

.

.

GEOCHEMICAL REPORT ON THE COMSTOCK - SILVER CUP PROPERTY

Located in the Slocan Mining Division NTS 82 - F - 14 E, W British Columbia

at

FILMED

49⁰ 53' 15" N. Latitude 117⁰ 14' W. Longitude

for DRAGOON RESOURCES LTD.

Ъy

D. A. Yeager, GeologistC. K. Ikona, P. Eng.

September, 1986

AND ADDRESS OF AND ADDRESS OF			
MINISTON OF			
ATEN THE	LNE	TOY HAD	UTO I
- Pain Raboli	1915	3000 July	vc9 1
Dalti		aro (All	ÆS I
Kec a			
95D	90		i
$\sim 1.1^{\circ}$	60	1986	li li
CHORES		1000	ĥ
- AUDIEU _			j.
Set 15			ų
The second second			
MAM'SNI.			ł.
and a state of the		20.	÷.
	· · · · · · · · · · · · · · · · · · ·	THE LOURS HOLD IN THE	2

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	LIST OF CLAIMS	1
3.0	LOCATION, ACCESS AND GEOGRAPHY	1
4.0	HISTORY	2
5.0	REGIONAL GEOLOGY	2
6.0	PROPERTY GEOLOGY	2
7.0	GEOCHEMISTRY	3
8.0	ROCK SAMPLING	4

LIST OF FIGURES

		After Page
Figure l	Property Location Map	1
Figure 2	Claim Map	1
Figure 3	Silver & Lead in Soils	3
Figure 4	Silver & Lead in Silts	3
Figure 5	Rock Sample Sites	4

LIST OF APPENDICES

Appendix I	List of References
Appendix II	Assay Certificates
Appendix III	Cost Statement
Appendix IV	Certificate of Qualifications
Appendix V	Engineer's Certificate

.

*

The following report has been compiled at the request of Dragoon Resources Ltd. The report consists of a compilation, review, and interpretation of geochemical and sampling data made available by Dragoon. The samples were taken by personnel contracted by Dragoon during late June and early July, 1986.

2.0 LIST OF CLAIMS

Claim Name	Record Number
Silver Cup	1815)
Isabel Fr.) ML278
Kentucky Girl	1818)
Ruby Trust	1804
Comstock	1814
Silver Chief	1813
CSC 1	1611
CSC 2	1612
CSC 3	1613
CSC 4	2025
CSC 5	2026
CSC 6	2027

3.0 LOCATION, ACCESS AND GEOGRAPHY

The claims are located between Fennell and Silverton Creeks, 17 km east of silverton, at an elevation of between 1490 and 2130 metres at approximately 49° 53' 15" N. latitude and 117° 14' W. longitude.

Access is by highway to Silverton thence by gravel and dirt roads to all parts of the claims. Two miles of roads to the mine site have been relocated and rebuilt.

The claims are on an open rounded ridge and extend northeasterly down a steep forested slope toward Silverton Creek.

4.0 HISTORY

The Comstock was first worked in 1897 when a concentrator was built. By 1904 nine levels had been opened up and the mine had produced 298 tons averaging 98 oz. silver and 56% lead per ton. Shipments totalling 92 tons were made in 1905, 1908 and 1920.

In later years a number of successive operators have made small shipments of material from dumps on the property to local mills, but no sustained production has occurred.

5.0 REGIONAL GEOLOGY

The Slocan area is underlain by Kuskanax granodiorite batholith to the north and Nelson granodiorite batholith to the south. Slocan series sediments lie between the intrusives. Younger quartz feldspar porphyry, diorite and lamprophyre dikes, sills and plugs intrude the sediments and older intrusives. Numerous small rich silver-bearing galena-sphalerite veins, breccia zones and some replacement deposits have been mined in the sediments and intrusives.

6.0 PROPERTY GEOLOGY

The claims are covered with overburden but show rocks along the many roads. They lie in a uniform granodiorite near the north contact of the Nelson batholith.

The Comstock-Silver Cup quartz vein follows a strong fault which strikes N 35° to $55^{\circ}E$ and dips 35° to 55° SE. The fault contains gouge on both walls with crushed granodiorite quartz and sometimes lamprophyre fillings. Fine-grained galena-sphalerite and occasional tetrahedrite occur in crushed rocks.

Joil: B horizon averaging Join depth GEOCHEMISTRY 7.0

Forty-one soil samples and 19 silt samples were taken during the 1986 program. Samples were taken along a north-south baseline departing from the lower switch back on the access road (figure 3). Soil samples were taken every 25 metres along the baseline and marked according to the distance along the baseline. Silt samples were taken from streams crossing the baseline, numbered consecutively from north to south, and located according to the distance along the baseline. Both soil and silt sample sites were marked with correspondingly numbered strips of plastic flogging and samples were placed in kraft envelopes. The samples were air dried in camp prior to shipment to Acme Analytical Laboratories Ltd. in Vancouver, B. C.

A thirty element suite was analysed for by ICP analysis techniques and gold was analysed for by atomic absorption techniques.

It is felt that a rigorous statistical treatment of the geochemical data is not warranted at this time, as studies of this nature are usually reserved for larger bodies of data. However, a visual inspection of the results suggests that anomalous values for the metals of interest on the property to be greater than 0.7 parts per million silver, greater than 25 parts per million lead and greater than 200 parts per million zinc. Antimony values tend to be coincidentally higher with higher lead, zinc and silver values and nickel and cobalt values tend to be co-incidentally lower with higher lead, zinc and silver values.

Based on the foregoing analysis, a number of stations are anomalous in lead, zinc and silver. In particular, a zone from 575 S to 700 S appears to be anomalous. The remaining anomalous stations appear to be spot highs and although they probably indicate proximity to mineralized zones, would be a lower exploration priority than the wide zone indicated by the 575 S to 700 S soil samples.

-3-

This geochemical anomaly is tentatively interpreted to represent a mineralized cross structure intersecting the main Comstock-Silver Cup structure in the vicinity of the Comstock mine. Depths of overburden in the area of the anomoly are not known.

8.0 ROCK SAMPLING

Ten rock samples were taken during the program from a number of locations on the property (see Figure 5). The following table summarizes the sampling.

SAMPLE #	РЪ %	Zn %	Ag OZ/T	Au OZ/T	Remarks
67875	4.02	4.86	23.96	.016	Grab sample from dump of old lower portal.
67876	7.05	7.06	16.71	.001	Grab sample from Constock dump- second bench.
67877	.15	.11	.44	.001	Representative samples from
67878	.32	.27	.77	.001	quartz veins at lower road switchback at zero station on baseline.
67879	25.90	3.17	35.35	.001	Grab sample from Comstock dump- second bench.
67880	3.91	3.87	10.48	.003	Grab sample from Comstock dump- third bench.
67881	39.40	13.88	57.57	.001	Picked sample from Comstock dump.
67882	8,57	7.14	25.50	.001	Grab sample from Comstock dump- second bench.
67883	22.10	6.05	35.86	.001	Grab sample from toe of Comstock Dump.
67884	5.81	3.52	10.56	.001	Grab sample from Silver Cup dump- middle bench.

Respectfully submitted, David A. Yeager, Geologist K. Ikona, P. Eng. Charles C

-4-

APPENDIX I

LIST OF REFERENCES

Sheppard, E. Percy. 1981. Geological Report on the Comstock-Silver Cup Property, Slocan M.D. British Columbia for Chopper Mines Ltd.

,

APPENDIX II

.

...

ASSAY CERTIFICATES

PAGE 1

1

1

(

(

(

(

(

(

(

(

(

(

(

ר ר

,

1

GEOCHEMICAL ICP ANALYSIS

.500 SEAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HEL-HN03-HED AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.K.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 FPM. - SAMPLE TYPE: SOILS & SILTS - BO MESH AUT ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: JULY 1 1986 DATE REPORT MAILED:

:	July 1/86	ASSAYER	H.DEAN TOYE.	CERTIFIED	в.с.	ASSAYER.
---	-----------	---------	--------------	-----------	------	----------

DRAGOON RESOURCES FILE # 86~1348

SAMPLES	Na PPM	Cu PPM	P5 PPH	2n PPM	Aş PPN	N1 PPH	Co PPM	Hn PPM	Fe Z	As PPM	U PPM	Au PFM	Th PF#	Sr PPfi	Cd PPM	Sb PPR	B1 PPM	V PPM	Ca 2	P Z	La PPM	Cr PPH	Họ Z	Ba PPM	Ti Y	B PPM	A1 1	Na I	K I	N PPM	Au t PPB
BL 1S	1	28	ė	B3	.3	282	21	352	2.72	10	10	ND	5	75	1	4	2	63	.88	.261	21	270	3.17	203	.24	3	1.65	.0?	.44	t	4
BL 25	1	24	8	80	.3	209	18	453	2.66	14	8	ND	6	72	1	2	2	65	1.05	. 344	26	228	2.32	192	. 22	2	1.40	.07	38	1	1
BL 3S	1	24	10	76	.3	210	16	417	2.68	12	5	ND	3	4?	i	2	2	72	. 65	.146	16	278	2.76	155	.23	2	1.57	.05	.31	i	;
BL 4S	1	15	9	B7	.3	110	10	421	2.37	11	5	ND	5	30	i	2	3	58	.57	.145	21	146	1.49	173	.17	2	1.46	.04	.78	1	•
BL 5S	1	17	52 •	173	.5	163	15	414	2.65	5	6	ND	Ă	39	1	2	Ă	60	.66	.152	15	200	2.34	144	.23	5	1.57	.04	. 3B	i	2
BL 65	1	14	20	134	.5	117	13	1066	3.04	7	5	NÐ	6	54	1	2	,	61	. 65	.104	26	163	1.48	253	. 14	,	1.76	. 04	.78	,	2
BL 7S	1	7	25 •	144	.5	50	6	1141	2.80	5	11	ND	Ň	44	1	5	5	52	.53	.095	25	78		220	08	,	1.40	03	.24	÷	Å
BL BS	1		24	128	. 6	20	7	1748	2.83	ō	5	NO	š	62	1	,	5	47	40	104	24		45	243		5	1 79	.03	20	÷	1
BL 95	1	0	28.	220 -	1.1*	22	Â	1505	4.16	R		ND		84	ţ	5	5	75		107	54	41	.00	110	07	5	2 34	.03	22	ź	,
BL 105	1	4	22	172	.4	10	6	1007	3.06	6	5	ND	11	41	1	2	2	50	.58	.091	35	17	.69	161	.09	2	1.58	.04	.21	1	1
BL 115	1	13	10	66	.4	115	11	353	2.80	6	10	ND	٨	61	1	,	,	63	1.00	. 270	27	186	1.66	137	.17	,	1. 70	.05	.74	,	,
BL 125	1	-23	13	119	.3	174	17	387	2.97	ī	5	ND	ĩ	57	1	2	;	73	.95	.235	18	222	2.40	144	. 27	11	1.50	05	40	÷	;
BL 135	1	24	14	120		t78	17	421	2.97	i	5	ND	i.	56	1	5	,	78	.05	.215	17	233	2.51	157	.28	;	1.69	.05	40	,	3
BL 145	1	76	7	80		245	77	547	3.67	2	14	ND	i	71	5	2	,	00	1 20	224	14	100	3 42	272		;	2 24	05	52	ī	ž
BL 155	1	43	79.	253-	.3	303	27	761	4.08	17	9	ND	2	B1	1	2	2	118	1.09	.205	14	377	3.41	388	. 30	5	2.13	.07	.57	i	2
BL 165	1	46	18	121	.3	324	29	621	3.76	6	20	ND	4	104	1	2	2	?5	1.61	. 362	20	374	3.97	364	. 28	5	1.96	. 08	. 56	2	2
BL 175	1	41	10	81	.4	260	25	518	3.74	2	9	ND	2	86	1	2	2	B4	1.31	. 266	16	234	4.19	519	.31	2	2.05	.08	.71	1	1
BL 195	1	59	21	113	.2	330	30	605	3.73	13	0	ND	3	98	1	2	2	95	1.45	200	19	374	4.13	391	.30	4	2.07	.08	. 60	1	1
BL 205	1	43	o	92	.2	280	25	506	3.90	2	13	ND	3	86	1	2	3	89	1.22	.214	13	268	4.41	400	. 32	2	2.25	.08	. 68	i	1
STD C/AU 0.5	20	57	38	130	7.0	68	28	1092	3.95	37	20	7	33	47	17	15	20	66	. 48	. 103	36	58	. 88	175	OB	40	1.73	. 08	.13	12	500

DRAGOON RESOURCES FILE # 86-1348

.

SAMPLE	No PPN	Cu PPM	Pb PPM	Zn PPM	Aq PPM	Ni PPN	Co PPN	Ma PPH	Fe Z	As PPM	U PPN	Au PPM	Th PPM	Sr PPM	Cd PPH	Sb PPM	B1 PPN	V PPH	Ca Z	P 2	La PPM	Cr PPN	Mg Z	Ba PPM	T1 2	B PPM	A1 2	Ha Z	K X	W PPM	Au t PPB
91 81 75H F	1	21	~~	- 717.	5	245	70	1504	X 55	0	e	ND	٦	17	,	2	,	78	17	202	17	714	٦ <u>٨ ١</u>	157	70	5	• >1	05	07	,	,
51 51 100# S	1	21	17	115		210	74	A11	3.33	1	17	MD.		75	1	5	-	70	10,	701	75	777	7 47	140	77	÷	7 70	.01	20	1	1
DLV1 1000 5	1	51	17	E0		402	77	711	3 70	74	11	ND.	7	21	4	-	-	107	.00	00		107	2.4/	254	· 4/ 77	1	2 00	.00	.20		
DLVI IZJN E DLVI IZJN E			14	113		702	22	/3/	3.77	24	10		2	10	1	-	1	102	. 17	.200	1.7	977	4.13	234			1.00	.0.	. 10		1
BLAI ISVN 5	1	99	12	112		317	- 27	1/4	3.71		12	NU		/8	1	2	4	112	.83	1109	16	422	3.36	231	. 24	0	2.4/	.05	.43	1	1
DEAT 1/34 2	L		21.	130	••	174	10	242	3.02	11	10	ND	3	57	1	4.	÷	87	. 44	.118	13	243	1.92	172	. 25	6	1.88	.94	. 28	1	1
BL#1 200H S	2	22	14	130	.5	94	12	904	3.35	2	ę	ND	2	23	1	5.	2	71	.23	.132	11	149	1.12	184	. 25	6	1.74	.04	.10	1	1
8L≬1 225K S	1	23	18	232-	.8-	140	17	580	3.80	7	6	ND	4	21	1	2	2	23	.28	.291	14	201	1.70	412	.31	6	2.38	.04	.12	5	1
BL01 250M S	1	40	19	142	.5	193	18	799	4.54	6	9	ND	3	38	1	2	2	99	.54	.200	16	248	3.14	314	.26	7	2.76	.05	. 28	1	1
BL#1 275H S	1	29	12	111	.3	222	26	643	4.31	11	11	ND	5	43	1	3	2	127	.52	.146	25	297	3.39	495	.45	5	2.50	.06	.85	1	2
BL#1 300H S	1	28	16	126	.8-	150	11	851	3.04	39	12	ND	3	103	1	2	2	104	.93	.101	32	305	1.32	265	.13	5	2.13	.05	.18	1	3
BL#1 325H S	1	21	11	95	.6	272	22	644	6.24	9	17	NÐ	13	53	1	?	2	161	.41	. 076	35	449	4.21	185	. 40	7	3.69	.05	. 57	1	1
BL #1 350K S	1	11	- 11	129	.2	199	21	1151	5 41	Å	R	ND		29	ť	-	,	134	41	176	74	197	3 35	207	74	Å	2 89	.05	.76	i	1
Ri #1 375H S	i	35	11	104	1 1.	417	29	1293	5 74	۲۳	18	ND	Ň	78	i	,	,	149	94	144	17	544	3.04	359	27	â	3 47	.04	43	i	i
REAL ADDA S	i	41	, it	75	,	100	29	110	4 74	20	10	N1	7	57	÷	2	-	117	71	107	71	410	1 11	504	10	5	2 75	07	76	÷	-
BL #1 475# S	;	74	ě	117	· *	240	22	405	7 07	2	,,	10 10	7	71	1	10.	5	112	./1	100	15	100	7.07	140		5	2 82	05	57	;	i
PEAT 4550 5	•	21		113	• •	240		124	J	4	1	~		10	1	10	•	74	. 40	.190	13	927	4.77	34.		5	2.02			•	•
BL#1 450H S	1	13	16	116	.3 -	58	8	585	2.89	4	5	ND	4	16	1	2	2	53	.25	.223	14	76	. 89	116	.11	2	1.74	.04	.19	1	1
BL#1 475H S	1	13	37 -	193	2.2 .	88	8	736	3.05	12	13	ND	9	38	1	7.	2	59	.46	.105	44	118	.98	290	.08	5	2.15	.04	.24	1	4
BLUI 500H S	1	15	28 -	164	.2	123	13	673	3.30	9	6	ND	7	21	1	2	2	73	.29	.091	19	175	1.59	119	.20	4	1.92	.04	.27	2	2
BL#1 5258 S	2	21	23	174	.8 •	32	6	784	3.26	17	26	ND	4	150	1	2	2	78	1.37	.077	- 44	100	.70	394	.05	3	2.23	.04	.19	2	1
BL01 550H S	Ĩ	10	15	156	.4	48	9	711	3.24	5	5	ND	3	47	1	2	2	58	.37	.082	20	- 64	.92	148	.10	5	2.3B	.03	.17	2	1
	-				•••		•			-	-		-		-	-	-		•••			•	•••			-			•••	-	-
8L#1 575H S	2	9	27 -	- 317 -	.9•	17	7	1242	4.57	14	5	ND	2	29	1	4 •	2	66	.16	.080	18	36	. 48	155	.07	6	2.16	.03	.15	1	2
BL01 600M S	1	10	38 -	243 -	.3	47	8	806	3.13	5	5	ND	7	23	1	2	2	58	.36	.127	24	61	1.00	99	.12	3	2.04	.04	.20	1	1
BL#1 625M S	1	6	28 -	- 98	.2	8	3	1890	1.06	5	5	ND	1	27	1	2	2	20	, 37	.066	6	11	.17	286	.02	2	.56	.03	.08	1	1
BL#1 675N S	2	11	25 -	-207 -	.7-	30	8	1299	3.98	8	5	ND	2	22	1	4.	2	66	.27	.195	21	43	. 81	180	.06	4	2.49	.03	.20	2	1
BL#1 700M S	1	17	31 -	• 287 •	1.0 -	29	8	1593	4.58	15	22	ND	6	102	1	2	2	94	.72	.087	77	64	.78	549	.06	2	2.75	.04	. 26	2	1
BL81 725H 5	1	8	36 -	- 220 -	.7.	15	6	2198	3.34	4	10	ND	6	37	1	6 -	2	49	. 45	. 181	34	23	. 64	318	.02	4	2.05	.03	.26	1	1
BL#1 750M S	1	4	75 -	562 -		7	6	2808	3.24	8	8	ND	11	28	3	6.	2	29	.53	.131	32	8	.42	465	.01	3	1.39	.02	.17	1	1
BL#1 775H S	1	7	24	146	.2	9	6	1291	3.64	5	5	ND	4	24	1	2	2	58	.24	.095	28	18	. 56	134	.06	3	2.08	.03	. 22	1	1
BL#1 800H 5	1	8	23	176	.4	33	8	1113	3.61	3	6	ND	13	24	1	2	2	61	.42	.125	31	39	1.03	162	.12	2	2.38	.04	.29	1	1
BL01 825M S	i	8	19	131	.3	23	7	981	4.03	2	5	ND	4	43	1	4.	2	72	.41	.122	20	28	. 83	124	.12	4	2.42	.04	.26	1	1
					-						-			•		-													۰.		
BL#1 850H S	1	12	27 •	180	.3	63	9	864	3.83	2	5	ND	B	26	1	2	2	88	.40	153	25	- 60	1.20	163	.13	2	2.93	.04	. 26	1	1
BL01 875M S	2	22	18	153	• 2	155	16	739	3.87	7	5	ND	5	25	1	2	2	85	. 32	.113	15	238	1.96	118	.23	3	2.64	.04	.20	5	1
BL#1 900M S	1	26	6	100	.3	240	20	1058	3.40	2	5	ND	2	40	i	2	2	86	.77	.229	ę	378	2.74	210	.30	2	2.33	.05	.19	1	L
BL#1 925H S	1	21	13	112	•2 .	139	- 14	1072	3.31	2	5	ND	2	21	1	2	2	76	.24	.172	9	244	1.57	198	.20	2	1.79	.04	.12	2	1
BL#1 950M 5	1	29	19	9 9	.2	243	22	600	4.12	2	5	ND	2	27	1	2	2	99	.29	.134	10	343	2.67	208	.29	2	2.49	.04	. 30	7	1
BL81 975H S	1	91	10	83	.3	403	43	756	5.22	2	9	ND	5	71	ì	2	2	143	.80	. 225	26	640	5.34	482	. 39	2	2.60	. 10	.67	i	1
STD C/AU 0.5	22	60	37	140	7.2	71	29	1128	3.99	42	16	7	35	50	19	16	19	70	.48	.106	38	62	. 80	186	.09	35	1.73	.09	.14	14	495

PAGE 2

(

(

1

¢

(

(

(

(

(

(

C

(

(

Ċ

(

(

÷

1

٢

ι

• •

										Ľ	RAG	00N	RES	OURC	:ES	FIL	.E #	86	-134	8									I	PAGE	-
SAMPLE	fio PPM	Cu PPN	Pb PPH	Zn PPN	Ag PPM	Ni PPH	Co PPN	Hn PPM	Fe X	As PPN	U PPN	Au PPM	Th PPM	Sr PPM	Cd PPH	Sb PPM	Bi PPM	V PPN	Ca X	P X	La PPN	Cr PPM	Mạ Z	Ba PFM	Ti X	B PPM	A1 1	Na Z	K 2	N Pfn	Aut PPB
BL#1 1000H S	1	19	19	143	.2	180	18	565	3.66	2	5	ND	5	40	1	2	2	92	.43	. 134	11	304	2.65	116	.27	4	2.68	.05	.20	1	1
BL#1 1025M S	1	29	10	90	.2	233	19	546	3.35	4	?	ND	5	83	1	2	3	88	1.26	.203	17	274	2.91	186	. 31	3	1.90	.06	. 41	10	1
BL#1 1050M S	2	48	16	12?	.4	382	30	597	4,29	9	16	ND	5	97	1	2	4	142	1.32	.219	12	546	3.68	314	. 44	3	2.59	.08	.46	2	1
BL#1 1075H 5	1	59	2	87	.1	349	33	645	4.79	2	6	ND	2	121	1	2	4	106	1.21	.204	10	326	6.00	503	. 36	2	2.52	. 09	.83	1	1
BL#1 1100M S	1	51	2	95	.3	307	28	561	4.19	2	11	ND	6	71	1	3	2	125	1.09	. 284	18	416	3.52	358	. 38	2	2.53	.07	.54	1	1
STD C/AU-0.5	21	63	38	137	7.2	74	30	1157	3.97	42	16	8	38	52	19	15	21	72	. 48	.110	35	60	. 89	178	.09	37	1.73	.09	.13	14	510

•

.

1

۱,

١.

4

(

;

(

(

Ç

C

i

t

and the second second

ACME ANALYTICAL LABORATORIES LTD. C12 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 I IONE 253-3158 TELEX 04-53124

DATE RECEIVED: JULY 7 1986

July 11/86 ..

DATE REPORT MAILED:

ASSAY CERTIFICATE

1.00 GRAM SAMPLE IS DIGESTED WITH 50ML OF 3-1-2 OF HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR. AND IS DILUTED TO 100ML WITH WATER. DETECTION FOR BASE METAL IS .012.

- SAMPLE TYPE: ROCK CHIPS AUT 10 GRAM REGULAR ASSAY

. A All DEAN TOYE. CERTIFIED B.C. ASSAYER. ASSAYER:

DRAGOON	RESOURCES	5 F	FILE #	86-1348A	PAGE	1
SAMPLE#	Рb	Zn	Ag OZ/T	Au DZ ZT		
	/#	/•	ا / سالیا	0271		
67874	24.20	5.07	34.66	.001		
67875	4.02	4.86	23.96	.016		
67876	7.05	7.06	16.71	.001		
67877	.15	.11	.44	.001		
67878	.32	.27	.77	.001		
6/8/9	25.90	3.1/	30.30	.001		
67880	3.91	3.87	10.48	.003		
67881	39.40	13.88	57.57	.001		
67882	8.57	7.14	25.50	.001		
67883	22.10	6.05	35.86	.001		
6/884	5.81	J.52	10.56	.001		

APPENDIX III

•

، . . .

-

-

,

COST STATEMENT

COST STATEMENT

WAGES

.

.

Ed Helgren Salmo, B. C. June 27 - July 1, 1986		
5 days @ \$130.00/day	\$650.00	
Ralph Helgren Salmo, B. C.		
5 days @ \$130.00/day	\$650.00	
Wayne Helgren Salmo, B. C. June 27 - July 1, 1986 5 days @ \$130.00/day	\$650.00	
- ,		
Ken Miller Salmo, B. C. June 27 - July 1, 1986		
5 days @ \$130.00/day	<u>\$650.00</u> \$2,600.00	\$ 2,600.00
ACCOUNTING		
Tracey L. Daignault Secretary, #211 - 543 Granville St. ¹ zday @ \$100.00.day	\$ 50.00	
Cora Bowie Bookkeeper, #211 - 543 Granville St. ¹ 2day @ \$100.00/day	<u>50.00</u> \$100.00	100.00
PROFESSIONAL FEES		
D. Yeager, Geologist, #215 - 543 Granville Street Compilation of data	\$ 275.00	
1 day e \$275.007 day	ý 273100	
C. Ikona, P. Eng, #215 - 543 Granville Street Interpretation of data		
1 day @ \$275.00/day	275.00 \$ 550.00	550.00

COMMUNICATION & TELEPHONE

٣

۴

e

.

B.C. Tel: June, July 1986 =		\$ 112.31
MAPS AND REPRODUCTION		
Printing, map purchases, photocopying	=	79.42
AUTOMOBILE EXPENSES		
Truck Rental: 5 Days @ \$50.00/day = oil = fuel =	\$ 250.00 10.43 <u>76.80</u> \$ 337.23	337.23
EQUIPMENT RENTAL		
Complete Camp & Sampling Equipment: 5 days @ \$78,00/day =		390.00
CAMP FOOD		
4 men x 5 days x \$20.00/man/day	=	400.00
EQUIPMENT EXPENSE		
Flagging, sample bags, string, etc.	=	119.42
ASSAY & GEOCHEM		
Acme Analytical Laboratories Ltd. Invoices No. 86 - 1348 and 86 - 1348A =		851.25
COMMERCIAL FREIGHT		
<pre>sample shipments =</pre>		94.33
	TOTAL	\$ 5,633.96

APPENDIX IV

CERTIFICATE OF QUALIFICATIONS

I, DAVID A. YEAGER, of Bowen Bay Road, Bowen Island, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a Geologist in the employ of Pamicon Developments Ltd. with offices at 215, 543 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3. My primary employment since 1969 has been in the field of mineral exploration, mainly as a Field and Project Geologist.
- 4. My experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. I have not examined the property reported on herein; however, I have reviewed the technical and cost data made available to me by Dragoon Resources Ltd. and this report is a compilation and interpretation of that data.

DATED at Vancouver, British Columbia this <u>26</u> day of <u>September</u>, 1986.

David A feogr

David A. Yeager, Geologist

APPENDIX V

ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Mining Engineer with offices at 215, 543 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. I have not examined the property reported on herein. This report is based on a compilation and interpretation of technical and cost data made available to me by Dragoon Resources Ltd.

26 th DATED at Vancouver, British Columbia, this day of Seat , 1986.

Charles K. Ikona, P. Eng.