#### DIAMOND DRILLING REPORT

ON

OWNER OPERMANORTHAIR MINES LTD.

NRM GROUP, NORTHAIR CLAIMS

Vancouver Mining Division

50° ON N 123° ON'W NTS 92J3E

06.4' 06.5'

FILMED

by

J. W. MacLeod, P. Eng.

Vancouver, B.C. October 15, 1986

GEOLOGICAL BRANCH ASSESSMENT REPORT

15,198

#### TABLE OF CONTENTS

| Summary                                     | Page |
|---------------------------------------------|------|
| Introduction                                |      |
| Property                                    | 5    |
| Location & Access                           | 6    |
| General                                     | 6    |
| History                                     |      |
| Diamond Drilling                            | 10   |
| Conclusions                                 | 11   |
|                                             | MAPS |
| Location MapPlan of Claims                  |      |
| Plan of Drill Hole<br>Section of Drill Hole |      |

APPENDIX I

DRILL HOLE LOG

APPENDIX II

ASSAY CERTIFICATE

APPENDIX III

EXPENDITURE

APPENDIX IV

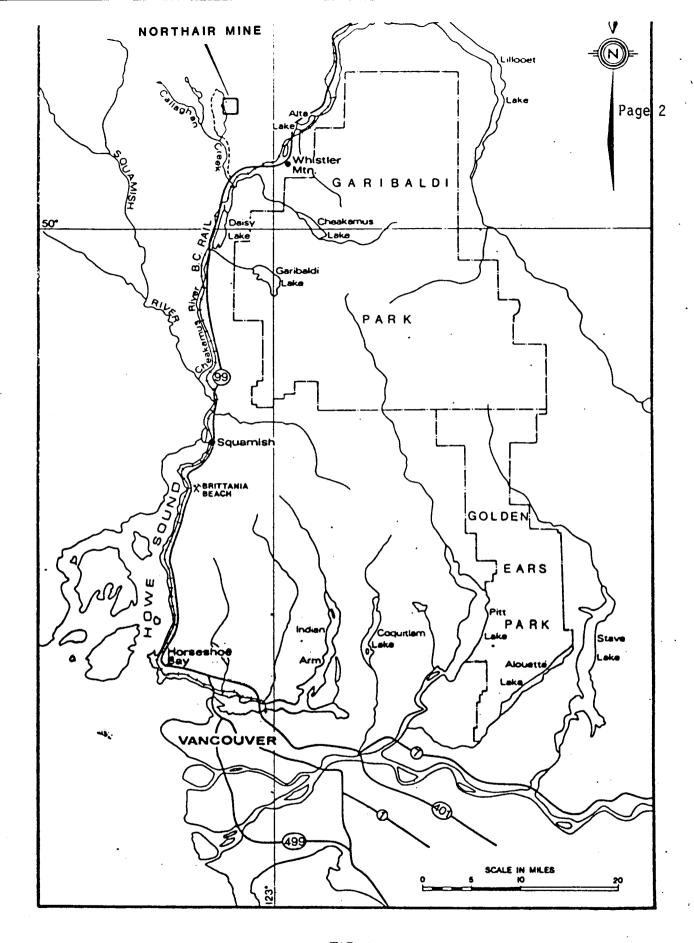
ENGINEER'S CERTIFICATE

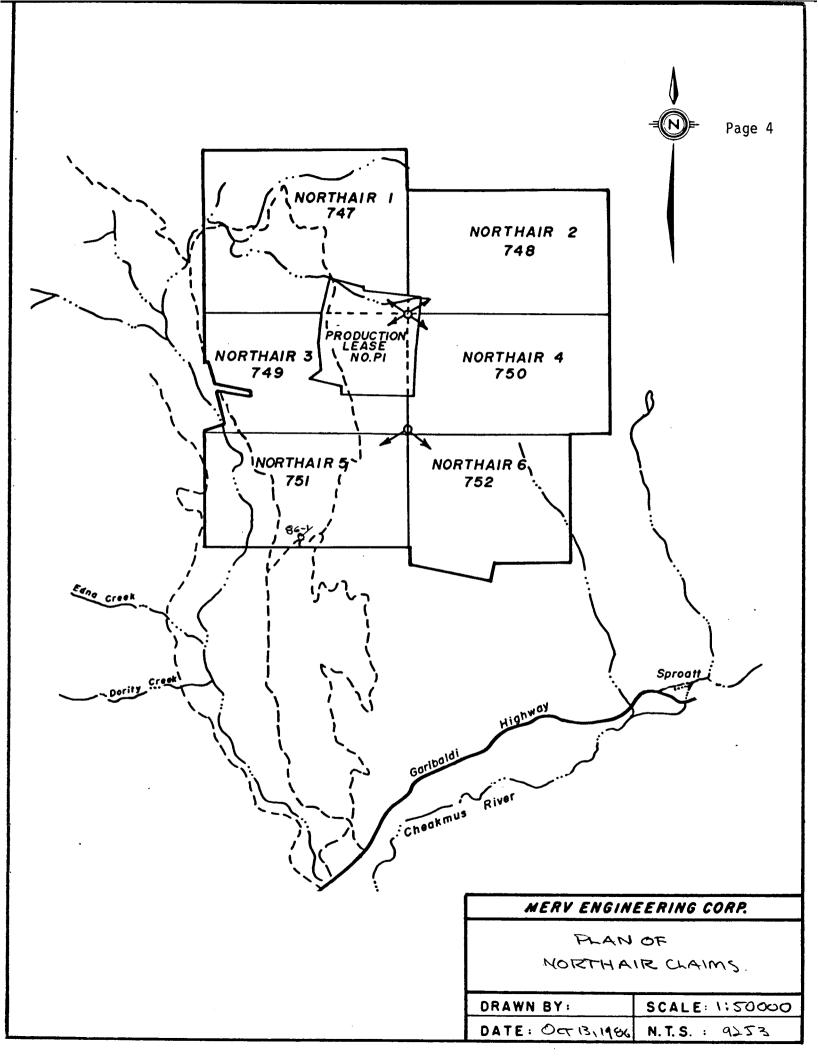
#### DRILL HOLE 86-1

#### SUMMARY:

Drill hole 86-1 was drilled to test a VLF-FLM anomaly obtained in a survey carried out by Glen E. White, Geophysical.

The drill hole intersected a highly altered zone from 68.0 to 94.8 metres in the hole and this shear zone is probably the cause of the E. M. anomaly. A 6 metre bullish quartz-carbonate vein is emplaced in the shear zone but no sulfide mineralization is present.





FIG. 1

GENERAL LOCATION MAP

INTRODUCTION: Page 3

All available data regarding the Northair property were reviewed with the object of establishing a exploration target where work could be carried out to qualify for assessment purposes on the ground surrounding the Northair Production Lease No. Pl.

A strong VLF-EM conductor was found to occur close to the south boundary trending northwest, the same direction as the Northair mineral zone, which had not been investigated.



The NRM group consists of the following six grid claims which surround Production Lease No. Pl.  $\,$ 

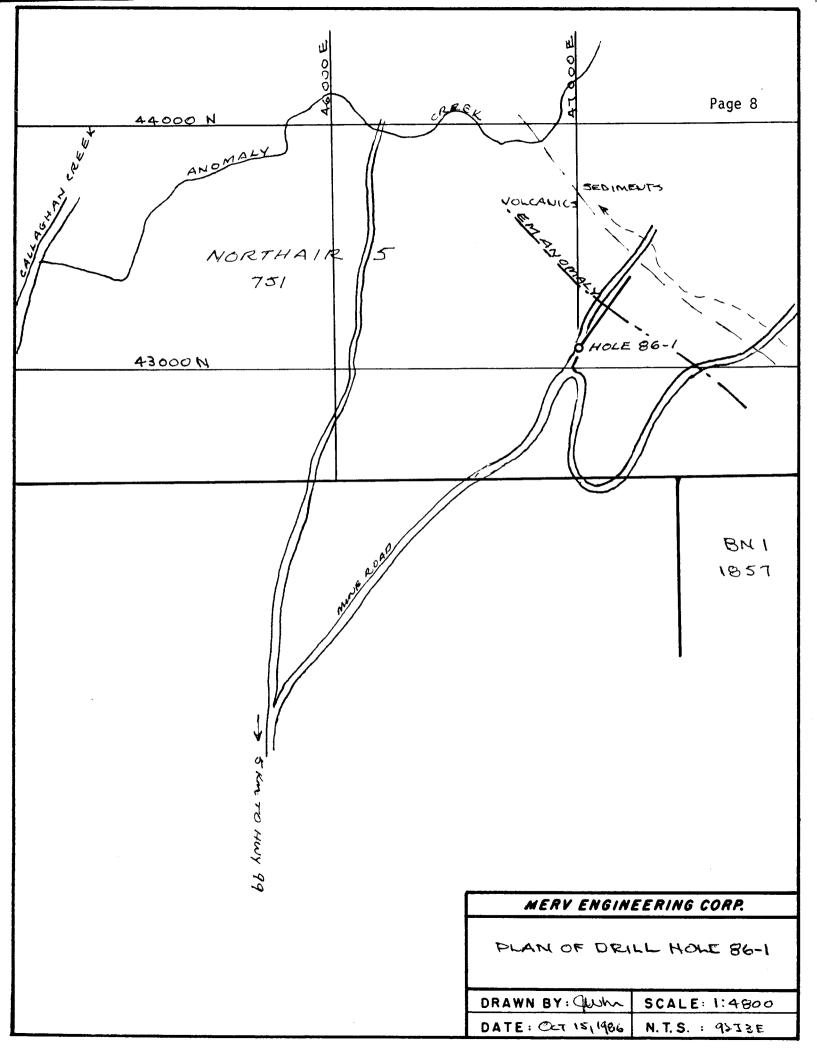
| CLAIM      | UNITS | RECORD NO. | ANNIVERSARY |
|------------|-------|------------|-------------|
| Northair 1 | 20    | 747        | August 11   |
| Northair 2 | 15    | 748        | August 11   |
| Northair 3 | 15    | 749        | August 11   |
| Northair 4 | 15    | 750        | August 11   |
| Northair 5 | 15    | 751        | August 11   |
| Northair 6 | 16    | 752        | August 11   |

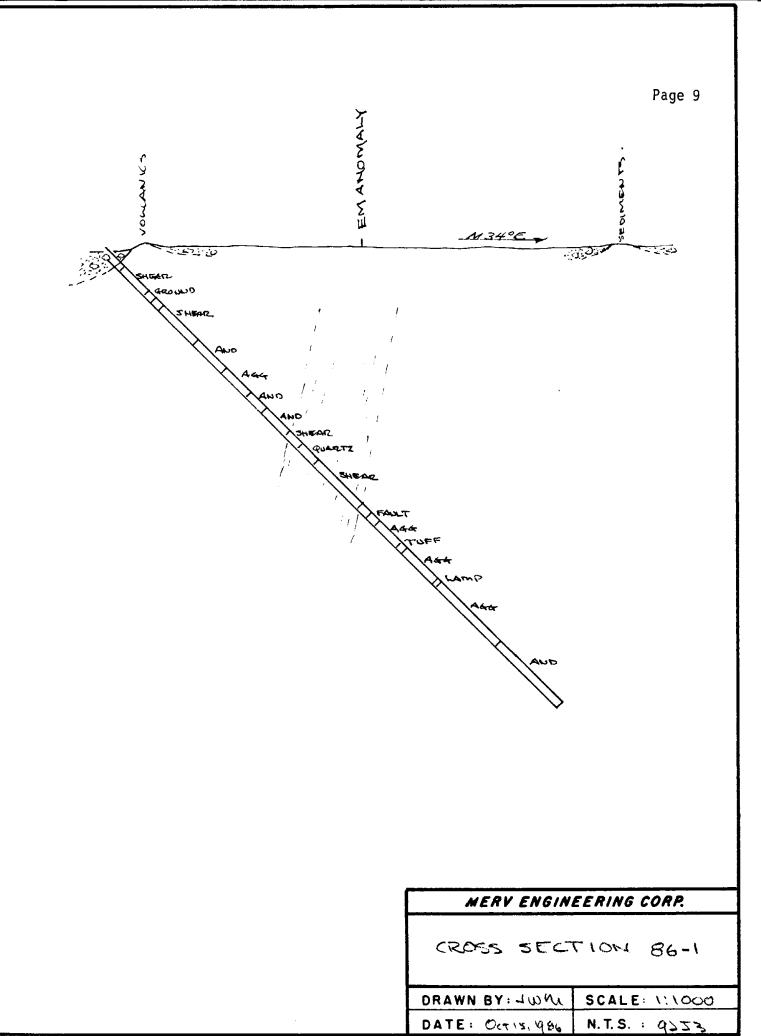
The Northair mine is located 100 km north of Vancouver.

Good gravel road leaves the Squamish-Whistler (99) highway 43 km north of Squamish. It is 5 km north westerly on this road to the Northair road which is 3.5 km to the mine. Diamond drill hole 86-1 is located on a logging road just off the Northair access road.

#### GENERAL:

The Northair mine produced gold, silver, lead, zinc and copper from en echelon north west trending quartz-carbonate veins hosted by andesite and andesitic agglomerates.


Stream silt geochemistry lead to the discovery and the area of mineralization is delimited by soil geochemistry.


The overall sulfide content is about 5 to 6% so that geophysical response over the known veins is vague.

The anomaly proposed for testing by diamond drilling was much stronger than that over the mined veins so it was speculated that the sulfide content might be higher.

The History of the property is summarized below:

- 1969 mineral discovery by Warshaw ski and Manifold
- 1970 optioned to McIntyre soil survey
- 1972 optioned to Northair diamond drilling, U/G exploration, geochemistry
- 1976 milling started
- 1982 milling suspended
- 1981-82 detailed mapping by R. Wares
- 1983 detailed review by Ash and Taylor
- 1985 mapping by JM Dawson





Between July 28 and August 2, F. Boisvenu Diamond Drilling Ltd. completed hole 86-1 to a depth of 166.8 metres.

The hole cut the anticipated sequence of ardesites and andesitic agglomerate. A one metre section of finely banded tuff was cut at a flow contact. A one metre lamprophyre dike, common to the area, was also intersected.

A very strong shear zone was cut from 68.0 to 94.8 metres. The shears varies from chlorite schist to tan, schist to mud and gouge. It is occupied from 72.6 to 78.6, a 6 metre section, mainly by bullish quartz with carbonate (siderite) sections.

No sulfide mineral was found in the core.

The E. M. anomaly can be explained by the strong shear zone cut in the hole, unfortunately not by sulfides as anticipated.

Respectfully submitted

Page 11

J. W. MacLeod, P. Eng.

Vancouver, B.C.

October 15, 1986

## APPENDIX I

DRILL HOLE LOG

| F            | PROPERTY .,. | NORTHAIR            | MINES LTD                       | HOLE No          | o86-1            |
|--------------|--------------|---------------------|---------------------------------|------------------|------------------|
|              | DIP TEST     | ole                 |                                 |                  |                  |
| Footage<br>0 | Reading      | Corrected<br>45     | Hole NoSheet No                 | 4/000            | Total Depth      |
| -152m        |              | - <del>lost</del> - | SectionJuly 28, 1986 Date Begun | Dep              | Claim Northair 5 |
|              |              |                     | Date Finished August 2, 1986    | Elev. Collor747m | Core Size N.Q.   |

| res DESCRIPTION                                        | SAMPLE No.                                                                                                                                                                                                                                                                                                                                                                                                                                       | WIDTH<br>OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                    | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CASING                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AGGLOMERATE - andesitic, medium grained green, vague   |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| fragments.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SHEAR ZONE - chloritic, andesite, sheared at low angle |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| to core                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14.18 - 14.48 - qtz carb. in schist                    | 70108                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GROUND CORE                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SHEAR ZONE - largely replaced by fine grained dark     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| green dike and bull quartz (25%)                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17.1 - 17.4 qtz and calcite                            | 70109                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.2 - 19.6 15% qtz., contorted schist                 | 70110                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SHEAR ZONE - chloritie schist, 15° to 20° to core,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| gradational ct. at 33.5, bull qtz., veins              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| up to 0.3m                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ·                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | CASING  AGGLOMERATE - andesitic, medium grained green, vague fragments.  SHEAR ZONE - chloritic, andesite, sheared at low angle to core  14.18 - 14.48 - qtz carb. in schist  GROUND CORE  SHEAR ZONE - largely replaced by fine grained dark green dike and bull quartz (25%)  17.1 - 17.4 qtz and calcite 19.2 - 19.6 15% qtz., contorted schist  SHEAR ZONE - chloritie schist, 15° to 20° to core, gradational ct. at 33.5, bull qtz., veins | AGGLOMERATE - andesitic, medium grained green, vague fragments.  SHEAR ZONE - chloritic, andesite, sheared at low angle to core  14.18 - 14.48 - qtz carb. in schist  GROUND CORE  SHEAR ZONE - largely replaced by fine grained dark green dike and bull quartz (25%)  17.1 - 17.4 qtz and calcite 70109  19.2 - 19.6 15% qtz., contorted schist 70110  SHEAR ZONE - chloritie schist, 15° to 20° to core, yradational ct. at 33.5, bull qtz., veins | TESS DESCRIPTION SAMPLE No. OF SAMPLE CASING  AGGLOMERATE - andesitic, medium grained green, vague fragments.  SHEAR ZONE - chloritic, andesite, sheared at low angle to core 14.18 - 14.48 - qtz carb. in schist 70108 0.3  GROUND CORE  SHEAR ZONE - largely replaced by fine grained dark green dike and bull quartz (25%) 17.1 - 17.4 qtz and calcite 70109 0.3  19.2 - 19.6 15% qtz., contorted schist 70110 0.3  SHEAR ZONE - chloritie schist, 15° to 20° to core, gradational ct. at 33.5, bull qtz., veins | TES DESCRIPTION SAMPLE No. OF SAMPLE AND CASING  AGGLOMERATE - andesitic, medium grained green, vague fragments.  SHEAR ZONE - chloritic, andesite, sheared at low angle to core 14.18 - 14.48 - qtz carb. in schist 70108 0.3 Tr.  GROUND CORE  SHEAR ZONE - largely replaced by fine grained dark green dike and bull quartz (25%) 17.1 - 17.4 qtz and calcite 70109 0.3 Tr.  19.2 - 19.6 15% qtz., contorted schist 70110 0.3 Tr.  SHEAR ZONE - chloritie schist, 15° to 20° to core, gradational ct. at 33.5, bull qtz., veins | CASING  AGGLOMERATE - andesitic, medium grained green, vague fragments.  SHEAR ZONE - chloritic, andesite, sheared at low angle to core 14.18 - 14.48 - qtz carb. in schist  GROUND CORE  SHEAR ZONE - largely replaced by fine grained dark green dike and bull quartz (25%)  17.1 - 17.4 qtz and calcite 70109 0.3 Tr0.01 19.2 - 19.6 15% qtz., contorted schist 70110 0.3 Tr. 0.03  SHEAR ZONE - chloritie schist, 15° to 20° to core, yradational ct. at 33.5, bull qtz., veins | Tes DESCRIPTION SAMPLE No. OF SAMPLE A.S. Aq. Cu  CASING  AGGLOMERATE - andesitic, medium grained green, vague fragments.  SHEAR ZONE - chloritic, andesite, sheared at low angle to core  14.18 - 14.48 - qtz carb. in schist  GROUND CORE  SHEAR ZONE - largely replaced by fine grained dark green dike and bull quartz (25%)  17.1 - 17.4 qtz and calcite 70109  19.2 - 19.6 15% qtz., contorted schist 70110  SHEAR ZONE - chloritie schist, 15° to 20° to core, gradational ct. at 33.5, bull qtz., veins |

| 1       | PROPE                                 | RTY                                                                                                            |                                                                       |        |                                       | HOLE               | No        |       |     |   |
|---------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|---------------------------------------|--------------------|-----------|-------|-----|---|
| Footage | DIP TEST  Angle age Reading Corrected |                                                                                                                | Angle         Angle         Reading         Corrected         Hole No |        | earingev. Collar                      |                    | Logged By |       |     |   |
| DEPTH   |                                       |                                                                                                                | DESCRIPTION                                                           |        | SAMPLE No.                            | WIDTH<br>OF SAMPLE | ALL       | Aq.   | W03 |   |
| 33.5 -  | 44.5                                  | ANDESITE -                                                                                                     | light grey, weakly sheared                                            |        |                                       |                    |           |       | ·   |   |
| 44.5 -  | 53.0                                  | AGGLOMERATE                                                                                                    | - dark, fine grained, irreg. qtz stringers 15%,                       | carb.  |                                       |                    |           | `     |     |   |
|         |                                       |                                                                                                                | 49.7 - 50.0 25% qtz carb.                                             |        | 70111                                 | 0.3                | Tr.       | -0.01 |     |   |
|         |                                       | respondente de la companya de la co | 50.0 - 50.3 40% qtz carb.                                             |        | 70112                                 | 0.3                | Tr.       | 0.02  |     |   |
|         |                                       |                                                                                                                |                                                                       |        |                                       |                    |           |       |     |   |
| 53.0 -  | 59.1                                  | ANDESITE -                                                                                                     | medium grained, weakly sheared 45°to                                  | core   |                                       |                    |           |       |     | · |
| 59.1 -  | 68.0                                  |                                                                                                                | grey, eplidote veinlets, contacts at 50, may be instrusive            | 45°and |                                       |                    |           |       |     |   |
| 68.0 -  | 72.6                                  | SHEAR ZONE                                                                                                     | - buff altered schist                                                 |        |                                       |                    |           |       |     |   |
|         |                                       |                                                                                                                | 71.6 - 71.9 qtz carb. in schist                                       |        | 70113                                 | 0.3                | Tr.       | -0.01 |     |   |
| 72.6 -  | 78.6                                  | QUARTZ VEIN                                                                                                    | - mainly bull quartz, last 1.5m much                                  |        |                                       |                    |           |       |     |   |
| ····    |                                       |                                                                                                                | siderite                                                              |        | · · · · · · · · · · · · · · · · · · · |                    |           |       |     |   |
|         |                                       |                                                                                                                | 77.7 - 78.0 brown siderite                                            |        | 70114                                 | 0.3                | Tr        | -0.01 |     |   |
|         |                                       |                                                                                                                |                                                                       |        |                                       |                    |           |       |     |   |

|         | PROP        | RTY                    |                                                   |             |            | HOLE               | No           |                               |    |  |
|---------|-------------|------------------------|---------------------------------------------------|-------------|------------|--------------------|--------------|-------------------------------|----|--|
|         | DIP         | TEST                   | · · · · · · · · · · · · · · · · · · ·             |             |            |                    |              |                               |    |  |
| Footage |             | Angle eading Corrected | Hole NoSheet No. 3 SectionDate BegunDate Finished | Dep         | r. Collar  |                    | Logg<br>Clai | ol Depth<br>ged By<br>me Size |    |  |
| DEPTH   |             |                        | DESCRIPTION                                       |             | SAMPLE No. | WIDTH<br>OF SAMPLE | AL           | Aq.                           | Cu |  |
| 78.6    | - 94.8      | SHEAR ZONE             | - tan coloured, foliated 60° to core              | much        |            |                    |              |                               |    |  |
|         |             |                        | mud and gouge but good recovery                   | , macri     |            |                    |              |                               |    |  |
|         | <del></del> |                        | 79.5 79.8 tan coloured schist                     |             | 70115      |                    | Tr.          | -0.01 `                       |    |  |
|         |             |                        |                                                   | <del></del> |            |                    |              |                               |    |  |
| 94.8 -  | 97.2        | ANDESITE -             | porphyritie flow, white fledspar, 0               | .6cm        |            |                    | ·            |                               |    |  |
|         |             |                        | x ls                                              |             |            |                    |              |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
| 97.2 -  | 101.        | β FAULT? – bι          | ull qtz. and fine grained green dike              | filling     |            |                    |              |                               |    |  |
|         |             | sł                     | neared and gouged porphyry                        |             |            |                    |              |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
| 101.8   | - 109       | 7 AGGLOMERATE          | E - porphyritic                                   |             |            |                    | ·            |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
| 109.7   | - 111       | 0 TUFF - dark          | , fine grained banded at 60 to core               |             |            |                    |              |                               | ļ  |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
| 111.0   | - 122       | 9 AGGLOMERATE          | - grey, few porphyritic bands                     | •           |            |                    | ~ <u> </u>   |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
|         |             |                        |                                                   | <del></del> |            |                    |              |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |
|         |             |                        |                                                   |             |            |                    |              |                               |    |  |

|         | PROPE | RTY    |             |                                    |                  |            | HOLE               | No   |         | ****** |      |
|---------|-------|--------|-------------|------------------------------------|------------------|------------|--------------------|------|---------|--------|------|
|         | DIP 1 |        | ngle        |                                    |                  |            |                    |      |         |        |      |
| Footage | Re    | eading | Corrected   | Hole NoSheet No4                   | Lat              |            |                    | Tota | l Depth |        | **** |
|         |       |        |             | Section                            |                  | )          |                    |      |         |        |      |
|         |       |        |             | Date Begun.                        | •                | ring       |                    |      | -       | •••••• |      |
|         |       |        |             | Date Finished                      |                  | . Collar   |                    |      |         | -      |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
| DEPTH   |       |        |             | DESCRIPTION                        |                  | SAMPLE No. | WIDTH<br>OF SAMPLE | AL   | Aq.     | Cu     |      |
| 122.9   | - 123 | .8 L   | AMP DIKE -  | fine grained dark brown            |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
| 123.8   | - 145 | 4 A    | GGLOMERATE  | - fragments up to 5cm, porphyritic | hands            |            | -                  |      | ,       |        |      |
|         |       |        | <u> </u>    |                                    | <del>Danas</del> |            | -                  |      |         |        | ·    |
| 145     | 166.  | B A    | NDESITE - g | rey, medium grained, increasing    |                  |            |                    | ·    |         |        |      |
|         |       |        |             | orphyritic bands from 152 to end   |                  |            |                    |      |         |        |      |
|         |       |        |             | 47 - shear with qtz                |                  | 70116      | 0.15               | Tr.  | 01      |        |      |
|         |       |        | 1           | 50 - shear with gtz                |                  |            |                    |      |         |        |      |
|         |       |        |             | 52 - 3m shear; 50 to core          |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         | 166.  | 3 E    | nd of Hole  |                                    |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
| NOTE:   |       | Т      | he core for | this hole is stored at the mine si | te.              |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         | <br>   |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         |       |        |             |                                    |                  |            |                    |      |         |        |      |
|         |       |        | <del></del> |                                    |                  |            |                    |      |         |        |      |

## APPENDIX II

ASSAY CERTIFCATE



## **VANGEOCHEM LAB LIMITED**

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| SAMPLE #       Ag oz/st oz/st         70108       .04 (.005         70109       (.01 (.005         70110       .03 (.005         70111       (.01 (.005         70112       .02 (.005         70113       (.01 (.005         70114       (.01 (.005         70115       (.01 (.005         70116       (.01 (.005 | REPORT NUMBER: 860379AA | JOB NUMBER: 860379 | NORTHAIR MINES LIMITED | PAGE 1 OF |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|------------------------|-----------|
| 70108       .04       (.005         70109       (.01       (.005         70110       .03       (.005         70111       (.01       (.005         70112       .02       (.005         70113       (.01       (.005         70114       (.01       (.005         70115       (.01       (.005                      | SAMPLE #                | Ар                 | Au                     |           |
| 70109                                                                                                                                                                                                                                                                                                             |                         | oz/st              | oz/st                  |           |
| 70109                                                                                                                                                                                                                                                                                                             |                         |                    |                        |           |
| 70109                                                                                                                                                                                                                                                                                                             |                         |                    |                        |           |
| 70110 .03 <.005 70111                                                                                                                                                                                                                                                                                             | 70108                   | . 24               | <.005                  |           |
| 70111                                                                                                                                                                                                                                                                                                             | 70109                   | ⟨. Ø1              | (.005                  |           |
| 70112       .02       <.005         70113       <.01       <.005         70114       <.01       <.005         70115       <.01       <.005                                                                                                                                                                        | 70110                   | . Ø3               | <.005                  |           |
| 70113 (.01 (.005<br>70114 (.01 (.005<br>70115 (.01 (.005                                                                                                                                                                                                                                                          | 70111                   | ⟨.Ø1               | (. ØØ5                 |           |
| 7Ø114                                                                                                                                                                                                                                                                                                             | 70112                   | .02                | <. ଉପ୍ତ                |           |
| 7Ø114                                                                                                                                                                                                                                                                                                             |                         |                    |                        |           |
| 70115 (.01 (.005                                                                                                                                                                                                                                                                                                  | 70113                   | (.01               | <. 005                 |           |
|                                                                                                                                                                                                                                                                                                                   | 70114                   | ⟨. Ø1              | <. ØØ5                 |           |
| 70116 < .01 < .005                                                                                                                                                                                                                                                                                                | 70115                   | (.01               | <. ØØ5                 |           |
|                                                                                                                                                                                                                                                                                                                   | 70116                   | ⟨. Ø1              | (.005                  |           |

DETECTION LIMIT
1 Troy oz/short ton = 34.28 ppm

1 opm = 0.0001%

.01

pom = parts per million

( = less than

signed:

**新**仁

.005

APPENDIX III

EXPENDITURE

| F. Boisveno Diamond Drill12,730.98 |
|------------------------------------|
| Core logging & report              |
| \$13,230.98                        |

F. BOISVENU DIAMOND DRILLING LTD.

C/O 200-2695 GRANVILLE STREET VANCOUVER, B.C. V6H 3H4



# HOSO1

DATE:

August 26, 1986

TO:

Northair Mines Ltd. 860-625 Howe Street Vancouver, B.C.

V6C 2T6

FOR:

Surface Drilling - BBS 56

Squamish, B.C.

July 28 - August 2, 1986

Drilling Mobilization and Demobilization Moving and Others Materials Acid Test \$ 9,736.60 1,200.00 980.00 760.98 53.40

\$12,730.98

| GOODS<br>RECV'D | OK F        | OR<br>IENT |
|-----------------|-------------|------------|
| PICES &         | CHEQ<br>NO. | UĘ         |
| CODE            |             | AMOUNT     |
|                 |             |            |
|                 |             |            |

#### Drilling

| Hole#  | Size | Angle    | From | <u>To</u> | Feet | Rate    | Amount     |
|--------|------|----------|------|-----------|------|---------|------------|
| 86 - 1 | NQ   | -40 deg. | 0    | 547       | 547  | \$17.80 | \$9,736.60 |

#### Moving and Others:

| <u>Memo</u> :                                                        | Man<br>hrs       | Drill<br>hrs        |
|----------------------------------------------------------------------|------------------|---------------------|
| Set up<br>Cave in<br>Tear Down<br>Tear Down                          | 8<br>4<br>8<br>8 | 4<br>2<br>4<br>4    |
|                                                                      | 28               | 14                  |
| 28 man hours @ \$24.00 per hour<br>14 drill hours @ \$22.00 per hour |                  | \$ 672.00<br>308.00 |
|                                                                      |                  | \$ 980.00           |

## Materials:

| 1    | - NQ | Bit                      | \$ 490.00 |
|------|------|--------------------------|-----------|
| 29   | - NQ | Core Boxes @ \$5.00 each | 145.00    |
|      |      |                          | 635.00    |
| Add: | 7%   | PST                      | 44.45     |
|      |      |                          | 679.45    |
| Add: | 12%  | overhead charge          | 81.53     |
|      |      |                          | \$ 760.98 |
|      |      |                          | =         |

## Acid Test

| Depth | Charge  |
|-------|---------|
| 547   | \$53.40 |

## APPENDIX IV

ENGINEER'S CERTIFCATE

#### CERTIFICATE

I, James W. MacLeod, of 1220 Arbutus Street, in the City of Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. That I am a Consulting Engineer, with a business address at Suite 860, 625 Howe Street, in the City of Vancouver, in the Province of British Columbia.
- 2. That I am a graduate of the University of Alberta with a degree of B.Sc. in Mining Engineering.
- 3. That I have actively practiced my profession in mineral exploration since graduation in 1946.
- 4. That I am a registered Professional Engineer in the Province of British Columbia.
- That I have been associated with the Northair mine since optioning the property for McIntyre in 1970 and that I suprised the drilling and logged the core from hole 86-1.

J. W. MacLeod, B.Sc., P. Eng.

DATED at the City of Vancouver, Province of British Columbia, this 15th day of October 1986.