86-600 -15194

GEOCHEMICAL ASSESSMENT REPORT

OF THE GOLD, SILVER, PLATINUM AND PALLADIUM POTENTIAL OF THE

NIK 1 - 4 CLAIMS

OWNED BY BP MINERALS LIMITED

OPERATED BY BP RESOURCES CANADA LIMITED #700 - 890 West Pender Street, Vancouver, B.C. V6C 1K5

OMINECA MINING DIVISION

NTS 94D/9E

FILMED

Located approximately 10 km northeast of the airstrip at Johanson Lake

Long. 126⁰ 08', Lat. 56⁰ 40'

Dr. S.J. Hoffman Geochemist

R.H. Wong Project Geologist

GEOLOGICAL BRANCH A SSMENT REPACTONER, 1986

BPVR 86-11

SUMMARY

4

The Au, Ag, Pt and Pd potential of the NIK was assessed by the reanalysis of 320 archive sample pulps for a suite of 30 elements soluble in aqua regia, augmented by determination of Au, Pt and Pd following a fire assay preconcentration. Results were disappointing, as only three weak Au anomalies having maximum values of less than 100 ppb were identified. Results for Ag, Pt and Pd were less than 1 ppm and at the 50 ppb, 50 ppb detection limit, respectively. Reanalysis of samples for Pt and Pd using a 2 ppb detection limit is needed before comment can be made on the platinum potential of a large zoned ultramafic complex.

The study reaffirmed the Cu and Mo anomalies but failed to identify sweateners, such as Ag, Cd, W, Au and Pb to the ore element suite. The property thus has to be assessed based on base metal values alone along the southwestern margin of an ultramafic complex, and associated with volcanics units along an east-west trending valley south of the ultramafic intrusion.

The multielement study has effectively mapped the ultramafic intrusion into many more units than are mapped geologically. These may become important should at a Pt group element potential be recognized.

RECOMMENDATIONS

- Samples should be reanalyzed for Pt and Pd using a 2 ppb detection limit.
- Continued analysis of archive pulps is to be recommended in areas on the claim group where these data are not yet available.
- 3. The ICP data for Sb, W, As and Pb associated with ultramafic rocks should be reviewed, in view of the unusual matrix comprising ultramafic-derived soils.

۲

TABLE OF CONTENTS

INTRODUCTION	1
LOCATION AND ACCESS	1
CLAIM STATUS	1
GENERAL GEOLOGY	2
PROPERTY GEOLOGY a) Ingenika Sediments and Lay Range Volcanics b) Takla Volcanics and Amphibolite c) Ultramafic Rocks d) Monzodiorite and Quartz Diorite	3 3 4 4 9
TOPOGRAPHY	10
VEGETATION	11
OVERBURDEN AND SOILS	11
SAMPLE ANALYSIS	12
METHOD OF DATA EVALUATION	12
DESCRIPTION OF RESULTS 1. Introduction 2. The Precious Metals 3. The Pathfinder Elements 4. The Base Metals 5. The Rock Forming Elements 6. Manganese 7. Magnesium 8. The Alkaline Earths 9. Aluminum and Potassium	13 13 14 14 17 17 17 18 18
DISCUSSION OF RESULTS	19
CONCLUSION	21
APPORTIONMENT OF ASSESSMENT WORK	64

LIST OF FIGURES

				Following Page Number
Figure	1	Location Map		1
	2	Land Status		1
	3	Geology		3
	4	Sample Location M	lap	in pocket
	5	Soil Reanalysis		in pocket
	6A 6B 6C 6E 6F 6J 6L 6N 60 60 60 60 60 60 60	Soil Reanalysis (Soil Reanalysis S Soil Reanalysis H Soil Reanalysis H Soil Reanalysis H Soil Reanalysis H Soil Reanalysis (Soil Reanalysis (Silver Platinum Palladium Antimony Arsenic Copper Lead Zinc Cadmium Molybdenum Fungsten Cobalt Nickel Chromium	13 13 13 14 14 14 14 14 14 14 14 14 14 14 17 17 17 17
	6Q 6R 6S 6T 6U 6V 6W 6X	Soil Reanalysis S	Iron Magnesium Calcium Strontium Barium Aluminum	17 17 18 18 18 18 18 18

LIST OF APPENDICES

			Page Number
Appendix	1	Geochemical Preparation and Analytical Procedures	22
	2	List of Analytical Data	29
	3	Method of Histogram Interpretation	56
	4	List of Qualifications	59
	5	Statement of Costs	62

INTRODUCTION

In recent years exploration emphasis has shifted to Au, Ag, Pt and Pd. In view of the occurrence of extensive copper soil anomalies within each of the claims and associated ultramafic rocks, it was decided to evaluate the claim areas by reanalysis of 320 available samples for metals of interest including lead, nickel, gold, silver, platinum and palladium. A multi-element analytical technique was also selected to assist geological mapping and perhaps identify alteration zones. This report summarizes results from that work.

LOCATION AND ACCESS

The NIK claims lie within the Omineca Mining Division, 10 km NNE of the airstrip at Johanson Lake, B.C. (Fig. 1).

Access to the claims is by helicopter from Johanson Lake, located on the Omineca highway from Fort St. James. A four wheel drive access road was constructed to the property in 1977, but is probably not useable today without upgrading.

CLAIM STATUS (Fig. 2)

- 2. NIK 2 (#140(10)) 18 units recorded Sept. 16, 1976 (450 hectares)

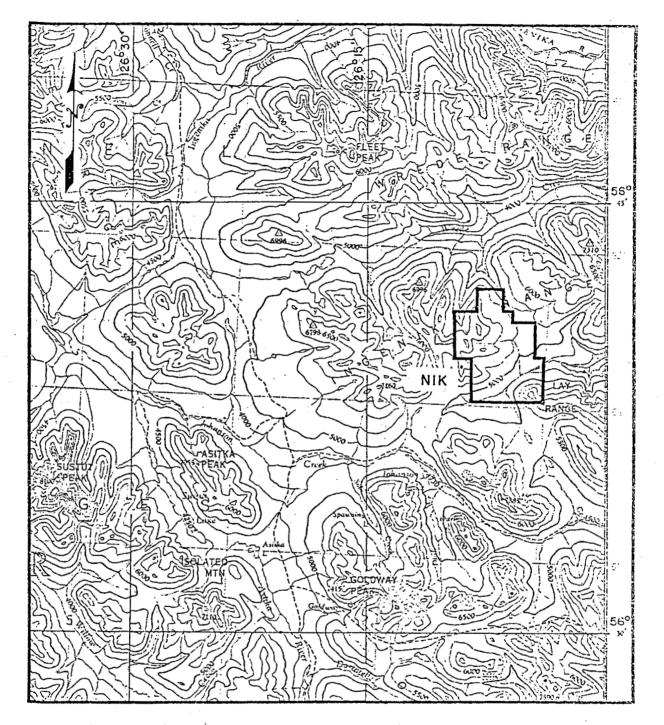


 Image: BP Minerals Limited

 TOODOGGONE - MESILINKA, B.C.

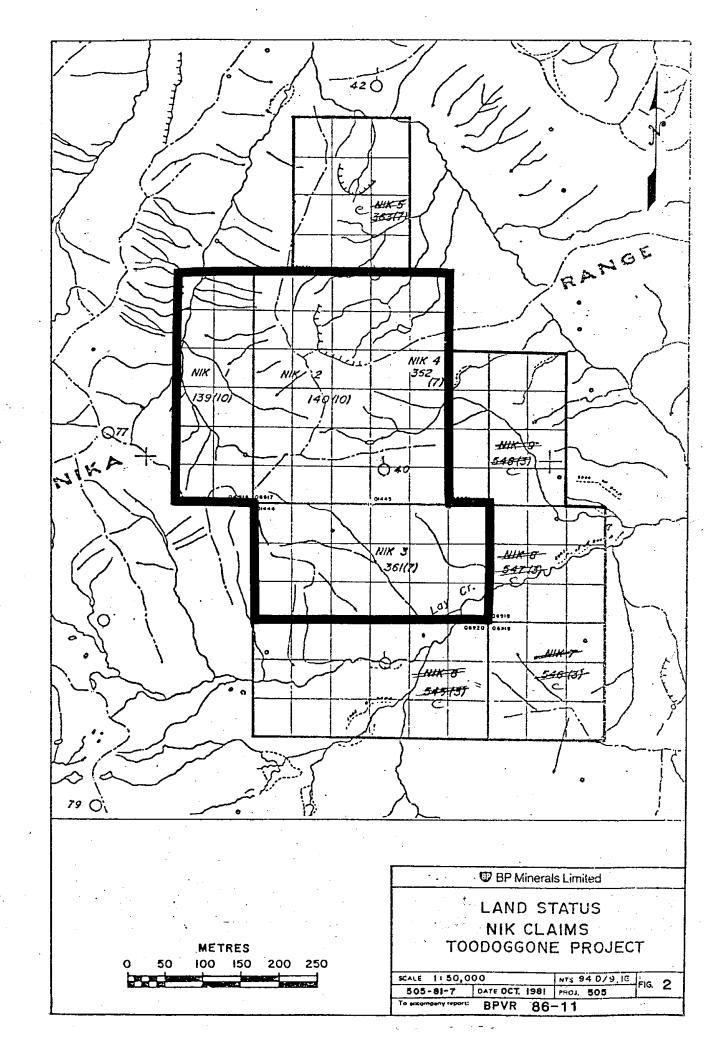
 INGENIKA - NIK

 PROPERTY

 SCALE 1 Inch = 250,000 Feet

 NTS 94 D

 F13. 1


 SCALE 1 Inch = 250,000 Feet

 NTS 94 D

 F13. 1

 To accompany report:

 BPVR 86-11

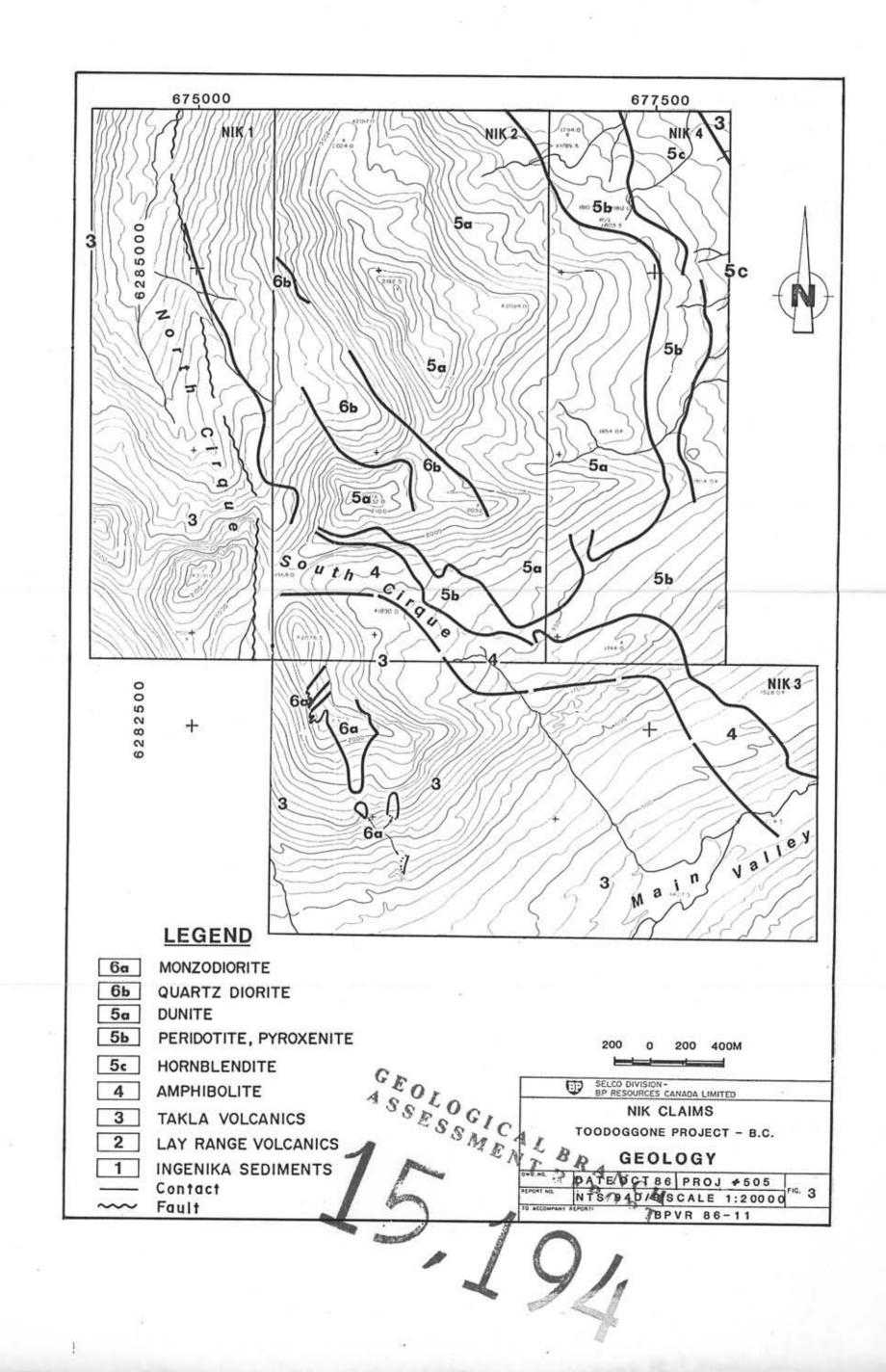
•

- 4. NIK 4 (#362(7)) 12 units recorded July 19, 1977
 (300 hectares)

GENERAL GEOLOGY

Claims lie within the "Quesnel Trough", a northwest trending linear belt of Mesozoic volcanic and sedimentary units separating late Palezoic rocks of the Pinchi Geanticline in the west from Proterozoic and Paleozoic metasediments of the Omineca Geanticline in the east. The claims are underlain by Takla Group, fine- to coarse-grained pyroclastic and flow andesites along the south, southeastern and eastern margins of the claims, in contact with pyroxenite and/or peridotite of the NIK claims ultramafic pluton. Plugs and dykes of diorite, monzodiorite and quartz diorite intrude claim units. A major structural zone, labelled the NIK lineament trends northwestward through the claims. Northwestward trending thrust faults position Proterozoic and Pennsylvanian units to the northeast of the land holding.

Intense structural preparation combined with strong coppermolybdenum geochemical anomalies in overburden have attracted exploration interest to the area. Chalcopyrite and/or bornite occurrences are found in boulders within locally derived overburden or in bedrock. These grade up to 1 to 2% copper. The geology on these claim groups have never been tested for their Au, Ag, Pt or Pd potential.


PROPERTY GEOLOGY

The NIK 1-4 claims cover most of Wrede Creek zoned ultramafic complex, the largest of several such ultramafic bodies in the McConnell Creek map-area. The complex is exposed over an area 2 km by 5 km and is elongate in a northwesterly direction (Fig. 3). A major north-trending fault, the NIK fault forms the western border of the complex, while faults generally trending northwest bound the complex on its northeastern and eastern sides. To the south and southeast, the ultramafic rocks are in intrusive contact with hornfelsed volcanic units of the Takla Group.

a) Ingenika Sediments and Lay Range Volcanics

The Ingenika Sediments and Lay Range Volcanics (units 1 and 2 in the geologic legend) occur to the northeast of the claim area and are in fault contact both with each other and the ultramafic complex. The Ingenika Sediments, of Proterozoic age, comprise a monotonous sequence of

.3.

quartzo-feldspathic gritty sandstone, siltstone, shale and minor conglomerate and limestone with metamorphic equivalents up to kyanite grade. The Lay Range Volcanics are of Pennsylvanian age and consist of intermediate to mafic lithic tuff, breccia and pillow lava.

b) Takla Volcanics and Amphibolite

Rocks of the Upper Triassic Takla Group (unit 3) make up a thick succession of volcanic and sedimentary strata striking in a general east-west direction and dipping moderately to the south. Massive andesitic, augite-rich, coarse pyroclastics and flows pass upward into fine-grained tuffs and tuffaceous arenites containing interbeds of argillite and limestone. Along the southern margin of the ultramafic complex, hornfelsing of the volcanics has produced an amphibolite (unit 4) aureole up to 400 m in width. Hornblende hornfels, displaying rare relict volcanic textures, occurs immediately adjacent to the ultramafic complex. This grades outward into rocks of the albite-epidote hornfels facies in which relict augite and relict pyroclastic textures are evident.

c) Ultramafic Rocks: Dunite, Peridotite-Pyroxenite,

The ultramafic complex displays a crudely concentric zoning,

Hornblendite (Units 5a,b,c)

progressing outward from a core of dunite to a rim of pyroxenitic rocks. Within this rim of pyroxenitic rocks, lithologies are seen to pass gradationally outward from olivine pyroxenite to pyroxenite, to hornblende pyroxenite <u>+</u> olivine. Peridotite occurs as small irregular zones within the pyroxenite. Extensive metasomatism at the margin of the ultramafic complex has transformed much of the peripheral hornblende-olivine pyroxenite into an altered rock referred to here as metasomatic hornblendite.

The dunite core dominates the ultramafic complex both areally and topographically. Massive dunite, outcropping over an area approximately 2 km by 3 km, forms the broad ridge central to the claim area.

Dunite is distinguished by a commonly well-developed skin of orange-brown weathering which ranges up to 3 cm in thickness. On fresh surfaces, the dunite displays a characteristic granular texture with medium-grained (1-4 mm), black olivine composing 95 to 98 percent of the rock.

Slightly finer-grained chromite makes up 2 to 5 percent of the rock, occurring as disseminations and rare schlierenlike concentrations. These latter concentrations of

chromite are the only suggestions of cumulate or compositional layering evident in the dunite. A moderately to well-developed set of orthogonal fractures is common in the dunite.

Although less well-exposed than the dunite for the most part, pyroxenitic rocks appear to constitute a continuous rim ranging from 50 to greater than 1000 m wide on the northern, eastern and southern sides of the dunite. In plan, the pyroxenitic unit is widest in the southeast and tapers considerably to the west and northwest. On the western side of the dunite, the pyroxenitic rim has been truncated by a major north-trending fault.

Where exposed, the contact between dunite and the pyroxenitic unit is very sharp, occurring within 5 m. The contact itself is locally a zone of weakness and is marked topographically by curving gullies.

Olivine pyroxenite is invariably found immediately adjacent to the dunite contact and is commonly present for up to 100 m outward. Where the pyroxenitic rim tapers in the

southwest of the complex, only 50 m of olivine pyroxenite separates dunite from hornfelsed country rocks.

Olivine pyroxenite is a medium-grained equi-granular rock which weathers to a grey-green colour. On fresh surfaces, invariably serpentinized olivine, comprising 3-10% of the rock, appears as small blackclots interstitial to the generally unaltered clinopyroxene. Olivine is less commonly pseudomorphed by strongly coloured green bowlingite or red-brown iddingsite.

The gradational nature of the contact between olivine pyroxenite and pyroxenite is best seen in drill core. Olivine gradually becomes more and more sporadic in occurrence before disappearing completely. This change generally occurs within tens of metres. Interestingly, within some of these sporadic zones of olivine occurrence, the olivine may constitute up to 50 percent of the rock and in these cases could more correctly be called peridotite. Peridotite pods within the pyroxenite outcrop in at least two places. Peridotite is easily recognized by its irregular weathered surface due to the differential weathering of clino-pyroxene and olivine. Also, peridotite tends to be more resistant than the surrounding pyroxenite, owing to the usually high degree of serpentinization of the olivine.

Hornblende-olivine pyroxenite was not noted in outcrop and was only seen in a single diamond drill hole where it constitutes the peripheral 200 m or more of the ultramafic complex. In hand-specimen, the rock is dark black, very strongly magnetic, and displays abundant hornblende crystals commonly up to 1 cm or more in length.

Metasomatic hornblendite outcrops intermittently along the northern, eastern and southern edges of the ultramafic body but is most prevalent in the southeastern portion of the complex. Although it appears to constitute a relatively large proportion of the ultramafic body areally, the extent of this unit is probably exaggerated somewhat by the combined effects of topography and a possible southeasterly plunge to the complex.

Metasomatic hornblendite is considered by the writer to be the altered equivalent of hornblende-olivine pyroxenite based on its relative position, distribution and contact

relations within the complex, its highly-magnetic and hornblende-rich nature, and its extensive metasomatic alteration. The hornblendite is a coarse-grained rock containing 40 to 80 percent hornblende in a matrix of white to light green interstitial material and magnetite.

The contact between metasomatic hornblendite and adjacent pyroxenite is broadly gradational over tens of metres. Outward from pyroxenite, the rock progresses to pyroxenite replaced or "dyked" by hornblendite, to hornblendite containing small unreplaced zones of pyroxenite (and/or hornblende-olivine_pyroxenite), to massive hornblendite.

d) Monzodiorite and Quartz Diorite

Numerous dykes, ranging from .5 m to 150 m in width, intrude the ultramafic complex and adjacent Takla Group volcanics. Dyke rocks vary considerably both in texture and composition. Equigranular to porphyritic diorite, quartz diorite and monzodiorite are the predominant lithologies, but granodiorite and rare quartz-k-feldspar pegmatite are also present. A large intrusive body of mainly monzodiorite composition, known as the Fleet Peak pluton, outcrops to the north within 3 km of the ultramafic complex. This pluton is Jurassic in age and correlative with the Omineca Intrusions. Dioritic to granitic dykes evident in the study area are considered by the writer to be apophyses of this pluton, representing early to late differentiates.

TOPOGRAPHY

The NIK claims cover an "F" shaped ridge, the adjoining valley to west ("Fault Creek") and south and the area to the east; including the "Main Valley" (containing the south fork of Wrede Creek) and the westernmost tip of the Lay Range. The "F" shaped ridge has steep slopes along its western, southern and northern sides but opens broadly and gradually to the valleys on the north The Lay Range has steeply sloping sides on its western and east. and northern flanks. The valleys on the north and east of the "F" shaped ridge, the "Main Valley" and the valley of Upper Lay Creek exhibit the characteristic "U" shape erosional form produced by valley glaciers. "South Cirque" is a gently rolling, broad, hanging wall valley. "North Cirque" has a narrow, steeply sloping headwall typical of local alpine glaciation. Elevations range from 1400 m in the "Main Valley" to 2200 m on top of the "F" shaped ridge and the Lay Range.

VEGETATION

Timberline is locally variable but averages about 1700 m in elevation. The forest cover below this level is predominantly coniferous; consisting of black spruce and balsam fir with alder dominating large seepage areas and "Main Valley" bottom land. Grass, moss, lichens and alpine flowers are common above 1700 m in "North" and "South" cirques. Vegetation is sparse over much of the northern and central portions of the area. The ultramafic rocks are deficient in potassium, phosporus and other mineral constituents needed to aid plant growth.

OVERBURDEN AND SOILS

Overburden comprises locally derived residual material at upper elevations, particularly over ultramafic units. Downslope, colluvial movement or landsliding has produced talus fans aproning the mountain ranges. Glacial tills are thin except perhaps along the main valley of the tributary of Wrede Creek. In the latter environment, alluvial deposits of the creek are also prominent.

Overburden thickness generally averages 1 to 3 m at higher elevation, and between 5 m and 30 m in cirque valleys and the Main Valley. A solifluction lobe is a prominent feature of North

Cirque. Thick overburden accumulations in the two cirque valleys is a reflection of extensive landsliding rather than being due to glacial action.

Soils are weakly developed. They generally have a thin leaf Humus (LH) horizon several cm thick, underlain by a medium brown zone slightly modified from underlying parent material (BM). Accumulation of Fe to form a BF horizon defined as a medium red brown layer, is not common.

SAMPLE ANALYSIS

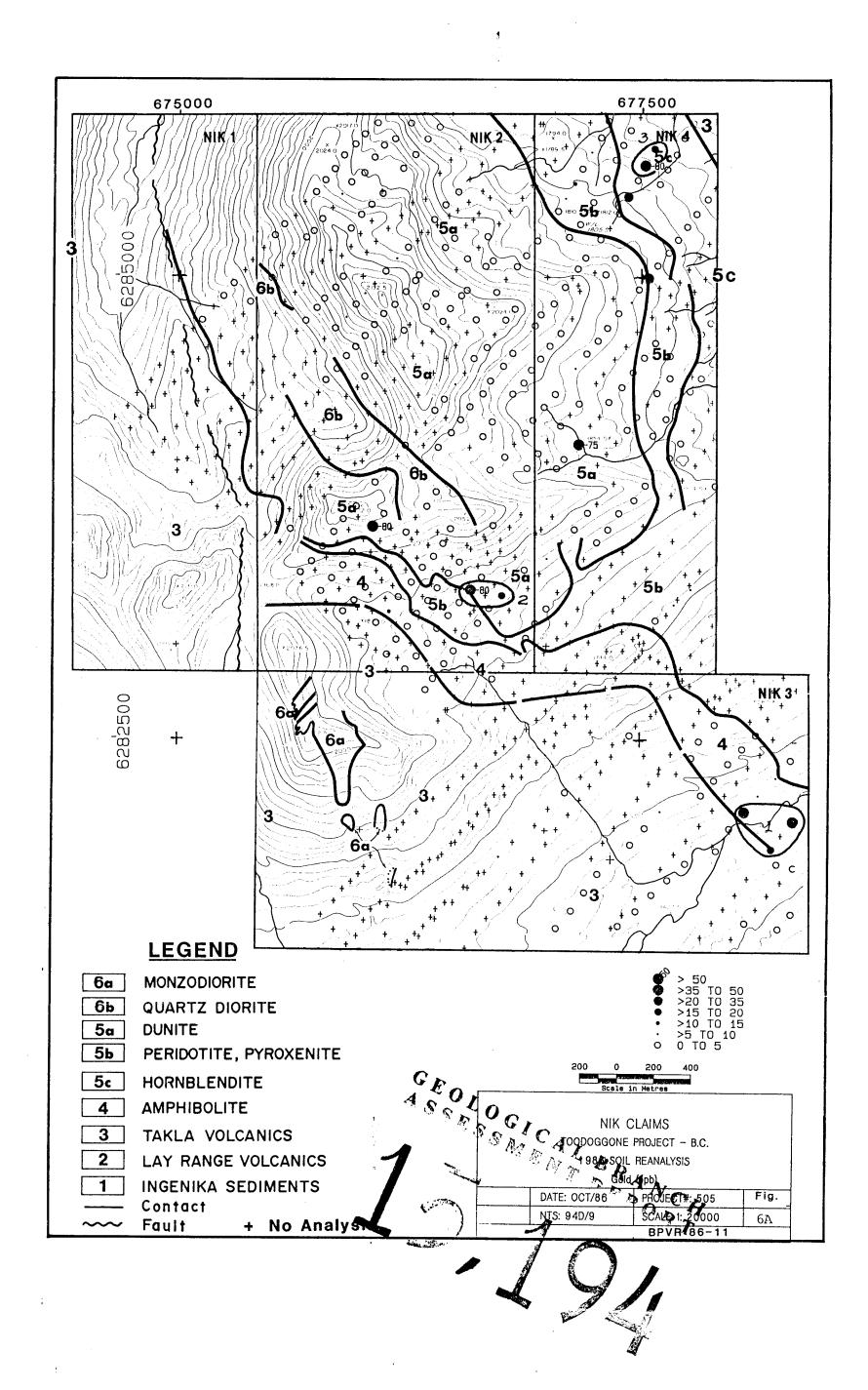
Soil samples at 320 sites (Fig. 4) have been reanalyzed. Samples comprise inorganic material collected from the top of the "B" soil horizon in 1976-1977 and stored as pulps on behalf of Selco Division by Vangeochem Labs Ltd. They were required to subject the samples to a multi-element analysis, as well as determine their Au, Pt and Pd contents. Analytical methods are summarized in Appendix 1.

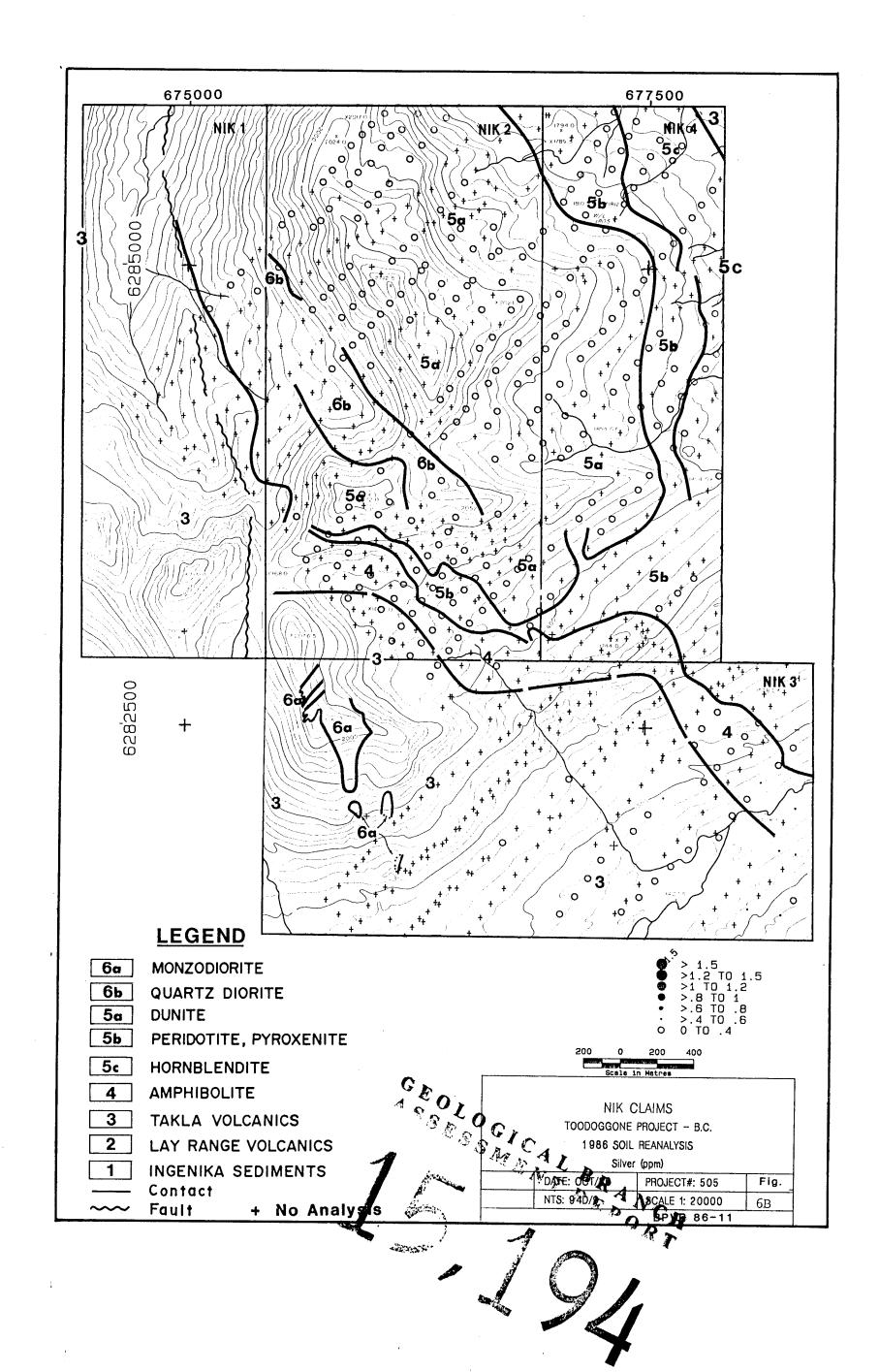
METHOD OF DATA EVALUATION

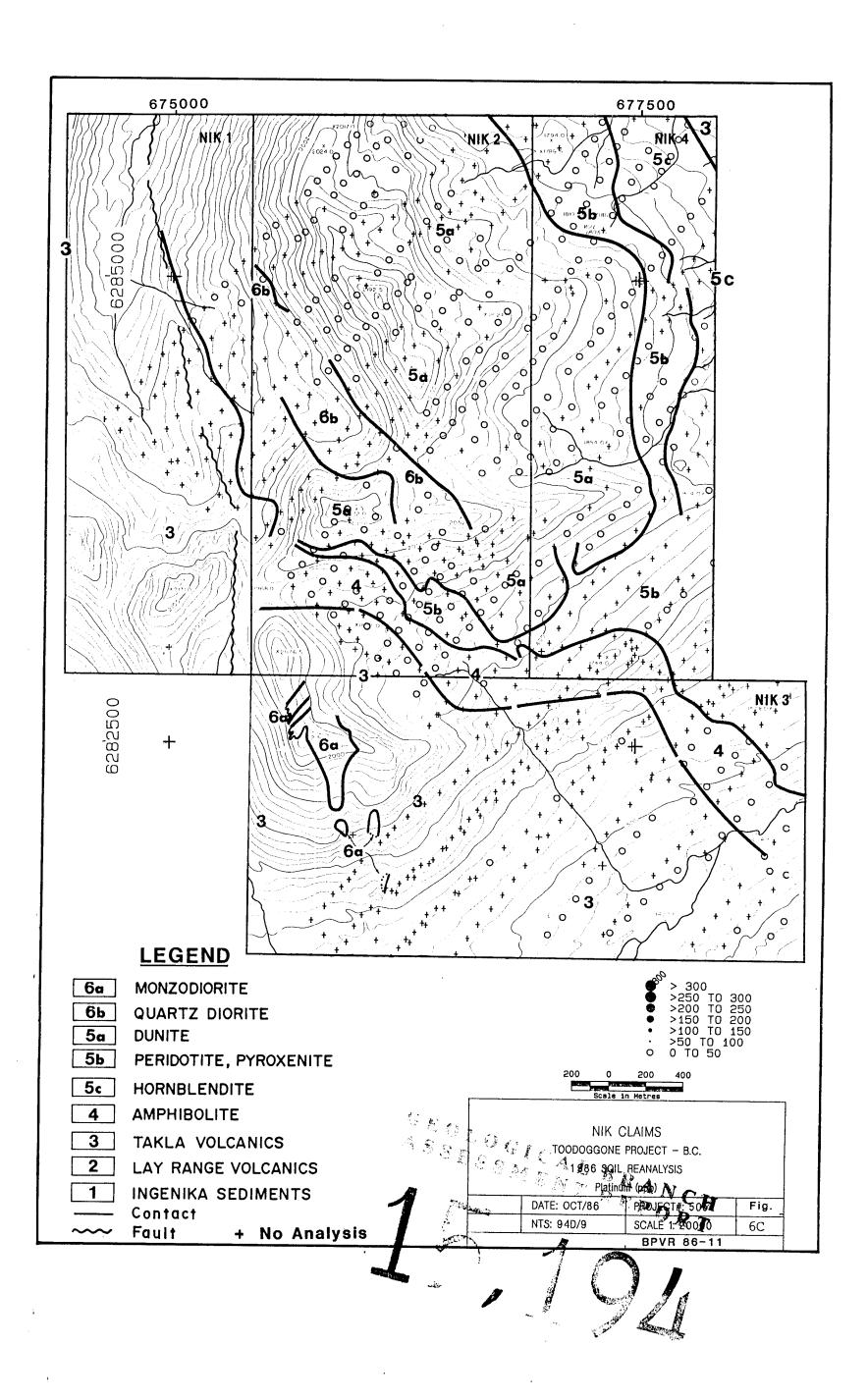
Appendix 2 lists field technical data and analytical results in three parts, appropriately numbered in the upper right hand

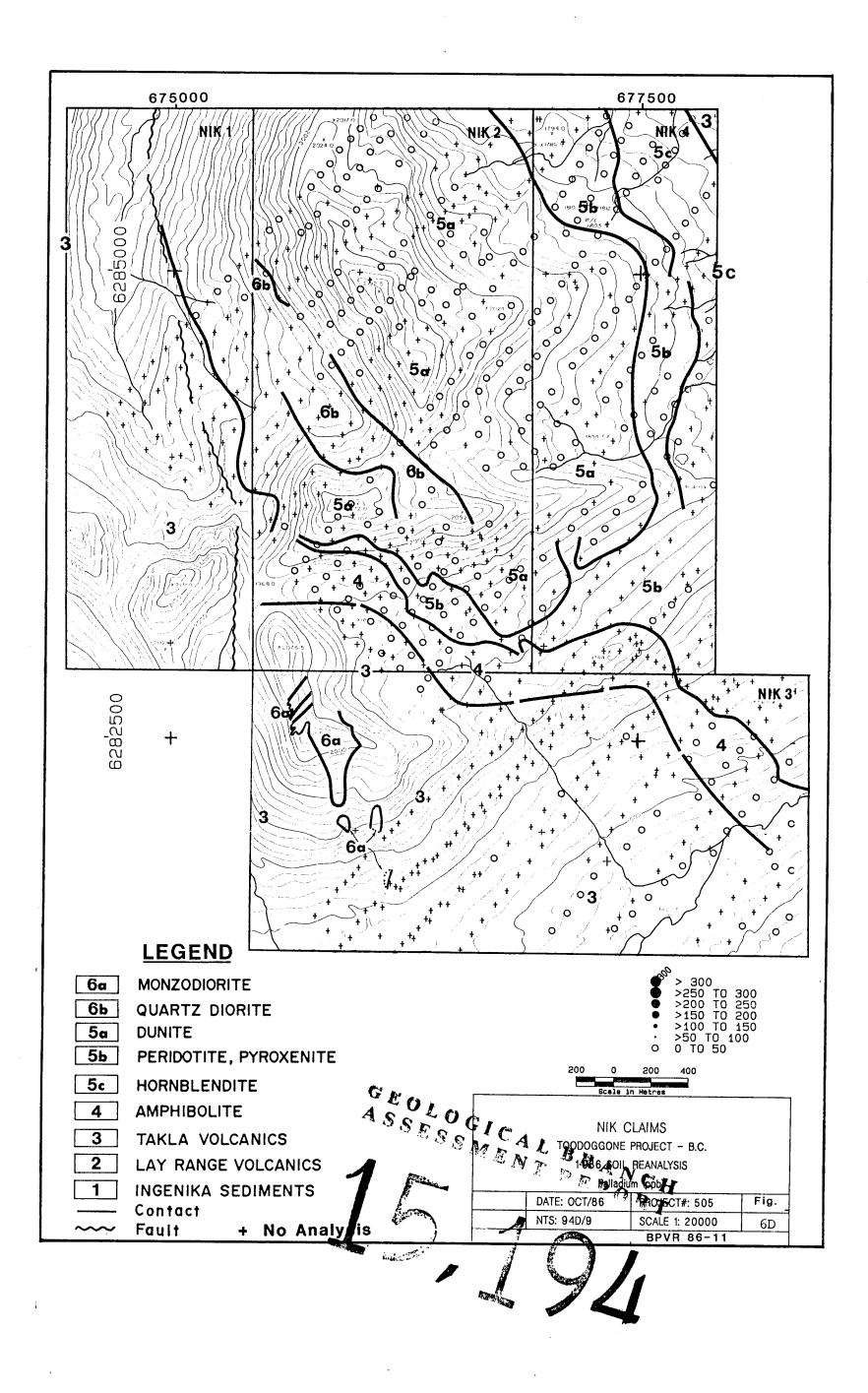
corner of each page. Histograms were drawn to summarize the distribution of metal values in soil samples on the NIK claims (Fig. 5).

The interpretation of histograms procedure is relatively straightforward: subjectively determine population groupings on histograms constructed using either arithmetic or geometric (logarithmic) concentration intervals and then highlight the upper tails of each population. The influence of exceptionally high values can be minimized by truncating for this purpose. Histogram interpretation has been used to establish contour - levels for the geochemical maps of Fig. 6.


DESCRIPTION OF RESULTS

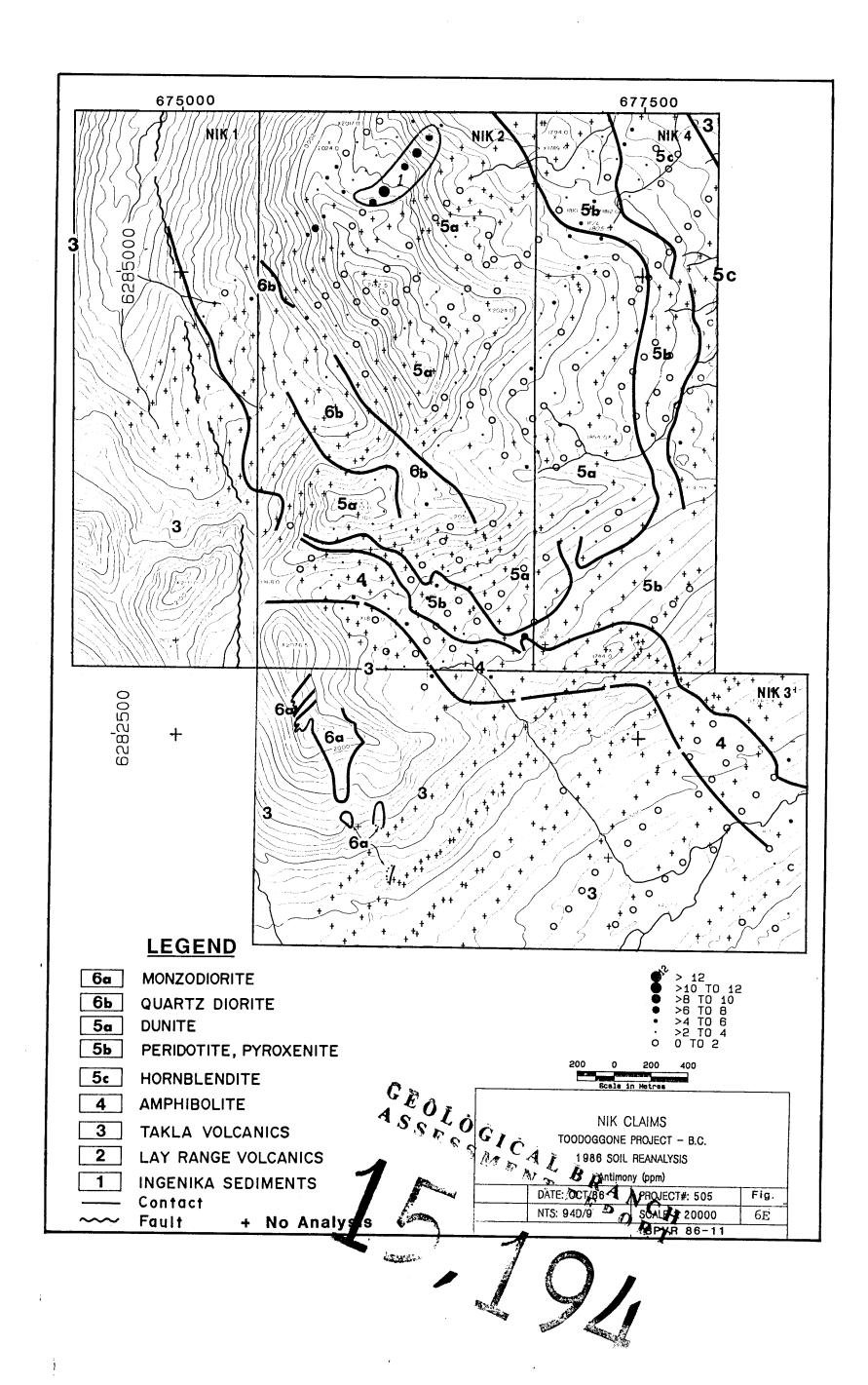

1. Introduction

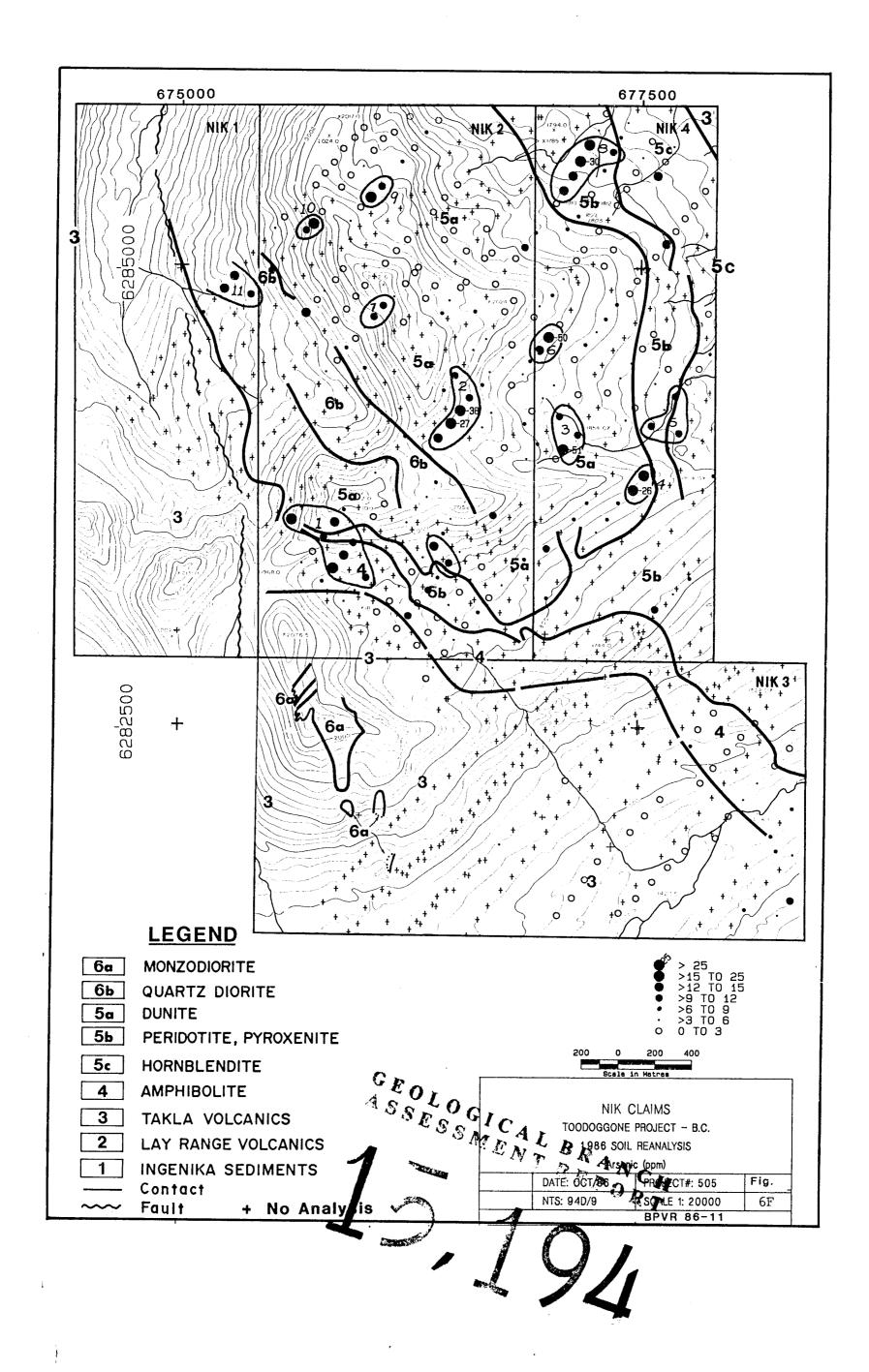

Geochemical data for the NIK claims are presented on Fig 6. reanalyzed for purposes of this report, the location is nevertheless indicated by a cross (+).

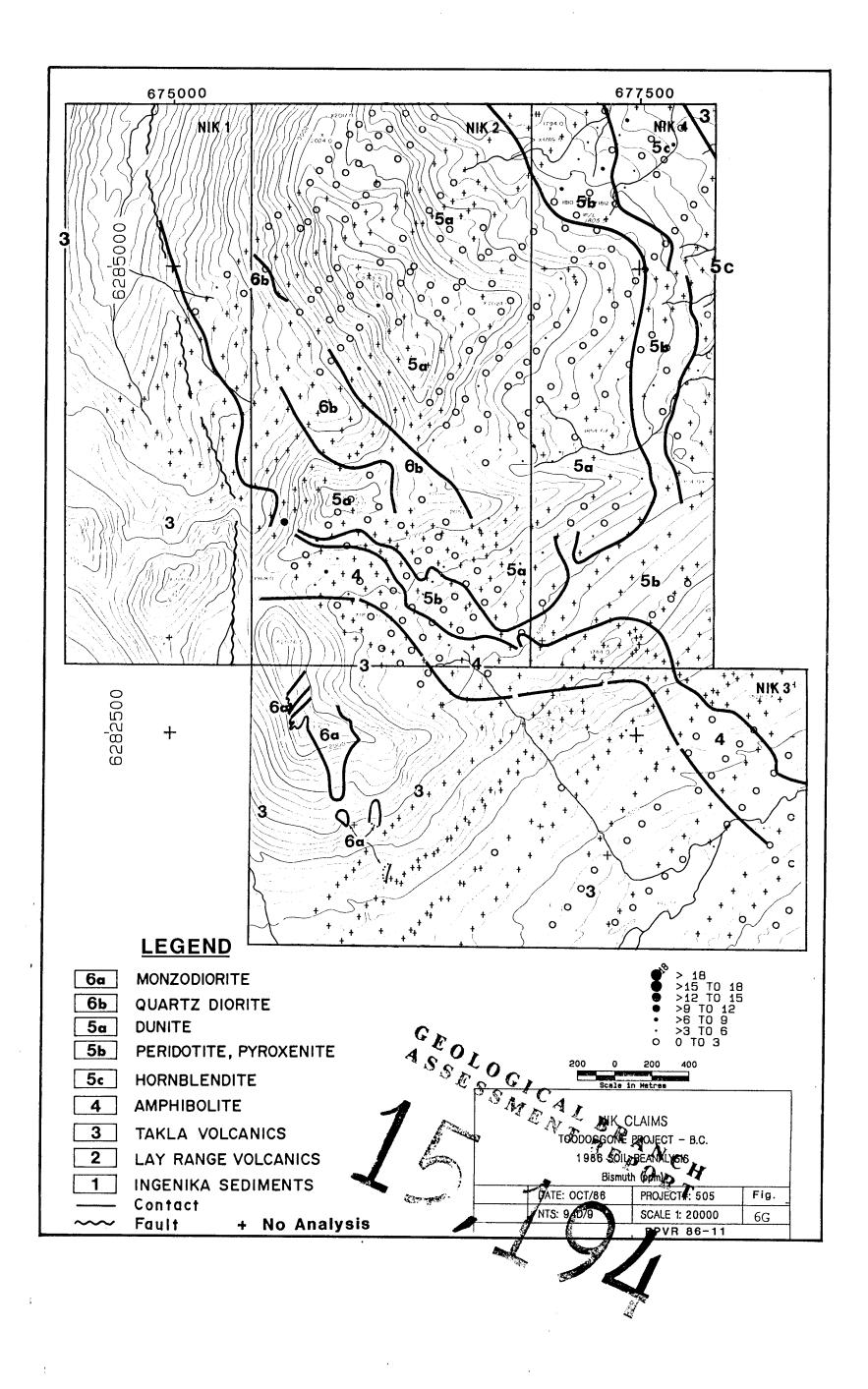

2) <u>The Precious Metals</u> Au (Fig. 6a), Ag (Fig 6b), Pt (Fig 6c), Pd (Fig. 6d).

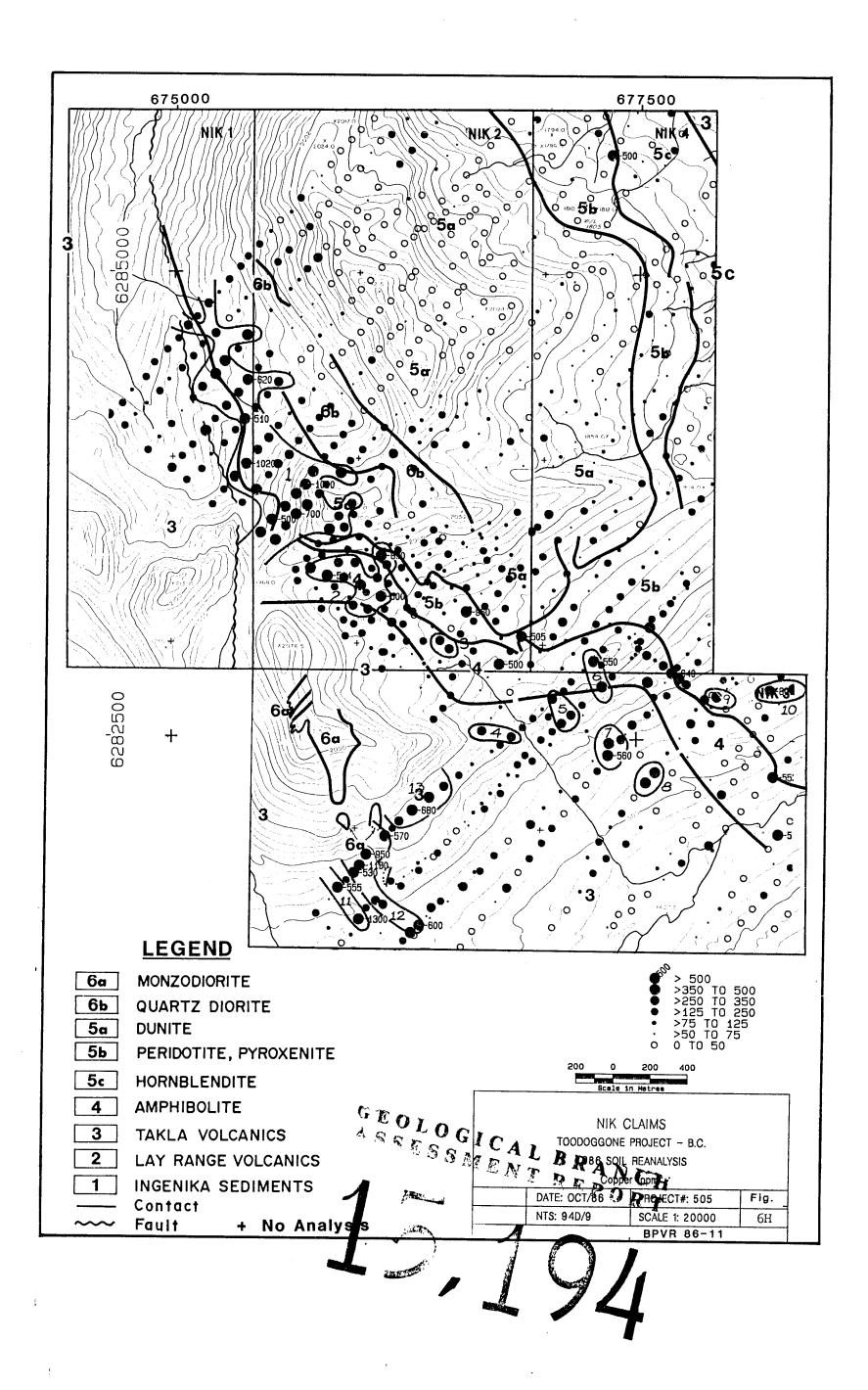
Of all the precious metal data, only 3 multisample gold anomalies are outlined. Remaining Au values are at

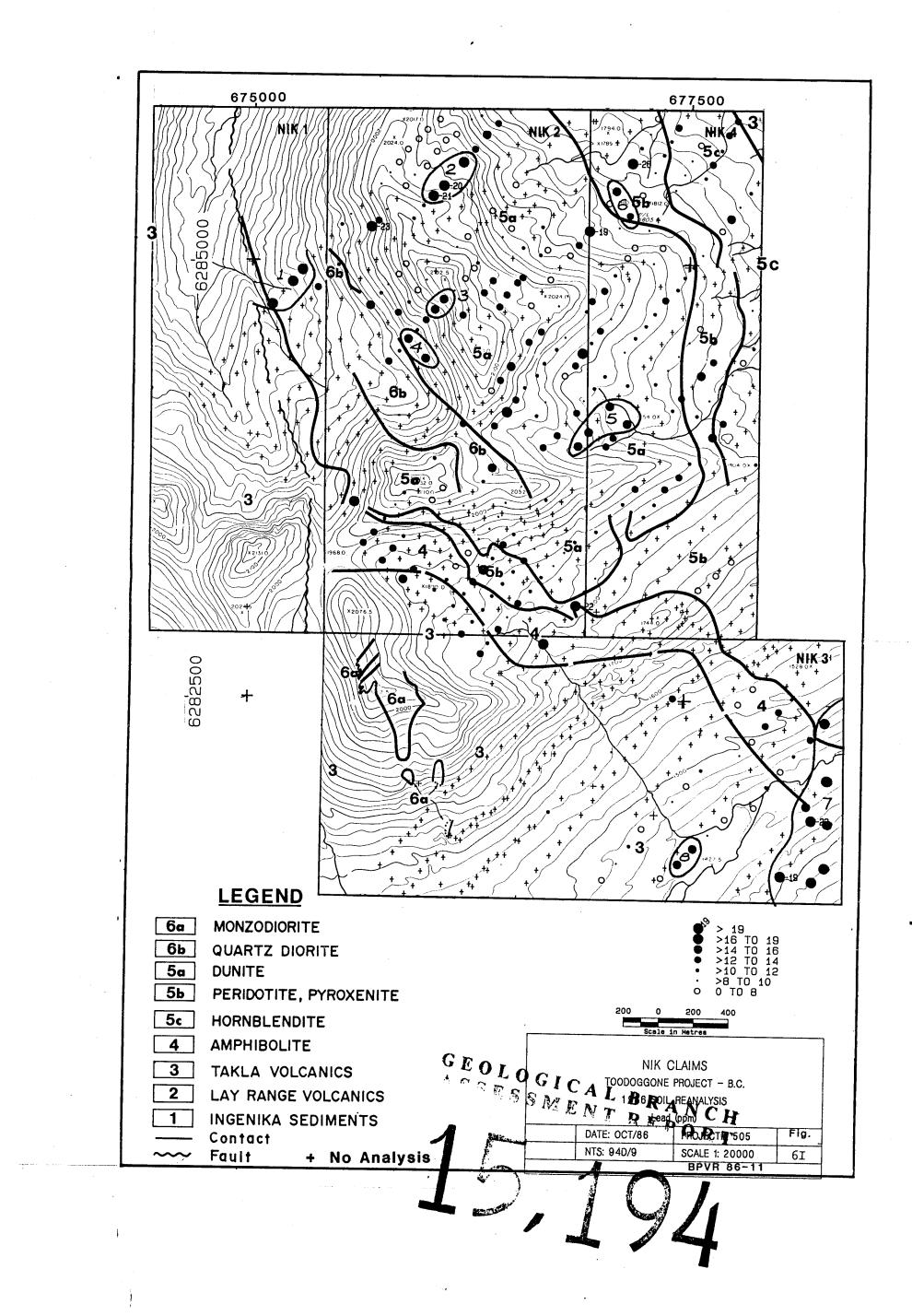
backgrounds of less that 10 ppb or are represented the odd isolated high value of up to 80 ppb.

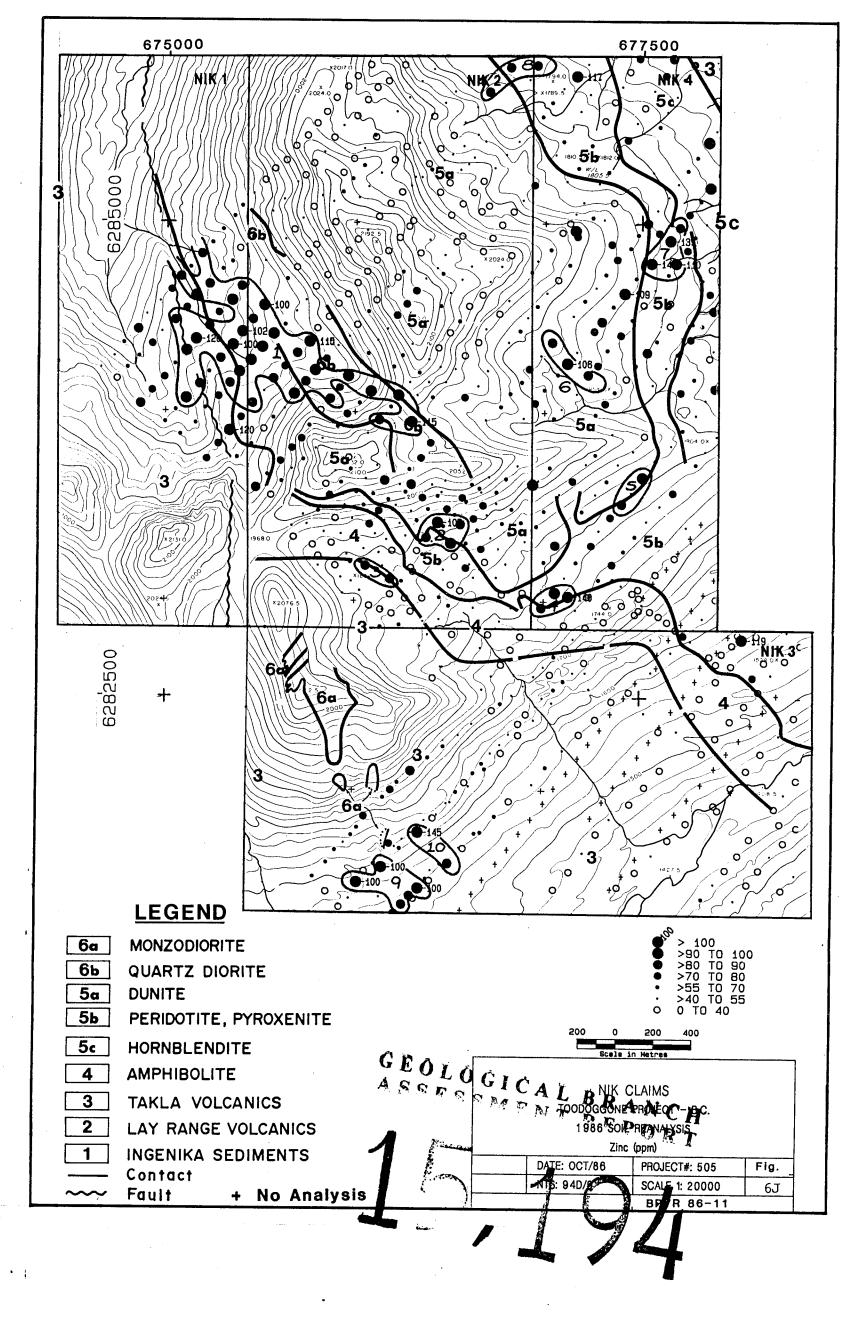

3. The Pathfinder Elements Sb (Fig. 6e), As (Fig. 6f), Bi

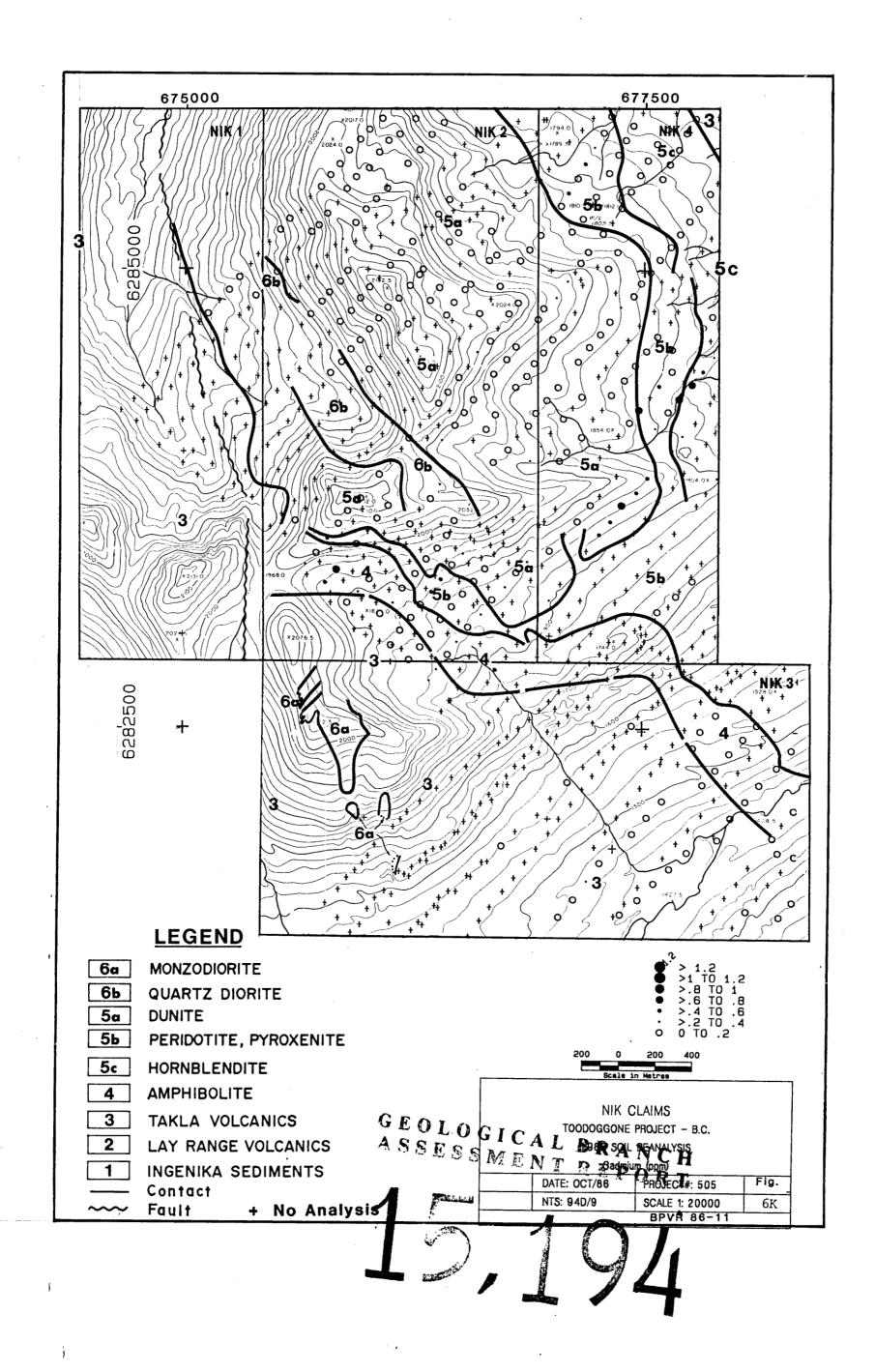

(Fig. 6g).

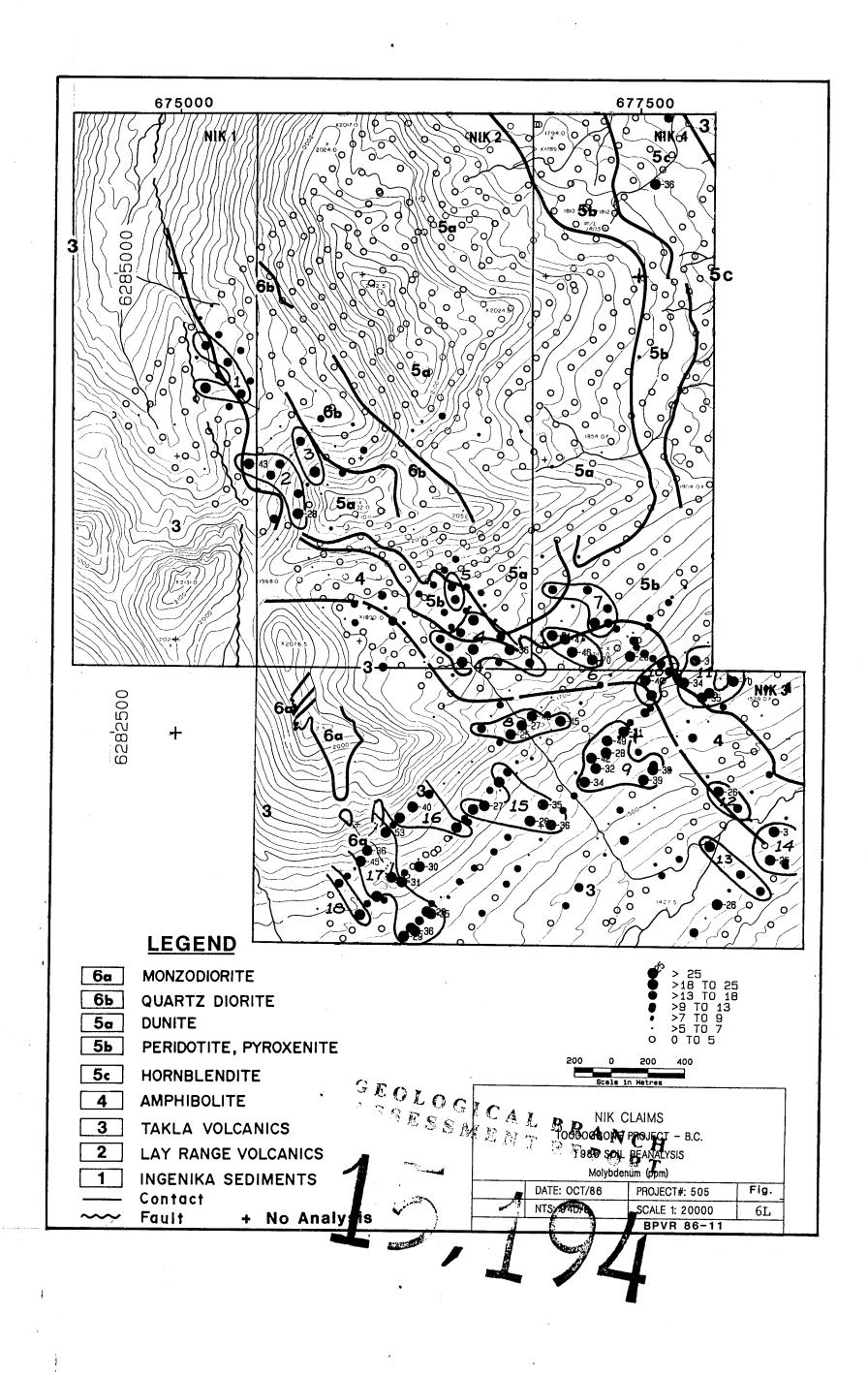

One Sb anomaly is outlined in the north, associated with the dunite. Sb values are generally enhanced over the dunite, and it is suspected that a spectral interference might be spuriously producing the Sb distribution.

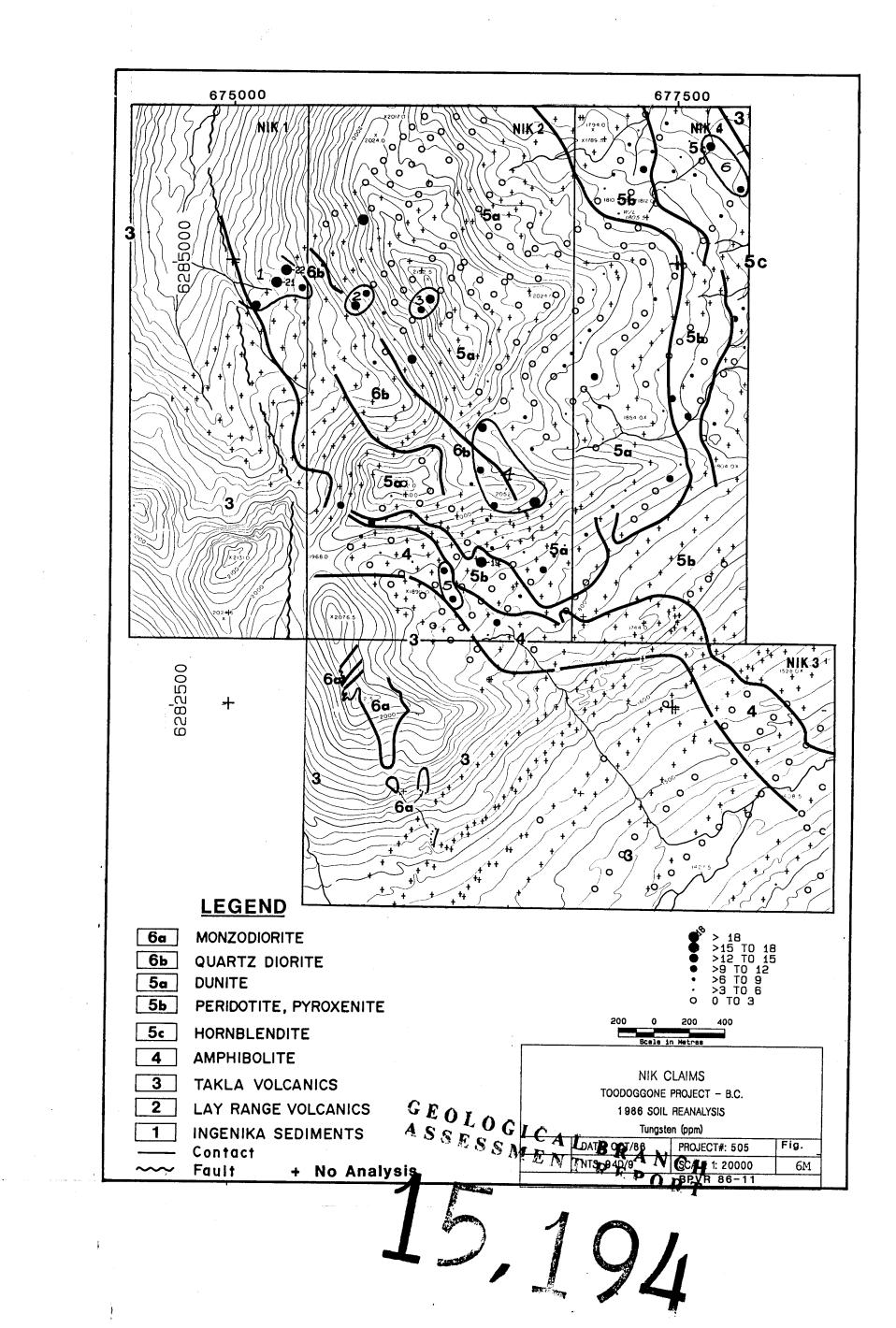

Eleven multisample As anomalies exceed a threshold of 12 ppm, to a maximum of 50 ppm. The largest anomaly is 600 m long and 200 m wide. The majority of the As anomalies appear associated with dunite or peridotite/pyroxenite which generally comprise clusters of two or three contiguous samples. Average As background over these geologic units is also somewhat enhanced compared to the volcanics. Bi levels do not vary sufficiently above background to be considered anomalous.


4. <u>The Base Metals</u> Cu (Fig. 6h), Pb (Fig. 6i), Zn (Fig. 6j), Cd (Fig. 6k), Mo (Fig. 6l), W (Fig. 6m). Descriptions of the Cu, Mo and Zn distributions have been reported previously. These have not changed, based on the








1--

r

ICP reanalysis. To summarize findings, Cu has accumulated along the NIK linear, particularly in the North Cirque. Anomaly 1 is over 1 km long and up to 400 m wide where Cu values exceed 250 ppm. South Cirque is associated with similarly enhanced values. Geochemical Cu patterns in North Cirque are readily explained by the occurrence of known mineralized intrusive boulders in the overburden. Cu anomalies 11 through 13 likewise are directly explained mineralized intrusive boulders in talus deposits along the western portion of NIK 3. Anomaly 4 through 10 in the Main Valley lie along the NK fault tread and the margins of the ultramafic complex. They have not been explained. Maximum Cu contents are in the range of 500 to 1000 ppm.

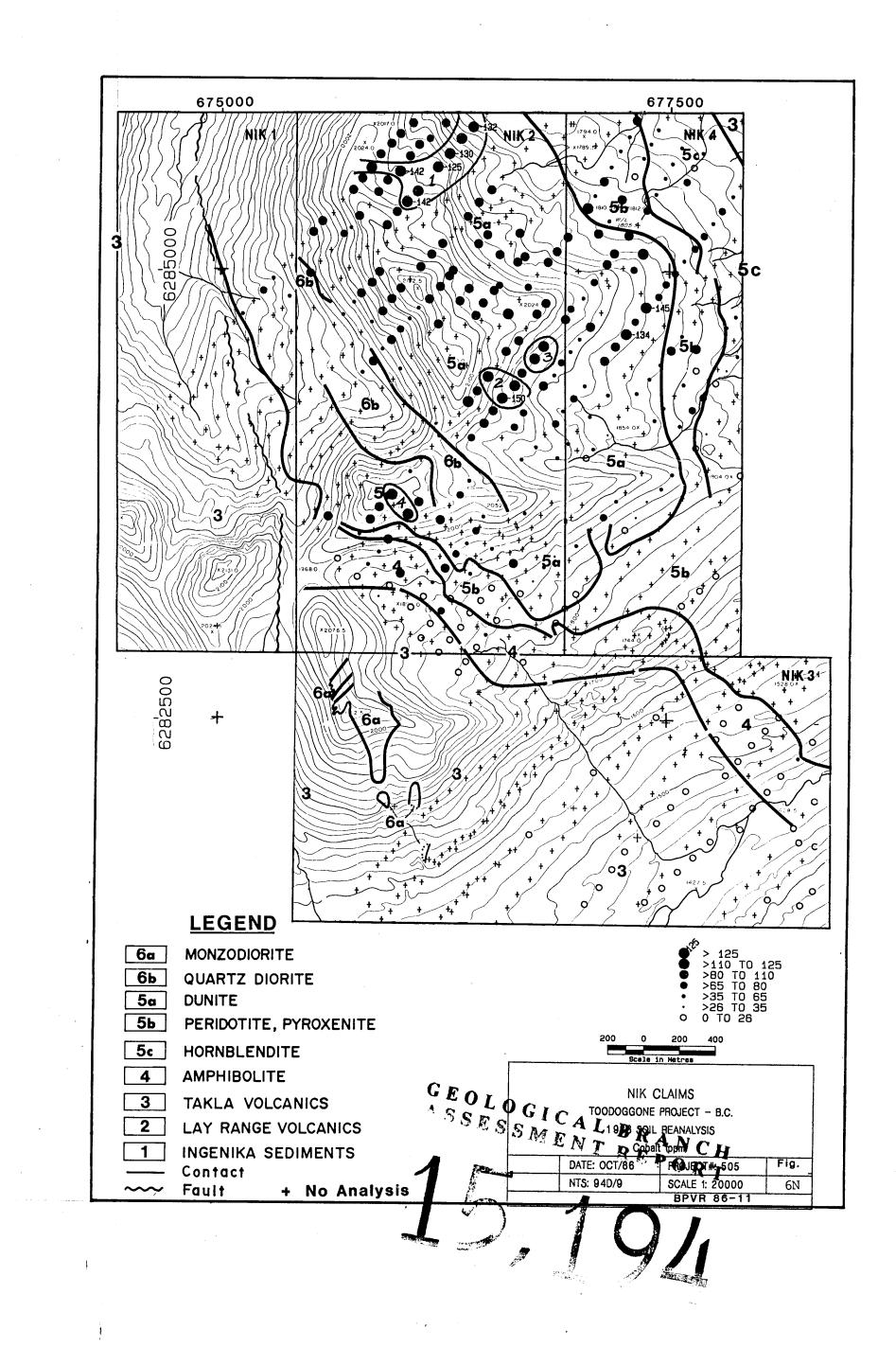
The dunite is a Cu-poor unit, being associated with values less than 75 ppm with a core of less than 50 ppm concentrations. Slightly enhanced Cu backgrounds of 75 to 225 ppm characterize pyroxenite - peridotite-hornblendite units. In this respect, the Cu patterns are parallelled by the Zn distribution which appears to follow underlying geology. Zn values are generally low, at less than 40 ppm, in the core of the dunite, and are enhanced to the 70 to 100 ppm range at the dunite margins or associated with pyroxenite-peridotite. The largest anomaly, No. 1 in North

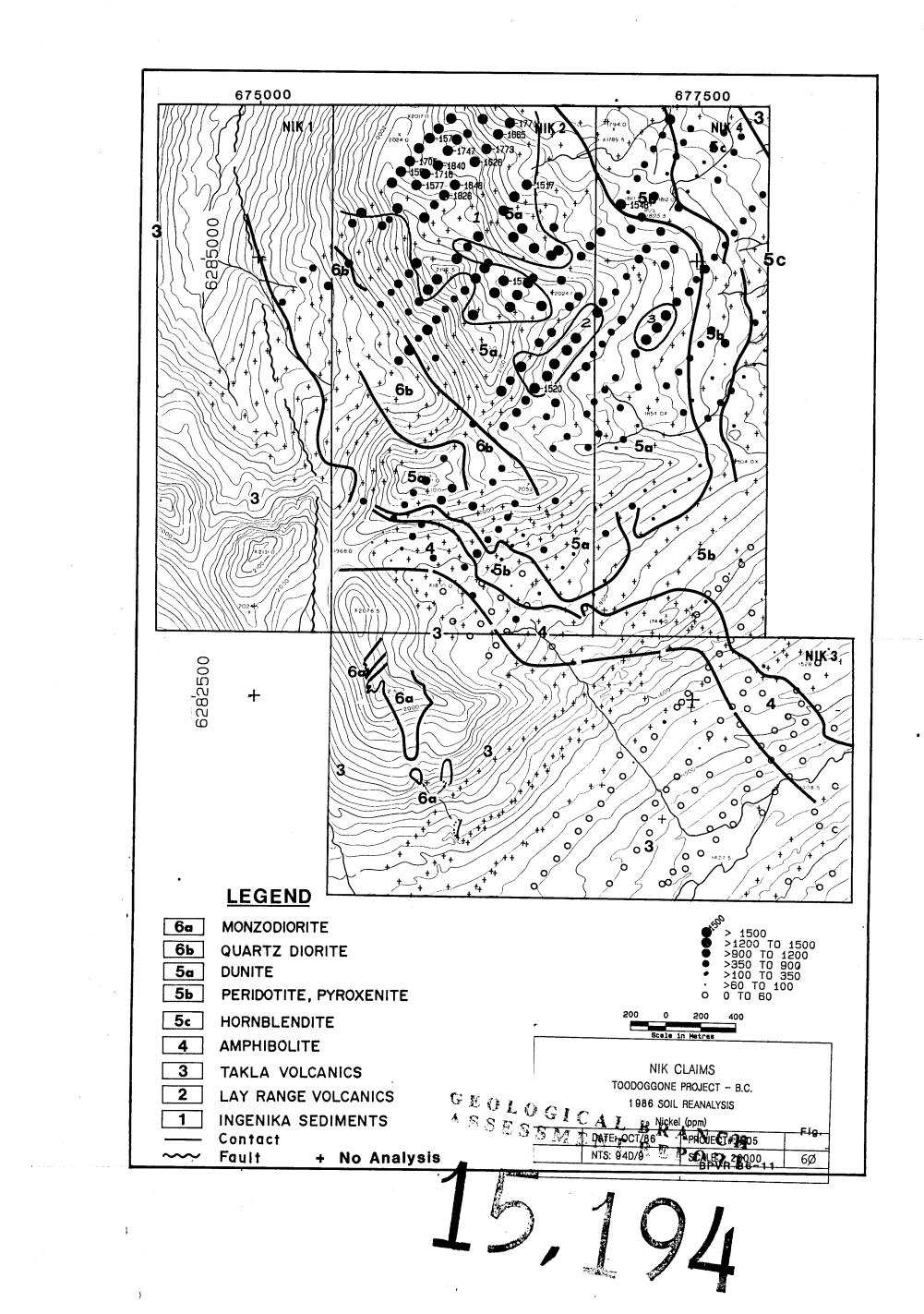
Cirque, exhibits little internal contrast, suggesting lithological rather than sulphide control. Absence of anomalous Cd values would confirm this interpretation. Elsewhere, enhanced Zn contents are seen in the southwest of NIK 3; these coincide with Cu anomalies, but are probably also lithologically controlled.

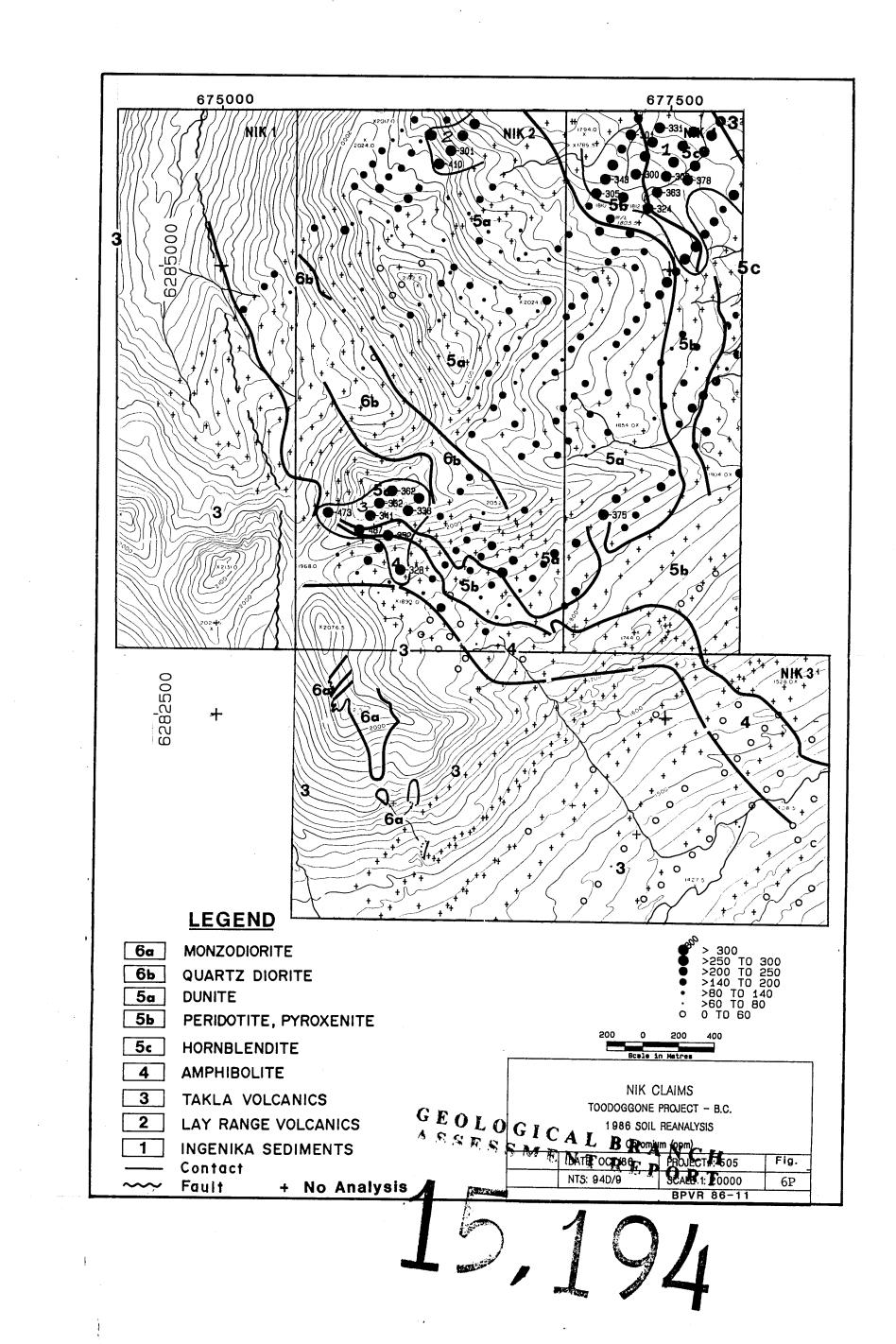
Mo accumulation is found along the southwestern margins of the ultramafic intrusion and within the Main Valley. Anomalies 1 to 3 in North Cirque and 4 and 5 in South Cirque are readily explained by molybdenite occurring in bedrock or in glacial/talus float. Anomalies in the Main Valley have not been adequately explained. Maximum values in the latter environment are in the 25 to 50 ppm range and comprise clusters of 5 or more contiguous samples in zones averaging about 400 m in diameter.

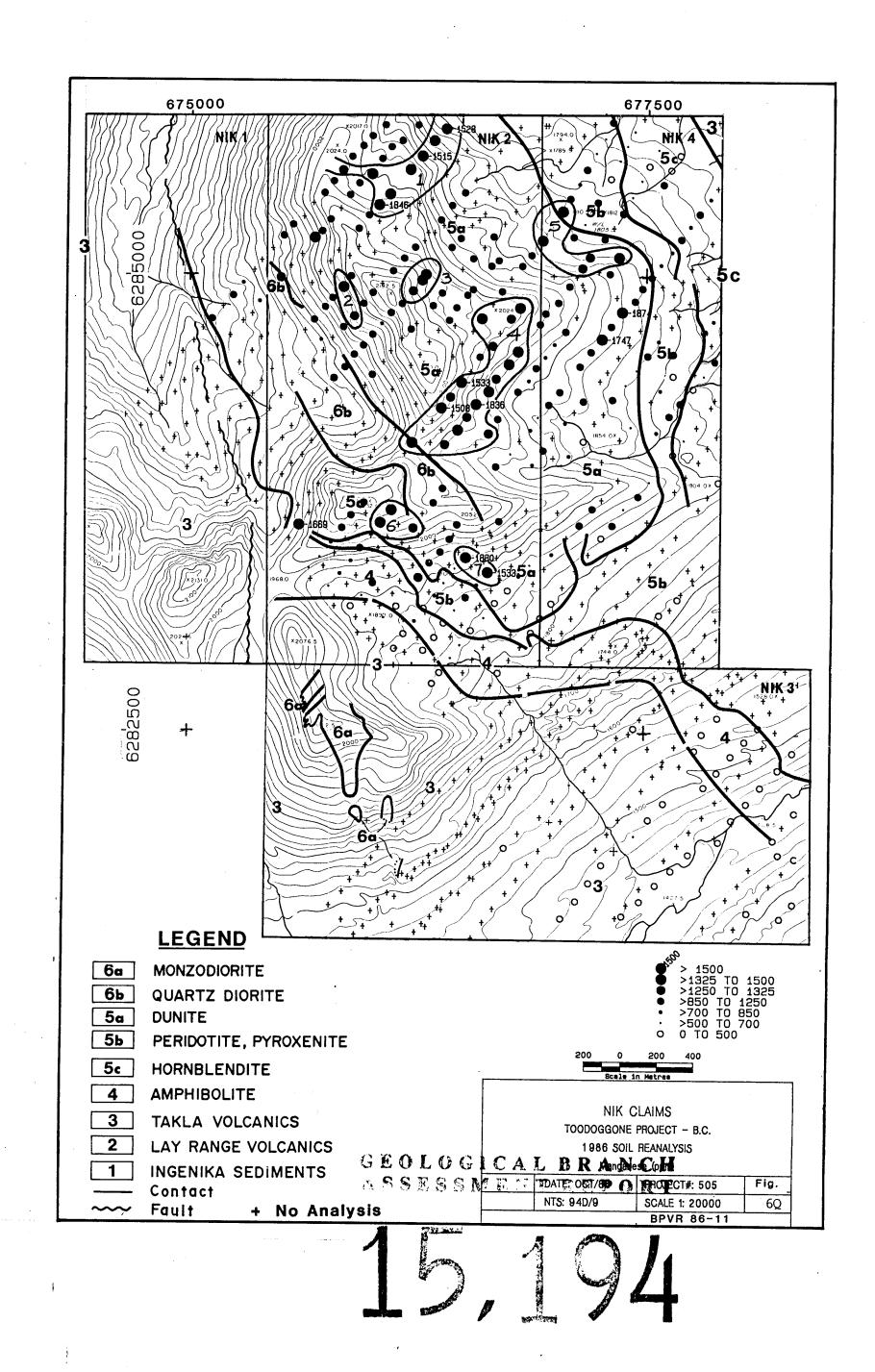
The Pb data are new but not particularly interesting. Maximum values average around 20 ppm. Higher values are associated with all geological environments. W was also detected at levels above 9 ppm, primarily along the southwestern portion of the ultramafic unit. The significance of the W values is uncertain. If real, they are certainly anomalous.

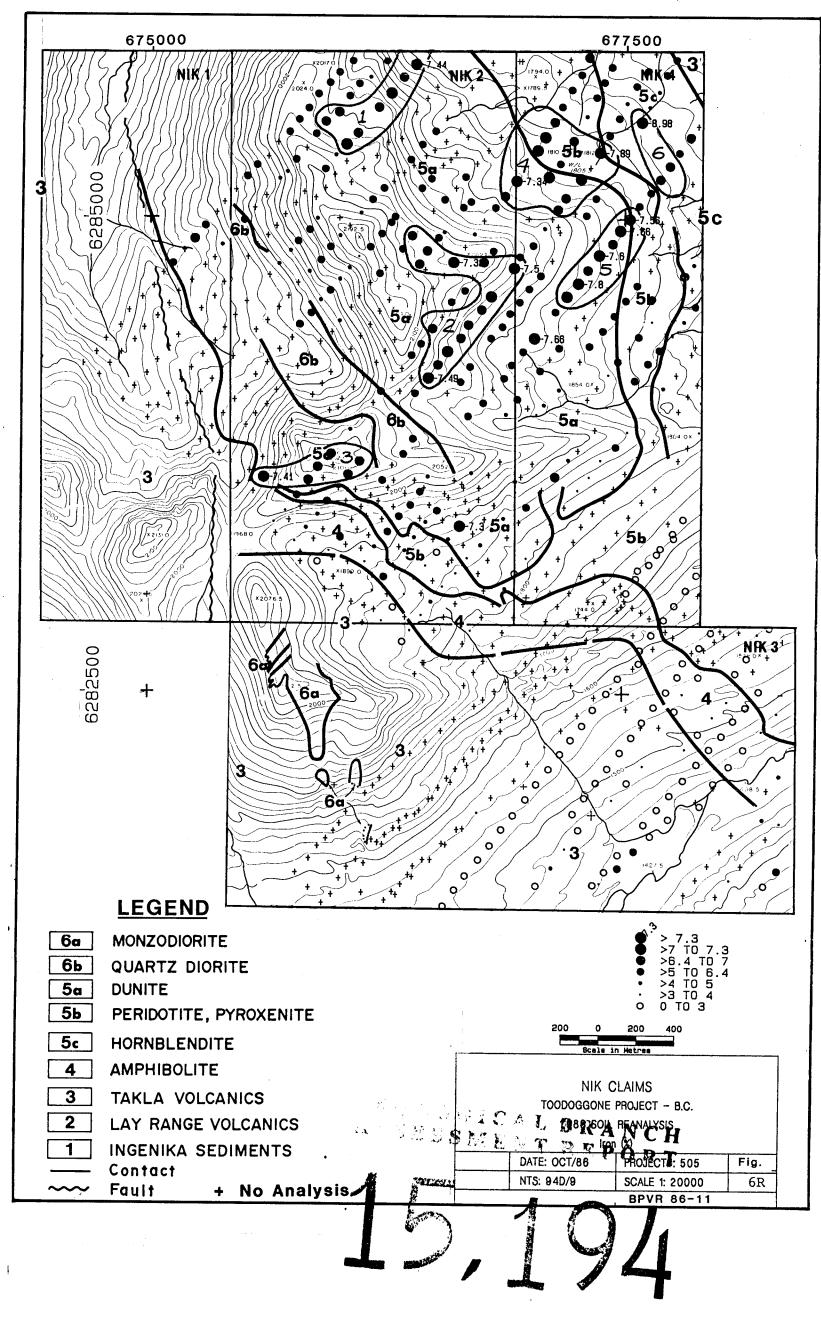
5. The Rock Forming Elements: Co (Fig. 6n), Ni (Fig. 6o), Cr (Fig. 6p).


Co and Ni contents are enhanced over the dunite, with a cluster of higher values overlying the northern portion of NIK 2. Maximum values average around 125 ppm and 1700 ppm, respectively. Cr values also cluster into zones exceeding 250 ppm leachable metal, along the margins of the dunite, typically overlying peridotite/pyroxenite. Maximum leachable Cr values average 400 ppm.


6. Manganese (Fig. 6q) and Iron (Fig. 6r)


The Mn distribution reflects a geologic influence, low values below 500 ppm characterizing the volcanics, high be defined by values exceeding 1250 ppm, with maximum, values averaging 1500 ppm. The Fe distribution is very similar to that of Mn, being geologically controlled by the composition of ultramafic units.


7. Magnesium (Fig 6s)

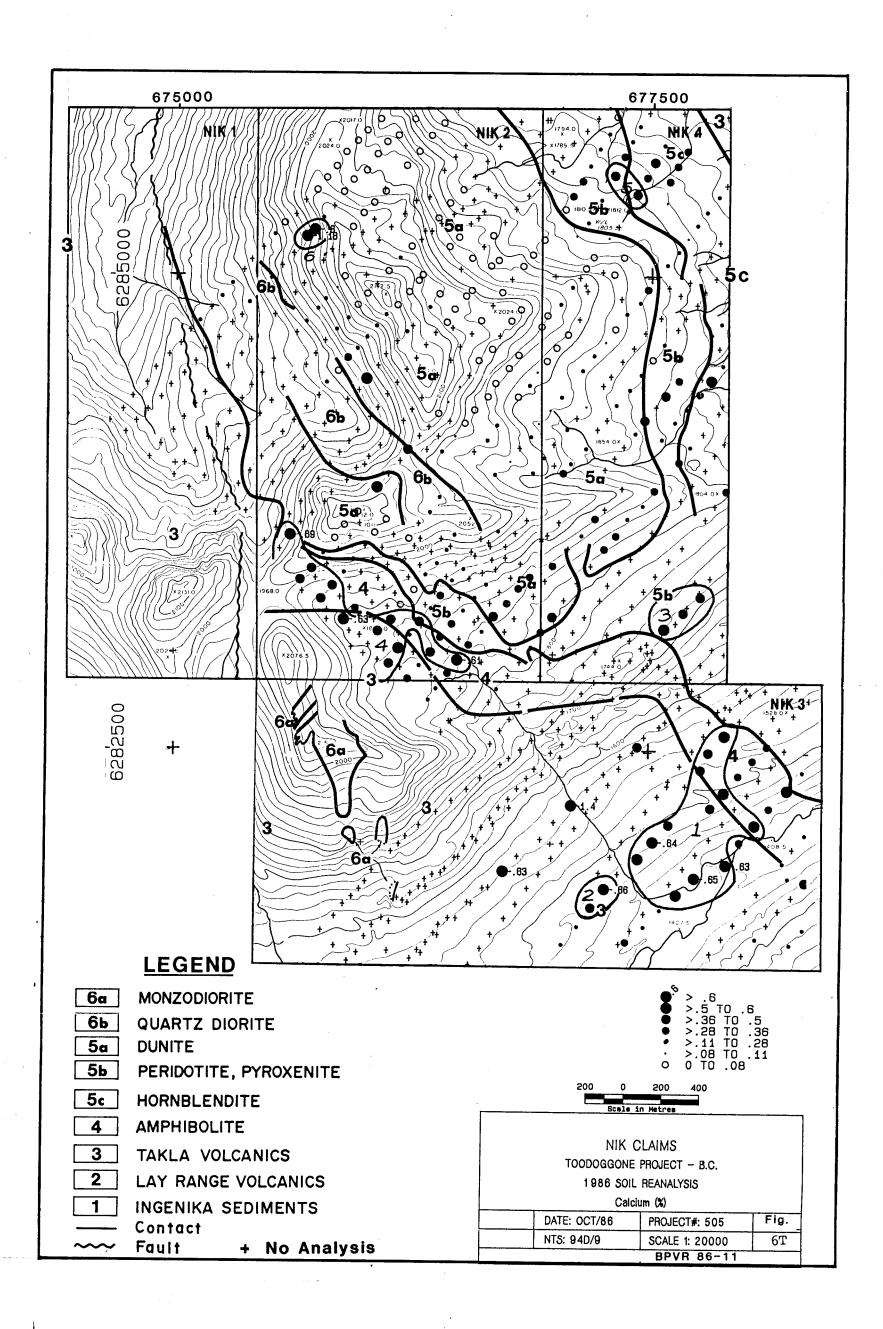

The Mg distribution defines the northern half of the ultramafic complex to be Mg-rich, in contrast to peridotite /pyroxenite. Maximum values are about 25% Mg.

1990 - V. 19⁴

ì

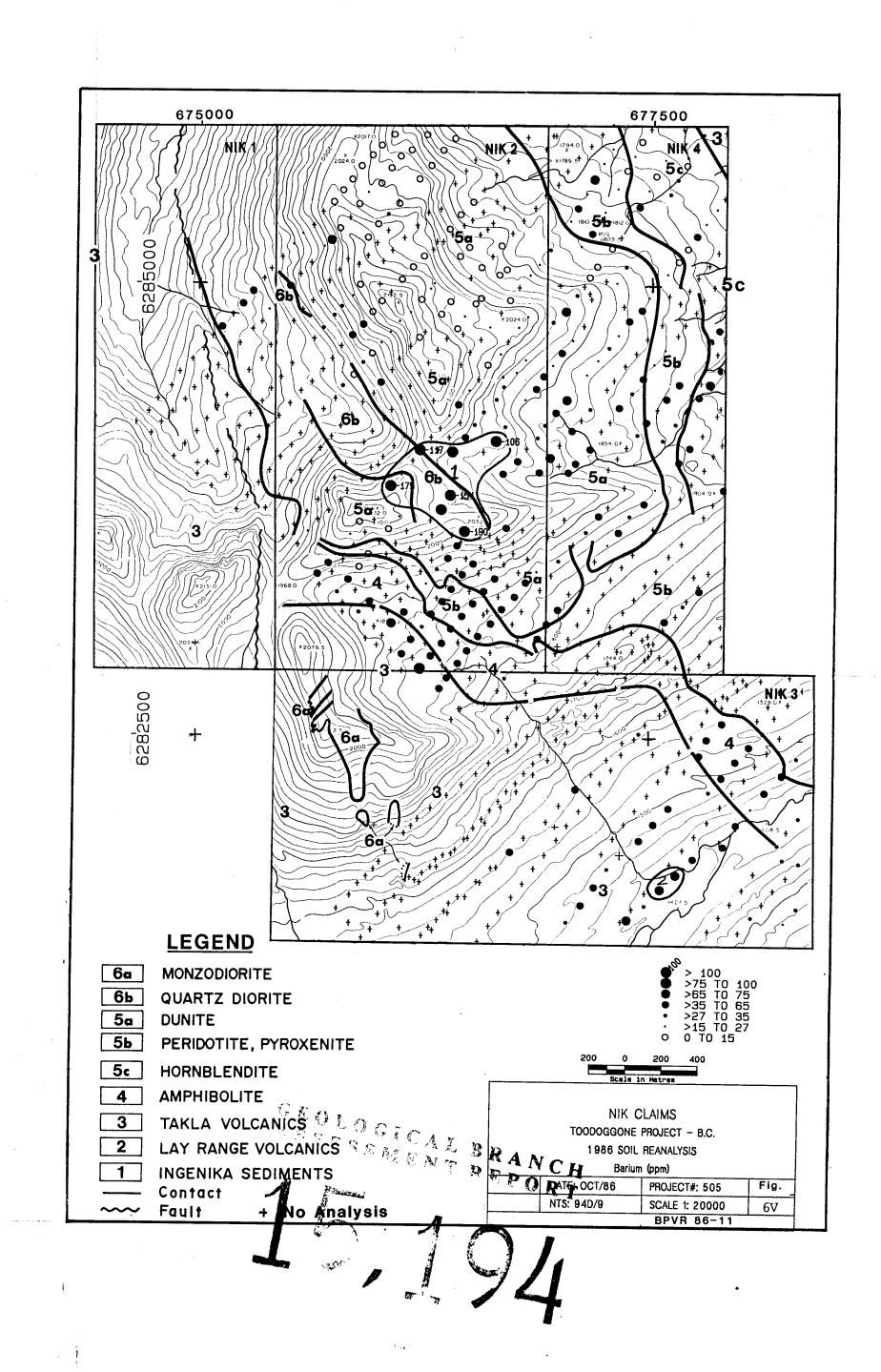
•

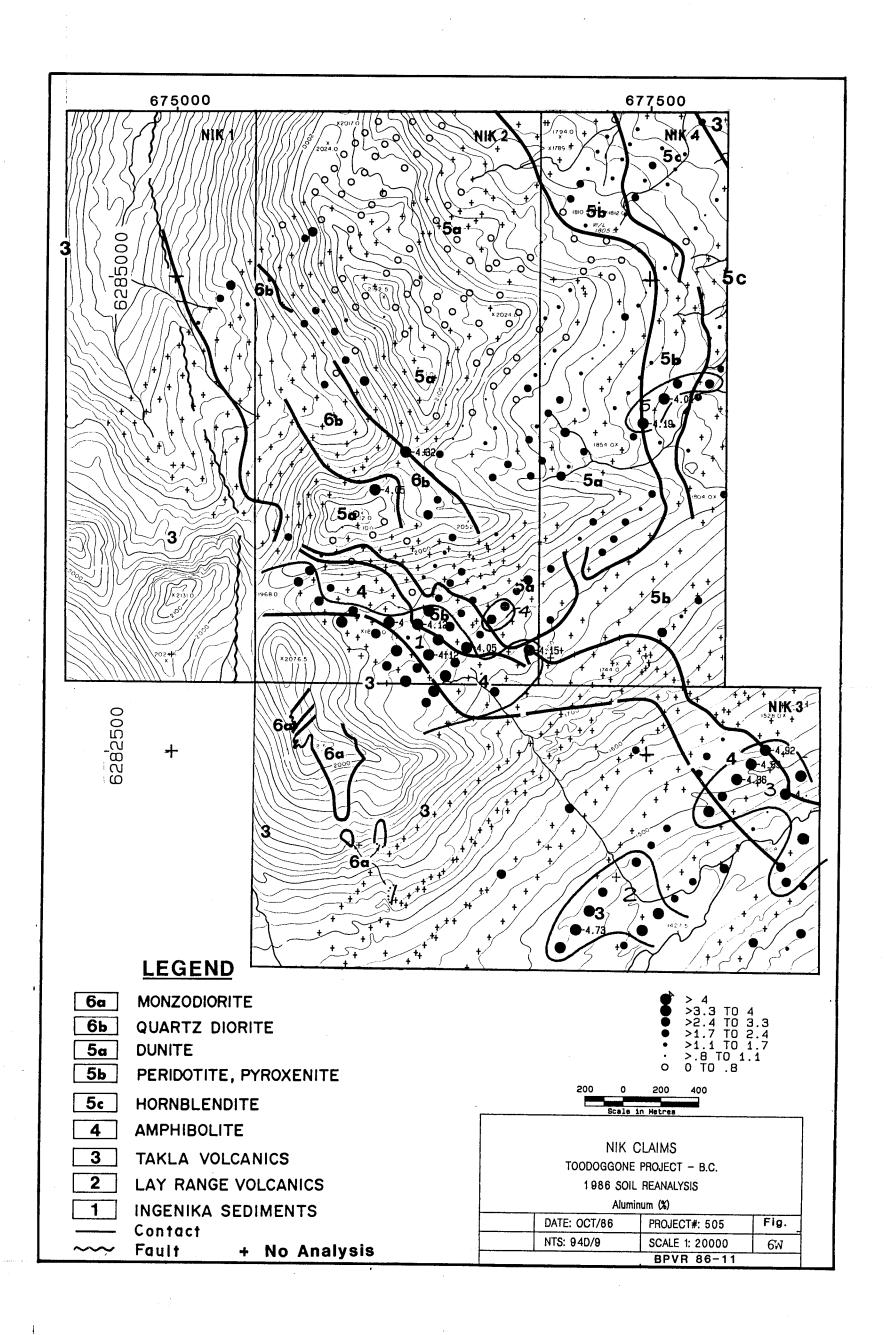
÷ .,

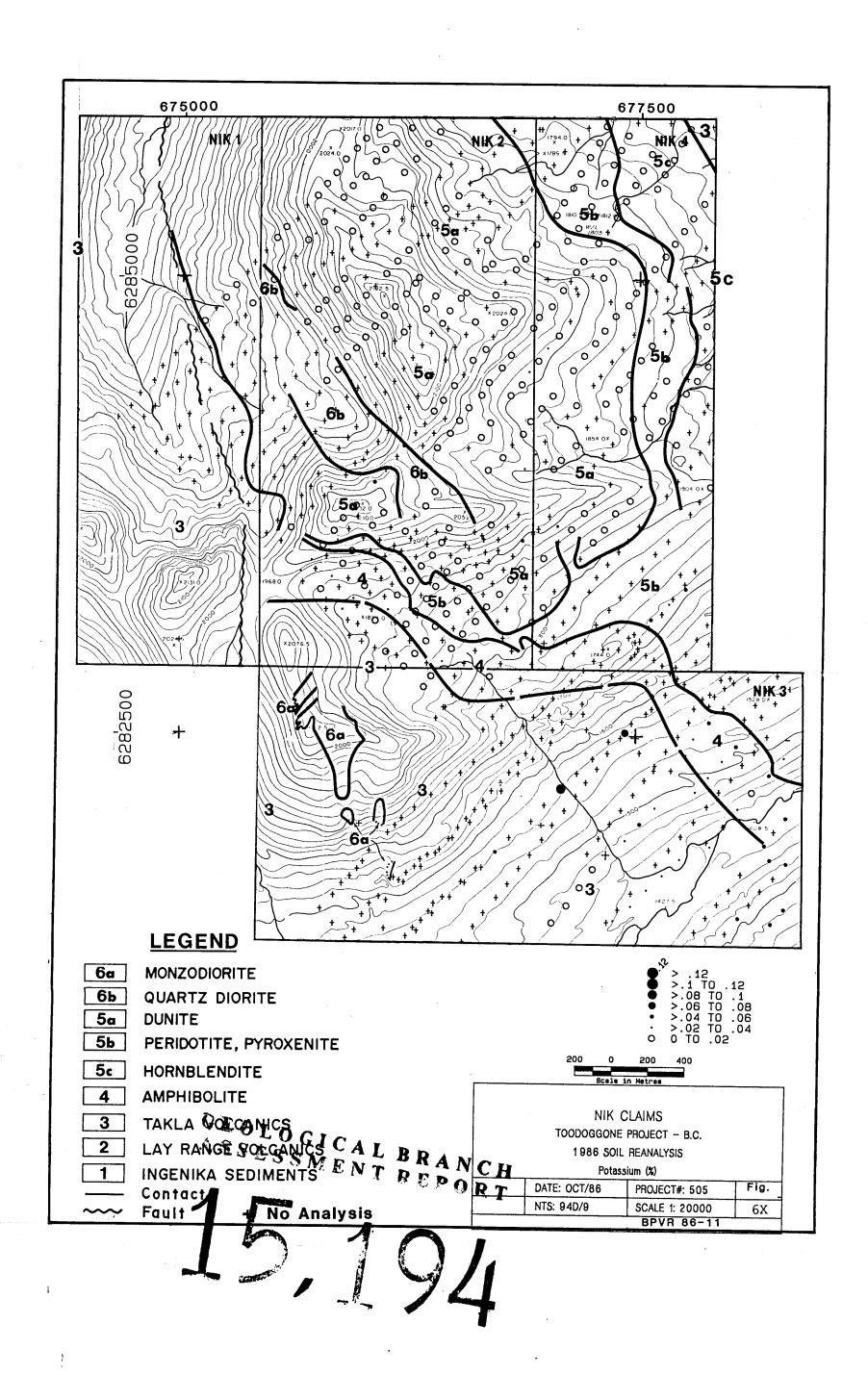

ł

CROCOGICAL BRANSS ASSESSMENT REPORT

- 8. <u>The Alkaline Earths</u> Ca (Fig 6t), Sr (Fg 6u), Ba (Fig 6v) The Ca and Sr distributions are similar, high values overlying volcanics in South Cirque and Main Valley. The northern portion of the dunite is low in these elements, whereas values are slightly elevated to the south and west. Backgrounds are significantly higher overlying pyroxenite except for a large Ba anomaly (No. 1) associated with a quartz diorite intrusion. High background leachable Ba contents, in the 35 to 75 ppm range, are found overlying southern portions of the dunite and associated with pyroxenite-peridotite. Similar levels of Ba are associated with areas underlain by Takla volcanics.
- 9. <u>Aluminum</u> (Fig. 6w) and <u>Potassium</u> (Fig. 6x) Enhanced Al contents describe homogeneous patterns


suggestive of lithological control. Volcanics in South Cirque and Main Valley are homogeneously enriched. Lowest values characterize the northern dunite, whereas southern portions are associated with weakly elevated levels, as are areas underlain by pyroxenite-peridotite. Enhanced contents along the eastern margins of the quartz diorite intrusion of North Cirque are a possible alteration indication.


K contents vary too close to the detection limit to be considered meaningful.


J

1

DISCUSSION OF RESULTS

The NIK claims were assessed for the Au, Ag, Pt and Pd potential, with disappointing results. The sample coverage is by no means complete, and scope remains to locate a significant anomaly within the survey area, within the North Cirque, for example. That could be the subject for additional investigations in 1987.

A problem arises concerning the adequacy of the available Pt and Pd data. Detection limits for both elements are quoted at 50 ppb, and it is usual that values of Pt and Pd will have to be at 3X the detection limit, or 150 ppb, to be meaningful. Maximum Pt and Pd values at Stillwater, where soil geochemistry were instrumental in discovery of an ore deposit averaging about 8 gm Pt and 24 gm Pd per ton, is only about 100 ppb and 200 ppb, respectively. Clearly, the detection limit must be lowered here before the Pt/Pd potential of the property can be realistically assessed.

The multielement data confirm the anomalous character of the NIK linear and the Main Valley for Cu and Mo. Available data do not suggest other elements are accompanying the Cu and Mo in anomalous amounts, for example Ag, Pb, Zn, Cd, or Au. The previous assessment of base metal potential of the ground remains unchanged by the new work.

The multi-element analysis has been particularly effective in mapping the ultramafic complex based on the composition of overlying residual soils. The multi-element concentrations are those leachable into aqua regia, and for elements such as Cr, Ni, Mg, Mn, Fe, etc., absolute abundances are likely to be even higher. Nevertheless, the data indicate rock types are probably varying more completely than shown on the geology map (Fig. 3), dunite for example appears subdividable based on these above other element distributions, into a northern and southern portion. This may become important if a Pt group element potential can be identified, associated with the dunite in this example.

The unusually high concentration of metals in soils represents an unusual matrix probably affecting the ICP analysis. High levels of Sb, W, Pb, and As associated with ultramafic units are unusual, and may represent analytical artifacts. If not, they may play a role in determining prospectiveness of an ultramafic body to host a Pt/Pd deposit. Further work is required to evaluate this application of the data.

CONCLUSION

Reanalysis of 320 samples for a suite of 30 agua regia leachable metals, as well as for Au, Pt and Pd has failed to identify a precious metal potential for the claim group. Reanalysis of the same samples for Pt and Pd using a 2 ppb detection limit for each element is necessary before the Pt group element potential can be adequately determined.

APPENDIX 1

Geochemical Preparation

and

Analytical Procedures

лт С. "у

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCI I OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

October 8th, 1986

- TO: Stan Hoffman BP-SELCO 700 - 890 W. Pender St. Vancouver, B.C. V6C 1K5
- FROM: Vangeochem Lab Ltd. 1521 Pemberton Ave. North Vancouver, B.C. V7P 2S3
- SUBJECT: Analytical procedure used to determine multiple elements in hot acid soluble by Induction Couple Plasma Spectrometer (ICP) analysis.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. <u>Method of Digestion</u>

- (a) 0.500 gram of -80 mesh sample was used.
- (b) Samples were digested in a hot water bath at 95 C for 75 minutes with diluted aqua regia acids. (3 : 1 : 3, HCl : HNO3 : H2O)
- (c) The digested samples were diluted to a fixed volume and shaken well.

VANGEOCHEM LAB LIMITED MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

- 2 -

Method_of_Analysis з.

4.

determined The analyses were by using a Jarrel Ash ICAP model 9000 direct reading emission spectrometer an inductively coupled with plaama excitation source. Background and inter-element corrections (IEC'S) were applied. All data is compiled into an Apple IIe computer, stored on floppy disk and printed by an Epson 100 dot-matrix printer.

The analyses were supervised by Mr. Wade Reeves and Mr. Conway Chun of Vangeochem Lab Ltd. and their staff.

) I lec Coh Chun av

VANGEOCHEM LAB LTD.

VANGEOCHEM LAB LIMITED MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

October 8th, 1986

- Stan Hoffman TO: **BP-SELCO** 700 - 890 W. Pender St. Vancouver, B.C. V6C 1K5
- FROM: Vangeochem Lab Ltd. 1521 Pemberton Ave. North Vancouver, B.C. V7P 2S3
- SUBJECT: Analytical procedure used to determine gold by fireassay method in geological samples.

Method of Sample Preparation 1.

- Geochemical soil, silt or rock samples were received in (a) the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- The dried soil and silt samples were sifted by hand (b) using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- The dried rock samples were crushed by using a jaw cru-(c)sher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.
- 2. Method_of_Digestion
 - 20.0 30.0 grams of the pulp samples were used. (a) Samples were weighed out by using a top-loading balance into a fusion pot.
 - (Ъ) A Flux of litharge, soda ash, silica, borax, flour, or potassium nitrite is added, then fused at 1900 degrees F and a lead button is formed.
 - (c) The gold and silver is extracted by cupellation, silver is then dissolved with diluted nitric acid.

VANGEOCHEM LAB LIMITED

 MAIN OFFICE

 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

 (604) 986-5211

 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

3. <u>Method_of_Calculation</u>

The gold is calculated by weighing of the bead and then ounce per ton is calculated.

4. The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu.

David Chiu VANGEOCHEM LAB LTD.

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

October 8th. 1986

- TO: Stan Hoffman BP-SELCO 700 - 890 W. Pender St. Vancouver, B.C. V6C 1K5
- FROM: Vangeochem Lab Ltd. 1521 Pemberton Ave. North Vancouver, B.C. V7P 2S3
- SUBJECT: Analytical procedure used to determine Platinum & Palladium by fire-fire-assay, AAS method in geological samples.

1. Method of Sample Preparation

- Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. <u>Method of Digestion</u>

- (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into a fusion pot.
- (b) A flux of litharge, soda ash, silica, borax, flour, or potassium nitrate is added, then fused at 1900 degrees F and a lead button is formed.
- (c) The silver bead containing Platinum and Palladium is extracted by cupellation then parted with diluted nitric acid. Silver is then remove as AgCl.
- 3. <u>Method_of_Detection</u>

VANGEOCHEM LAB LIMITED MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

- (a) A solution of Lanthanum oxide is added as buffer.
- (b) The Pt and Pd analyses were detected by using a techtron model AA5 Atomic Absorption Spectrophotometer with Pt and Pd hollow cathode lamps. The results were read out on a strip chart recorder. The values in parts per billion were calculated by comparing them with sets of standards.
- The analyses were supervised or determined by Mr. Conway 4. Chun or Mr. David Chiu and his laboratory staff.

David Chia

VANGEOCHEM LAB LTD.

APPENDIX 2

LIST OF ANALYTICAL DATA

GENERAL

GENERAL							LIST 1
1-2 SAMPLE TYPE						_	
10. Stream sediment	1-2 <u>SAMPLE TYPE</u> Cont. 51. Soil-other horizons (organic-		SAMPLE TYPE Cont. Channel sample/split core		PROJECT IDENTIFICATION Blank-reconnaissance		INTRUSIVE ROCKS
11. Stream water	rich samples or when 2 samples	86.	Drill chips		A.B.C. etc properties,		QUARTZ RICH Granite
12. Drainage ditch sediment 18. Heavy mineral concentrate	taken at same hole) 52. Frost boil or seepage boil		Drill sludge Heavy Mineral concentrate		anomalies, (List 6)		Quartz Monzonite Granodiorite
20. Seepage (spring) sediment 21. Seepage (spring) water	54. Groundwater sample 55. Deep overburden sample	*89. *90.	High grade sample Special sample-specify		DUPLICATE SAMPLES Label duplicates as 1,2, etc.		Quartz diorite
 Lake sediment - lake center 	58. Heavy mineral concentrate	99.	Standard sample		(collect 1 duplicate pair in 30)	-2-	INTERMEDIATE
31. Lake water 32. Lake sediment-near shore	60. Talus fines 63. Talus blocks-hand sample	*Cle	arly label if high grade.		SAMPLER IDENTIFICATION	1 2	Syenite Monzonite
40. Bog-upper 100 cm 41. Bog-stagnant water	64. Talus blocks-chips 68. Heavy mineral concentrate		Special Note	(10-11)(List 7)		Diorite Gabbro
42. Sog-below 100 cm	7D. Biogeochemical sample		For keypunchers benefit, 7's should be crossed 7 and 0's	(12-15	SAMPLE NUMBER		FELDSPATHOID RICH
 Bog-organic material at mineral horizon interface 	75. Radon 80. Bedrock hand Specimen		(letter) should be slashed Ø		EAST COORDINATE	1	Nepheline Sycnite
44. Bog-mineral horizon 50, Soil-top of the B horizon	81. Bedrock chips <u>*</u> hand sample 82. Float hand specimen	3-4	YEAR		NORTH COORDINATE		Nepheline Monzonite
(or top of the C horizon	83. Float chips + hand sample	5-7	PROJECT NUMBER	34-38	<u>NTS MAP SHEET NUMBER</u> Example: record 927/3 as	-40	CARBONATITES
if B horizon absent)	84. Drill core specimens	· · ·			92F03		SPECIAL TYPES
STREAM SEDIMENTS							Pegmatite Aplite
40 SAMPLE ENVRIONMENT	45 OVERBURDEN ORIGIN Cont.	53-5	S AVERAGE DEPTH OF STREAM-CM	68	ORGANIC FRACTION *(Complete	3	Lamprophyre
1. Side of creek	7. Lake sediment-clay	56			where sediment composition is		Trap Felsite
4. Middle of stream 9. Composite across stream	8. Talus 9. Residual •use only if	20	STREAM VELOCITY 1. Dry		unusual) 2. Large amount of undecom-	6 7	Intrusion Breccia Diabase
A. Soil	C. Boulder field* former origin		2. Stagnant		posed leaves, twigs, etc. 4. Large amount of well-de-	/	LIST 2
41 WATER HURKINESS	D. Gravel* cannot be E. Soil* identified		 Slow Moderate 		composed vegetation	2	VOLCANIC ROCKS
Blank-clear 1. Murky (report findings in	46 BEDROCK		5. Fast		5. Moss 7. Sediment grains coated in		UNDIFFERENTIATED
note section)	46 <u>BEDROCK</u> M. Mineralized		6. Turbulent		organic matter 8. Lake sediment ooze.	-1-	BASALT
42 PRECIPITATE	P. Present within 100m upslope	57	INDICATE AS TRIBUTARY			-1-	
Blank-none 1. Record colour (report	D. Present within 100m down- slope		R. Stream enters on the right looking down main stream	69	MINERAL FRACTION *(Complete where composition is un-	-3-	DACITE
presence of precipitate	B. Underlies sample site G. Gossan		L. Stream enters on left		usual)	-4-	RHYOLITE
in immediate vicinity in stream bed. If heavy	F. Fe surface stains		looking down main stream		 Notable content of mafic minerals, resistates 	-5-	QUARTZ LATITE
precipitate, sample separately as sample type	R. Radioactivity	58~6	LOCAL BEDROCK COMPOSITION		 Very high content of mafics, resistates 	-6-	LATITE
separacely as sample type 90)	47-48 pH		Estimate-use Lists 1-4	71			TRACHYTE
43 OVERBURDEN TRANSPORT	49 SAMPLE TEXTURE	61-60	COLOUR		SCINTILLOMETER NUMBER GAMMA COUNT AT SAMPLE DEPTH		PHONOLITE
L. Local N. Mixed local	Ø. Organic-decomposed 1. Clay		Munsell notation or abbreviation	12-13	(make note if landscape is	-9- 1	NEPHELINE LATITE Fine grained flows
E. Extensive E extensive U. Unknown	 Silt and fine sand Sand 	67			affecting gamma count)		Prophyritic flows
45 OVERBURDEN ORIGIN	4. Gravel	67	CONTAMINATION Blank - none L - logging	76	ROCK	4	Ash tuffs
1. Till-angular boulders	6. Cemented 7. Precipitate		C - culvert M - mine		*Star if bedrock is influen- ing scint count	5 6	Lapilli tuffs Agglomerate
 Outwash-sandy, rounded boulders 	8. Twigs or undecomposed		F - farming R - road G - garbage T - trench	77-78	APPROXIMATE SLOPE ANGLE	7	Lapilli breccia
3. Lake sediment-sand/silt 4. Alluvium-stream deposit	organic matter 50-52 AVERAGE WIDTH OF STREAM-M		H - house Ø - other - spec.		APPROXIMATE SLOPE DIRECTION		Block breccia Turbidite
5. Peat-bog	Decimal point in col 51 (or col		I - industry	/9~80	APROXIMIC SCOPE DIRECTION		LIST 3
5. Peat-bog 6. Colluvium*	Decimal point in col 51 (or col 52 if stream > 10m wide)		I - Industry	/9~80	AFRONIDIE SCOPE DIRECTION	3	LIST 3 SEDIMENTARY ROCKS
6. Colluvium*			1 - Industry			-1-	SEDIMENTARY ROCKS
6. Colluviúm* SOILS	52 if stream > 10m wide)				· · ·		SEDIMENTARY ROCKS ARENACEOUS Siltstone
6. Colluvium*	52 if stream > 10m wide) 45 <u>OVERBURDEN DRIGZN</u>	55-56	5 SOIL HORIZON	57	<u>SOIL TYPE</u> Cont.	-1- 1 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake
6. Colluvium* SOILS 40 <u>SITE TOPOGRAPHY</u> 1. Hill top 2. Gentle slope	45 <u>OVERBURDEN DRIGIN</u> 1. Till-angular boulders 2. Outwash-sandy, rounded	55-56	5 <u>SOIL HORIZON</u> LH. Leaf, humus layer, unde- composed vegetation lying		<u>SOIL TYPE</u> Cont. L. Luvisol+ƏT horizon diagnostic	-1- 2 3 4 5	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quartzite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt 	55-56	5 SOIL HORIZON LM. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample)		<u>SOIL TYPE</u> Cont. L. Luvisol-ƏT horizon dıaqnısıtıc P. Podzol-BF horizon diaqnostic	-1- 1 2 3 4 5 6	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greyvake Sandstone Quartzite Conglomerate
6. Colluvium* SOILS 40 <u>sttE TOPOGRAPHY</u> 1. Hill top 2. Gentle slope 3. Steep slope > 20°	 45 OVERBURDEN ORIGIN 1. Till-angular boulders 2. Outwash-sandy, rounded boulders 3. Lake sediment-sand/silt 4. Alluvium-stream deposit 	55-54	 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface ido not sample) AH. Dark grey to black, organic 		SOIL TYPE Cont. L. Luvisol-ƏT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-ƏM horizon is	-1- 2 3 4 5	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quartzite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 20° 4. Base of slope 5. Valley floor 6. Depression 7. Level	 45 OVERBURDEN DRIGIN Till-angular boulders Gutwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium 	55-56	5 SOIL HORIZON LM. Leaf, humus layer, unde- composed veyetation lying on the ground surface ido not sample) AH. Dark rey to black, organic -rich mineral horizon usually no deeper than 15cm		SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil	-1- 1 2 3 4 5 6 -2- 1 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus 	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) 	57	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LH (maybe)	-1- 1 2 3 4 5 6 -2- 1	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 20° 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Peat-bog Colluvium Lake sediment-clay 	55-54	 5 SOIL HORIZOM LK. Leaf, humus layer, undecomposed vegetation lying on the ground surface ido not sample? AH. Dark grey to black, organic rich mineral horizon usually no deeper than 15cm from the surface ido not sample? AE. Grey to white (occassionally 	57	SOIL TYPE Cont. L. Luvisol-ƏT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only Li (maybe) and C horizon	-1- 1 2 3 4 5 6 -2- 1 2 2 3-	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 20° 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* B. Seepage boils* 	55~54	 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface ido not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- 	57	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LH (maybe) and C horizon G. Gleysol-BC horizon diagnostic	-1- 1 2 3 4 5 6 -2- 1 2 -3- 1 2 1 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale ArgIllite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-hummocky 2. Tundra-dry	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* 	55-54	 5 SOIL HORIZON LM. Leaf, humus layer, undecomposed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic - rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground surface, usually sandy; accompanied by Br or BT 	57	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon G. Gleysol-BC horizon	-1- 1 2 3 4 5 6 -2- 1 2 -3- 1 2 -4- 1 2	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 20° 4. Base of slope 5. valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 3. Tundra-swampy 4. Grassland, meadows	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* Seepage boils* Coluder field* Gravel* Use only if former origin 	55~54	 5 SOIL HORIZON LH. Leaf, humus layer, undecomposed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic reich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground surface (asually sandy; accompanied by BF or BT horizon at depth 	57	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podsol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-Initie or no soil horizon, only LH (maybe) and C horizon G. Gleysol-BC horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mineral matter LOCAL BERRCK COMPOSITION	-1- 1 2 3 4 5 6 -2- 1 2 -3- 1 2 -4- 1 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quartzite Conglomerate ArgillaceCous Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE CHERT CHERT
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 20° 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-hummocky 2. Tundra-hummocky 3. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* Sepage boils* Sepage boils* Goulder field* Gravel* Use only if former origin cannot be identified. 	55~54	 SOIL HORIZOM LK. Leaf, humus layer, unde- composed vegetation lying on the ground surface ido not sample? AH. Dark repy to black, organic -rich mineral horizon usually no deeper than 15cm from the surface ido not sample? AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth ido not sample? BH. Black, organic-rich min- 	57 58-60	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only Li (maybe) and C horizon G. Gleysol-BC horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mineral matter LOCAL BERROCK COMPOSITION Estimate-use Lists 1-4	-1- 1 2 3 4 5 6 -2- 1 1 2 1 2 1 2 1 2 3	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-hummocky 2. Tundra-hummocky 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-conferous	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* Budder tolls* Budder tolls* Gravel* Use only if former origin cannot be identified. 46 BEDROCK	55-56	 5 SOIL HORIZON LH. Leaf, humus layer, undecomposed vegetation lying on the ground surface ido not sample) AH. Dark grey to black, organic - rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground surface, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich mineral horizon at depth graek than 15cm 	57	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podsol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-Initie or no soil horizon, only LH (maybe) and C horizon G. Gleysol-BC horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mineral matter LOCAL BERRCK COMPOSITION	-1- 2 3 4 6 -2- 1 2 1 2 1 2 1 2 3 3	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolonite CHEMICAL PRECIPITATE CHEMICAL PREC
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 3. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-decideous 8. Forest-decideous 9. Forest-decideous	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* Seepage boils* Boulder field* Gravel* Use only if former origin cannot be identified. 46 <u>BEDROCK</u> M. Hineralized Present within 100m up- 	55-50	 5 SOIL HORIZON LH. Leaf, humus layer, undecomposed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground surface (sueally sandy; accompanied by BF or BT horizon at depth doit sample) BH. Slack, organic-rich mineral horizon at depth (do not sample) BB Bed-brown incorrich 	57 58-60 61-66	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon of profile R. Regosol-little or no soil development. No 8 soil horizon of profile G. Gleysol-BC horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation	-1- 2 3 4 5 6 -2- 1 2 1 2 1 2 3 1 2 3 3 3 3	SEDIMENTARY ROCKS SILISTONE Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillice CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 1. Tundra-dry 3. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-decideous 8. Porest-decideous 9. Forest-decideous 9. Forest-de	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Feat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* Boepage boils* Cavel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized Present within 100m upslope D. Present within 100m down- 	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth Biack, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Red-brown, iron-rich horizon 	57 58-60	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon diagnostic O. Gleysol-BC horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LUCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Nunsell notation or abbrevation CONTAMINATION	-1- 1 2 3 4 5 6 1 1 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 5 6 6 6 1 2 1 2 3 4 5 6 6 1 5 6 6 1 2 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quartzite Conglomerate ArgillaceCous Shale Argillite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE CHEMICAL PRECIPITATE C
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentie slope 3. Steep slope > 20° 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-Nummocky 2. Tundra-Nummocky 2. Tundra-dry 3. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Porest-deciduous 9. Forest-mixed A. Alder or willows 8. Cultivated land C. Deert, semi-arid	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Talus Residual Frost boils* Boulder field* Disevel* Use only if former origin cannot be identified. 46 BEDRCK M. Mineralized Present within 100m upsiope D. Present within 100m downslope 	55-51	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth Bla Black, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Red-brown, iton-rich horizon BFown, clay-rich horizon BC. Horizon which is water- 	57 58-60 61-66	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybel) and C horizon diagnostic G. Gleysol-BC horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine	-1- 1 2 3 4 5 6 2 1 1 2 1 2 3 3 4 -10 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greyvake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CALCAREOUS FINE GRAINED CONTACT PHANERITIC Mathe quartzite Mathe
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Porest-deciduous 9. Porest-mixed A. Alder or willows 8. Cultivated land C. Desert, semi-arid D. Barren E. Talus fan	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* Seepage boils* Gavel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized Present within 100m upsiope D. Present within 100m down-slope B. Underlies sample site Gossan 	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, undecomposed veyetation lying on the ground surface ido not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface ido not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground surface, usually sandy; accompanied by BF or BT horizon at depth ido not sample) BH. Black, organic-rich mineral horizon at depth greater than 15cm idon to sample) BF. Red-brown, iron-rich horizon BF. Borown, clay-rich horizon BG. Korizon which is water-saturated most of the 	57 58-60 61-66	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon G. Gleysol-BC horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mineral matter LUCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUP Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine P - faming R - road	-1- 1 2 3 4 5 6 2 1 1 2 1 2 3 3 10 2 10 2 3 3 4 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3	SEDIMENTARY ROCKS SILISTONE Mudstone Greyvake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PHANERITIC Meta quartzite Marble Soapstone
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-deciduous 9. Forest-decid	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* Seepage boils* Coluder field* Gravel* Use only if former origin cannot be identified. 46 BEDROCK Mineralized Present within 100m upslope Underlies sample site 	55-51	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich min- eral horizon icon-rich horizon BF. Red-brown, icon-rich horizon which is water- saturated most of the year, identified by red brown mottles 	57 58-60 61-66	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon of diagnostic B. Brunisol-BM horizon is anly B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon diagnostic G. Gleysol-BC horizon diagnostic G. Organic soil-bog vegeta- tion-no mineral matter LUCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Slank - none L - logging C - culvert M - mine P - faming R - road G - garbage T - trench H - house Ø - other - spec.	-1- 1 2 3 4 5 6 2 1 2 1 2 1 2 3 1 2 1 2 2 1 2 2 3 2 2 3 3 3 3 3	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomice CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METMOORPHIC ROCKS FINE GRAINED CONTACT PANNERITIC Meta quartzite Narble Soapstone Hornfels Seppentine Skarn
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-hummocky 2. Tundra-dry 1. Tundra-dry 1. Tundra-dry 3. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-deciduous 9. Forest-deciduous 9. Forest-deciduous 9. Forest-nixed A. Alder or willows 8. Cultivated land C. Desert, semi-arid D. Barren E. Talus fan F. Bank soil-stream	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-bou Coluvium Lake sediment-clay Coluvium Lake sediment-clay Fratus Residual Frost boils* Boepage boils* Geavel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized P. Present within 100m up-slope B. Underlies sample site G. Gossan F. Pe surface stains	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occasionally brown leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth ido not sample) BH. Black, organic-rich min- eral horizon it depths greater than 15cm (do not sample) BF. Brown, clay-rich horizon BC. Horizon which is water- saturated most of the year, identified by red brown horizon which is only sightly different 	57 58-60 61-66 67	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon of diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon diagnostic G. Gleysol-BC horizon diagnostic G. Organic soil-bog vegeta- tion-no mineral matter LUCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - faming R - road G - garbage T - trench H - house Ø - other - spec. I - industry	-1- 1 2 3 4 5 6 -2- 1 1 2 3 4 -10 -2 1 1 2 1 2 3 4 1 2 3 1 1 3 3 3 	SEDIMENTARY ROCKS ARENACEOUS Siltstone Audstone Greywake Sandstone Quattite Conglomerate Argillacteous Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PHANERITIC Meta quartite Marble Soapstone Morifels Serpenine Skarn Amphibolite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-deciduous 9. Forest-decid	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Feat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* Boepage boils* Cavel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized P. Fresent within 100m up-slope D. Fresent within 100m down-slope B. Underlies sample site Gossan F. e surface stains R. Radioactivity 	55-54	 5 SOIL HORIZON LM. Leaf, humus layer, undecomposed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic rich mineral horizon usually no deeper than 15cm (fon the surface (do not sample) AE. Grey To white (occassionally brown) leached mineral horizon near ground surface, usually sandy; accompanied by BF or BT horizon at depths greater than 15cm (do not sample) BH. Black, organic-rich mineral horizon at depths greater than 15cm (do not sample) BF. Red-brown, inor-rich horizon BC. Korizon which is water-saturated most ôf the year, identified by red brown horizon which is only slightly different in appearance from under- 	57 58-60 61-66 67 68-69	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LE (maybe) and C horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mimeral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Hunsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - garbage T - trench H - house Ø - other - spec. I - industry <u>A COARSE FRACHENTS</u>	$\begin{array}{c} -1-\\1\\2\\3\\4\\5\\6\\ -2-\\1\\2\\3\\1\\2\\3\\1\\2\\3\\3\\4\\5\\6\\6\\7\end{array}$	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quattzite Conglomerate Argillate CALCAREOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PHANERITIC Meta quattzite Marble Soapstone Morafels Serpentine Skarn Amphibolite
 6. Colluvium* SOILS SITE TOPOGRAPHY Hill top Gentle slope Steep slope > 20° Base of slope Valley floor Depression Level Rolling Bog SAMPLE ENVIRONMENT Tundra-hummocky Tundra-hummocky Tundra-hummocky Tundra-swampy Grassland, meadows Peat mounds Porest-decidous Porest-decidous Porest-decidous Porest-decidous Porest-decidous Cultivated land Deseren, semi-arid Bank soil-stream Bank soil-stream Bank soil-stream Bank soil-stream Site ORNINGE Dry 	 52 if stream ? 10m vide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Talus Residual Frost bouls* Boepage boils* Cavel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized Present within 100m upslope D. Present within 100m downslope B. Orderlies sample site Gossan F. Pe surface stains R. Radioactivity 47-48 pH G. Organic muck 	55-51	 5 SOIL HORIZON LM. Leaf, humus layer, undecomposed veyetation lying on the ground surface id on of sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface ido not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground surface, usually sandy; accompanied by BF or BT horizon at depth ido not sample) BH. Black, organic-rich mineral forizon at depth greater than 15cm (do not sample) BF. Red-brown, ison-rich horizon BG. Korizon which is water-saturated most of the year, identified by red brown horizon which is only slightly different in appearance from under-lying parent material Cl.2C.2.0, etc. Parent material 	57 58-60 61-66 67	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon G. Gleysol-BC horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION ESTIMATE-USE Lists 1-4 COLOUP Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine G - farbage T - trench H - house Ø - other - spec. I - industry <u>A COARSE FRACKENTS</u> SHAPE OF COARSE FRACKENTS A. Angular	-1- 1 2 3 4 5 6 1 1 2 1 1 2 3 4 -10 -2 1 1 2 3 4 1 2 3 1 1 2 3 3 6 1 2 3 3 3 3 3 3 3 3 3	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quattzite Conglomerate Argillate CALCAREOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PRANERTIC Meta quartzite Marble Soapstone Hornfels Seepentine Skarn Anphibolite Eclogite MECHANICAL MYLonite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Lavel 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-hummocky 2. Tundra-dry 1. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-decidous 8. Porest-decidous 9. Barren 1. Talus fan 7. Bank soil-stream 1. Bank soil-stream 1. Bank soil-stream 1. Dry 2. Moist 3. Wet 3. Subst 2. Stream 3. Subst 2	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Talus Residual Frost boils* Seepage boils* Boulder field* Of Gravel* Use only if former origin cannot be identified. 46 BEDRCXX M. Mineralized P. Fresent within 100m upsiope D. Gravel sample site Gossan F. Pe surface stains R. Raioactivity 47-48 pH 49 SAMPLE TEXTURE	55-51	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth BH. Black, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Red-brown, iton-rich horizon which is water- saturated most of the year, identified by red brown mottles BH. Brown horizon which is only slightly different in appearance from under- lying parent material 	57 58-60 61-66 67 68-69	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybel) and C horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry <u>CONSE FRACMENTS</u> A. Angular A. Angular	-1- 1 2 3 4 5 6 7 1 1 2 3 1 2 3 1 2 3 1 2 3 4 5 6 7 1 2 3 6 7 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 2 3 1 1 2 3 3 1 2 3 3 1 1 2 3 3 1 3 3 1 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 3 3 3 3 3 3	SEDIMENTARY ROCKS ARENACEOUS Siltstone Mudstone Greywake Sandstone Quattzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PHANERITIC Meta quartzite Marble Sospetone Hornfels Serpentine Skarn Amphibolite EElegite MECHANICAL MYlonite Flaser Augen
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. forest-coniferous 8. Forest-decidous 9. Forest-decido	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Feat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* B. Seepage boils* C. Boulder field* D. Gravel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized P. Fresent within 100m up-slope D. Present within 100m down-slope Medries sample site Gossan P. # surface stains R. Radioactivity 47-48 pH 49 SAMPLE TEXTURE Organic muck Fibrous, peaty organic matter Very andy 	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth BH. Black, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Red-brown, iton-rich horizon which is water- saturated most of the year, identified by ged brown mottles BM. Brown horizon which is only slightly different in appearance from under- lying parent material for soil CA. White calcium carbonate precipitate in C horizon 	57 58-60 61-66 67 68-69	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon G. Gleysol-BC horizon diagnostic Ø. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION ESTIMATE-USE Lists 1-4 COLOUP Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine G - farbage T - trench H - house Ø - other - spec. I - industry <u>A COARSE FRACKENTS</u> SHAPE OF COARSE FRACKENTS A. Angular	-1- 1 2 3 4 5 6 1 1 1 1 2 3 1 1 2 3 1 1 3 1 1 2 3 1 1 2 3 4 5 6 6 2 3 3 2 3 3 2 3 3 3	SEDIMENTARY ROCKS SILISTONE MUDITION SILISTONE MUDITION Greywake Sandstone Quattite Conglomerate Argillacteous Shale Argillacteous Shale Argillite CALCAREOUS Limestone Olomite CALCAREOUS Limestone CALCAREOUS Limestone CALCAREOUS Limestone CALCAREOUS LIMESTONE FIONE FORMATION LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT Meta quattite Marble Soapstone Mornfels Safarn Amphibolite Eclogite MECHANICAL MYlonite Flaser Augen Ultramylonite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Lavel 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-hummocky 2. Tundra-dry 1. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-decidous 8. Porest-decidous 9. Barren 1. Talus fan 7. Bank soil-stream 1. Bank soil-stream 1. Bank soil-stream 1. Dry 2. Moist 3. Wet 3. Subst 2. Stream 3. Subst 2	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Allwium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* Sepage boils* Boepage boils* Boulder field* Gravel* Use only if former origin cannot be identified. 46 BEDROCK Mineralized Present within 100m upslope Present within 100m downslope Hoderlies sample site Gossan Pe surface stains Radioactivity 47-48 pH 49 SAMPLE TEXTURE Organic muck Fibrous, peaty organic matter Sandy Sandy 4. Sand-silt	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached minerail horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth BH. Black, organic-rich min- grait horizon at depth BH. Black, organic-rich min- grater than 15cm (do not sample) BF. Red-brown, igor-rich horizon which is water- saturated most ôf the year, identified by ged brown mottles BM. Brown horizon which is only slightly different in appearance from under- lying parent material for soil CA. White calcium carbonate precipitate in C horizon SL 2, 21, etc. Bog sample at various depths 	57 58-60 61-66 67 68-69	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is anly B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon diagnostic G. Gleysol-BC horizon diagnostic G. Organic soil-bog vedeta- tion-no mineral matter LUCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Slank - none L - logging C - culvert M - mine F - faming R - road G - garbage T - trench H - house Ø - other - spec. I - industry NAPE OF COARSE FRACHENTS A. Angular R. Rounded	$\begin{array}{c} -1-\\1\\2\\3\\4\\5\\6\\ -2-\\1\\2\\1\\2\\3\\1\\2\\3\\6\\6\\6\\6\\6\\6\\6$	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE ANDATION Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Oulomite CHEMICAL PRECIPITATE Chert Arable Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PRAMERITIC Mata Quartzite Mata Serpontine Starn Amphibolite Eclogite MECHANICAL Mylonite SLATE
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentie slope 3. Steep slope > 20° 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-Nummocky 2. Tundra-Nummocky 2. Tundra-dry 3. Tundra-dry 3. Tundra-dry 3. Tundra-dry 3. Tundra-dry 3. Forest-deciduous 3. Porest-deciduous 3. Porest-mixed 4. Alder or willows 4. Cultivated land 5. Deart, semi-arid 6. Barren 6. Bank soil-stream 7. Boist 7. Dotit top 7.	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* Sepage boils* Boepage boils* Coluder field* Gravel* Use only if former origin cannot be identified. 46 BEDROCK Mineralized Present within 100m upslope Present within 100m downslope Dersent within 100m downslope Redicactivity 47-48 pH 49 SAMPLE TEXTURE Sand-silt Sand-silt-clay Sand-silt-clay Salt 		 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached minerail horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth BH. Black, organic-rich min- eral horizon at depth BF. Red-brown, iton-rich horizon which is water- saturated most of the year, identified by red brown mottles BM. Brown horizon which is only slightly different in appearance from under- lying parent material for soil CA. White calcium carbonate precipitate in C horizon SI, Ø3, 2, 31, etc. Bog sample at various depths 	57 58-60 61-66 67 68-69 70	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is anny B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybe) and C horizon diagnostic G. Gleysol-BC horizon diagnostic B. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - garbage T - trench H - house Ø - other - spec. I - industry A COARSE FRACMENTS A. Angular R. Rounded S. Subrounded M. Mixed above types SCINTILLOMETER NUMBER GAMMA COUNT AT SAMPLE SITE	$\begin{array}{c} -1-\\1\\2\\3\\4\\1\\2\\1\\2\\1\\2\\1\\1$	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE Mudatone Greyvake Sandstone Quartzite Complomerate ARGILLACECUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 MethodPhile ROCKS FINE GRAINED CONTACT PHANERITIC Metha quartzite Marble Soapstone Soapstone Sharn Amphibolite Eclogite MECHANICAL Mylonite Flaser Augen Ultramylonite SLATE PHYLLITE
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Forest-deciduous 9. Forest-deciduous 9. Forest-deciduous 8. Corest-deciduous 9. Forest-deciduous 9. Forest-d	 52 if stream ? 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Talus Residual Frost boils* Bearel* Use only if former origin cannot be identified. 46 BEDRCK Mineralized Present within 100m upsiope Present within 100m downslope Deresent within 100m downslope Underlies sample site Gossan Pre surface stains Readicactivity 47-48 pH Sandy alit Sandy alit-clay Silt clay 	55-54	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occasionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Brown, clay-rich horizon BG. Horizon which is water- saturate most of the year, identified by red brown mottles BH. Brown horizon which is only slightly different in appearance from under- lying parent material for soil CA. White calcium carbonate precipitate in C horizon gl. (27,0); etc. By sample at various depths TF. Taivs fines SOIL TYPE 	57 58-60 61-66 67 68-69 70 71	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regozol-little or no soil development. No B soil horizon, only LH (maybe) and C horizon diagnostic D. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Hunsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry <u>COARSE FRACMENTS</u> SHAPE OF COARSE FRAGMENTS A. Angular R. Bounded S. Subrounded M. Mixed above types <u>SCINTILLOMETER NUMBER</u>	$\begin{array}{c} -1-\\1\\2\\3\\4\\5\\2\\1\\2\\1\\2\\2\\1\\2\\3\\4\\4\\1\\2\\3\\1\\2\\3\\3\\4\\4\\5\\6\\7\\8\\3\\1\\2\\3\\4\\4\\6\\5\\ 0\\60\\60\\60\\60\\60\\1\\1\\2\\2\\3\\4\\4\\6\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\60\\7\\1\\2\\2\\3\\4\\4\\4\\60\\$	SEDIMENTARY ROCKS SILISTONE MUSICION SILISTONE MUSICION Greyvake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Olomite CALCAREOUS Limestone CALCAREOUS Limestone CALCAREOUS Limestone CALCAREOUS LIMESTONE CALCAREOUS Shale Argillite CALCAREOUS LIMESTONE CALCAREOUS Shale ARGILLACEOUS FINE GRAINED CONTACT PHANERITIC Mathe Sospitone Sharn Amphibolite Eclogite Kaupan Ultramylonite SLATE PHYLITE SCHIST
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Centle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Lavel 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-bummocky 2. Tundra-dry 1. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-decidous 8. Porest-decidous 9. Barren 1. Talus fan 7. Bank soil-stream 1. Bank soil-stream 1. Bank soil-stream 1. Dry 2. Moist 3. Wet 4. Saturated 4. Saturat	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-bog Colluvium Lake sediment-clay Talus Residual Frost bouls* Sepage boils* Boepage boils* Coluder field* Gravel* Use only if former origin cannot be identified. 46 BEDROCK Mineralized Present within 100m upslope Present within 100m downslope Dersent within 100m downslope Redicactivity 47-48 pH 49 SAMPLE TEXTURE Sand-silt Sand-silt-clay Sand-silt-clay Salt 51 Column (Column) 52 Context (Column) 53 Context (Column) 54 Context (Column) 64 Column) 64 Column) 65 Silt		 <u>SOIL HORIZON</u> LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached minerail horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth BH. Black, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Red-brown, icon-rich horizon BF. Brown, clay-rich horizon SG. Horizon which is water- saturated most of the year, identified by red brown mottles BM. Brown horizon which is only slightly different in appearance from under- lying parent material for soil CA. White calcium carbonate precipitate in C horizon SI, 62,031, etc. Bog sample at warious depths TF. Talus fines SOIL TYPE C. Hornozem-prarie soil usually under grassland 	57 58-60 61-66 67 68-69 70 71	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon of profile R. Regosol-little or no soil development. No B soil horizon, only Li (maybe) and C horizon diagnostic G. Gleysol-BC horizon diagnostic G. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION ESTIMATE-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road C - garbage T - trench H - house Ø - other - spec. I - industry MARSE FRACHENTS SHAPE OF CORSE FRACHENTS A. Angular R. Rounded S. Subrounded M. Mixed above types SCINTILLOMETER NUMBER GAMMA COUNT AT SAMPLE SITE Scint reading at ground level over hole	-1- 1 2 3 4 5 6 1 2 1 1 2 1 1 2 1 1	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE Mudatone Greyvake Sandstone Quartzite Complomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CALCAREOUS Limestone CALCAREOUS LIMESTON CALCAREOUS FINE GRAINED CONTACT PHANERITIC Meta quartzite Marble Soapstone Hornfels Serpentine Skarn Amphibolite Eclogite HCCHANICAL Mylonite SLATE PHYLLITE SCHIST GREISS • MIGMATTE •
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Forest-deciduous 9. Forest-deciduous 9. Forest-deciduous 8. Corest-deciduous 9. Forest-deciduous 9. Forest-d	 52 if stream ? 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boug Colluvium Lake sediment-clay Talus Residual Frost boils* Boepage boils* Govel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized P. Fresent within 100m upsilope D. Gravel* Bodge D. Fresent within 100m downslope D. Fresent within 100m downslope B. Underlies sample site Gossan F. Pe surface stains R. Radioactivity 47-48 pH 49 SAMPLE TEXTURE Ø. Organic muck Fibrous, peaty organic matter Vary aandy Sandy Sand-silt Silt-clay Glay 	57	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed veyetation lying on the ground surface	57 58-60 61-66 67 68-69 70 71 72-75	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LH (maybel) and C horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry X. COARSE FRACHENTS SHAPE OF COARSE FRACMENTS A. Angular R. Rounded S. Subrounded M. Mixed above types SCINTILLOMETER NUMBER CANNA COUNT AT SAMPLE SITE SCINT rein of the constant of the comparison CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry SIAPE OF COARSE FRACMENTS A. Angular R. Rounded S. Subrounded M. Mixed above types	-1- 1 2 3 4 5 6 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 1 2 3 3 1 1 2 3 1 1 2 3 1 1 2 3 3 1 1 2 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 6 6 7 6 7 2 3 	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE Mudatone Greyvake Sandstone Quartzite Complomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 Methadopplic Rocks FINE GRAINED CONTACT PHANERITIC Metha quartzite Marble Soapstone Hornfels Serpentine Skarn Amphibolite Eclogite Methadopite SLATE PHYLLITE SCHIST GNEISS • MIGMATTE •
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 1. Tundra-dry 1. Tundra-dry 2. Tundra-swampy 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-decidous 9. Forest-mixed 1. Alder or willows 8. Cultivated land C. Desert, semi-arid D. Barren F. Bank soll-stream G. Bank soll hake H. Road cut	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freated within 100 up-slope Depresent within 100m down-slope Duderlies sample site Gossan Freated stains R Radioactivity 47-48 pH 49 SAMPLE TEXTURE Ø. Organic muck Fibrous, peaty organic matter Very sandy Sand-silt Sand-silt Silt-clay Clay Gravel 50-51 THICKNESS OF SOLL SAMPLE INTERVAL	57	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich min- eral horizon at depth greater than 15cm (do not sample) BF. Red-brown, iron-rich horizon which is water- saturated most of the year, identified by red brown mottles BH. Brown horizon which is only slightly different in appearance from under- lying parent material C1.C2,C3, etc. Parent material for soil CA. White calcium carbonate precipitate in C horizon J1.92,93, etc. BG sample at warious depths TF. Taius fines SOL TYPE C. Chernozem-prairie soil usually under grassland or meadow, thick AH > 10cm, CA horizon at depth	57 58-60 61-66 67 68-69 70 71 72-75 76	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil horizon, only LH (maybe) and C horizon G. Gleysol-BC horizon diagnostic D. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry <u>L COARSE FRACMENTS</u> A. Angular R. Bounded S. Subrounded M. Mixed above types <u>SCINTILIOMETER NUMBER</u> GAMMA COUNT AT SAMPLE SITE <u>SCINT red bodrock</u> is in-	$\begin{array}{c} -1-\\1\\2\\3\\4\\5\\6\\7\\1\\2\\2\\1\\2\\3\\1\\2\\3\\4\\5\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\6\\7\\8\\7\\7$	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quattite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 Methode Constant FINE GRAINED CONTACT PHANERITIC Meta quartzite Marble Soaptone Hornfels Serpentine Skarn Amphibolite Eclegite Metholite Eclegite Metholite Eclegite Metholite Slawer Augen Ultramylonite SLITE PHYLITE SCHIST GMEISS • MIGMATITE • "Cranite Mongnelite
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Porest-deciduous 9. Forest-deciduous 9. Forest-d	 52 if stream ? 10m wide! 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Alluvium-stream deposit Feat-bog Colluvium Lake sediment-clay Talus Residual Frost boils* B. Seepage boils* C. Boulder field* D. Gravel* Use only if former origin cannot be identified. 46 BEDROCK M. Mineralized P. Fresent within 100m up-slope D. Fresent within 100m down-slope B. Underlies sample site Gossan F. P surface stains R. Radioactivity 47-48 pH 49 SAMPLE TEXTURE Organic muck Fibrous, peaty organic matter Sand-silt-clay Sand-silt Sand-silt-clay Clay Clay Gravel 	57	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth BH. Black, organic-rich min- eral horizon at depths greater than 15cm (do not sample) BF. Red-brown, iron-rich horizon which is water- saturated most of the year, identified by red brown mottles BM. Brown horizon which is only slightly different in appearance from under- lying parent material for soil CA. White calcium carbonate precipitate in C horizon SI, Ø2, Ø3, etc. Bog sample at various depths TF. Taius fines SOIL TYPE C. Chernozem-pratie soil usually under grassland or meadow, thick AH > 10cm. CA horizon at depth 	57 58-60 61-66 67 68-69 70 71 72-75 76 77-78	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LH (maybel) and C horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry X. COARSE FRACHENTS SHAPE OF COARSE FRACHENTS A. Angular R. Rounded S. Subrounded M. Mixed above types SCINTILLOMETER NUMBER CANNA COUNT AT SAMPLE SITE SCINT reing acint counts APPROXIMATE SLOPE ANGLE	-1- 1 2 3 4 5 6 1 1 1 1 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 2 2 2 1 1 2 2	SEDIMENTARY ROCKS ARENACEOUS Silistone Mudstone Greywake Sandstone Quatzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Dolonite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMOBHIC ROCKS FINE GRAINED CONTACT PHANERITIC Meta quartzite Marble Soapstone Skarn Amphibolite Eclegite MeCHANICAL Mylonite Flaser Augen Ultramylonite SLATE PHYLITE SCHIST GREISS • MIGMATITE • CGranie Mongolite Chanice Chanice Chanice Chanice Conglomerate Conglomer
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Porest-deciduous 9. Forest-deciduous 9. Forest-d	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freated within 100 up-slope Depresent within 100m down-slope Duderlies sample site Gossan Freated stains R Radioactivity 47-48 pH 49 SAMPLE TEXTURE Ø. Organic muck Fibrous, peaty organic matter Very sandy Sand-silt Sand-silt Silt-clay Clay Gravel 50-51 THICKNESS OF SOLL SAMPLE INTERVAL	57	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich min- eral horizon at depth greater than 15cm (do not sample) BF. Red-brown, iron-rich horizon which is water- saturated most of the year, identified by red brown mottles BH. Brown horizon which is only slightly different in appearance from under- lying parent material C1.C2,C3, etc. Parent material for soil CA. White calcium carbonate precipitate in C horizon J1.92,93, etc. BG sample at warious depths TF. Taius fines SOL TYPE C. Chernozem-prairie soil usually under grassland or meadow, thick AH > 10cm, CA horizon at depth	57 58-60 61-66 67 68-69 70 71 72-75 76 77-78	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LU (maybel) and C horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - garbage T - trench H - house Ø - other - spec. I - industry <u>A COARSE FRACMENTS</u> <u>A Angular</u> R. Rounded S. Subrounded M. Mixed above types <u>SCINTILLOMETER NUMBER</u> GANMA COUNT AT SAMPLE SITE Scint reading at ground level over hole BOCK	-1- 1 2 3 4 5 6 1 1 2 1 1 2 1 2 1 2 1 2 1 2 3 4 6 6 6 6 6 6 6 6 1 2 3 2 3 4 2 3 4 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE ANDATION GREYVAKE SANGSTONE GREYVAKE SANGSTONE GREYVAKE ARGILLACEOUS Shale ARGILLACEOUS Shale ARGILLACEOUS Shale ARGILLACEOUS Shale CALENTCE CALENTE CALAREOUS Limestone DOIONICE CHEVE CALENT CALAREOUS FINE GRAINED CONTACT PANEERTIC Mets quartzite Narble Soapstone MECHANICAL MYIONICE Flaser Augen Ultramylonite SLATE PHYLLITE SCHIST GREISS • MIGMATITE • "Cranice Granodiorite Sandstone Augen
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Porest-deciduous 9. Forest-deciduous 9. Forest-d	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freated within 100 up-slope Depresent within 100m down-slope Duderlies sample site Gossan Freated stains R Radioactivity 47-48 pH 49 SAMPLE TEXTURE Ø. Organic muck Fibrous, peaty organic matter Very sandy Sand-silt Sand-silt Silt-clay Clay Gravel 50-51 THICKNESS OF SOLL SAMPLE INTERVAL	57	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich min- eral horizon at depth greater than 15cm (do not sample) BF. Red-brown, iron-rich horizon which is water- saturated most of the year, identified by red brown mottles BH. Brown horizon which is only slightly different in appearance from under- lying parent material C1.C2,C3, etc. Parent material for soil CA. White calcium carbonate precipitate in C horizon J1.92,93, etc. BG sample at warious depths TF. Taius fines SOL TYPE C. Chernozem-prairie soil usually under grassland or meadow, thick AH > 10cm, CA horizon at depth	57 58-60 61-66 67 68-69 70 71 72-75 76 77-78	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LH (maybel) and C horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry X. COARSE FRACHENTS SHAPE OF COARSE FRACHENTS A. Angular R. Rounded S. Subrounded M. Mixed above types SCINTILLOMETER NUMBER CANNA COUNT AT SAMPLE SITE SCINT reing acint counts APPROXIMATE SLOPE ANGLE	-1- 1 2 3 4 5 6 1 1 2 1 1 2 1 1 2 1 1	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE Hudstone Greywake Sandstone Quartzite ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Oulomite CHEMICAL PRECIPITATE Chert Marble Iron Formation LIST 4 METAMORPHIC ROCKS FINE GRAINED CONTACT PRAMERITIC Mata Quartzite Marble Sospstone MECHANICAL Mylonite SLATE PHYLLITE SCHIST GRAINED Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite Sangt
6. Colluvium* SOILS 40 SITE TOPOGRAPHY 1. Hill top 2. Gentle slope 3. Steep slope > 200 4. Base of slope 5. Valley floor 6. Depression 7. Level 8. Rolling 9. Bog 41 SAMPLE ENVIRONMENT 1. Tundra-dry 3. Tundra-dry 4. Grassland, meadows 5. Peat mounds 6. Bog in depression 7. Forest-coniferous 8. Porest-deciduous 9. Forest-deciduous 9. Forest-d	 52 if stream > 10m wide) 45 OVERBURDEN ORIGIN Till-angular boulders Outwash-sandy, rounded boulders Lake sediment-sand/silt Aluvium-stream deposit Peat-boq Colluvium Lake sediment-clay Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Fraits Peat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freat-boq Colluvium Lake sediment-clay Talus Freated within 100 up-slope Depresent within 100m down-slope Duderlies sample site Gossan Freated stains R Radioactivity 47-48 pH 49 SAMPLE TEXTURE Ø. Organic muck Fibrous, peaty organic matter Very sandy Sand-silt Sand-silt Silt-clay Clay Gravel 50-51 THICKNESS OF SOLL SAMPLE INTERVAL	57	 5 SOIL HORIZON LH. Leaf, humus layer, unde- composed vegetation lying on the ground surface (do not sample) AH. Dark grey to black, organic -rich mineral horizon usually no deeper than 15cm from the surface (do not sample) AE. Grey to white (occassionally brown) leached mineral horizon near ground sur- face, usually sandy; accompanied by BF or BT horizon at depth (do not sample) BH. Black, organic-rich min- eral horizon at depth greater than 15cm (do not sample) BF. Red-brown, iron-rich horizon which is water- saturated most of the year, identified by red brown mottles BH. Brown horizon which is only slightly different in appearance from under- lying parent material C1.C2,C3, etc. Parent material for soil CA. White calcium carbonate precipitate in C horizon J1.92,93, etc. BG sample at warious depths TF. Taius fines SOL TYPE C. Chernozem-prairie soil usually under grassland or meadow, thick AH > 10cm, CA horizon at depth	57 58-60 61-66 67 68-69 70 71 72-75 76 77-78	SOIL TYPE Cont. L. Luvisol-BT horizon diagnostic P. Podzol-BF horizon diagnostic B. Brunisol-BM horizon is only B horizon of profile R. Regosol-little or no soil development. No B soil horizon, only LH (maybel) and C horizon diagnostic O. Organic soil-bog vegeta- tion-no mineral matter LOCAL BEDROCK COMPOSITION Estimate-use Lists 1-4 COLOUR Munsell notation or abbrevation CONTAMINATION Blank - none L - logging C - culvert M - mine F - farming R - road G - gatbage T - trench H - house Ø - other - spec. I - industry X. COARSE FRACHENTS SHAPE OF COARSE FRACHENTS A. Angular R. Rounded S. Subrounded M. Mixed above types SCINTILLOMETER NUMBER CANNA COUNT AT SAMPLE SITE SCINT reing acint counts APPROXIMATE SLOPE ANGLE	-1- 1 2 3 4 5 1 1 2 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 2 3 1 2 3 1 2 3 2 3 2 2 3 2 2 3 2 2	SEDIMENTARY ROCKS SILISTONE ARENACEOUS SILISTONE Mudstone Greywake Sandstone Quartzite Conglomerate ARGILLACEOUS Shale Argillite CALCAREOUS Limestone Olomite CALCAREOUS Limestone CALCAREOUS Limestone CALCAREOUS Limestone CALCAREOUS Shale Argillite CALCAREOUS Limestone CALCAREOUS Shale Argine CALCAREOUS Shale FINE GRAINED CONTACT PHAMERITIC Meta quartzite Marble Soapstone Hornfels Serpentine Shar Amphibolite Eclogite Karn Amphibolite Eclogite Shar Amphibolite State FINE GRAINED CONTACT PHYLITE SCHIST GREISS FINE GREISS GrandLe Sandstone Augen Granulte

Form 5/84

SAMPLE TYPE(S)	ALL					
BEDROCK TYPE(S)	ALL					
SOIL HORIZON(S)	ALL					
SAMPLE TEXTURE(S)	ALL					
OVERBURDEN ORIGIN(S)	ALL					
LABORATORY-SIZE FRACTION-EXTRACTION	S) ALL					
PAIR STATUS	ALL					
RECH SMPLH UTM-E UTM-N				MO CU PB	IN - NI U	MN FE AS
71 1076505P 180550V8A6768306283910	94009 1	154 443	1 10 S	4 134 12	51 501 5	903 4.77 .1
72 1076505P 180555V8A6768706284160		104 443	185	4 64 10	47 797 5	754 5.3 .1
73 1076505P 180561V8A6775406284610		104 443	145	2 87 8	50 897 5	947 5.44 .1
74 1075505P 1805669866771606284110		5 63 442	1 4 5	10 102 12	57 544 5	657 5.26 .1
75 1076505P 180567V8A6771906284150		103 444	1 454	3 70	68	007 0725 11
77 1075505P 180580V8A6767906282910		. 154 412	1 135%	15 378	62	
78 1076505P 180586V8A6770006283240		5 73 412	1 7 5	11 81 15	91 158 5	538 4.3 .1
79 1075505P 180589V8A6770805293350		53 412	1	7 303 9	53 329 5	783 4.3 .1
90 1075505P 180691V8A6758706283190			165	8 210	55	100 410 11
91 1076505P 180741V865770806284440		4373443	185	1 54 8	75 1266 5	894 7.58 .1
92 1076505P 180744V8A6775106284270		5 8372442	185	4 105	83	074 7.30 11
93 1076505P 180750V865775006285170		3 30473443	1 8SE	1 86	63	
94 1076505P 180752V8A5776706284260		5 8372443	1 7NE	4 100	112	
95 1076505P 180754V8A6770406285360		10475443	1 6NE	1 15	51	
96 1076505P 180770V8A6773006285790		2 15474443	1 6NE	.5 44	40	
98 1076505P 180790V866772606285460		10370443	1 2NE	2 50 7	56 1065 5	י דרי הוד
100 10765052 1807704048775206285540		15475344	1 146	10 89	36 1963 J 75	768 6.93 .1
101 1074505P 180836V8R6778306285370		7370443	1 7NE	2 134	51 51	
112 1076505F 181001V846767406285260		2 15487442	1 7 ME 1 4 ME	1 15	39	
116 1076505P 181154V846751906284830			1 7110	4 172	70	
229 5076505P 140013V8A6775156282120			MBR 10 5 S			207 7 2F F
					40 22 5	287 3.25 .5
230 5076505P 140014V8A6775336282030			GNGY 3SE		28 24 5	285 2.19 .1
231 3076505P 140015V8A6774558281940			D88 3SE	16 169 9	33 49 5	585 3.11.1
232 5076505P 140016V8A6773506281860			MBR 50 3SE	8 135	44	017 0 7/ 4
233 5076505P 140017V8A6772806281780			MBR 50 23E	4 144 7	26 22 5	247 2.36 .1
234 5076505P 140018V8A6772106281680			MBR 40 2SE	17 51 12	52 37 5	465 3.38 .1
235 5076505P 140019V866771406281580			REBR 30 2SE	10 47 10	40 18 5	310 4.43 .1
236 5076505P 140020V8A6770606281485			REBR 20 ZSE	1 37 8	27 17 5	252 2.86 .1
237 5076505P 140021V9A6767806281370			DBR 50 2 E	11 33 16	40 17 5	247 2.4 .5
242 5076505P 140026VBA6773106281410			DREBR 20 25E	2 32 10	26 13 5	204 2.85 .1
243 5076505P 140027V8A6773956281500			DBR 20 3 S	2 45 9	36 17 5	306 3.42 .1
244 5076505P 140028V8A6774906281580			DREBR 10 1 S	2 29 15	28 12 5	244 5.31 .3
245 5076505P 140029V8A6775756281670			DREBR 10 1 S	4 43 16	42 14 5	230 5.4 .3
246 5076505P 140030V8A6776606281750			DGY 20 1 S	12 56 10	28 15 5	304 2.17 .1
247 5076505P 140031V8A6777556281840			GY 1 E	11 166 6	31 38 5	322 2.45 .1
248 5076505P 140032V8A6779206281910			DGN 1SE	23 81 7	34 52 5	344 2.3 .1
286 5076505P 180019V8A6779906282030	94009 522	2 26 42310 30BBF	RBR 40	4 23 11	23 14 5	204 2.33 .3
287 5076505P 180020V8A6780706282120	94009 222	26 44310 30BBT	LBR JO BSE	18 39 8	22 18 5	169 2.17 .3
283 5076505P 180021V8A6781456282210	94009 222	2 16 38310 20PAE	LBR 30 15SE	9 20 12	12 7 5	80 .96 .5

SELECTION # 1 SAMPLE TYPE(S)

Part 1 - page 1

.

£

..

31.

ALL

289 5076505P 1800229846782406282305	04000 222 14 40510 3000M	LBR 20 155E 10	FF7 +4	10 D7 E	7/0 7 00 1
287 5078505P 180022V8H8782408282505 290 5076505P 180023V8A6783206282400		LBR 20 155E 10 RBR 30 2 E 5	553 14 151 19	49 87 5 39 27 5	368 3.29 .1 228 3.69 .1
291 5076505P 180024V8A6784006282485		RBR 40 155E 3	34 12	41 16 5	229 3.87 .3
272 5076505F 180025V8A6784756282580		MBR 50 155E	2 13	32	447 3.07 .3
293 5076505P 180025V8A6785606282660		DBR 20	3 244	32 43	
294 5076505P 180027V8A6786406282745	94D09 221 16 4231525 PBF	RBR 40 155E	2 38	40 39	
295 5076505P 180028V866787206282830	94009 522316 345 5 150BG	LGR 5	1 14		
295 5076505P 180029V986778355282210		RBR 20 15SE 1	34 10	28 19 5	200 7 71 1
297 5076505P 180030V8A6779056282290		LBR 30 8	54 IO 69 8	26 21 5	288 3.31 .1
278 5076505P 180030V8A67779806282380	94D09 121116 48320 30PBF	RBR 5 1	25 13		255 2.43 .1 201 3.75 .1
279 5076505P 180031V886777508282360 299 5076505P 180032V8865780556282460		RBR 10 5SE 1	23 13	23 16 5 25 17 5	201 3.75 .1
300 5076505P 180033V8A6781306282535	94009 121122 53320 30PBF	RBR 10 352 1	45 12	23 17 3	
320 5076505P 180053V8A6779056282590	94D09 221314 60520 30PBF	RBR 50 5 5 6	43 12	22 17 J 23 47 5	225 3.17 .1
321 5076505P 180055V8A6779206282500		RBR 50 5 5 14	177 8	17 23 5	297 1.94 .1 166 3.02 .1
322 5076505P 180055V8A6777806282410		LGY 40 5 S 7	64 17	23 16 5	210 2.37 .1
344 5076505P 180078V866779306283490	94009 321 16 60320 308BM	MBR 20 32 5 1	81 6	44 65 5	554 1.95 .1
345 5076505P 180079V8A6777406283400	94D09 222316 60520 30BBT	DBR 5 10 S	2 82	47 63 3	JJ4 1.7J.1
345 5076505P 180080V8A6777706283320		MBR 10 15 S 8	110 3	41 59 5	585 2.51 .1
347 5076505P 180081V8A6775806283235	94D09 321314 56510 20BBT	MBR 5 25 S 10	141 7	26 25 5	373 1.8 .1
348 5076505P 180082V8A6775806283150	94007 321 16246310 2006F	RBR 40 30 S 10	225 7	19 32 5	226 2.65 .1
377 5076505P 180111V8A6767456281870		DBR 5 5 5 12	154 11	57 33 5	426 3.41 .1
381 5076505P 180115V8A6771006282220		LBR 40 25 S 1	94 9	45 18 6	569 3.3 .1
385 5076505P 180119V8A6774456282530	94D09 221 11 47310 20PBF	RBR 20 15 S 31	62 13	35 19 5	221 3.85 .5
389 5076505P 180527V8A6766406284140		NBR 20115 W 9	73 11	50 542 5	1271 6.16 .1
370 5075505P 180528V8A6766906284220	94D09 221 16 325 35RBM	MBR130115 E 1	85 9	42 915 5	1120 5.41 .1
391 5075505P 180529V866768006284370	94009 221 163 320 30RBM	MBR 25118 S 1	55 5	45 1061 5	1008 6.08 .1
392 5076505P 180530V866768606284430	94D09 221 163 320 25BBM	MB 1511954 2	70 14	66 904 5	802 6.33 .1
393 5076505P 180531V8A6769006284500		RBR 15115 S 3	52 17	51 582 5	1163 6.25 .1
374 5076505P 180532V8A6769506284560	94009 221 193 340 458BF	RBR 101105W 1	43 11	57 884 5	735 6.12 .1
395 5076505P 180533V866770006284630	94009 221 113 320 30RBM	MBR 151155W 3	61 13	47 739 5	848 6.04 .1
402 5076505P 180544V8A6771606284320	94009 222 16 340 45R	RBR 151 8 S 3	86 12	49 787 5	856 5.66 .1
403 5075505P 180545V8A6771105284260	94009 221 16 325 308BM	RBR 101 75W	2 55	106	000 0100 11
404 5076505P 180546V8A6770606284200	94D09 222311 340 50BBF	RBR 101 4 5 4	70 15	57 385 5	819 5.12 .1
405 5076505P 180547V8A6769906284120		MBR 40110 N	3 165	69	
405 5075505P 180548V8A6757406284050	94009 221 11 320 2588F	RBR 25113 E 4	56 15	76 392 5	1079 5.48 .1
407 5075505P 180549V8A5768805283970	94009 821 19 320 3088F	RBR 201 3	58 15	42 357 5	795 4.73 .1
408 5076505P 180551V8A6766806283960	94009 221 19 320 25BBF	ABR 81 4	55 14	55 387 5	872 5.67 .1
409 5076505P 180552V8A6767606284030	94009 322 16 320 25R	RBR 40120 S 3	89 13	62 618 5	669 5.9 .1
410 5075505P 180553V8A5768105284100	94D09 221 193 310 20R	GBR 40115 E	4 158	60	
411 5076505P 180554V8A6768706284160	94009 221414 440 458BT	RBR 85 9	88 13	65 805 5	745 6.32 .1
412 5075505P 180555V8A5759105284230	94009 221311 320 308BM	RBR 12111 S 2	48 10	72 646 5	677 6.16 .1
413 5076505P 180557V8A6769706284300	94009 221 11 320 30BBF	MBR 201 6 5 5	38 11	47 631 5	1200 5.76 .1
414 5076505P 180558V8A6773906284410		RBR 85 2	76 10	74 768 5	640 5.7 .1
415 5076505P 180559V8A6774506284490		MBR 201 6 5 4	. 114 10	62 565 5	697 5.1 .1
416 5076505P 180560VBA6775106284570		MBR 201 8 5 9	92 9	35 745 5	1080 5.57 .1
417 5076505P 180562V8A6775706284650		RBR 201 5 5 1	68 5	46 965 5	811 5.7 .1
418 5076505P 180563V8A6770406283970	94009 221 11 320 258BM	MBR 201125E 9	75 14	63 260 5	558 3.95 .1
419 5076505P 180564V8A6770806284020	94009 222 16 610 20RBM	MBR 101155E 2	85 13	44 596 5	747 4.82 .1
420 5076505P 180565V8A6771606284100		MBR 201 4 5 5	69 15	49 299 5	488 4.62 .1
421 5076505P 180568V8A6772206284200	94009 221 16 320 308BF	RBR 501 55W	3 84	88	
422 5076505P 180569V8A6772706284250	94009 221 113 340 458BF	R8R 301 35E	3 85	75	

Part 1 - page 2

423 5076505P 180570V8A6773206284330	94809 2225163 320 25886	RBR 201 7SE 3 69	12 69 579 5	870 5.72 .1
424 5076505P 180571V8A6776506284580		MBR 20110 5 1 34		996 5.84 .1
425 5076505P 180572V8A6774206284180		MBR 221195E 2 95		646 3.8 .1
429 5076505P 180577V8A6775606284150	74D07 821519 330 4088F		1 11 41 478 5	736 5.25 .1
430 5075505P 180578V8A6765906282690	94D09 221 16 320 2588M	MBR 81105W 6	55 45	100 0110 11
431 5074505P 180579V8A6766605282760	94D09 221 15 315 20BBM	MBR 2011354 4	66 45	
432 5076505P 180581V866757006282830		RBR 51105W 4 57		177 7 ED 4
433 5076505P 180582V866767606282900	94D09 221 11 620 30BBM	MBR 101 45W 10		272 3.52 .4
434 5075505P 18058324868768205282970		MBR 651 3 S 36		
435 5076505P 180584V8A6768806283050	94D07 221 16 315 25BBM			
435 5078505P 180585V8A6769306283130	94D09 421 16 310 2588M	MBR 501 3 S 7 50		341 4.3 .1
		MBR 301 2 5 4 77		386 3 .1
437 5076505P 180587V9A6769906283210	94009 221 12 510 208BN	RBR 301 7 S 5 81		484 3.7 .1
438 5076505P 180588V8A6770506283300	94009 221315 530 40BBN	RBR 51 85M 15		
439 5076505P 180590V8A6771206283390			166 50	
440 5076505P 180591V8A6771906283480	94009 211316 520 2588M	MBR 51 954 8	72 68	
441 5076505P 180592V8A6772606283570			0 11 43 142 5	425 3.47 .1
442 5076505P 180593V8A6773206283640	94D09 221 16 330 35BBM	MBR 10118SN 4 14		973 3.75 .1
443 5076505P 180595V8A6774606283800		RBR 201215W 2 83		952 5.52 .1
444 5076505P 180576V8A6775206283880		MBR 51 154 4 15		650 3.75 . 1
445 5076505P 180597V8A6776506284030		RBR 201 5 E 4 12		361 3.12 .1
445 5076505P 180598V8A6777106284110		RBR 201 6 E 5 42		572 4.72 .1
485 5076505P 180644V8A6779006283880	94D09 222 19 225 358BM	RBR 301 6 E 4 89	11 43 99 5	399 3.54 .1
491 5076505P 180654V8A6772106283730	94D09 321 162 210 258BM	RBR 1122 S 7 16	0 13 54 176 5	1065 4.44 .1
492 5076505P 180656V8A6770706283570	94D09 321 16 230 3588M	R9R 8121 S 5	214 45	
493 5076505P 180657V8A6769906283480	94D09 221114 520 30BBF	RBR 2114 5 9 17	2 12 70 425 5	798 5.51 .1
510 5076505P 180681V8A6763906283840	94D09 221 19 68220 30R	MBR 10112NE 4 84	15 77 436 5	1245 5.09 .1
511 5076505P 180682V8A6763406283760	94D09 221 19 71220 30R	MBR 101 6NE 3 16	7 12 79 603 5	1130 5.94 .1
512 5076505P 180688V8A6760106283320	94009 421 16 69220 308BN	MBR 301 45W 6 37	8 10 48 713 5	962 6.08 .1
513 5076505P 180689VBA6759506283250	94D09 421 15 55220 25R	MBR 401 55H 3 11	4 14 49 97 5	602 3.24 .1
514 5076505P 180690V8A6758906283190	94D09 321 16 58220 25BBM	RBR 301 5 S 2 11	7 15 38 78 5	453 2,91 .3
515 5076505P 180692V8A6758006283190	94009 221 14 59510 30BBT	MBR 301 6 S 6	225 50	
516 5076505P 180693V8A6756606283400	94D09 321 16 57320 30BBM	7130SW 5 16	8 13 48 65 5	600 3.52 .1
517 5076505P 180694V8A6757206283460	94009 321 16 59325 35R	DBR 512684 7 22	4 14 46 95 5	619 3.69 .1
518 5076505P 180705V8A6757706283300	94D09 521 16 56220 30BBM	MBR 201 6 S 2 12	3 14 37 85 5	553 3.11 .1
519 5076505P 180709V8A6762206284090	94D09 221 16366320 308BM	MBR 101 7 N 1 11	2 14 91 443 5	1379 5.37 .1
520 5076505P 180721VBA6770806284950	94009 221319 73220 30R	20110NE 2 79	11 37 717 5	925 4.91 .1
521 5076505P 180722V8A6770206284860	94D09 221319 68220 30BBM	MSR 201 BNE 2 52		968 5.9 .1
522 5076505P 180723V8A6769506284800	94D09 221316 71220 25R	301 BNE 2 BE		943 5.16 .1
523 5076505P 180735V8A6771506284960	94D09 221 19 58220 30R	20110 5 1	55 93	
524 5076505P 180736V8A6773706284810	94D09 221 19 66220 25R	MBR 40 8 5 2 82	13 71 1184 5	1874 7.6 .1
525 5076505P 180737V8A6773106284730	94009 221319 69220 25R	MBR 221 8 5 1 55		887 6.79 .1
526 5076505P 180738V8A6772606284660		MBR 301 6 5 1 48		1747 7.8 .1
527 5076505P 180739V8A6772006284590		MBR 201 6 S 1 54		1084 7.05 .1
528 5076505P 180740V8A6771406284510		MBR 201 5 5 1 71		1094 6 .1
529 5076505P 130742V8A6770306284370		RBR 301 8 5 3 84		1107 7.66 .1
530 5076505P 180743V866774706284250			3 14 61 247 5	679 5.3 .1
531 5076505P 180745V8A6775306284320			104 82	UT 010 11
532 5076505P 180746V8A6775806284380		MBR 301 5 5 2 91		820 5.33 .1
533 5076505P 180747V8A6776506284460		DBR 201 7 S 1 63		287 3.58 .1
534 5076505P 180748V8A6777706284470		RBR 201 8 S 1	51 57 57	TO: 0.00 .1
535 5076505P 180749V8A6780605284520		RBR 201 7 S 2	65 69	
	every vypen		00	

Part 1 - page 3

536 5076505P 180751V866776306284240	D1000 001110 000 0500M	GY 201 8NE 3 203 10	35 7/6 5 1111 5 75 1
538 5078305F 180753V886778308284240 537 5076505P 180753V886776906284310		GY 201 8NE 3 203 10 MBR 201 7NE 3 100 9	45 705 5 1114 5.75 .1 58 418 5 993 6 .1
538 5076505P 180754V8A6777605284390		RBR 101 5NE 3 50 10	75 140 5 438 4.09.1
539 50765059 1807559886778206284460		51 SNE 1 93 8	60 257 5 651 4.58 .1
540 5076505P 180756V8A6778806284540		RBR 301 2NE 3 57 11	82 265 5 981 6.12.1
541 5076505P 180757V8A6778606284630	94009 221116 53220 258BF	RER 201 6NE 2 20	77
542 5076505P 180758V8A6772206283030	94D09 221 16 59220 308BM	DBR 201 8 S 8 185	28
543 5076505P 180759V8A6771506282960	94009 221 16 61310 158BM	MBR 101 6 5 46 100	55
544 5076505P 180760V8A6771006282880		RBR 101 6 S 5 114	40
545 5076505P 180761V8A6780406282810	94B09 221 15 57210 20R	MBR 201 5 5 70 120	119
546 5076505P 180763V9A6770406285360		MBR 501 6NE 1 36 4	49 1548 5 1439 7.16 .1
547 5076505P 180765V8A6770806285430		RSR 51 8 5 2 37 15	68 337 5 1202 7.08.1
548 5076505P 180766V8A6771306285510		MBR 301 BHE 1 78 10	45 576 5 733 6.69 .1
547 5076505P 180767V8A6771706285570		MBR 301 3NE 1 36 26	54 452 5 865 5.08.1
550 5076505P 180768V9A6772206285680		MBR 201 FNE 1 55 12	44 584 5 579 5.24 .1
551 5076505P 180769V8A6772706285760		RBR 201 9NE 1 167 10	45 521 5 677 5.3 .1
552 5076505P 180771V866773106285850		RBR 21 6NE 1 47 7	46 1336 5 995 6.94 .1
566 5076505P 180786V8A6774306295800		NBR 101 5NE 1 60 13	34 434 5 673 5.08.1
567 50765059 180737V8A6773906285720 568 50765059 180788V8A6773506285540		RBR 10116NE 1 31 12	53 384 5 643 5.66.1
569 5076505P 180786V84877308283840		MBR 201 1 500 11	37 423 5 624 5.04 .1
570 5076505P 180791V84677230628540		RBR 51 4 31 10 MSR 201 8NE 1 37 B	35 203 5 319 4.37 .1 53 1039 5 1078 6.96 .1
571 5076505P 190792V866772106285370		MBR 201 BNE 1 37 B MBR 251 6NE 1 54	53 1039 5 1078 6.96 .1 53
572 5076505P 180793V866771606285290		RBR 301 45% 1 40 13	53 53 919 5 510 5.85 .1
573 5076505P 180774V8A6771006285220		MBR 301 4NE 3 34 9	52 1007 5 918 7.05 .1
574 5076505P 180776V8A6771906285110		NBR 30118 N 1 32 6	41 1015 5 1311 6,88 .1
575 5076505P 180797V8A6772706285210		MBR 301 2 N 1 33 7	51 1053 5 883 7.08 .1
576 5076505P 180798V8A6773206285270		MBR 201 3NE 5 40	56
577 5074505P 180799V8A6773706285350		MBR 301 BNE 1 57 9	70 983 5 871 7.99 .1
578 5076505P 180800V886774205285440		RBR 10110NE 1 50 10	79 327 5 621 5.83 .1
579 5076505P 190801V8A6774706285530	94D09 221 16 65320 25BBM	RBR 10110NE 1 95 10	52 269 5 603 5.47.1
580 5074505P 180802V8A6775106285610		MBR 20110NE 1 51 10	33 218 5 499 4.48.1
581 5076505P 180803V8A6775606285700	94009 222 16 68210 15R	NBR 201 6NE 1 49 8	55 589 5 518 5.55 .1
582 5076505P 180804V8A6776206285780	94609 222319 66320 25R	RBR 81 5NE 1 52 12	76 460 5 600 5.63 1
573 5076505P 180816V8A6777706285840		MBR 151 9NE 1 42 13	79 233 5 652 5.67 .1
594 5076505P 180817V8A6777206285760		BBR 201 BNE 1 33 13	61 374 5 655 5.52 .1
595 5076505P 190918V8A6776806285670		RBR 30110NE 5 183 11	41 398 5 390 4.3 .1
596 5076505P 180819V8A6776306285590		RBR 151 8NE 5 52 13	52 126 5 423 4.74 .1
597 5076505P 180821V8A6775906285510		RSR 101 BNE 36 104 11	68 653 5 873 8.98.1
602 5076505P 180828V8A6774406284870		NOR 101 4 N 1 68 11	66 1142 5 913 7 .1
603 5076505P 180829V8A6774806284940		RBR 401 4 N 1 41 11	70 875 5 1182 7.86 .1
604 5076505P. 180830V8A6775306285000		MBR 101 9 N 1 29 12	81 968 5 868 7.55 1
605 5076505P 180831V8A6775806285070		RER 7112NE 1 47 10	52 580 5 760 6.23 1
606 5076505P 180832V8A6775406285140		RER S1 7NE 1 46 9	45 755 5 946 6.34 .1
607 5076505P 180833V8A6776906285210 608 5076505P 180834V8A6777406285280		MOR 81 7NE 1 25 8	50 825 5 972 6.84 .1
609 5076505P 180834V868777906285350		RBR 151 6NE 1 21 16	70 352 5 711 6.44 .1
610 5076505P 180837V8A6778506285430		NBR 201 6NE 1 61 9 RBR 201 5SE 2 36 12	64 671 5 960 5.97 .1 99 407 5 756 6.6 .1
611 5078505P 180837488778508285430		RBR BI 63E 1 45	99 407 5 756 6.6 .1 44
612 5076505P 180839V8A5779506285570		GY 201 45E 1 110 9	28 810 5 1124 5.94 .1
641 5076505P 1808979086778706283570		RBR 501 ZNE 2 30 9	39 199 5 711 4.45 .1
	CLASS FELLS BLOLD CADDU	an out the to by 7	1. UT: 11 U III III III III III III III III II

- -

Part 1 - page 4

662 5076505P 180899V866778206284700	94D09 721119 67210 2088M	RBR 301	2 50 9	63 552 5	1078 6.95 .1
688 5076505P 180929V8A6765206293460	94009 321 16 220 30BBN	RSR 101215W	12 65 11	68 189 5	1680 5.69 .1
689 5075505P 190930V8A5754505283400	94009 221116 330 358BM	RBR 7114 S	11 125 14	66 293 5	603 4.57 .1
690 5076505F 180931V8A6764006283320	94009 321 16 230 358BM	NBR 712154	11 220 12	53 304 5	661 4.37 .1
691 5075505P 180932V8A6763505283250		MBR 121 6 S	4 115 17	69 250 5	807 4.45 1
692 5076505P 180933V8A6762906283180		RBR 381 6 G	7 237 14	29 56 5	363 3.06 .1
693 5076505P 180934V9A6762406283110		RBR 51 2 S	8 182 11	57 900 5	769 5.87 .1
694 5076505P 180935V8A6761806283040		RBR 301 4NE	3 157 12	37 64 5	487 3.16 .1
695 5076505P 180937V8A6762306282830		RBR 201 85W	4 71 14	62 32 5	604 3.47 .1
695 5076505P 180938V8A6752906282950		DBR 201 8 5	4 58 12	34 29 5	500 2.5 .1
697 5076505P 180939V8A6763506283020		RBR 151 65E	5 190 11	31 51 5	322 3.12 .1
678 5076505P 180740V8A6764006283100		RBR 101 7 5	3 111 12	44 40 5	
679 5076505P 180941V8A6764606283170		DBR 511554			413 3.04 .1
700 5076505P 180741V5A6765206283240					597 3.13 .1
700 50765052 1807427886765806283210		DBR 201135W	15 94 11	39 55 5	892 2.99 .2
		RBR 5112SW	10 129 13	61 143 5	764 5 .1
702 5076505P 180947V8A6768706283420		RBR 5118 S	7 145 11	57 193 5	548 4.14 .1
703 5076505P 180948V8A6768106293360		RBR 151 95¥	5 193 10	53 263 5	806 4.47 .1
704 5075505P 190949V8A5757505283280		RBR 61 75W	4 184 10	47 184 5	425 4.17 .1
705 5076505P 180950V8A6766806283210		MBR 101 55W	8 202 11	39 92 5	405 3.13 .1
706 5078505P 180951V8A6765206283130		RBR 101 5 S	21 147 12	54, 247 5	556 3.97 .1
707 5076505P 180952V8A6765506283060		M9R 101 4 S	17 181 14	39 49 5	309 3.65 .1
708 5076505P 180953VBA6764906282980	94009 521 11 51220 308BM	DBR 8145	16 269 10	62 451 5	589 4.58 1
709 5076505P 180954V8A6764406282910	94009 521311 66210 208BM	RBR 8145	4 88 13	45 47 5	523 3.47 .1
710 5074505P 180955V8A6763806282830	94009 521 11 50220 308BM	RER 101 4 S	5 77 12	47 43 5	405 3.4 .1
711 5076505P 180956V8A6763406282770	94D09 521 11 49230 35BBM	DBR 201 4 S	3 75 13	42 23 5	357 2.67 .2
722 5076505P 180982V8A6760706283130	94D09 521 11 57215 20R	MBR 201 3 5	7 153 11	52 52 5	555 3.41.1
723 5076505P 180983V8A6761406283190	94809 521 11 58220 3088M	RBR 101	9 152 12	42 94 5	484 3.35 .1
724 5076505P 180984V8A6761906283270	94009 421 11 68215 258BM	MBR 151 6SW	1 102 8	38 736 5	656 4.44 .1
725 5076505P 180787V8A6764706283640	94009 321 16 64215 2088M	MBR 201215W	2 83 9	53 358 5	975 4.74 .1
726 5076505P 181036V8A6757906284440	94D09 421 16 72210 20R	MER 4011654	1 43 14	35 1043 5	882 5.37 .1
727 5076505P 181037V8A6756806284530	94009 421 15 71210 20R	MBR 401 854	1 41	51	
731 5074505P 181047V8A6753806284860	94B09 421 16 67720 25R	MER 501 8 N	1 118 13	37 962 5	772 4.95 .1
732 5076505P 181080V8A6759906285560	94009 421 16 67330 3588M	MBR 101 2 N	1 43 7	33 1840 5	1430 6.94 .1
746 5076505P 181137V8A6764756286610	94D09 821 16 220 25R	MBR 10126SE	2 50	74	
747 5076505P 181138V8A6765506286680	94009 821111 220 2588F	RER 151 95E	2 30	77	
748 5076505P 181139V8A6766306286750	94D09 821111 315 2088F	R8R 151 3SE	2 26	84	
752 5076505P 181151V8A6752906284960	94009 421 16 220 25BBM	HBR 351 4NW	5 247 17	59 746 5	822 5.73 .1
753 5076505P 181153V8A6751806284830	74D07 521 11 230 358 B	MBR 401 6NW	9 312	96	
754 5076505P 181155V8A6751206284760		MBR 201 7NW	9 169 17	57 627 5	940 5.94 .1
891 5076505P 181363V8A6780806281520	94009 221111 220 30PBF	R38 15114NW	2 18 19	29 11 5	210 3.67 .5
895 5076505P 18136778A6783406281820		RBR 201 6NW	19 207 15	30 23 5	241 3.29 .6
876 5076505P 181368V8A6783956281900		MBR 101 7NW	20 177 14	29 13 5	286 2.5 .3
917 5076505P 181391V8865784006282150		RBR 401 2 N		-	113 3.5 .1
918 5076505P 181392V8A6783356282070		RBR 101 Z N	8 24 24		159 4.76 .6
919 5076505P 181393VBA6782706281995		MBR 51 3 N	36 590	42	100 1110
920 5076505P 181394V886782206281920		RBR 201 3 N	5 37 16	72 27 14 5	196 7 8 L
921 5075505P 191395V8A5782505281940		RER 501 4NH	25 58 22	20 14 5	196 3.5 .6
922 5076505P 181396V8A6780906281760		RBR 251 4N4			190 4.25 .6
923 5076505P 18139789848780706281780				25	
1570 5075505P 1805349586770505281780		RBR 251 4NW	15 14	25 7/ 1100 F	1174 5 61 1
		21 S	1 42 9	36 1120 5	1134 5.94 .1
1577 6076505P 180655V8A6771406283640	19007 321 102 / V 3 1P	32 5	1 68 11	80 478 5	1157 6.85 .1

Part 1 - page 5

1583 607650	5P 180683V8A6762806283700	94D09 321	183647 0	5 TF
1584 607650	5P 180684V8A6762306283620	94009 321	183697 0	5 TF
1588 607650	5P 180695V8A6757806293540	94009 321	18 677 0	5 TF
1599 607650	5P 180596V8A6758406283620	94007 321	183707 0	5 TF
1590 607650	5P 180697V8A6758906283690	94D09 321	183707 0	5 TF
1591 607650	5P 180698V8A6759606283760	74009 321	182707 0	5 TF
1592 607650	5P 180699V8A6761106283720	94009 121	18 727 0	5 TF
1593 607650	5P 180700V8A6760506283650	94009 321	18 727 0	5 TF
1594 607650	5P 180701VSA6750006283580	94009 321	183717 0	5 TF
1595 607650	5P 180702V8A6759406283510	94009 321	183717 0	5 TF
1596 607650	5P 180703V8A6758906283440	94009 321	18 687 0	-5 TF
1597 607650	5P 180704V8A6758306283370	94009 221	181637 0	5 TF
1598 607650	SP 180706V8A5760505283890	94D09 321	182697 0	5 TF
1599 607650	SP 180707V8A6761206283960	94009 321	182717 0	5 TF
1600 607650	SP 180708V8A6761806284030	94009 321	18 717 0	5 TF
1501 507550	5P 180710V8A5752805284160	74D09 221	183737 0	5 TF
1602 607650	5P 180711V8A6753305284210	94D09 221	183727 0	5 TF
	5P 180712V8A6763806284280	94009 321		
	5P 180713V8A6764306284340	94009 321		
	5P 180714V8A6764906284420	94007 321		
	P 180715V8A6765406284480	94D09 321		
1607 607650	5P 180716V8A6765906284560	94009 221		
	P 180717V8A6766605284620	94D09 221		
	5P 180718V8A5757005284590	94009 221		
	P 180719V8A6757605284770	94D09 221		
	5P 180720V8A5758105284830	94D09 321		
	F 180724V8A6769205284740	94D09 221		
	SP 180725V8A6764006284080	94009 321		
	5P 180726V9A5754705284150	94D09 321		
	5P 180727V8A6765206284230	94D09 321		
	5P 180728V8A6765706284300	94009 321		
	5F 180729V8A6766406284370	94009 321		
	P 180730V9A5765805284440		183577 0	
	SP 180731V8A6767506284520	94009 321		
	SP 180732V8A6768006284590	94D09 321		
	5P 180734V8A5771205265000		183707 0	
	SP 180752V8A5759305285200	94009 321		
	5P 180795V8A6771506285050	94D09 321		
	5P 180826V8A6773506285110	94D09 321		
	5P 180827V8A5773005285020	94009 221		
	5P 180897V8A6779406284840	74D07 221		
	5P 180925VSA5757006283650	94D09 321		
	5P 180927V8A6766506283680	94009 321	183 7 0	
	5P 180928V8A6765806283530	94009 321		
	P 180728V8A6761306282960			
		94009 221 94009 221		
	5P 180944V8A6766406283380			
	SP 180945V8A6766906283460	94D09 221		
	SP 180946V8A6767406233520			
	SP 180985V8A6762606283350 SP 180986V8A6763206283430			
	SP 1809850865763205283430 SP 1809870865763806283490			
1001 00/000	и токта/уене/соскоссоряуу	74007 OZ1	1 110 GI	5 TF

ALIEL .			¥		07				
2954	1	54	9	47	991	5		5,62	
295₩	2	146	11	43	991 370	5	794	5.37	.1
25SW	8	471	10	37	776	5		6.83	
215₩	7	332		41		5		5.74	
2454	3	301		37				6.87	
10 5	2	153		46				6.41	
26 S	1	139		41		5	1405	6.93	.1
28 S		1 16	5		58				
30 S	3	236	9	41	731	5	1186	6.17	.1
30 S	3	324	11	34		5	754	4.17	.1
15 S	7	514		44				4.14	
40 N	2	200	12		467	5	E01	4.09	
35 N	1					5	001	4+97	ذ ه
		4 - 13			85				
35 N		2 33			68				
24 N		9 18			44				
105₩		9 8	4		60				
30 S	2	56	6	46	1245	5	1508	6.1	.1
25 S	1			33	1141			5.62	
22 3	1	85 56	15	33 37	1255			6.45	
26 5	•	1 5			65	•	1000	0170	• •
				75		F			
18 5	1		13		1163				
19 S	2		13		1167	5	1300	5.83	.1
5 S		1 4			45				
8 S	1	15			1115	5	1294	6.59	.1
30 S	1	24	9	38	947	5	1348	5.33	.1
15NE	1	36	11	55	1345	5	1002	7.5	.1
24 S	4	135	13	65				6.33	
	4	103		51		5		7.49	
	4	102		43				6.69	
22 5	1	99		38		ປ 5			
								7.25	
24 S	2	82	12	37	1304	2		6.43	
22 S	1				1248			6.5	
24 S	1	67	11	40	1411	5	1347	6.8	.1
24 5	1	47	10	44	1372	5	1463	7.15	.1
24 N		1 2	2		40				
21 3	1	103	19	74	1175	5	1365	7.34	.1
21 5	1	30	7	44	1052	5	1204	6.94	1
22 N	1	54		37	1074			5.4	
12 N	1		9	44				5.95	
16HE	1		12	64	604	5		5.49	
32SW	3		12	46	441	5	983	4.69	.1
28 S		2 84	0		50				
2854		2 5	3		60				
10 S	3	165	12	40	48	5	473	3.02	.1
	4	119	10	70	48 752	5		7.3	
2454	7	2 14		74	702 50	0	1000	1.0	* 1
25 S		1 9			50	_			
1054	1	103	5	46	1086 825	5		5,97	
245₩	1	129					1110	6.05	.1
2754	4	112	10	54	483	5	908	5.24	.1

22NE

2 50

۰.

Part 1 - page 6

67

1652	6076505P	180788VSA6764306283560	94009	321	18 647	05	TF
1658	6076505P	180995V8A6756006284770	94D09		183687	05	TF
	6076505P	180996486755505284850	94009		183707	05	TF
	6076505P	180997V8A6757105284920	94D09	321		05	TF
	6076205P	130998V8A6767606284990	94D09		183697	05	TF
1552	6076505P	18099978846768206285060	94D09	221	183687 (05	TF
1663	6076505P	181000V8A6768706285120	74007	221	183717	05	TF
1664	6076202b	18100298A6766606285220	94D09	221	18 687 (05	TF
1665	6076505P	181003VBA5766106285160	94009	221	18 707	05	TF
1666	6076505P	181004V8A6765506285100	94009	221	18 687 (05	TF
1667	6076505P	181005V8A6764906285040	94009	321	18 697 9	05	TF
1669	6076505P	181005V8A6763806284910	94009	221	183687	05	TF
1669	6076205P	181007V8A6763306284840	74007	221	183 7	05	TF
1670	6076505P	181008V8A6762406284740	94D09 :	321	183 7 () 5	TF
1671	6076505P	181009V8A6762105284710	94009	321	183 7	05	TF
1675	6076202b	181013V8A6760006284460	94D09	321	183 7 () 5	TF
1686	6076505P	181024V8A5754205284769	94009	221	183 7	05	TF
1687	6076505P	191025V8A6754606284930	94D09	221	183 7 () 5	TF
1683	6076505P	181026V8A6765206284900	94009	321	183717	05	TF
1689	6076205P	181027V8A6765506284930	94D09	321	183727 () 5	TF
1690	6076505P	181028V8A6766506285060	94009	221	183707	05	TF
1691	6076505P	1810297886766906285090	94D09	421	183687 () 5	TF
1672	6076505P	181030V8A6761006284800	94007	321	183687 () 5	TF
1693	6076505P	181031V8A5750505284740	94D09	321	183727 () 5	TF
1694	6076505P	181032V8A6760006284680	94D09	321	183737	05	TF
1695	6076505P	181033V8A6759506284620	94009	521	183777) 5	TF
1676	6076505P	181034V8A6759006284570	94D07	321	183797	05	TF
1697	6076202b	181035V8A6758506284500	94009	321	183737 () 5	TF
1698	6076505P	181038V8A6757306284590	94D07	321	183707	05	TF
1699	6076505P	131039V8A6757806284660	94D09 3		183717 () 5	TF
1700	6076205P	181040V8A6758406284720	94009	321	183757	05	TF
1701	6076505P	181041V8A6759006284780	94D09 3	321	183717 () 5	TF
1702	6076505P	181042V8A6759506284850	94D09	321	183727	05	TF
1703	6076505P	181043V8A6760006284910	94D09 (521	183727 () 5	TF
1704	6076505P	181044V8A5750505284950	94009	121	183717	05	TF
1705	6076505P	181045V8A6761106285030	94D09 3	321	19 677 () 5	TF
1705	6076505P	131046V8A6761706285100	74009	321	183717	3 5	TF
1707	6076505P	181047VBA5762306285150	94D09 1	221	183707 () 5	TF
1708	6076505P	181048V8A6763005285240	94D09	321	183727	05	TF
1709	6076202b	181049V8A6763706285310	94D09	3	71		
1710	5076505P	181050V8A6764306285390	94009	321	193727) 5	TF
1711	6076505P	181051V8A6765006285460	94D09 3	321	183 7 () 5	T۶
	6076505P		94009	221	183 7 () 5	TF
1713	6076202b	191053V8A6764806285210	94D09	421	183 7 () 5	TF
		181054V8A6754306285160	94D09	321	183 7 (TF
1715	6076505P	181055V8A6762906285010			183727 (TF
		181056V8A6762706284980			183687 (TF
1717	6076505P	181057V8A6762206284920	94D09 3	521	183697 (TF
1718	6076505P	181058V8A6761606284850	94D09				TF
		181059V8A6758806285000	94D09 3				TF
1720	6076505P	181060VBA6758406284940	94009	321	18 697 0) 5	TF

3050	3		10	60				5.41	
INE	1	52	7	45		5	1464	7.33	.1
4SE		1	10		35				
20NE	1	27	5	29	1083	5	1170	4.7	.1
21 NE		í	10		40				
10NE	1	35	7	40	1100	5	1197	5.25	.1
15NE	1	54	13	54				5.67	
18 S	1	17	12	37				5.94	.1
10 E	•		10		35	-	••••		••
14 E	1	27	11	33		5	1116	F. Q	.i
24NE	•		12		35	5	1110	0.0	• 1
6 5	i		13	45	1572	s	1107	6.93	,
10SE	1	23	13	35				5.55	
	ĩ					5	1025	0.00	. 1
22NE			55		59	-			
23NE	1	22	14	36		5		5.98	
365₩	1	78	16	39	447	5	1009		
4NE	1	31	13	43	1439			5.7	
3SE	1	19	14	47	1471	5	1100	6.68	
32NE	1	12	13	34	1380		1151	5.94	
38NE	1	13	13	28	1080	5	912	4.75	.1
12NE	i	14	11	33	1270	5	1055	5.64	.1
6NE	1	29	8	34	1324	5	1218	6	.1
4554	1	40	15	23	804	5	916	3.99	.1
405¥	1	29	15	23	699	5	809	4.17	.1
3654	1	27	13	24	931	5	868	4.62	.1
305₩	i	18	11	27	1291			5.14	
265¥	1	22	15	31	801	5	993		
2154	1	4	11	28	1230			5.08	
2551	•		50		50	-	••••		••
3354			37		28				
405¥	1	56	14	20		5	923	4.67	,
4539	1	120	12	43	1110	5	1284		
4759	1	15	7	30	1251			5.14	
4054	1	23	10	27		ы 5			.1
	1					ل.	972	4.7	.1
10 N			49		49	-			
28NE	1		7	31				4.91	.1
ZENE	1	35	9	30				5.39	
12 N	1	17	4	38		5	1249	5.17	•1
35NE			16		55				
35NE	1	18	8	30		5		5.3	.1
22NE	1	32	10	33			1165	5.84	.1
28NE	1	30	7	36		5	1190	6.37	.1
13NE		0 1	20		54				
3NE	1	21	7	31	1307	5	1124	5,66	.1
28NE	1	27	9	37	1497			6.14	
40NE	1	34	11	32	1085	5		5,73	
12NE	1	13	6	37	1366			5.91	
28NE	1	31	6	37	1457			6,33	
32NE	1	19	10	34	1148			5.25	
4050	1	31	8	27	1215		791	4.54	
3250	1	35	5	38	1139		1361	5.55	.1
	•	~~	-	~~		-	1001		••

Part l - page 7

1721 6076505P 181061V886757806284880	94009 371 183707 0 5 TE	3384 1	65 10	40 1018 5	1141 5.51 .1
1722 6076505P 181062V8A6757406284830	94009 321 18 697 0 5 TF			37 831 5	889 4.75 .1
1723 6075505P 181063V8A6756806284760	94009 321 18 687 0 5 TF	2554 1	74 15	36 792 5	890 4.41 .1
1725 6076505P 181070V8A6754506284920	94009 321 13 577 0 5 TF	355W	1 85	62	
1726 6076505P 181071V8A6754956284990	94D09 321 18 587 0 5 TF	30SH 1	64 12	48 1014 5	1280 5.74 .1
1727 6076505P 181072V8A5755506285055	94009 321 13 697 0 5 TF	2554	2 142	53	
1728 6076505P 181073V8A6756106285120	94009 321 18 697	235#	3 200	47	
1729 6076505P 181074V8A6756806285210	94009 321 18 797 0 5 TF	3659 1	43 23	42 1008 5	1430 4.8 .1
1730 6076505F 181075V8A6757206285245	94009 321 18 737 0 5 TF	379# 1	181 13	37 645 5	1070 4.94 .1
1731 6076505P 181076V8A6757656285310	94009 321 182757 0 5 TF	405₩ 1	22 10	30 1451 5	1233 5.23 .1
1732 6076505P 181077V8A6758206285370	94009 321 18 727 0 5 TF	29ME	0 23	55	
1733 6076505P 181078V8A6758706285445	94D09 321 18 697 0 5 TF	21NE 1	27 6	34 1577 5	1135 5.8 .1
1734 6076505P 181079V8A6759206285510	94D09 421 18 697 0 5 TF	3NE 1	42 10	47 1716 5	1145 6.59 .1
1735 6076505P 181081V8A6760456285645	94D09 221 182687 0 5 TF	7NE 1	53 7	40 1747 5	1199 5.37 .1
1736 6076505P 181082V8A6760956285710	94D09 221 192687 0 5 TF	4NE 1	31 6	29 1498 5	1099 5.19 .1
1737 6076505P 181083V8A6761556285745	94D09 321 182 7 0 5 TF	30NE 1	142 7	23 1200 5	872 4.41 .1
1738 6076505P 191094V8A6762406285830	94D09 321 182637 0 5 TF	30NE 1	88 9	30 1298 5	1080 5.41 .1
1749 6076505P 181100V8A6757306285455	94D09 121 18 677 0 5 TF	15NE 1		33 1486 5	1144 5.48 .1
1750 6076505P 181101V8A6757806285520	94009 221 18 717 0 5 TF		52 10	35 1551 5	1105 5.75 .1
1751 6076505P 181102V8A6758306285580	94D09 221 18 657 0 5 TF	711E 1	33 5	37 1705 5	1276 6.17 .1
1752 6076505P 181103V8A6758806285655	94009 221 18 667 0 5 TF	9NE 1	26 7	33 1409 5	1093 5.57 .1
1753 6076505P 181104V8A6759406285715	94009 221 19 677 0 5 TF		32 4	36 1575 5	1195 5.87 .1
1754 6076505P 181105V8A6759906285770	94009 221 18 587 0 5 TF	15NE 1	32 5	32 1419 5	1083 5.47 .1
1755 6076505P 181106V8A6760606285830	74007 221 18 2 0 5 TF		24 8	34 1424 5	1185 5.58 .1
1772 6076505P 181135V8A6763406286460	94D09 221 18 7 0 5 TF	1 55	1 22	59	
1773 5076505P 181135V8A5764006287260	94D09 221 18 7 0 5 TF		1 36	81	
1775 6076505P 181146V8A6755606285280	94D09 321 18 7 0 5 TF	2554 1		34 1490 5	1173 5.16 .1
1777 6076505P 181147V8A6755106285220	94D09 321 18 7 0 5 TF			34 1197 5	1223 5.42 .1
1781 6076505P 181152V8A6752356284890	94D09 421 18 7 0 5 TF	4NQ 3		66 762 5	973 6.81 .1
1836 5075505P 181398V8A6759206285260	94009 221 18 7 0 5 TF			31 1295 5	1049 5.41 .1
1837 4074505P 181399V8A6759756285335	94009 321 18 7 0 5 TF		24 12	26 1123 5	970 4.55 .1
1838 6076505P 181400V8A6760306285390	94D09 321 18 7 0 5 TF			43 1826 5	1846 7.05 .1
1839 5075505P 181401V8A6760906285450	94009 221 18 7 0 5 TF		58 20	37 1648 5	1350 6.44 .1
1640 6076505P 181402V8A6761306286010	94009 421 18 7 0 5 TF			47 1886 5	1520 7.1 .1
1641 6076505P 181403V866762006285535	94D09 321 18 7 0 5 TF	32NE 1		41 1626 5	1428 6.83 .1
1842 6076505P 181404V8A6762656285660	94009 321 18 7 0 5 TF			42 1773 5	1515 7.18 .1
1843 6076505P 181405V886763306285745	94009 221 18 7 0 5 TF			41 1665 5	1417 6.84 .1
1844 6076505P 181406V866763956285810	94009 321 18 7 0 5 TF 94009 471 18 7 0 5 TF		101 14	45 1771 5	1528 7.44 .1
1845 6076505P 181407V8A6764656285880	94009 471 18 7 A 5 TE	writ,	1 57	57	

 ${\bf x} = {\bf y}$

.

38.

• •

Part 1 - page 8

Part 2 - page 1

SE SW W F TH CD BI V RA SR SJ AL CA MG NA K PT PD TI REC: SHPLE CO AU AU? AS អទ .1 5 64 37 1.85.34 6.53.01 .02 50 50 7 71 180550 56 10 6 2 2 22 12 1 .12 9.48 .01 .01 50 50 .1 3 2 3 7 2 72 180555 68 5 .1 3 15 10 1.05.13 11.92.01 .01 50 50 3 2 15 2 2 2 3 73 180561 76 5 40 30 1.87.24 5.8 .01 .01 50 50 .1 5 74 180555 50 5 5 75 180567 77 180580 39 2.15 .58 2.75 .01 .05 50 50 23 .4 3 38 11 3 78 180586 24 5 35 26 1.43 .35 6 .01 .01 50 50 11 .2 3 79 180589 61 5 10 2 2 90 180591 10 2 2 3 .1 3 26 12 1.33 .17 12.32.01 .01 50 50 91 180741 75 5 72 180744

39.

40.

· · · ·

41.

105 20 1.51 .13 7.5 .01 .01 50 50

100	180655														
	180657 58	10	11	2	2	9	.2	4	31	27	1.73.3	5.64 .01	.01	50	50
	180681 55		7	4	2	11	.3	5	154	17		7.24 .01	.01	50	5
	180682 70		5	6	2	9	.1	3	84	13	2.75.2	9.35 .01	.01	50	5(
	180683 87		10	5	2	5	.1	2	16	7	.94 .1	9.71 .01	.01	50	50
	180689 21		4	5	2	3	.4	5	50	41		1.64 .01	.03	50	5(
	180690 27		4	4	2	3	.2	3	28	59		1.48 .01	.04	50	50
	180672	5	7	7	1	5	.2	5	20	21	001 100	1.49 .01	104	50	-14
	180673 23	5	6	2	2	3	.4	3	54	80	2.61.41	1.31 .01	.03	50	5(
	180594 29		3	2	2	8	.1	3	54	110		1.58.01	.03	50	5
	180705 25	-	7	3	2	3	.5	4	28	54		1,99 .01	.02	50	5
	180709 63		8	4	2	8	.2	5	117	19	4.32.41	6.41 .01	.05	50	5
	180721 71	5	6	3	2	6	.3	5	29	15	1.25.17		.01	50	5
	180722 55		7	5	2	6	.4	5	65	15	1.52 .17		.01	50	5
	180723 78		4	3	2	3	.1	3	28	11	1.16 .07		.01	50	5
	180735	-	•	•	-	·	••	÷.		••		111110101	101	50	
	180735 14	55	9	3	2	9	.3	3	52	13	1 91 17	10.5 .01	.01	50	5
	180737 76	5	g	3	2	3	.1	3	21	7		12.92.01	.01	50 50	5
	180738 13	-	4	4	2	3	.1	3	35	7	.88 .11		.01	50	5
	150739 83		7	3	2	3	.1	3	25	, 8		14.23.01	.01	50	5
	180740 87		3	2	2	3	.1	3	22	12	1.5 .15		.01	50	5
	180742 54		4	3	2	10	.1	3	71	22		9.57 .01	.01	50	5
	180743 41	5	3	2	2	10	.8	4	51	35	4.19.48	3.64 .01	.01	50	5
	180745	2		*	1	10	• •	٦	11	20	4.17 .49	0.07 .01	101	70	J
	180745 39	5	5	2	2	8	L	5	65	43	4.01.44	3.25 .01	A 1	ΕA	5
	180747 17		3	2	2	3	.6 .1	3	58	45 34		1.2 .01	.01 .01	50 50	
	180748	5		1	2	5	• 7	5	00	57	L+/7 +L7	1.7 .01	•41	30	
	180749														
	180751 78	5	4	2	2	3	.1	7	29	18	1 45 17	8.35 .01	A 1	50	£
	180753 75	5	12	2	2	8	. 9	3 5	27 34	23		5.5 .01	.01	50 50	5
	180754 22	5	3	2	2	3	.8	9			2.2 .29		.01	50 50	_
	180755 27		3 3	2	2	ა ვ	.8		47 74	32			.01	50 50	5
	180755 41	ч 5	7	2	2	8	.4	6 3	50	56 29		2.36 .01 3.59 .01	.01	50 50	5
	180757	J	i	4	4	ō	• 7	2	av	27	1.72 .20	3.37 .01	.01	50	
	180759														
	180758														
	180760														
	180751														
	180763 11	75	3	2	2	3	.1	7	21	3	12 07	18.57.01	A +	50	5
	180765 54		13	3	2	5	.5	3 8	44	18		4.08.01	.01	50	5
	180783 34	15	15	3 3	2	8		5			2.07 .32		.01		
	180767 54		20	2	2	3	.2 .6	и 5	17	4		6.55.01	.01	50 E0	5
	180767 54	5 10	21	3 3	2	ა q		3 4	68 22	43	1.45.24		.01	50 50	5
				-	_		.4		22	10 7		6.75 .01	.01	50 50	5
	180759 55	5	5	4	2	5	.1	4	18	7		9.57 .01	.01	50 50	5
	180771 99	5	3	6	2	3	.1	2	16	4	.6 .08		.01	50	5
	180786 55	5	5	5	2	9	.1	7	12	10		8.75 .01	.01	50	5
	190797 51	5	9	6	2	3	•1	4	72	14		8.11 .01	.01	50	5
	180788 55		11	3	2	8	.1	3	6	11		8.48 .01	.01	50	5
	180787 22	5	7	2	2	11	.1	8	20	12	1.54 .4	4.97 .01	.01	50	5
	180791 85	5	3	5	2	2	.1	3	23	6	.85 .17	15.8 .01	.01	50	5
	180792														

Part 2 - page 4

42.

43.

710	180955 14	5	5	5	2	3	.4	3	45	36	3.39.26	1.2 .01	.01	50	50
711	180955 10	5	3	2	2	3	.3	3	51	33	3.08.24	.81 .01	.01	50	50
722	180982 20	5	3	2	2	3	.1	3	72	47	3.29.43	1.31 .01	.01	50	50
723	180983 22	15	3	4	2	3	.4	3	56	57	4 .43	1.35 .01	.03	50	50
724	180984 49	5	4	3	2	11	.1	3	22	6	1.02 .06	8.08 .01	.01	50	50
725	180989 45	5	6	2	2	11	.1	3	190	31	1.92.28	3.87 .01	.01	50	50
725	181036 64	5	5	4	2	7	.1	3	29	9	2.18 .25	13.25.01	.01	50	50
727	181037														
731	181069 59	5	12	5	2	11	.1	3	18	11	1.31.15	13.46.01	.01	50	50
	181060 142		4	4	2	3	.1	3	9	1			.01		50
	191137	-			-	-		-		-			•••		
	181138														
	191139														
	181151 54	5	15	4	2	22	.1	3	44	20	2.75 .2	9.57 .01	.01	50	50
	181153	-		•	-		••	Ū	••						
	181155 65	5	9	4	2	13	.1	3	38	21	1.4315	10.94.01	.01	50	50
	181363 9	5	, 9	2	2	5	.1	3	30	19	2.45 .24		.05	50	50
	181367 14	5	6	2	2	3	.1	3	28	35	1.76.43		.06	50	50
	181368 10	5	4	2	2	3	.1	3	43	46	1.85 .55	.68 .01	.06	50	50
	181388 10	5	5	3	2	3	.1	3	70 31	27	5.7 .27	.44 .01	.04	50	50
	181371 B	40	7	5	2	3	.1	3	31	14	3.83.14	.4 .01	.04	50	50 50
	181372 8	44	'	J	4	5	• 1	J	01	14	0.00 .19	*7 •V1	.00	40	30
	181373	20	~	2	•	7		,	70	7.	2.92.22	/ t A t	Δ.	F۸	E 4
	181374 11	20 5	7 8	2 4	2 2	3 3	.1	3	32 71	31		.61 .01	.06		50 50
		3	8	4	2	3	.1	3	31	21	2.17 .17	.46 .01	.05	20	50
	181395														
	181397	-	-	-	•	-		-		-	70	17 10 04		F A	
	180534 97	5	2	2	2	3	.1	3	18	3		13.69.01			50
	180655 74	5	7	4	2	8	.1	3	32	16	1.00.24	8.91 .01	.01	50	50
	180683	_	_		_	_		_							
	180684 91	5	5	4	2	3	.1	3	25	4		13.76.01	.01	50	50
	180695 43	5	12	4	2	10	.5	9	21	24		5.44 .01	.01	50	50
	180595 101	5	13	3	2	3	.1	3	21	6		9.36 .01	.01	50	50
	180697 95	5	7	4	2	6	.1	3	14	2	.85 .04	10.13.01	.01	50	50
	180698 113	5	3	4	2	3	.1	3	16	2	.61 .03		.01	50	50
	130699 107		3	3	2	3	.1	3	17	2		15.83.01	.01	50	50
	180700 114	80	2	3	2	3	.1	3	13	2	.26 .03	17,25,01	.01	50	50
	180701														
	180702 102		10	3	2	4	. 1	3	14	7		9.55 .01	.01	50	50
	180703 59	5	13	4	2	3	.3	5	15	12	.86 .17	5.73 .01	.01	50	50
1597	180704 53	5	17	3	2	4	.8	7	41	86	1.83.44	3.37 .01	.04	50	50
1578	180705 51	5	4	3	2	3	.1	3	175	19	4.05 .52	8.71 .01	,05	50	50
1599	180707														
	180708														
1601	190710														
1602	130711														
1603	180712 115	5	5	2	2	3	.1	3	24	5	.55 .06	10.14.01	.01	50	50
1504	190713 106	5	7	2	2	5	. 1	3	37	10	.91 .11	11.85.01	.01	50	50
1605	180714 124	10	10	3	2	3	.1	3	27	8	.91 .1	13.66.01	.01	50	50
1605	180715														
1607	180715 94	5	6	3	2	3	.3	3	15	4	.4 .04	14.41.01	.01	50	50
1408	180717 108	5	5	2	2	5	.1	3	23	4		12.71.01		50	50

• •

· · · · · · ·

•

.

.

Part 2 – page 6

1609 180713														
1610 180719 106	5	3	4	2	3	.1	3	21	3	.29 .05	20.46.01	.01	50	50
1511 180720 97	5	3	4	2	3	.1	3	20	3	.44 .06	17,78,01	.01	50	50
1612 180724 91	5	3	4	2	3	,1	3	ទេ	4	.53 .05	16.87.01	.01	50	50
1613 180725 80	5	14	4	2	13	.3	6	98	21	2.04 .19	8,33.01	.01	50	50
1614 180725 95	5	27	3	2	6	.1	3	49	11	1.03 .11		.01	50	50
1615 180727 98	5	38	4	2	3	.1	3	35	8	1.02 .08		.01	50	50
1616 180723 150	5	11	2	2	6	,1	3	28	6	.78 .05		.01	50	50
1617 180727 114	5	9	2	2	3	.1	4	28	7	.35 .07				
	-	•	-									.01	50	50
1518 180730 102	5	4	3	2	3.	.1	3	29	20	.77 .05		.01	50	50
1519 180731 111	5	5	3	2	3	.1	3	25	6	.68 .05		.01	50	50
1620 180732 120	5	3	3	2	3	.1	3	24	5	.54 .05	16.72.01	.01	50	50
1621 180734														
1622 180762 88	5	9	2	2	3	.2	3	28	9	.81 .07	10.25.01	.01	50	50
1623 180795 103	5	3	5	2	3	.1	3	14	3	.44 .08	20.38.01	.01	50	50
1624 180825 113	5	3	2	2	3	.1	3	28	5	.72 .07	14.51.01	.01	50	50
1625 190827 71	5	3	2	2	3	.1	3	23	6	.73 .07	12.35.01	.01	50	50
1626 180897 76	5	3	2	2	6	.1	3	49	14	1.88.15	7.65 .01	.01	50	50
1627 180926 62	5	10	2	2	17	.4	5	37	25	1.37.2	6.65 .01	.01	50	50
1628 180927														
1629 180928														
1530 190935 21	5	4	2	2	3	.1	3	63	56	2.93 .48	1.28 .01	.02	50	50
1631 180944 104	5	3	3	2	5	.1	3	46	19	1.45 .15		.01	50	50
1632 180945	U	v	e	-	U	••	•	70	1 /	1170 110	11,00,01		20	av
1633 180946														
1647 180985 100	5	3	2	2	3	.1	3	25	11		12 /2 01		ΕA	EA
										.55 .05		.01	50	50
1650 180986 78	5	4	2	2	3	.1	3	29	17	1.37 .13		.01	50	50
1651 180987 54	5	13	2	2	9	•1	2	43	22	1.64 .16		01	50	50
1652 180988 67	5	7	2	2	9	.1	3	40	22	1.63.16		.01	50	50
1658 180995 118	5	7	2	2	2	.1	3	26	7	.69 .07	11.73.01	.01	50	50
1659 180995														
1660 180997 79	5	3	2	2	3	.1	3	9	3	.26 .06	13.03.01	.01	50	50
1661 180998														
1662 180999 93	5	3	2	2	3	.1	3	17	3	.44 .04	12.5 .01	.01	50	50
1663 181000 91	5	12	2	2	3	.1	3	19	5	.45 .05	10.46.01	.01	50	50
1664 181002 103	5	3	2	2	3	.1	3	7	1	.07 .03	23 .01	.01	50	50
1665 181003														
1666 181004 79	5	3	2	2	3	.1	3	6	1	.17 .04	23.25.01	.01	50	50
1667 131005														
1668 191005 104	5	3	3	2	3	.1	3	13	2	.38 .05	22,28,01	.01	50	50
1669 181007 83	5	3	3	2	3	.1	3	12	5	.55 .12		.01	50	50
1670 181005	-	-	-	-	•	••	·		-	100 111		•••		00
1671 181009 87	5	3	3	2	3	.1	3	13	5	.77 .13	20.04.01	.01	50	50
1675 181013 48	5	9	2	2	15	.1	3	55	21	3.12.54				
1686 181024 102	5	7		2	3	.1	а 3	15				.03	50 50	50 50
	5 5		2 2	2	2				3	.48 .04		.01	50 EA	50 50
1687 181025 96		4				.1	3	17	3	.4 .05		.01	50	50
1688 181025 99	5	3	3	2	3	-1	3	12	2	.3 .03		.01	50	50
1689 181027 77	5	3	2	2	3	.1	3	7	1	.27 .03		.01	50	50
1690 181028 94	5	3	2	2	3	.1	3	5	1	.12 .02		.01	50	50
1671 181029 107	5	3	2	2	3	.1	3	7	1	.1 .02		.01	50	50
1692 181030 60	5	12	2	2	15	.1	7	21	7	1.04 .2	11.21.01	.01	50	50

45.

46.

1755 181106 106 5 3 2 2 3 .1 3 11 1 .14 .01 23.2 .01 .01 50 50 1772 181135 1773 181136 1775 181145 102 5 .22 .04 22.51.01 .01 50 3 3 2 3 .1 3 23 3 50 1777 181147 88 5 .1 3 27 10 4 3 2 3 .96 .2 17.45.01 .01 50 50.1 1781 181152 73 5 14 2 2 21 4 37 19 1.39 .22 9.08 .01 .01 50 50 1836 181378 90 5 2 2 3 .41 .04 15.92.01 .01 50 - 5 .1 3 11 2 50 .1 3 1837 181399 84 5 3 2 2 3 9 .3 .02 16.23.01 .01 50 50 1 1838 181400 142 5 21 8 2 3 .1 3 33 7 .65 .08 25.62.01 .01 50 50 1837 181401 122 5 12 11 2 3 .1 3 12 2 .48 .06 26.7 .01 .01 50 50 1840 181402 133 5 10 2 6 3 .1 3 13 1 .17 .01 29.54.01 .01 50 50 1841 181403 125 5 9 7 3 2 .1 3 7 1 .32 .02 27.17.01 .01 50 50 1842 181404 130 5 9 2 3 3 .1 3 6 i .2 .01 23.97.01 .01 50 50 1943 181405 122 5 7 7 2 3 .1 3 9 1 .2 .01 26.42.01 .01 50 50 1844 181406 132 5 3 5 2 3 .1 3 10 1 .24 .01 25.87.01 .01 50 50 1845 181407

47.

۰.,

Part 2 - page 9

سيستنبذ سينمن بالتاب المالي معققين منتا

REC#	SNPL# F	ίÅ	AE3	8	CR	AE5	AES	GRIDE	GRIDN
	180550 .(163	-					
	180555 .(154						
	180551 .(170						
74	180566 .0)6	185						
75	180567								
77	180580								
78	180585 .1	12	210						
79	180587 .0)6	282						
90	180691								
91	180741 .0)5	195						
92	180744								
93	180750								
94	180752								
95	190764								
36	180770								
99	180790 .0)2	391						
100	180820								
101	180936								
112	181001								
115	181154								
229	140013 .(02	1340)					
230	140014 .0)5	1235	5					
231	140015 .()5	59						
232	140015								
233	140017 .()6	31						
234	140018 .0)2	70						
235	140019.0	26	43						
236	140020 .1	l	38						
237	140021 .()2	39						
	140026 .(37						
	140027 .0		40						
	140028 .0		49						
	140029 .(54						
246	140030 .()4	31						

247	140031	.05	43
248	140032	.07	79
286	190019	.03	29
287	180020	.02	41
283	190021	.02	20
289	180022	.04	63
290	180023	.1	40
	180024	.03	34
292	180025		
293	180025		
294	180027		
295	180028		
296	180027	.05	39
297	180030	.05	34
298	180031		46
299	180032	.06	45
300		.06	43
320	180054	.06	47
321	180055	.07	47
322	180055	.04	30
344	180078	.07	53
345	180079		
346	180080	.08	56
347	190081	.05	36
348	180082	.09	37
377	180111	.04	46
391	180111 180115	.11	29
	180119		39
	180527		183
390	180528	.03	125
391	180529	.02	140
392	180530	.07	157
		.06	130
393 394	180532	.06	161
	180533		149
	180544		170
403			
404	180545	.03	153
	180547		
	180548	.08	155
407	180549	.05	148
	180551		197
409	180552	.08	183
410	180553		
411	180554	.05	165
412	180556	.05	156
413	190557	.05	154
414		.07	154
415		.05	172
415		.01	133
417		.02	165

•

49.

....

418	180563	.08	103
419	180564	.05	126
420	180565	.05	173
421	186568		
422	180557		
423	180557 180570	.06	144
424	180571	.01	157
425	180572	.03	116
429	180577 180578	.04	187
430	130578		
431	180579		
432	180581 180582	.06	50
	130583		
435	180584 180585	.09	51
436	180585	.04	159
437	180597	.05	202
438	180538		
439	180590		
440	180591		
441	180572	.04	185
442	180593 180595	.05	189
443	180595	.13	248
	180596		190
445	180597 180598	.03	161
446	180598	.07	250
485	180544	.04	228
491	180654	.05	229
492	180656		
493	180657	.05	232
510	130681	.13	169
			192
512	180632 180688	.02	328
513	180689	.07	100
514	180670	.05	80
515	180592		
516	190693	.03	94
517	180694	.07	125
519	180705	.06	102
519	180709	.07	113
520	130771	.01	159
521	180722 180723	.11	151
522	180723	.02	150
523			
524		.07	147
525		.04	154
526	180738	.04	146
527	180739	.03	187
528		.04	154
529	180742	.12	182
530	190743		152

50.

531	180745		
532	180745	.08	160
	180747	.07	83
534	180743		
535	130749 180751		
			237
	180753		240
539	180754	.05	239
539	180755	.12	125
	180755	.12	233
541	190757		
542	180758		
	180759		
	180750		
545	180761 180763		
546	190763	.01	154
547	180765	.03	305
548	190755	.02	343
549	180757		252
550	180788	.02	239
551	180769	.02	301
552	180771	.01	221
565	180771 180785	.01	331
	180787		255
568	180793	.01	283
569	190739	,03	300
570	180791	.03	282
571	180792		
572	180793 180794	.04	239
573	180794	.02	212
	180795		202
575	180797	.01	205
576	180797 180793		
	180799		324
573	190800	.07	363
579	190900 190801	.05	308
580	180302	.02	279
581	180903	.02	284
582	180804	.03	274
593	180815	.05	342
594	180817	.04	270
			261
596	180819 180819	.04	257
597		.07	378
\$ 92	180929		215
603	180829	.04	299
604	180830	.05	215
605		.05	270
606	180832	.03	299
607	180833		216
608			229

51.

.

۰.

.....

609 180835 .03	
	198
610 180837 .05	261
611 180838	
612 180839 .01	236
661 180878 .06	193
652 180899 .12	220 214
635 180727 .03 687 180730 .09	214 179
689 180930 .08 690 180931 .07	179
691 190932 .08	133
692 180933 .07	56
693 180934 .05	228
694 180735 .08	55
695 180937 .07	50
695 180937 .07 696 180938 .08	47
697 180939 .07	53
698 190940 .05	61
677 180941 .08	95
700 180942 .04	173
701 180943 .04	281
702 180947 .04 703 180949 .05	207
703 180948 .05	187
704 180949 .04	171
705 180950 .06	102
705 180951 .05	127
)40 11111 AAA	10 i
707 180952 .07	92
709 180953 07	159
709 190954 .05	63
710 180955 .04	59
710 180955 .04 711 180956 .05	59 42
710 180755 .04 711 180756 .05 722 180782 .05	59 42 65
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08	59 42 65 85
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04	59 42 65 85 172
710 180755 .04 711 180956 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180789 .07	59 42 65 85 172 126
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180784 .07 725 180787 .07	59 42 65 85 172
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180784 .04 725 180789 .07 726 181036 .03 727 181037	59 42 65 85 172 126 112
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180784 .04 725 180789 .07 726 181036 .03 727 181037	59 42 65 85 172 126 112 107
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01	59 42 65 85 172 126 112
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 745 181137	59 42 65 85 172 126 112 107
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 745 181137 747 181138	59 42 65 85 172 126 112 107
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 745 181137	59 42 65 85 172 126 112 107
710 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 736 181137 747 181138 748 181139	59 42 65 85 172 126 112 107 187
710 180755 .04 711 180755 .04 712 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181139 752 181151 .03 753 181153 754 181155 .04	59 42 65 85 172 126 112 107 187
710 180755 .04 711 180755 .04 712 180782 .05 723 180783 .08 724 160784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181137 752 181151 .03 753 191153 754 181155 .04 871 181363 .05	59 42 65 85 172 126 112 107 187 186 147 37
710 180755 .04 711 180755 .04 712 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181137 752 181151 .03 753 181153 754 181155 .04 871 181363 .05 875 181367 .01	59 42 65 85 172 126 112 107 187 186 147 37 44
710 180755 .04 711 180755 .04 712 180782 .05 723 180783 .08 724 180784 .04 725 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181137 752 181151 .03 753 181153 754 181155 .04 871 181363 .05 875 181367 .01 876 181368 .05	59 42 65 85 172 126 112 109 187 186 147 37 44 33
710 180755 .04 711 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181137 752 181151 .03 753 181153 754 181155 .04 871 181363 .05 875 181367 .01 876 181368 .05 917 181391 .06	59 42 65 85 172 126 112 109 187 186 147 37 44 33 43
710 180755 .04 711 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 160784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181137 752 181151 .03 753 191153 754 181155 .04 871 181363 .05 875 181367 .01 876 181368 .05 917 131391 .06 919 191372 .04	59 42 65 85 172 126 112 109 187 186 147 37 44 33
710 180755 .04 711 180755 .04 711 180756 .05 722 180782 .05 723 180783 .08 724 180784 .04 725 180787 .07 726 181036 .03 727 181037 731 181069 .01 732 131080 .01 735 181137 747 181138 748 181137 752 181151 .03 753 181153 754 181155 .04 871 181363 .05 875 181367 .01 876 181368 .05 917 181391 .06	59 42 65 85 172 126 112 109 187 186 147 37 44 33 43

971	181395	05	37
	181395	.04	-91
	181397		
1570	180534	07	134
1577	180655	09	375
	180683		010
		.01	193
1538	180684 180695	.03	487
	180675		341
	180697		332
1591	180498	.01	352
1592	180599	.01	297
	180700		336
1595	180701 180702	.01	352
1596	180703	.07	249
	180704		234
1598	180705	.03	74
1599	180707		
	180708		
1601	180710		
1502	180710 180711		
	180712		102
1604	180713	.04	114
1605	180713 180714	,03	162
1605	180715		
1507	180715	.01	144
1608	180717	.01	116
1509	180713		
1510	180719	.02	122
1611	180720	. 02	213
	180724		145
	180725		145
1614	180725 180727	.07	130
			145
	180728		145
1517	180729	.03	137
1613	130730	.03	123
	180731		145
1520	180732	.02	153
1621	180734 180762		
			184
	180795		195
	180826		177
1625	180827	.04	166
	180897		163
	180925	.05	124
	180927		
	180723		
	180936		49
1631	180944	.05	245

1000

.

53.

- -

Part 3 - page 6

١

1802	180945 180946		
			159
1450	180985 180956		172
1451	180987	07	178
	180988		182
	180995		158
1557	180995		
1660	180997	.01	57
	180998		
1652	180777	.01	134
1663	181000	.02	182
1664	181002	.01	93
	181003 181004		
1666	181004	.01	118
	181005		
1669	181005	.01	174
1669	181007	.01	123
	181008		
1671	191009	.01	109
1675	181013	.01	132
	181024		138
1687	181025	.01	103
1683	191025 191027	.01	124
		.01	95
	181028	.01	100
1691	181029 181030	.01	105
1672	181030	.01	107
	181031	.01	156
1674	181032	.01	136
1695	181033 181034	.01	87
			78
	181035	•0I	29
1678	181038 181039		
1077	181039		07
			93 87
1701	181041 181042	.02	97 57
1794	181042	.91	37 45
		•01	40
1794	181044	A1	41
1703	181045 181046	01	41 115
	181047		103
	181048	***	100
	131049	.01	93
	181050		179
	181051	.01	149
1712	181052	• • •	4 1 2
	181053	.01	139
	181054		187
	181055		192

÷

Pare 3 - page 7

54.

	181056		99
1717	181057	.01	143
1713	181058	.01	89
	181059		47
1720	181060 181061	.01	80
			95
	181062		68
1723	191053 181070	.01	105
1725	181070		
1726	181071	.04	126
1727	181072		
1728	181073		
1729	181074	.02	226
1730	181075	.11	124
1731	181076	.01	104
	131077		
1733	181078	.01	214
1734	181079	.02	179
1735	181081	.01	191
1736	181082	.01	130
1737	181083	.01	274
1738	181084	.01	198
1749	181100		170
1750	181101	.01	195
1751	181102	.01	171
	181103		161
1753	181104	.01	132
1754	181105	.01	129
	181105		142
1772	181135		
1773	181135		
1776	181145	.01	105
1777	191147	.03	142
1781	181152	.06	168
	181398		105
1837	181399	.01	153
1838	181399 181400	.01	246
	181401		199
1840	191407	.01	157
1841	181403	.01	410
	181404		301
1843	181405	.01	281
1844	181405	.01	282
	181407		

55.

.

.

۰.

APPENDIX 3

Method of Histogram Interpretation

· · ·

.

:

•)

Rules for choice of size coding or contouring intervals

(1) Examine both arithmetic and logarithmic histograms for each type of survey data. Choose the histogram which most closely approximates a normal (or lognormal) distribution. If there are several populations exhibited on the histogram, subjectively divide the data into a series of normal or lognormal distributions. Avoid interpreting histograms which are strongly skewed. Portions of the arithmetic or logaritmic histograms may be chosen for data interpretation over specific metal concentration intervals, if this allows for the best portrayal of the data in graphical form.

(2) Choose, as two of the coding intervals, points which represent between 90% and 95%, and 95% and 97.5% of the data, two different numbers. These choices highlight 1 in 10 and 1 in 20 samples which are considered slightly anomalous and definately anomalous, respectively. These limits are optimistic in that the two categories are defined to be anomalous regardless of the distribution of values on the remainder of the histogram. A rigorous statistical approach would suggest that only the 97.5% value be considered the anomaly threshold.

Divide the remaining portion of the histogram into recognizable populations. The dividing point of each of these populations is chosen as a coding interval. Minimums caused by the failure of a laboratory to record specific concentration values are ignored. These artificial breaks in the histogram can be recognized by scanning the laboratory reports.

- (4) For each population, choose one or two numbers which correspond to the 90% and 95% cumulative frequencies for that population (1 in 10 and 1 in 20 samples for that population respectively). These will also be used to represent anomalous conditions for each population.
- (5) A maximum of six numbers can be chosen to plot symbol maps. This number is dictated by the ability to present data in graphical form with sufficiently different symbol sizes to be easily distinguishable, particularly if maps are to be reduced. The seven defined concentration classes are normally sufficient to represent geochemical data on a map. More intervals can be chosen if: data are to be controured. Avoid choosing arithmetic intervals without considering rules (1) and (4).
- (6) Maps plotted using the preceeding instructions might result in two areas being distinguished from each other by a relatively uniform density of symbol sizes, yet only poor contrast anomalies are indicated. Differences between the two areas, A and B, might be due to underlying geology, overburden character, soils etc. Whatever the cause, the data are not well displayed. If the underlying control distinguishing A and B can be recognized, the data must be divided and re-interpreted following steps (1) to

(5). Two sets of maps can be drawn, or both sets of interpreted data can be plotted on a single map. For such superimposed geochemical maps the symbol sizes lose their absolute meaning but assume a more important stance, that of reflecting anomalous conditions regardless of the underlying control. To illustrate, consider the case where A and B are areas underlain by very different geology. Anomalous conditions for low background rock types might be concentrations which are much lower than average values for the high background rock types. Nevertheless, anomalies defined in each area are to be considered significant. Reliance on absolute concentrations can be misleading in such cases.

APPENDIX 4

•

Ĵ

.

List of Qualifications

.

2

.

STATEMENT OF QUALIFICATIONS

I, Russell H. Wong of #700 - 890 West Pender Street, in Vancouver, in the Province of British Columbia, do hereby state:

- That I am a graduate of the University of British Columbia, Vancouver, B.C., where I obtained a B.Sc., in Geology in 1975.
- 2. That I have been active in mineral exploration since 1973.
- 3. That I am a member, in good standing, of the Northwest Mining Association and Association of Exploration Geochemists.
- 4. That I have practiced my profession continuously as a staff geologist for BP Minerals Limited, since 1979.

Russell H. Wong

Russell H. Wong BP Geologist

Vancouver, B.C.

60.

Abbreviated List of Qualifications - S. J. Hoffman BSc 1969 - McGill University (Hons., Geology and Chemistry) 1972 - The University of British Columbia (Geochemistry) MSc 1976 - The University of British Columbia (Geochemistry) PhD Publication History (to September, 1985) 9. Papers published in referred journals (2 in the last 3 years). Unpublished theses. 2. Paper published in a referred symposium special volume (0 in 1. the last 3 years). 5. Papers submitted for publication, awaiting print. 2. Manuals awaiting publication decision. List of Memberships Geological Association of Canada, since 1967. 1. 2. Canadian Institute of Mining and Metallurgy, since 1973. Association of Exploration Geochemists, since 1973. з. American Society of Agronomy, since 1973. 4. Geochemical Society, since 1983. 5. Other Qualifications Instructor - B.C. Department of Mines, Northwest Mining 1. Association, University of British Columbia, McGill University, B.C. and Yukon Chamber of Mines. Speaker, CIM (Prince George), Geoscience Council 2. (Yellowknife), Quebec Department of Natural Resources (Quebec City). External Examiner, University of Calgary. 3. Chairman, GOLD-81 symposium (1981 - Vancouver), GEOEXPO/86 4. symposium (1986 - Vancouver.) Council Member, AEG, 1980 - 1984. 5. Vice president, AEG, 1985 - 1986. 6. Business editor, GOLD-81 proceedings. 7. Member, committee to determine P. Geol. qualifications. 8.

APPENDIX 5

.

STATEMENT OF COSTS

STATEMENT OF COSTS

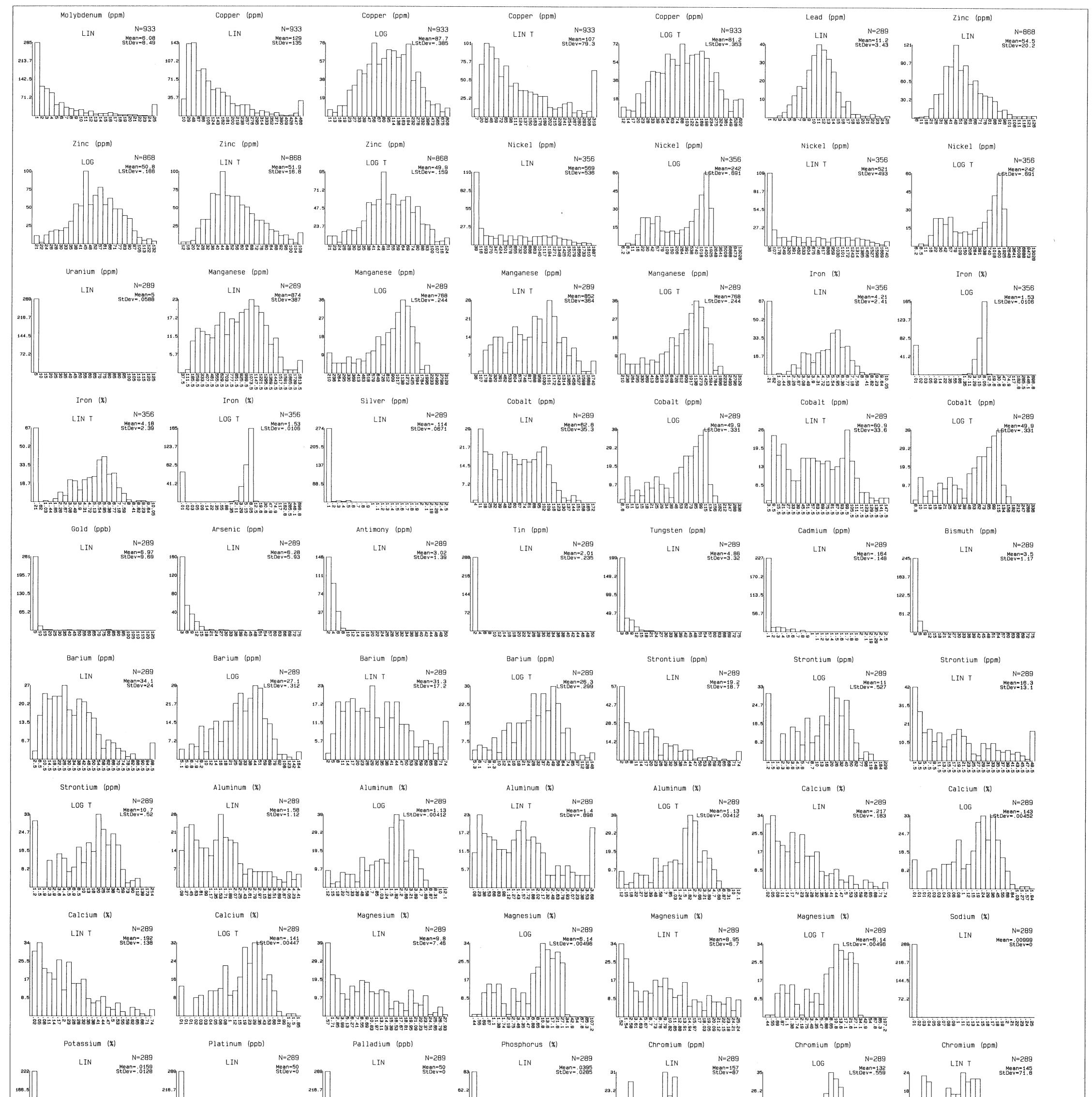
1.	Chemical analysis	
	320 samples @ \$19.00/sample	\$6080.00
2.	Computer processing	
	320 samples @ \$1.00/sample	320.00
3.	Labour	
	S.J. Hoffman, Senior Geochemist,	
	2 days July 17, 18	
	2 days @ \$300./day	600.00
4.	Drafting - preparation of base maps	
	to be used in report	100.00
		\$7100.00
		3232323

63.

APPORTIONMENT OF ASSESSMENT WORK

NIK PROPERTY, B.C.

7


Group: NIK Group 86-7(NIK 1-4) 60 units

Value of Work: \$7,100 - B.C. Mining Receipt #234714

Application of Work:

NIK 3 361 (18 units) Apply - 1 year assessment work	\$3600
NIK 4 362 (12 units) Apply - 1 year assessment work	\$2400
Value of Work Applied: Claims Balance to BP Minerals Limited PAC	\$6000 \$1100
	\$7100 =====

Chromitin (poil 1.06 T Labor 1.00 L 1.06 T Labor 1.00 L 1.00 L				674500.0	BPVR 86-11		
Chromium (ope) Los T M-200 Los T M-200				678200.0			
Distribution Histograms Distribution Histogra			NORTH LIMIT	6286000.0	DATE: OCT/86	PROJECT#: 50	5
LIG T N=289 LIG T		LIN = LINEAR LOG = LOGARITHMIC LINT= TRUNCATED LINEAR	LIN = LINEARSAMPLE TYPE50/60/0LOG = LOGARITHMICPROPERTY CODEALLLINT = TRUNCATED LINEARLSE CODEVBALOGT = TRUNCATED LOGARITHMICOB ORIGINALLSAMPLE TEXTUREALLSOIL HORIZONALL	50/60/61/62 ALL VBA ALL ALL ALL	N I TOODOGGON	K CLAIMS Ne project – b.c.	2.
<pre></pre>					A S S E S S MA	1 PORT 1 QU	
	N=289						
	72.0	72.2					334