ASSESSMENT REPORT LINECUTTING AND GEOPHYSICAL SURVEY SB 1-8 MINERAL CLAIMS

Kamloops Mining Division British Columbia

NTS $92 \mathrm{P} / 16 \mathrm{~W}, 16 \mathrm{E}$
Lat. $51^{\circ} 99.5^{\prime \prime}$ Long. $120^{\circ} \% .5^{\prime}$

Owned by: BP Minerals Limited Operated by: BP Resources Canada Limited

BPVR 86-10 GEOLOGICALTROONOT
ASSESSMENTMFOR GEOLOGICAL BRANCH

SUMMARY

Two grids were established on the SB $1-8$ claims for a total of 35.4 line kilometres in preparation for a ground geophysical survey, hereafter termed the SB 1 and SB 5 grids.

An integrated geophysical program has been completed on the $S B$ 1-8 mineral claims of BP Minerals Limited.

The purpose of the survey was to map shallow subsurface conductive units which had been detected by airborne geophysics. and to determine their source type.

An Apex Parametrics Max Min II was usd to accurately delineate the surface trace of the conductive axis. Magnetics was run to map subsurface geology and locate any coincident magnetic and electromagnetic anomalies. Six electromagnetic anomalies were located. Four of these have coincident magnetic highs which may enhance the anomalies. One electromagnetic anomaly was located on the SB 5 grid and five on the SB 1 grid.

RECOMMENDATIONS

1) Followup work consisting of geological mapping and soil sampling should be carried out over both grids in an attempt to identify the source of the electromagnetic anomalies.
2) If favourable results are obtained from the above surveys diamond drilling or trenching should be carried out to test the anomalies.

TABLE OF CONTENTS

PAGE NO.

SUMMARY i
RECOMMENDATIONS i
INTRODUCTION 1
LOCATION AND ACCESS 1
TOPOGRAPHY AND VEGETATION 2
LAND STATUS 2
REGIONAL GEOLOGY AND PREVIOUS WORK 3
a) Regional Geology 3
b) Previous Work 3
LINECUTTING 4
GEOPHYSICAL SURVEY 5
a) Instrumentation 5
b) Results 6
CONCLUSIONS 8
REFERENCES 9

INTRODUCTION

Two grids were established on the SB l-8 mineral claims totalling 35.4 line kilometres between December 10 and December $15,1985$.

During April and June of 1986, a geophysical program was run on the SB Claims of BP Minerals Limited.

The purpose of these surveys was to accurately locate the surface traces of electromagnetic conductors previously detected by airborne electromagnetics, and to test whether any coicident magnetic anomalies were present.

Two grids totalling 33.6 line kilometres were completed on the SB claims. The geophysical survey was carried out by MWH Geophysics Ltd. of Sidney, B.C. This report describes the grid prepartion and results of the geophysical survey.

LOCATION AND ACCESS

The SB claims are located near Ejas Lake approximately 40
kilometres by road northwest of Clearwater, B.C. (Fig. 1). The geographic centre of the claims is at latitude $51^{\circ} 51^{\prime}$ north and longitude $120^{\circ} 17^{\prime}$ west on NTS mapsheet $92 \mathrm{P} / 16$.

Access to the property is gained via the Mann Creek forest road from Clearwater B.C. The property itself is criss crossed by a complex network of secondary logging roads which lend excellent access to all portions of the claims.

TOPOGRAPHY AND VEGETATION

The SB claims are located at a fairly high altitude, between 4,400 ft. (1,354 m) ASL and 5,600 ft. (l,723 m) ASL, however, the property is not rugged. The claims cover the top and north side of a prominent ridge known as Swayback Ridge where topography is plateau-like.

Vegetation consists predominantly of spruce forest with some pine and fir. Approximately 60\%-70\% of the property has been clear cut.

LAND STATUS

The SB l-8 claims (Fig. 2) lie within the Kamloops Mining Division on NTS mapsheet 92P/16W. All claims are registered in the name of $B P$ Minerals Limited. The names, record numbers, number of units and recorded dates are as tabulated:

| Claim
 Name | Record
 No. | No.of
 Units | | Mining
 Division | | N.T.S. |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- | | Recording |
| :--- |
| Date |

Total 145 Units
Grouped as follows: 1) SB1 Group - SBl,2,3,4-76 Units
2) SB5 Group - SB5,6,7,8 - 69 Units

REGIONAL GEOLOGY AND PREVIOUS WORR

a) Regional Geology

The regional geology has been mapped by Campbell and Tipper (1965) of the Geological Survey of Canada; as Cambrian or later, Kaza or Cariboo Group feldspathic quartz-mica schists and micaceous quartzites bounded to the west by Mississippian Fennell Formation basalts, and to the south by the Raft Batholith (Fig. 3).

Subsequent logging has uncovered exposures of felsic fragmental rocks and quartz porphyry intrusive ? rocks. The age of these rocks is unknown, however, the presence of felsic volcanic rocks suggested a potential for volcanogenic massive sulphide mineralization. The extent of these rocks is unknown at this time.
b) Previous Work

Considerable exploration has been carried out to the south for copper-molybdenum and uranium mineralization associated with the Raft Batholith and Tertiary basalt respectively. An area around Ejas Lake has been held by several companies and individuals, most notably Aquataine of Canada Ltd. Aquataine flew an airborne EM survey (Aerodat) in 1978 over a large area including that presently covered by the $S B$ claims, did

2 Fennell Formation Basalt, Chert

CAMBRIAN \& LATER

1 Kaza or Cariboo Group Feldspathic Quartz-Micaschist, Micaceous Quartzite

some ground geophysics and drilled one hole near Ejas Lake. The hole intersected phyllites and graphtic argillite. This ground is presently held as the Lizard 1 and 2 claims by Kidd Creek Mines.

LINECUTTING

Two grids were established on the SB claims between December 10 and December 15, 1985 in preparation for ground geophysical surveys. The grids are here termed the SB 1 and SB 5 grids named for the dominant claim block on which each occurs (Fig. 4). The two grids combine for a total of 35.4 line kilometres.

Lines were chain and compass surveyed, blazed and flagged and slope corrected to maintain accurate station separation. Lines were spaced 100 metres apart with stations established every 50 metres along lines and identified on tyvex tages. Baselines were established across the centre of the grids to maintain desired line separation and control, and were identified in the same manner as the lines. While large trees and logs were not cut lines were bushed out where necessary to facilitate easy transportation of geophysical equipment.

Amex Exploration Services Ltd. of Kamloops was contracted to carry out the linecutting. The following is a breakdown of the grids established:

Grid No.
SBI
SB5

Total line Km
17.9
17.5

Location-Claim Block
SBI
SB5-SB6

Total: 35.4

GEOPHYSICAL SURVEY

a) Instrumentation

Two geophysical surveys were run over the grid areas with readings taken every 25 metres. A total of 17.1 line km was surveyed on grid $S B 1$ and 16.5 line $k m$ on grid $S B 5$. In addition the geophysical crew had to be put on standby for three days while on grid $S B 1$ due to problems with the lines and adverse weather conditions. The surveys were conducted during April and June of 1986.

The logistics and instrumentation of these surveys are described.

Max Min
An Apex Parametrics Max Min II unit was used to carry out the survey. This is a multi frequency, horizontal loop electromagnetic induction system. The system measures the in phase and quadrature of the secondary field as a percentage of the primary field intensity. A 150 metre coil separation was utilized except on grid $S B 1$, where poor bush conditions

```
and excessive terrain necessitated a l00 metre coil
separation. Coils were kept coplanar and data was slope
corrected to maintain proper separation. Two frequences, 444
Hz and l777 Hz were read at 25 metre intervals. Data is
presented as profiles (Fig. 6 and 7 in pocket).
```


Magnetics

An EDA PPM 350 field magnetometer and a PPM 375 base station magnetometer was utilized. This system is a microprocessor controlled set of proton precession magnetometers that monitor the field and base station magnetic fields and correct for diurnal drift and magnetic activity. Data is presented as posted contour maps. (Fig. 6 and 7 in pocket).
b) Results

The surface traces of the conductive zones are shown on the 1777 Hz Max/Min profile maps.

Grid SB 5
There is a conductive axis running from $110+00 \mathrm{~S} / 99+50 \mathrm{E}$ to 100+00S/99+50E with a slight curve to the west. The dip appears to switch along strike length of this anomaly. Lines $110+00 S$ to $107+00 S$ dip east, $106+00 S$ - $102+00 \mathrm{~S}$ dip west, $101+00 \mathrm{~S}$ east, $100+00 \mathrm{~S}$ vertical. On line $107+00 \mathrm{~S}$, depth is
less that 15 metres, width less than 5 metres, conductivity thickness of 2 seinens, dip steeply east. There is a related magnetic feature with the conductor indicating a dipping thin sheet with the dip to the east. This is a very interesting zone.

Grid SB 1
There are five conductive zones on this grid. From north to south they are:

- line $101+00 \mathrm{E} / 106+75 \mathrm{~N}$ to $108+00 \mathrm{E} / 105+00 \mathrm{~N}$. This zone is very shallow, is up to 50 metres wide, dips south and is associated with a magnetic high. It is of interest.
- line $101+00 \mathrm{E} / 99+00 \mathrm{~N}$ to $103+00 \mathrm{E} / 98+50 \mathrm{~N}$. Depth of 20 metres, poor mag correlation, southerly dip.
- line $105+00 \mathrm{E} / 96+50 \mathrm{~N}$ to $106+00 \mathrm{E} / 97+50 \mathrm{~N}$. Depth 20 metres, poor mag correlation.
- line $101+00 \mathrm{E} / 95+50 \mathrm{~N}$ to $103+00 \mathrm{E} / 95+50 \mathrm{~N}$. Very strong, shallow, corresponds to a magnetic high, width of 25 metres, south dip. Of interest.
- line $102+00 \mathrm{E} / 93+50 \mathrm{~N}$ to $105+00 \mathrm{E} / 93+00 \mathrm{~N}$. Thin south dipping ribbon, depth of 20 metres, corresponds to magnetic high. Of interest.

CONCLUSIONS

Two grids were established on the SB claims for a total of 35.4 line kilometres in preparation for a ground geophysical survey. A total of 33.6 kms were surveyed utilizing Max/Min EM and Magnetic methods.

Six EM anomalies were identified, one on grid SB 5 and five on grid SB 1. Four of these have related magnetic highs and should be given priority. These are the conductor on SB 5 and the three conductors on SB 1 , at $106+00 \mathrm{~N}, 95+50 \mathrm{~N}$ and $93+00 \mathrm{~N}$.

REFERENCES

Campbell, R.B., and Tipper, H.W. (1965): Geology Bonaparte Lake, British Columbia. G.S.C. Map 1278A.

Crosby, Richard O. (1977): Report on Airborne Geophysical Surveys, Grit Mineral Claims, Clearwater River Area, B.C. on behalf of Aquataine Company of Canada Ltd. Assessment Report No. 6622.
10.

APPENDIX I

Statement of Costs

Cost Statement

1. Linecutting
35.4 line km @ $\$ 264.00 / \mathrm{km}$Amex Exploration Services Ltd.December 10-15, 1986
Subtotal - Linecutting: \$ 9,345.60
2. Ground Geophysics
a) 33.6 line km @ $195 / \mathrm{km}$Max/Min EM Magnetics,April 8-June 5, 1986-\$6,552.00
b) 3 days standby @ \$525/day MWH Geophysics Ltd. - \$1,575.00
Subtotal - Geophysics: \$ 8,127.00
3. Report Preparation
a) Drafting and Reproduction 1 person/day @ $\$ 200 /$ day $\$ 200.00$
b) Report Writing and Typing R. Farmer-1 manday @ $\$ 150.00$ Secretary-1 person day @ 100.00
Subtotal - Preparation: \$ 450.00

Cost Allocation

A) SB 1 Group (SB 1,2,3,4-76 Units)

1. Linecutting
17.9 line km @ $\$ 264.00 / \mathrm{km} \$ 4,725.60$
2. Geophysical Survey
a) 17.1 line $\mathrm{km} @ \$ 195.00 / \mathrm{km} \$ 3,334.50$
b) 3 days standby @ $\$ 525.00 /$ day $1,575.00$

Subtotal - Geophysics: \$ 4,909.50
3. Report Preparation
$1 / 2 \mathrm{x}$ total cost of $\$ 450.00$ \$ 225.00

TOTAL EXPENDITURES SB 1 GROUP:
\$ 9,860.10
=======
One year applied to SB $1,2,3,4$
B) SB 5 Group (SB 5,6,7,8-69 Units)

1. Linecutting
17.5 line km @ $\$ 264.00 / \mathrm{km} \$ \$ 4,620.00$
2. Geophysical Survey
16.5 line km @ $\$ 195.00 / \mathrm{km}$ \$ 3,217.50
3. Report Preparation
$1 / 2 \times$ total cost of $\$ 450.00$ \$ 225.00
TOTAL EXPENDITURES SB 5 GROUP:
\$ 8,062.50
=======

One year applied to $\mathrm{SB} 5,6,7,8$.

APPENDIX II

Certificate of Authors

CERTIFICATE OF AUTHOR

I Randy Farmer, of \#110-44 Whiteshield Crescent South Kamloops, British Columbia hereby certify that:

1. I am a geologist residing at the above address.
2. I am a graduate of Lakehead University, Thunder Bay, Ontario with an Honours B. Sc degree in Geology (1980).
3. I have practised my profession for more than 6 years.
4. I supervised linecutting and ground geophysical surveys on the SB 1-8 Claims and reviewed the data described herein.
5. I hold no interest, direct or indirect, in the SB Claims which are the subject of this report.

Respectfully submitted,
Reisody forme 1

Randy Farmer Project Geologist

September, 1986 Kamloops, B.C.

CERTIFICATE

I, Alan J Wynne, do hereby certify:

That I am a consulting Geophysicist with offices at 8573 Ebon Terrace, Sidney, B.C. V8L II4.

That .I am a graduate in Geophysics/Geology of the University of British Columbia, Bsc I976.

That I have practised my profession for the past IO years.
That I am a member of the society of exploration geophysicists.

That the work reorted on herin was supervised by me.

That I own no direct or indirect interests in the subject property.

Alan Wynne.Bsc

Sidney B.C.
August 20, I986.

