GEOLOGICAL, SELF POTENTIAL AND GEOCHEMICAL SURVEY OF THE JEN CLAIM GROUP

ATS 93 G $14 w^{\prime}$		
$53^{\prime} 53^{\prime}$	123^{\prime}	26^{\prime}

Owner and Operator

Colin Campbell

Author: C. J. Campbell October 18, 1986

GEOLOGICAL BRANCH ASGESSMENTREPORT

Page No.
1.0 Summary 1
2.0 Introduction 2
2.1 Geology, Topography and Vegetation 2
2.2 Maps 4
3.0 Property Geology 6
3.1 Rock Units 6
3.2 Structure 7
3.3 Mineralization 7
4.0 Self Potential Survey 8
4.1 Results and Interpretation of the 8 Self Potential Survey
5.0 Geochemical Survey 9
5.1 Field Methods 9
5.2 Analytical Methods 9
5.3 Results and Discussion 14
BIBLIOGRAPHY 16
Appendix A: Statement of Qualification 17
Appendix B: Statement of Costs 18
Appendix C: Analytical Certificates 19
Appendix D: Petrography 20
ILLUSTRATIONS
Figure 1: Location on Map of British Columbia 4
Figure 2: Location Map and Claims Map 1:50,000 5
Figure 3: Rock Chip Sample Comparisons 15
Map J 86-1 Geological Map In Pocket
Map J 86-2 Self Potential Survey Map In Pocket
Map J 86-3 Geochemical Survey In Pocket
1.0 SUMMARY
The Jen Claim Group, comprised of 60 units, is located between 50 and 57 kilometres west of Prince George, B.C. The claims were staked by the writer during the summer of 1984 following the finding of anomalous gold values in soil near a road cut on Highway 16.
The Jen Claim Group is underlain by pyritiferous argillite and greenstones of the Cache Creek Group. An area of Listwanite underlies the central part of Jen \#1.
This is a report on work conducted during 1985 consisting of geological mapping at a scale of 1:5000, petrography, a geochemical survey of 225 soil samples which located one new gold soil anomaly and extended two previously known anomalies and an 8.5 kilometre self potential survey which located three anomalies.
A coincidental self potential anomaly and gold soil anomaly warrants further work.

2.0 INTRODUCTION

The Jen Claim Group is located on the Interior Plateau of British Columbia between 50 and 57 kilometres west of Prince George. Access to most of the Claim Group is from Highway 16 which cuts across the claims from southeast to northwest (Figure 1). several old roads and the Bobtail Forestry access road give ready access to the remaining portions of the claims.

The Jen Claims were staked during 1984 by Colin Campbell following a prospecting program which included soil sampling targets with ready access.

During 1984 and early 1985 a grid was established over the area of interest, a preliminary geochemical and a ground magnetometer survey were completed and a report was submitted and approved for assessment purposes (Campbell 1985). The results of this initial work were encouraging and during the fall of 1985 further work consisting of an 8.5 kilometer self potential survey, a soil survey at 50 metre intervals along grid lines, rock chip sampling and two days of geological mapping was conducted.

The three mineral claims (60 units) in the JEN CLAIM GROUP were grouped July 19, 1985. They are:

Claim Name Record No, No. of Units Anniversary Date

Jen \#1	6266	20
Jen \#2	6465	20

July 20, 1988
Jen \#2 $6465 \quad 20$
Sept.14, 1988
Sept.14, 1988

2. 1 GEOLOGY, TOPOGRAPHY AND VEGETATION

H. W. Tipper of the Geological Survey of Canada on Map 49-1960 shows the Jen Group of claims to be underlain by Permian rocks of the Cache Creek Group; he also mapped an assumed fault near the east end of Cluculz Lake. The Pinchi Fault occurs some six miles to the east. The most important rocks, in an economic sense, appear to be carbonate-altered andesites. Boulders and outcrops of quartz-ankerite-mariposite and pyrite (listwanites) occur on the central part of the Jen \#1 M. C. Black pyritiferous argillite is exposed in the Lake Road Cut. It appears to be underlain by a sometimes layered, crystal tuff of andesitic composition which weathers to a brown colour. Quartz veins up to 1 foot wide by 20 feet long containing calcite, muscovite and pyrite occur in the Highway 16 road cut. Areas between these quartz veins are often altered to ankerite, sericite and small quartz veinlets; these areas of alteration contain the best gold values.

The Jen Claim Group covers part of the Interior Plateau and has gentle relief between 2500 and 3000 feet above sea level. Most of the claims are well drained hosting pine, Douglas Fir. Spruce and poplar; however locally, poor drainage and northern slopes have dense growth of alder, willow and balsam. A large steep banked melt water channel curves between the east end of Cluculz Lake and the west end of Bednesti Lake (GSC Map 12 88A).

3.0 PROPERTY GEOLOGY

Two days were spent in the field mapping outcrops not previously noted and two days were spent in the office examining and reporting on eight thin sections (Appendix D).

The results of the field mapping are on Geological Map J86-1.

3.1 Rock Units

A. "Greenstones"

These consist of altered fragmental and flow rocks of andesitic to basaltic composition and includes dense green to black carbonate rich rocks that may be serpentinites they occur as small outcrops on Highway 16 to the north of Line 6W. I also include the Dolomitic Tuff JT 111-R, JT 114-R, and Paynes (Payne 1984) andesitic tuffs in this unit.
B. Black Argillite - Phyllite

This unit consists of varing amounts a cherty quartz, sericite, carbonaceous material and pyrite. They vary in color from white to black depending on the amount of carbonaceous material (JT 85-R, M 102-R) and all contain pyrite.
C. Listwanites

Listwanite occurs as outcrop near L4W $1+75 \mathrm{~N}$, L2W $1 N$, L2W $0+505$ and boulders near the east end of Cluculz Lake and near L4W $4+00 \mathrm{~N}$. They are fractured light to bright green rocks contain quartz, ankerite, as veinlets and cementing fragments and mariposite as finely disseminate flakes in the cholcedonic quartz. Antigorite was also identified in thin section and could add to the green coloration. All contain pyrite, some up to three percent, they are anomalous in $A s$ and $S b$ but not in gold.
D. Late Dikes

Three dikes were mapped on $L 4 E$ south of the base line; two are augite basalt, one is rhyolitic and contains quartz and pyrite, all strike at 280 to 290 and dip steeply to the south.

3.2 Structure

The topography is dominated by an east-west melt water channel which cuts the Jen Group from the east end of Cluculz Lake to Bednesti Lake. This I suggest is the eastern end of a major east-west lineament in central British Columbia. This break continues to the west along Cluculz Lake, Nulki Lake and Francois Lake. The Jen Group covers the western end of this break where it intersects the Pinchi Fault. Both the ground magnetics and the self potential survey supports its occurance on the Jen Group.

3. 3 Mineralization

To date the most important mineralization found is in the sericitized and carbonatized crystal tuff near L6W 4+00N (Hiway Cut). Payne (1984) describes quartz veins containing "pyrite, sericite, and minor calcite. Pyrite grains contain moderately abundant inclusions of hematite, and a moderate number of grains contain inclusions from $0.005-0.02 \mathrm{~mm}$ in size of native gold" further he states "the abundance of native gold is very significant."

Gold also occurs near the Lake Road Cut between L 12 W and L 14 W ; here boudins in black argillite contain gold with carbonaceous material.

4.0 Self Potential Survex

A self potential survey was carried out on the central portion of Jen \#l and the southwestern portion of Jen\#2 mineral claims during the fall of 1985 . A total of 8.5 kilometres of a previously established chain and compass grid was surveyed in nine man days. Equipment used in the survey consisted of a Micronta 22-191 Digital multimeter, calibrated to read in millivolts, two unglazed ceramic pots containing a saturated solution of copper sulphate, and 250 metres of 18 guage multistrand copper wire with thermoplastic insulation on a winding spool with an armature. The spool was modified so that one person could both pull wire and take readings at the forward pot.

The long wire method (Lajole, 1981) was used to conduct the survey. Readings were taken at 50 metre intervals and were corrected to a base station at $5+25$ metres south and $6+75$ metres east on Jen \#2.

4. 1 Results and Interpretation of the Self Potential Survey.

Results of the Self Potential survey are plotted on Map J 86-2. Three strong (greater than - 100 millivolt) anomalies were found.

Anomaly A is some 1.2 kilometres long striking to the southeast from $1+O O E$ on the base line to $6+00 S$ on line 8 E and appears to be dipping to the northeast; however, an increase in overburden to the northeast may be the actual cause of the skewed nature of this anomaly. Cherty sediments, containing bedded pyrite, outcrop near $7+O O E-5+O O S$ and are the likely cause of this anomaly. No anomalous gold values were found in either soil or rock samples from this anomaly and it therefore has a low priority for future work.

Anomaly B strikes nearly east-west from 14 W to 7 $+50 W$ near the base line. It reaches a maximum of -501 millivolts in broken and oxidizing black argillite at $13+50$ on the base line. Anomaly B is coincidental with the best gold soil anomaly.

Anomaly C reaches a maximum value of -281 milivolts and its source is unkown.

5.0 Geochemical Suryey

This survey was conducted during the fall of 1985 to carry-out soll sampling as a follow-up to a preliminary Geochemical Survey (Campbell, 1985) and to check rock chip sample assay results from previous work. Two hundred and fifteen soil samples were taken, 166 were analyzed for gold and ICP, 29 for gold and mercury and 20 just for gold. Forty-six rock chip samples were taken, all were analyzed for gold and six for multi-elements by ICP.

Soil samples were taken at 50 metre intervals on a previously established hip chain and compass grid. All soil samples taken were from the B horizon and could be classified as normal immature soils typical of this region. Parent material in most cases appeared to be glacial debris or glacial lake silts. The results of the soil sampling are plotted on Map J86-3.
5.1 Field Methods

A. Soil Survey

A mattock was used to sample the first available mineral soil hrizon usually at a depth of less than six inches. These samples, typically a mixture of B and C horizons, were stored in 4"x 6" Kraft paper bags. Notes were kept on standard soil sheets to aid in interpretation of results. Sample location was controlled by pace and compass grid lines. Location of each soil sample is noted on the geochemical certiciffcates appearing in the Appendix of this report.

B. Rock Chip Survey

A rock hammer was used to obtain approximately five pounds of rock chips over a 1 meter width; samples were stored in plastic bags. The rock chip samples on Map 86-1 and Figure 3 were taken along 1 metre intervals controlled by chaining from a flagged picket and locations were marked with yellow spray paint.

5.2 ANALYTICAL METHODS

All samples were analyzed by Vangeochem lab Limited of 1521 Pemberton Avenue, North Vancouver, B.C. Analytical methods are summarized on the following three pages.

5.2 ANALYTICAL PROCEDURE FOR GOLD IN SOIL AND SILT

Analytical procedure used to determine Aqua Regia
soluble gold in geochemical samples

Method_of_Sample_Preparation

(a) Geochemical soil, silt or rock samplea were received in the laboratory in wet-atrength $4^{\prime \prime} \times 6^{\prime \prime}$ Kraft paper bags or rock samples sometimes in $8^{\prime \prime} \times 12^{\prime \prime}$ plastic bags.
(b) The dried soil and silt amples were sifted by hand using a $8^{\prime \prime}$ diameter 80 -mesh stainleas ateel aieve. The plus 80 -mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
(c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a discmill. The pulverized samples were then put in a new bag for later analysis.

Method_of_Digestion
(a) 5.00 - 10.00 grams of the minus 80 -mesh samples were used. Samples were weighed out by using an electronic micro-balance into beakers.
(b) 20 ml of Aqua Regia (3:1 HCl : HNO3) were used to digest the samples over a hot plate vigorously.
(c) The digested amplea were filtered and the washed pulpa were discarded and the filtrate was reduced to about 5 m.
(d) The Au complex ions were extracted into diisobutyl ketone and thiourea medium. (Anion exchange liquids "Aliquot 336").
(e) Separate Funnela were used to separate the organic layer.

Method_of_Detection

The gold analyses were detected by using a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. A hydrogen lamp was uaed to correct any background interferences. The gold values in parta per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and hia laboratory ataff.
5.2 ANALYTICAL PROCEDURE FOR GOLD IN ROCK SAMPLES

Analytical procedure used to determine gold by fireassay method and detected by atomic absorption spec. in goelogical samples.

Method_of_Somple_Preparation

(a) Geochemical soil, ailt or rock samplea were received in the laboratory in wet-atrength $4^{\prime \prime} \times 6^{\circ "}$ Kraft peper bags or rock amples sometimes in $8^{\prime \prime} \times 12^{\prime \prime}$ plastic bage.
(b) The dried soil and silt samples were sifted by hand using a $8^{\prime \prime}$ diameter 80 -mesh stainles steel sieve. The plus 80 -mesh fraction was rejected and the minus 80meah fraciton was transferred into a new bag for analysis later.
(c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100 -mesh for finer by using a discmill. The pulverized amples were then put in a new bag for later analysis.

Method_of_Extroction

(a) 20.0-30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into fusion pot.
(b) A Flux of litharge, soda ash, silica, borax, flour, or potassium nitrite is added, then fused at 1900 degrees F and a lead button $1 s$ formed.
(c) The gold is extract by cupellation and part with diluted nitric acid.
(d) The gold bead is saved for measurement later.

Method_of_Detectign
(a) The gold bead is disolved by boiling with sodium cyanide, hydrogen peroxide and ammonium hydroxide.
(b) The gold analyses were detected by using a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The resulte were reed out on a strip chart recorder. The gold values in parts per billion were calculated by compering them with a set of gold atendarde.

The analyses were aupervised or determined by Mr. Conway Chun or Mr. David Chiu and hia laboratory ataff.

Analytical procedure used to determine multiple elements in hot acid soluble by Induction Couple plasma Spectrometer (ICP) analysis.

Method_of_Sample_Preparation
(a) Geochemical soil. silt or rock samples were received in the laboratory in wet-strength $4^{\prime \prime} \times 6^{\prime \prime}$ Kraft paper bags or rock samples sometimes in $8^{\prime \prime} \times 12^{\prime \prime}$ plastic bags.
(b) The dried soil and silt samples were sifted by hand using a $8^{\prime \prime}$ diameter 80 -mesh stainless steel sieve. The plus 80 -mesh fraction was rejected and the minus 80meah fraction was transferred into a new bag for analysis later.
(c) The dried rock samples were crushed by using a jaw crusher and pulverized to $100-m e s h$ or finer by using a diac mill. The pulverized amples were then put in a new bag for later analysis.

(a) 0.500 gram of -80 mesh sample was used.
(b) Samples were digested in a hot water bath at $95 C$ for 75 minutes with diluted aqua reqia acids. (3: 1 : 3 . HCl : HNO3 : H2O)
(c) The digested samples were diluted to a fixed volume and shaken well.

Method_of_Analysis

The analyses were determined by using a Jarrel Ash ICAP model 9000 direct reading emission spectrometer with an inductively coupled plasma excitation source. Beckground and inter-alement corrections (IEC'S) were applied. All data ia compiled into an Apple IIe computer, stored on floppy disk and printed by an Epson 100 dot-matrix printer.

The analyses were supervised by Mr. Wade Reeves and Mr. Conway Chun of Vangeochem Lab Ltd. and their staff.

5.3 RESULTS and DISCUSSION

A. Gold in Soils

Gold in soil are plotted on Map J 86-3. Of the three soil anomalies only anomaly C is "new" in the sense that it was not found in the preliminary geochemical survey of 1984. Two lines were run 25 metres north and south of the base line between lines 4 W and 6 W soil samples were taken at 25 metre intervals but only slightly anomalous (less than 50 ppb) values were found.

Anomaly B was extended to the north by 100 metres on line 6 W and remains a priority for further work.

Anomaly A is in an area underlain by brecicated and silicified argillite near a contact with the altered crystal tuff; it is also coincidental with S.P. anomaly B.

The lack of new gold soil anomalies was somewhat expected due to the precence of the glacial lake silts and till covering over 90 per cent of the area sampled during 1985.

B. Rock Chip Sampling

The results of the rock chip sampling are plotted on J86-1 and on Fig. 3 showing a comparison of detafled sampling at 1 metre widths with the 1985 sampling across 5 metres. Significant differences were found between the three sets of sampling.
C. Mercury in Soils

Along part of $L 4 W$ and L6W twenty nine soil samples were analyzed for mercury. The results are plotted on map J86-3. Only two samples were slightly anomalous at 100 and 150 ppb ; both of these samples are from a low swampy area.

BLBLIOGRAPHY

Campbell, C. J., 1985, Geophysical and Geochemical Report Jen 1-3. B.C. Dept. of Mines A.R.No. 85-826-14037.

Lajoie, 1981, Geophysical Class Notes, David Thompson, University Centre, Nelson, B.C. May 1981.

Payne, J.G., 1984, Private Petrographic Report for Colin Campbell August 1984.

APPENDIX A

STATEMENT OF QUALIFICATION

I, Colin Campbell, of the Town of Courtenay, in the Province of British Columbia, do hereby state that:

1. I am a geoligist.
2. I graduated from the University of British Columbia in 1966 with a B. Sc. Degree in Honours Geology.
3. I have worked steadily in mining exploration in British Columbia and Yukon Territory from 1966 to 1973; intermittently from 1974 to 1983 and steadily from January 1984 to the present.
4. I personally carried out, or supervised, the geological, self potential and geochemical survey on the Jon Claim Group.
5. Title to the Jon Claim Group is presently registered in my name.

APPENDIX B
STATEMENT OF EXPENDITURES - Jen Claim Group
1) Geological Survey
Wages - Colin Campbell
Fieldwork Sept. 18, 19, 1985
Petrography April 11, 14, 1986
4 man days © $\$ 200.00=800.00$
8 thin sections e $\$ 7.00$ $=56.00$
Report preparation, printingand drafting$=125.50$
TOTAL COST GEOLOGICAL SURVEY 981.50
981.50
2) Self Potential Survey
Wages - Colin Campbell
Fieldwork Sept. 15, 16, 17, 1985
Nov. 3, 4, 5, 7, 8, 9, 1985
Report and drafting
9 days @ $\$ 200.00$ $=1800.00$
Travel
GMC 1/2 ton truck
8 days @ 45.00/day $=360.00$Courtenay to Vanderhoof Return
$1 / 2 \operatorname{trip} x 742.00$ $=371.00$
Field Accommadation \& Food
9 days @ 45.00 $=405.00$
Equipment Rental (S. Punit)
10 days @ 10.00 $=100.00$
Report and drafting 200.00
TOTAL COST S. P. SURVEY 3236.00
3236.00
3) Geochemical Survey
Wages - Colin Campbell
Field - Sept. 30, Oct. 1,
3, 31, Nov. 1, 2, 6, 1985
Office - (Report and base map)
Oct 9, 10, 1985
9 1/2 days @ \$200.00 $=1900.00$

Travel

GMC 1/2 ton truck
8 days $45.00=360.00$
1 round trip Vanderhoof
to Courtenay $=\frac{742.00}{1102.00}$
1102.00

Field Accommodation and Food
8 days @ $45.00=360.00 \quad \underline{360.00}$

Field Supplies
100.00

Analytical Costs
A. Soil

166 for $A u \& I C P$ @ $10.10=1676.60$
29 for $\mathrm{Au} \& \mathrm{Hg} \& I C P=452.40$
20 for Au @5.60 $=112.00$
B. Rock
$\begin{array}{rlrl}6-\mathrm{Au} \& ~ I C P @ 15.75 & & = & 94.50 \\ 24-\mathrm{Au} & 9.50 & & =228.00 \\ 16-\mathrm{Au} & @ 10.50 & & \\ & & & \frac{168.00}{2731.50}\end{array}$
$\underline{2731.50}$
Report Preparation
Typing and drafting $300.00 \quad 300.00$

TOTAL COST GEOCHEMICAL SURVEY 6493.50 TOTAL COST
10.711 .00

VANGEDCHEM LAR LIMITED
MAIN DFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. VTP 253 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1 C 6 PH: (604)251-5656

ICAP GEDCHEMICAL ANALYBIS
 THIS LEACH IS PARTIAL FOR SN, MK, FE, CA, P,CR,MG, BA, PD, AL, MA, K, N, PT AND SR. AU AND PD DETECTIOM IS 3 PPR. IS= IMSUFFICJEWT SAMPLE, MD= NOT DETECIED, $=$ NOI MMALYZED

CDTPANY: COLIN CAMPRELL ATTENTIDN: COLIN CAMPBELL PROSECT: NONE GIVEN

```
REPORT*: 85-25-017
JOB#: 85573
INVDICE\#: 9191
```

DATE RECEIVED: $85 / 11 / 21$
DATE COMPLETED: 85/12/01
COPY SENT TO: --

PAGE I OF 5

SAMPLE	MAME	$\begin{aligned} & \text { AG } \\ & \text { PPM } \end{aligned}$	AL	$\begin{aligned} & \text { AS } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { AU } \\ & \text { PPK } \end{aligned}$	8A PPM	$\begin{aligned} & 81 \\ & P P M \end{aligned}$	$\begin{aligned} & C A \\ & I \end{aligned}$	$\begin{aligned} & \text { CD } \\ & P P M \end{aligned}$	$\begin{aligned} & \text { CO } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & C R \\ & P P B \end{aligned}$	$\begin{aligned} & \text { cu } \\ & P P M \end{aligned}$	fE	$\begin{aligned} & k \\ & z \end{aligned}$	$\begin{gathered} \text { M6 } \\ \text { I } \end{gathered}$	MH PPK	$\begin{aligned} & \text { MD } \\ & \text { PPh } \end{aligned}$	MA	HI PPM	$\begin{aligned} & p \\ & p \end{aligned}$	Pg PPM	$\begin{aligned} & P D \\ & \text { PPK } \end{aligned}$	PT PPK	$\begin{aligned} & \text { SB } \\ & \text { PPH } \end{aligned}$	$\begin{aligned} & \text { SN } \\ & \text { PPK } \end{aligned}$	$\begin{aligned} & \text { SR } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { PPM } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { 1H } \\ & \text { PPM } \end{aligned}$	
H 5395	$2 E$	Fis 50 N .3	1.02	5	ND	182	ND	. 29	. 2	11	41	16	2.35	. 05	. 48	522	3	. 01	45	. 11	10	WD	ND	N0	1	27	ND	ND	55	
- 5405	' $2 E$	5roon. 1	1.58	11	ND	211	5	. 30	. 9	42	2921	31	4.01	. 07	2.26	1257	3	. 01	365	. 05	14	no	ND	ND	ND	24	ND	10	11	
- 5415	25	5asow. 1	1.55	12	ND	178	4	. 41	. 9	39	523	37	3.97	. 08	2.68	903		. 01	523	. 05	13	WD	ND	ND	ND	27	N0	5 ',	59	
15120	$2 E$	61000.1	. 74	3	ND	165	N0	. 20	. 2	8	33	B	2.11	. 04	. 29	572	1	. 01	34	. 04	7	0	WD	ND	ND	20	WD	W0	49	
15135	2 L	$6 \times 50 \mathrm{~N} .2$	1.13	K	10	196	N0	. 32	. 4	11	35	18	2.65	. 07	. 38	665	1	. 01	35	. 04	11	N0	10	ND	ND	33	W0	10	52	
1 F 54 S	2 C	7 toon .2	. 76	6	WI	98	Nid	. 20	. 2	6	23	6	1.71	. 03	. 19	250	1	. 01	15	. 03	9	N0	ND	NO	W	17	n	ND	29	
H 5455	25	7+50N 2	. 65	ND	N0	123	ND	. 16	. 3	5	19	5	1.62	. 03	. 14	414	1	. 01	12	. 07	10	M0	ND	N0	ND	16	ND	ND	33	
- 5465	2ϵ	8 roon 2	1.12	\% 0	WD	129	ND	. 20	. 1	7	23	7	2.11	. 04	. 24	225	1	. 01	22	. 16	8	nd	ND	no	WD	22	NII	MD	43	
\| 5475	25	$8+500 \mathrm{~N} .1$	1.24	WD	ND	140	no	. 16	. 1	1	22	1	2.29	. 03	. 21	221	2	. 01	21	. 16	10	* ${ }^{\text {d }}$	10	no	kD	17	ND	10	33	
${ }^{6} 5485$	26	9 roon 11	. 79	no	NO	93	M ${ }^{\text {d }}$. 22	. 2	6	19	6	1.67	.03	. 22	201	1	. 01	14	. 03	8	ND	ND	nd	vi	20	10	Nid	23	
1 1549	10	9 toon .1	1.34	W	ND	204	ND	. 14	. 3	8	22	1	2.21	. 03	. 18	257	1	. 01	22	. 26	10	ND	ND	N0	ND	17	N0	Nid	65	
15505	<0	8+50n 11	. 99	ND	ND	142	ND	. 12	. 1	6	18	5	1.84	. 02	. 17	208	1	. 01	15	. 18	8	ND	ND	10	N	17	N0	no	47	
1 H 515	<0	Proon 1	1.31	ND	ND	188	ND	. 15	. 3	8	22	6	2.31	. 03	. 18	520	1	. 01	19	.23	9	KD	ND	n	ND	18	10	ND	79	
${ }^{1} 5525$	40	$7+50 N .1$	1.68	ND	ND	217	N0	. 24	. 4	10	29	10	2.95	. 04	. 3	364	2	. 01	30	. 17	12	MD	10	HD	1	28	ND	W0	53	
${ }^{1} 5535$	10	7 CoON .2	. 93	MD	W0	196	ND	. 32	. 3	8	27	12	2.19	. 05	. 28	639	,	. 01	23	.10	11	Nid	ND	* ${ }^{\text {d }}$	ND	35	ND	LD	54	
- 5545	<0	$6+50 \mathrm{~N} .2$. 68	no	0	81	17	. 17	. 1	5	16	4	1.17	. 03	. 18	201	1	. 01	11	. 03	9	ND	ND	n	ND	16	10	no	26	
\% 5555	40	$6+000.1$. 70	no	ND	121	ND	. 25	. 1	8	25	10	2.00	. 05	. 30	615	1	. 01	17	. 03	9	MD	n	n	No	30	$N 0$	WD	35	
- 5556	<0	5+50N. 1	. 66	ND	0	163	ND	. 23	. 4	8	29	19	2.99	. 05	. 20	691	2	. 01	21	. 04	11	MD	ND	3	W	25	ND	$n \mathrm{~N}$	76	
H 5575	<0	5toon 2	. 85	0	ND	164	MD	. 24	.1	10	29	13	2.44	. 05	. 33	705	2	. 01	26	. 05	10	MD	ND	ND	ND	23	ND	N0	72	
¢ 5585	<0	+ +50N. 3	1.02	3	No	155	3	. 29	. 6	13	49	24	2.55	. 06	. 54	404	2	. 01	67	. 08	11	10	ND	10	W	21	10	no	51	
- 5595	<o	4toon 1	. 91	W0	WD	167	ND	. 20	. 1	10	30	10	2.18	. 04	. 27	630	1	. 01	21	. 06	10	10	11	10	N	21	N0	M	46	
H 560 S	<0	$3+50 \mathrm{~N} .1$. 88	8	ND	203	N0	. 33	. 3	8	31	1	3.15	. 05	. 34	837	3	. 01	21	. 06	10	ND	ND	N0	ND	31	ND	ND	26	
- 5615	BL	$4+00$ \& 3	1.89	ND	ND	140	N0	. 17	. 5	10	39	10	2.34	. 04	. 32	261	2	. 01	36	. 23	11	10	10	10	2	19	N	40	71	
\| 5625	$4 E$	0+50s. 1	1.57	ND	W	151	$N 0$. 11	. 3	9	34	7	1.80	. 03	. 28	305	1	. 01	38	. 13	10	WD	10	ND	0	14	Nid	no	95	
H 5635	$4 E$	1+00s.3	1.54	ND	N0	186	no	. 24	. 3	,	38	12	2.16	. 04	. 36	309	2	. 01	35	. 20	12	N0	N1	10	1	27	N0	No	65	
\|	5645	44	1+505.3	1.14	NO	nb	310	ND	. 34	. 5	11	38	13	2.27	. 06	. 40	111	1	. 01	36	. 21	10	N0	ND	ND	W	31	10	50	41
\| 5655	45	$2+003.1$. 60	10	N 0	390	*	. 22	2.2	9	25	16	2.78	. 07	. 16	1543	4	. 01	30	. 09	11	ND	ND	3	ND	22	ND	no	117	
n 5665	48	z+50s . 1	1.07	5	n	308	WD	. 24	. 8	13	46	28	3.39	. 06	. 37	1198		. 01	41	. 12	13	MD	ND	5	ND	27	ND	N0	110	
15675	4ε	3 roos 1	1.27	3	ND	246	ND	. 16	. 6	10	31	18	2.10	. 05	. 46	832	2	. 01	33	. 08	12	UD	10	3	ND	18	HD	No	129	
H 5685	4 C	$3+503.1$	1.93	3	H1	475	ND	. 27	. 7	21	33	11	5.53	. 06	. 74	1666	3	. 01	38	.11	13	10	ND	no	2	19	0	7	104	
\| 5695	4	froos 11	2.33	18	M	189	ND	. 35	. 7	19	82	82	4.13	. 10	1.02	1413	1	. 01	97	. 06	18	Mo	ND	3	1	32	nd	7	106	
- 5705	42	4+503 .1	1.37	3	MD	201	ND	. 50	. 6	9	53	19	2.96	. 01	. 47	271	3	. 01	41	. 10	10	WD	N0	N	N0	30	ND	ND	70	
A 5715	44	5xoos . 1	. 71	ND	MD	265	ND	. 17	. 5	10	40	20	2.97	. 07	. 26	930	4	. 01	38	. 04	14	ND	ND	ND	ND	16	ND	40	76	
- 5725	46	5ratos. 1	1.03	ND	W	198	N	. 25	. 6	13	58	16	3.08	. 05	. 41	732	2	. 01	49	. 08	10	ND	ND	NO	MD	17	No	MD	89	
${ }_{6} 5735$	44	67005.1	1.66	N0	0	250	ND	. 22	. 3	12	79	14	3.60	. 05	. 11	393	2	. 01	65	. 35	11	N	ND	N0	10	18	no	Mo	152	
- 5745	4	c1505 1	1.06	3	\cdots	123	ND	. 19	. 2	11	56	13	2.50	. 04	. 38	335	2	. 01	87	. 07	9	10	0	$n \mathrm{l}$	ND	14	No	no	53	
H 5755	44	7+00s . 1	1.57	ND	N	256	No	. 24	. 5	14	65	18	3.30	. 05	. 17	757	3	. 01	86	. 18	11	ND	no	10	1	18	MD	N0	95	
- 5765	15	7+203 . 3	. 64	mo	M0	115	N0	. 12	. 2	6	36	5	1.85	. 04	. 15	502	3	. 01	30	. 03	10	ND	N0	3	V0	0	N0	N0	42	
45775	$6 ¢$	7+505.3	. 84	N0	M	90	3	. 18	. 3	10	39	11	2.41	. 05	. 34	245	2	. 01	33	. 12	10	0	M	3	N0	14	NO	40	41	
EETET	710 1	MIT . 1	. 01	3	3	1	3	. 01	. 1	1	1	1	. 01	. 01	. 01	1	1	. 01	1	. 01	2	3	5	2	2	1	5	3	1	

SAMPLE		otion ${ }^{\text {Pil }}$	$\begin{aligned} & \text { Me } \\ & \text { PPM } \end{aligned}$	$\frac{\mathrm{AL}}{\mathbf{I}}$	$\begin{aligned} & \text { AS } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { AU } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & B A \\ & P P M \end{aligned}$	$\begin{aligned} & \text { 81 } \\ & \text { PPM } \end{aligned}$	${ }_{I}^{C A}$	$\begin{aligned} & C D \\ & P P M \end{aligned}$	$\begin{aligned} & C O \\ & \text { PPK } \end{aligned}$	$\begin{aligned} & C R \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { CU } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & k \\ & \mathbf{z} \end{aligned}$	M6	$\begin{aligned} & K M \\ & P P M \end{aligned}$	$\begin{aligned} & \text { Mo } \\ & \text { PPH } \end{aligned}$	${ }_{i}^{M A}$	$\begin{aligned} & M I \\ & P P M \end{aligned}$	$\begin{aligned} & \text { P } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & \text { PB } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { PD } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { PT } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { S』 } \\ & \text { PPH } \end{aligned}$	$\begin{aligned} & \text { SK } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { SR } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & U \\ & P P H \end{aligned}$	$\begin{aligned} & y \\ & \text { PPM } \\ & \text { Pr } \end{aligned}$	$\begin{aligned} & \text { lu } \\ & P P M \end{aligned}$
¢ 5789	C-	$6+605$. 2	1.05	N0	0	239	N0	. 20	. 4	8	24	6	1.80	. 03	. 22	178	1	. 01	19	. 13	11	ND	MD	NO	ND	23	ND	ND	63
W 5193	$6 E$	6 toos	. 2	1.55	3	18	154	ND	. 19	. 3	9	33	9	2.22	. 03	. 30	240	2	. 01	35	. 14	11	MD	ND	ND	ND	19	MD	N0	45
45005	65	$5+505$. 2	. 89	6	N0	180	6	. 28	. 4	11	37	15	2.16	. 03	. 44	279	2	. 01	36	. 07	10	ND	ND	HD	ND	29	ND	*D	37
115815	$6 E$	Stoos	. 2	. 98	ND	N0	156	ND	. 28	. 2	8	28	8	2.03	. 03	. 27	394		. 01	19	. 06	9	W0	ND	N	WD	28	ND	HD	40
15825	$6 E$	4-505	. 1	. 97	ND	ND	329	WD	. 10	1.4	9	26	17	2.13	. 03	. 24	1157	2	. 01	30	. 10	10	ND	ND	ND	ND	16	No	WD	168
45835	65	$4+005$. 2	. 72	40	M0	176	MD	3.59,	1.2	5	16	9	1.16	. 07	. 34	456	1	. 01	17	. 05	5	ND	ND	ND	ND	147	3	ND	40
\| 5884	$6 E$	$3+505$. 2	. 85	1	H	222	nd	. 32	1.3	10	28	32	2.24	. 05	. 33	786	3	. 01	36	. 06	12	ND	ND	ND	MD	31	ND	MD	144
- 5855	$6 F$	$3+005$. 3	. 97	3	MD	152	ND	. 29	. 2	10	45	15	2.33	. 05	. 38	426	1	. 01	36	. 13	10	ND	40	N0	1	29	ND	ND	53
1 H86s	66	$2+503$. 1	. 78	v	H	256	ND	. 29	. 9	8	28	12	1.99	. 02	. 20	1044	2	. 01	22	. 06	11	MD	ND	M1	ND	29	W	W	72
H 5875	$6 E$	2+00s	. 2	1.18	40	M	163	ND	. 18	. 2	8	33	10	1.98	. 03	. 31	302	2	. 01	30	. 19	9	MD	N	10	no	18	10	HD	66
H 5889	6	$1+503$. 2	1.39	ND	No	127	W	. 19	. 2	9	36	9	1.90	. 03	. 31	368	2	. 01	36	. 14	10	MD	0	No	N	18	no	ND	70
$\square 5895$	65	1+oos	. 2	. 81	no	ND	160	nd	. 13	. 5	1	28	8	1.81	. 02	. 21	583	1	. 01	21	. 08	10	ND	No	ND	0	14	ND	M	62
15905	$6 E$	otsos	. 1	1.21	4	ND	137	MD	. 16	.1	9	39	8	2.05	. 03	. 30	322	2	. 01	37	. 22	10	ND	N0	N0	ND	11	N0	WD	80
H 5915	$6 E$	a.<.	. 1	1.17	no	no	135	3	. 14	. 2		32	9	1.99	. 02	. 27	321	1	. 01	30	.12	9	0	N0	N0	N0	15	N0	M ${ }^{\text {d }}$	52
${ }^{1} 5925$	+~	troon	. 3	. 80	ND	1 H	128	ND	. 20	. 2	7	26	6	1.55	. 03	. 22	346	1	. 01	19	. 06	11	MO	N0	no	ND	17	N	0	61
115935	4W	$4+50 \mathrm{~N}$. 2	1.70	N0	ND	318	ND	. 43	1.4	12	40	38	2.75	. 07	. 46	2013	2	. 01	13	. 14	11	ND	N0	ND	ND	34	10	NO	271
H 5945	4~	5toon	. 2	1.16	8	ND	298	ND	. 88	1.3	16	42	76	3.15	. 11	. 49	1124	1	. 01	37	. 16	10	no	ND	ND	ND	15	NB	No	96
115955	4w	$5+500 \mathrm{~N}$. 1	1.12	NO	40	291	ND	. 30	.4	8	24	10	2.47	. 05	. 29	868	2	. 01	22	. 08	9	MD	N0	Nid	N0	38	n	ND	94
15965	4 w	6roon	. 1	. 89	0	10	219	NT	. 16	. 1	6	21	6	1.83	. 02	. 19	531	1	. 01	16	. 09	10	N0	Wid	N0	1	19	10	ND	79
${ }^{1} 5975$	4N	$6+500$. 1	1.06	0	ND	135	ND	. 21	. 1	b	20	8	1.63	. 03	. 28	365	2	. 01	20	. 04	9	40	n	MD	nid	32	10	W	58
${ }^{1} 5985$	4w	$7+000$. 3	. 00	W	NO	83	0	. 20	. 3	5	19	8	1.56	. 03	. 22	245	,	. 01	20	. 03	10	MD	ND	No	M ${ }^{\text {d }}$	20	MD	ND	4
115995	4N	7 SON	. 1	. 99	ND	U	158	Mo	. 16	. 2	1	20	8	1.88	.03	. 22	407	1	. 01	22	. 11	9	N0	0	10	$n \mathrm{~N}$	22	10	w	59
H. 6005	4N	8+00N	. 2	. 73	ND	Nid	88	W	. 10	.4	5	16	4	1.11	. 02	. 11	292	2	. 01	12	. 08	9	N	ND	ND	ND	10	WD	ND	38
10015	4W	$8+50 \mathrm{~N}$. 1	. 87	no	ND	133	W ${ }^{\text {d }}$. 15	. 2	5	16	4	1.45	. 02	. 10	255	2	. 01	11	.14	9	0	ND	10	ND	20	10	ND	43
16025	4w	$9+\infty 0 \mathrm{~N}$. 1	1.46	no	10	138	ND	. 24	. 4	7	20	1	1.71	. 03	. 36	530	2	. 01	22	. 04	9	N0	10	10	W	30	WD	ND	61
${ }^{1} \mathrm{l}$ coss	2W	$9+\infty$. 1	1.15	0	0	121	MD	. 12	. 3	5	20	5	1.87	. 02	. 16	171	1	. 01	17	. 13	10	ND	10	ND	W 1	14	0	M 10	45
- 1045	2W	e+son	. 1	1.17	No	ω	130	no	. 13	. 4	1	22	5	1.99	. 02	. 17	586	2	. 01	20	. 13	8	m	10	NO	10	15	10	MD	57
${ }^{1} 6055$	2d	Stoon	. 2	. 57	H	M 1	62	ND	. 12	. 1	4	14	1	1.22	. 01	.14	126	1	. 01	,	. 03	,	M	n	10	10	13	ND	no	33
. 6065	2N	7+50N	. 1	. 57	N0	40	79	MD	. 13	. 1	,	15	1	1.34	. 01	. 14	167	1	. 01	9	. 03		N	N10	N0	N	13	ND	N0	39
16075	2N	7toon	. 1	. 12	MD	H0	145	nd	. 18	. 1	5	19	5	1.75	. 02	. 16	180	,	. 01	15	. 18	9	ND	M	NO	ND	20	ND	M	52
- ${ }^{1}$ b09s	2N	6+50N	. 1	. 53	10	M	251	W0	. 33	. 4	5	16	5	1.58	. 02	. 14	1332	1	. 01	12	. 07	7	M ${ }^{\text {d }}$	N	ND	n	36	no	M 1	76
1 6075	2w	6t+an	. 1	. 02	1 D	0	133	M	. 16	. 3	5	18	5	1.66	. 02	. 18	331	1	. 01	19	. 08	7	0	n	0	0	20	NI	M ${ }^{\text {d }}$	${ }^{1}$
16105	2w	5+50N		. 59	0	no	119	N0	. 16	. 1	6	18	6	1.69	. 03	. 18	419	2	. 01	13	. 03	7	M	ND	MD	nd	20	W	Mo	34
4 n 115	2 w	5+00N	N	. 76	Wi	no	121	N0	. 16	. 3	6	19	5	1.74	. 03	. 21	319	2	. 01	17	. 05	1	0	no	NO	ND	17	10	N	65
- 6125	2 N	4 480 N	. 2	. 13	M 0	10	121	ND	. 20	. 3		22	6	1.72	. 03	. 22	521	2	. 01	18	. 07	9	ND	N0	M	0	21	W	0	54
40135	2w	4 Hoon	. 1	. 38	N0	0	49	ND	. 14	. 3	1	14	6	1.29	. 01	. 13	105	1	. 01	8	. 02	10	10	ND	4	0	13	0	10	22
16145	2w	$\cdots 3$ +oon	. 2	. 97	0		105	M	. 22	. 4	9	32	10	2.11	. 04	. 33	639	1	. 01	22	. 11	9	WD	ND	no	1	19	M	MO	49
* 315	$2 W$, 2+50N	N. 2	. 68	0	N0	58	No	. 20	. 3	8	25	1	1.63	. 03	. 27	331	2	. 01	15	. 01	8	ND	No	M ${ }^{\text {c }}$	v	18	0	10	23
(415	2N	2+00N	N. 1	. 82	19	n	973	MD	. 99	. 5	17	29	15	3.44	. 08	. 47	14236	12	. 01	07	. 08	8	MD	U ${ }^{\text {d }}$	ND	M	80	ND	N0	23
K1ET	10 l	IMIT	. 1	. 01	3	3	1	3	. 01	. 1	1	1	1	. 01	. 01	. 01	1	1	. 01	1	. 01	2	3	5	2	2	1	5	3	1

SAMPLE MAME P	$\begin{aligned} & \text { AG } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { AS } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { AU } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & B A \\ & P P M \end{aligned}$	$\begin{aligned} & B 1 \\ & P P M \end{aligned}$	$\underset{i}{c A}$	$\begin{aligned} & C D \\ & P P K \end{aligned}$	$\begin{aligned} & c 0 \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & C R \\ & P P \% \end{aligned}$	$\begin{aligned} & C O \\ & P P M \end{aligned}$	FE	1	${ }_{i}^{\text {M6 }}$	$\begin{aligned} & M N \\ & P P M_{1} \end{aligned}$	$\begin{aligned} & \text { Mo } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & I \end{aligned}$	$\begin{aligned} & \text { MI } \\ & \text { PPM } \end{aligned}$	1	$\begin{aligned} & P B \\ & P P H \end{aligned}$	$\begin{aligned} & \text { PD } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { PI } \\ & \text { fPM } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { 5N } \\ & \text { PPH } \end{aligned}$	$\begin{gathered} 5 R \\ p \mathrm{pm} \end{gathered}$	${ }_{P P K}^{U}$	PPM	${ }_{\text {PPF }}^{l N}$
$11.656 \mathrm{fl} 1+00 \mathrm{~N}$. 5	. 62	nd	No	103	3	. 11	. 3	5	15	5	1.28	. 03	. 19	227	N0	. 01	8	. 04	10	Mo	ND	ND	1	13	MD	$N 0$	52
- $65758 \mathrm{~N} 1+50 \mathrm{~N}$. 3	. 50	5	ND	560	ND	. 34	. 8	7	10	25	1.95	. 06	. 09	2632	3	. 01	17	. 07	13	ND	ND	N0	WD	54	WD	ND	15
- 65858 EN 2 toon	. 5	. 70	37	ND	157	MD	. 13	. 7	11	24	34	3.00	. 06	. 22	544	2	. 01	29	. 07	13	N0	no	3	ND	17	ND	ND	109
-655 $\mathrm{BW} 0+50 \mathrm{~S}$. 3	. 19	ND	N0	115	ND	. 07	. 2	3	12	1	1.22	. 03	. 06	123	MD	. 01	5	. 09	7	NO	N0	NO	ND	7	N 0	ND	34
$\underline{1660580} 1+005$. 1	1.00	no	MD	123	3	. 24	. 1	9	30	13	2.38	. 06	. 37	262	1	. 01	28	. 03	9	ND	ND	ND	N0	22	ND	MD	38
11661580 w 1t505	. 5	. 99	ND	10	93	3	. 20	. 1	8	21	16	2.45	. 07	. 41	587	2	. 01	21	. 06	14	N0	ND	ND	ND	23	ND	no	73
H6625/0w $0+50 \mathrm{~N}$. 4	. 19	no	ND	117	WD	. 13	. 6	12	28	25	2.74	. 06	. 27	670	1	. 01	25	. 06	12	no	ND	N0	N0	13	no	ND	72
H663S low troon	. 4	. 98	N0	ND	159	MD	. 14	. 4	9	22	12	2.02	. 05	. 11	495	1	. 01	23	. 08	9	*	ND	ND	ND	17	N0	ND	17
H 6645 low 12500	. 5	. 69	ND	ND	172	0	. 13	3.3	8	14	5	1.66	. 05	. 17	843	1	. 01	11	. 10	8	ND	N0	ND	W0	16	ND	ND	200
1865s 12w Orson	. 3	. 35	N0	ND	234	HD	. 08	1.0	5	11	22	1.81	. 04	. 07	1106	2	. 01	15	. 05	9	ND	ND	N0	ND	16	no	MD	85
Detection Lindi	. 1	. 01	3	3	1	3	. 01	. 1	1	1	1	. 01	. 01	. 01	1	1	. 01	1	. 01	2	3	5	2	2	1	5	3	1

VANGEOCHEM LAB LIMITED

main office
1521 PEMBERTON AVE
NORTH VANCOUVER. B.C. VTP 253
(604) 986-5211 TELEX: 04-352578
branch office
1630 PANDORA ST
VANCOUVER. B.C. V5L 1 L6 (604) 251-5656

SAMPLE \#	Aus	
	Dpb	
M 500-S	nd	
M 501-5	nd	
M 502-5	nd	
M 503-5	nd	
M 504-5	nd	
M 505-S	nd	
- 506-S	nd	
m 507-5	nd	
- 508-S	5	
M 509-5	nd	
M 518-5	10	
M 511-5	nd	
M 512-5	5	
M 513-5	nd	
- 514-S	nd	
M 515-5	nd	
M 516-S	nd	
M 517-S	nd	
M 518-S	nd	
M 519-5	18	
7 528-5	10	
m 521-5	nd	
M 522-5	nd	
- 523-5	nd	
M 524-S	nd	
M 525-5	10	
M 526-5	5	
- 527-5	nd	
- 528-5	nd	
M 529-5	nd	
- 530-5	nd	
M 531-S	5	
M 532-5	5	
M 533-5	nd	
M 534-S	nd	
M 535-5	15	
M 536-S	nd	
M 537-5	nd	
M 538-5	nd	
DETECTION LIMIT	5	
nd = none detected	not analysed	is = insufficient sample

```
19G
```

REPORT MMBER: 85-25-017

VANGEOCHEM LAB LIMITED
 main office
 1521 PEMBERTON AVE
 NORTH VANCOUVER. B.C. VTP $2 S 3$
 (604) 986-5211 TELEX: 04-352578

SAMPLE *	Au	
	pob	
M 539-5	nd	
M 540-5	nd	
- 541-S	5	
M 542-S	nd	
M 543-S	15	
M 544-5	5	
M 545-5	nd	
M 546-5	nd	
M 547-S	nd	
M 548-S	nd	
M 549-S	nd	
M 550-5	5	
M 551-5	nd	
M 552-5	nd	
- 553-5	nd	
A 554-5	nd	
M 555-5	nd	
M 556-S	nd	
A 557-5	18	
M 558-5	5	
- 559-5	nd	
M 560-S	nd	
1. 561-S	nd	
M 562-S	nd	
- 563-5	nd	
M 564-5	nd	
M 565-S	nd	
M 566-S	nd	
M 567-S	nd	
M 568-5	10	
M 569-5	5	
M 570-S	nd	
M 571-S	nd	
M 572-S	nd	
. 573-5	nd	
M 574-S	nd	
M 575-S	nd	
M 576-S	nd	
M 577-S	nd	
DETECTION LIMIT	5	
nd = none detected	not analysed	is = insufficient sample

VANGEOCHEM LAB LIMITED
 MAIN OFFICE
 1521 PEMBERTON AVE.
 BRANCH OFFICE
 1630 PANDORA ST
 NORTH VANCOUVER, B.C. V7P $2 S 3$
 (604) 986-5211 TELEX: 04-352578

SAPPLE	Au	
	oob	
M 578-5	nd	
M 579-5	5	
M 589-5	nd	
M 581-S	nd	
M 582-5	nd	
M 583-S	nd	
M 584-5	nd	
M 585-5	nd	
M 506-S	nd	
M 587-S	nd	
M 588-5	nd	
M 589-5	nd	
\# 590-S	nd	
M 591-S	nd	
M 592-S	nd	
M 593-5	nd	
M 594-S	15	
M 595-5	nd	
- 5\%-S	nd	
M 597-5	nd	
* 598-S	nd	
M 599-5	nd	
m 680-S	nd	
M 601-S	nd	
- 602-S	nd	
M 603-S	nd	
M 684-S	nd	
M 605-5	nd	
M 606-S	nd	
M 607-S	5	
M 688-S	nd	
M 609-S	10	
M 618-S	nd	
M 611-5	nd	
H 612-5	nd	
M 613-5	nd	
M 614-5	nd	
M 615-S	nd	
M 616-S	nd	
DETECTION LIMIT	5	
nd = none detected	not analysed	is a insufficient samole

VANGEOCHEM LAB LIMITED
 MAIN OFFICE
 1521 PEMBERTON AVE
 NORTH VANCOUVER, B.C. VTP $2 S 3$
 (604) 986-5211 TELEX: 04-352578
 BRANCH OFFICE
 1630 PANDORA ST
 VANCOUVER. B.C. V5L 1 L6
 (604) 251-5656

SAMPIE	Au
M 617-5	nd
M 618-S	nd
M 619-5	nd
M 620-S	5
M 621-5	nd
M 622-5	nd
M 623-5	nd
M 624-S	nd
M 625-5	nd
M 626-5	nd
M 627-S	15
M 628-S	30
M 629-5	nd
M 630-5	nd
M 631-S	nd
M 632-5	nd
M 633-S	nd
M 634-5	nd
M 635-5	nd
14.636-S	nd
H 637-S	nd
M 638-5	nd
M 639-5	nd
M 640-5	5
M 641-S	nd
M 642-5	nd
M 643-5	nd
M 644-5	nd
M 645-5	nd
M 646-5	nd
M 647-S	nd
M 649-S	nd
M 649-S	nd
M 650-5	nd
M 651-S	nd
M 652-S	nd
M 653-5	nd
M 654-S	88
A 655-S	nd

Au SAMPIE
Dob
-656-S nd

- 657-5 nd
- 658-S 10
M659-5 nd
M66-S nd
M661-S nd
- 652-S 5
M 663-S 150
M 664-S 15
M 655-5 20JOB MMBER: 85573
VANGEOCHEM LAB LIMITED

main office

1521 PEMBERTON AVE.

NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

VANCOUVER. B.C. V5L 1 L6 (604) $251-5656$

JOB NMMBER: 85573
M. COLIM COMP:EL

PAGE 5 OF 5

VANGEOCHEM LAB LIMITED

MAIN OFFICE
1521 PEMBERTON AVE
NORTH VANCOUVER, B.C. V7P 253
(604) 986-5211 TELEX: 04-352578

SAMPLE			Au	HO
	LOCATION		Dob	00b
H 140	4n	$3+00 \mathrm{~N}$	18	30
M 141	4w	$2+50 \mathrm{~N}$	5	25
M 142	4w	$2+00 \mathrm{~N}$	15	35
M 143	$4 w$	$1+50 \mathrm{~N}$	5	38
M 144	$4 w$	$1+00 \mathrm{~N}$	nd	28
M 145	$4 w$	O+50N	nd	28
M 146	B.L.	$4+00 \mathrm{~N}$	nd	20
M 147	B.L.	$4+50 \mathrm{~W}$	10	35
M 148	B.L.	$5+00 \mathrm{~N}$	28	30
M 149	B. 4,	$5+50 \mathrm{~W}$	220	38
M 150	B.L.	$6+00 \mathrm{w}$	nd	${ }_{25}$
M 151	6 w	$0 \times 50 \mathrm{~N}$	nd	30
M 152	6 w	$1+00 \mathrm{~N}$	5	30
M 153	6 w	$1+50 \mathrm{~N}$	nd	20
M 154	$6 w$	$2+00 \mathrm{~N}$	nd	150
M 155	$6 w$	$2+50 \mathrm{~N}$	nd	25
M 156	6 w	$3+00 \mathrm{~N}$	nd	180
M 157	6 w	$3+50 \mathrm{~N}$	5	40
M 158	6w	$4+50 \mathrm{~N}$	5	35
M 159	6 W	$5+00 \mathrm{~N}$	98	38
M 160	6 W	$5+50 \mathrm{~N}$	5	30
M 161	6W	$6 \times 00 \mathrm{~N}$	5	25
M 162	6W	$6+50 \mathrm{~N}$	5	30
M 163	6W	$7+00 \mathrm{~N}$	nd	25
M 164	6 w	$7+50 \mathrm{~N}$	5	38
M 165	$6 w$	8+00N	5	28
M 166	6 W	$8+60 N$	nd	40
M 167	6 W	$9+00 \mathrm{~N}$	nd	68
M 168	6 N	$4+00 \mathrm{~N}$	68	30

ICAP GEGCHEMICAL ANALVSIS

REPDRT\＃： $95-25-\mathrm{CCE}$
JOB＊：85246
INVOICE\＃：8795

DATE RECEIVED：85／07／31
DATE COMPLETED： $85 / 08 / 02$
DATE COMPLETED：85／08／02
COPY SENT TO：MR．COLIN CAMPBELL
ANALYST＿KRECNS

PAEE 1 OF 1

\＃${ }_{\text {\％}}^{\text {a }}$				かニいここ	が～ご	
＝						웆우ำ
¢	ロロバッ			m＂90n	\％N～～N	ェロップ
\％중			웅～～员へ			
动容		是是星無事				
－						읓요읒웅
를						ㅇ⿱ㄴ운웇웆
玉			－が	かのヘヘ	－ome	O
\cdots	¢5\％			앙응ㅇ․	ッニずす。	
쿨	ががつ	べロカニ	シャッのこ	ニーへへ界	～のッゴ	으ํํ웅
\＃	흉ㅎ․	흥ㅎㅇ	훙ㅎ․․	훙흐우	두응ㅎ․	흐․․․
오흘						
플		可氛号器运			¢	
喿。	¢～ㄲํำ	¢ัップ	べかッが	ㄷ．．0ッ！		○～ご
－		¢8\％	¢ \％¢ ¢ ¢	$\stackrel{\circ}{\circ} \stackrel{\circ}{\text { ¢ }}$		동능
出以			$\underset{\sim}{\mathrm{Nan}}$	$\underset{\sim}{\sim} \underset{\sim}{n} \underset{\sim}{\infty}$	$\approx \approx \underset{\sim}{2}$ -	옹훈
3 ${ }^{\text {a }}$	二小土 $二 ⿰ 丿 ⺄$		คッツ～	ニニッスが号	かへ－6\％	のかいo
똘	のが思戸	べ界のジ	のすか～～゚	－o，${ }_{\sim}^{\circ}$	このごゥ	
8흘	の－ッワの	nonom	\cdots こrno		－－¢－	のツ
¢를		$\because \because-\square$				
¢	ำㄲ․	ํํㄲㄲ	ミニニニ号	下~To	¢ำ뀨ำ	$\because \approx$
－					是家是是家	
安京		※\％	ㅈํㅇ％	の咞三号		にペな
\＃${ }_{\text {\％}}^{\text {a }}$						웇웆율물
꿏		ハーが心の	\bigcirc	웆으으ํ율	Mmmn	いの
20	9－0¢0 ¢				울융융	
48		$\because \rightarrow-\square$	ロッーワ	M－ッ－	「ーマーマ	\rightarrow－－
管						
嵩						$\frac{\text { nis }}{2}-\frac{5}{x}$

VANGEOCHEM

SAMLE $\#$ LOCATION


```
                        VANGEOCHEM LAB LIMITED
MAIN DFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. VTP 253 PH:(604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUNER B.C. VSL 1 L6 PH: (604)251-5656
```


ICAP GEOCHEMICAL ANALVSIE

 IS: IMSUFFICIENT SAMPLE, MOz MOI DETECIES, - - WOI ANM YILD

COMPANY: COLIN CAMPBELL ATTENTION: COLIN CAMPBELL PROJECT: N.R.R.

REPORT*: 85-25-015
 JOBW: 85556
 INVOICEW: 9141

DATE RECEIVED: 85/11/OB
DATE COMPLETED: ES/11/15
COPY SENT TO: MR. COLIN CAMPBELI
ANALYST_LLEGENS

NSOR	. 1	1.13	78	ND	123	N0	2.05	. 4	17	90	107	6.46	. 17	1.11	15123	1	. 01	102	. 65	36	ND	ND	31	3	74	1	4	103
M518	. 1	. 72	76	ND	135	nd	. 75	. 3	20	48	159	9.35	. 16	. 62	26105	no	. 01	111	. 24	53	Nid	ND	24	1	11	W	no	160
152R	. 1	. 10	MD	nd	70	0 D	. 13	. 1	4	121	45	1.15	. 04	. 06	600	1	. 01	26	. 02	7	no	MD	6	1	8	H0	MD	41
H53R	.1	. 09	86		163	* 0	. 39	. 2	12	97	162	4.75	. 08	. 02	66821	3	. 01	64	. 27	19	MD	ND	21	1	36	No	H	111
H54R	. 1	3.44	54	3	26	WD	4.35	. 6	36	67	82	8.18	. 15	3.37	1211	1	. 01	51	. 14	16	ND	ND	3	5	140	9	(31)	98
\% 358	. 1	. 52	WD	π	160	No	. 23	. 4	9	110	17	1.80	. 08	. 41	1203	2	. 01	49	. 05	13	HD	no	10	1	14	08	n	95
getectiow limit	. 1	. 01	3	3	1	3	. 01	. 1	1	1	1	. 01	. 01	. 01	1	1	. 01	1	. 01	2	3	5	2	2	1	5	3	1

VANGEOCHEM LAB LIMITED main office
1521 PEMBERTON AVE
(604) 986-5211 TELEX: 04-352578

M EiQR
M $\exists 11 R$
M こ1ごR
M こ13R
$M E 14 R$
M E1ER
$M E 1 G R$
M 2179
M $\operatorname{Z1BR}$
m $213 R$
m EEQR
M ヨま口R
ツ シごR
M EシコR
M こご
M EこらR
－ 836
-230
－巳こも
＜．025
人． 205
＜． 21205
人． 2π
＜．2025
人．205
． 2114

く．ロ05
＜． 2025
人．005
＜． 025
（． 205

人．205

M53-R CHERT BRECCIA

Breccia fragments from 10 mm to extremely fine grained consist of white chert, argillaceous chert and bedded fragments of both. The fragments have been cemented by geothite and now form a tough competent glassy breccia.

In this section the argillaceous chert fragments contain evenly disseminated limonite filled vugs, averaging . 25 mm , having likely replaced pyrite; however along some fractures the opaques are hackly suggesting original ankerite.

Late quartz veinlets up to .25 mm wide cut the argillaceous chert fragments.
white chert 20%
black chert:
cholcedonic quartz 75\%
sericite 20% 40\%
geothite 5%
breccia filling geothite 40\%

JT 85-R PYRITIFEROUS PHYLLITE

In hand specimen this is a well foliated white and grey rock containing euhedral pyrite grains to 5 mm with cross cutting wuggy areas and lenses of chert.

In thin section layered cherty quartz dominates; some 5\% has recrystallized to small boudin like masses.

cholcedony	$75 \% \quad$ (5% to quartz)
sericite	$12-15 \%$
carbonaceous material	$3-5 \%$
sericite	$12-15 \%$
pyrite (or voids)	$2-3 \%$

APPENDIX D

JT 111-R SHEARED DOLOMITIC TUFF

In hand specimen this sample is a dark green foliated rock with carbonate in patches. In thin section it appears to be an altered and sheared equivalent of JT 114-R. The carbonate rhombohedra appear worn and erroded. The section is dominated by carbonate (60%) and coarse chlorite masses up to 2 mm long.

The ground mass consists of a fine grained mixture of plagiodase, chlorite sericite and minor fine quartz. Opaques are leucoxene and fine pyrite.

Ground mass:
plagioclase 15\%
chlorite 10\%
sericite 8%
quartz 2\%
leucoxene 5\%
pyrite < 1\%
Some carbonate occurs as .25 mm by 1 cm long lenses.
JT 114-R DOLOMITIC TUFE

The section is dominated by euhedral rhombohedra of carbonate .5 mm to 1 mm in length, the crystals are strongly zoned suggesting dolomite with an ankeritic (brown) component. Some rhombohedra have a small core of quartz. These rhombohedra form some 40% of the rock and are generally fresh and very sharp in outline.

The ground mass consists of very fine grained fragments of plagioclase, carbonate and chlorite. Some curved fragments could be shards. Finely disseminated leucoxene is the only opaque observed.

Ground mass:

$$
\begin{array}{lc}
\text { plagioclase } & 30 \% \\
\text { carbonate } & 20 \% \\
\text { chlorite } & 7 \% \\
\text { leucoxene } & 3 \%
\end{array}
$$

Late veins up to 1.5 mm wide are of quartz with carbonate (rusty) rims.

M 102-R WHITE PHYLLITE

In hand spicimen this is a white, rusty streaked cherty rock with coarse white mica and bedded pyrite.

The thin section consist of chalcedony, some 10\% of which has recrystallized to .02 mm to .25 mm anhedral quartz. Fresh blades of sericite to .25 mm long are oriented at right angles to one another (and to the bedding) are interspersed throughout the slide and along the edges of a late 2 mm wide barren quartz veinlet.

cholcedony	$70-75 \%$
quartz	$5-10 \%$
sericite	15%
pyrite	$2-3 \%$
goethite	$1-2 \%$

J-IR GREENSTONE

In hand specimen this is a dark green competent rock of coarse (up to 2 cm) fragments cemented by quartz, and carbonate.

In thin section the fragments are felted masses of plagioclase, hornblende, chlorite and calcite. Some with .5 mm vesicles have been filled with calcite and rimmed by chlorite. One late .5 mm vein is lined by epidote and filled with calcite.

Eragments

$$
\begin{array}{ll}
\text { Plagioclase } & 30-45 \% \\
\text { Hornblended } & 20-25 \% \\
\text { Chlorite } & 15-20 \% \\
\text { Carbonate } & 15-25 \%
\end{array}
$$

M 128-R LISTWANITE

This is a mottled green mixture of brownish carbonate and chalcedony with coarse grains of pyrite and minor chalcopyrite.

In thin section the chalcedony has very finely dispersed sericite (mariposite?). Carbonate up to 60\% (dolomite-ankerite) as . 25 mm veinlets cuts the chalcedony which contains .5 to 1 mm euhedral grains of pyrite (2-3\%). Minor chalcopyrite occurs as very tight veinlets in the cholcedony.

J 2-R LISTHANITE

This is a brecciated light coloured rock which weathers to sharp coarse uneven surfaces. In thin section the fragments are a) chalcedony with up to 50% very fine grained sericite (mariposite?) b) fine layers of cholcedony and carbonate (dolomite-ankerite) c) fragments of felted masses of plagioclase, antigorite and fine carbonate (calcite). The fragments are cemented by ankerite and dolomite and chalcedony with $1-2 \%$ pyrite.

