5	
K-spar	6	minor	, 4
plagioclase (vein)	3		1
pyrrhotite	2	2	- 4
sphene	minor	1	minor
calcite			trace
chalcopyrite	trace	trace	trace
epidote	trace	trace	

GEOCHEMI STRY

Eighty-eight soil and rock samples were obtained and submited for assay (see Appendix 2 and Map 3). Soil samples were taken from the 'B' horizon by means of a mattock, placed in kraft paper bags, dried, seived to -80 or -20 mesh and analyzed for 30 elements by induced coupled plasma spectrometry (ICP) at Acme Analytical Laboratories in Vancouver, B.C. All samples on the GOLDEN ZONE FR except G.Z.FR L20 $1+40 N+25 W$, G.Z.FR L5 $0+70 \mathrm{~N}+17 \mathrm{~W}, \mathrm{G} . \mathrm{Z}$.FR L3 $3+10 \mathrm{~N}+7 \mathrm{~W}$ and G.Z.FR DDH-3 were seived to -80 mesh. A . 5 gram split was digested with 3 ML 3-1-2 HCL $-\mathrm{HN} 03-\mathrm{H} 20$ at $95^{\circ} \mathrm{C}$ for one hour and diluted to 10 ML with water. Au ppb was by fire assay and atomic absorption from a 10 gram sample. All other samples including those excepted above were seived to -20 mesh and pulverized prior to digesting and Au ppb was by atomic absorption from a 10 gram sample.

Samples were taken in five areas over the claims to indicate values in these sections of the total claim block and to aid in establishing a data base for future statistical analysis on the properties held by R.B. Stewart. The areas sampled for this report are the GOLDEN ZONE FR, GOLD 1, HEDLEY 1, NICKEL 3 and B.C. FR. Based on a 355 sample base taken over all of the Stewart claims the following statistics are obtained:
SAMPLES 355
Mean
Std.Dev.-Sample
Std.Dev.-Pop
Variance
Mean +1 Std.Dev.

$\underline{\mathrm{Au}}$	$\underline{\mathrm{Ag}}$	$\underline{\mathrm{As}}$
7 ppb	.3 ppm	12 ppm
17 ppb	1.3 ppm	28 ppm
17 ppb	1.3 ppm	28 ppm
277 ppb	1.7 ppm	782 ppm
24 ppb	1.6 ppm	40 ppm

While arsenic values are not plotted on Map 3, they provide additional justification for high Au and Ag values were it
is coincidentally anomalous due to its importance in the Mascot camp to the south.

In addition, anomalous As values are secondary targets for future exploration particularly where elevated As levels coincide with Au and Ag values above Mean. The following are primary and secondary anomalous locations:

SAMPLE LOCATION
 $\underline{\mathrm{Au} \mathrm{ppb} \quad \mathrm{Ag} \mathrm{ppm} \quad \text { As } \mathrm{ppm}}$

GOLDEN ZONE FR
Primary

L13 3+75N 'B' Pit Rock	790	175.4	13,253
L19 $3+05 N$ West Pit Rock	60	.9	9
L13 7+50N Pit	45	.8	333
Secondary			
L 0+75 10	20	.1	60
L $3+50 \quad 2$	11	.3	44
L 3+50 1	3	.5	70
G.Z. DDH-3	12	.9	56

GOLD 1
Primary
GO-1 Hedley L2 $425 \mathrm{~W}+15 \mathrm{~S}$
75
22.7
359

Secondary
GOLD l Hedley L3 $4+00 \mathrm{~W}$
NICKEL 3
Secondary
NICKEL 3 L2 $8+00$ S 27 . 2

GEOLPHYSICAL SURVEY

Two geophysical methods were employed in 1985, magnetometer and VLF-EM.

A magnetometer survey was conducted with a Scintrex MP-2 proton precession instrument over an east-west grid covering the $B C$ FR claim. Lines were spaced 25 meters and readings recorded every 25 meters. Loops were made back to the baseline (B / L $0+00$) to allow correction for diurnal variations in the magnetic field. Corrected readings are given in Appendix 3.

The mag profiles reveal a northwest-southeast trending structure in the eastern part of the grid (see Appendix 4). The feature is distinct and the structure would, based on existing geologic mapping, be within the area that the metavolcanics occur. No interpretation can be made at present.

VLF-EM
A Sabre Electronics VLF-EM, model 27 was used and measurement taken by monitoring signals from Seattle, Washington (24.8 khz) on the following grids:

$$
\begin{array}{ll}
\text { GOLD } 1 & \text { Lines }-25 \mathrm{~m} ., \text { Readings } 25 \mathrm{~m} \\
\text { GOLDEN ZONE FR. Lines - } 50 \mathrm{~m} ., \text { Readings } 20 \mathrm{~m} \\
\text { B.C. FR } & \text { Lines }-25 \mathrm{~m} ., \text { Readings } 25 \mathrm{~m}
\end{array}
$$

The data was Fraser filtered and is listed in Appendix 5 for GOLD 1 and Appendix 6 for GOLDEN ZONE $F R$ and Appendix 7 for B.C. FR.

Peto (1983) notes the "mineralized zone appears to give a high, negative amplitude response but no clear conductor axis appears to be indicated." This confirms results at both the GOLDEN ZONE FR and GOLD 1 .

On the GOLD 1 (see Map 4) relatively strong amplitudes occur at L 6 and $\mathrm{L} 52+75 \mathrm{~W}$ to $3+25 \mathrm{~W}$. To a lesser degree they are maintained at L4 $3+00 \mathrm{~W}$ to $3+75 \mathrm{~W}$, L3 $3+00 \mathrm{~W}$ to $3+50 \mathrm{~W}$, L2 $3+25 \mathrm{~W}$
to $3+75 \mathrm{~W}$ and L1 $4+00 \mathrm{~W}$ to $4+75 \mathrm{~W}$. Crossovers on Ll to L8 striking northwesterly at $3+00 \mathrm{~W}$ through to $4+75 \mathrm{~W}$ are coincident with the geochemical anomaly at L2 $4+75 W+15 S$ and should be investigated further.

A high negative response on the GOLDEN ZONE FR (see Map 4) at L19 $3+00 \mathrm{~N}$ and L17 $2+80 \mathrm{~N}$ corresponds with Peto's (1983) results. A similar structure is suggested at L7 to Ll7 $0+40 \mathrm{~N}$ to $1+20 \mathrm{~N}$. Crossovers striking northwesterly across the claim at $0+60 \mathrm{~N}$ and $1+00 \mathrm{~N}$ to $2+60 \mathrm{~N}$ and $3+20 \mathrm{~N}$ are coincident with high geochemistry values in the northwest sector of the claim and higher than the mean values found in the southeast corner.

On the B.C. FR (see Map 5) the strong negative amplitudes support the magnetometer results to indicate metavolcanics. These strong crossovers maintained at $1+00 \mathrm{E}$ through $1+50 \mathrm{E}$, $1+50 \mathrm{E}$ to $2+25 \mathrm{E}$ and $2+75 \mathrm{E}$ through $3+50 \mathrm{E}$ on all lines 1 to 6 suggest continuous conductors.

The crossovers on the GOLD 1 and the B.C. FR correspond to conductor 'a' described in the airborne geophysical report (Mark, 1985). Herein, Mark noted conductor 'a' strikes $N 20^{\circ} \mathrm{E}$, increasing "in strength towards the south with the strongest part on the GOLD 1 claim".

WESTERN BOUNDARY SURVEY - GOLDEN ZONE FR 2129(10)(See Map 6)

The importance of the claim boundary in the northwest corner of the GOLDEN ZONE FR was apparent due to metavolcanic outcrops and a shaft. The southeast surveyed corner post of the GOLDEN ZONE Crown Grant L904S was located and a Kimt Kern Model Theodolite No. 303243 was employed using the original survey notes as a guide. It was established that the outcrops were on the GOLDEN ZONE FR as was the shaft.

SHAFT REHABILITATION - GOLDEN ZONE FR

A shaft caved at the collar was located approximately 70 metres, northeast of the southeast corner of the GOLDEN ZONE Crown Grant L904S on the northwest slope of the ridge centered on the GOLDEN ZONE FR. Preliminary excavation of the shaft indicated a support structure was necessary to prevent slumping of the walls. A log cribbing and platform was constructed to provide a station from which to continue excavation and to contain the loose overburden at the collar.

Approximately ten (10) feet of the shaft was stabilized with at least eight (8) feet of loose fill remaining to be excavated. This should be completed and the exposed rock examined for mineralization.

CONCLUSIONS

Based on the above, I have concluded the following:

1. Anomalous concentrations of Au, Ag and As occur in the northwest corner of the GOLDEN ZONE FR and at L2 $425 \mathrm{~W}+15 \mathrm{~S}$ on the GOLD 1 claim.
2. Secondary geochemical targets are on the GOLDEN ZONE FR at $\mathrm{L} 0+7510, \mathrm{~L} 3+501$ and 2 and G.Z. DDH-3; on the GOLD 1 at L3 $4+00 \mathrm{~W}$; and on the NICKEL 3 at L2 $8+00 \mathrm{~S}$.
3. A northwest/southeast trending structure was noted by the magnetometer survey on the B.C. FR claim.
4. Further investigation on the GOLD 1 of VLF-EM results at L 6 and L5 $2+75 \mathrm{~W}$ to $3+25 \mathrm{~W}$ and crossovers on Lines 1 to 8 striking northwesterly at $3+00 \mathrm{~W}$ through to $4+75 \mathrm{~W}$ coincident with a geochemical anomaly at L2 $4+25 W+15 \mathrm{~S}$ should be completed.
5. The VLF-EM survey concurred with previous work by others of the northwest corner of the GOLDEN ZONE FR with a possible similar structure from L7 to L17 at $0+40 \mathrm{~N}$ to $1+20 \mathrm{~N}$. This corresponds with high geochemistry values and warrants further investigation.
6. The B.C. FR VLF-EM survey revealed three strong conductors striking northeast across the claim. This corresponds with conductor 'a' of the airborne geophysical results (Mark, 1985) with continuation onto GOLD 1. Further investigation of this strong anomaly is warranted.
7. Rehabilitation of the old shaft situated on the GOLDEN ZONE FR has provided sufficient values to indicate the original purpose was to explore mineralization on the ridge centered on the GOLDEN ZONE FR.
8. The western boundary of the GOLDEN ZONE FR was established and it was determined an old shaft is located on the claim.
9. In addition to the specific targets identified in this broad survey, sufficient data has been identified on the claim block to recommend a full program of exploration over the properties to provide an accurate evaluation of the potential for mineralization as has been found in the rest of the Hedley camp.

RECOMMENDATIONS

A three phase program is recommended.

PHASE 1

Geological mapping, geochemical sampling and a geophysical program to cover the claim group with detailing of anomalous
areas.

Geological mapping	$\$ 15,000$
Geochemical sampling, grid layout	15,000
Geophysical survey	15,000
Geochemical analyses	12,000
Food and lodging	5,000
Equipment and supplies	2,000
Transportation	7,000
Data treatment and reporting	7,000
Typing and drafting	3,000
Engineering and supervision	$\underline{7,000}$
	88,000
Contingencies @ 10%	8,800
	$\$ \underline{96,800}$

PHASE 2

A detailed geophysical survey, rock geochemistry and limited diamond drilling to explore favourable targets.

Detailed geophysical survey	$\$ 7,000$
Rock geochemistry	2,000
Geological mapping and support	12,000
Dozer trenching	7,500
Diamond driling	72,000
Geochemical analyses	1,500
Core analyses	3,000
Food and lodging	4,000
Equipment and supplies	2,500
Transportation	4,000
Data treatment and reporting	3,000
Typing and drafting	2,500
Engineering and supervision	5,000
	126,000
Contingencies @ 15%	18,900
	$\$ 144,900$

PHASE 3 - Diamond Drilling

Diamond drilling incl. mob-demob. bits,	
core boxes, etc. 950 m @ $\$ 130 / \mathrm{m}$	
Bulldozer pad and road construction,	$\$ 123,500$
drillskidding	10,500
Geological support	12,000
Assay analysis	2,500
Food and lodging	3,000
Equipment and supplies	2,000
Transportation	3,000
Permits and compliance	7,000
Engineering and supervision	5,000
Report	$\underline{5,500}$
	174,000
Contingencies @ 15%	$\underline{26,100}$
	$\$ \underline{200,100}$

Results of each Phase should be reviewed, evaluated and reported by an engineer with continuation of the program based upon favourable recommendations.

DETAILED COST STATEMENT

 1985 FIELD PROGRAMA. Wages and Fees

1. R.T. McKnight, P.Eng. (3.25 days @ $\$ 300 /$ day), Aug. 31 ; Sept. 1, 2, 1985
2. Raymond W. B. Stewart (11 days@ \$200), June 28, 29, 30; July 1; Aug. 12, 13, 14; Sept 1,2, 1985
\$ 975.00

$$
2,200.00
$$

3. Michelle Johnson (5 days @ \$75/day), June 28,29; Aug. 12, 13, 14, 1985
375.00
4. Paul W. LaFontaine (8 days @ \$150), June 28,29,30; July 1; Aug. 30, 31; 5. RoderickS. Stewart (5 days @ \$175) , June 28,29; Aug. 12, 13, 14, 1985 1,200.00 875.00
B. Food, Accommodation (32 man-days)

1,029.82
C. Transportation

4 wheel drive, 4 trips Vancouver property
592.46
D. Analyses

$$
88 \text { samples }(\$ 14.32 / \mathrm{sample}) \quad 1,260.02
$$

E. Equipment

Magnetometer, 7 days @ \$175/day 1,225.00
VLF-EM, 7 days @ \$50/day
350.00
F. Report

Drafting maps, typing, prints, photo copying, materials
437.86

TOTAL

CERTIFICATE OF QUALIFICATIONS

I, Robert T. McKnight, P.Eng., residing in North Vancouver, B.C. do certify that:-

1. I am a registered Professional Engineer in the Province of British Columbia.
2. I have a degree of Bachelor of Applied Science in Geological Engineering from the University of British Columbia. I am a member of the Canadian Institute of Mining and Metallurgy.
3. I have practiced as a geologist, geophysicist and mining financial analyst in B.C., Alberta, and other Provinces of Canada since 1972.
4. I am the author of the Report entitled "GEOLOGICAL and GEOPHYSICAL REPORT ON THE GOLDEN GROUP CLAIMS". The report is based on a trip to the property by myself and on fieldwork supervised by myself.
5. I have no financial interest in the ownership of the property nor do I expect to receive such interest.

Respectfully Submitted,

Robert T. McKnight, P. Eng. Vancouver, B.C. March 20, 1986

BIBLIOGRAPHY

AMENDOLAGINE, E. 1982. Geology and soil geochemistry survey report, $G M$ claim Similkameen mining division. Assessment report l0013, part l, for Kelly Kerr Energy Corporation.
--- 1982. Geology and soil geochemistry survey report, EA claim, Similkameen mining division. Assessment report 10014, part 1, for Tuscaloosa Oil \& Gas Inc.
--- 1982. Geology and soil geochemistry survey report, VA claim, Similkameen mining division. Assessment report 10015, part 1 , for Kadrey Energy Corporation.
---- 1982. Geology and soil geochemistry survey reports, JA claim, Similkameen mining division. Assessment report 10016, part 1 , for Berle Oil Corporation.

BEAUDOIN, P.G. 1971. Work report for the Hed Property, 20 miles west of Penticton, B.C. Assessment report 3399 for Canex Aerial Exploration Ltd.

BELLAMY, Allan F. 1981. Geological, geochemical, geophysical surveys of the Oro-Zone-Reno-Neva claims group. Apex-Nickel Plate Lake area, Osoyoos mining division. Assessment report 9706 for Gordon Ramsay.
B.C. MINISTER of MINES Annual Reports. 1909-10, 1913, 1927-28, 1931-34, 1936-37.

CAMSELL, Charles. 1910. The geology, and ore deposits of Hedley Mining District, British Columbia. Geological Survey of Canada, Memoir 2, 218 p.

CRUZ, E.D. 1982. Report of the Golden Zone Group, Twenty Mile Creek, Hedley, Osoyoos mining division, B.C. Report for Midland Energy Corporation.

GOLDSMITH, Locke B. 1980. Hedley area gold property, NN, JB, KR, LF, and Skidoo claims. Assessment report 8727 for Mercedes Petroleum Ltd.

GRUENWALD, W. 1979. Geological, geochemical and geophysical report on the Cathedral claims Osoyoos and Similkameen mining divisions. Assessment report 7511 for Union Oil Company of Canada Ltd.

GUTRATH, G. 1972. Geochemical survey report of the Patricia claim group, Osoyoos mining division, B.C. Assessment report 3561 for Corval Resources Ltd.
--- 1973. Geological and geochemical report on the Patricia claim group, Osoyoos mining division, B.C. Assessment report 4233 for Corval Resources Ltd.

HAINSWORTH, W.G. May 1, 1980. Report on the Nickel Plate property Osoyoos mining division, Hedley, B.C., for Mascot Nickel Plate Mines Ltd.
-.-- August 1, 1980. Progress report on the Nickel Plate property.
--- July 1, 1981. Summary of the 1980-81 exploration and rehabilitation program and the ongoing exploration program at the Nickel Plate property, Osoyoos mining division, for Mascot Gold Mines Limited.
-.- December 17, 1982. Assessment report on work completed on crown grants: Iron Duke L. 1600 and Copperfield L 742, Osoyoos mining division, British Columbia. Assessment report 11016 for Mascot Gold Mines Limited.

HANSEN, M.C. 1985. Geophysical report on the airborne magnetic and VLF-EM surveys over the Tough Oaks claim group, Broken Creek, Hedley area, Osoyoos mining division. Report for Charles Marshall.

JOHNSON, Darrel L. 1978. Report on percussion drilling, McNulty mineral claims, Osoyoos mining division. Assessment report 6822 for Lacana Mining Corporation.
--- 1981. A report on geochemical sampling on the Bluff 1 and 2, Arseno and Smith mineral claims, Similkameen mining division. Assessment report 9408 for Lacana Mining Corporation.

JONES, Harold M. 1982. A geological and geochemical report on Goldmine and Goldhill claims, Similkameen mining division, B.C. Assessment report 10882 for Philex Gold and Energy Corporation.

JURY, Rae G. 1969. Geological and geophysical survey report on Stemwinder Mountain property, Hedley, B.C. Assessment report 2182 for Greyledge Mines Ltd.
--- 1970. Magnetometer survey, Hedley property, B.C. Assessment report 2183 for Greyledge Mines Ltd.

KELLY, Sherwin F. 1983. Report on a magnetometer survey of Orion, R.J. Group, John and Jim Group claims, Osoyoos mining division, B.C. Assessment report 11534 for Primont Resources Ltd.

LAMB, John, 1967. Geological report on the Good Hope - Nighthawk claims (Jumbo Group) Hedley area, B.C. Assessment report 971 for Highpoint Mines Ltd.

B-3
LEIGHTON, D.G. 1979. Drilling report on the Ash 1-3 mineral claims, Agur-Ash property, Osoyoos mining division, B.C. Assessment report 7362 for -...-

LOGAN, James M., and GOLDSMITH, Locke B. 1981. Geology and soil geochemistry of the Cahill Group and adjoining areas, Osoyoos mining division, Hedley, B.C. Report for Arctex Engineering Services.

MACDONALD, Colin C. 1976. Geology, geochemistry and diamond drilling of the Hed claims, Similkameen mining division, British Columbia. Assessment report 6060 for Canadian Occidental Petroleum Ltd.

MACRAE, Rod, and BARAKSO, J. 1970. A geochemical and linecutting report on the Hed group, Osoyoos mining division, B.C. Assessment report 2709 for Anaconda American Brass Ltd.

McKNIGHT, Robert T. 1984. Assessment report on $=$ the $W B-1$ and WB-3 claims, Osoyoos mining division, B.C. Report for Loss Lament Investments Ltd.
--- 1984. Assessment report on the Plate, Plate 1 and WB-4 claims, Osoyoos mining division, B.C. Report for the Okanagan Mining Syndicate.
--- 1985. Assessment report on the Nickel Group claims, Osoyoos mining division, B.C. Private report for Raymond B. Stewart.

MARIANO, Alejo, Jr. 1982. Prospecting report on the Goldmine mineral claim, Similkameen mining division, B.C. Assessment report 10882 for Philex Gold and Energy Corporation.

MARK, David G. 1983. Geophysical report on magnetic and VLF-EM surveys over the Jan claim group and the Louise claim group, Hedley area, Similkameen and Osoyoos mining divisions, B.C. Assessment report 11103 for Kirby Energy Ventures Inc.
--- 1983. Geophysical report on airborne magnetic and VLF-EM surveys over the Golden Mist, Gold Haze, Gold Breeze, Gold Cloud and Gold Dog claims, Hedley area, Osoyoos mining division, B.C. Assessment report for Golden Dawn Exploration Ltd.
--. 1983. Geophysical report on airborne magnetic and VLF-EM surveys over the Gold Star, Gold Bite, Gold Frog, Golden Flea and Gold Tooth claims, Hedley area, Osoyoos and Similkameen mining divisions, B. C. Assessment report for Tunstall Resources Ltd.
-..- 1983. Geophysical report on a VLF-EM survey over the Sun 1 and 2 claims, Hedley area, Osoyoos mining division, B.C. Assessment report 11274 for Gold Cup Resources Ltd.
--- 1983. Geophysical report on a VLF-EM survey over the Skidoo 1 and Windy 2 claims, Hedley area, Osoyoos mining division, B.C. Assessment report 11855 for Western Informational Services Ltd.
---- 1984. Geophysical report on airborne magnetic and VLF-EM surveys over the Hedley property, Osoyoos and Similkameen mining divisions, B.C. Assessment report 11874 for Pacific Seadrift Resources Ltd.
-.-- 1983. Geophysical report on a VLF-EM survey over the Skidoo 1 and Windy 2 claims, Hedley area, Osoyoos mining division, B.C. Assessment report 11993, part l, for Western Informational Services Ltd.
-.- 1984. Geochemical report on a soil sample survey over the Skidoo 1 and Windy 2 claims, Osoyoos mining division, B.C. Assessment report 11993, part 2, for Western Informational Services Ltd.
--- 1983. Geophysical report on airborne magnetic and VLF-EM surveys over the Jan claim group and Louise claim group, Hedley area, Osoyoos and Similkameen mining divisions, B.C. Assessment reports 12019 (for Jan claims) and 12020 (for Louise claims) for Kirby Energy Ventures Inc.
--- 1985. Geophysical report on airborne magnetic and VLF-EM surveys over the Golden Zone property, Hedley area, Osoyoos mining division, B.C. Private report for the Okanagan Mining Syndicate and R.B. Stewart.

OLSON, D.C. 1982. Geology report on the MA claim, Similkameen mining division. Assessment report 10019 , part l, for Emanuel Amendolagine.
--- 1982. Geology report on the SA claim, Similkameen mining division. Assessment report 10020, part 1, for Emanuel Amendolagine.

PATMORE, W.H. 1941. Pseudo-pyrometasomatic gold at Hedley, British Columbia. Unpublished PhD thesis, Princeton University, 196 p .

PEATFIELD, G.R. 1978. Geologic history and metallogeny of the 'Boundary District', southern British Columbia and northern Washington. Unpublished PhD thesis, Queen's University, 250 p.

PETO, Peter. 1983. Geological, geochemical and geophysical report on the Golden Zone property, Osoyoos mining division, B.C. Report for Midland Energy Corporation.

B-5

-.- 1983. Geochemical, geophysical and diamond drilling report on the Golden Zone property, Osoyoos mining division, B.C. Report for Midland Energy Corporation.

PEZZOT, E. Trent, and WHITE, Glen E. 1982. Geophysical report on an airborne VLF-EM and magnetometer survey, GM claim, Similkameen mining division, B.C. Assesment report 10013, part 2, for Kelly Kerr Energy Corporation.
--- 1982. Geophysical report on an airborne VLF-EM and magnetometer survey, EA claim, Similkameen mining division, B.C. Assessment report 10014, part 2, for Tuscaloosa Oil \& Gas Inc.
--- 1982. Geophysical report on an airborne VLF-EM and magnetometer survey, VA claim, Similkameen mining division, B.C. Assessment report 10015, part 2, for Kadrey Energy Corporation.
--- 1982. Geophysical report on an airborne VLF-EM and magnetometer survey, JA claim, Similkameen mining division, B.C. Assessment report 10016, part 2, for Berle Oil Corporation.
--- 1982. Geophysical report on an airborne VLF-EM and magnetometer survey, $M A$ and $S A$ claims, Similkameen mining division, B.C. Assessment report 10019, part 2, for Emanuel Amendolagine.
--- 1982. Geophysical report on an airborne VLF-EM and magnetometer survey, MA and SA claims, Similkameen mining division, B.C. Assessment report 10020, part 2, for Emanuel Amendolagine.

PHENDLER, R.W. 1981. Diamond drilling report on the Mission property, Hedley, Osoyoos mining division, B.C. Assessment report 9222 , part 1 , for Agio Resource Corporation.

SERAPHIM, R.H. 1982. Report on Banbury Gold Mines Ltd., Hedley, B.C.
--- 1984. Report on Banbury Gold Mines Ltd., Hedley, B.C.
SINGHAI, G.C. 1976. Report on Tough Oaks, Bwinaby, and Glynne Hill mineral claims, Broken Creek, Osoyoos mining division, B.C. Assessment report 6091 for Charles Marshall.

SOOKOCHOFF, L. 1980. Geophysical survey (VLF-EM and magnetometer) on Tough Oaks property, Broken Creek, Osoyoos mining division B.C. Assessment report 8737 for Tricor Resources Ltd.
--- 1981. Diamond drilling on Tough Oaks property, Broken Creek, Osoyoos mining division, B.C. Assessment report 9780 for Tricor Resources Ltd.
-.-- 1984. Geological evaluation report for Golden Dawn Explorations Ltd. on the Hedley claim group, Osoyoos mining division. In prospectus for Golden Dawn Explorations Ltd.

TULLY, Donald W. 1983. Assessment report on a preliminary geological and geochemical survey, Patsy 1 mineral claim, Similkameen mining division, B.C. Assessment report 11901 for Vandorex Energy Corporation.

WESTERVELT, R.D. 1983. A preliminary report on the Cahill claim group, Hedley, B.C. Report for Barsand Resources Inc.

WEYMARK, William J. 1980. Geological, geochemical, geophysical surveys of the Oro-Zone mineral claims group, Hedley, Nickel Plate Creek area, Osoyoos mining division, B.C. Assessment report 8753 for Gordon Ramsay.
---- 1983. Geological and peophysical surveys of the Oro-Zone-Reno-Neva mineral claims group, Hedley-Nickel Plate Creek area, Osoyoos mining division, B.C. Assessment report 11687 for Gordon Ramsey.

WHITE, Glen E., and PARENT, D. 1972. Geochemical and geophysical report, Flint claim group, Osoyoos mining division, B.C. Assessment report 3904 for Austro-Can Explorations Ltd.

WHITE, Glen E. 1976. Geophysical report on the French Mine claims, Hedley, B.C. Assessment report 6274 for Grove Explorations Ltd.
--- 1980. Geophysical report on an induced polarization survey, Flint and Mission claims, Hedley area, Osoyoos mining division, B.C. Assessment report 9222 , part 2, for Agio Resource Corporation.

WILMOT, A.D. 1980. Report on percussion drilling, Lake mineral claims, Osoyoos mining division, B.C. Assessment report 8732 for Good Hope Resources Ltd.
--- 1980. Report on percussion drilling, Canty property, Osoyoos mining division, B.C. Assessment report 8786 for Good Hope Resources Ltd.
--. 1981. Report on percussion drilling, Good Hope property, Osoyoos mining division. Assessment report 10196 for Good Hope Resources Ltd.
--- 1981. Report on diamond and percussion drilling, Canty property, Osoyoos mining division, B.C. Assessment report 10213 for Good Hope Resources Ltd.
1982. Report on the Canty property, diamond drilling, 1982. Osoyoos mining division, B.C. Assessment report 10800 for Good Hope Resources Ltd.
1982. Report on the Horsefly property, diamond drilling, 1982. Osoyoos mining division, B.C. Assessment report 10801 for Good Hope Resources Ltd.

YOUNG, R.J. 1984. Grid construction and geochemical report on the R.J. Group, Jim Group, Orion claim, Cyrus claim, John claim, Cygon 1 claim , Cygon 2 claim , and Cygon 3 claim , Osoyoos mining division, B.C. Assessment report 12850 for Placer Development Limited.
--- 1984. Grid construction, geological, geochemical and geophysical report on the Taurus, Taurus Add 1, Taurus Add 2, New Hope, Star 1, Star 2, and Star 3 mineral claims, Osoyoos mining division, B.C. Assessment report 13012 for Placer Development Limited.

PO. BOX 39 HB HT NASH STREET FORT LANGLEY, BC. VGXIJO

PHONE (604) 888-1323

Invoice 5274

> Report for: R. B. Stewart, Westbank Leasing Ltd., 1725, Two Bentall Centre, Vancouver, B.C., v7X 1 Kl .

July 31, 1985

Summary:
All three samples are altered andesitic tuff, consisting of a very fine plagioclase matrix with scattered quartz and plagioclase fragments. L19-3+05 East Pit and L17-2+50N Shaft are broadly similar but have been altered slightly differently. L13-3+75N is much finer grained, is indistinctly layered and may contain large quartzitic fragments. Plagioclase fragments in all three rocks are a relatively small component.

The alteration is all of the same type but differs in some details. Diopside is common to all three rocks and forms very fine grains disseminated throughout. It is associated with disseminated pyrrhotite. In L13-3-75N large patches of poekiloblastic tremolite grains have formed around and within the large quartz fragments. Pyrrhotite is intergrown with these. In $117-2+50 \mathrm{~N}$ Shaft there are thin veinlets and vein-like patches containing quartz and garnet; large poekiloblastic tremolite grains occur in the rock adjacent to these. Pyrhhotite is intergrown with the garnet and quartz. In L19-3-05 East Pit there are a few thin veinlets of plagioclase intergrown with pyrrhotite. No tremolite occurs in this rock.

L19-3+05 East Pit: ALTERED (DIOPSIDE) ANDESITIC TUFF.

This sample is an andesitic tuff consisting of small quartz and plagioclase fragments scattered unevenly within a fine grained matrix of plagioclase. Pervasive alteration by diopside has occured. This is associated some pervasive K-spar alteration. Pyrrhotite is disseminated throughout and also occurs in veinlets of plagioclase which perhaps may have been remobilised during the alteration. Minerals are:

plagioclase	60%
diopside	17
quartz	12
K-spar	6
plagioclase (vein)	3
pyrrhotite	2
sphene	minor
chalcopyrite	trace
epidote	trace

The matrix consists of a mass of subrounded interlocking plagioclase grains about 0.05 mm in size. Scattered unevenly throughout this are rounded grains and aggregates of quartz 0.2 to 0.8 mm in size; there is one aggregates 2 mm in size consisting of rounded quartz grains about 0.05 mm in size. Plagioclase fragments (making up about 10% of the rock) are tabular or shapeless and about the same size as the quartz fragments. Aggregates do not occur. Throughout the mass of plagioclase there is very fine K-spar which occurs between the grains in fine diffuse patches. This has sometimes penetrated between the grains in the quartz aggregates; the large fragment contains a fairly high proportion of K-spar. Some of the plagioclase fragments have been replaced by fine K-spar.

Diopside is the main alteration mineral. It forms rounded grains less than 0.05 mm in size which are disseminated throughout the rock amongst the matrix plagioclase. It coalesces into shapeless patches and coarser grains up to 1 mm in size. There is often a narrow zone of diopside around the quartzitic fragments and small patches occur in the plagioclase fragments. The diopdide is sometimes associated with sphene which forms very fine grains occuring within and around small diopside aggregates. The may coalesce to form rounded or shapeless grains up to 0.3 mm in size which are scattered about the rock.

There is also a thin zone of diopside concentration adjacent to a few discontinuous plagioclase veinlets up to 1.5 mm in width. In these the plagioclase (perhaps sodic, but not albite since RI is greater than balsam) forms subhedral grains about 0.5 mm in size. As well as occuring adjacent to these there is some diopside intergrown with it. A few small grains of epidote occur amongst the diopside in thge veinlets.

These veinlets contain much of the pyrrhotite in the rock and it forms shapeless elongated grains and aggregates up to 2 mm in length intergrown with the plagioclase. Pyrrhotite is also disseminated throughout the rock where it forms ragged grains 0.02 to 0.2 mm in size, often occuring in clusters associated with diopsidic patches. Grains up to 0.5 mm in size are intergrown with quartz. Rare chalcopyrite occurs adjacent to larger pyrrhotite grains.

L17-2+50N Shaft: ALTERED (DIOPSIDE, TREMOLITE) ANDESITIC TUFF.

This sample is an altered volcaniclastic rock originally consisting of quartz fragments scattered unevenly throughout a fine plagioclase matrix. Pervasive alteration by diopside and tremolite has occured. This is associated with the development of thin discontinuous quartz veinlets containing garnet and pyrrhotite, which is also disseminated throughout. Minerals are:

plagioclase	38%
tremolite	22
diopside	18
quartz vein	8
quartz	6
garnet	5
pyrrhotite	2
sphene	1
K-spar	minor
epidote	trace
chalcopyrite	trace

Plagioclase forms a mass of subrounded grains about 0.05 mm in size. Scattered within this are a few lath-like grains (fragments ?) up to 0.5 mm in size. Quartz fragments are subangular or rounded and range in size from 0.2 to 1.0 mm . The smaller ones are less rounded and are usually single grains. The larger more rounded ones are aggregates of a few large grains or several small ones.

Pervasive diopside mineraliztion has occured and this forms rounded grains less than 0.05 mm in size which are disseminated throughout between and within the plagioclase, often coalescing into small diffuse patches. It is associated with tremolite which forms broad irregularly shaped grains of variable size from 0.2 to 2.0 mm . The smaller ones are intergrown with the diopside and plagioclase. The larger ones form poekiloblastic grains enclosing plagioclase. The diopside tends to be concentrated in a thin zone around the tremolites. Very fine grains of sphene sometimes occur within small diopside patches; these coalesce to form rounded grains up to 0.4 mm in size which are scattered about the rock. Minor amounts of extremely fine K-spar are associated with the pervasive alteration. This occurs in small indistinct patches within the plagioclase.

There are patches of large poekiloblastic tremolites adjacent to quartz veinlets and vein-like patches cutting through the rock. These are up to 1 mm wide and consist of subrounded interlocking quartz grains about 0.5 mm in size and are intergrown with garnet. This sometimes forms patches a few millimeters in size which "spill over" into the adjacent rock.

L17-2+50N Shaft. (cont.)

Pyrrhotite is associated with the garnet in the veinlets and the diopside in the rock. Shapeless or rounded grains 0.02 to 0.2 mm in size are disseminated throughout, mainly occuring in small diopsidic concentrations, often in clusters. Larger irregularly shaped grains up to 1 mm in size are intergrown with the quartz and garnet, sometimes being contained in the garnet; in places there is a narrow zone of tremolite between the pyrrhotite and garnet. There is a massive patch of pyrrhotite 2.5 mm in size within a small vein-like patch of quartz. This is weathering to marcasite; elsewhere limonitic stain has developed. Rare small grains of chalcopyrite occur adjacent to pyrrhotite. In places there are small epidote grains which cluster around the disseminated pyrrhotite.

L13-3+75N: ALTERED (DIOPS IDE, TREMOLITE) ANDESITIC TUFF.

This sample is a fine grained layered volcaniclastic rock consisting of very fine plagioclase with quartz and/or plagioclase fragments occuring in some layers. Layering is rather indistinct and has been obscured by pervasive alteration, and perhaps by pre-alteration movement (slumping during consolidation ??). Layers are 2 to 10 mm thick. Minerals are:

plagioclase	45%
diopside	20
tremolite	20
quartz	7
K-spar	4
pyrrhotite	4
sphene	minor
calcite	trace
chalcopyrite	trace

Plagioclase forms a mass of rounded grains less than 0.005 mm in size. There is little difference between layers in the plagioclase but layering is a result in varying proportions of fragmental material. In the wider layers there are rounded quartz fragments up to 1 mm in size consisting of a mass of rounded grains about 0.1 mm in size. Some of the thinner layers mainly contain small quartz fragments (single grains and aggregates); others mainly contain small laths of plagioclase. In those in which quartz fragments are dominant there has been pervasive K-spar alteration. In those containing mainly plagioclase, K-spar alteration has affected the plagioclase laths and occurs in extremely thin diffuse veinlets.

Diopside forms thin prismatic grains about 0.05 mm in size which are disseminated within plagioclase throughout the rock. They sometimes coalesce to forms small diffuse patches or occur in extremely thin discontinuous veinlets. The patches may be associated with fine grains of sphene.

Tremolite forms highly irregularly shaped grains 0.1 to 0.2 mm in size which have grown within the matrix plagioclase, but more commonly occur within the plagioclase fragments. However much of the tremolite is associated with the quartz fragments. In that part of the rock containing large quartz fragments there are highly poekiloblastic grains of tremolite up to 2 mm in size. These have grown within the plagioclase around the quartz fragments and partly replace those also. There is a patch of this material several millimeters in size. The tremolite grains are usually peppered with fine diopside.

Pyrrhotite is associated with the tremolite and quartz. Subrounded or ragged grains 0.02 to 0.2 mm in size are disseminated throughout the rock, often occuring in small clusters in around small tremolites or within diopsidic patches. Most occurs intergrown with the large poekiloblastic tremolite grains and with the quartz in the altered fragments. In these parts it forms clusters of irregularly shaped grains of variable size up to 1 mm . Minor alteration to marcasite has occured. Small calcite and/or sphene grains may occur adjacent to pyrrhotite which is intergrown with quartz. Small grains of chalcopyrite occur amongst the clusters of fine pyrrhotite.
-34-

APPENDIX 2 - SOIL AND ROCK GEOCHEMISTRY
Hin H X PN IV \＆it
∞
$\approx \sim$

$\because ニ \cong \cong$

흐으으ㄴㅛㅡㄹ
등ㅇㅇㅇ
꼬ㄲㅒㅒ
～2
응흥킁
戸がット

？
$\therefore=0=0$

\div 운ํํ
か～以及以
$\because \because \div \because ゚$
$7=588$
戠
就
かッニロ～
 FIEFOR？MAILED：Daly $21 / 85$
 R．STEWART
harictan
M
Nn
\cdots
NMNNN

NNMNN
－axa～～
ํํํ뾰
－nmmn

AN
으ㄴㅜㅜ웅

응 $=80$
응 $ㅇ ㅡ ㅇ ~$

$n-\pi \sim 8$
$\cdots m=\infty+$ $m n-\cdots$
$n \div-\infty-$
$n----$ ${ }^{\circ} g$ $=-8$ 8
\qquad $----$

心慈윽윽

罗完号品 둥ㅎㅇ 훙ㅎㅎ․ ～웅ㅎㅇ 웅몽
\because ํํ옹
g 푤

宛空
들 \＆졸

3 돌
욘 혈
 ッのさッツ

シッローラ
－
ニーロー～～ －nnno
のかにか
がッロッ
\＆\＆
$コ ッ ツ ッ$
$\because \because--\infty$
$\because-\square-7$

ッn m＝
$\square \approx$
$m \sim$
$-\infty$
$-\infty$
\qquad
\qquad
$-\rightarrow-\infty$
$----=$ 하얭ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

응읃 $\stackrel{\rightharpoonup}{\Sigma}$

그으亿․․

8 このがか

以ックがが品

 긍

$\because \stackrel{\square}{\square} \because \because$
\div
$\because ニ ッ$
$\therefore \cdots$
ぶロッタ
永 ก็
$-\approx \approx 8$
$\stackrel{\rightharpoonup}{0}$

是星是是
nomin
$\pm \boxed{\circ}$
in

え
ニッニッス
～のルッロ
\square
n

是
路
是

2
\because
\because
n

男
∞
on
品～か
－第三

$\%$

ふッツ
ミニッタす
～

SAMPLE

ーNMーin oncos

L13 7＋50W PII

ACME ANALYTICAL LABORATORIES LTD. B52 E.HASTINGS ST.VANCOUVER B.C. VGA 1RG PHONE 253-315B DATA LINE 251-1011

GEDCHEMICAL ICP ANALYSIS

. 500 GRAM SAMPLE IS DIGESTED YITH 3ML $3-1-2$ KCL-MNOS-H2O AT 9S DEG. C FOR OKE HOUR AND IS DILUTED TO 10 ML MITK WATER.
THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.MG. BA.TI.B.AL.NA.K.N.SI.IR.CE.SN.Y.KB AND TA. AU DETECTIDM LIMIT BY ICP IS 3 PPM.

WICXEL 3 LO 2+00S
WICKEL 3 LO $4+005$ WICXEL 3 10 $4+305$ $\begin{array}{lll}\text { MICKEL } 3 \text { lo } \\ \text { MICKEI } & 3+005 \\ \text { LO } & 12+00 S\end{array}$ MICKEI 3 LO $12+00 S$
MICKEE 3 LO $13+755$

HICKEL 3 LO 16+005 MICKEL 3 LO 20+005 HICKEL 3 LO $24+005$ MICKEL 3 LO $28+005$ HICXEL $3122+00 S$
nICKEL 3 L2 4+00s HICKEL $3124+3 J S$ HICKEL 3 L2 $8+005$ MICKE $31212+005$

2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	4
2	2
2	2
2	2
2	2
2	2
2	2
2	2
2	1
2	2
2	2

22
10
19
32
23
13
13
31
19
30
19
29
12
16
25
11
20
27
7
28
14
29 .15
.18
.14
.10
.19
.15
.14
.10
.14
.08
.09
.23
.11
.11
.09
10
.34
.07
.10
.09
.09
.06
.10
.09
.11 .02
.03
.06
.09
.04
.03
.04
.09
.04
.08
.07
.10
.03
.03
.07
.02
.04
.07
.02
.07
.04
.10
.02
.07
.07
.02
.04
.14 11
9
30
5
9
19
14
9
14
8
5
46
8
6
4
15
44
4
8
7
7
5
7
4
4
5 $\begin{array}{ll}1 & .09 \\ 1 & .11 \\ 9 & .12 \\ 7 & .26 \\ 4 & .11 \\ 1 & .15 \\ 9 & .17 \\ 5 & .16 \\ 8 & .16 \\ 6 & .09 \\ 10 & .26 \\ 1 & .09 \\ 4 & .06 \\ 4 & .12 \\ 2 & .05 \\ 6 & .20 \\ 6 & .11 \\ 3 & .07 \\ 8 & .16 \\ 2 & .08 \\ 9 & .14 \\ 2 & .12 \\ 8 & .13 \\ 5 & .12 \\ 4 & .08 \\ 6 & .19 \\ 55 & .88\end{array}$ 53
121
58
81
50
62
62
67
61
48
19
225
36
50
64
26
100
44
59
63
31
43
40
52
70
58 .04
.02
.07
.07
.03
.06
.08
.06
.07
.05
.08
.03
.06
.06
.03
.07
.06
.04
.07
.02
.07
.03
.06
.06
.02
.08
.07 $\begin{array}{ll}2 & .65 \\ 6 & 1 \\ 2 & 1 \\ 2 & 1 \\ 3 & \\ 2 & \\ 5 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 1 & 3 \\ 3 & \\ 3 & \\ 2 & 1 \\ 5 & \\ 1 & 1 \\ 2 & 1 \\ 2 & 1 \\ 3 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 2 & \\ 2 & 1 . \\ 3 & 1\end{array}$.65
.82
1.48
1.46
.51
.99
1.61
1.10
1.66
1.06
3.27
.37
.80
1.23
.26
1.23
1.38
.50
1.46
.41
1.65
.39
1.13
1.14
.39 .02
.02
.02
.02
.02
.04
.02
.02
.02
.02
.02
.02
.02
.02
.03
.02
.02
.02
.01
.02
.02
.02
.02
.03
.03 .02
.03
.03
.04
.03
.03
.03
.03
.02
.03 $\begin{array}{ll}1 & 8 \\ 2 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1\end{array}$

WICKEL 3 L14 $14+00 \mathrm{~N}$ MICKEL 3 L14 10+00M micka $3141+00 \mathrm{~m}$ $\begin{array}{lll}\text { MICKEL } \\ \text { WICKEL } \\ 3 & 14 & 4+000 \\ 2+00 W\end{array}$

MICKEL 3 L14 0+00M WICXEL 3 L15 $1+305$ NICKEL 3 L15 4+005 $\begin{array}{ll}\text { MICXEL } 3 & L 15 \\ \text { nICKEL } 3 & 1+005 \\ & 11+005\end{array}$

HICXEL 3 L15 15+00S STO C/AU-0.5

NICREL 3 i 15 19+00S	2	5	5	53	. 1	3	4	235	1.84	2	5	ND	4	6	1	2	2	26	. 05	. 08	4	1	. 16	57	. 07	2	1.42	. 02	. 64	1
WHCAEL $311523+605$	1	10	7	44	. 1	5	4	431	1.80	2	5	No	4	10	1	2	2	26	. 10	. 12	-	7	. 15	70	. 08	2	1.52	. 02	. 04	1
NICXEL 3 L15 $27+005$	1	9	7	37	. 1	1	3	339	1.76	2	1	ND	4	10	1	2	2	26	. 14	. 05	7	5	. 17	64	. 10	2	. 96	. 03	. 04	1
NICKEL 3115300005	1	5	10	13	. 2	1	1	81	. 50	2	5	ND	1	18	1	2	4	8	. 16	. 03	11	4	. 07	80	. 06	2	. 75	. 03	. 02	1
HEDER $1.6+100 \mathrm{~m}$	2	13	4	49	. 1	5	5	180	2.08	12	5	ND	3	12	1	2	2	36	. 10	. 11	\bigcirc	11	. 18	74	. 08	4	1.50	. 02	. 05	1
HEDETET 1 Ot 2 \% ich	2	12	7	33	. 1	1	10	1195	1.86	15	7	ND	2	20	1	2	2	32	. 32	. 05	27	8	. 22	84	. 05	2	. 82	. 62	. 06	2
HEDEE : $0+330 \mathrm{M}$	2	5	8	44	. 1	6	5	1389	2.17	8	5	ND	6	25	!	2	2	27	. 31	. 06	12	7	. 25	126	. 07	5	. 66	. 03	. 11	1
HEDET : $0+400 \mathrm{~N}$	1	14	3	51	. 2	0	4	239	2.12	9	5	MD	6	19	1	2	2	36	. 18	. 09	9	10	. 21	86	. 08	3	1.62	. 03	. 05	1
HEDLEY I SOON+130E	2	13	9	56	. 1	${ }^{6}$	5	666	2.09	11	5	ND	2	25	1	2	2	34	. 25	. 07	15	10	. 24	83	. 07	3	1.35	. 02	. 05	1
HECLET ! $500 \mathrm{~N}+300 \mathrm{E}+365$	2	17	6	67	. 6	13	5	722	2.40	9	5	N0	4	31	1	2	2	39	. 36	. 05	36	12	. 28	102	. 10	2	2.11	. 02	. 05	1
HEDLEY $1500 \mathrm{~N}+400 \mathrm{E}$	3	35	11	82	. 7	18	7	1001	3.39	21	19	ND	3	45	1	2	2	55	. 48	. 07	54	21	. 36	170	. 09	3	2.74	. 03	. 08	1
HEDLEY $1500 \mathrm{~K}+500 \mathrm{E}+545$	4	13	3	53	. 1	10	8	1595	3.59	15	5	ND	,	31	1	2	2	41	. 36	. 07	18	10	. 23	109	. 05	3	. 94	. 02	. 05	1
HEDLEY $1500 \mathrm{~N}+500 \mathrm{E}+1065$	1	23	6	51	. 4	12	5	213	1.77	6	9	ND	1	45	1	2	2	28	. 50	. 04	28	15	. 27	132	. 08	2	1.84	. 03	. 00	1

85. Fraction Liteo 1	1	11	3	108	. 1	11	6	256	2.15	4	5	WD	2	18	1	2	2	31	. 15	. 11	4	9	. 20	102	. 13	2	2.29	. 03	. 64	1	1
EC FRACIIO L1+003	1	15	2	76	. 1	10	7	306	2.47	8	5	ND	2	18	1	2	2	44	. 17	. 10	3	9	. 26	94	. 12	2	1.85	. 02	. 05	1	1
BC FRACTION LI+00 5	2	15	8	80	. 2	13	8	554	2.97	11	5	ND	2	22	1	2	2	58	. 26	. 06	5	14	. 42	112	. 12	2	2.12	. 02	. 08	1	1
BC FRaction $1!+00$]	1	21	5	114	. 1	12	8	457	2.94	22	5	ND	2	20	1	2	2	55	. 19	. 07	7	12	. 38	116	. 11	2	2.20	. 02	.06	1	1
BC FRACHION $11+00$ a	2	14	6	105	. 2	12	7	470	2.55	21	5	ND	1	24	1	2	2	48	. 38	. 05	4	11	. 32	119	. 10	2	1.88	. 03	. 05	1	2
GOLD : HEDLEY L1 4+00\%	1	18	7	119	. 2	13	6	416	2.44	47	5	MD	3	15	1	2	2	40	. 13	. 10	7	11	. 23	99	. 08	2	1.78	. 02	. 06	1	7
GOLD 1 HEDLEY L! 2+OOH	1	14	4	111	. 2	9	5	661	2.15	13	5	ND	6	20	$!$	2	2	31	. 21	. 07	17	10	. 25	130	. 09	2	1.82	. 03	. 00	1	5
60-1 HEDEEY L2 425\%+155	4	31	243	2461	22.7	5	3	159	1.48	359	5	ND	1	3	76	8	197	2	$.02$. 01	2	4	. 01	60	. 01	2	. 07	. 01	. 01	1	75
EOLD 1 HEJLEY 13 4+006	1	14	15	105	. 6	16	6	552	2.45	20	5	NO	3	16	1	2	2	40	. 15	. 10	8	8	. 21	93	. 08	2	1.59	. 02	. 05	1	17
SOLO 1 HEDLET 13 2+OOW	1	14	7	110	. 3	9	6	437	2.21	33	5	W ${ }^{\text {d }}$	5	13	1	2	2	35	. 10	. 09	11	12	. 23	99	. 09	2	1.80	. 02	. 05	1	8
GOLD 1 HEDLEY $154+60$	1	14	5	49	. 1	7	5	338	2.08	24	5	ND	3	20	1	2	2	34	. 15	. 06	11	9	. 23	99	.08	2	1.37	. 02	. 06	1	2
G0L0 1 HEDEY L5 $2+00$	1	12	2	77	. 1	11	5	546	2.13	11	5	ND	5	14	1	2	2	36	. 14	. 12	10	9	. 21	94	. 09	2	1.77	. 02	. 04	1	?
GOLD : HEDLEY L7 $4+00$	1	14	8	37	. 1	7	4	349	1.90	37	5	NO	1	23	1	2	2	32	. 20	. 05	12	10	. 29	57	. 09	2	. 90	. 02	. 0 t	1	2
GOLD 1 HEDEY L7 2+60	1	14	10	113	. 3	9	5	369	2.32	27	5	ND	6	15	1	2	2	39	. 13	. 11	10	9	. 21	84	. 08	2	1.70	. 03	. 05	1	7
STD C/AU-0.5	19	57	39	130	7.3	72	28	1141	3.92	36	18	7	32	46	17	16	19	57	. 48	. 15	37	57	. 88	173	. 07	39	1.72	. 06	. 11	13	490

6.2.FR $\mathrm{L} 20 \mathrm{I}+4 \mathrm{OH}+25 \mathrm{Hi}$	1	13	5	52	. 1	12	6	426	2.16	10	5	$N \mathrm{~N}$	8	17	1	2	2	29	. 20	. 06	19	17	. 32	61	. 06	2	1.19	. 03	. 09	1	1
6.1.f\% $150+70 \mathrm{~N}+17 \mathrm{~K}$	2	2	7	52	. 1	14	2	916	. 63	46	5	ND	3	28	1	3	2	9	. 87	. 22	31	8	. 14	60	. 07	2	. 35	. 13	. 04	1	8
6.2.FR L3 3+10N+74	1	105	2	27	. 2	9	14	227	1.70	12	5	ND	2	35	1	2	2	21	1.07	. 08	5	5	. 30	37	. 08	4	. 70	. 11	. 06	1	21
6.i.fr ODH-3	4	195	12	25	. 9	53	28	216	4.22	56	5	ND	2	42	1	6	2	35	. 76	. 10	4	18	. 15	26	.13	5	. 58	. 14	. 03	15	12
$575 \mathrm{C} / \mathrm{RL}$	20	58	39	134	1.0	70	29	1173	3.96	37	18	8	33	47	18	15	20	59	. 48	. 15	37	59	. 88	177	. 08	41	1.72	. 06	. 12	13	496

APPENDIX 3

B.C. FR 2130 (10)

CORRECTED MAGNETOMETER READINGS

	E W	$\underline{L} 1$	$\underline{L} 2$	$\underline{L} 3$	$\underline{L} 4$	$\underline{L} 5$	$\underline{L 6}$
B/L	$0+00$	56925	56966	56982	57079	57115	57030
	$0+25$	56934	56934	56951	57009	57048	56975
$0+50$	56887	57000	57214	57012	57014	57004	
$0+75$	56928	56974	57019	56942	57003	56963	
$1+00$	57032	56998	56946	56958	56988	57055	
$1+25$	56995	56970	56984	56950	56961	56946	
$1+50$	56985	56948	56965	57001	57015	56952	
$1+75$	57034	56995	56966	57032	57067	57025	
$2+00$	57095	57033	57025	56973	57045	57032	
$2+25$	57202	57064	57085	56979	56957	57065	
$2+50$	57092	57199	57426	57058	56912	56994	
$2+75$	57029	57133	57333	57745	56955	57033	
$3+00$	56930	57042	57158	57037	57069	57042	
$3+25$	56924	56980	57020	57010	57398	57184	
$3+50$	56921	56984	56963	57006	57098	57579	
$3+75$	56924	56954	56966	56944	57048	57072	
$4+00$	56926	56930	56950	56995	56958	57009	
$4+25$	56932	56938	56951	56976	56973	57002	
$4+50$	56958	56970	56928	56969	56960	56964	

APPENDIX 4 - B.C. FR MAGNETOMETER PROFILES

WHST	0.00	0.25	0.50	0.75	$1 \cdot 00$	$1 \cdot 25$	$1 * 50$	$1+75$	$2 \cdot 00$	$2+25$	$2+30$	2.75	3-00	$3 \cdot 25$	$3 \cdot 50$	3-75	$4 \cdot 00$	$4-25$	4×50	EAST
58000																				58000
900																				900
800																				800
700																				700)
600																				600
500																				500
400																				400
300																				300
200																				200
100																				100
57000																				57000
900																				900
800																				800
700																				700
600^{*}																				600
500																				500
400																				400
300																				300
200																				200
100																				100
56000																				56000
WEST	0-00	0.25	$0 \cdot 50$	0.75	$1+00$	$1+25$	1.50	1.75	2.00	$2 \cdot 25$	$2 \cdot 50$	$2 \cdot 75$	$3 \cdot 00$	$3+25$	$3+50$	$3 \cdot 75$	4.00	$4+25$	4.50	EASt
Magnetaneter Reädings Diurnally Corrected Scale: $1^{\prime \prime}$ " 60 metres										LINE 2							MNCNEICNETLR REOILFS B.C. FR 2130(10) CODEN CLAB GADP C6OTOOS MD. NIS 82E/SW			

WEST	$0+00$	0+25	0+50	$0+75$	$1+00$	$1+25$	$1+50$	1+75	$2+00$	$2+25$	$2+50$	$2+75$	3*00	$3+25$	$3+50$	$3+75$	4+00	$4+25$	$4+50$	EAST
58000																				58000
900																				900
800																				800
700																				700
600																				600
500																				500
400																				400
300																				300
200																				200
100																				100
57000																				57000
900																				900
800																				800
700																				700
600										\cdots										600
500																				500
400																				400
300																				300
200																				200
100																				100
56000																				56000
WEST	$0+00$	0+25	$0+50$	0+75	1+00	$1+25$	$1+50$	$1+75$	$2+00$	2+25	$2+50$	$2+75$	$3+00$	$3+25$	$3+50$	$3+75$	4+00	$4+25$	$4+50$	EAST
Magnetaneter Reađ̄ings Diurnally Corrected Scale: $1^{\prime \prime}=60$ metres										LINE							MACNEI B.C. CODEN 080 MO	$\begin{aligned} & \text { REIFR } \\ & \text { R } 2130 \\ & \text { QAIM } \\ & \text { S MD. } \end{aligned}$	$\begin{aligned} & \text { OFILE } \\ & \text { o) } \\ & \text { oup } \\ & \text { NTS } 82 \end{aligned}$	S E/SW

APPENDIX 5

GOLD 1: SAMPLE LOCATION, FIELD STRENGTH, FRASER FILTERED

LOC	F.S.	FILT		F.S.	FILT	LOC	F.S.	FILT	LOC	F.S.	FILT	LOC	F.S.	FILT
L1			$\underline{\mathrm{L} 2}$			L3			L4			L5		
$0+00 \mathrm{~W}$	31		$0+00 \mathrm{~W}$	36		0+00W	33		$0+00 \mathrm{~W}$	35		0+00W	35	
$0+25 \mathrm{~W}$	32		$0+25 \mathrm{~W}$	35	- 3	$0+25 \mathrm{~W}$	34	- 3	$0+25 \mathrm{~W}$	38	+ 5	$0+25 \mathrm{~W}$	36	+ 3
$0+50 \mathrm{~W}$	34		$0+50 \mathrm{~W}$	33		$0+50 \mathrm{~W}$	36	3	$0+50 \mathrm{~W}$	37	0	$0+50 \mathrm{~W}$	33	0
$0+75 \mathrm{~W}$	33	6	$0+75 \mathrm{~W}$	32	+ 5	$0+75 \mathrm{~W}$	36	- 2	$0+75 \mathrm{~W}$	37	+ 2	$0+75 \mathrm{~W}$	27	- 4
$1+00 \mathrm{~W}$	30	- 3	$1+00 \mathrm{~W}$	33	+ 6	1+00W	35	+ 4	$1+00 \mathrm{~W}$	37	+ 2	1+00W	32	- 7
$1+25 \mathrm{~W}$	33		$1+25 \mathrm{~W}$	37		$1+25 \mathrm{~W}$	35	+ 3	$1+25 \mathrm{~W}$	37	-	$1+25 \mathrm{~W}$	30	-
$1+50 \mathrm{~W}$	35	+ 6	$1+50 \mathrm{~W}$	37	- 2	$1+50 \mathrm{~W}$	39	- 3	$1+50 \mathrm{~W}$	34	- 2	1+50W	40	+ 2
$1+75 \mathrm{~W}$	37	0	$1+75 \mathrm{~W}$	37	0	$1+75 \mathrm{~W}$	38	+ 2	$1+75 \mathrm{~W}$	38	- 2	$1+75 \mathrm{~W}$	40	+ 3
$2+00 \mathrm{~W}$	30	0	2+00W	37	+	$2+00 \mathrm{~W}$	37	+ 6	$2+00 \mathrm{~W}$	36	+	2+00W	42	+12
$2+25 \mathrm{~W}$	32		$2+25 \mathrm{~W}$	37	+ 4	$2+25 \mathrm{~W}$	38	+ 4	$2+25 \mathrm{~W}$	39	+ 5	$2+25 \mathrm{~W}$	40	
2+50W	35		$2+50 \mathrm{~W}$	37		$2+50 \mathrm{~W}$	36	+ 2	$2+50 \mathrm{~W}$	40	+	$2+50 \mathrm{~W}$	36	4
$2+75 \mathrm{~W}$	37		$2+75 \mathrm{~W}$	37	2	$2+75 \mathrm{~W}$	38	- 4	$2+75 \mathrm{~W}$	39	- 2	$2+75 \mathrm{~W}$	36	- 2
$3+00 \mathrm{~W}$	35	+1	$3+00 \mathrm{~W}$	35	3	$3+00 \mathrm{~W}$	35	- 4	$3+00 \mathrm{~W}$	37	- 3	$3+00 \mathrm{~W}$	40	+ 1
$3+25 \mathrm{~W}$	35		$3+25 \mathrm{~W}$	37		$3+25 \mathrm{~W}$	36	0	$3+25 \mathrm{~W}$	36		$3+25 \mathrm{~W}$	36	7
$3+50 \mathrm{~W}$	37		$3+50 \mathrm{~W}$	32	0	$3+50 \mathrm{~W}$	38	0	$3+50 \mathrm{~W}$	37	+ 5	$3+50 \mathrm{~W}$	40	0
$3+75 \mathrm{~W}$	37	2	$3+75 \mathrm{~W}$	37	0	$3+75 \mathrm{~W}$	38	+ 2	$3+75 \mathrm{~W}$	36	+ 3	$3+75 \mathrm{~W}$	37	+12
4+00W	36		4+00W	34	0	$4+00 \mathrm{~W}$	38		$4+00 \mathrm{~W}$	38		$4+00 \mathrm{~W}$	43	+ 6
$4+25 \mathrm{~W}$	36		$4+25 \mathrm{~W}$	36	0	$4+25 W$	38	0	$4+25 \mathrm{~W}$	37		$4+25 \mathrm{~W}$	42	+ 4
$4+50 \mathrm{~W}$	37		4+50W	36		$4+50 \mathrm{~W}$	38	4	$4+50 \mathrm{~W}$	37	- 4	$4+50 \mathrm{~W}$	42	+ 5
$4+75 \mathrm{~W}$	37		$4+75 \mathrm{~W}$	34		$4+75 \mathrm{~W}$	34		$4+75 \mathrm{~W}$	33		$4+75 \mathrm{~W}$	40	
5+00W	36		5+00W	35		$5+00 \mathrm{~W}$	38		$5+00 \mathrm{~W}$	33		5+00W	40	$\stackrel{\sim}{\infty}$

GOLD 1: SAMPLE LOCATION, FIELD STRENGTH, FRASER FILTERED

APPENDIX 6

GOLDEN ZONE FR: SAMPLE LOCATION, FIELD STRENGTH, FRASER FILTERED

LOC	F.S.	FILT	LOC	F.S.	FILT		F.S.	FILT		F.S.	FILT		F.S.	FILT
L1			L3			L5			L7			L9		
$0+00 \mathrm{~N}$	44		$0+00 \mathrm{~N}$	42		$0+00 \mathrm{~N}$	42		$0+00 \mathrm{~N}$	45		$0+00 \mathrm{~N}$	50	
$0+20 \mathrm{~N}$	43	+12	$0+20 \mathrm{~N}$	38	+9	$0+20 \mathrm{~N}$	41	+6	$0+20 \mathrm{~N}$	45	+ 1	$0+20 \mathrm{~N}$	43	+11
$0+40 \mathrm{~N}$	42	+ 4	$0+40 \mathrm{~N}$	38	+4	$0+40 \mathrm{~N}$	44	-4	$0+40 \mathrm{~N}$	45	+ 3	$0+40 \mathrm{~N}$	47	+ 4
$0+60 \mathrm{~N}$	42	-10	$0+60 \mathrm{~N}$	41	+2	$0+60 \mathrm{~N}$	48	-4	$0+60 \mathrm{~N}$	42	+ 5	$0+60 \mathrm{~N}$	49	- 2
$0+80 \mathrm{~N}$	44	6	$0+80 \mathrm{~N}$	43	0	$0+80 \mathrm{~N}$	40	-1	$0+80 \mathrm{~N}$	47	- 3	$0+80 \mathrm{~N}$	52	-13
$1+00 \mathrm{~N}$	40	+ 7	$1+00 \mathrm{~N}$	43	0	$1+00 \mathrm{~N}$	50	-7	$1+00 \mathrm{~N}$	53	-12	$1+00 \mathrm{~N}$	56	-14
$1+20 \mathrm{~N}$	39	6	$1+20 \mathrm{~N}$	43	-1	$1+20 \mathrm{~N}$	47	-3	$1+20 \mathrm{~N}$	53	- 2	$1+20 \mathrm{~N}$	58	0
$1+40 \mathrm{~N}$	43	0	$1+40 \mathrm{~N}$	41	-3	$1+40 \mathrm{~N}$	44	+7	$1+40 \mathrm{~N}$	53	+ 4	$1+40 \mathrm{~N}$	50	$+9$
$1+60 \mathrm{~N}$	44	2	$1+60 \mathrm{~N}$	47	0	$1+60 \mathrm{~N}$	42	+5	$1+60 \mathrm{~N}$	50	- 1	$1+60 \mathrm{~N}$	53	+ 6
$1+80 \mathrm{~N}$	42	- 3	$1+80 \mathrm{~N}$	43	-1	$1+80 \mathrm{~N}$	50	-3	$1+80 \mathrm{~N}$	50		$1+80 \mathrm{~N}$	55	- 1
$2+00 \mathrm{~N}$	45	5	$2+00 \mathrm{~N}$	45	-2	$2+00 \mathrm{~N}$	48	-6	$2+00 \mathrm{~N}$	50	- 3	$2+00 \mathrm{~N}$	54	- 6
$2+20 \mathrm{~N}$	50	- 2	$2+20 \mathrm{~N}$	45	-4	$2+20 \mathrm{~N}$	46	-8	$2+20 \mathrm{~N}$	52	- 5	$2+20 \mathrm{~N}$	63	-11
$2+40 \mathrm{~N}$	48	2	$2+40 \mathrm{~N}$	47	-7	$2+40 \mathrm{~N}$	48	-8	$2+40 \mathrm{~N}$	51	- 2	$2+40 \mathrm{~N}$	58	- 7
$2+60 \mathrm{~N}$	45	5	$2+60 \mathrm{~N}$	45	-1	$2+60 \mathrm{~N}$	47	-1	$2+60 \mathrm{~N}$	47	0	$2+60 \mathrm{~N}$	56	+1
$2+80 \mathrm{~N}$	45		$2+80 \mathrm{~N}$	35	+2	$2+80 \mathrm{~N}$	42	+6	$2+80 \mathrm{~N}$	43		$2+80 \mathrm{~N}$	54	2
$3+00 \mathrm{~N}$	45		$3+00 \mathrm{~N}$	38	-2	$3+00 \mathrm{~N}$	46	+4	$3+00 \mathrm{~N}$	42	0	$3+00 \mathrm{~N}$	53	+ 9
$3+20 \mathrm{~N}$	45		$3+20 \mathrm{~N}$	38	-2	$3+20 \mathrm{~N}$	45	0	$3+20 \mathrm{~N}$	48	+ 6	$3+20 \mathrm{~N}$	57	+11
$3+40 \mathrm{~N}$	43	+ 4	$3+40 \mathrm{~N}$	41	+2	$3+40 \mathrm{~N}$	47	-4	$3+40 \mathrm{~N}$	47	+ 9	$3+40 \mathrm{~N}$	55	+ 2
$3+60 \mathrm{~N}$	44		$3+60 \mathrm{~N}$	43		$3+60 \mathrm{~N}$	47		$3+60 \mathrm{~N}$	48		$3+60 \mathrm{~N}$	60	
$3+80 \mathrm{~N}$	38	-	$3+80 \mathrm{~N}$	46		$3+80 \mathrm{~N}$	52		$3+80 \mathrm{~N}$	52		$3+80 \mathrm{~N}$	64	

GOLDEN ZONE FR: SAMPLE LOCATION, FIELD STRENGTH, FRASER FILTERED

LOC	F.S.	FILT		F.S.	FILT									
L11			L13			L15			$\underline{\mathrm{L} 17}$			L19		
$0+00 \mathrm{~N}$	48		$0+00 \mathrm{~N}$	42		$0+00 \mathrm{~N}$	49		$0+00 \mathrm{~N}$	49		$0+00 \mathrm{~N}$	46	
$0+20 \mathrm{~N}$	47	+ 8	$0+20 \mathrm{~N}$	34	+ 8	$0+20 \mathrm{~N}$	48	- 4	$0+20 \mathrm{~N}$	44	+ 1	$0+20 \mathrm{~N}$	46	2
$0+40 \mathrm{~N}$	45	+ 9	$0+40 \mathrm{~N}$	32	+ 6	$0+40 \mathrm{~N}$	50	+ 7	$0+40 \mathrm{~N}$	55	-18	$0+40 \mathrm{~N}$	47	+ 2
$0+60 \mathrm{~N}$	41	9	$0+60 \mathrm{~N}$	33	- 1	$0+60 \mathrm{~N}$	48	+ 1	$0+60 \mathrm{~N}$	63	-15	$0+60 \mathrm{~N}$	46	- 8
$0+80 \mathrm{~N}$	51	-23	$0+80 \mathrm{~N}$	36	-12	$0+80 \mathrm{~N}$	55	-12	$0+80 \mathrm{~N}$	48	+ 4	$0+80 \mathrm{~N}$	47	- 5
$1+00 \mathrm{~N}$	62		$1+00 \mathrm{~N}$	44	-14	$1+00 \mathrm{~N}$	52		$1+00 \mathrm{~N}$	55	- 2	$1+00 \mathrm{~N}$	43	
$1+20 \mathrm{~N}$	48	+15	$1+20 \mathrm{~N}$	42	+ 5	$1+20 \mathrm{~N}$	52	+ 3	$1+20 \mathrm{~N}$	57	0	$1+20 \mathrm{~N}$	45	7
$1+40 \mathrm{~N}$	48	+	$1+40 \mathrm{~N}$	40	+15	$\mathrm{I}+40 \mathrm{~N}$	55	-13	$1+40 \mathrm{~N}$	57	- 7	$1+40 \mathrm{~N}$	49	- 1
$1+60 \mathrm{~N}$	55	-11	$1+60 \mathrm{~N}$	37	+ 5	$1+60 \mathrm{~N}$	61	0	$1+60 \mathrm{~N}$	50	$+7$	$1+60 \mathrm{~N}$	42	
$1+80 \mathrm{~N}$	56	-20	$1+80 \mathrm{~N}$	32	-17	$1+80 \mathrm{~N}$	56	-10	$1+80 \mathrm{~N}$	46	+17	$1+80 \mathrm{~N}$	37	0
$2+00 \mathrm{~N}$	60	- 8	$2+00 \mathrm{~N}$	44	- 9	$2+00 \mathrm{~N}$	50	+ 6	$2+00 \mathrm{~N}$	46	+18	$2+00 \mathrm{~N}$	32	+ 2
$2+20 \mathrm{~N}$	55		$2+20 \mathrm{~N}$	57	+ 9	$2+20 \mathrm{~N}$	48	+ 7	$2+20 \mathrm{~N}$	48	2	$2+20 \mathrm{~N}$	36	+ 5
$2+40 \mathrm{~N}$	57	+ 5	$2+40 \mathrm{~N}$	45	- 1	$2+40 \mathrm{~N}$	46	+	$2+40 \mathrm{~N}$	56	-16	$2+40 \mathrm{~N}$	38	+ 4
$2+60 \mathrm{~N}$	57	+ 9	$2+60 \mathrm{~N}$	47	+ 9	$2+60 \mathrm{~N}$	46	- 3	$2+60 \mathrm{~N}$	63	-19	$2+60 \mathrm{~N}$	41	- 8
$2+80 \mathrm{~N}$	55		$2+80 \mathrm{~N}$	40		$2+80 \mathrm{~N}$	48	+ 2	$2+80 \mathrm{~N}$	65	-16	$2+80 \mathrm{~N}$	47	-21
$3+00 \mathrm{~N}$	57	- 4	$3+00 \mathrm{~N}$	39	5	$3+00 \mathrm{~N}$	45	+	$3+00 \mathrm{~N}$	65	-18	$3+00 \mathrm{~N}$	46	-12
$3+20 \mathrm{~N}$	55		$3+20 \mathrm{~N}$	42		$3+20 \mathrm{~N}$	47		$3+20 \mathrm{~N}$	55	-18	$3+20 \mathrm{~N}$	43	
$3+40 \mathrm{~N}$	61	- 3	$3+40 \mathrm{~N}$	44	+ 5	$3+40 \mathrm{~N}$	42	-10	$3+40 \mathrm{~N}$	52	-11	$3+40 \mathrm{~N}$	43	+13
$3+60 \mathrm{~N}$	61	-	$3+60 \mathrm{~N}$	45		$3+60 \mathrm{~N}$	60		$3+60 \mathrm{~N}$	45		$3+60 \mathrm{~N}$	42	
$3+80 \mathrm{~N}$	62		$3+80 \mathrm{~N}$	48		$3+80 \mathrm{~N}$	62		$3+80 \mathrm{~N}$	46		$3+80 \mathrm{~N}$	44	cr

APPENDIX 7

B.C. FR: SAMPLE LOCATION, FIELD STRENGTH, FRASER FILTERED

LOC	F.S.	FILT	LOC	F.S.	FILT		F.S.	FILT		F.S.	FILT		F.S.	FILT
L1			L2			L3			L4			L5		
$0+00 \mathrm{E}$	32		0+00E	34		0+00E	42		$0+00 \mathrm{E}$	44		$0+00 \mathrm{E}$	36	
$0+25 \mathrm{E}$	45	$+16$	$0+25 \mathrm{E}$	44	+ 2	$0+25 \mathrm{E}$	45	2	$0+25 \mathrm{E}$	45	- 8	$0+25 \mathrm{E}$	46	0
$0+50 \mathrm{E}$	42	+30	$0+50 \mathrm{E}$	42	+25	$0+50 \mathrm{E}$	39	+20	$0+50 \mathrm{E}$	40	+10	$0+50 \mathrm{E}$	40	+ 8
$0+75 \mathrm{E}$	46	+ 4	$0+75 \mathrm{E}$	44	+ 3	$0+75 \mathrm{E}$	44	+20	$0+75 \mathrm{E}$	46	+16	$0+75 \mathrm{E}$	46	+ 8
$1+00 \mathrm{E}$	42	-14	$1+00 \mathrm{E}$	46	-21	$1+00 \mathrm{E}$	42	- 8	$1+00 \mathrm{E}$	44	0	$1+00 \mathrm{E}$	40	+ 2
$1+25 \mathrm{E}$	38	-10	$1+25 \mathrm{E}$	40	-23	$1+25 \mathrm{E}$	42	-24	$1+25 \mathrm{E}$	44	-12	$1+25 \mathrm{E}$	44	- 8
$1+50 \mathrm{E}$	42	0	$1+50 \mathrm{E}$	40	-14	$1+50 \mathrm{E}$	45	-10	$1+50 \mathrm{E}$	42	-14	$1+50 \mathrm{E}$	36	-14
$1+75 \mathrm{E}$	48	+16	$1+75 \mathrm{E}$	48	+12	$1+75 \mathrm{E}$	40	6	$1+75 \mathrm{E}$	36	-16	$1+75 \mathrm{E}$	38	-18
$2+00 \mathrm{E}$	46	+19	$2+00 \mathrm{E}$	48	+24	$2+00 \mathrm{E}$	45	+ 3	$2+00 \mathrm{E}$	42	- 6	$2+00 \mathrm{E}$	40	-10
$2+25 \mathrm{E}$	40	+11	$2+25 \mathrm{E}$	46	+22	$2+25 \mathrm{E}$	48	+25	$2+25 \mathrm{E}$	50	+	$2+25 \mathrm{E}$	46	+ 6
$2+50 \mathrm{E}$	45	+ 3	$2+50 \mathrm{E}$	45	+22	$2+50 \mathrm{E}$	53	+19	$2+50 \mathrm{E}$	45	+18	$2+50 \mathrm{E}$	34	+20
$2+75 \mathrm{E}$	40	- 2	$2+75 \mathrm{E}$	35	+ 6	$2+75 \mathrm{E}$	45	+ 5	$2+75 \mathrm{E}$	47	+26	$2+75 \mathrm{E}$	36	+ 8
$3+00 \mathrm{E}$	37		$3+00 \mathrm{E}$	38		$3+00 \mathrm{E}$	38	2	$3+00 \mathrm{E}$	48	+ 5	$3+00 \mathrm{E}$	48	+12
$3+25 \mathrm{E}$	33	-20	$3+25 \mathrm{E}$	38	-15	$3+25 \mathrm{E}$	36	- 5	$3+25 \mathrm{E}$	42	+ 2	$3+25 \mathrm{E}$	48	
$3+50 \mathrm{E}$	30	20	$3+50 \mathrm{E}$	35	-19	$3+50 \mathrm{E}$	31		$3+50 \mathrm{E}$	36		$3+50 \mathrm{E}$	33	
$3+75 \mathrm{E}$	34	+ 5	$3+75 \mathrm{E}$	35	- 3	$3+75 \mathrm{E}$	34	-12	$3+75 \mathrm{E}$	32	-22	$3+75 \mathrm{E}$	30	0
$4+00 \mathrm{E}$	48		$4+00 \mathrm{E}$	46		$4+00 \mathrm{E}$	36		$4+00 \mathrm{E}$	35		$4+00 \mathrm{E}$	35	
$4+25$ E	54		$4+25 \mathrm{E}$	52		$4+25 \mathrm{E}$	46		$4+25$ E	38		$4+25 \mathrm{E}$	35	

$\frac{\mathrm{LOC}}{\underline{\mathrm{~L} 6}}$	F.S.	FILT
0+00E	46	
$0+25 \mathrm{E}$	45	2
$0+50 \mathrm{E}$	44	- 2
0+75E	42	+ 2
$1+00 \mathrm{E}$	44	+ 2
$1+25 \mathrm{E}$	48	+ 2
$1+50 \mathrm{E}$	42	- 2
$1+75 \mathrm{E}$	42	8
$2+00 \mathrm{E}$	36	- 2
$2+25 \mathrm{E}$	44	0
$2+50 \mathrm{E}$	25	0
$2+75 \mathrm{E}$	35	+ 8
$3+00 \mathrm{E}$	41	+14
$3+25 \mathrm{E}$	48	+15
$3+50 \mathrm{E}$	43	+
3+75E	33	-12
$4+00 \mathrm{E}$	35	
$4+25 \mathrm{E}$	32	

