FILMED

RAM EXPLORATIONS LTD.

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL
REPORT
AURIC CLAIM GROUP
KAMLOOPS MINING DIVISION
SOUTHEASTERN BRITISH COLUMBIA

Latitude = 51° 821 35.5' Longitude = 620 004 1/7 58.8			
NTS = 82M12W	SUB-RECORDER RECEIVED		
	NOV 5 1986		
	M.R. # \$ VANCOUVER, B.C.		

Mineral Claims Auric - 6336(8)

Owner / Operator = Orwell Resources

Reported By = C. von Einsiedel, BSc.

Submitted July 30, 1986

GEOLOGICAL BRANCH ASSESSMENT TRANSFT

15,213

TABLE OF CONTENTS

	Page
TERMS OF REFERENCE	1
INTRODUCTION	1
SUMMARY	2
RECOMMENDATIONS	4
COST ESTIMATE	5
SECTION 1 - GENERAL 1.1 Property Description 1.2 Exploration History 1.3 Phase 2 Exploration Program	1 - 2 1 - 4 1 - 5
SECTION 2 - GEOLOGY 2.1 Regional Geology Exploration Model 2.2 Property Geology	2-1 2-1
SECTION 3 - GEOCHEMICAL SURVEYS 3.1 Survey Method 3.2 Results	3-1 3-2
SECTION 4 - GEOPHYSICAL SURVEYS 4.1 VLF-EM Survey 4.2 Magnetometer Survey 4.3 Results	4-1 4-1 4-2
REFERENCES	
CERTIFICATES	
STATEMENT OF COSTS	
APPENDIX A - Assay Results Soil Geochemistry	
APPENDIX B - Assay Results Rock Samples	

LIST OF FIGURES

		F	Page
Figure	1.	Location Map	1-1
Figure	2.	Claims Map (1:50,000)	1-3
Figure	3.	Regional Geology Map (1:50,000)	2-2
Figure	4.	Property Base and Geology Map in (1:2,500)	pocket
Figure	5.	Soil Geochemistry - Cu, Ag (1:2,500)	TT .
Figure	6.	Soil Geochemistry - Pb, Zn (1:2,500)	11
Figure	7.	VLF-EM In Phase Profiles (1:2,500)	"
Figure	8.	VLF-EM Contoured Fraser Filtered VLF-EM (1:2,500)	11
Figure	9.	Contoured Magnetometer Data (1:2,500)	11

LIST OF TABLES

Table 1. Rock Sample Descriptions 2-5

TERMS OF REFERENCE
AND

INTRODUCTION

TERMS OF REFERENCE

Orwell Resources Ltd. was initially incorporated to evaluate the Auric Claim Group, a grassroots, volcanogenic massive sulfide prospect located near Clearwater in south central British Columbia. Results of preliminary exploration (Magrum, 1984 and 1985) outlined several coincident geochemical and geophysical anomalies which warranted more detailed evaluation.

On behalf of Orwell Resources, Ram Exploration carried out Phase 2 Exploration as recommended in the initial property report by M. Magrum.

INTRODUCTION

Preliminary exploration programs consisted of reconnaissance scale geochemical and geophysical surveys along 200 meter spaced E-W lines over the entire property. Phase 2 was designed to follow up co-incident EM - geochemical targets located in the northeast quadrant of the claim group.

The project was carried out in stages between November 5, 1985 and May 25, 1986 and included; detailed grid establishment; detailed geologic mapping; close spaced VLF-EM and magnetometer surveys; and, detailed geochemical sampling in the vicinity of geochemically anomalous areas described in the initial property report.

SUMMARY

AND

RECOMMENDATIONS

SUMMARY

Orwell Resources Ltd. holds a 100% interest in the Auric Mineral Claim consisting of 20 claim units recorded the Adams Lake District, Kamloops Mining Division. The property was staked in June 1984 after the British Columbia Department of Mines published updated geologic maps of the Adams Lake / Clearwater District. Updated information (Schiarizza, 1983) shows that the metavolcanic rocks which host the recently discovered Rea Gold Prospect (volcanogenic massive sulfide deposit located approximately 40 km south of Clearwater) are correlatable with metavolcanic rocks which underly the eastern half of the Auric Claim Group.

During 1984 and 1985, Rea Gold and Falconbridge Copper carried out an extensive exploration program and based on preliminary diamond drilling results, announced probable reserves of approximately 200,000 tons grading; 0.20 oz/ton gold, 5.0 oz/ton silver and 10% combined base metals.

Preliminary exploration carried out on the property (Magrum, 1984 and 1985), identified several targets most important of which are co-incident zinc and silver soil geochemical anomalies associated with a discontinuous, northeast trending conductive zone in the northeast quadrant of the property.

Phase 2 exploration was designed to evaluate the significance of this anomaly and to identify targets for follow up trenching.

A total of 18 line km of surveyed, flagged grid were established in the northeast quadrant to provide control for detailed VLF-EM, magnetometer, geochemical and geological surveys. Geologic mapping identified broad, carbonate-sericite alteration zones (up to 100m wide) associated with disseminated pyrite and minor pyrrhotite which are roughly co-incident with the northeast trending EM - geochemical anomaly identified during previous exploration. Samples collected from this zone (see Table 1) returned negligible base metal concentrations, however this alteration is similar to that typically developed at the periphery of many base metal deposits. It is recommended that continued exploration include a brief examination of the Rea Gold Prospect as an aid to identifying alteration features which may be associated with this type of massive sulfide mineralization.

Geophysical surveys (VLF-EM) confirmed results of earlier reconaissance surveys (Magrum, 1985) and outlined a broad, discontinous conductive zone associated with the alteration zone noted above. Magnetometer surveys show that the alteration zone exhibits a slightly elevated magnetic response (approximately 50 gammas variation from background readings within the Eagle Bay Formation). In addition, the magnetometer survey delineated a narrow, north - northwest trending magnetic high (approximately 50m wide over a strike length of 150m with readings up to 200 gammas above background) in the north central part of the grid. Detailed geologic mapping and prospecting in the vicinity of this anomaly identified narrow, northwest trending quartz veins. One sample of which (TK-7-86) returned base metal values of 0.13% lead and 0.05% zinc. These values are low however, the presence of base metal mineralization associated with an elevated magnetic response is considered a favourable indicator.

To evaluate the northeast trending geochemical anomaly identified during preliminary surveys, a total of 246 soil samples were collected at 25 meter intervals along 50 meter spaced lines in the south central part of the survey area. Assay results were generally low however several scattered anomalous silver and zinc values (up to 167 ppm zinc, 0.6 ppm silver) were identified within the alteration zone.

RECOMMENDATIONS

Exploration to date of the Auric property has delineated a broad (50 to 100 meter wide) northeast trending carbonate-sericite alteration zone associated with an elevated magnetic and conductivity response in metavolcanic rocks similar to those which host recent massive sulfide discoveries (Rea Gold / Falconbridge Copper) in the Adams Lake District. Geochemical sampling and sampling of pyritized, altered volcanics within this zone returned scattered, weakly anomalous base metal values.

Although these results are considered encouraging, the low base metal values obtained from both soil and rock sampling within the altered zone suggest limited potential for a significant discovery through the use of surface trenching. The best potential to develop sulfide mineralization lies along the projected down dip extensions of the mapped alteration zones.

It is therefore recommended that the Company proceed with a modified version of the proposed Phase 3 Exploration Program described in the initial property report. Prior to commencement of diamond drilling a detailed examination of alteration features associated with the Rea Gold Prospect should be carried out. If the alteration features identified on the Auric property closely resemble those developed at the Rea Gold Prospect a limited diamond drilling program would be warranted.

Respectfully Submitted,

C. A. von Einsiedel Consulting Geologist COST

ESTIMATE

COST ESTIMATE

The following cost estimate incorporates new information available since the initial property report by Magrum, (1984).

Phase 3A

Geological mapping and examination of Rea Gold prospect.

Geologist - 10 days @ 250.00 Assistant - 10 days @ 175.00	2,500.00 1,750.00
Travel, Accommodation Assays, allow 20 @ 25.00	1,500.00
Report	2,000.00

Total \$8,250.00

Phase 3B

Supervision Reports	7,500.00
Diamond Drilling -allow 400m @ 125.00/m	50,000.00
Contingency	10,000.00

Total \$67,500.00

The revised cost estimate for Phase 3A and 3B exploration programs is \$75,750.00.

=======

SECTION 1
GENERAL

1.1 Property Description (please refer to figure no.s 1 and 2)

The property of Orwell Resources Ltd. is located in central British Columbia approximately 10 km southeast of the settlement of Clearwater. The claims cover the east and west facing slopes of McDougal Creek which joins the North Thompson River approximately 5 km north of the claim boundary.

The claims are accessible by gravel logging road (inactive area) along Hascheak Creek to McDougal Creek and then via 4X4 track for a distance of roughly one kilometer onto the northeastern part of the claim.

The Auric Claim is situated on a moderately steep north facing slope locally breaking into cliffs in the south central part of the claim. Elevations on the property range from 3,500' at the north boundary to 5,500' on the southern boundary.

The detailed grid established in the northeast corner of the claim group straddles the nose of a north facing ridge and is bounded on the west by McDougal Creek and extends to the eastern border of the claim.

The property consists of one claim block comprising twenty claim units recorded in the Kamloops Mining Division on map sheet 82M/12W.

Claim Name	No. of Units	Record No.	Registered Owner	Expiry Date
Auric	20	6336(8)	Orwell Resources	August 8,1988

Prior to the discovery of volcanogenic massive sulfide mineralization in the Adams Lake District the volcano-sedimentary sequence (Eagle Bay and Fennel Formation) which underlies the Auric Claim was not considered an important host of significant base or precious metal mineral deposits.

Previous exploration in the Clearwater area was confined to limited surficial and underground exploration of northeast and west-northwest trending quartz carbonate vein structures. These structures are generally narrow (less than 1 to 2m wide) and are typically mineralized with silver and base metal sulfides.

In 1984, Rea Gold Ltd. announced the discovery of significant massive sulfide mineralization and in 1984 optioned the project to Falconbridge Copper. Geologic mapping By Schiarizza (1980 to 1983; released in 1984) showed that the stratigraphic unit which hosts the Rea Gold prospect can be correlated with a similar sequence which extends approximately 15 km north of the Baldy Batholith, a felsic intrusive which truncates the southern part of the Eagle Bay and Fennel Formations.

During 1984, the staking rush which followed Rea Gold's discovery was extended north of the Baldy Batholith on the basis of Schiarizza's stratigraphic correlation.

Since 1984 considerable exploration has been carried out by major companies including Newmont Mines, Esso Minerals, Noranda and Falconbridge Copper, however, results of this work have not been published to date.

With the exception of the recent geological, geochemical and geophysical surveys carried out by Orwell Resources no recorded exploration has been carried out on the Auric Claim group.

1.3 Phase 2 Exploration Program

The principal objective of Phase 2 exploration was to determine the significance of geophysical and geochemical anomalies identified during previous exploration:

The project included:

- 1) Establishment of 18 line km of blazed cut lines stationed by tight chain survey at 25m intervals.
- 2) 18 line km of VLF-EM survey (Instrument: Geonics EM-16).
- 3) 18 line km of magnetometer survey (Instrument: MP-2 proton precession magnetometer corrected by standard loop method).
- 4) Detailed geologic mapping of the northeast corner of the Auric Claim block (approximately 1.5 square km mapped at a scale of 1:1000 and reconaissance geologic mapping of the entire claim block).
- 5) Detailed fill in geochemical surveys in the south central and south western parts of the detail grid area. A total of 246 samples were collected at 25m intervals along 50 meter spaced E-W lines. Of these 143 were assayed by ICP for a suite of 28 major and trace elements. Copper, silver, lead and zinc values are plotted in figure 5 and 6 and additional elements are attached as Appendix A.

2.1 Regional Geology and Exploration Model

(please refer to figure no. 3)

The geology of the Clearwater/Adams Lake area was recently described by Schiarizza (1981) and consists of NW striking, Mississippian Age meta-volcanic and meta-sedimentary rocks. To the south of the project area, this sequence has been intruded by Cretaceous Monzonites which form the Baldy Batholith. Still further south, the same volcano-sedimentary package is repeated and forms the Eagle Bay and Fennel Formations.

Within the Clearwater area, these units have been broadly folded along a north plunging axis and are cut by NE and NNW trending faults.

The Fennel and Eagle Bay Formations comprise a thick sequence of volcanics varying from intermediate (Fennel Formation) to felsic (Eagle Bay Formation) in composition. This sequence is analagous to that which most known volcanogenic massive sulfide deposits and is presently considered an excellent exploration target.

Published information concerning the Rea Gold Prospect is limited however, the most important feature is the unusually high precious metal contents (up to 0.20 oz/ton Au and 5.0 oz/ton Ag) associated with the mineralization. This feature combined with the tonnage potential of this type of deposit (several million tons) make the Eagle Bay Formation a particularly attractive exploration target.

Secondary exploration targets are northeast and north-northwest trending lead-zinc-silver bearing quartz carbonate veins however, the tonnage potential of this type of deposit is limited (generally less than 100,000 tons).

2.2 Property Geology

To assist with evaluating the coincident EM-geochemical anomaly located in the northeast corner of the property, detailed geologic mapping and prospecting were carried out.

A total of 14 float and outcrop samples were collected and assayed by ICP for a suite of 28 major and trace elements.

Outcrop areas, structural information and rock sample locations are shown in figure no. 4, rock smaple descriptions are included in Table 1 with assay results listed in Appendix B.

The map area is underlain entirely by volcaniclastic units of the Eagle Bay Formation. Detailed mapping shows that these rocks may be subdivided into severl distinct units which have been crosscut by later felsic dyke rocks.

Unit 1 (volcaniclastics) has been subdivided into 5 sub units primarily on the basis of fragment size. Unit 2 and 3 are felsic dyke rocks which were noted in the south central area of the grid.

Two areas of potential ecomonic interest were identified:

Area 1 - Carbonate-sericite alteration zone.

This zone has been traced along a northeast axis from the south central to the northeastern part of the detail grid. Alteration minerals including variably developed carbonate and sericite combined with disseminated pyrite and pyrrhotite distinguish rocks within this zone from adjacent unaltered volcaniclastics.

Float and bedrock samples collected from this zone returned negligible or low silver and base metal values (see Appendix B) however, the similarity between the observed alteration features and alteration features typically associated with massive sulfide deposits indicate some potential for sulfide mineralization in a down dip direction.

An alternative interpretation is that the alteration features noted above are associated with a northeast trending fault structure mapped by Schiarizza (1980-82) (please refer to figure no. 3). According to Schiarizza this fault structure terminates before reaching the alteration zone however it is possible that the structure persists and that the observed alteration resulted from hydrothermal activity along the fault.

The fact that alteration minerals are pervasive over a large area (up to 100 meters wide) is important and the observed alteration zone is therefore considered the most important target for continued exploration.

Area 2 - NNW Trending quartz carbonate veins

Narrow (10 - 30 cm wide) quartz carbonate veins containing minor galena and sphalerite were noted on line 1+00 S at station 2+90 W. The veins are irregular, striking from 320 to 350 degrees with a steep northeasterly dip. Assay results confirm the presence of base metals (Sample TK 07-86 returned 0.13% Pb and 0.05% Zn) however precious metal contents are insignificant.

Considering the low tonnage potential of this type of deposit this occurrence does not warrant additional evaluation.

3.1 VLF-EM Survey (please refer to figure no.s 7 and 8)

0

The VLF-EM instrument (Geonics EM-16) measures the secondary electromagnetic fields generated by buried conductive bodies when subjected to a primary electromagnetic (radio) signal. The primary signal is provided by high frequency military (radio) transmitters located in the United States.

Preliminary reconaissance scale VLF-EM surveys carried out on the Auric Claim identified weak to moderate, north-northeast and northwest trending conductive zones which were interpreted as possible shear or fault structures. The most important of these is a discontinuous, weakly conductive northwest trending zone located in the northeast corner of the claim block.

This structure is coincident with scattered anomalous zinc and silver soil geochemical values and was the principal target of Phase 2 exploration.

To evaluate this zone a total of 18 line kn of close spaced VLF-EM survey was carried out along E-W profile lines. In phase profiles are plotted in figure no. 7 with conductor axes shown as bold dashed lines. Contoured Fraser filtered data is shown in figure no. 8.

3.2 Magnetometer Survey (please refer to figure no. 9)

During the initial stages of this evaluation carbonate-sericite altered volcanics containing disseminated pyrite and minor pyrrhotite were noted within the detail grid area. The presence of pyrrhotite within the alteration zone suggested the possibility of an elevated magnetic response a feature which should assist mapping the zone in overburden covered areas.

The magnetometer survey was carried out using an MP2 proton precession instrument. A total of 18 line km (25 meter stations) of survey were conducted along E-W profile lines within the detail grid in the northeast corner of the property. Data was corrected for diurinal variation (by standard Loop methods) and is plotted and contoured in figure no. 9. Results are described in section 3.3.

3.3 Results

The VLF-EM survey identified several conductive zones (please refer to figure no. 7 and 8) however most of these trend NNW, lack a coincident geochemical expression and are interpreted as litholigic breaks (geologic contacts). The highly conductive, north trending zone identified along the western edge of the grid (station 7+00 west to 8+00 west, line 10+00 south to 0+00) is interpreted as a topographic effect induced by the proximity of McDougal Creek.

The most important anomalies are discontinuous, weakly conductive areas which can be traced from station 5+00 W on line 10+00 S to station 3+00 E on line 0+00.

Results of the magnetometer survey are difficult to interpret (possibly due to the inherent problems associated with the standard loop correction method) however several areas of interest are indicated.

The pyrrhotite mineralization associated with the mapped alteration zones was the principal target of this survey and therefore high magnetic values are considered anomalous. Areas of elevated magnetic response occur in the north western part of the detail grid and intermittantly along the NE trending alteration zones described in section 2.2.

Average readings within the alteration zones are approximately 30 - 50 gammas above background however, as noted above, more accurate correction methods will be required to accurately map the surface expression.

4.1 Survey Method

Reconaissance scale geochemical surveys (200 meter spaced lines with 50 meter station intervals) conducted during preliminary exploration of the claim group (Magrum, 1984) identified several weakly anomalous silver-zinc and silver-lead-zinc soil geochemical anomalies.

Geophysical surveys (Magrum, 1985) identified a northeast trending conductive zone coincident with elevated zinc and silver concentrations in the northeast corner of the property. To evaluate these anomalies detailed sampling (50 meter spaced lines sampled at 25 meter intervals) was carried out in the southern part of the detail grid area.

A total of 246 "B" horizon samples were collected, 143 of which were assayed by ICP for a suite of 28 major and trace elements. Copper, silver, zinc and lead concentrations are plotted in figure no. 5 and 6 with additional elements tabled in Appendix B.

4.2 Results

(please refer to figure no.s 5 and 6)

Silver and base metal concentrations within the survey area were generally low however, scattered, weakly anomalous results were obtained within the anomalous zone delineated by the reconaissance survey.

Although these results indicate little potential for the discovery of significant surface mineralization it is important to note that all anomalous results were from within the carbonate-sericite alteration zone described in section 2.2.

This alteration zone is similar to that developed at the periphery of many massive sulfide deposits and therefore the weakly anomalous results are considered encouraging.

REFERENCES

The following maps and publications were used in preparing this report:

BCDM Preliminary Map No. 53

Geology of the Clearwater and Barriere Riverareas. 1981 Geology by P. Schiarizza et. al.

SCHIARIZZA, R.A., Clearwater Area, 1981

Geology and fieldwork in B.C. BCDM

PRETO et al, 1980 Barriere Lakes, Adams Plateau Area

Geology and fieldwork in B.C. BCDM

MAGRUM, M. 1984

Geologic and Geochemical Report on the Auric Claim. Orwell Resources Prospectus.

MAGRUM, M. 1985

Geophysical report on the Auric Claim. Phase 1 Exploration. Orwell Resources Prospectus.

CERTIFICATE

- I, Carl von Einsiedel, of the City of Vancouver, British Columbia hereby certify that:
- 1. I am a consulting geologist with offices at 210 470 Granville Street, Vancouver, British Columbia.
- 2. I hold a degree of Bachelor of Science in Geology from Carleton University in Ottawa, April, 1982.
- 3. I have completed undergraduate and post graduate courses in exploration geochemistry, geostatistics and geophysics.
- 4. I have been employed in my proffession for the past eight years.
- 5. This report is based on results of geological, geochemical and geophysical surveys carried out on the property between November 5, 1985 and May 20, 1986.
- 6. I have no interest either direct or indirect, nor do I intend to recieve any such interest in the property covered in this report or in the shares of Orwell Resources.

Dated at Vancouver, British Columbia this 4th day of November, 1986.

C. von Einsiedel, BSc.

Consulting Geologist

b. Enia

STATEMENT OF COSTS

(Auric Project: Geological, Geochemical and Geophysical surveys - November 5, 1985 to May 25, 1986)

November 5 to November 26, 1985 (Project abandoned due to heavy snow conditions)

Work Completed: detailed geologic mapping, detailed grid establishment in northeast quadrant - approx 18 line kilometers, partial completion geophysical surveys.

Mobilization / Demob	\$	750.00
Personnel -Geologist (C. von Einsiedel) 5 days @ 300.00 -Engineer (M. Magrum) 1 day @ 400.00 -Technicians (2) 21 days @ 225.00		,500.00 400.00 ,450.00
Equipment Rentals -4x4 - 21 days @ 70.00 -fuel, insurance -chainsaw, misc. field supplies	1	,470.00 890.00 500.00
Geophysical Equipment -VLF-EM (Geonics EM-16) - 21 days @ 35.00 -Magnetometer (MP-2) - 21 days @ 30.00		735.00 630.00
Accommodation / Meals -48 man days @ 45.00	2	,160.00
Data Processing -technician - 2 days @ 175.00		350.00
sub-total	\$18	,835.00

April 3, 1986 to April 7, 1986 (Project area innaccessible due to break up conditions)
Work Completed: Nil

Mobilization / Demob.	\$	750.00
Personnell Geologist (C. von Einsiedel) -5 days @ 300.00	1	,500.00

Technicians (2) -5 days @ 225.00	2,250.00
*Note: Personnell charged @ 1/2 rate conditions	e due to standby
Personnel @ 50%	1,937.50
Equipment Rentals -4x4 - 5 days @ 70.00 -fuel, insurance	350.00 375.00
Geophysical Equipment -VLF-EM (Geonics EM-16) - 5 days @ 35.00 -Magnetometer (MP-2) - 5 days @ 30.00	175.00 150.00
Accommodation / Meals -15 man days @ 45.00	675.00

May 13, 1986 to May 25, 1986 (Project Completion)
Work Completed: completion of geophysical surveys, completion of geologic mapping and completion of soil geochemical survey.

sub-total \$ 4,412.50

Mobilization / Demobilization	\$	750.00
Personnel -Geologist (T. Kraft) 10 days @ 300.00 -Technicians (2) 12 days @ 225.00		3,000.00 5,400.00
Equipment Rentals -4x4 - 12 days @ 70.00 -fuel, insurance		840.00 650.00
Geophysical Equipment -VLF-EM (Geonics EM-16) - 12 days @ 35.00 -Magnetometer (MP-2) - 12 days @ 30.00		420.00 360.00
Geochemical Survey -misc. supplies -sample preparation - 286 @ 2.50 -143 26 element (ICP) determinations @ 9.	50	250.00 715.00 1,358.50

Accommodation / Meals -34 man days @ 45.00	1,530.00
Data Processing / Report Preparation -Geologist (C. von Einsiedel) 6 days @ 300.00 -Drafting (Terry's Drafting Service) -Secretarial, printing, reproductions	1,800.00 1,400.00 550.00
Recording Costs -1986/1987 assessment fees	210.00
sub-total	\$ 19,233.50

Total costs incured to complete Phase 2 Exploration of the Auric Mineral Claim - \$ 42,581.00.

TABLE 1 Rock Sample Descriptions

Sample No.	Rock Type	Description
TK-01-86	Altered Tuff (outcrop sample)	 felsic composition, silicified very fine-grained to aphanitic less than 1% fine diss. pyrite abundant diss. blebs of limonite throughout
TK-02-86	Altered Tuff (outcrop sample)	 felsic composition moderately sericitic strongly carbonated moderately foliated 2 - 3% fine to medium-grained disseminated pyrite abundant limonite blebs throughout
TK-03-86	Intermediate Tuff (outcrop sample)	 intermediate composition chloritized moderately foliated 3 - 5% diss. pyrite up to 4mm moderately carbonatized
TK-04-86	Felsic Dyke (?) (outcrop sample)	 aphanitic 1% fine dissem. pyrite felsic found near altered tuff 2 - 3% blebs of limonite throughout grab sample
TK-05-86	Altered Tuff (outcrop sample)	 fine-grained to aphanitic moderately carbonatized felsic to intermediate 1% diss. pyrite
TK-06-86	Altered Tuff (?) (float sample)	 fine-grained to aphanitic 1 - 2% fine dissem. pyrite felsic to intermediate 5 - 10% mafic, chloritized clasts (?) up to 1 cm

Sample No.	Rock Type	Description
TK-07-86	QtzCarbVein (channel sample)	 vein hosted in altered lapilli tuff approx. 2 - 4 cm in width strike, dip: 310/50°NE numerous narrow veins in area less than 1% galena up to 2% fine dissem. pyrite veins situated along foliation surfaces
TK-08-86	Quartz Vein (channel sample)	 chip sample across vein approx. 8 cm wide hosted in intermediate tuff less than 1% dissem. pyrite strike, dip: 325/50°NE
TK-09-86	Intermediate Tuff (outcrop sample)	 slightly altered chloritized moderately foliated 2 - 3% fine dissem. blebs of limonite moderately carbonatized
TK-10-86	Altered Tuff	- see TK-02-86
TK-11-86	Altered Tuff	- See TK-02-86
TK-12-86	Quartz Vein (float sample)	 one of many large quartz boulders in area milky white quartz less than 1% fine dissem. pyrite abundant limonite on fracture surfaces
TK-13-86	Altered Tuff (outcrop sample)	 see TK-02-86 foliation 287/46°N
TK-14-86	Intermediate Tuff (outcrop sample)	 chloritized 2 - 3% dissem. pyrite weakly to moderately carbonatized

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 2S3 PH: (604) 986-5211 TELEX: 04-352578 BRANCH DEFICE: 1630 PANDORA ST. VANCOUVER B.C. VSL 1L6 PH: (604) 251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: RAM EXPLORATION

ATTENTION:

PROJECT: DRWELL

REPORT#: 860189PA JDB#: 860189

INVOICE#: 860189NA

DATE RECEIVED: 86/06/11 DATE COMPLETED: 86/06/16

COPY SENT TO:

ANALYST CO & Scores

PAGE 1 OF 1

SAMPLE NAME	AG PPM	AL 1	AS PPM	AU PPK	BA PPM	BI PPM	CA I	CD PP#	CO PPK	CR PPM	CU PP N	FE 1	K 1	#6 1	Mh PPM	MO PPM	ng I	N3 PPN	P 1	PB PPM	PD PPM	PT PPM	SB PPM	SN PPM	SR PPM	U PPM	N PPH	IN PPM	
-TK-1-86	.5	.46	5	ND	50	á	3.19	.4	13	34	99	2.38	.15	1.53	490	1	.01	3 B	.05	13	NĐ	ND	ND	1	182	ND	NÐ	47	
TK-2-86	.2	.58	KD	ND	55	ND	3.33	.1	10	23	55	3.17	.15	1.09	595	1	.01	17	.04	12	ND	ND	NΩ	ND	179	ND	ND	56	
TK-3-86	.2	2.44	3	ND	97	5	2.97	. 2	19	55	71	3.48	.16	1.60	579	,	.01	47	.04	17	ND	ND	N5	ND	141	ND	3	42	
TK-4-86	.4	.44	9	ND	58	ND	3.78	.3	11	37	24	3.51	.17	.87	658	ND	.01	17	.04	13	ND	ND	ND	ND	154	ND	XX	40	
TK-5-86	1.0	.23	ND	ND	620	KD	2.87	.1	ij	47	38	1.15	. 23	.06	830	3	1.33	8	.11	36	ND	ND	ND	ND	769	ND	ND	20	
TK-6-86	1.1	.24	ND	ND	300	MD	.72	.4	6	13	80	1.28	. 23	.02	319	ND	1.75	NĐ	.05	31	NI	ND	ND	1	316	ND	ND	21	
TK-7-86	. 6	.16	NĐ	ND	162	ND	13.19	8.7	4	35	25	.79	.07	.10	1800	i	.01	3	.07	1307	ND	ND	ND	ND	4304	3.4	ND	491	
TK-8-86	.4	.02	5	ND	13	ND	.47	.1	i	115	5	. 38	. 05	.02	276	1	.01	ND	.01	16	ND	ND	ND	1	33	ND	ND	5	
TK-9-86	.2	1.80	NĐ	ND	761	ND	1.50	.2	15	38	60	2.45	.19	1.41	444	ND	.01	23	. 20	14	ND	ND	NE	ND	24B	ND	3	55	
TK-10-86	.6	.35	4	ND	146	ND	1.90	.1	6	47	15	1.39	. 21	.08	539	. 1	.42	3	.11	14	ND	ND	MD	2	258	ND	ND	13	
TK-11-86	.7	.28	5	ND	158	NB	.87	.1	7	40	15	1.06	.18	.12	306	2	.60	5	.10	20	ND	N D	ND	МĎ	134	ND	ND	11	
TK-12-86	.5	. 05	ND	MD	37	ND	.31	.1	3	155	30	.79	.07	.01	198	2	.01	4	.01	34	ND	ND	NP	NO	27	ND	ND	10	
TK-13-86	.4	.38	ND	ND	126	NB	6.73	.1	8	43	34	2.73	. 15	.52	786	1	.01	11	.06	21	ND	ND	ND	R	197	ND	ND	30	
TK-14-86	.5	.68	3	ND	62	ND	5.39	.i	3	28	3	1.14	. 20	.49	651	1	.07	10	.07	26	ND	MD	ND	ND	1124	ND	NS	18	
DETECTION LIMIT	.1	. 01	3	3	1	3	. 01	.1	i	1	1	. 01	. 01	. 01	1	1	. 01	1	. 01	,	3	5	7	2	1	5	3	1	

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH MATER. THIS LEACH IS PARTIAL FOR SN, MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,N,PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

	,						I			165 8601	65NF	4			DATE				86/08	}				6	NALY	'ST_ <u><</u>		ام مد.
	,				•						į											PAGE	E 1 OF	7				
SAMPLE NAME	(AG PPM	AL I	AS PF#	AU PPM	BA PPM	BI PPM	CA I	CD PPM	CG PPM		CU PFP	FE 1	K I	MG I	NN PPH	MO PPM	NA I	NI PPH	P/(PB PP#	PD PPH	PT PP#	SB PP#	SN PPH	SR PPM	U PPM	N PPM	IN PPR
L5+00S 0+25E	.1	2.72	N.D	ND	113	MD	.17	.2	10	15	24	2.68	.04	.32	197	2	.01	- 13	,08	26	NB	ND	NB	MD	21	ND	NB	57
L5+005 0+75E	.1	1.79	KD.	ND	141	ND	.16	.1	8	12	18		.04	.22	288	Ĭ	.01	10	.07	26	, ND	MD	ND	ND	20	MB	KD	44
L5+005 1+25E	.1		ND	ND	61	ND	.05	.1	5	9		1.68	.04	.15	231	1	.01	6	.06	17	ND I	ND	NB	NB	8	ND	ND	43
L5+00S 1+75E	.1		5	ND	134	MD	.12	.2	12	14	84		.09	. 35	170	2	.01	20	.07	35	I ND	KD	ND	ND	20	ND	NB	50 2
L5+005 2+25E	.2	1.18	6	ND	108	3	.08	.2		17	9	1.27	.05	.19	192	1	.01	18	.07	17	ND	ND	ND	1	13	MD	ND	53
	į		_												*]			28	W8		MA	ND.	
L5+00S 2+75E	.1	1.33	2	MD	151	NĐ	.15	.1	6	11		1.56	.05	.27	359	1	.01	11	.08	17	MD	MD	MD	ND	22	MD	ND	45
L5+00S 0+00W	.3 :	1.97	6	ND	111	ND	.08	.2	11	13	18	2.62	.07	.24	321	2	.01	11	.08	27	ND	ND	NB	ND	14	NB	ND	55
L5+005 0+50W	.1 ;		ND	ND	89	ND	.10	.1	7	10	11		.05	. 17	566	- 1	.01	8	.08	19	KD	MD	ND	MD	12	ND	ND	46
L5+005 1+00W	.3	.88	9	ND	39	DM	.06	1.	4	7	5	1.48	.04	.10	227	1	.01	3	.03	19	ND	ND	MD	. 3	7	ND	ND	20
15+00S 1+50W	.1	1.18	6	ND	142	2	.14	.2	8	10	8	2.04	.04	.22	1068	1	.01	7	.08	20	מא	ND	MD	MB	15	MD	ND	66
15+00S 2+00W		2.52	ND	ND	260	ND	.11	.2	9	7	7	1.67	.05	.07	1606	1	.01	10	.59	16	DM	ND	3	MD	12	MB	KĐ	57
L5+50S 0+25E		1.41		HD	102	ND	.15		Ä	11	27		.07	.34	264	1	.01	12	.12	21	ND	ND	ND	ND	23	ND	ND	47
L5+50S 0+75E	2.2		12	ND	56	ND	.15	.1	ĭ	9	,	1,50	.04	.13	374	i	.01	3	.10	20	KD	ND	MB	2	12	ND	KB	33
L5+505 1+25E	.3		13	ND	109	3	.07	.1	5	9	12		.06	.22	215	i	.01	ě	.03	22	ND	ND	MD	3	16	MD	ND	38
L5+50S 1+75E	.3		11	ND	21	ND	.04	.1	2	7	2	.79	.03	.09	63	i	.01	2	.01	9	ND	ND	ND	3	8	ak	ND	17
20.000 1.752	•	. 10	•••		••		•••	•••	-	•	j -	• • • • • • • • • • • • • • • • • • • •	•••	,		•	,,,	-		1		-		_	_			1
L5+50S 2+25E	.1	1.25	13	RD	145	ND	.12	.1	9	11	31	1.86	.08	.40	173	1	.01	14	.03	24	ND	MD	3	ND	21	GK	ND	37
L5+50S 2+75E	.4	1.27	10	ND	103	ND	.08	.2	6	7	7	1.31	.04	.10	592	1	.01	6	.13	15	ND	RD	ND	1	10	ND	NĐ	56
L5+50S 0+25W	.3	2.22	7	ND	129	ND	.16	.2	10	14	21	2.72	.08	. 29	375	1	.01	13	.10	30	ND	ND	ND	ND	16	KD	ND	50
L5+50S 0+75W	.4	2.67	4	ND	73	ND	.11	. 2	8	13	12		.06	.20	286	1	.01	9	.12	21	ND	ND	4	ND	12	ND	NB	50
L5+50S 1+25W	.1	1.33	13	ND	97	ND	.24	.1	В	10	14		.05	. 22	753	1	.01	7	.12	21	ND	ND	MB	1	24	ND	MD	37
																					:							1
DETECTION LIMIT	.i	.01	3	3	i	3	.01	1.	1	1	1	.01	.01	.01	i	1	.01	1	.01	2	3	5	2	2	1	5	3	1

KAM EXPL	UKA	IUNS	, Ju	B#:	8601	65	PROJ	ECT:	N/G	RE	PORT: :	860	0165F	A I	DATE:	86/	06/0	9		P	AGE :	2 OF	7			_	_
(AG PPM	AL I	as PPH	AU PPM	BA PPM	BI PPM	CA I	CD PPM	CO PPM			FE 1	r K	MG I	MN PPH	MO PPM	NA I	NI PPM	P (PB PPM	PD PPM	PT PPM	SB PPM	SN PPM	SR PPM	U PPM		ZN PFH
	.69	8	ND	60	NB	.08	.1	4	8			.02	.16	243	1	.01	4	.10	16	ND ND	MD	MD MD	4	12	ND NO	ND NO	29 26
1	1.23	, 11	NB	49	ND	.06	.1	9	12 11	16	1.58	.02	.20	137	1	.01	10	.05	26	: ND	ND	ND	5	14	ND	ND	26 20
		3	ND	74	ND	.06	.1	8	12	22		.07	. 26	149	1	.01	11	.05	27	ND	ND	4	ND	11	6	NB	4
		MD 2	ND ND	84 103	MD CM	.10 .15	.1	11 10	15 27	32 32	2.41 3.18	.08 .0 9	.30 .60	216 244	1	.01	13 25	80. : 40.	30 30	ND ND	ND ND	3 ND	ND ND	14 21	3 MD	ND 4	53
.1	1.33	2 9	ND NO	71 122	DK 3	.12	.1 .1	6	9 17			.05 .06	. 15 . 34	370 164	i i	.01 .01	6 12	.10	20 42	ND ND	ND ND	ND ND	2 NB	11 18	QN QN	ND ND	43 62
.1	1.67	5	NO		3	.12	.1	. 9	11	15	2.04	.08	.26	203	2	.01	14	.08	29	ND ND	DM	NŪ	NS	22	NO	NO	47
.1	2.12	AD ND	ND	75	ND ND	.17 .10	.1	8	10 14	16	2.22	.04	.19 .32	892 165	1 2	.01 .01	14 9	.05	17 20	ND	en Ch	NG ND	i ND	18 16	ND ND	ND ND	37
.5	2.29	3	ND	66	4	.10	.2	9	16	20	2.29	.05	.30	266	1 1	.01	9 11	.11	26 31	MD	ND	3 3	1	17 17	ng Nd	ND ND	55
•		5						15							1					1			1				37
.1	1.92	3	ND	97	4	.16	.3		14	29	2.36	.10	.40	394	1	.01	12	.08	22	ND	ND	3	ND ND	23	NB		1. 20 45
.1	1.97	2 2	ND	121	4	.10	.2	7	16	10	2.37	.03	.20	505	1	.01	9	.10	21	NB	ND	NB	1	18	MD	ND	55 58
.1	1.92	3	NU	112	3	.13	.1	10	12	24	2.33	.10	. 39	450	2	.01	16	.08	28	! ND	ND	3	NO	22	ND	ND	50
IT .1	.01	3	3	1	3	.01	.1	1	i	1	.01	.01	.01	i	1	.01	1	.01	2	3	5	2	2	1	5	3	1
																				:							:
	•										;																
	A6 PPR .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	A6 PPH 1 1	A6 PPH 2 PPH	AG PPM 2 PPM PPM 2 PPM PPM 2 PPM PPM 1	AG PPH 2 PPH PPH PPH PPH 2 PPH 2 PPH PPH P	AG PPH 2 AL AS AU BA BI 2 PPH PPH PPH PPH PPH PPH PPH PPH PPH P	A6 PPM	A6 PPH I PPH PPH PPH PPH I I I I	A6 PPH AL AS AU BA BI CA CD CO	A6 PPM AL AS AU BA BI CA CD CO CR I	A6 PPN AL AS AU BA BI CA CD CO CR CU PPN PPN	A6 PPM AL AS AU BA BI CA CD CO CR CU FE PPM PPM	A6 PPH A1	AG PPH AL	A6 PPN AL	A6 PPR 2 PPH PPH PPH PPH PPH 1 PPH PPH PPH PPH P	A6 PPH 2 AL AS AU BA BI CA CD CO CR CU FE K M6 MN M0 NA 1.1	AG PPH AL AS AU BA BI CA CD CO CK CU FE K MG MM MO NA NI 1 PPH PPH PPH PPH PPH PPH PPH PPH PPH P	AG PPN AL AS AU BA BI CA CD CO CR CU PPN I A AS AU BA BI CA CD	ABO PPH PPH PPH PPH PPH PPH T PPH PPH PPH P	A6 AL AS AU BA BI CA CB CO CR CU PPH PPH PPH PPH PPH PPH PPH PPH PPH PP	A6 AL AS AU BA BI CA CD CD CR CU PPH PPH F	AB AL AS AU BA BI CA CD CO CR CU PPN FE K NG MN MO NA NI P PPN PPN PPN PPN PPN PPN PPN PPN PP	A6 PPN AL AS AU BA BI CA CD CO CX CU PPN PPN PPN T PPN PPN	A6 PPR AL AS AU BA BI CA CD CO CR CU PPR FE K M6 MN M0 NA NI P PPR PPR PPR PPR FPR PPR PPR PPR FPR PPR PPR PPR PPR PPR PPR PPR PPR PPR	AG AL AS AU BA BI CA CD CO CR CU FE K MG MN MO MA NI P PP PP PP PP PP PP	AS AL AS AU BA BI CA CD CO CF CU FE K MS MN MO NA MI P PR PPH PPH PPH I PPH PPH PPH PPH PPH PPH P

. . .

.

-

SARPLE NAME AG L B AG L B AG L B AG L B AG L FFR FFR FFR FFR FFR FFR FFR	CLIENT: RAM E	XP_ORA	FIONS	JOE	#: 8	6016	5 F	ROJE	CT:	N/G	REF	ORT:	860	165P	A D	ATE:	86/	06/0	9		P	AGE :	s of	7			
16-506 1-75E																			P (-	
L6+50S 1+75M	L6+50S 1+75E L6+50S 2+25E L6+50S 2+75E L6+50S 0+25W	.1 1.03 .1 .89 .2 1.56	15 11 ND	ND ND	77 93 71	ND ND	.07 .07	.1 .2 .1	6 7 8	10 11 11	23 25 10	1.72 2.06 1.87	.04 .04 .02	.44 .36 .20	120 112 453	1	.01 .01	13 13 10	.02 .08 .13	19 24 22	DN ND ND	ND ND ND	3 3	ND ND ND	17 15 17	ND ND ND	GN 3 ND
L6+50\$ 3+75M .1 1.04 10 ND 85 ND .07 .2 5 11 10 1.73 .00 1.77 .250 1 .01 9 .06 14 ND ND ND .2 12 ND ND L7+00\$ 0+50E .1 1.41 6 ND 51 ND .12 .1 4 9 8 1.56 .01 .14 .246 1 .01 4 .04 14 ND ND ND ND 13 ND ND L7+00\$ 0+50E .1 1.18 13 ND .73 ND .09 .1 6 9 16 2.12 .01 .26 180 1 .01 8 .08 17 ND	L6+50S 1+75M L6+50S 2+25M L6+50S 2+75M	.1 2.12 .1 2.68 .2 1.60	9 0H 9	ND ND ND	92 81 93	MD MD MD	.13	.2 .2 .2	9 11 10	18 14 13	17 23 27	2.33 2.13 2.37	.01 .01 .02	.44 .30 .45	518 274 289	1	10. 10. 10.	13 14 14	.22 .12 .06	28 26 26	D D D D	ND ND ND	ND NC NB	ND ND ND	29 25 31	EN EN EN	ND ND NB
L7+00S 1+00M	L7+005 0+00 L7+005 0+50E L7+005 1+00E	.1 1.31 .1 1.41 .1 1.18	6 13	ND ND ND	93 51 73	ND ND ND	.12	.2 .1 .1	6 4 6	9 9 9	14	1.92 1.56 2.12	.01 .01	.17 .14	260 246 180	1 1	.01 .01	9 4 8	.06 .04	14 14 17	ND ND ND	DM DM DM	ND ND	2 1 ND	12 13 16	ND ND ND	ND ND ND
DETECTION LIMIT .1 .01 3 3 1 3 .01 .1 1 1 1 .01 .01 .01 1 .01 2 3 5 2 2 1 5 3	17+005 1+50M 17+005 2+00M 17+005 2+50M	.1 1.52 .1 1.86 .1 3.29	4 4 ND	ND ND NB	84 106 77	ND DN ND	.11 .15 .08	.2 .2 .2	7 10 11	16 16 15	15 21 21	2.11 2.81 2.67	.01 .01	.32 .56 .32	179 500 144	1 No	.01 .01 .01	8 14 16	.06 .15 .11	22 20 34	ND ND NB	ND ND NB	NS NC NB	ND ND ND	25 44 16	ON - ND	ND ND 4
	DETECTION LIMIT	.1 .01	3	3	1	3	.01	.1	1	i	\$.01	.01	.01	ì	i	.01	1	.01	2	3	5	2		1	5	3

•

_	CLIENT: R	AM EXP	ORA	TIONS	3 JC	B#:	8601	65	PROJ	ECT:	N/G	RE	PORT	860)165F	A D	ATE:	86/	06/0	9		P	AGE	4 OF	7				
	SAMPLE MAME	AS PPM	AL 1	AS PPM	AU PPM	BA PPM	BI PPM	CA I	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K I	M6 1	MN PPM	MO PPM	NA I	NI MPP	P (PB PPH	PD PPM	PT. PPH	SB PFM	SN PPH	SR PPM	U PP#		ZN PPH
	L7+00S 3+25N L7+00S 3+75N	.3	3.62	3 ND	ND DN	45 47	ND ND	.04	.1	5	9	7	2.09 1.88	.04	.10	98 156	1	.01	5	.25	23 22 23	ND ND	ND ND	MB TM	2	7 10	ND ND	ND ND	41 44
•	£7+505 0+00 £7+505 0+50E £7+505 1+00E	.1 .1 .1	1.12	8 B 4	ND ND	66 69 129	ND ND NB	.16 .07 .16	.1 .1	13 7 9	18 9 13	55 8 22	3.04 1.47 2.40	.08 .04 .06	.75 .19 .43	160 424 260	1 MD 1	.01	17 6 11	.08 .07 .06	16 19	ND ND	ND ND ND	ng 3 ng	2 2 GN	37 13 26	ND ND ND	en On On	2e 3e 3e
	17+50S 0+50M 17+50S 1+00M 17+50S 1+50M 17+50S 2+00M 17+50S 2+50M	.1 .1 .4 .1	2.54 2.25 2.83	4 MD 2 MD MD	ND ND ND ND NG	- 61 82 74 81 34	DM ND ND ND CM	.06 .10 .13 .20	.1 .1 .2 .1	5 11 9 15 5	15 16 10 12	12 19 19 13 3	2.74 1.97 3.09	.06 .08 .07 .11	.24 .38 .17 .26	236 223 339 279 280	1 1 1 1 1	.01 .01 .01 .01	6 12 10 11	.10 .11 .11 .11	23 28 21 31 16	ND ND ND ND	GK GK GK GK GK	ND ND ND ND	2 2 2 ND 3	11 22 25 45 12	EN ON ON ON ON	ND ND ND ND	38 53 57 76 32
	£7+50\$ 3+00# £7+50\$ 3+50# £7+50\$ 4+00#	.1 .2	1.81 1.97	5 4 9	ND ND	88 125 67	ND ND ND	.20 .22	.i .2 .1		12 14 5	10 11 7	1	.07 .08	.22 .25	165 276 103	2 1 1	.01 .01	13 10 2	.08 .30	30 29 14	ND ND	ND ND ND	ND ND ND	ND 2 1	32 40 12	ND ND ND	ND ND ND	40 102 34
	L8+00S 0+25W L8+00S 0+75W	.1	1.20	ND 8	ND ND	79 9 1	CM CM	.10	.1 .1		14 23	10 23		.07	.32	179 212	1 2	.01	16	.03	22 25	ND ND	ND ND	ND ND	ND	21 15	ND NS	AD CK	29 63
	L8+00S 1+25H L8+00S 1+75₩ L8+00S 2+25H L8+00S 2+75H L8+00S 3+25H	.2 .3 .5	1.31	NS 11 10 10	ND ND ND ND NB	81 97 59 74 100	ND ND ND ND	.06 .15 .13 .08	.2 .1 .1	9 7 9	10 10 9 11 16	7 7 4 15 20	1.73 1.58 2.00	.08 .08 .12 .13	.17 .20 .17 .24 .43	253 711 151 121 273	1 1 2 2	.01 .01 .01 .01	7 12 4 10 17	.12 .10 .04 .05	22 80 35 33 20	ND ND ND ND	ND ND ND ND	2	2 3 4 1 2	14 33 30 17 20	ND ND ND ND ND	ND ND ND ND	67 141 39 49 83
	DETECTION LINE	1. 1	.01	3	3	1	2	.01	.1	1	ı	1	.01	.01	.01	i	1	.01	i	.01	2	3	5	2	2	1	5	3	1
												į	•																

L8+005 L8+005 L8+005 L8+005 L8+505 L8+505 L8+505 L8+505 L8+505 L8+505 L8+506 L8	ENT: 1 E NAME S 3+50M S 4+50M S 5+00M S 5+00M S 5+75M S 1+75M S 2+75M S 2+75M	4	11 11 11 11 11 11 11 11 11 11 11 11 11	AL 1.61 1.01 .99 1.42 1.84 3.57 3.29 2.29 1.52	AS	AU PPM ND ND ND MD MD ND ND	BA PPN 75 56 57 83 99 . 88 401 168 77	ND N	CA 1 .04 .08 .09 .13 .12 .10 .10 .19	.2 .2 .1 .1	CO PPH 7 7 7 6 10 12	CR PPM 10 10 10	13 35 17	FE 1.68 1.87 2.07 1.75 2.42	.04 .05 .05	01.65Pc M6 1 .23 .49 .35	MN MI PPM PF 188 160 144 112	0 MA PH 1 1		.07 .02 .04	PB PPH 20 19 24 17	PP PPN NB NB ND ND	PT PPH ND ND ND ND		SN :	SR U PPM P 12 18 16 40	PPM I ND ND ND		7H PPH 46 37 52 51
L8+005 L8+005 L8+005 L8+005 L8+505 L8+505 L8+505 L8+505 L8+505 L8+505 L8+506 L8	E NAME S 3+50M S 4+00M S 4+50M S 5+00M S 0+25M S 0+75M S 1+25M S 1+75M S 2+25M S 2+75M	4	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AL 1.61 1.01 .99 1.42 1.84 3.57 3.29 2.29 1.52	AS PPN ND 7 8 5 NB ND ND ND	AU PPM ND ND ND MD MD ND ND	9A PPN 75 56 57 83 99 . 88 401 168	ND N	.04 .08 .08 .13 .12	.2 .2 .1 .1	CO PPM 7 7 7 7 6	CR PPM 10 10 10	13 35 17	FE 1 1.68 1.87 2.07 1.75	.04 .05 .05	.23 .49 .35	MN MI PPM PF 188 160 144 112	0 NA PH 1 1	NI PPH 01 10 10 10 10 10 10 10 10	.07 .02 .04	20 19 24 17	PD PPM ND ND ND	PT PPH ND ND ND ND	SB S PPM P ND ND ND	SN : PPH ! ND ND ND	PPM P 12 18 16	PPM I ND ND ND	ND ND NB	46 37 52
LB+005 LB+505 LB+505 LB+505 LB+505 LB+505 LB+505 LB+505 LB+505 LB+506 LB	S 4+00M S 4+50M S 5+00M S 0+25M S 0+25M S 1+25M S 1+25M S 1+75M S 2+25M MS 2+25M MS 2+75M		.1 .1 .1 .4 .3 .3	1.01 .99 1.42 1.84 3.57 3.29 2.29 1.52	7 8 5 ND ND ND ND	ND ND ND ND ND ND ND ND	56 57 83 99 . 88 401 168	ND ND ND ND ND ND	.08 .08 .13 .12	.1	7 7 6 10	10 10 10	35 17 10	1.87 2.07 1.75	.05 .06 .06	.49 .35 .34	160 144 112	1 .	01 10 01 10	.02	19 24 17	ND ND	ND ND ND	ND ND	ND ND	18 16	ND EM	ND ND	37 52
L8+505 L8+505 L8+505 L8+505 L8+505 L8+505 L8+505 L8+506 L8+506 L8+506 L9+006 L9+006	OS 1+25H OS 1+75H OS 2+25H OS 2+75H		.3	3.29 2.29 1.52	ND ND ND	ND ND ND	401 168	ND ND	.10		12			} ,-	.07	. 35	334		.01 12	.08	28	ND	ND	ND	ĩ	21	ND ND	ND '	45
LB+509 LB+509 LB+509 L9+009 L9+009 L9+009			1		-76	ND	92	ND OM	.05	.1		15 12 13 10	38 12 10 4	2.18 2.70 2.29 1.85 1.89	.06 .09 .08 .06	.24 .28 .39 .21	152 348 540 229 217	2 . 1 . 2 .	.01 9 .01 13 .01 10 .01 6	.19	52 49 50 27 41	DN DN DN DN DN	ND ND ND ND	4 4 3 4 ND	ND ND ND 1	16 25 42 12 28	ND ND ND ND ND	4 ND ND ND ND	45 75 164 52 56
L9+005 L9+005	OS 3+25M OS 3+75M OS 4+25M OS 4+75M OS 1+00M		:1	1.31 3.57 1.10 1.43	ND ND 4	ND ND ND ND	67 103 52 205	GN ON ON DN	.08 .13 .09 .24	.3 .2 .1	12	14	17 10 19 39	2.67	.03 .07 .08 .11	.35 .20 .52 .55	136 164 143 402	1 . 2 .	.01 16 .01 8 .01 8	.40 .04 .05	23 24 15 38 31	ND ND ND ND	ND ND ND ND	3 ND ND 3	ND ND ND ND	14 25 22 64 22	ND ND ND ND	ND - ND - ND -	64 76 48 63 39
L9+00	OS 1+50W OS 2+00W OS 2+50W OS 3+00W OS 3+50W		.1	2.47 1.04 2.02 2.00 .88	ND 5 ND 3 B	ND ND ND ND	132 72 73 99	ND ND ND ND	.08 .05 .06 .08	.2 .1 .1	8 4 8	13 5 7	7 4 4 24	2.23	.07 .04 .05 .08	.28 .05 .08 .37	796 164 344 192 270	1 . 1 . ND . 2 .	.01 8 .01 1 .01 2 .01 11	.19 .05 .16	39 28 29 23 16	ND DN ND DN DN	ND ND ON ND	99 3 90 90 90 3	ND 1 1 ND ND	14 12 12 17 20	ND ND ND ND	ND ND ND ND	120 36 43 99 40
DETEC	CTION LIN	51 T	.1	.01	3	2	1	3	.01	.1	1	1	1	.01	.01	.01	1	1 .0	01 1	.01	2	3	5	2	2	i	. 5	3	1
														er er ere							•								
									,					:													·		

	CLIENT: R	KAM EXPI	DRA	TIONS	; JO	B#:	8601	65	PROJ	ECT:	N/G	REI	PORT:	: B60	01 65 F	A D	ATE:	86/	06/0	9	•	Pf	AGE (6 OF	7			
•	SAMPLE NAME	AG PPH	AL Z	as Ppn	AU PPN	BA PPM	BI PPM	CA I	CB PPM	CG PPM	CR	CU)FE	K I	MG I	MN PPM	MO PPM	NA I	NI PPN	p (PB PPN	PD PPH	PT PPN	SB PPM	SN PPM	SR PPM	U PPM	N PPN (
	L9+005 3+75W L9+005 4+25W L9+005 4+75W L9+005 5+25W L9+005 5+75W	ND ND .2 ND	2.25 1.07 1.20 1.71 1.28	3 6 5 MD 8	NB NB ND ND ND	135 69 82 115 89	ND ND ND ND ND	.12 .11 .07 .07	.1 .1 .1 .1	9 10 5 7 7	13 14 10 13	18	2.19 2.49 1.92 2.41 2.20	.07 .09 .07 .08	.32 .50 .28 .34	249 287 140 158 135	1 2 1 1	.01 .01 .01 .01	13 15 6 11	.14 .04 .10 .05	26 27 27 29 29	DN DN DN EN	ND ND ND ND	ND ND ND ND	ND ND ND ND ON	16 24 14 13 17	nd nd nd nd	ND ND ND ND ND
•	L9+50S 1+00W L9+50S 1+50W L9+50S 2+00W L9+50S 2+50W L9+50S 3+00W	.1 .1 ND .2	1.96 .62 1.09 .91	MD 6 3 6 7	ND ND ND ND	· 139 164 181 99 124	ND ND ND ND	.07 .21 .12 .05	.1 .1 .1 .1	9 8 7 5	14 6 9 5	6 5	2.39 1.33 1.64 1.21 2.30	.10 .09 .05 .05	.30 .07 .13 .06	236 1864 128 550 192	1 1 ND 2	.01 .04 .01 .01	8 ND 3 1	.06 .08 .03 .04	33 25 20 25 25 28	ND ND ND	NO NO NO NO NO	ND ND ND ND	ND 1 1 ND ND	15 38 22 10 23	4 HD HD	DN DN DN EN
	L9+505 3+50M L9+505 4+00M L9+505 4+50M L9+505 5+00M L9+505 5+50M	DH 1. 3. 1. 5.	1.10	8 10 10 11	NB NB ND ND	86 85 69 80 142	ND ND ND ND ND	.15 .15 .06 .07	.1 .1 .1 .1	6 9 5 7	12 13 9 13	15 13 10 27	2.11 2.12 1.81 2.50 2.02	.08 .10 .07 .10	.35 .47 .26 .50	202 288 141 179 146	1 2 1 2	.01 .01 .01 .01	14 10 4 12 10	.06 .06 .04	23 28 23 29 23	ND ND ND ND	NG ND ND ND	ND ND ND ND 3	OM OM OM OM	25 31 13 14	NB QN QN DN GN	NS ND ND ND
	L7+50S &+00W L10+00S 3+25W L10+00S 3+75W L10+00S 4+25W L10+00S 4+75W		1.14 2.91 1.93 1.52	11 NS 6 8 11	ND ND NB NB	171 132 416 45 91	ND ND ND ND	.07 .14 .25 .03	.1	9 13 10 4	11 15 19 7 12	10 19 30 6	1.86 2.74 3.05 1.44 2.31	.09 .10 .12 .05	.29 .37 .59	327 335 257 72 163	1 1 2 1 2	.01 .01 .01	11 15 12 4 13	.03 .22 .05 .07	21 30 45 20 27	MD MD MD MD MD	ND ND DN ND	3 ND ND ND ND	DI CH CH DI DI DI	13 24 95 9	HD ND ND ND ND	NO NO NO NO NO
	DETECTION LINI	T .1	.01	3	3	i	3	.01	.1	1	1	1	10.	.01	.01	i	i	.01	ı	.01	2	3	5	2	2	1	5	2

1		·																												
	CLIENT: RAM	EXP	.ORAT	·IONS	Jo)B#:	8601	65	PROJI	ECT:	N/G	RE	PORT:	: 8 60	0165F	°A [ATE:	86/	06/0	9		, P	AGE '	7 OF	7					
	SAMPLE MAME (L10+00S 5+00M L10+00S 5+50M L10+00S 6+00M	AG PPM .1 .1 .1	1.85 .81 1.25	AS PPH MD 5 3	AU PPN ND ND	BA PPM 129 139 102	BI PPH ND ND	.08 .09	CD PPM .2 .3	CO PPM 10 4		22 B 35	2.40 1.78	.07 .05	MS 1 .44 .26 .50	MN PPH 193 120 266	HO PPH ND ND	NA I .01 .01	NI PPM 22 6 15	.07 .02 .02	PB PPM 26 20 31		PT PPM ND ND	SB PPH ND ND	SK PPM ND ND ND	SR PPM 15 14 13	U PPM ND ND	N PPH (ND ND		
	DETECTION LIMIT	.1	.01	3	3		3	.01	.1	. 1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1	

INSTRUMENT : GEONICS EM-16
TRANSMITTER STATION : SEATTLE, WASHINGTON

CONTOUR INTERVAL : 2,6,12,18>18 Percent.

GEOLOGICAL BRANCH ASSESSMENT REPORT

RESOURCES LTD.

- CLEARWATER PROJECT -AURIC CLAIM

VLF-EM SURVEY FRASER FILTERED DATA

CHK. BY: VANCOUVER, B.C. DATE: JULY, 1986

LEGEND

ヒミニ Roa

~~~ Trail

INSTRUMENT : SCINTREX MP-2 BASE : 57,000 GAMMAS

CONTOUR INTERVAL : 820,870,920 > 920 Gammas.

GEOLOGICAL ASSESSMENT REPORT

ORWELL RESOURCES LTD.

- CLEARWATER PROJECT AURIC CLAIM

MAGNETOMETER SURVEY

RAM EXPLORATIONS LTD. DWN. BY: T.M. FIG. No. CHK. BY:

VANCOUVER, B.C. DATE: JULY, 1986