86-309-15085

GABRIEL RESOURCES INC. GEOCHEMICAL SURVEY REPORT ON THE YARDLEY LAKE (HIXON) MINERAL CLAIMS CARIBOO MINING DIVISION NTS 93G/32 & 8W

FEBRUARY 28, 1986

R.A. GONZALEZ, M.Sc., F.G.A.C., P.Eng.

CLAIMS COVERED

FILMED

CLAIM	UNITS	RECORD NO.	ANNIVERSARY
G 4	20	3211	13 MARCH
G 5	20	3212	16 MARCH
G 5 G 7	20	3214	16 MARCH
G 8	20	3215	16 MARCH
G 10	20	3217	16 MARCH
G 11	20	3218	16 MARCH
G 12	20	3219	16 MARCH
G 13	20	3220	13 MARCH
G 14	20	3221	16 MARCH
G 15	20	3222	16 MARCH
OCATION: INERS/OPERATORS: ROJECT MANAGERS:	122 ⁰ 23' W Gabriel Re Mark Manag		PART
DNSULTANT:		GINEERING LTD.	
ROJECT GEOLOGIST:		LEZ, M.Sc., F.G.A.C	
	GEOLOG	ICAL BRANC	H
	ASSESSA	AENT REPOR	T
	and the loga line total term		
	-		
	1	nnr	
	in the second		

ARCHEAN ENGINEERING LTD.

GEOCHEMICAL SURVEY REPORT ON THE YARDLEY LAKE (HIXON) MINERAL CLAIMS CARIBOO MINING DIVISION NTS 93G/7E & 8W

SUMMARY

The Yardley Lake Property is a gold prospect located 40 km (25 miles) northeast of Quesnel in Central British Columbia. The property is comprised of 23 Modified Grid Claims consisting of 442 units.

In 1985, Gabriel Resources Inc. of Vancouver, B.C. carried out a soil geochemical sampling programme in conjunction with a ground geophysical survey. Soil sampling were collected in selected areas which appeared to be underlain by either anomalous EM conductors or by areas of high magnetic response.

The sampling programme failed to outlined areas with higher than background metal values in areas underlain by geophysically anomalous reading except for one area which return spotty but anomalous values for gold, molybdenum, and zinc. Most of the property is covered by a thick blanket of glacial till and gravels which, in part, masks some of the geochemcial values and probably accounts for the generally poor geochemical response in areas of strong geophysical reading.

Several strong geophysical conductors were identified after the soil sampling programme was completed. Most of these conductors were not in the areas sampled during the early phase of the geochemical programme.

TABLE OF CONTENTS

			Page
	SUMMARY		ii
	TABLE OF	F CONTENTS	iii
1.0	INTRODUC	CTION	1
	1.1 1.2 1.3 1.4	Location and Access Physiography and Climate Claim Information History	1 3 4 6
2.0	GEOLOGY 2.1 2.2	General Geology Property Geology and Mineralization	8 8 8
3.0	GEOCHEM	ISTRY	9
4.0	CONCLUS	IONS	10
5.0	REFEREN	CES	11
6.0	CERTIFIC	CATE	12
7.0	STATEME	NT OF PROFESSIONAL QUALIFICATIONS	13
8.0	COST ST	ATEMENT	14
APPI	ENDIX A:	SOIL SAMPLE RESULTS	17
APP	ENDIX B:	ROCK CHIP SAMPLES	18

iii

FIGURES AND TABLES

		Page
FIGURE 1	Location Map	2
FIGURE 2	Claim Map	6
FIGURE 3	Sample and Grid Location Map - Northern Grid	in pocket
FIGURE 4	Sample and Grid Location Map - Southern Grid	in pocket

TABLE 1 Claim Status

5

iv

ÿ.

GEOCHEMICAL SURVEY REPORT ON THE YARDLEY LAKE (HIXON) MINERAL CLAIMS CARIBOO MINING DIVISION NTS 93G/7E & 8W

1.0 INTRODUCTION

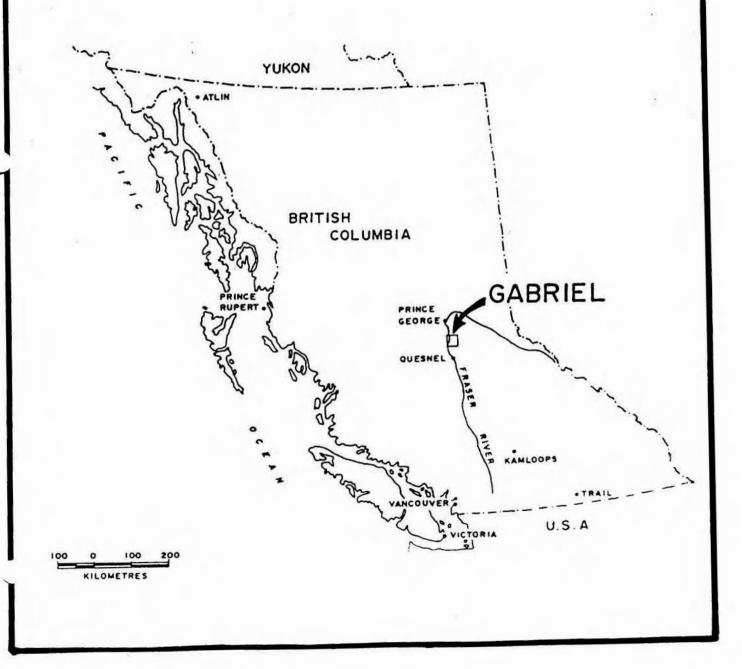
The YARDLEY LAKE PROPERTY is a gold prospect located in the historic Cariboo Gold District in central British Columbia. This property, comprised of 23 Modified Grid Claims consisting of 442 units, was staked to cover several areas that have had a history of placer gold production since before the beginning of this century.

The purpose of the 1985 geochemical programme was to collect soil samples in areas which appeared to be underlain by anomalous geophysical (EM and Magnetometer) conductors. A ground geophysical survey was being conducted prior to and during the soil sampling programme. The programme was supervised by Mark Management Ltd.; project geologist, R.A. Gonzalez conducted the sample collection under the direction of Consulting Geochemist, A.G. Troup of Archean Engineering Ltd.

1.1 LOCATION AND ACCESS

The YARDLEY LAKE PROPERTY is situated in the Cariboo Mining Division of central British Columbia. The claims are located approximately 40 km (25 miles) northeast of Quesnel, B.C. The property covers an area of approximately 110 km² which represents most of the Terry, Tom, and Naver Creek drainage basins. Yardley Lake is found near the southern boundary of the property. Most of the property consists of gently rolling plateau land except in a small section of Terry Creek where the Creek dissects thick glacial till and forms tightly incised meanders and steep canyon walls. Total relief on the property is on the order of 765 metres (2500 feet). Terrestial co-ordinates for the centre of the claim block are as follows:

> 530 22' North Latitude 1220 25' West Longitude


Access to the property is by a network of loose surfaced dry-weather logging and forestry roads. Some of these roads are kept open throughout most of the year and are used primarily for hauling cut timber. Areas for camping are limited because there are few level areas near water; however, the most frequented camping area is along the southwest shore of Yardley Lake.

GABRIEL RESOURCES INC.

LOCATION MAP

YARDLEY LAKE

PROPERTY

1.2 PHYSIOGRAPHY AND CLIMATE

The YARDLEY LAKE PROPERTY is located approximately 40 km (25 miles) northeast of the town of Quesnel, the principal supply centre in the area. The property lies in the central portion of the province within the physiographic division known as the Interior Plateau. The Interior Plateau is bounded by the Coast Range on the west and the Cariboo and other mountain ranges on the east. The Interior Plateau is further subdivided by Holland (1964) into several plateau and highland regions. Yardley Lake lies at the north end of the Quesnel Highland subdivision which is characterized by broad, rounded mountains up to 2130 m (7000 ft) separated by broad deep valleys occupied by an irregular pattern of streams, creeks and gulches. This highland is a remnant of a dissected, upwarped, erosion surface that becomes progressively lower to the south and west.

This area is underlain mainly be folded and metamorphosed Paleozoic (and possibly younger) rocks with lesser amounts of Mesozoic rocks. Igneous intrusions of Cretaceous (?) age commonly form the prominent ridges along the mountains.

The weathering and erosion that gave rise to the dissection of the country apparently originated in early Tertiary time and extended throughout that period. In Pleistocene time a stagnant ice sheet lay over the land, removing much of the weathered mantle at higher elevations but having little effect on the placer deposits in most of the valleys.

The property is situated in a broad, gentle rolling plateau area along the east side of the Fraser River watershed. The claims are at an average elevation of 975 metres (3200 feet) with maximum relief on the order of 345 metres (1132 feet). Elevations range from 775 m (2543 ft) along Naver Creek to over 1120 m (3675 ft) on some of the ridge tops at the north end of the property.

In the southern portion of the area, the ground drains to the south by several small tributaries which merge with the west and northwest flowing Naver Creek. As the creek flows toward the Fraser River it cuts through the plateau escarpment and forms a narrow steep sided canyon with walls nearly 100 metres (330 feet) high. The walls of this canyon a composed predominantly of unsorted gravels and glacial till. The northern portion of the claims is drained by northwest and west flowing Terry Creek and its principal tributary, Tom Creek.

Much of the area has been logged at various times during the past half century and dense secondary growth is common over most of the property. In unlogged areas vegetation consists of open mature forest comprised predominantly of white and black spruce, lodgepole pine, and aspen. Less common are balsam, northern black cottonwood, and birch. Along streams and in wet areas, were willow and ground birch are widespread, travel can be slow and difficult because of the dense underbrush. The climate is typical of the rain shadow protected portions of British Columbia. Winters are cold and summers mild, with rather abrupt seasonal changes. Annual temperatures range from a maximum of about 38° C to a minimum of 50° below zero. However, it is only rarely that summer temperatures exceed 25° C, and in the winter sub-zero temperatures seldom persist for more than a week at a time. Winter weather generally commences about the first week in November, although snow may be expected at any time from late September on and generally remains after the first week of October.

Precipitation varies considerably from year to year and ranges from 50 to 75 cm.

1.3 CLAIM INFORMATION

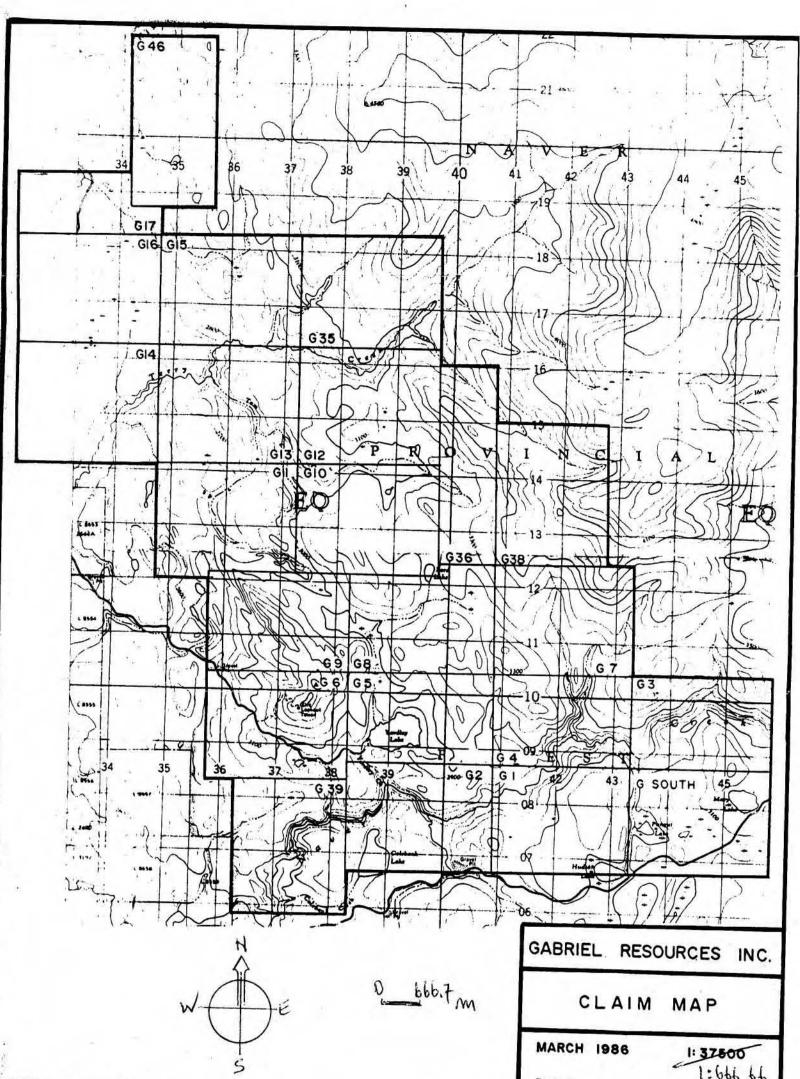

The property is located in the Cariboo Mining Division of central British Columbia. It is comprised of twenty three Modified Grid Claims consisting of 442 units (Figure 2) and covering an area of approximately 11000 hectars (27000 acres). Claim information is listed in TABLE I below:

TABLE I

CLAIM STATUS

Claim Name	Units	Record No.	Anniversary Date
g south	20	3196	12 MARCH
G 1	20	3195	12 MARCH
	20	3209	13 MARCH
G 3	20	3210	13 MARCH
G 4	20	3211	13 MARCH
G 2 G 3 G 4 G 5	20	3212	16 MARCH
G 6	20	3213	16 MARCH
G 7	20	3214	16 MARCH
G 8	20	3215	16 MARCH
G 9	20	3216	16 MARCH
G 10	20	3217	16 MARCH
G 11	20	3218	16 MARCH
G 12	20	3219	16 MARCH
G 13	20	3220	13 MARCH
G 14	20	3221	16 MARCH
G 15	20	3222	16 MARCH
G 16	20	3223	13 MARCH
G 17	10	3224	16 MARCH
G 35	20	3636	15 JUNE
G 36	14	3637	15 JUNE
G 38	20	3852	23 JULY
G 39	20	3853	23 JULY
G 46	18	4020	23 SEPTEMBER
	442		

442

	2	R. A. G.	1:666 66 FIGURE 2
-		-	-

1.4 HISTORY

In 1859 placer gold was discovered along the Quesnel River approximately 90 km southeast of the Yardley Lake Property. That discovery sparked the Cariboo gold rush which began in 1860 and lasted for five years. Placer discoveries made during that rush resulted in an estimated 3 million ounces of placer gold being mined in the Cariboo (Boyle, 1979). In addition, from 1933 to 1953 over 840,000 ounces of lode gold was produced from the famous Cariboo Gold Quartz Mine at Wells and the Island Mountain Mine, near Barkerville, B.C.

Placer mining for gold has been carried out along Fraser River and its eastern tributaries since the gold rush. Placer gold was discovered in Government Creek (20 km north of the Yardley Lake property) during this same period and a few years later on Terry and Tom Creeks. The area has been worked by private individuals and small companies intermittently since the original discoveries. Even today, a few local miners sporadically work the creeks; however, their placer gold production is more of a hobby than a livelihood.

Only one lode deposit has been mined in the area. The original discovery of the lode, located on Hixon Creek just north of the property, dates to the mid 1870's. This deposit was visited by G.S.C. geologist A. Bowman in 1885; however, all of the workings were flooded at the time of his visit. The Minister of Mines Annual Report (1935) reports that until its closure in the 1880's this mine produced 239 tons of ore grading about one ounce per ton. The property lay idle until 1918 when Cariboo Lode Mines, Limited optioned the property; however, over the next ten years little was done other than clearing out adits.

Quesnelle Quartz Mining Company, Ltd. obtained the property in 1933 and built a mill, dewatered the working and commenced development work. Development continued intermittently for several years, but apparently no gold was recovered during the depression years. The property has been idle is about 1939.

A reconnaissance heavy mineral concentrate sampling programme was carried out over the belt of gold producing streams by the A.T. Syndicate in 1980. Results of that survey lead to the staking of the present property.

From 1981 to the present, Gabriel Resources Inc. worked the claims through an option agreement with the A.T. Syndicate.

In 1984, an airborne electromagnetic (INPUT) and magnetic survey of the property and surrounding area was contracted to Questor. In 1985, a series of grid lines were established for follow-up ground geophysics. All conductors outlined by the airborne survey were located on the ground using a Scintrex SE 88 (Genie) EM unit. During this same period a magnetometer survey was completed along the EM grid lines, and areas of coincident magnetometer and EM anomalies were then selectively soil sampled.

2.0 GEOLOGY

2.1 GENERAL GEOLOGY

The geology of Topographic Sheet 93G was first mapped by A. Bowman of the Geological Survey of Canada in 1885-86. The area was re-mapped by H.W. Tipper, also of the G.S.C. in 1961 and updated in 1979 by Tipper, et.al. and published as Geological Atlas Series: Map 1424A - Parsnip River - B.C.

The Yardley Lake property is underlain by Early Cretaceous Naver Intrusives to the east; Lower Paleozoic Cariboo Group micaceous quartzite and black phyllites, which flank the intrusives, in the centre; and Upper Triassic-Lower Jurassic Takla Group sediments to the west. Early Tertiary volcanics consisting of andesite, basalt, breccia, and tuff with minor rhyolite are found on the west side of the property. The plateau area above the Fraser River to the west are underlain by Tertiary sandstone, slate, mudstone, conglomerate, diatomite, and lignite.

The Naver Intrusives is a multiply intruded complex consisting of quartz monzonite, syenite, monzonite, granodiorite, diorite, and quartz-feldspar porphyry dykes. Pyroxenites and serpentinites are also found associated with the intrusives. Some of the Naver Intrusives bodies intrude the Takla Group of andesite, basalt, tuff, breccia, agglomerate and argillite. A chlorite or talc schist occurs as an alteration halo where these dykes and stocks intrude the andesite or basalt.

2.2 PROPERTY GEOLOGY AND MINERALIZATION

The property is almost entirely covered by overburden consisting of glacial debris. Only in the lower portions of Tom Creek and in selected areas of Terry Creek was bedrock exposed. The only rock seen appeared to be Takla Group andesites and argillites. Both rock types are altered; the volcanics are altered to chlorite schist while the sediments appear only to have been baked and tectonically deformed. At one location the andesite is in contact with a quartz feldspar porphyry and diorite dyke; here the alteration is more intense resulting in a highly altered chloritic schist. Locally quartz veins and a narrow monzonite intrusive crosscut the andesite and argillites. Most of these veins have a strike parallel (northwestsoutheast) to the dyke. Some of these veins are pyritic and have been reported to give spotty gold values.

3.0 GEOCHEMISTRY

The objective of the programme was to locate on the ground a northwest trending magnetic high and several multi-channel EM anomalies identified by the 1984 airborne geophysical survey. Once their surface expression was determined by ground geophysics, the best apparent coincident magnetic and EM anomalous were tested by soil sampling

Soil samples were collected at 50 m intervals along grid lines established for the geophysical programme. The purpose of this sampling programme was to see if there was any significant geochemical signiture across the anomalous areas. Samples were collected, whenever possible, from the 'B' soil horizon. Generally the soil development is good and the desired horizon was easy to identify. Samples were collected using either a shovel or prospector's mattock and placed into Kraft wet-strength paper envelopes. After air drying for several days the samples were boxed and shipped to Chemex Labs. Ltd. in North Vancouver, B.C. A total of 157 soil and 6 rock samples were collected for analysis.

At Chemex Labs. Ltd. the samples were analyzed for 30 elements using the I.C.P. technique. In addition, gold was analyzed by standard atomic absorption after pre-concentration by Fire Assay extraction.

Results for the soil samples were tabulated for each element and are summarized in Appendix A. Because of the limited number of samples and the unusually low values, soil geochemical data were not treated statistically in order to determine background and anomalous levels.

Unfortunately areas designated for soil sampling were selected based on uncorrected geophysical data. Consequently, the strongest conductive responses were selected for sampling. As it turned out the best anomalies were often due to conductive overburden while the more subdued anomalies were true bedrock conductors. Of the five areas targeted for sampling, only one anomaly was found to be due to conductive bedrock (line 101S; 23+50E to 30+00E).

All geochemical results were generally low. The poor geochemical results are probably due to the extensive and very thick glacial drift which cover most of the property. The anomalous area, on Line 101S, did contain a few anomalous samples but did not demonstrate a distinct trend (i.e. one sample carried some gold and several were sightly anomalous with respect to Mo and Zn).

4.0 CONCLUSIONS

The extensive overburden and its great depth over the entire claim block reduces the effectiveness of soil geochemistry in outlining mineralized structures. One area underlain by a coincident magnetic high and a strong electromagnetic conductor returned sporatic geochemical values. Of thirteen soil samples collected over this anomalous area, one was anomalous with respect to gold and several were weakly anomalous with respect to Mo and Zn.

Dated at Vancouver, British Columbia, this 25th day of February, 1986

Respectfully submitted,

ARCHEAN ENGINEERING LTD.

fl

R.A. GONZALEZ, M.Sc., F.G.A.C., P.Eng.

5.0 REFERENCES

Boyle, R.W., 1979: The Geochemistry of Gold and its Deposits: Geological Survey of Canada, Bulletin 280, p.281, 357-359.

Butterworth, B.P., Freeze, J.C., and Troup, A.G., 1985: Report on the Ahbau Creek Property, Cariboo Mining Division, B.C. Dept. of Mines Assessment Report.

Holland, S. S., 1980: Placer Gold Production of British Columbia, Bulletin 28: Ministry of Energy, Mines and Petroleum Resources, pp. 89.

Minister of Mines, Annual Reports for 1918, 1929, 1933, and 1935.

Ridley, J.C., and Troup, A.G., 1982: G South Property, Cariboo Mining Division, Geology, Geochemistry, Geophysics, and Physical Work: B.C. Dept. of Mines Assessment Report.

Ridley, J.C., and Troup, A.G., 1982: R^port on the Geology, Geophysics & Geochemistry of the G South Property, Cariboo Mining Division, B.C. Dept. of Mines Assessment Report.

Stockwell, C.H., 1957: Geology and Economic Minerals of Canada, Economic Geology Series No. 1: Geol. Survey of Canada Dept. of Mines and Technical Surveys, pp. 517.

Tipper, H.W., Campbell, R.B., Taylor, G.C., and Stott, D.F., 1979: Parsnip River, B.C.: Geol. Survey of Canad^a, Geological Atlas. 6.0 CERTIFICATE

I, R. A. Gonzalez, do hereby certify that:

1. I am a geologist and reside at 2784 Lawson Ave., West Vancouver, British Columbia.

2. I am a graduate of The University of New Mexico, U.S.A.; with a B.Sc. in geology (1965) and a M.Sc. in geology (1968).

3. I have practiced my profession since 1965 in Canada and abroad as indicated on the following page.

4. I am a Fellow in the Geological Association of Canada; registration number F4523.

5. I am a registered member of the Association of Professional Engineers of the Province of Manitoba.

6. I have carried out the programme described herein, and I am the author of this report and solely responsible for its contents and opinions.

Dated at Vancouver, British Columbia, this 28th. day of February 1986;

jugh Somile,

R. A. Gonzalez, M.Sc., F.G.A.C., P. Eng.

7.0 STATEMENT OF PROFESSIONAL QUALIFICATIONS

R.A. GONZALEZ, M.Sc., F.G.A.C., P.Eng.

ACADEMIC

1965	B.Sc.	in	Geology	The	University	of	New	Mexico,	U.S.A.
1968	M.Sc.	in	Geology	The	University	of	New	Mexico,	U.S.A.

PROFESSIONAL

1983	Archean Engineering Limited	Overseas Manager
1980-1983	Placer Development y Cia. Ltd. (Chile)	Ass't Exploration Manager
1977-1980	Consultant attached to the Geological Survey of Malaysia	Ass't Project M^nager on a C.I.D.A. supported mineral exploration survey over Peninsular Malaysia
1975-1977	Province of Manitoba	Resident Geologist for the Manitoba Dept. of Mines.
1971-1975	Giant Mascot Mines Limited	Senior Geologist
1970-1971	New Jersey Zinc (Canada) Ltd.	Exploration Geologist
1968-1970	Anaconda American Brass Ltd.	Research Geologist
1965-1966	Mex-Tex Mining Co.(U.S.A)	Geologist

8.0 COSTS STATEMENT

GABRIEL RESOURCES LIMITED G SOUTH CLAIMS (YARDLEY LAKE) GEOPHYSICAL, GEOCHEMICAL SURVEY 19 JUNE - 13 NOVEMBER 1985

GENERAL COSTS

FOOD & ACCOMMODATION 13.5 Man Days @ \$ 25.61/day		Ş	345.76
SUPPLIES:			686.91
FUEL:			227.07
FIXED WING: H-sting Travel 6-7 Aug. VCR-PGO			281.20
SHIPPING & POSTAGE:			50.75
RENTALS:			
Budget; 4wd PU, 19-24 June, 2 days @ \$98.29 Tilden; Skylark, 6-7 Aug, 1 day	196.57 85.34		
Kangeld; 4-WD Jeep: 3 Oct16 Nov. 11 days @ \$43/day Parking	473.00 15.75		
Gabriel Field Equipment: 13.5 man days @ \$6/day	81.00		
			851.66
MAINTENANCE:			220.50
FIELD TELEPHONE SERVICE:			35.05
DRAFTING:			623.63
CONSULTANT FEES: Archean Engineering Ltd. N.C. Carter			2,996.00 1,796.28
REPORT PREPARATION:			2,941.00
TOTAL GENERAL COSTS:		\$1	1,055.81

TOPOGRAPHIC MAP PRODUCTION

CONTRACTOR:

Delta Aerial Surveys, 4 maps :2500 Supervision, Preparation & Coordination by	\$ 6,380.00
Archean Engineering	2,337.50
TOTAL TOPOGRAPHIC MAP PRODUCTION COSTS	\$ 9,717.50

GEOPHYSICAL SURVEY

CONTRACTOR:

P. E. Walcott & Associates	
EM & Mag. Yardley Lake Area, 3 Oct-16 Nov	\$56,127.58
I.P. Ahbau Creek Area, 7-16 Nov.	15,805.33
Data & Report Preparation	8,780.38
Field Supervision & Coordination- Adder Expl.	
& Development Ltd. 5 days @ \$200/day	1,000.00
Consultant Fee- Archean Engineering Ltd	3,850.00
GENERAL COSTS APPORTIONED:	
5/13.5 x 11,055.81	4,094.74
MOMAL OPODEWGLOAL OUDWEY COOMO	600 (50 00
TOTAL GEOPHYSICAL SURVEY COSTS	\$89,658.03

GEOCHEMICAL SURVEY

CONTRACTORS:

Archean Eng. & Adder Expl & Dev., 3 Oct-16 Nov., 8.5 man days @ \$217		\$ 1,850.00
ASSAYS & ANALYSES:		
Chemex Labs		
157 Soils; Au + 30 elem. ICP		
@ \$13.45ea	\$2,111.65	
6 rocks: Cu, Pb, Zn, Au, Ag @\$30.75ea	184.50	
Supplies	55.00	
	n s a waxa kata ka uka mu	2,351.15
ROCK CUTS - VANCOUVER PETROGRAPHIC		64.50
GENERAL COSTS APPORTIONED:		
8.5/13.5 x \$11,055.81		6,961.07
TOTAL GEOCHEMICAL SURVEY		\$11,226.72

TOTAL SURVEY COSTS

TOPOGRAPHIC	SURVEY	\$ 9,717.50
GEOPHYSICAL	SURVEY	89,658.03
GEOCHEMICAL	SURVEY	11,226.72
TOTAL COST		\$110,602.25

. .

APPENDIX A: SOIL SAMPLE RESULTS

Chemex Labs Ltd. 212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

C	Chemex Lab	s Ltd.	212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1	
TI . 3658121 RESOURC 1500 - 675 WEST TANCOUVER. 8.1.	I HASTINGS SI.	CERT. # INVOICE # DATE P.C. #	Telephone:(604) 984-0221 Telex: 043-52597 : ASS18158-002-A : IS518158 : 14-NOV-85 : NCNE	Semi quantitative multi element ICP and Nitric-Adua-Regia digection of 0.5 am of material followed by ICF analyziz. Since 22 digestion is incomplete for many mineril values reported for AL. St. Ba. Bc. C Ga. La. Mg. H. Na. Sr. TL. II. W and 2 com only be considered as semi-quantital.
VGE 1N2 Sample Au pop 41 4: description EA+AA 1 pop	An An Ba Be Bi Da Do Ca Ph Don Don Don Com 1 Don Don	YARDLEY LA Cr Cu Ee Ga K Dom X Dom X	Lo Ma Ma Ma Na pp:: 1 pp: 500 %	COMMENTE : ATTN: ART TROUP S N: P Pb S5 S7 Ti Ti E V N To I DDa DDa DDa DDa DDa DDa DDa DDa DDa DD
L459 10+50E C5 1.92 0.2 L458 11+00E C5 2.01 0.2 L458 11+00E C5 2.01 0.2 L458 12+50E 5 1.27 0.2 L948 12+50E 5 2.27 0.2 L948 13+50E C5 2.72 0.4 L948 13+50E C5 2.39 0.4 L948 13+50E C5 1.68 0.2 L948 13+50E C5 1.68 0.2 L948 13+50E C5 1.70 0.2 L948 13+50E C5 1.70 0.2 L948 13+50E C5 1.68 0.2 L948 13+50E C5 1.70 0.2 L948 13+50E C5 1.68 0.2 L948 13+50E C5 1.66 0.3 L948 13+50E C5 1.66 0.3 L968 13+50E C5 1.66 0.3 L968 13+50E C5 1.66 0.3 L968 13+50E C5 1.70 0.3 L968 14+50E C5 1.70 0.3 L968 16+50E C5 1.70 0.3 L968 17+00E C5 2.14 0.2 L968 17+00E C5 2.98 0.2 L968 17+00E C5 2.98 0.2 L968 17+50E 5 1.48 0.2 L968 17+50E 5 1.48 0.2 L968 17+50E 5 1.48 0.2 L965 19+50E 5 1.48 0.2 </td <td>12 (10 90 (0.5) (2 0.33 (0.5) 11 12 (10) 90 (1.5) (1.2) 0.41 (0.5) 12 0.41 (0.5) 12 12 (10) 100 (0.5) (1.2) 0.41 (0.5) 12 13 (10) 140 (0.5) (2 0.41 (0.5) 9 14 (10) 100 (0.5) (2 0.41 (0.5) 9 14 (10) 210 (0.5) (2 0.36 0.5 10 12 (10) 70 (9.5) (1 0.35 9 9 14 (10) 100 (0.5) (2 0.36 0.5 10 12 (10) 100 (0.5) (2 0.42 0.5 10 12 (10) 100 (0.5) (2 0.32 (0.5) 10 12 (10) 100 (0.5) (2 0.32 (0.5) 10 12 10 100 <</td> <td>57 22 2.98 $(10$ 0.04 56 23 3.05 $(10$ 0.07 58 23 3.07 $(10$ 0.05 55 21 2.76 $(10$ 0.08 124 47 4.15 10 2.34 81 94 3.70 $(10$ 0.14 50 23 2.91 $(10$ 0.10 42 29 2.70 10 0.07 47 24 2.49 $(10$ 0.11 60 29 3.22 $(10$ 0.11 62 25 3.20 $(10$ 0.12 59 38 2.95 $(10$ 0.12 59 38 2.95 $(10$ 0.12 57 27 0.76 10 0.12 50 17 3.06 $(10$ 0.04 50 17 3.06 $(10$ 0.04 50 17</td> <td>10 0.63 243 $(1 < 0.01$ 10 0.68 417 $(1 < 0.01$ 10 0.61 219 $(1 < 0.01$ 10 0.67 214 $(1 < 0.01$ 10 0.67 214 $(1 < 0.01$ 10 0.67 214 $(1 < 0.01$ 10 0.88 539 $1 < 0.01$ 10 0.58 281 $1 < 0.01$ 10 0.58 281 $1 < 0.01$ 10 1.24 481 $(1 < 0.01$ 10 0.53 373 $2 < 0.01$ 10 0.67 264 $2 & 0.01$ 10 0.67 264 $2 & 0.01$ 10 0.64 399 $1 & 0.01$ 10 0.64 399 $1 & 0.01$ 10 0.52 195 $(1 < 6.01$ 10 0.52 195 $(1 < 6.01$ 10 0.53 950 $(1 & 0.01$ 10 0.54 455 $1 & 0.01$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	12 (10 90 (0.5) (2 0.33 (0.5) 11 12 (10) 90 (1.5) (1.2) 0.41 (0.5) 12 0.41 (0.5) 12 12 (10) 100 (0.5) (1.2) 0.41 (0.5) 12 13 (10) 140 (0.5) (2 0.41 (0.5) 9 14 (10) 100 (0.5) (2 0.41 (0.5) 9 14 (10) 210 (0.5) (2 0.36 0.5 10 12 (10) 70 (9.5) (1 0.35 9 9 14 (10) 100 (0.5) (2 0.36 0.5 10 12 (10) 100 (0.5) (2 0.42 0.5 10 12 (10) 100 (0.5) (2 0.32 (0.5) 10 12 (10) 100 (0.5) (2 0.32 (0.5) 10 12 10 100 <	57 22 2.98 $(10$ 0.04 56 23 3.05 $(10$ 0.07 58 23 3.07 $(10$ 0.05 55 21 2.76 $(10$ 0.08 124 47 4.15 10 2.34 81 94 3.70 $(10$ 0.14 50 23 2.91 $(10$ 0.10 42 29 2.70 10 0.07 47 24 2.49 $(10$ 0.11 60 29 3.22 $(10$ 0.11 62 25 3.20 $(10$ 0.12 59 38 2.95 $(10$ 0.12 59 38 2.95 $(10$ 0.12 57 27 0.76 10 0.12 50 17 3.06 $(10$ 0.04 50 17 3.06 $(10$ 0.04 50 17	10 0.63 243 $(1 < 0.01$ 10 0.68 417 $(1 < 0.01$ 10 0.61 219 $(1 < 0.01$ 10 0.67 214 $(1 < 0.01$ 10 0.67 214 $(1 < 0.01$ 10 0.67 214 $(1 < 0.01$ 10 0.88 539 $1 < 0.01$ 10 0.58 281 $1 < 0.01$ 10 0.58 281 $1 < 0.01$ 10 1.24 481 $(1 < 0.01$ 10 0.53 373 $2 < 0.01$ 10 0.67 264 $2 & 0.01$ 10 0.67 264 $2 & 0.01$ 10 0.64 399 $1 & 0.01$ 10 0.64 399 $1 & 0.01$ 10 0.52 195 $(1 < 6.01$ 10 0.52 195 $(1 < 6.01$ 10 0.53 950 $(1 & 0.01$ 10 0.54 455 $1 & 0.01$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

contrad or Atant Brehler.

1

ф

(

t

í

1

i

÷.

C		Analytical Chem		•Geochemist			tu.	075	Canad	a Vanca a ione:(60	V7	7J 2C1	C + -	¢				., 7 4		ant	TPD	
1500 -	- 175 W251 - 175 W251 JVER. 310,			GEOCHEMIST			CERI INVC DATE P.C.	: # ICE #	Telex:	51915 51815 NOV-	043- 8-00 8	52597	Nit: mat lig val Ga. onl: COM	ric-f eria: estic ues 1 La. y be MENTS	Aqua 1 fo 5n i repo Mg. con 3 :	-Rec llou sir rtec side	jia d jed b icomp d'for Na. ≥red	iges y ICI lete Al. Sr. 1	elem ion for for Sb. Tl. T mi-q	of O lysi nany Es. 1 i. W	.5 gi s. S mino Be. 4 and	m c inc era Qua V
	. coo Al Aq AmAA X oga		Ba Bi pe ppe	Ca Cd X ppm	Co ppt	Cr C opa pp		Ga K pph: X	La Por	ňg	Mr. apri	Mo Na ppn 2		V:AI P ppm	RTT Pb ppm	ROUF Sb spm	Sr Spm		II U pr ppm	boø Ú	s 7 ppm	
L17S 4+00E L17S 4+50E L17S 5+50E L17S 5+50E L17S 5+50E L17S 6+50E L17S 7+00E L17S 7+50E L17S 7+50E L17S 7+50E L17S 9+50E L19S 0+50E L19S 1+50E L19S 1+50E L19S 2+50E L19S 2+50E L19S 2+50E L19S 1+50E L19S 1+50E L19S 1+50E L19S 2+50E L19S 2+50E L19S 3+00E L19S 3+00E L19S 3+50E L19S 3+50E L20S 1+50E L20S 1+50E L20S 1+50E L20S 2+50E L20S 3+00E L20S 2+50E L20S 3+00E L20S 3+50E L20S 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0.47 (0.5 0.43 (0.5 1.42 (0.5 0.36 (0.5 0.38 (0.5 0.38 (0.5 0.38 (0.5 0.38 (0.5 0.30 (0.5 0.58 (0.5 0.20 3.0 0.59 6.0 0.84 14.5 0.40 (0.5 1.50 (0.5 1.42 (0.5 1.42 (0.5 1.42 (0.5 1.42 (0.5 0.28 (0.5 0.28 (0.5 0.39 (0.5 0.52 (0.5 0.32 (0.5 0.32 (0.5 0.34 (0.5 0.34 (0.5 0.34 (0.5 0.34 (0.5 0.34 (0.5 0.44 (0.5 0.55	61 1 5 17 10 11 13 6 9 1 14 10 9 15 14 7 6 13 14 17 19 10 16 15 8 7	99 4 51 1 41 1 51 2 55 3 39 1 50 1 66 2 60 1 42 38 116 9 124 229 99 2 49 1 53 2 115 2 52 1 68 3 62 2 52 1 65 2 47 1 35 5	5 2.25 3 2.01 2 2.61 3 1.97 2 2.84 3 2.84 5 2.84 5 2.84 5 2.84 5 2.84 5 2.84 5 2.84 5 2.84 5 2.84 5 2.84 5 2.43 5 2.46 2.314 3.51 5 2.40 2.314 3.43 2.314 3.43 2.399 2.71 1.41 3.43 2.59 2.14 2.99 2.74 2.99 3.47 2.98 3.12 3.12 3.12 2.10 1.84 2.04 2.04	(10 0.05 10 0.12 (10 0.06 (10 0.07 (10 0.09 (10 0.06 (10 0.06 (10 0.06 (10 0.06 (10 0.06 (10 0.06 (10 0.14 (10 0.32 10 0.17 (10 0.05 10 0.17 (10 0.05 10 0.17 (10 0.05 10 0.17 (10 0.05 10 0.19 (10 0.18 (10 0.13 (10 0.13 (10 0.13 (10 0.16 10 0.12 10 0.15 (10 0.15 (10 0.15 (10 0.15 (10 0.02 (10 0.03 10 0.15	10 20 20 20 10 10 20 10 10 10 10 10 10 10 10 10 10 10	0.83 0.51 0.37 0.47 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.42 0.59 0.43 0.55 0.56 0.55 0.56 0.55 0.56 0.57 0.56 0.57 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.54	355 516 275 275 444 185 211 225 145 220 223 243 221 224 2224 2224 2224 2224 222	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 65 30 22 32 37 25 41 59 23 121 71 14 56 34 31 34 32 42 37 30 26 20 16 30 26 54 32 42 46 30 31 56 31	690 800 560 920 770 830 560 1490 5970 730 990 1060 420 580 490 400 300 430 720 590 720 640 590 770 640 590 770 640 590 770 640 590 770 640 590 770 890 950 530 530 530 530 530 530 530 530 530 530 530 530 530 530 530 <t< td=""><td>4 2 9 4 6 12 6 6 10 4 2 16 10 6 10 7 5 6 6 10 12 8 4 6 9 8 12 10 10 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td></td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>.14 <</td> .15 <</t<>	4 2 9 4 6 12 6 6 10 4 2 16 10 6 10 7 5 6 6 10 12 8 4 6 9 8 12 10 10 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10		$\begin{array}{cccccccccccccccccccccccccccccccccccc$.14 <	10 <10	73 53 51 49 54 47 59 69 69 69 69 69 69 69 120 82 57 35 35 51 53 65 37 55 54 53 54 53 55 54 53 55		50 110 50 50 50 50 50 50 50 5

Chen

TO : SAPPISI RESOURCES INC.

.

Sample

description

6

i

SAPP LEL RESOURCES IMT. CLARSTINGS ST. SALE SALE </th <th>0</th> <th></th> <th></th> <th></th> <th>(</th> <th>Ch</th> <th>er</th> <th>ne</th> <th>ex</th> <th>La</th> <th>ab</th> <th>S</th> <th>Lt</th> <th>d.</th> <th></th> <th></th> <th></th> <th>h Var</th> <th>ksban icouve</th> <th></th> <th>C.</th> <th></th> <th></th> <th></th> <th></th>	0				(Ch	er	ne	ex	La	ab	S	Lt	d.				h Var	ksban icouve		C .				
CLEATTFILATE 14 AMALYSIE Sittric-Acuart CAPPLEL RISCIRCES INC. CLEATTFILATE 14 AMALYSIE Sittric-Acuart LEDG - CPS WEDT HASTINGS ST. CLMT. # : AVIISIBS-CC2-A Walkes report CAMECLER, P.C. DATE : 14-MOV-05 Sales report VARCLEVER, P.C. VARCLEY NOTE : 14-MOV-05 Sales report VARE 100 VARE 100 YARDLEY LAKE Sales report Gal, X. M., M. VARE 100 VARE 100 YARDLEY LAKE Sales report Gal, X. M., M. VARE 100 Sales report Sales report Sales report Gal, X. M. VARE 100 Sales report Sales report Sales report Gal, X. M. Gal, X. M. VARE 100 Sales report Sales report Sales report Gal, X. M. Gal, X. M. Gal, X. M. VARE 100 Sales report Sales report Sales report Gal, X. M. Ga	\subseteq				Analy	tical Cl	hemists		•Geo	chemis	sts	٠Re	giste re	d Assa	yers						1	Sem	i qu	anti	tat
GARPLEL MISCURDES INC. CINT: # : ADILESE-002-4 Values report ISCO-UTER. F.I. CONTET. # : ISCOBSIDE CONTET. # : ISCOBSIDE CONTET. # : ISCOBSIDE ISCOLUTER. F.I. CONTET. # : ISCOBSIDE CONTET. # : ISCOBSIDE CONTET. # : ISCOBSIDE CONTET. # : ISCOBSIDE VAE 1.22 CONTET. # : ISCOBSIDE Gal. 1.3. Ma. 3 VAE 1.22 VAE INT: # ISCOBSIDE CONTET. # : ISCOBSIDE									<u>. 1415</u>	21	<u>ANA</u>	LYSI		-	-	· ,	Telex			3-323:	57	mat	eria	1 fo	110
Concernment Product VER. Product <	SAS Ist	, .					s sr							IRV	GICE		: 10	5181	58	02-	A	val Ga.	ues La.	repo Mg.	rte
54+44 1 0.28 0.28 0.24 0.24 0.24 0.26 0.27 0.24 0.25 0.27 0.2 0.24 0.24 0.27 0.2 0.24 0.24 0.27 0.2 0.24 0.24 0.27 0.2 0.25 0.25 0.22 0.2 <th0.2< th=""> <th0.2< th=""></th0.2<></th0.2<>		(CC172)												P.O	. #	LAF	: NO		~~			COM	MENT	S :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ptior								53					Ee		¥ *		Mq X			N.3	,			Eb gos
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(5	2.39	0.2	10	80	<0.5	$\langle 2 \rangle$	0.45	<0.5	18	86	15	3.56		0.05									40 410
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. (5	1.50	0.0	10	70	77.E		0.47	(0.5	9	52	8	2.25	10	30.0	20	0.55	268	1	0.01	31	550	12	(10 (10 (10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ЮE	<5	2.30	0.2	20	210	<0.5	$\langle 2 \rangle$	0.60	0.5	21	127	20	4.68	10	0.26	20	0,95	649	1	<0.01	75	940 1790	6 14	00 (10 (10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50E	. <5	2.00	0.2	10	120	<0.5	$\langle 2$	0.74	(0.5	9	62 40	13 24	3.13	10 20	0.04 0.11	10 10	0.42 0.64	315 287	I 1	<0.01 <0.01	4 8 27	1530 720	9 12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ioe	45	1.42	0.2 0.2	10 10	70 100	<0.5 <0.5		0.48 0.67	<0.5 <0.5	1 4 16	67 75	12 15	2.65 3.03	10 10	0.14 0.18	30 40	0.52 0.67	4 57 585	_	0.01 0.01	4 1 52	780 10 00	12 14	(10 (10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICE IOE	1 (B) (B)	2.09 2.92	0.2 0.2	10 20	90 80	ः.ऽ ४ . ऽ		0.32 0.48	:2.5 :0 . 5		62 2 4 7	9 7 ;	3.13 3.37	10 10	0.05 0.02	20 10	0.46 1.67	129 277	·	0.01 (0101	46 156	720 640	12 18	40 10 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E	5	2.56 1.32	0.2	10	120 130	<0.5 <0.5	$\langle 2 \rangle$	0.49 0.50	<0.5 <0.5	3	61 52	6	3.79	10	0.04	10	0.39	198		0.01	43	2250	12	(10 (10 (⊈0
E (5 1.41 0.4 10 100 (0.5) (2 0.5) 10 55 14 2.66 10 0.06 20 0.51 303 1 0.01 32 780 14 (2 E (5 1.49 0.2 10 120 (0.5 (2 0.62 (0.5 10 52 11 2.69 10 0.05 20 0.52 324 1 0.01 30 1170 14 (5 1.12 0.2 10 90 (0.5 (2 0.49 (0.5 8 44 9 2.21 10 0.055 10 0.29 308 1 (0.01) 25 660 12 (5 1.74 0.2 20 80 (0.5 11 54 15 2.62 10 0.06 10 0.56 317 1 0.01 35 640 12 (2 OE (5 1.74 0.2 20 80 (0.5 11 54 15 2.62 10 0.06 10	CE NE	(5 . (5	2.18 1.97	912 612	20 10	120	0.5	25 5 4	0.30	0.5	¢,	61	15	4.45	10	0.05	<10	Q147	135	1	<0.01	30	4280	16	<10 <10 <10
OE <5 1.74 0.2 20 80 <0.5 <2 0.44 <0.5 11 54 15 2.62 10 0.06 10 0.56 317 1 0.01 35 640 12 <	E	(5 (5	1.41 1.49	0.4 0.2	10 _10	100 120	:0.5 (0.5	<2 <2	0.53 0.62	ः.इ ४ ०. ५	10 10	55 52	14	2.66 2.69	10 10	0.06 0.05	20 20	∂.51 0 .52 .	303 324	1	0.01 0.01	33	780 1170	14 14	া০ ∢10
	OE Ce	ິ (5 ເຮັ	1.74 2.20	0.2	20 10	80 90	<0.5 ().5	(2 1	0.44 0.44	<0.5			15	2.62	10	0.06	10	0.56		1					<10 <10 <10

L21S 18+50E			1.65	0.2	10	110	<0.5	(2			12	77	13			0.06	10	0.53	298	1 <0.01	48
L21S 19+00E LD15 19+50E	•	(5 (5	2.39	0.2 0.2	10 10	90	<0.5	ි ි	0,45 0,45	<0.5 20.5	18 14	86	15	3.56	10	0.05	20	0.63	221	1 <0.01	62
1329 164505		 (5	1.50	0.2	10	70 70	(7,5) (7,5)		0.47	- 1440 - (0.5	 0	64 52	26 8	2.99 2.25	10 10	0.06 90.0	10 20	0.53 0.55	246	1 (0.01	53
1329 17400E	•	3	1.17	0.2	10	60	(0.5		0.43	0.5	ş	51	12	2.30	10	0.06	20 20	0.30	268 195	1 0.61 (1 (0.01	31 31
L22S 17+50E		<5	1.59	0.2	<10	70		(2	0.62		20	59	21		10	0.06	10	0.58	486	<1 <0.01	36
L225 18+00E		<5	2.30	0.2	20	210	<0.5	(2	0.60	0.5	21	127	20	4.68	10	0.26	20	0.95	649	1 <0.01	75
L229 18+50E	•	<5	2.63	0.2	10	180	(0.5	<2	0.36	<0.5	14	92	29	5.17	10	0.06	10	0.49	219	1 <0.01	55
1325 19+00E		(5	2.25	0.2	10	90	(0.5		9.35	<0.5	17	62	13	3.13	10	0.04	10	0.42	315	1 <0.01	48
1225 19+50E		<5 (5	2.00	0.2	10	120	(0.5	(2	0.74	(0.5	9	40	24	1.98	20	0.11	10	0.64	287	1 <0.01	27
1335 16+50E		(5 (7	1.12	0.2	10	70	<0.5	3	0.56	(0.5	12	61	12	2.54	10	0.11	40	0.55	447	<1 <0.01	43
L235 17+00E L235 17+50E	÷		1.18	0.2	10	70	(0.5	(2		<0.5	14	67	12		10	0.14	30	0.52	457	1 0.01	41
L235 17+30E		45 <5	1.42 1.94	0.2 0.2	10 20	100 120	<0.5 <0.5	$\langle 2 \\ \langle 2 \rangle$	0.67 0.75	<0.5	16 18	75 67	15		10	0.18	40	0.67	585	1 0.01	52
1226 134505	2	5	2.09	V:4	4V []	12V 90	A C	- 14 19	0.32	<0.5	15	67 62	30 ; 9	3.72 3.13	10 10	0.09 0.06	10	0.82	519 139	1 0.01	54
1225 19+00E		(5	2.92	0.2	20	80	(0.5		0.48	0.5	27	247	2 7:	3.37	10	0.03	20 10	1.67	165 277	1 0.01 1 <0101	46 156
1229 1945CE		Ē	2.42		10	190	(2.5	1	0.44	10.0		- 43 - 63	-	3,93	10	0.37	30	1:102 3:77 2:427	205	1 0.01	47
1429 B+50E		5	2.56	0.2	10	120	(0.5	$\langle 2$	0.49	<0.5	16	61	6	3.79	10	0.04	10	0.39	198	1 0.01	43
1429 9+00E	· · ·	<5	1.32	0.2	10	130	<0.5	$\langle 2 \rangle$	0.50	<0.5	3	52	10		10	0.07	10	0.41	186	1 <0.01	25
L425 10+50E		5	1.39	0.2	10	100	<0.5	<2	0.46	<0.5	7	46	13	2.40	10	0.05	10	0.37	204	1 0.01	21
1428 11+00E		3	2.19	9. 2	30	120	<0.5	25 54	0.30	().5	Ģ	61	15	4.45	10	0.05	<10	∂.4 7	135	1 <0.01	30.
1432 11-505		5	1.97	\$. <u></u>	10	130	(`.5	(2	0.36	0.5	ŝ	47	9	2.75	10	0.04	10	0.26	201	1 <0.01	17
1199 94 <u>509</u>		1	1.41	\$.4 •	10	100	10.5	- G	0.53	(3.5 	* A - Y	55	14	2.66	10	0.06	20).5 1	303	1 0.01	33
L435 9+00E L435 9+50E	1		1.49	0.2	. 10	120	(0.5	<2	0.62	(0.5	10	52	11		10	0.05	20	0.52	324	1 0.01	30
L435 9+30E			1.12	0.2 0.2	10 20	90 80	<0.5 <0.5	(<u>)</u>	0.49	<0.5	8	44		2.21	10	0.05	10	0.139	308	1 <0.01	25
1433 104502		10	1•/7 2.30	v. 2	2 V 10	90	(0.5	(2) (2)	0.44 0.44	(0.5 (0.5	11	5 4 50	15 11	2.62	10 10	0.06 0.02	10 10	0.56	317	1 0.01	35
1435 11+00E		۰ <u>۹</u>	1.17	0.2	10	90	(0.5 (0.5		0.44		e e	44 44		1137 1137	10	0.03	10 10	0.41 0.49	246 200	1 <0.01 1 0.01	31 29
1135 11+50E		1	1.12	0.2	20	- 75	10.5		3.59	0.5	10	59	12	3,45	10	0.05	10	0.40	190 186	1 0.01	20 31
L445 8+50E		⟨5	1.48	0.2	10	110	<0.5	$\langle 2$	0.69	(0.5	12	64	18	2.82	10	0.07	20	0.60	372	1 0.01	38
L445 9+0 0E		<5	2.00	0.2	10	30	<0.5	<2	0.47	<0.5	11	56	10	3.22	10	0.04	10	0.48	214	1 0.01	34 3
1445 9+50E			1.47	0.2	10	70	<0.5	$\langle 2 \rangle$	0.44	<0.5	11	57	12	2.66	10	0.04	20	0.45	192	1 0.01	35
1449 10+00E		3	2.70	3.2	10	100	0.5	<u> (</u>	3.47	0.5	15	74	16	3.65	10	0.04	10	0.64	261	2 0.01	49
1445 10+50E 1445 11-00E		÷.	1.50	0.2	(10	90	:C.5		0.32	0.5	Ş	51	17	2.68	(10	0.06	10	0.52	249	(1 0.01	27
1445 11+50E		5 /r	1.26	0.2	(16 216	10	0.5 /0.5		0.48	(0.5 (0.5	5	47	16	2.42	(10	0.04	10	0 .38	134	(1 (0.01	21
1459 8+25E			1.36 1.84	0.2 0.2	<10 <10		<0.5 <0.5		0.36 0.42	<0.5	5	41.		2.18	<10	0.04	10	0.40	167	(1 <0.01	17
1455 9+00E			1.54	0.2	(10		<0.5 <0.5		0.42	<0.5 <0.5	12 8	55 48	37 13	3.09	<10 <10	0.10 0.06	10 10	0.69 0.41	621 256	<1 <0.01 <1 <0.01	36 22
1455 R450E			1.22	5.5	(15	30 30	0.5		9.42 	S V+G 27.27	-	no 53		2.45	(10	0.06		0.51	2J6 185		26 . 26
1458 10-908			1.32		-17	50	20.E		0.23	in the second	-	40		1.65		0.05		0.48	100 100	(1 (0.01	-10 65
										• -		••					- ·	v z łu		the transmission	a

Carti

670 970

560

2430

580

930

850

1390

1680

660

1110

610

570

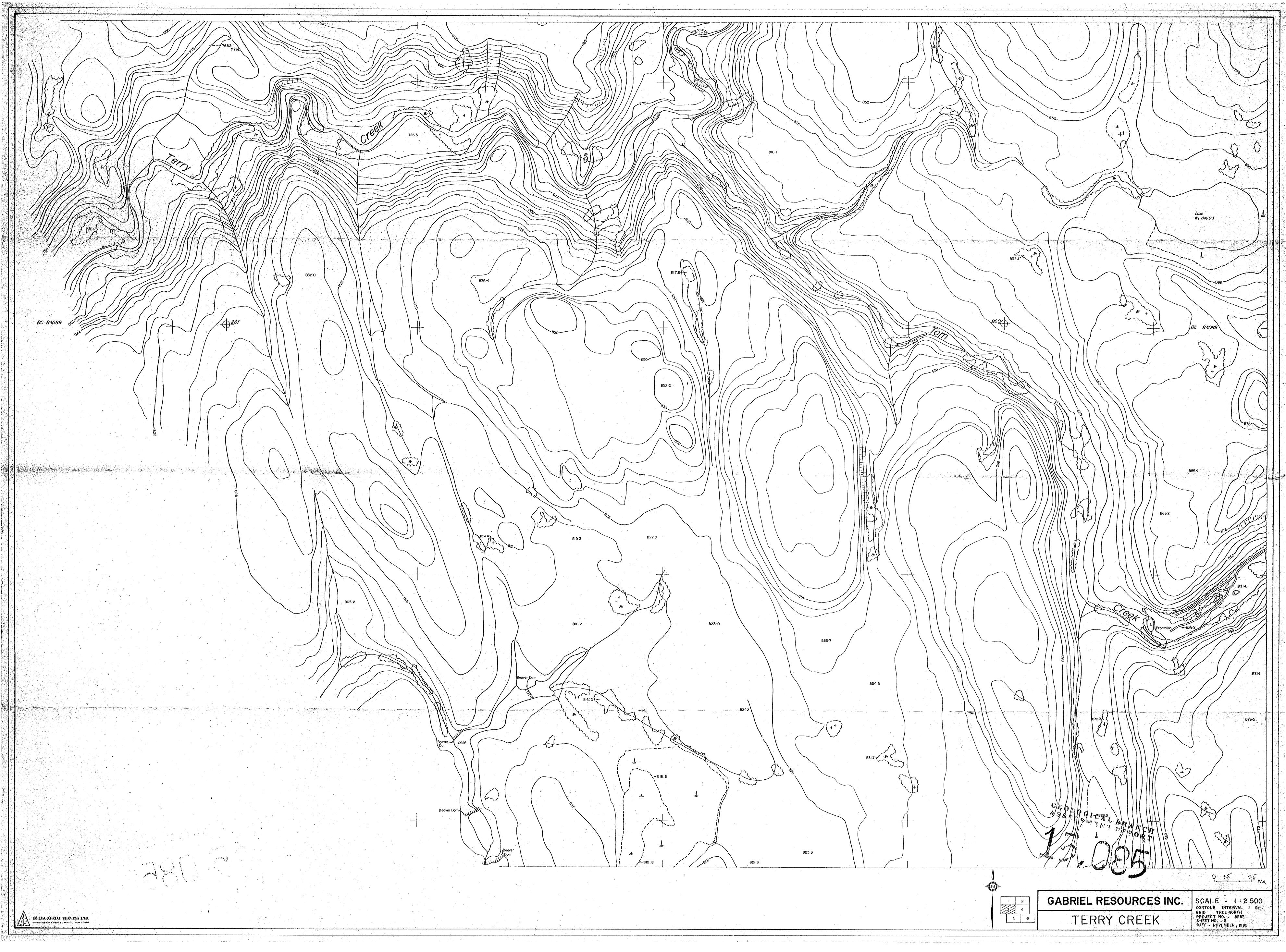
itive multi element ICP analysis legia digestion of 0.5 qm of owed by ICP analysis. Since this incomplete for many minerals. ed for Al. Sb. Ba. Be. Ca. Sr. . Na, Gr. Il. Ii. V and V can dered as semi-quantitative. UP Sr Ti Tl U. 9Ь . . <u>_</u> 15 X DDE DD1 DR DDD 001 o Dhi 2010 32 0.15 <10 <10 65 10 <10 50 25 0.16 ۱A <10 <10 74 <10 70 25 0.15 (19 (10) 65 -10 50 0 25 0.14 (10 <10 47 <10 40 0 26 0.13 <10 <10 50 <10 40 L0 -- -10 31 0.20 <10 <10 78 <10 80 ----0 58 0.20 <10 (10 30 <10 110 34 0.18 <10 (10 139 (10 60 10 20 0.14 <10 <10 62 (10 120 0 ----35 0.26 <10 <10 45 <10 40 63 29 0.12 10 10 52 <10 0 40 ----26 0.12 ۱A <10 <10 53 <10 40 37 0.13 <10 <10 59 0 <10 60 --40 0.15 $\langle 10 \rangle$ <10 76 <10 60 0 20 0.15 110 12 53 12 (10 (10 35 0.28 (10 62 416 40 25 0.16 :10 010 51 30 29 0.14 <10 (10 78 <10 90 -----33 0.15 <10 <10 54 <10 40 --30 0.15 <10 <10 58 <10 60 0 -----10 110 20 0.04 (10 66 120 -----(10 (14 (10 (10 24 0.13 62 110 32 0.14 58 30 ----34 0.14 <10 <10 59 <10 60 0 26 0.14 (10 <10 55 <10 30 ---26 0.15 <10 (10 58 <10 50 ----/19 (10 (10 (1) (10 (10 26 9.14 79 /10 Ξ,A -- ... 27 0.15 35 0.15 (10) (10) 12 14 (10 (10 57 50 34 50 -16 <10 38 0.17 <10 <10 69 <10 50 26 0.13 <10 12 <10 <10 60 <10 70 --16 <10 25 0.15 <10 <10 <10 64 40 --40 26 0.19 -(10 14 75 12 50 - -
 23
 0.14
 <10</td>

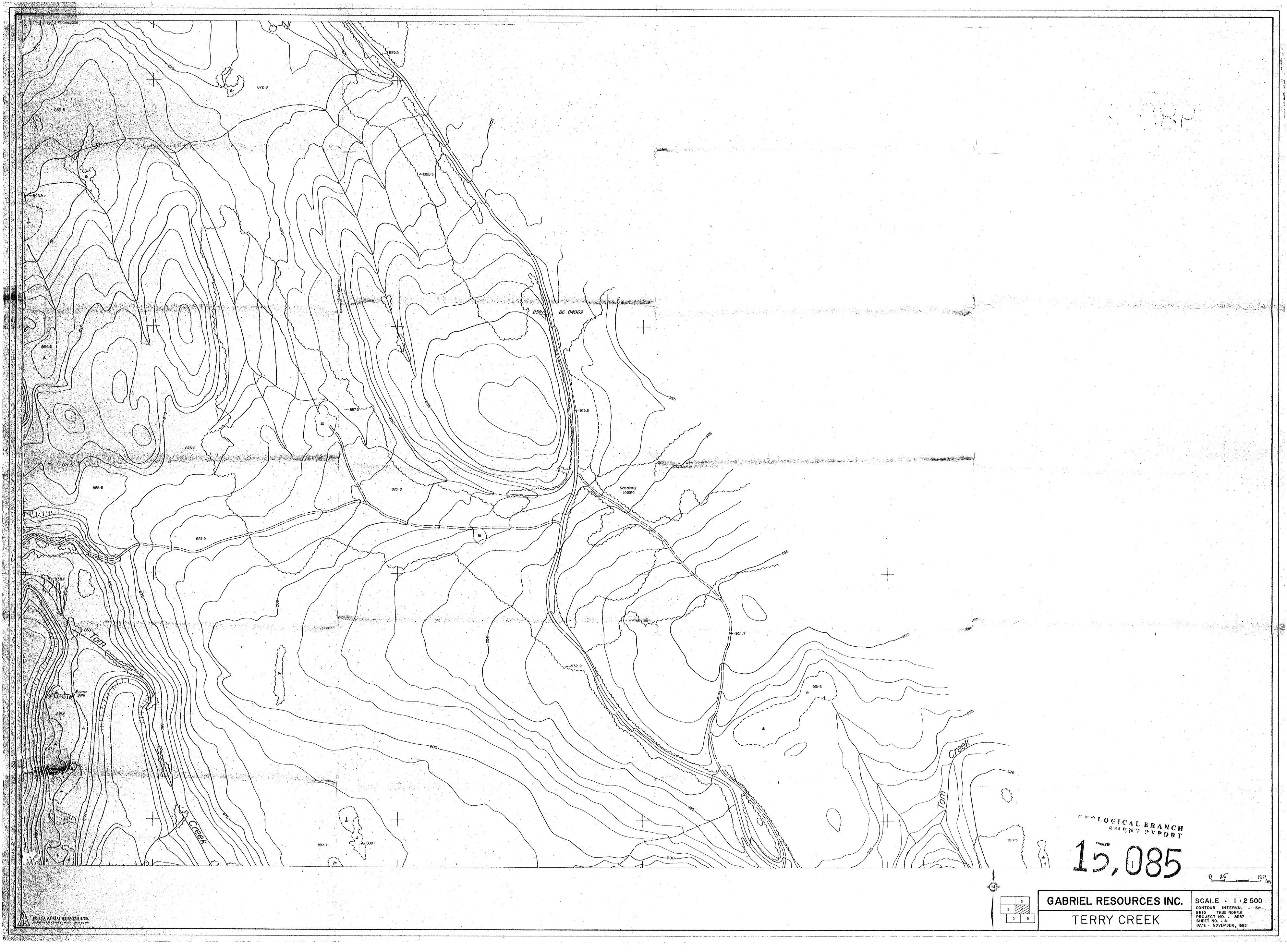
 29
 0.12
 <10</td>
 <10 (10 52 000 50 Ξŷ 22 0.12 $\langle 2 \rangle$ <10 <10 (10 49 (10 40 -- **35 0.10** <10 22 **0.13** <10 <10 <10 55 <10 70 --49 <10 50 <u>(</u>2 25 0.14 (10 120 56 (10 :to: 20 30 3.23 ----de. 42 30 Ľ, Satt Bachle.

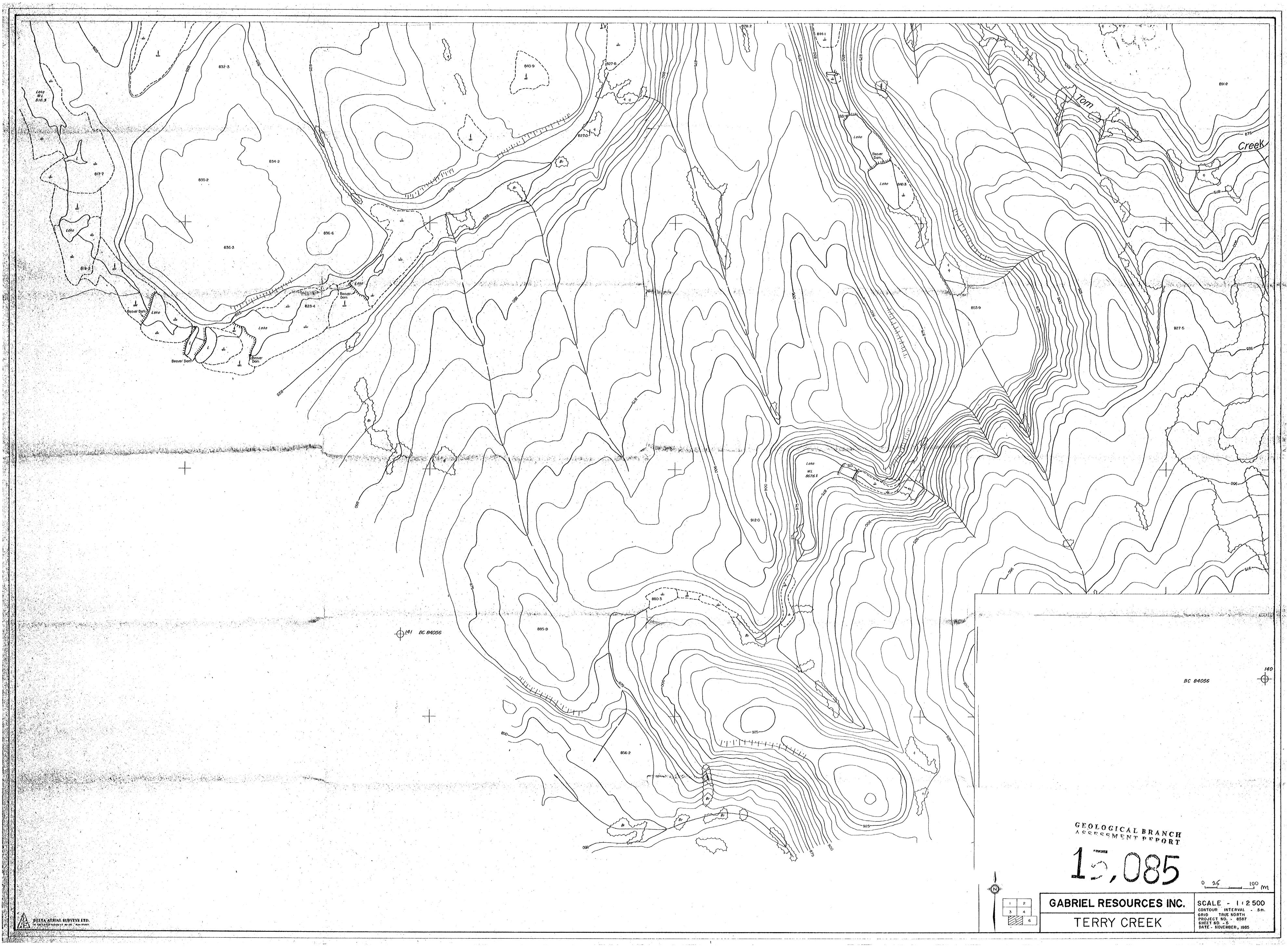
C										Can	rth Vano Nada	V7J	2C1	Sami		nt i	+ = + ;	110 ml	.1+;		ont T	CB	-1
		 Analytic 	cal Chemists	•Geo	chemists	•Re	egistere	d Assaya	ers	Tele Tele	ephone:(6 ex:	04) 984-0	0.000	Semi quantitative multi element ICP analysi Nitric-Aqua-Regia digestion of 0.5 gm of									
			CERT	IFICATE	UE AT	ALYS	15]						mate	erial	fo	110w	ed by	ICP	' anal	lysis	. Sind	ce thi
TO : KANG	ELD RESOU	RCES LT	J	-	111			CERT	. +	: A	85185	15 00	1-A									minera e. Ca.	
1500	- 675 W.	HASTIN	65 57					INVO			05185 8-NOV	20										and V tative	
VANC	DUVER, B.(P.O.	ŧ	: N	IONE								.5 50		5		
VGB	1N2							YARD	LEY	AKE			-		IENTS		KOUP						
Sample	Au ppb Al	Ag As	Ba Be	Bi Ca	Cđ	Co Cr	Cũ	Fe	Ga	K I	La Kg	ăr:	No Na	Ni	P	Pb	Sb	Sr	Ti T	1 U	y		Zn
description	FA+AA 🟅	ppa ppa	ppa ppa	pon 1	pp n f	ip n ppn	pp=	2	ppa	Z pp	pm Z	pon (opm Z	ppn	ppa	ppa	pp	ppm	2 pp	a ppa	ppn	ppm po	
L1005 13+00E			130 (0.5	(2 0.43	1	15 65			(10 0		10-0.77		0,01		430	8	(10	31 0.					101 -
L100S 13+50E	(5 2.47 (5 1.70										10.0.58 10 10.40		0.01	49 19	710 2230		(10	28 0.			(51 72	<10 9 <10 8	and the second se
L100S 14+50E	(5 1.34	0.2 <10	70 (0.5	(2 0.28	(0.5	6 47	16	2.44	<10 0	.06 1	10 0.45	192	1 0.01	21	330	8	(10	21 0.	16 (1	0 <10	65	<10 5	50
L1005 15+00E	5 A 5 5 5 1	0.2 (10	60 (0.5	(2 0.40		7 45		2.34	(10 0		10 0.45	206	1 0.01	23	630	8	<10	26 0.	1965 A.C.			(10 7	0
L100S 15+50E L100S 16+00E	(5 1.43 (5 1.54)	0.2 (10	120 (0.5	(2 0.42 (2 0.33		8 3.		2.77 2.32	(10 0		20 0.47		(1 0.01	24	1000 370	10	(10	27 0.		0 (10 0 - (10)	68 	<10 7	io
L1005 16+50E	(5 1.10		80 (0.5	(2 0.35		5 36	A CONTRACTOR	1.86			10,5 0, 28		140.01	15	830	10 .	2222222		Ten line	0 (10	the second second second		17.11 A
				2 0.43		9 50		2.33			0.59	1	0.01	27	600							(10 5	
L100S 17+50E		0.2 (10	90 <0.5	2 0.44		10 50		2.33	<10 0		20 0.59	327	1 0.01	27	320	10	(10	33 0.	18 (1	0 (10	67	<10 6	50
L1005 18+00E		0.2 <10	60 <0.5	(2 0.25		3 31		1.59	(10 0		10 0.21	98	1 <0.01	11	830	10	<10	17 0.		5 P	42	<10 4	0
L1015 13+00E L1015 13+50E	(5 1.48 (5 2.23-	0.2 (10	80 (0.5	(2 0.33		7 49		2.10	(10 0		20 0.58	284	1 0.01	24	360 510	8	(10	21 0.			54	(10 6	0
L1015 14+00E	(5 1.38		70 (0.5	(2 . 0.43	and the second se	A 11.2	1 -13				20 0.53		1.0.01 0.01	14 C 10 C	580	- 10						<10 10 <10 3	
L101S 14+50E	(5 1.75		110 (0.5				20				20 0.58		1 0.01		2230			43 - 0.		0 710		(10 12	
L1015 15+00E	(4) (2.6) (1.6)	0.2 (10	120 (0.5	(2 0.28	(a) (1) (2) (2) (4)	13 58		3.27	(10 0		10 0.52	410	1 0.01	30	540	8	<10	23 0.		2.2.2	67	<10 8	0
L101S 15+50E		0.2 <10	70 <0.5	<2 0.38		9 50		1.94	(10 0		10 0.54	220	1 0.01	23	390	8	<10	23 0.			49	<10 6	.0
L101S 16+00E	<5 1.47		70 (0.5	<2 0.47		8 51		2.66	(10 0		20 0.51	263	1 0.01		1520	10	<10	27 0.			and the second of the second	<10 6	0
L101S 16+50E	(5 1.3)		70 (0.5										1 0.01									(10 5	
L1015 17+50E	(5 0.97										0.00-10		a (0.0)			6	(10	18-0	17 (1	o cio	47	(10 5 (10, 3	0
L1015 18+00E		0.2 (10	We re merenden die eine	<2 0.36	- anatele	7 54	12 M				0 0.52				800		(10	23 0.		0 <10			0
L1015 18+50E	<5 2.18		70 <0.5	(2 0.30		8 52			(10 0		0 0.39		1 <0.01		530		(10	23 0.					0
L101S 23+50E	<5 1.62			(2 0.35		9 63		3.29			10 0.58		1 0.01		370		(10	28 0.					50
L1015 24+50E			130 (0.5								0.67						<10			0 < <10		(10 7	5 D
L101S 25+00E L101S 25+50E	(5.2.76 (5.1.61		250 (0.5			22 95 7 56			10 0 10 0	15 2	20 0.65 20 0.53	270	0.01	37.	250	10 8				0 (10		<10 10 <10 7	
L1015 26+00E	(5 1.08		90 (0.5	(2 0.31		5 36		2.16	(10 0	.03 1	0.22	363	1 0.01	12	830	. 6				0 <10		(10 7	
L1015 26+50E	(5 2.04		90 (0.5	(2 0.37		8 55		2.48	10 0				1 0.01		300		(10	30 0.				<10 5	
L101S 27+00E	<5 2.22		80 (0.5	(2 0.47		11 54	9	3.80	10 0	.07 1	0 0.52	419	3 0.01	27	1780	8		44 0.				<10 20	
L101S 27+50E	(5 1.74	0.4 <10	100 (0.5	(2. 0.38	1.0	8 47	- 12	2.90	10-0	.09 1	0 0.47	373	2 0.01	247	1490	10	<10	37 0.	15 . (1	0 - 5 (10	80	(10:411	
L1015 28+00E			130 (0.5			10 56	38	3.50	<10-0	.18.2 . 1	0 0.75	365	5 (0.01	- 42	- 510							(10 10	
L101S 28+50E			100 (0.5			4 34			(10 0.	07.751	0.0.25	1/1	3 0.01	18	520	12						(10 4	
L101S 29+00E L101S 29+50E	<pre> (5 1.66 (5 2.28</pre>		70 <0.5 90 <0.5	(2 0.24 2 0.36		5 50 10 64		2.67	10 0.		0 0.47		1 0.01		520 340	10 3		26 0. 26 0.					50
LAVAD BJIJVA	1 50 0.93		100 (0.5	(2 0.28		4 29		1.59	(10 0.		0 0.24		1 <0.01		590		<10	22 0.					ic

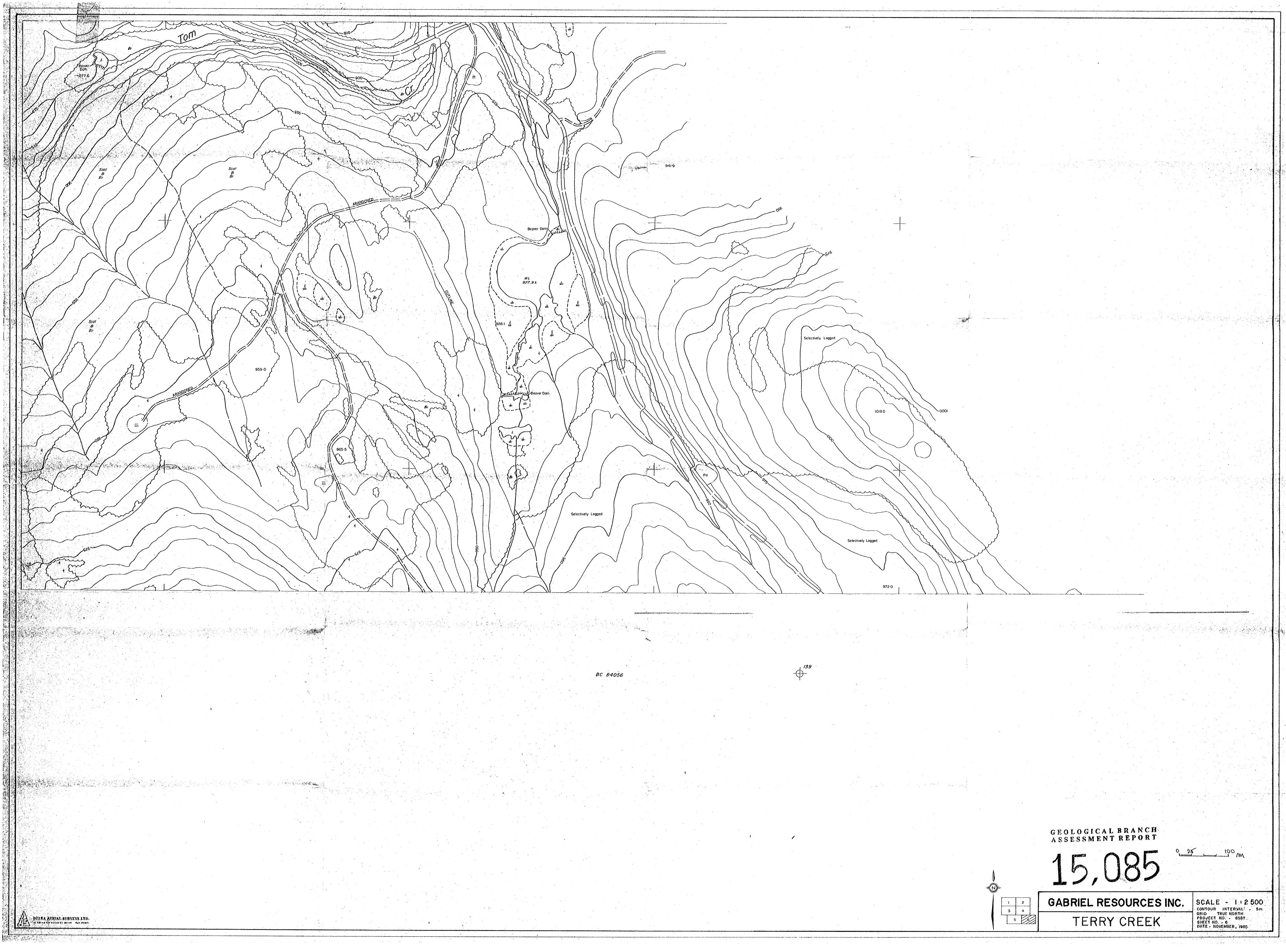
Certified by HartBickler

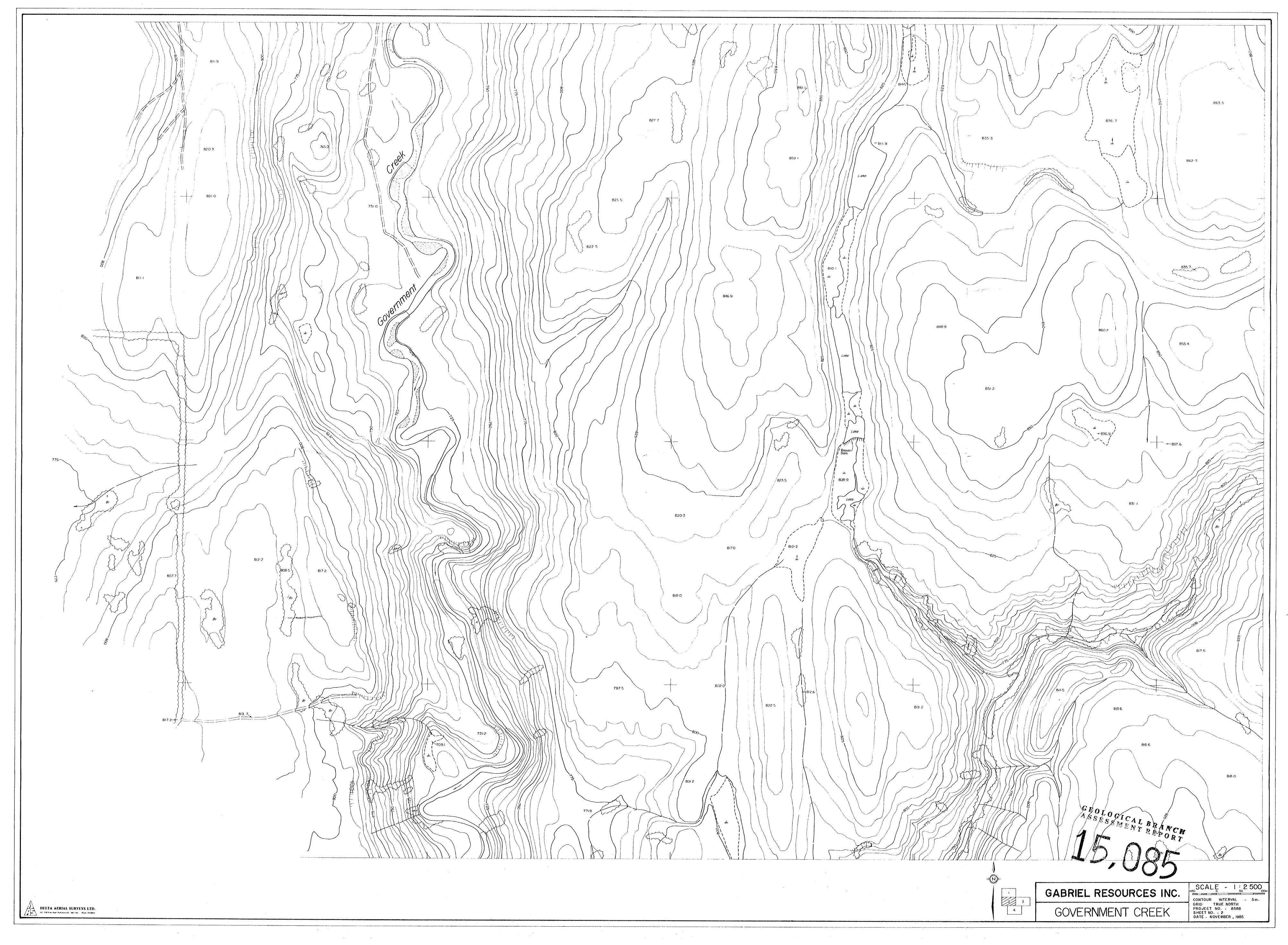
APPENDIX B: ROCK CHIP SAMPLE RESULTS

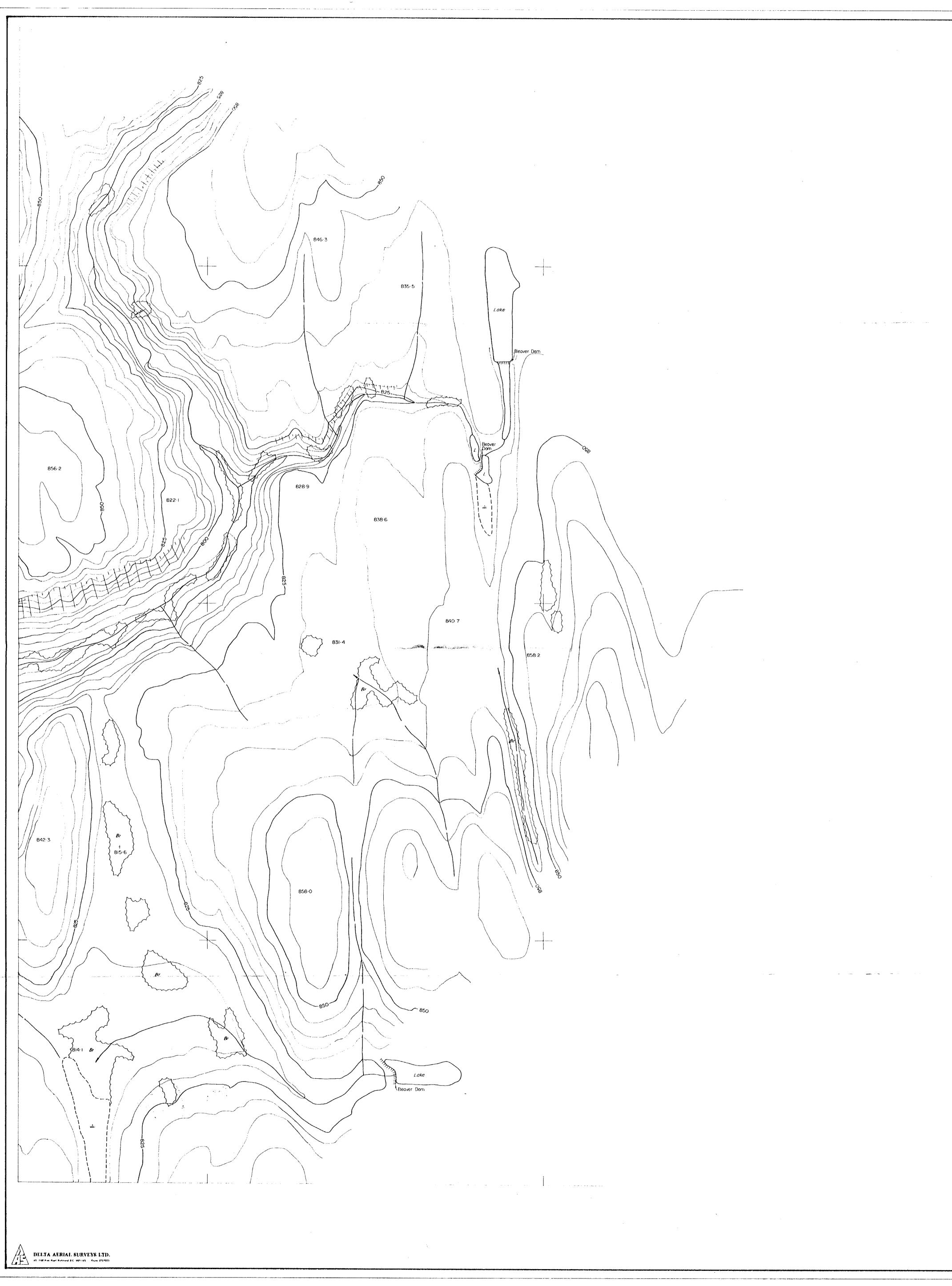

APPENDIX B


Rock Sample Descriptions


LOCATION	DESCRIPTION	SAMPLE No.	Au oz/t	Ag oz/t
0+00, L 0+10NE	Massive sulphide augite an		0.516	1.04
0+00, L 0+10NE	Massive sulphide augite an		1.334	0.57
0+00, L 0+10NE	Massive sulphide augite ar		0.226	1.37
0+00, L 0+30SW	Massive sulphide augite ar		0.132	0.93
0+00, L 0+30SW	Massive sulphide augite ar		0.364	1.62
0+00, L 0+30SW	Massive sulphide augite ar		0.136	1.22







.

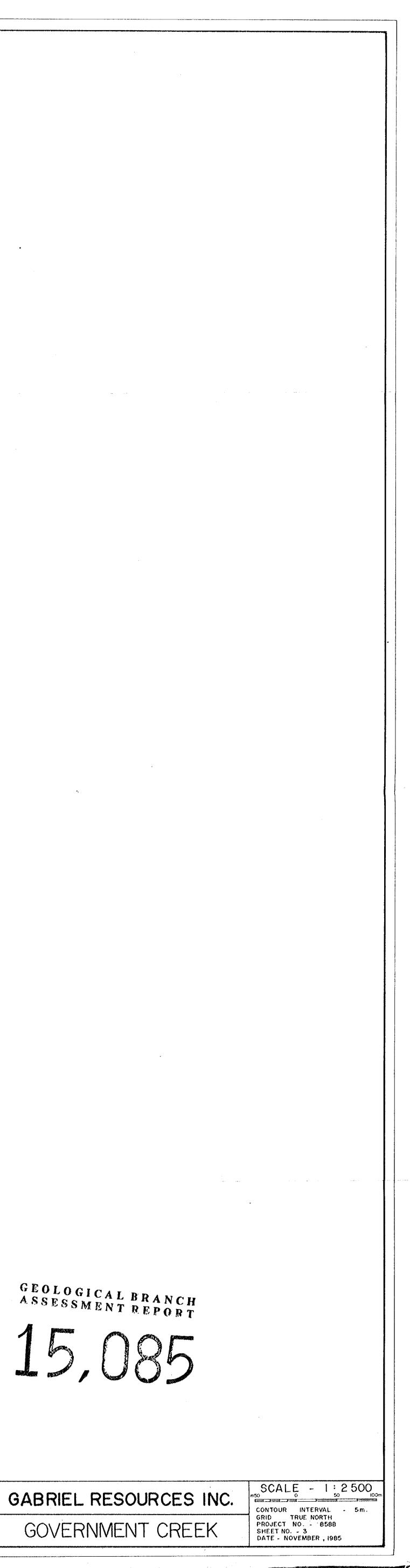
•

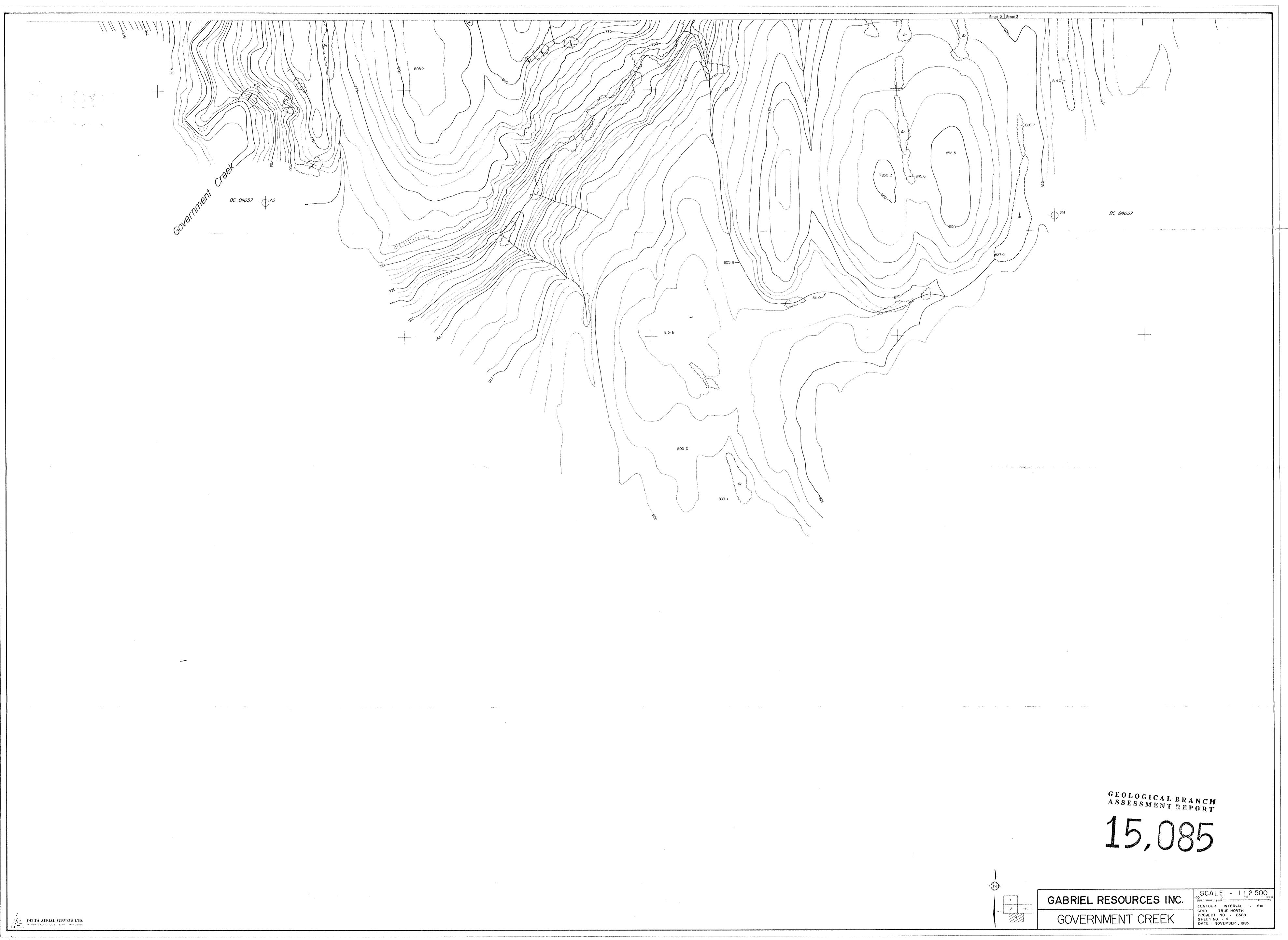
....

:

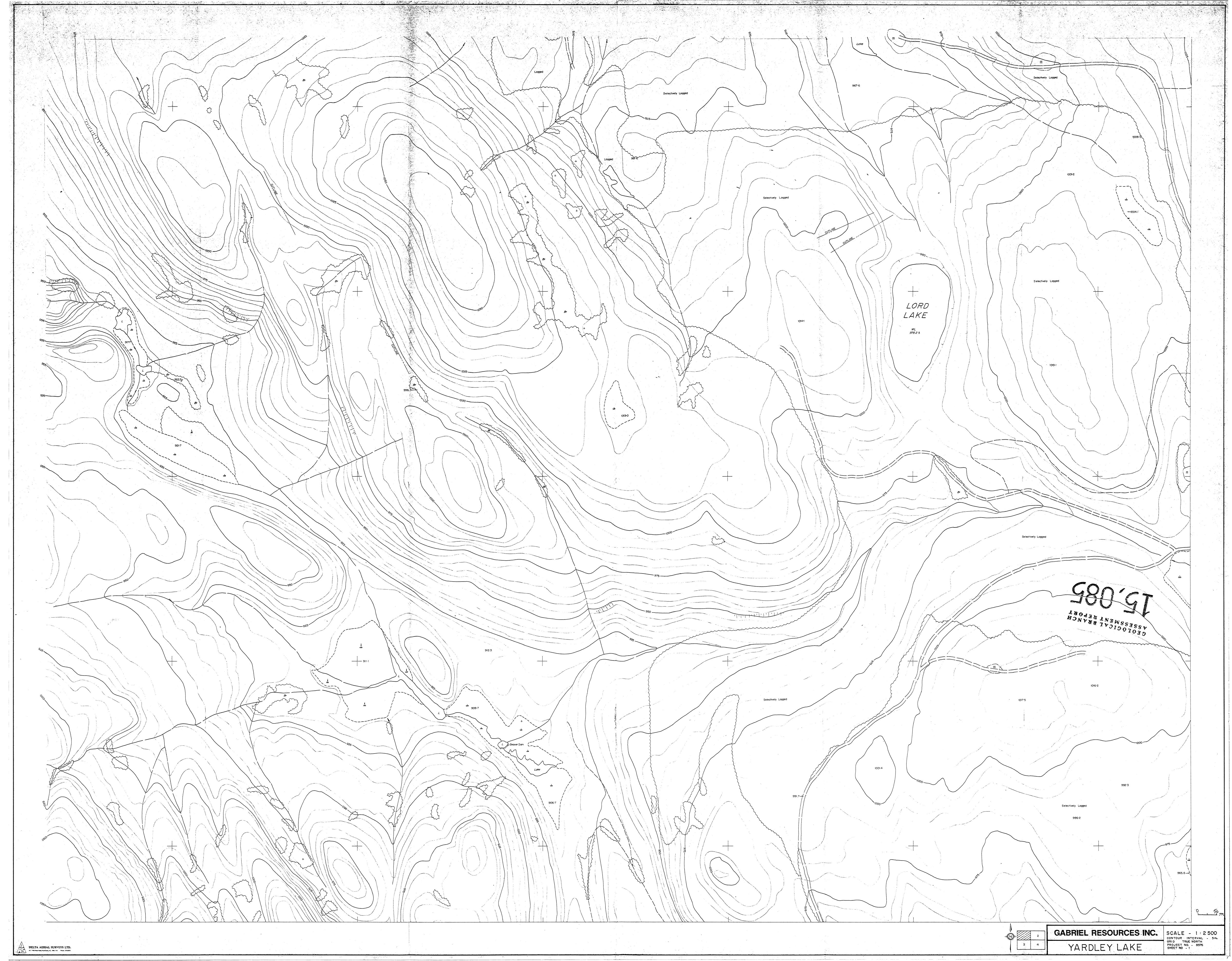
•

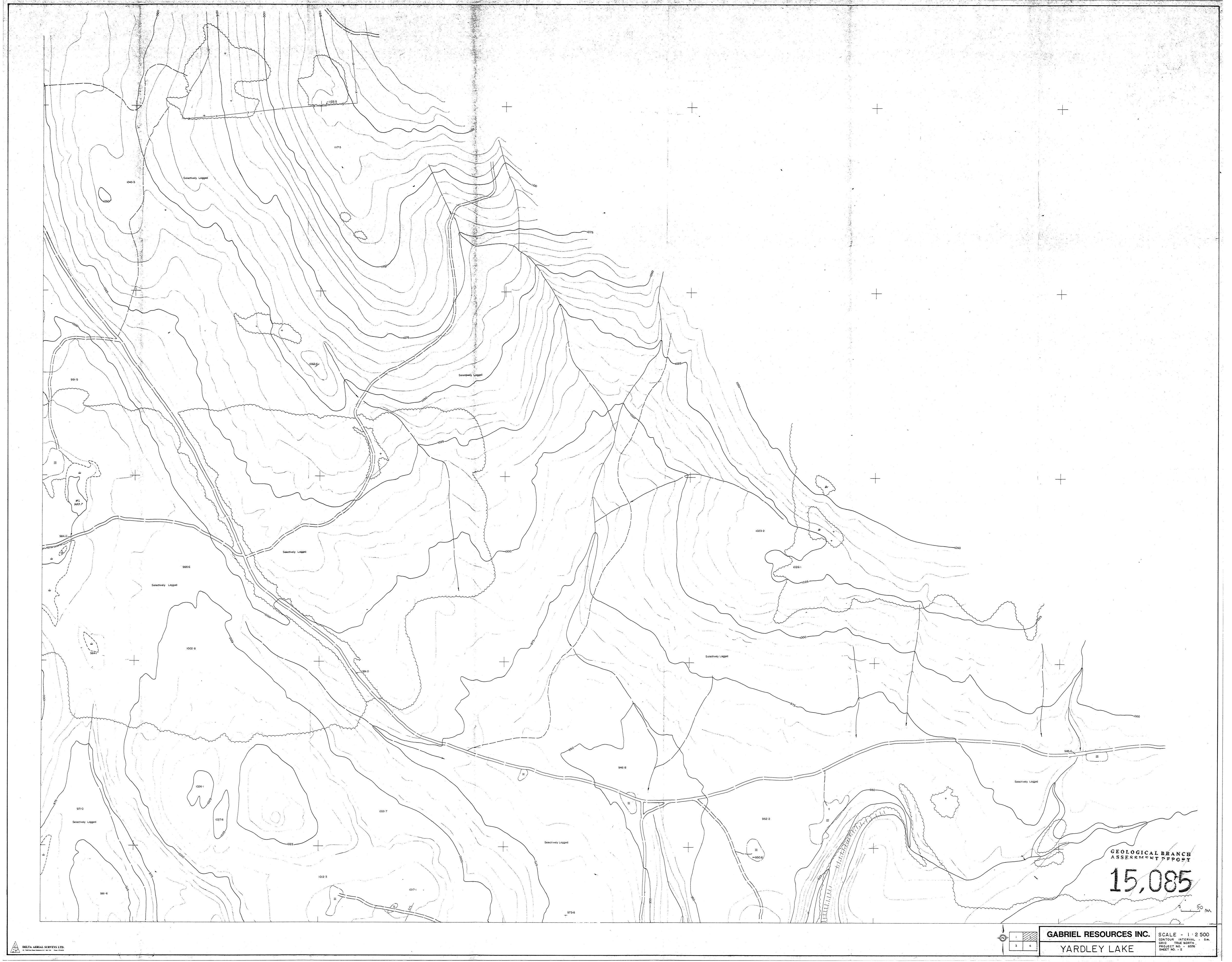
ν.

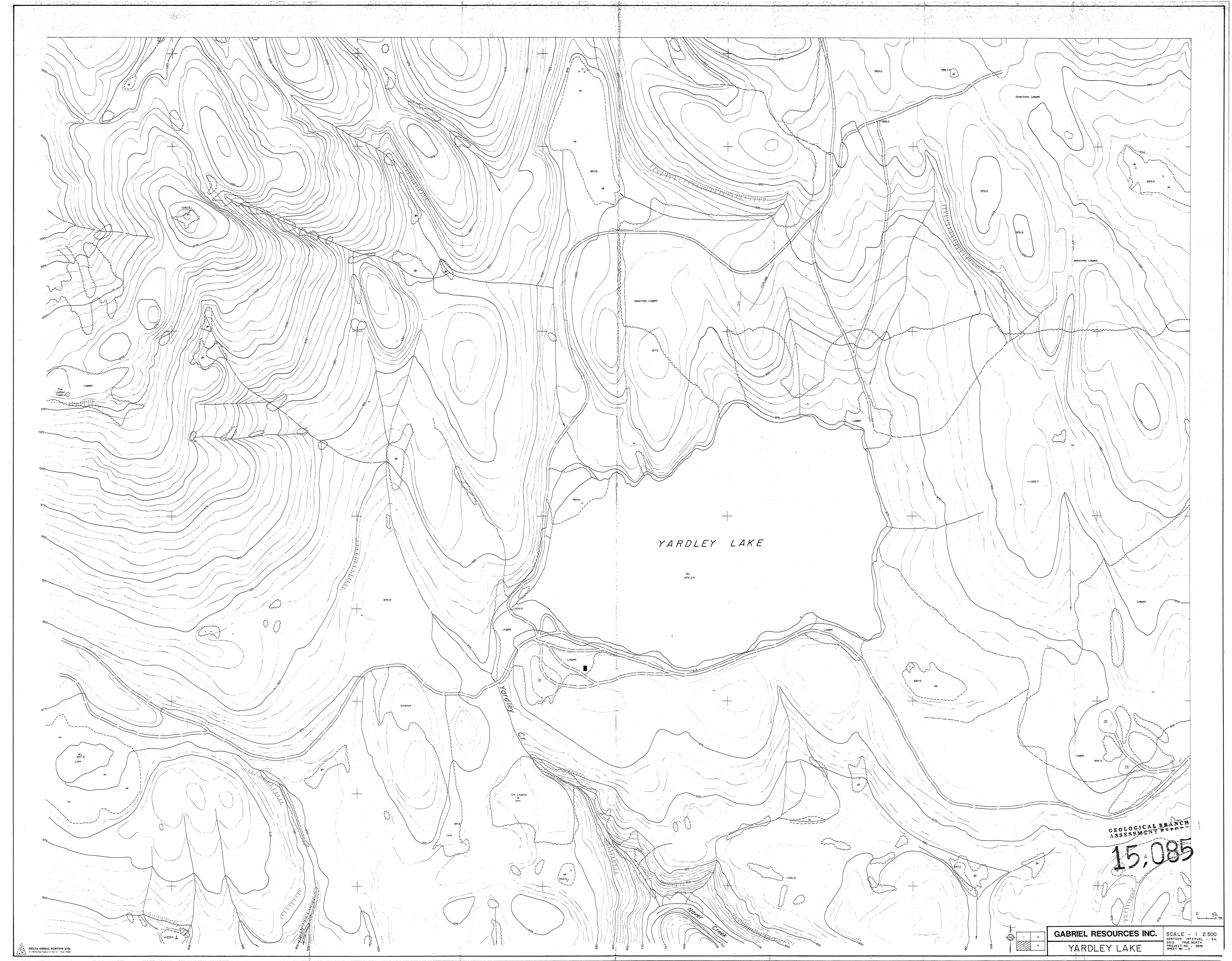

医马克氏 化乙基乙酸

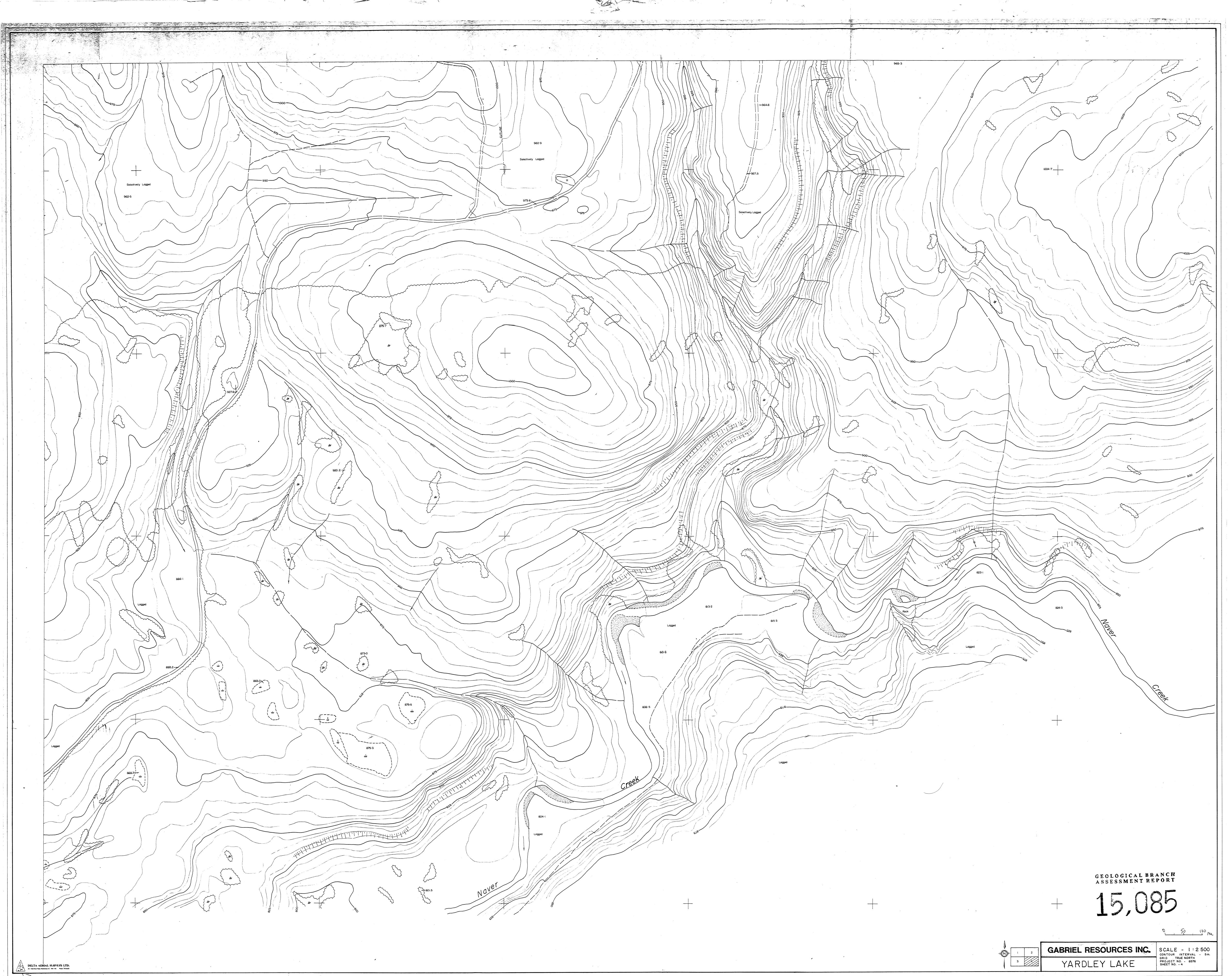

and the second second

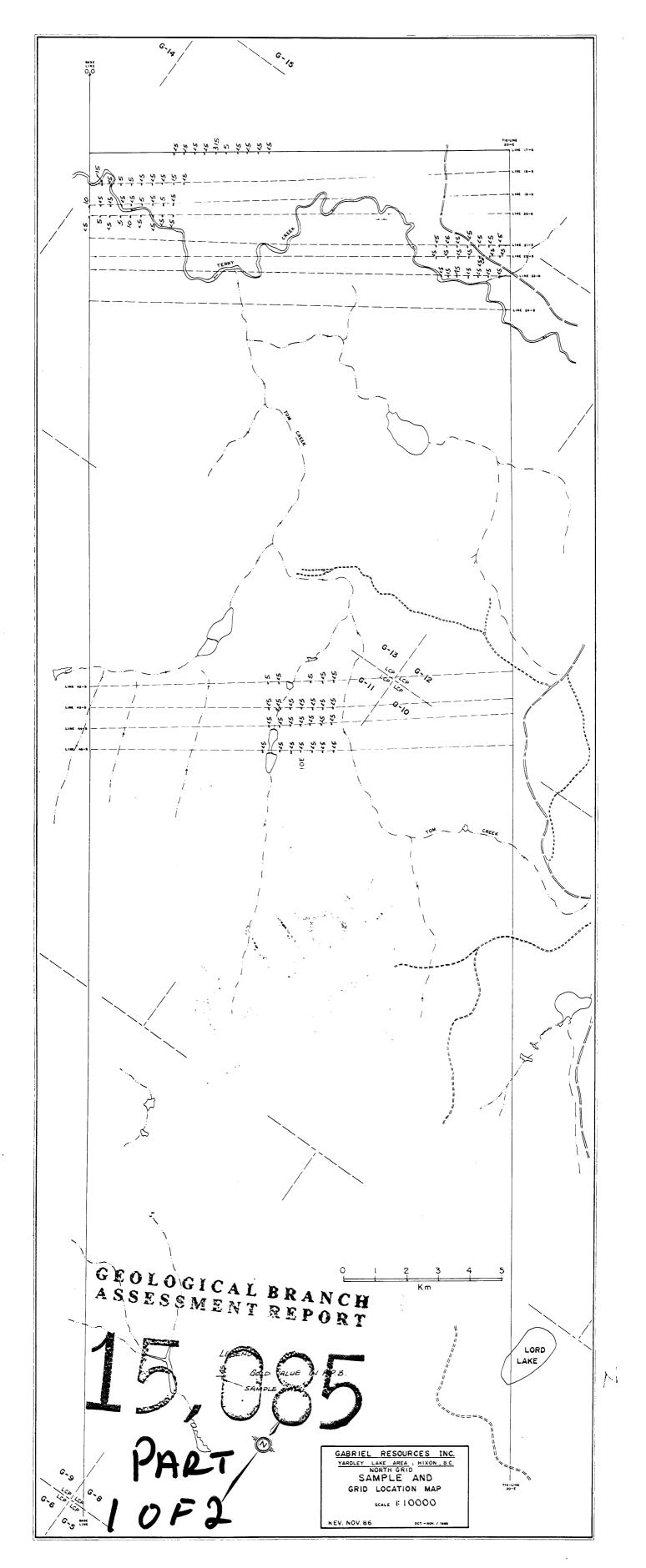
1. J.


GABRIEL RESOURCES INC. GOVERNMENT CREEK


•






• •

