$86-647-15217$
 08187

VERNON MINING DIVISION NTS 82E15 E
$100034.1^{\prime} \mathrm{W}$ AND $49^{\circ} 56^{\prime} \mathrm{N}$ 118°
Owner and Operator L.A. Bayrock
Report prepared by
G.L. Venhuizen, P. Eng. 3889 Hudson Street Vancouver, B.C. VGA $3 A 9$
5 November, 1986

```


\section*{TABEL OF CONTENTS}

\section*{INTRODUCTION}
A) Geographic and Physiographic Position ..... 1.
B) Property Definition ..... 1.
C) Summary of Work Done ..... 3.
DETAILED TECHNICAL DATA AND INTEPPRETATION
A) General Geology ..... 3.
B) Purpose of the Sampling Program ..... 4.
C) Description of Procedures ..... 4.
D) Results and Interpretation ..... 4-10.
E) Conclusions and Recommendations ..... 11.
ITEMIZED COST STATEMENT ..... 12.
CERTIFICATION ..... 13.
ILLUSTRATIONS
Map 1 Location of Azza Mining Claim ..... 2.
Map 2 Location of Samples ..... 5.
Chart 1a \& 1b Comparison of A,B,\& C Soil Horizons b.
GUH Soil Profile and GL Soil Profile ..... 7.
A-290 \& A-50 Soil Profiles ..... 8.
I. INTRQDUCIION
A) Geographic and Physiographic Position

The Azza Mining Claim is located in the vicinity of \(11834^{\prime}\) W longitude and 49 56' N latitude in British Columbia, the Osoyoos Division of the Yale Land District, and within the Vernon Mining District. It is located in NTS 82E/15E. The area is a plateaus at an elevation of approximately 1,700 meters above sea level. The location of the area is shown on Map 1, which is the general area of Lightning Peak. Lightning Peak is located about 5.5 kilometers south east of the claim.

Access to the area is gained from Vernon, by taking Highway 6, 80 km east to the Kettle River Road 10 km south on the Kettle River Road to Forestry road \(k-50\). Follow \(k-505 \mathrm{~km}\) and keep to the right on the Winnifred Creek Road. Follow the Winnifred Creek Road and keep right for 24 km . The following are passed on the way.
\begin{tabular}{lr} 
Bridge & 8.8 km \\
Fork Jct. (keep Rt.) & 9.1 km \\
Winnifred Creek Bridge & 10.0 km \\
Cattlegard & 15.0 km \\
Jct. (keep Rt.) & 15.4 km \\
Jct. (keep Rt.) & 18.4 km \\
Jct. (keep Rt.) & 20.5 km \\
Campsite (end of road) & 24 \\
\end{tabular}

A four wheel drive vechicle is required.
The claim is located on a gently sloping plateau in the vicinity of Lightning Peak. The claims are approximately at 1,700 meters above sea level. Poor to medium quality forest covers the area, and in places the tree vegetation is so sparse that large portions of the area may be described as parkland.
B) Property Definition

The Azza Mining Claim consits of the following:
10410323 Aug 1985161967 Vernon

The property was staked 23 Aug 85 by L.A. Bayrock of 1899 Queens Avenue, West Vancouver, B.C. who is also the current owner. The 16 units surround the Dictator Crown Grant and the Rob I mining claim.


Summary_of_Work_Done
On 20-23 August, 1986, an aerial photo interpretation and geochemical testing program was carried out by the author. The author was unassisted. Samples taken consisted of 58 soil samples. Samples from the "A", "B" and "C" horizons were taken from 6 locations which accounted for 18 samples. The remaining 40 samples are taken from the " \(B\) " soil horizon along lines perpendicular to selected portions of shear zones as interpreted from aerial photos. The results, depth of samples, soil types, and sample locations are shown on map 2 and accompaning plots of soil profiles.

DETAILED_TECHNICAL_DATA_AND_INTERPRETATIDN

\section*{General_Geglogy}

The entire area of the Azza Mining Claim is underlain by Nelson Granite, which is a course grained granodiorite. Numerous dykes and other related intrusives of basic composition are present in the claim area. Their extent cannot be shown as no detailed geological mapping has been preformed to date.

Qverburden is predominately thin to very thin, being from a fraction to about 3 meters. The overburden in most areas is comprised of regolith. During this study the author found that along the limear depression studied, some alluvium and till is present. Aerial photo interpretation and the topography of the area suggest that soil transport is local.

Aerial photo interpretation showed numerous shear zones throughout the area. Two formerly mined deposits located on the Rob I and Dictator claims are situated on such shear zones as observed on the ground and on aerial photographs. Small outcrops along the shear zone, as observed in the field, showed weak to strong hydrothermal alterations. Shear zones located in the study area are shown on Map 2 .
B)
C) Description_of Procedures

Sampling of the "A", "B" and "C" horizons was carried out by digging 1 meter holes in selected areas and taking 2 to 4 Kg samples from each of the horizons. A total of six sites were selected and 18 samples taken.

Sample lines perpendicular to shear zones were run in 4 selected areas. The sample spacing along the lines varied, yielding 5 to 10 samples across each line. Soil from the "B" horizon was taken just beneath the "A" horizon. Samples were from 100 to 200 grams each.

All sample locations, soil descriptions, sample depths and metal values are found on Map 2 , charts 1a \& 1b and the Soil Profiles.

A total of 58 samples were analyzed by Acme Analytical of Vancouver, B.C. The samples were run using atomic absorption methods for gold; and I.C.P. methods for 30 other elements. The analysis are found in Appendix I.
D)
D) Results_and Interpretations

\section*{Results}

The results are presented in Charts \(1 a \& 1 b\) and on the Soil Profiles. Five elements are plotted: Ag; Pb, Zn, Mn and La. Silver, lead, and zinc were selected because of their known associations with ore found in the area. Manganese and lanthanum were selected because of their response with the other three metals which show they may be useful as

\[
\begin{array}{cccc}
\triangle & 0 & 0 & X^{\prime} \\
M_{n} & A_{g} & P_{b} & Z_{n} \\
L_{4} \\
1200 & 3.0 & 6012060
\end{array}
\]

\(\begin{array}{lllll}M_{n} & \dot{S}_{1} & P_{b} & \times & O_{n} \\ B_{n} \\ 1200 & L_{a} \\ 3.0 & 60 & 120 & 60\end{array}\)



CHART 16
Comparison Of
" \(A\) ", " \(B\) " \(\xi\) "C" Soun Honizons
Aт \(A-50-0 \neq A-290\)
\(S_{C}\) 延 \(1: 10\)
Draun Br:G.V.H.



\section*{}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{8}{|l|}{"pathfinder " elements. Gold is not plotted as no significant values were revealed during this study.} \\
\hline & & \multicolumn{8}{|c|}{Intergretation} \\
\hline & & \multicolumn{8}{|l|}{To compare the " \(A\) ", "B", and "C" soil horizons the following tables are presented:} \\
\hline Samp & le & J-S & J-13 & GL-10 & \(A-50\) & \(A-50-15 R\) & A-290 & Total & Avarage \\
\hline \multirow[t]{5}{*}{"A"} & Pb & 18 & 22 & 13 & 21 & 12 & 16 & 102 & 17 \\
\hline & Zn & 26 & 37 & 14 & 23 & 6 & 41 & 147 & 24.5 \\
\hline & Ag & . 5 & 1.6 & . 5 & . 8 & . 7 & . 1 & 4.2 & . 7 \\
\hline & Mn & 166 & 1032 & 85 & 104 & 12 & 312 & 1711 & 285 \\
\hline & La & 28 & 64 & 53 & 79 & 64 & 8 & 296 & 49.3 \\
\hline \multicolumn{2}{|l|}{Sample} & J-5 & J-13 & GL-10 & A-50 & \(A-50-15 R\) & A-290 & Total & Avarage \\
\hline \multirow[t]{5}{*}{"日"} & Pb & 17 & 29 & 11 & 14 & 20 & 10 & 101 & 16.8 \\
\hline & 2 n & 30 & 68 & 11 & 12 & 19 & 59 & 199 & 33.2 \\
\hline & Ag & .4 & . 7 & . 3 & . 5 & . 7 & . 1 & 2.7 & . 45 \\
\hline & Mn & 137 & 904 & 530 & 43 & 69 & 322 & 2005 & 334 \\
\hline & La & 24 & 43 & 35 & 58 & 75 & 10 & 245 & 40.8 \\
\hline \multicolumn{2}{|l|}{Sample} & J-5 & J-13 & GL-10 & A-50 & A-50-15R & A-290 & Total & Avarage \\
\hline \multirow[t]{6}{*}{"C"} & Pb & 16 & 21 & 8 & 11 & 10 & 11 & 77 & 12.8 \\
\hline & Zn & 58 & 53 & 30 & 44 & 36 & 63 & 284 & 47.3 \\
\hline & Ag & . 1 & . 3 & . 2 & . 2 & . 2 & . 1 & 1.1 & . 18 \\
\hline & Mn & 166 & 338 & 95 & 123 & 96 & 342 & 1160 & 193.3 \\
\hline & La & 28 & 22 & 12 & 21 & 15 & 13 & 111 & 18.5 \\
\hline & & \multicolumn{8}{|l|}{As can be determined from the above tables;"A" \& "B" horizons have consistantly higher results than the "C." horizon in bhe selected metals analyzed, with the exception of \(2 n\). The " \(A\) " \& " \(B\) " soil horizons produce similar results with the A Horizon producing slightly higher results in silver and lanthanum and the "B" horizon slightly higher results in zinc and manganese. Trenching over the study areas with bedrock analysis may provide determining data as to which horizon correlates most directly to mineralization in bedrock. Based on the results as presented, either the " \(A\) " or " \(B\) " horizons will produce similar results.} \\
\hline
\end{tabular}

\section*{Soil Profiles}

The A-290 profile shows a slight rise in metal values in soils towards the center of the depression analyzed. This may be indicative of mineralization in the center of the shear zone. The reason this site was selected was because past sampling showed a gold soil anomaly of 370 ppb . Athough the sampling coincided with this sample site, no gold anomaly was found, indicating that gold values are erratic. Although the rise is clear graphically, it's significance is questionable as the change is only in Mn and Zn . Soil types here were different than along the other profiles in that it is located in a dry area with the "A" horizon being represented by a sandy black loam rather than moist black organic soils found on the other profiles.

\section*{GL_Soil_Profile}

The GL soil profile shows distinct coincident rises in metal values at GL -0-GL-20; GL-40; and GL-100-GL-140. These rises may represent mineraliztion in shear zones beneath the soils and should be confirmed by trenchinng or drilling. Trends at each end of the soil profile suggest that the line should be extended.

\section*{GVH_Soil_Profile}

The GVH soil profile shows relatively high but "scattered" metal values. This may be due in part to the glacial till from which the soils came. Lanthanum in particular does not coincide with the other metals plotted. Silver, lead, zinc and manganese shows three zones at GVH-14 -GVH-28; GVH42 and GVH-63-GVH-77 which may represent mineralization in bedrock. The direct correltation between soils and bedrock along this profile is quesstionable due to the soil being a "TILL". A trend at GL-77 suggests that the line should be extended.

\section*{A-SO Profile}

The A-50 soil profile shows an excellent correlation between the metals plotted and shows two zones beteew \(A-50-10-A-50-30\) and \(A-50-60-A-50-70\) which may represent zones of mineralization in bedrock. Trenching or drilling will be required to confirm this hypothesis.

\section*{Conclusions and Recomendations}
1) It has been demonstrated that either the "A" or "B" soil horizons will produce similar results when analyzed for Ag. Pb, \(\mathrm{Zn}, \mathrm{Mn}\). and La. Either soil horizon produces higher values than the "C" horizon.
2) Soil profiles perpendicualr to shear zones have shown that significant rises in metal values may indicate mineralized zones in bedrock beneath them. This hypothesis should be confirmed by drilling or trenching.
3) It is recommended that the usefulness of soil profiling be confirmed by drilling or trenching in the areas sampled. If it is confirmed, further profiles should be done to outline future drilling and trenching targets.


\section*{ITEMIZED COST STATEMENT}

WAGES:
August 20-23, 1986
4 days G. VenHuizen \(\quad 1,000.00\)
Total Wages
\(1,000.00\)

MEALS AND ACCOMODATION: 72.05

TRANSPORTATION: August 20-23, 1986
Milege
(1200 km @ .20/km 240.00
Gas 60.00
Total Transportation 300.00

ASSAYS:
58 Samples Analyzed for:
Atomic Absorption for gold 316.00
I.C.P. for 30 Elements 348.00

Total Analyses (Acme Analytical) 664.00

REPORT:
G.L. VenHuizen 575.00

MISCELLANEOUS (field supplies) 25.00

GRAND TOTAL

\section*{CERTIFICATION}

I, G.L. VenHuizen, of 3889 Hudson Street, Vancouver, B.C., hereby certify as follows:
1) I am a registered member of the Association of Professional Engineers of British Columbia, No. 14584
2) I an a graduate of the University of Minnesota, with a Bachelor of Science Degree in Geo-Engineering.
3) I have practiced engineering and geology in exploration, development, and mining during the past 6 years.
4) I have no interest directly or indirectly in the Azza Mining Claim.
5) The information contained in this report is the result of sampling carried out by me or under my supervision.


November 5, 1986

ANALYSES

ACME ANALYTICAL LABDRATORIES LTD. 852 E. HASTINGS, VANCDUVER B.C. \(\mathrm{FH}:(604) 253-3158\) COMPUTER LINE: 251-1011

\section*{DATE RECEIVED SEFT SO 19836} DATE REPORTS MAILED QCA \(9 / 86\)

\section*{}

SAMPLE TYPE : SOLLS
Au: - 10 En. IGNITED. hOT AQUA REGIA LEACHED. HIEK EXTRACTION. AA ANALYSIS.
ASSAYEF: AO AO, AY DEAN TOYE - CERTIFIED B.C. ASSAYEF:
GAMPLE ..... Au*opb
, \(7-5-A\) ..... 1
J-5-5 ..... 1
J-5-C ..... 3
GL-10-A ..... 1
GL-1G-E ..... 2
GL-10-C ..... 1
(1-13-A ..... 1
J-1 -E ..... 1
J-1 \(5-\) C ..... 4
\(A-50-0 \mathrm{~A}\) ..... 1
A-50-6B ..... 1
A-50-0C ..... 1
\(A-50-15 \mathrm{~B}-\mathrm{A}\) ..... 3
A-50-15F:-8 ..... 1
A-SG-15R-C ..... 1
A-200-A ..... 2
A-200-B ..... 1
\(\mathrm{H}-2 \mathrm{GO} \mathrm{C}\) ..... 1
SAMPLE Au*DOb
Gl_ - ..... 1
GVH-O ..... 1
GVH- ..... 1
GL-10 ..... 1
G\H-14 ..... 1
GL-20 ..... 1
GVH-21 ..... 1
GVH-2 ..... 1
GL-30 ..... 1
GUH-S5 ..... 1
6L-40 ..... 3
GVH-42 ..... 1
GVH-4 ..... 1
A-50-1 ..... 1
A-50-2 ..... 1
\(A-50-3\) ..... 2
A-5O-4 ..... 1
A-EO-S ..... 1
A-50-6 ..... 1
A-50-7 ..... 1
A-50 - ..... 1
GL-50 ..... 1
GVH-56 ..... 1
GL-60 ..... 1
GVH‥63 ..... 1
GL-70 ..... 1
GVH-70 ..... 1
GVH-77 ..... 1
GL-80 ..... 1
GL-5?O ..... 2
GL-100 ..... 1
GL-110 ..... 1
Gl. - 120 ..... 1
GL-130 ..... 2
GL-14O ..... 1
A-290-1 ..... 1
GAMFLE Au*
ob
A-290-2 ..... 1
A-200-Z ..... 1
A-290… ..... 2
A-290-5 ..... 1

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOUVER B.C. VGA 1RG PHONE 253-3ISB DATA LINE 25I-IOII

\section*{GEGCHEMICAL ICP ANALYSIS}


- SAMPLE IYPE: PAIP

\[
\text { AZZA MINING FILE } \# 86-294 B \text { f }
\]
\[
\text { FAGE } \quad 1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEt & Ho & Cu & Pb & In & A0 & \({ }^{*}\) & co & \({ }^{*}\) & \(f e\) & As & U & Au & in & Sr & Cif & \(5 b\) & Bi & \(v\) & ca & ? & La & Cr & Kg̣ & 83 & Ii & 8 & & Na & K & * \\
\hline & PPM & PPH & PPM & PP星 & PPM & PPK & PPM & PPM & \(\pm\) & PPK & PPM & PPM & PPM & PPK & PPM & PPM & PPM & PPM & 1 & 1 & PPH & PP\% & : & PPA & 2 & PPM & \% & 2 & 1 & PPK \\
\hline J-5-A & 3 & 4 & 18 & 26 & . 5 & 3 & 1 & 166 & 1.21 & 5 & 5 & W & 1 & 19 & 1 & 2 & 2 & 16 & . 15 & . 029 & 28 & 5 & . 11 & 50 & . 03 & 2 & 1.19 & . 03 & . 04 & 1 \\
\hline J-5-8 & 2 & 6 & 17 & 30 & . 4 & 3 & 2 & 137 & 1.56 & 6 & 5 & H & 2 & 15 & 1 & 2 & 2 & 18 & .13 & . 027 & 24 & 5 & . 13 & 48 & . 04 & 2 & 2.28 & . 04 & . 04 & 1 \\
\hline d-5-C & 2 & 5 & 16 & 58 & . 1 & 2 & 3 & 387 & 1.72 & 5 & 5 & \(N\) & 9 & 14 & 1 & 2 & 2 & 16 & . 22 & . 055 & 22 & 1 & . 23 & 30 & . 02 & 4 & . 61 & . 03 & . 10 & 1 \\
\hline 6i-10-A & 3 & 4 & 13 & 14 & . 5 & 3 & ! & 85 & 1.81 & 5 & 5 & n & 2 & 29 & 1 & 2 & 2 & 17 & . 25 & . 057 & 53 & 6 & . 09 & 43 & . 01 & 3 & 1.32 & . 03 & . 03 & ! \\
\hline 6L-10-8 & 12 & 3 & 11 & 11 & . 3 & 1 & 1 & 530 & 5.11 & 28 & 5 & N0 & 12 & 13 & 1 & 2 & 2 & 30 & . 10 & . 014 & 35 & 4 & . 07 & 41 & . 01 & 3 & . 59 & . 03 & . 03 & 1 \\
\hline 62-10-6 & 1 & 4 & 8 & 30 & . 2 & 1 & 1 & 95 & . 70 & 2 & 5 & ND & 7 & 13 & 1 & 2 & 2 & 11 & . 15 & . 032 & 12 & 2 & . 14 & 30 & . 01 & 2 & . 41 & . 02 & . 06 & 1 \\
\hline J-13-A & 5 & 6 & 22 & 37 & 1.6 & 4 & 1 & 1032 & 2.11 & 2 & 5 & Ni & 2 & 32 & 1 & 2 & 3 & 22 & . 31 & . 065 & 64 & 4 & . 18 & 64 & . 03 & 4 & 1.88 & . 03 & . 05 & 1 \\
\hline J-13-8 & 5 & 8 & 29 & 68 & . 7 & 5 & 5 & 904 & 2.53 & 2 & 5 & ND & 4 & 24 & 1 & 2 & 2 & 28 & . 26 & . 049 & 43 & 5 & . 30 & 89 & . 04 & 3 & 2.47 & . 04 & . 09 & 1 \\
\hline J-13-C & 3 & 6 & 21 & 53 & . 3 & 3 & 3 & 338 & 1.81 & 2 & 5 & N & 9 & 16 & 1 & 2 & 2 & 17 & . 22 & .051 & 22 & 4 & . 21 & 42 & . 02 & 2 & . 71 & . 03 & . 08 & 1 \\
\hline A-50-8A & 1 & 5 & 21 & 23 & . 8 & 3 & 1 & 104 & 1.73 & 2 & 5 & * & 2 & 34 & 1 & 2 & 2 & 22 & . 31 & . 060 & 79 & 6 & . 14 & 61 & . 02 & 2 & 1.79 & . 03 & . 05 & 1 \\
\hline A-50-6B & 1 & 10 & 14 & 12 & . 5 & 5 & 2 & 43 & 1.40 & 9 & 5 & 60 & 9 & 21 & 1 & 2 & 2 & 21 & . 20 & . 036 & 58 & , & . 12 & 36 & . 13 & 4 & 3.97 & . 07 & . 03 & 1 \\
\hline A-50-0c & 1 & 3 & 11 & 44 & . 2 & 1 & 2 & 123 & . 94 & 2 & 5 & W & 7 & 13 & 1 & 2 & & 12 & . 18 & . 043 & 21 & 1 & . 19 & 29 & . 02 & 3 & . 53 & . 03 & . 08 & 1 \\
\hline A-50-15R-A & 1 & 5 & 12 & 6 & . 7 & 2 & 1 & 12 & 1.02 & 2 & 5 & M0 & 2 & 22 & 1 & 2 & & 15 & . 18 & . 073 & 64 & 3 & . 04 & 40 & . 01 & 2 & 1.37 & . 03 & . 02 & 1 \\
\hline A-50-15R-8 & 1 & 9 & 20 & 19 & . 7 & 6 & 3 & 69 & 2.05 & 10 & & 10 & 15 & 25 & 1 & 2 & 2 & 39 & . 23 & . 046 & 75 & , & . 18 & 90 & . 08 & 3 & 3.27 & . 07 & . 04 & 1 \\
\hline A-50-15R-C & 1 & 4 & 10 & 36 & . 2 & 2 & 1 & 96 & . 69 & 2 & 5 & ND & 6 & 12 & 1 & 2 & 2 & 9 & . 16 & . 040 & 15 & 3 & . 15 & 28 & . 02 & 2 & . 47 & .03 & .0B & 1 \\
\hline A-290-A & 1 & 8 & 16 & \(4!\) & . 1 & 4 & 2 & 312 & 1.79 & 7 & 5 & WD & 2 & 8 & 1 & 2 & 2 & 30 & .08 & . 051 & 8 & 6 & . 23 & 53 & . 05 & 2 & 1.08 & . 03 & . 07 & 1 \\
\hline A-290-8 & 2 & 12 & 10 & 59 & . 1 & 6 & 4 & 322 & 2.31 & 4 & 5 & N0 & 4 & 9 & 1 & 2 & 2 & 37 & . 09 & . 065 & 10 & 12 & . 34 & 49 & . 07 & 3 & 2.11 & . 04 & . 07 & 1 \\
\hline A-290-C & 1 & 21 & 11 & 63 & . 1 & 13 & 7 & 342 & 2.74 & 3 & 5 & W0 & 6 & 15 & 1 & 2 & 2 & 48 & . 15 & . 052 & 13 & 15 & . 63 & 76 & . 07 & 7 & 1.74 & . 04 & . 14 & 1 \\
\hline STD \(E\) & 22 & 59 & 38 & 133 & 7.0 & 68 & 28 & 1005 & 3.91 & 38 & 15 & 6 & 32 & 44 & 16 & 15 & 18 & 62 & . 48 & . 095 & 35 & 52 & . 88 & 166 & . 08 & 36 & 1.72 & . 09 & . 12 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 6L-0 & 5 & 6 & 20 & 38 & . 4 & 4 & 4 & 400 & 6.24 & \(\varepsilon\) & 9 & ND & 14 & 24 & 1 & 5 & s & 36 & . 22 & . 046 & 61 & 4 & . 27 & 97 & . 02 & 4 & 2.54 & . 03 & . 03 & 1 \\
\hline 6UH-0 & 11 & 9 & 14 & 71 & 1.0 & 6 & 4 & 271 & 2.51 & 2 & 9 & N0 & 1 & 23 & 1 & 2 & 3 & 38 & . 19 & . 029 & 33 & 11 & . 42 & 80 & . 03 & 2 & 2.12 & . 03 & . 06 & 1 \\
\hline 6vH-7 & 2 & 16 & 21 & 37 & 1.2 & 8 & 2 & 134 & 1.16 & 2 & 29 & k0 & 10 & 20 & 1 & 7 & 3 & 19 & . 22 & .073 & 64 & 4 & . 19 & 65 & . 14 & 4 & 5.00 & . 04 & . 04 & 1 \\
\hline 6L-10 & 37 & 4 & 24 & 16 & . 3 & 2 & 3 & 907 & 15.83 & 107 & 19 & ND & 20 & 26 & 1 & 2 & 2 & 47 & 19 & . 022 & 65 & 5 & . 11 & 65 & . 01 & 10 & 1.10 & . 04 & . 02 & 1 \\
\hline 5VH-14 & 17 & 6 & 11 & 158 & . 7 & 2 & 8 & 1012 & 8.56 & 3 & 13 & ND & 9 & 40 & 1 & 2 & 2 & 88 & 1.04 & . 326 & 47 & 6 & 1.23 & 215 & . 22 & 8 & 3.13 & . 07 & . 18 & 1 \\
\hline 51-20 & 3 & 5 & 9 & 17 & . 2 & 2 & 1 & 82 & 1.52 & 5 & 5 & N0 & 13 & 22 & 1 & 2 & 2 & 41 & . 21 & . 045 & 25 & 6 & . 14 & 86 & . 01 & 2 & . 87 & . 02 & . 02 & 2 \\
\hline 6vh-21 & 2 & 16 & 32 & 180 & 1.0 & 13 & 6 & 522 & 2.57 & 2 & 21 & N0 & 7 & 67 & 2 & \(\delta\) & 3 & 46 & . 67 & . 122 & 42 & 25 & . 62 & 152 & . 05 & 2 & 2.79 & . 04 & . 10 & 1 \\
\hline 6以及-28 & 2 & 14 & 18 & 87 & 1.3 & 7 & 3 & 372 & 1.69 & 2 & 26 & WD & 6 & 70 & 1 & 6 & 2 & 24 & . 71 & . 091 & 44 & 9 & . 18 & 96 & . 08 & 2 & 3.22 & . 05 & . 04 & 1 \\
\hline 6L-30 & 5 & 5 & 8 & 12 & . 2 & 2 & 1 & 57 & 1.61 & 13 & 14 & N0 & 3 & 21 & 1 & 2 & 2 & 30 & . 15 & . 032 & 20 & 1 & . 07 & 26 & . 01 & 2 & . 53 & . 02 & . 02 & 1 \\
\hline 56\%-35 & 1 & 9 & 13 & 84 & . 7 & 6 & 3 & 244 & 1.61 & 3 & 14 & ND & 4 & 50 & 1 & 5 & 2 & 24 & . 48 & . 052 & 31 & 5 & . 22 & 70 & . 08 & 2 & 2.71 & . 04 & . 05 & 1 \\
\hline \(5 \mathrm{EL}-40\) & 13 & 5 & 39 & 58 & . 5 & 5 & 6 & 4074 & 4.05 & 6 & 5 & No & 14 & 24 & 1 & 5 & 4 & 37 & . 23 & . 060 & 32 & 6 & . 30 & 158 & . 02 & 3 & 1.60 & . 03 & . 08 & 1 \\
\hline \(5 \mathrm{VH}-42\) & 3 & 11 & 23 & 74 & 1.7 & 9 & 4 & 1611 & 1.96 & 2 & 36 & WD & 8 & 56 & 1 & 6 & 3 & 31 & . 57 & .076 & 47 & 10 & . 24 & 101 & . 11 & 2 & 3.95 & . 05 & . 05 & 1 \\
\hline 6V4-49 & 1 & 20 & 27 & 76 & 1.3 & 11 & 3 & 246 & 1.78 & 3 & 50 & ND & 9 & 61 & 1 & 2 & 2 & 35 & . 58 & .086 & 60 & 11 & . 24 & 119 & . 11 & 5 & 4.42 & . 05 & . 05 & 1 \\
\hline A-50-1 & 1 & 5 & 21 & 28 & . 5 & 2 & 2 & 71 & 2.03 & 4 & 5 & W0 & 3 & 18 & 1 & 7 & 2 & 26 & . 14 & . 028 & 23 & 6 & . 15 & 64 & . 04 & 2 & 2.62 & . 03 & . 02 & 1 \\
\hline A-50-2 & 1 & 7 & 25 & 47 & . 7 & 5 & 3 & 119 & 2.45 & 3 & 5 & No & 5 & 30 & 1 & 6 & 3 & 35 & . 24 & . 023 & 36 & 10 & . 29 & 95 & . 03 & 2 & 3.01 & . 03 & . 03 & 1 \\
\hline A-50-3 & 1 & 6 & 41 & 75 & . 7 & 5 & 4 & 244 & 2.76 & 8 & 17 & WD & 16 & 41 & 1 & 12 & 3 & 43 & . 31 & . 014 & 144 & 13 & . 48 & 110 & . 03 & 2 & 2.16 & . 03 & . 03 & \(!\) \\
\hline A-50-4 & 1 & 7 & 8 & 10 & .4 & 4 & 1 & 30 & 1.14 & 2 & 25 & W & 9 & 14 & 1 & 2 & , & 19 & . 15 & .041 & 50 & 4 & . 11 & \(3!\) & . 14 & 7 & 3.74 & . 04 & . 02 & 1 \\
\hline A-50-5 & 1 & 5 & 6 & 7 & . 2 & 4 & 1 & 23 & . 73 & 2 & 11 & WD & 6 & 11 & 1 & 4 & & 14 & . 13 & . 041 & 25 & 6 & . 09 & 19 & . 12 & 3 & 2.78 & . 04 & . 01 & 1 \\
\hline A-50-6 & 1 & 4 & 5 & 6 & . 2 & 4 & 1 & 20 & . 48 & 2 & 5 & \({ }^{W}\) & 3 & 16 & \(!\) & 2 & , & 13 & . 16 & . 040 & 17 & 5 & . 09 & 24 & . 08 & 5 & 2.02 & . 05 & . 02 & \(!\) \\
\hline A-50-7 & 1 & 5 & 23 & 86 & . 4 & 4 & 5 & 249 & 2.76 & 9 & 10 & w & 17 & 27 & 1 & 5 & 2 & 47 & . 32 & .081 & 74 & 8 & . 49 & 138 & . 03 & 3 & 2.26 & . 04 & . 03 & 1 \\
\hline A-50-8 & 1 & 5 & 14 & 18 & . 3 & 3 & 2 & 50 & 2.45 & 3 & 5 & N0 & 3 & 9 & 1 & 6 & 4 & 25 & . 06 & . 041 & 34 & 4 & . 12 & 42 & . 06 & 2 & 3.54 & . 03 & . 02 & 1 \\
\hline 6L-50 & 1 & 7 & 8 & 21 & . 6 & 4 & 2 & 58 & 1.56 & 2 & 6 & WD & 6 & 24 & 1 & 2 & 2 & 18 & . 21 & . 035 & 33 & 5 & . 14 & 47 & . 09 & 2 & 4.01 & . 04 & . 02 & 1 \\
\hline EVH-56 & 1 & 9 & 8 & 32 & . 7 & 7 & 2 & 88 & 1.00 & 2 & 20 & N10 & 6 & 30 & 1 & 5 & 3 & 22 & . 32 & . 057 & 30 & 6 & . 15 & 48 & . 15 & 6 & 4.25 & . 05 & . 03 & 1 \\
\hline 6t-60 & 2 & 4 & 17 & 25 & . 3 & 2 & 2 & 54 & 2.11 & 2 & 5 & ND & 2 & 27 & 1 & 5 & 3 & 23 & . 23 & . 027 & 12 & 3 & . 11 & 52 & . 04 & 2 & 2.23 & . 03 & . 02 & 1 \\
\hline 64\%-63 & 1 & 15 & 13 & 54 & 1.2 & 9 & 3 & 347 & 1.98 & 2 & 35 & \% & 5 & 35 & 1 & 3 & 3 & 28 & . 38 & .071 & 64 & 8 & . 21 & 76 & . 10 & 2 & 4.44 & . 05 & . 05 & 1 \\
\hline 6L-70 & 2 & 5 & 19 & 23 & . 3 & 2 & 1 & 57 & 1.92 & 2 & 5 & ND & 2 & 31 & 1 & 3 & 3 & 23 & . 27 & . 029 & 14 & 7 & . 09 & 47 & . 03 & 2 & 1.78 & . 03 & . 02 & \(!\) \\
\hline 6UH-70 & 1 & 14 & 12 & 46 & 1.3 & 8 & 3 & 219 & 2.11 & 3 & 23 & W 0 & 6 & 32 & 1 & 2 & 3 & 27 & . 36 & . 068 & 56 & 10 & . 20 & 60 & . 10 & 3 & 4.05 & . 04 & . 03 & 1 \\
\hline 6v1-77 & 1 & 18 & 17 & 95 & 1.4 & 12 & 5 & 406 & 2.90 & 4 & 21 & N0 & 5 & 37 & 1 & 2 & 4 & 48 & . 39 & . 071 & 63 & 16 & . 41 & 92 & . 07 & 2 & 3.67 & . 04 & . 05 & 1 \\
\hline 6L-80 & 2 & 6 & 22 & 31 & . 3 & 2 & 1 & 83 & 2.15 & 3 & 5 & W & 2 & 29 & 1 & 9 & 2 & 23 & . 26 & . 034 & 14 & 4 & . 11 & 48 & . 03 & 2 & 1.66 & . 02 & . 03 & 1 \\
\hline 6290 & 1 & 5 & 62 & 32 & . 3 & 2 & 2 & 83 & 1.83 & 3 & 5 & N & 3 & 19 & 1 & 4 & 2 & 22 & . 16 & . 030 & 16 & 6 & . 12 & 45 & . 04 & 3 & 2.20 & . 02 & . 03 & 1 \\
\hline 62-100 & 3 & 4 & 19 & 36 & . 2 & 3 & 2 & 70 & 2.52 & 6 & 5 & WD & 4 & 16 & 1 & 2 & 2 & 29 & . 12 & . 027 & 9 & 6 & . 13 & 45 & . 10 & 2 & 2.51 & . 03 & . 02 & 1 \\
\hline 6L-110 & 3 & 7 & 15 & 60 & 1.1 & 5 & 3 & 150 & 2.45 & 2 & 5 & W9 & 4 & 31 & 1 & 2 & 2 & 35 & . 28 & . 041 & 30 & 13 & . 31 & 57 & . 08 & 3 & 3.08 & . 03 & . 03 & 1 \\
\hline 6L-120 & 5 & 8 & 27 & 81 & 2.2 & 8 & 4 & 236 & 2.80 & 3 & 11 & N0 & 5 & 38 & 1 & 5 & 2 & 37 & . 33 & . 040 & 49 & 11 & . 31 & 90 & . 05 & 3 & 3.05 & . 04 & . 05 & 1 \\
\hline 6L-130 & 5 & 11 & 26 & 90 & 2.7 & 11 & 4 & 274 & 2.94 & 2 & 17 & ND & 6 & 43 & 1 & 2 & 2 & 37 & . 35 & . 046 & 71 & 12 & . 50 & 113 & . 03 & 2 & 3.56 & . 04 & . 06 & 1 \\
\hline \(5 \mathrm{Cl}-140\) & 5 & 9 & 20 & 73 & . 9 & 9 & 3 & 553 & 2.38 & 2 & 13 & NB & 5 & 46 & \(!\) & 2 & , & 31 & . 41 & . 037 & 50 & 14 & . 26 & 93 & . 02 & 2 & 2.25 & . 04 & . 06 & 1 \\
\hline A-290-1 & \} & 8 & 9 & \(5!\) & . 1 & 5 & 3 & 282 & 2.08 & 2 & 5 & ND & 3 & 6 & 1 & 2 & 2 & 46 & . 05 & . 054 & 8 & 23 & . 30 & 48 & . 08 & 2 & 1.54 & . 02 & . 04 & 1 \\
\hline STO C & 22 & 59 & 38 & 132 & 7.1 & 68 & 28 & 1008 & 3.97 & 38 & 19 & 8 & 34 & 48 & 18 & 17 & 19 & 67 & . 48 & . 098 & 36 & 59 & . 88 & 180 & . 08 & 34 & 1.72 & . 09 & . 12 & 13 \\
\hline
\end{tabular}

AZZA MINING FILE \# 86-2948
FAGE ?

A-290-2
A-290-J
\(\mathrm{A}-290-3\)
\(\mathrm{~A}-290-1\)
\(\mathrm{~A}-290-5\) A-290-5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 10 & 13 & 58 & . 2 & 6 & 3 & 341 & 2.37 & 2 & 5 & N0 & 1 & 7 & 1 & 2 & 2 & 47 & . 07 & . 074 & 10 & 16 & . 32 & 54 & . 09 & 4 & 1.86 & . 03 & . 05 & 1 \\
\hline 2 & 11 & 13 & 65 & . 1 & 5 & 4 & 550 & 2.77 & 8 & 5 & ND & 3 & 8 & 1 & 2 & 2 & 42 & . 07 & . 044 & 10 & 15 & . 29 & 58 & . 08 & 3 & 2.11 & . 03 & . 05 & 1 \\
\hline 2 & 9 & 11 & 51 & . 2 & 5 & 2 & 136 & 2.19 & 2 & 5 & N0 & 4 & 7 & 1 & 2 & 2 & 37 & . 05 & . 066 & 10 & 10 & . 22 & 43 & . 07 & 2 & 2.17 & . 03 & . 04 & 2 \\
\hline 2 & 8 & 11 & 45 & . 2 & 4 & 2 & 106 & 2.04 & 3 & 5 & ND & 4 & 6 & 1 & 2 & 2 & 33 & . 04 & . 057 & 10 & 7 & . 18 & 40 & . 06 & 2 & 1.74 & . 02 & . 04 & 1 \\
\hline
\end{tabular}```

