$$
86-657-15221
$$

1985 SUMMARY EXPLORATION REPORT GEOLOGICAL SURVEY,
SOIL AND LITHOGEOCHEMICAL SURVEYS, INDUCED POLARIZATION GEOPHYSICAL SURVEY, and trenching

ON THE
TA MOLA PROJECT
OWNED BY SMD MINING COMPANY LTD.,
FILMED OPERATED BY BP RESOURCES CANADA LIMITED

KAMLOOPS MINING DIVISION
NS 92P/9W
Located approximately 26 km northwest of Little Fort, B.C.
Latitude $50^{\circ} 35^{\prime} \mathrm{N}$, Longitude $120^{\circ} 258^{\prime} \mathrm{W}$

BPVR 85-46
GEOLOGICANTREPORT

R. Farmer Project Geologist of 3

October 1986
Page No.
INTRODUCTION 1
LOCATION AND ACCESS 1
TOPOGRAPHY AND VEGETATION 2
CLAIM STATISTICS 3
PREVIOUS EXPLORATION 4
CURRENT EXPLORATION PROCEDURE 5
REGIONAL GEOLOGY 8
PROPERTY GEOLOGICAL SURVEY 13
l. Conclusions 13
2. Property Geology 16
3. Rock Units Description 16
4. Structural Geology 30
5. Lithogeochemistry, Mineralization and 32
Alteration
6. Summary of 1985 Geological Fieldwork 39
INDUCED POLARIZATION AND RESISTIVITY SURVEY 40

1. Introduction 40
2. Presentation of Data 42
3. Discussion of Results 44
4. Summary and Recommendations 50
SOIL GEOCHEMICAL SURVEYS 50
5. Sample Collection and Analysis 50
6. Method of Data Evaluation 53
7. Method of Data presentation 54
8. Survey Results 54
TRENCHING PROGRAM 56
9. Introduction 56
10. Trench Results 60
11. Geology and Lithogeochemistry of 61BP 1985 Trenches
CONCLUSIONS AND RECOMMENDATIONS 70
COST STATEMENT / COST ALLOCATION 72/73
STATEMENT OF QUALIFICATIONS 74
CERTIFICATE OF AUTHORS 75/76

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10 REGIONAL GEOLOGY
FIGURE 12a-f
FIGURE 13
DRAWINGS IP
(5864-1 to 28)
FIGURE 29
FIGURE 30
FIGURE 31

FIGURE 321 CR IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE $32 \mathrm{~m} V$ IN SOILS, SMDC + BP DATA 1984 (1:25 000)

FIGURE 32 ELEMENT DISTRIBUTION HISTOGRAMS-SOILS
FIGURE 32a AU IN SOILS; SMDC + BP DATA 1984 (1:25 000)
FIGURE 32b AG IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32c AS IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32d CU IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32e MO IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32f PB IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32 g ZN IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32h CD IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32i BI IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32 j NI IN SOILS, SMDC + BP DATA 1984 (1:25 000)
FIGURE 32 k CO IN SOILS, SMDC + BP DATA 1984 (1:25 000)1
PROPERTY TOPOGRAPHY (1:100 000) 2
CLAIM LOCATION MAP 3
SOIL GRID LOCATION 6
AREA OF SOIL SURVEY 1984 6
SILVER LAKE IP GRID AND IP COVERAGE 7
AREA OF DETAILED SOIL SURVEY - 1985 8
TRENCH LOCATION 8
ALKALIC ROCKS IN THE CANADIAN 9
CORDILLERA

FIGURE 11 MAGNETICS ON TA HOOLA PROJECT
MAGNETICS ON TA HOOLA PROJECT10
PROPERTY GEOLOGY (1:10 000) In PocketGEOLOGY OF LAKEVIEW MINE AREAIP DATA PLOTSSTACKED PROFILES, PERCENTFREQUENCY EFFECT
Pocket
" "
STACKED PROFILES, RESISTIVITY37
In Pocket
"
"

""
"""
" "
$:$""
""
11 il
11 $\boldsymbol{1}$
11
FIGURE 32m V IN SOILS, SMDC + BP DATA 1984
II

LIST OF FIGURES Cont'd.

Following Page

FIGURE	32 n	$\begin{aligned} & \text { MN IN SOILS, } \\ & (1: 25000) \end{aligned}$	$\text { SMDC + BP DATA } 1984$		Pocket
FIGURE	320	$\begin{aligned} & \text { FE IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32p	$\begin{aligned} & \text { SN IN SOILS, } \\ & (1: 25000) \end{aligned}$, SMDC + BP DATA 1984	"	"
FIGURE	32q	$\begin{aligned} & \text { TI IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32 r	$\begin{aligned} & \text { B IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32s	$\begin{aligned} & \text { BA IN SOILS, } \\ & (1: 25000) \end{aligned}$, SMDC + BP DATA 1984	"	"
FIGURE	32 t	$\begin{aligned} & \text { MG IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32 u	$\begin{aligned} & \text { SR IN SOILS, } \\ & (1: 25000) \end{aligned}$	$\text { SMDC + BP DATA } 1984$	"	"
FIGURE	32 v	$\begin{aligned} & \text { K IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32w	$\begin{aligned} & \text { CA IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32x	$\begin{aligned} & \text { AL IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32y	$\begin{aligned} & \text { P IN SOILS, } \\ & (1: 25000) \end{aligned}$	SMDC + BP DATA 1984	"	"
FIGURE	32aa	AU IN SOILS,	1985 FOLLOWUP (1:25 000)	"	"
FIGURE	32 bb	AG IN SOILS,	1985 FOLLOWUP (1:25 000)	"	
FIGURE	32cc	AS IN SOILS,	1985 FOLLOWUP ($1: 25$ 000)	"	
FIGURE	32dd	CU IN SOILS,	1985 FOLLOWUP ($1: 25$ 000)	"	"
FIGURE	32ee	PB IN SOILS,	1985 FOLLOWUP ($1: 25$ 000)	"	"
FIGURE	32 ff	ZN IN SOILS,	1985 FOLLOWUP (1:25 000)	"	"
FIGURE	33a(N)	SOIL SAMPLE $(1: 10 \quad 000)$	LOCATIONS - NORTH PART	"	"
FIGURE	33a(S)	SOIL SAMPLE $(1: 10 \quad 000)$	LOCATIONS - SOUTH PART	"	"
FIGURE	33 b (N)	AU IN SOILS	NORTH PART ($1: 10$ 000)	"	
FIGURE	33b(S)	AU IN SOILS	- SOUTH PART (1:10 000)	"	"
FIGURE	33 c (N)	AG IN SOILS	- NORTH PART (1:10 000)	"	,
FIGURE	33c(S)	AG IN SOILS	- SOUTH PART (1:10 000)	"	"
FIGURE	33d(N)	AS IN SOILS	- NORTH PART (1:10 000)	"	"
FIGURE	33d(S)	AS IN SOILS	- SOUTH PART (1:10 000)	"	"
FIGURE	33 e (N)	CU IN SOILS	- NORTH PART (1:10 000)	"	"
FIGURE	33 e (S)	CU IN SOILS	- SOUTH PART ($1: 10000$)	"	*
FIGURE	$33 \mathrm{f}(\mathrm{N})$	PB IN SOILS	- NORTH PART ($1: 10000$)	"	"
FIGURE	33 f (S)	PB IN SOILS	- SOUTH PART ($1: 10000$)	"	"
FIGURE	$33 \mathrm{~g}(\mathrm{~N})$	ZN IN SOILS	- NORTH PART ($1: 10000$)	"	"
FIGURE	$33 \mathrm{~g}(\mathrm{~S})$	2N IN SOILS	SOUTH PART (1:10 000)	"	"

LIST OF FIGURES Cont'd.

Following Page

LIST OF APPENDICES

APPENDIX 1 CERTIFICATE OF ANALYSIS 1984 LITHOGEOCHEMISTRY
APPENDIX 2 CERTIFICATE OF ANALYSIS 1985
LITHOGEOCHEMISTRY
APPENDIX 3 CERTIFICATE OF ANALYSIS 1984
SOIL GEOCHEMISTRY
APPENDIX 4 CERTIFICATE OF ANALYSIS 1984
SMDC'S SOIL RERUNS
APPENDIX 5 CERTIFICATE OF ANALYSIS 1985
SOIL GEOCHEMISTRY
APPENDIX 6 CERTIFICATE OF ANALYSIS 1985
TRENCH LITHOGEOCHEMISTRY
APPENDIX 7 GEOCHEMICAL PREPARATION AND ANALTYICAL PROCEDURES
APPENDIX 8 METHOD OF HISTOGRAM INTERPRETATION
APPENDIX 9 NOTES ON THEORY, OPERATION ANDPRESENTATION OF DATA FOR THE IP METHOD

INTRODUCTION

During the period from August 16,1984 intermittently through to October 20, 1985 an exploration program consisting of grid preparation, soil geochemical survey, lithogeochemical survey, geological survey, induced polarization geophysical survey, and trenching was carried out on the Ta Hoola Project claims. The work was carried out by Selco Division-BP Resources Canada Limited on behalf of the registered owner SMD Mining Company Ltd. This report described the results obtained from this program in search for gold deposition associated with alkaline volcanic and intrusive rocks.

LOCATION AND ACCESS

The center of the Ta Hoola project property is located approximately $22 \mathrm{~km} \mathrm{~N} 42^{\circ} \mathrm{W}$ of Little Fort, B.C., on NTS map sheet $92 \mathrm{P} / 9 \mathrm{~W}$, at latitude $51^{\circ} 35^{\prime} \mathrm{N}$ and longitude $120^{\circ} 25^{\prime} \mathrm{W}$, (see Figure 1). Access to the property is gained via the Deer Lake logging road leading north from Highway \#24 approximately 19 km west of Little Fort, B.C. The south boundary of the property cuts across the Deer Lake access road at approximately 5 km north of the Highway \#24 - Deer Lake road intersection. Several old logging roads and trails provide good access to the entire property. The centre of Lost Horse Lake approximates the centre of the property and is located by UTM coordinates 5717000 MN by 680000 ME .

TOPOGRAPHY AND VEGETATION

The property lies within the Thompson Plateau, a part of the Interior Plateau characterized by rolling uplands with rounded hills and numerous small lakes. The claim area is underlain by block faulted Mesoizoic rocks resulting in a modertely dissected terrain from approximately 1300 to 1600 m (a.s.l.) elevation (see Figure 2).

A small broad valley trends northwesterly from the south to the central part of the property. A number of small lakes and ponds linked by small creeks flowing southeasterly are aligned in chain along this valley bottom. The road access follows this wet valley bottom and four-wheel drive vehicles are required during the summer months.

Vegetation consists mainly of spruce, fir and pine with some poplar. The underbrush is moderately thick in the lower wet areas and consists of alders, while in the higher, dry areas the underbrush is thin.

Glacial overburden consisting of tills is widespread, between 1-7 m thick, and tends to obscure much of the bedrock in the lower elevations. Bedrock exposures tend to be better on the valley slopes and hilltops.

The climate is typical of the B.C. Central Interior with winter temperatures to $-40^{\circ} \mathrm{C}$ and summer temperatures to $35^{\circ} \mathrm{C}$. Winter snow accumulation ranges from 2 to 4 m , with summer precipitation from $40-60 \mathrm{~cm}$ on the property.

CLAIM STATISTICS

The Ta Hoola project property consists of 15 contiguous mineral claims totalling 230 units or approximately 5,750 hectares. All the claims lie within the Kamloops Mining Division on NTS map sheet $92 \mathrm{P} / 9 \mathrm{~W}$. All the claims are registered in the name of SMD Mining Company Ltd., who have 100\% ownership. Selco Division BP Resources Canada Limited entered into a farm-in agreement with the owner in August, 1984 to conduct exploration and earn an interest in the above land package. Prior to the farm-in agreement, BP Resources Canada Limited held and continues to hold in good standing one mineral claim totalling 15 units or approximately 375 hectares, known as the HC-1 claim. The names, record numbers, number of units, Mining Division, NTS map sheet, recording dates and expiry dates are tabulated in Table 1 , and appear on the Claim Map, Figure 3.

Table 1

Ta Hoola Project claims owned by SMD Mining Company Ltd. as part of the Farm-in Agreement

Claim owned by BP Resources Canada Limited and not part of the farm-in agreement.

HC 1436312 Kamloops 92P/9W Feb. 25/85 Feb. 25/90

PREVIOUS EXPLORATION

Previous exploration activities consisting of geological, geochemical (stream sediments, soils, rock and trenching), geophysical surveys, percussion and diamond drilling have been conducted over the past twenty years. Copper, molybdenum and
silver-lead mineralization is known to occur peripheral to the borders of several syenitic porphyry stocks north of Friendly Lake. The mineralization consists of weakly disseminated $\mathrm{Cu} \pm$ Mo to low grade vein/fracture fillings of $\mathrm{Ag}+\mathrm{Pb}$. Massive magnetite/sulphide skarns occur west of Deer Lake and carry low copper and erratic gold values.

The property area has been explored by Anaconda American Brass Ltd. (1965-1968), United Copper Corporation (1966-1968), Imperial Oil Ltd. (1972-1973), Prism Resources (1972), Barrier Reef Resources (1972-1973), Cities Service Mineral Corp. (1973-1975), Meridian Resources (1977), Commonwealth Mining (1979-1982), SMD Mining Company Ltd. (1981-1982), Lornex Mining Corporation Ltd. (1983). In addition, the area was mapped by the G.S.C. (1963-1965) and by the B.C. Department of Mines and Petroleum Resources (1970).

CURRENT EXPLORATION PROCEDURE

All data received from SMD Mining Company Ltd. consisting of geological, geochemical and geophysical surveys (Ruck, 1982), and percussion drilling program by Lornex (Serach, 1983) was reviewed for the Ta Hoola project.

BP Resources Canada Limited carried on further exploration intermittently from August 16,1984 through to October $25,1985$. the program of exploration concentrated on the gold potential of the property. Specifically, the geochemical anomalous areas \#l, \#2, \#3, and \#4 outlined by SMD Mining Company Ltd. (1982) and areas along strike were followed up by gridding, soil and rock geochemical surveys, geological survey, IP survey, and trenching. The exploration program conducted by BP Resources Canada Limited on the Ta Hoola project is outlined on the following work schedule:

1. August 16th - October 26, 1984
a. Grid Preparation and Soil Geochemical Survey:

- 78.0 km Silver Lake flagged grid,
- 15.0 km Silver 4 claim flagged grid, see Figure 4.
- 866 soil samples collected from the Silver Lake and Silver 4 grids at 400 m line spacing X 100 m intervals geochemically analyzed for 30 elements (ICP) + Au (Fa + AA), see Figure 5.
- Purchased 30 element (ICP) data for 2062 SMDC soil samples from Acme Analytical Laboratories Ltd. which covers the area outside the limits of the BP 1984 soil survey, see Figure 5.

b. Geological and Lithogeochemical. Surveys
- Geological mapping of the Silver Lake grid with the exception of the Silver 3 and 4 claim blocks.
- 55 rock samples geochemically analyzed for 30 element $(I C P)+A u(F A+A A)$.

2. December 8th - December 18th, 1984
a. Grid Preparation

- 65.8 km of line cut grid to IP standard, Silver Lake grid 200 m line spacing, see Figure 6.

3. January 31st - March 7th, 1985
a. Induced Polarization Survey

- 34.5 km of IP survey on the Silver Lake grid, see Figure 6.

4. August 16 th - October 20th, 1985
a. Geological and Lithogeochemical Surveys

- Geological surveying of the Silver 3 and 4 claim bl.ocks.
- 63 rock samples geochemically analyzed for 30 element $(I C P)+A u(F A+A A)$.

b. Grid Preparation and Soil Geochemical Survey
- 12 flagged detailed soil mini-grids totalling 25.4 km ; see Figure 7.
- 565 soil samples collected from 12 mini-grids (see Figure 7) at $100 \mathrm{~m} \times 50 \mathrm{~m}$ sample density and geochemically analyzed for 30 element (ICP) + Au (FA + AA).
c. Trenching
- 5 km of cat trails to purposed trench locations.
- 31 trenches excavated by backhoe for a total of 1840 m.
- Geolgocial mapping and continuous 2 m rock chip sampling of 17 trenches that reached bedrock (see Figure 8).
- 389 rock samples geochemically analyzed for 30 element $(I C P)+A u(F A+A A)$.

REGIONAL GEOLOGY

The Ta Hoola project is situated within the Quesnel Trough, a 2000 km long northwesterly trending belt consisting of Upper Triassic-Lower Jurassic alkaline volcanic, intrusives, and derived sedimentary rocks, see Figure 9.

LEGEND

UPPER TRIASSIC - LOWER JURASSIC
\square MICROGRANITE - SYENITE PORPHYRY
\square DIORITE
2
VOLCANICS: Ash, Tuff, Breccia,
Agglomerate, Flow
(Augite Porphyritic)
\square SEDIMENTS: Dolomitic Limestone, Argillite, Siltstone, Chert, Conglomerate Siliceous Tuft
I. P. ANOMALIES r^{12} TRENCH + No.

Au SOIL ANOMALY ($\geq 50 \mathrm{ppb} \leq 6260 \mathrm{ppb}$)
$\because \cdots . .$.
As SOIL ANOMALY($\geq 40 \mathrm{ppm} \leq 258 \mathrm{ppm})$

figure 8
SELCO DIVISION BP RESOURCES CANADA LIMITED

TA HOOLA J.V. PROJECT
SILVER LAKE I.P. GRID TRENCH LOCATION.

The Quesnel Trough was the site of widespread volcanism accompanied by the emplacement of granodiorite plutons during the Late Triassic. A brief period of quiescence at the end of the Triassic was followed by renewed volcanism and sedimentation in the Early Jurassic which culminated during the Middle Jurassic with the uplifting and subsequent erosion of the Quesnel Trough.

Much of the western and central parts of the Quesnel Trough are underlain by Late Cretaceous-Early Triassic mafic to felsic volcanic rocks and Late Tertiary olivine plateau basalts.

Reconnaissance mapping by the Geological Survey of Canada between 1963 and 1965 (Campbell and Tipper, 1971) indicated the property area is underlain by Upper Triassic Nicola Group volcanic and sedimentary rocks. A subsequent, more detailed study of the area by Preto (1970) outlined the presence of considerable quantities of intrusive rocks of probable Upper Triassic-Lower Jurassic age. These rocks vary compositionally between diorite and syenite.

Reconnaissance geological examination indicates the area hosting the Ta Hoola property is underlain by fault-bounded blocks of Nicola Group alkalic volcanic and sedimentary rocks of Triassic to Lower Jurassic age with minor Cache Creek Group sediments of Permian age. The Nicola Group rocks form a northwest trending

belt of volcanics and sediments that are partially truncated to the south by the Thuya granodiorite-diorite Batholith (Upper Triassic-Lower Jurasic). In the area between Friendly Lake and Windy Mountain, granite and syenite porphyry stocks intrude the Nicola assemblage.

The belt is characterized by an alkalic volcanic core of Triassic subaqueous andesite pyroxene porphyritic flows, tuffs and breccias. Interbedded with the volcanics are calcareous argillite, siltstone, siliceous cherty sediments and thinly bedded limestone. On the eastern and northwestern margins of the volcanic core is an overlying and flanking sequence of Lower Jurassic pyroxene porphyritic volcaniclastic breccia with proximal to distal epilcastic sediments consisting of conglomerate, greywacke, siltstone, and argillite. To the extreme east are distal sediments consisting of a siltstone, shale, and argillite assemblage that appears to form the base of the Triassic sequence, see Figure 10.

Epiclastic and pyroclastic rocks with plutonic fragments, intrusive breccias and small plutons or stocks of diorite, monzonite, and syenite mark the development of volcanic centres during the waning stages of volcanism. The plutons, in part, intrude their own volcanic material. A late fumarolic or

hydrothermal stage, related to the intrusion of the plutons, introduced volatiles and various metals into the vent areas and extensively altered and mineralized large volumes of shattered volcanic rocks.

The Copper Mountain, Cariboo Bell, Afton Copper deposits and many other porphyry occurrences, and subvolcanic stockwork or disseminated sulphide plus gold deposits such as the Quesnel River gold deposits are directly associated with this late fumarolic activity.

Near the intrusions in the Ta Hoola region, the Nicola volcanics exhibit various styles of alteration and mineralization. On the northern margin of the Thuya biotite-hornblende granodioritequartz diorite batholith, the surrounding volcanics have been altered to biotite pyroxene hornfels with veinlets of quartz-carbonate-epidotetchalcopyrite.

Near the granite to syenite porphyry stocks the volcanics are locally epidotized with some local areas laced by carbonate veinlets. The syenite intrusive body north of friendly Lake is locally extensively cut by sheeted quartz veins. One sample returned 780 ppb gold for this vein material.

A massive sulphide lens consisting of pyrrhotite, magnetite, pyrite, chalcopyrite lies in contact with volcanics and thin bedded limestone which is locally recrystallized and altered to skarn near a small diorite stock. A grab sample of massive pyrrhotite returned $10,000 \mathrm{ppb} \mathrm{Au}, 270 \mathrm{ppb} \mathrm{Hg}, 1000 \mathrm{ppm} \mathrm{As}$, ppm Ag. This showing lies on the west side of Deer Lake near the eastern edge of the small magnetic high feature. The potential for auriferous sulphide along the magnetic linear appears favourable.

On the Ta Hoola property argentiferous galena is found with carbonate fracture fillings in extensively brecciated volcanics. The source of the mineralization and carbonate may be derived from a remobilized limestone bed that may have laid proximal to the nearby felsic intrusion.

To the south, on the north side of Long Island Lake, another sulphide lens containing pyrrhotite, pyrite, galena \pm chalcopyrite is reported. It occurs in a skarn alteration zone in grey calcerous siltstones and shales that has been intruded by a quartz feldspar porphyry.

This belt exhibits strong similarities to the Cariboo BellQuesnel Trough setting. In the Quesnel Trough, a core of subaerial to subaqueous volcanics with interbedded sediments are

also found flanked by older sediments to the east. Similarly, alkalic stocks are found intruding the volcanic core in both settings. In the Quesnel Trough the rocks young from east to west, i.e., from the lower argillite-phyllites to the core volcanic regime. Similar gross lithological changes also occur in the Ta Hoola Lake area from east to west, i.e., lower argillite to the volcanic core, complicated with an overlying Jurassic assemblage of volcanic debris and sediments.

In the Quesnel Trough, strong magnetics correspond to the numerous intrusions that accompany the core volcanic regime. In the Ta Hoola Lake area a linear belt of magnetic highs also accompany the volcanic core, see Figure ll. Dome's Q.R. gold deposit in the Quesnel Trough is found flanking a diorite magnetic high that is geochemically anomalous in copper and gold. The deposit occurs at an interface between volcanics and sediments in the core volcanic regime. In summary, the Ta Hoola area exhibits strong geological and magnetic similarities to proven gold prospective areas lying to the north in the quesnel Trough.

PROPERTY GEOLOGICAL SURVEY

1. Conclusions

The Lower Triassic Nicola Group rocks on the Ta Hoola, Silver, $H C$ and $R O$ claims are thought to represent an island-arc assemblage formed in a shallow marine
environment. A major northwest-southeast topographic lineament fault which trends through the property is believed to be a favourable mineralizing system locus. Andesite flows and breccias having erupted along this zone of weakness, are in contact with volcanically derived epiclastic sediments to the east. Younger diorite stocks intruded along this fault comagmatic with the volcanics have possibly altered and mineralized rocks along this structure, such as the gold bearing pyritiferous carbonatized basalts seen in the Friendly Lake T-trench. Intrusive fragments in breccias and coarse pyroclastics suggest proximity to a volcanic center.

Further northwest along this lineament, a 1000 metre diameter syenite stock also appears to have intruded adjacent to or within this zone of weakness into surrounding volcanics. Co-genetic with this intrusion was the formation of a biotite-hornfels contact aureole and a larger surrounding zone of mineralized brecciated andesite. Cross-cutting these units were later mineralized and barren quartz veins.

The stratigraphic sequence from oldest to youngest on the Ta Hoola property is as follows:
(1) Proximal volcanic facies consisting of a thick succession of andesitic flows, tuff and pyroclastic breccias, porphyritic augite andesites and basalts.
(2) Distal volcanic-epiclastic facies comprising interbedded lapilli and ash tuff, and argillite, siltstone and intraformational conglomerates.
(3) Sedimentary facies composed of volcanic conglomerate and tuffwacke deposited from lahars.
(4) Brief reef-building period marked by the formation of cherty dolomite, and limestone.
(5) Intrusions comagmatic with the volcanic rocks and consisting of diorite, to porphyritic syenite stocks, plugs and dykes.
(6) Interbedded volcanic and coarse epiclastic sequence of andesite agglomerate, tuff, and greywacke, marking renewed volcanic activity during the early to middle Jurassic.
16.

Alteration and mineralization in the area is due to emplacement of diorite and syenite intrusions, later hydrothermal alteration, regional lower greenschist facies metamorphism, and late stage quartz veining.

2. Property Geology

The claims were mapped on a scale of $1: 5000$ using established grids, airphotographs, and topographic base maps. Final maps were produced at l:10 000 scale, (see Figures l2a - l2f, back pocket).

Rocks on the T Hoola and Silver claims are believed to represent an island-arc assemblage formed in a shallow marine environment.

Pyroxene porphyritic andesite flows and breccias, epiclastic sediments, and intrusive rocks of Upper Triassic (Nicola Group) to Lower-Middle Jurassic age underlie the claims.
3. Rock Unit Description

Nicola Group rocks on the property have been divided into 9 main units.

Triassic Volcanics - Map Unit 1
Unit 1 has been divided into 9 sub-units, 8 of which are andesitic in composition and 1 being basalt.

Sub-Unit la

Andesite tuff-breccia: This rock is seen south of Friendly Lake. It is composed of a dark green, fine to medium grained andesitic matrix, with subrounded to subangular fragments of augite porphyritic andesite, with subordinate plutonic diorite fragments, $2-5 \mathrm{~cm}$ in size.

The rocks are only slightly altered containing epidote and chlorite when moderately fractured. Locally, quartzcarbonate veining is present.

Pyrite content is usually less than 1 ?

Sub-Unit lb
Andesite tuff: crystal, lithic: this unit is seen south of Friendly Lake. The rock are commonly massive, dark green or greyish green, aphanitic to fine grained. Locally it may be interbedded with andesite flows.

The unit is weakly propylitized and has about 1% disseminated pyrite.

Sub-unit lc

Siliceous andesite ash tuff: This unit is mainly seen in old trench workings to the west of Deer Lake. it is a light pale green, aphanitic to fine grained, siliceous rock. Tiny 1-2 mm euhedral plagioclase crystals are visible. Locally, small quartz veinlets are present and interstitial carbonate is moderate to strong.

Pyritization is <l\% disseminated.

Sub-Unit ld
Augite andesite flow: These rocks form extensive flows east of Silver Lake and north and south of Portage Lake. Flow breccias are in contact to the west and south, with the flows.

These rocks are greyish-green to dark green, massive, contain $10-50 \%$ augite phenocrysts varying from $1-7 \mathrm{~mm}$, and have a fine grained andesitic matrix with moderate interstitial carbonate. Occasionally vugs filled with epidote, chlorite and carbonate are visible.

Locally, minor carbonate veins are present.

Pervasive propylitic alteration is evident when the rock is moderately fractured. Plagioclase sausseritization is common.

Pyritization is usually <1\%, but locally varies from 2-3\% disseminated. In one old trench located approximately 700 m southeast of Four Pound Lake, up to 10% pyrite is seen replacing 4-7 mm phenocrysts of pyroxene. No anomalous geochemical values were returned.

Subsidiary Sub-Unit $1{ }^{1}{ }_{1}$
Related coarse pyroclastics-agglomerate: These rocks are medium to dark green, massive and medium to coarse grained (lapilli tuff and agglomerate) pyroclastics. Fragment size varies from $1-20 \mathrm{~cm}$ and are comprised of subangular to subrounded porphyritic augite andesite. The rock is matrix supported and consists of a fine grained ash tuff.

Locally, calcite veins are present. Pyrite is <1\% disseminated. Locally diorite fragments l-4 cm are present in the rock near $B / L \operatorname{ll0E} / 95 \mathrm{~N}, 109 \mathrm{E} / 80 \mathrm{~N}$ and 107E/95N.

Altered agglomerate northeast of $118 \mathrm{E} / 84 \mathrm{~N}$ on Portage Lake road contains mineralized quartz-carbonate veins up to 6 cm wide. Galena and $<10 \%$ euhedral pyrite is present.

Subsidiary Sub-Unit ld $_{2}$
Related fine grained pyroclastic tuffs: Typically massive and medium to dark green coloured. The matrix is comprised of a fine grained ash tuff.

Alteration consists of carbonitization, chloritization and occasionally sausseritization of plagioclase.

Pyrite content is usually less than 1%.

Subsidiary Sub-Unit ld $_{3}$ Brecciated andesite: Previously called a metasomatized-hornfelsed-crackle breccia, this unit appears to be a brecciated andesite, tectonically derived. Fragments up to 10 cm are angular, dark green, fine grained and almost always fractured and filled with epidote. The dark green, fine grained nature is most likely attributable to hornfelsing of the unit. Fragments lack rotation. They are fractured and shot full of
epidote/carbonate veining. Occasionally carbonate and/or epidote rim fragments. 2-3\% disseminated pyrite with some chalcopyrite is seen in some fragments as in the epidote/carbonate veining. Coarse grained tremolite veins, often as a selvage to quartz veins, cross-cut the brecciated andesite locally. Sodium-amphibole richterite, appears on several fracture surfaces. Chalcedony filling vugs is seen occasionally. The unit is always seen to be peripheral to the large syenite stock on the Ta Hoola 1 claim block. Quite often mineralized smoke grey quartz veins $10-15 \mathrm{~cm}$ wide cut the unit. Sulphides consist of galena, chalcopyrite and pyrite. Elevated geochem assays ranged from $86-149 \mathrm{ppm}$ molybdenum, 1128-2536 ppm copper, 725-1622 ppm lead, 110-185 ppm zinc and $12.5-17.5 \mathrm{ppm} \cdot \mathrm{silver}$.

Sub-Unit le

Chlorite andesite schist: This unit generally outcrops southwest of $\mathrm{B} / \mathrm{L} 100 \mathrm{E}$ and strikes roughly northwestsoutheast over a length of 1.5 km . It is usually proximal to the diorite intrusives. The rock is pale green coloured, fine to medium grained, well foliated and has moderate interstitial carbonate and chlorite.

Traces of pyrite occur locally.

Sub-Unit If
Amygdoloidal Basalt
Only seen in Trench \#26, located just north of Little More Friendly Lake. This rock type is quite possibly the fresher version of the altered-weak gold bearing basalt in the Friendly Lake T-trench. The basalt is filled with epidote amygdules up to 1.5 cm and has only 1% pyrite. The rock is medium grained, and black to dark green.

Triassic Sediments - Map Unit 2

Siliceous ash tuff: Thinly bedded, aphanitic, light greenish-grey siliceous ash tuff occurs at one location on the Ta Hoola l claim north of Littlemore Friendly Lake. This unit probably represents a reworked volcanic tuff in a sedimentary regime.

Unit 3 - Chert, Siltstone, Conglomerate
Sub-unit 3a
Siltstone with chert horizons: These rocks mainly occur within the sediment package located northeast of B / L 118E. An isolated outcrop of pyritiferous chertysiltstone is located at Ll00N/l06E.

A probable outcrop very similar to this is seen at B / L ll0E/108N near an anomalous gold-in-soils (Sample No. 5084562932016).

The siltstone hosting the chert horizons is very similar to 3b. The chert is siliceous, light grey, aphanitic and has moderate interstitial carbonate. White bull quartz veins less than 1 cm wide are present. Some pervasive silicification along quartz veins less than 1 cm wide are present. Some silicification along quartz vein borders was also observed.

Mineralization consists of $5-10 \%$ very finely disseminated pyrite.

Massive, light grey, aphanitic to fine grained, siliceous cherty-siltstone with pyritiferous quartz veins up to 3 cm wide are seen to the north and west of Silver Lake.

5-10\% pyrite is present as fine disseminations and as fracture fillings.

Argillite is interbedded with chert near $89 \mathrm{~N} / 88 \mathrm{E}$. The pyrite content varies from 5-10\% in the argillite and less than 1% disseminated pyrite in the massive chert.

Sub-unit 3b

Siltstone: This unit outcrops northeast of $B / L 118 E$ and on the Silver 4 claim block. It is usually massive, laminated, fine to medium grained and light to dark grey coloured.

Pyrite is usually less than l\% disseminated, but varies from 5-10\% in light grey bands as disseminations with minor interstitial carbonate.

Sub-unit 3c

Siltstone-argillite, interbedded: This rock type is seer. northeast of B / L 118E. Bedding strikes roughly northwest-southeast with dips usually near vertical. This unit is well laminated.

The argillite is interbedded within massive, fine to medium grained, light grey siltstone similar to 3 b . The argillite is very fine grained, dark black and carbonaceous.

Mineralization consists of $1-2 \%$ disseminated pyrite in the siltstone bands. Soft sediment deformation suggests stratigraphic tops to the southwest locally.

Sub-Unit 3d
Siltstone-argillite conglomerate/breccia: These rocks are lcoated northeast of $B / L 118 \mathrm{E}$ and northwest of L 92 N . The units trend northwest-southeast. It is a massive, medium grey colour, composed of $60-70 \%$ subrounded to subangular clasts of siltstone and argillite supported by a matrix consisting predominantly of similar material to the clasts. The clasts vary in size from l-10 mm. Limestone and chert fragments are rare. Carbonate is interstitial and moderate.

The unit is probably derived from the siltstone and siltstone-argillite units

Sub-Unit 4
Argillite: This unit occurs at L98N/l25E in an old trench adjacent to another trench which contains a mineralized quartz vein. It also outcrops southwest of the property towards Monticola Lake and east towards Hardcastle Lake. This rock is black, massive, very fine grained, carbonaceous, graphitic, and fissile.

Mineralization in the old trench consists of pyrite bands and disseminations from l-5\%.

Locally, fine grey silty bands are present.

Sub-Unit $4 a$

Argillite-conglomerate: This unit was only seen in Trench \#31 located in the northern part of Ta Hoola 2, east of Four Pound Lake. The rocks lie within a predominantly sedimentary succession trending northwest-southeast. Chert and other assorted sedimentary fragments up to 3.5 cm are supported in a black carbonaceous matrix. Less than 1% pyrite is present.

Unit 5
Limestone-dolomite: This unit outcrops in what appears to be an arc extending from the south end of Deer Lake, west and southwest towards Monticola Lake. The rock is grey coloured, massive and usually thinly bedded. Locally, at the Deer Lake showing it is recrystallized.

South and west of the property, limestone is interbedded with argillite.

A siliceous dolomite with quartz veins cutting the unit is seen approximately 75 metres southeast of Trench \#29 on the Ta Hoola 2 claim block.

Unit 6
Skarn: Massive pyrrhotite, magnetite with minor chalcopyrite and pyrite. This unit is seen only in the limestone belt west and southwest of Deer Lake. Skarn-type mineralization is seen at various localities along the limestone belt. Rock chip samples from the Deer Lake Showing ranged from $835-31,000$ ppb gold, $1360-2801 \mathrm{ppm}$ copper and 1.4-6.0 ppm silver.

Intrusives

Sub-Unit 7a

Diorite: Extensive diorite is seen south of Friendly Lake, Meadow Lake and to the west of Silver Lake. The majority of this rock is a grey, fine to medium grained diorite composed of 15% mafics and 75% plagioclase with minor quartz <10\%. It is very weak magnetically.

Mineralization usually consists of less than 2\%
disseminated or fracture filling pyrite.

Locally, altered diorite contains epidote/chlorite/ carbonate veins up to 2 cm . Rarely, argillic alteration can be seen in fractures. Chloritic alteration is pervasive and carbonate is moderate interstitially.

5-10\% pyrite occurs as fracture fillings, disseminations and in quartz veins.

Sub-Unit 7b
Hornblende-diorite: This rock outcrops at Ll08N/92E and on the southeast side of Deer Lake. It is a medium green colour, coarse grained and contains large hornblende phenocrysts up to 15 mm . Magnetite blebs are present giving this rock the strongest magnetics of any of the diorites on the property.

Pervasive chloritic and weak argillic alteration are visible. Carbonate veinlets are present.

2-5\% pyrite occurs as fracture fillings and disseminations.

Sub-Unit 7c

Abstract

Diorite breccia - related to 7a: The rock is a medium grey colour. It contains angular diorite fragments 8-10 cm in size which are supported by a fine grained, dioritic matrix. Fragments are often fractured and the rock is weakly magnetic. Epidote/chlorite/quartz veins are present up to 2 cm wide.

Pyrite content is less than 1% disseminated.

Unit 8

Feldspar porphyry dyke: This unit outcrops along strike over a distance of 1.6 km in a roughly northwest-southeast direction. It cross-cuts the volcanics and sediments. Phenocrysts of plagioclase up to 7 mm are in a fine to medium grained, grey matrix. Chloritic alteration of plagioclase is common.

Less than 1% disseminated pyrite is present. Mineralization consisting of galena and pyrite is found within quartz veins located in carbonated altered (1d1) andesite breccia adjacent to the feldspar porphyry dyke.

Unit 9
Syenite: Seen mainly on the Ta Hoola 1 claims, this unit is medium to coarse grained with zoned K-feldspar phenocrysts comprising 50-60\% of the rock. It is pink, non-magnetic, has no pyrite and is massive. A bull quartz vein stockwork is quite well developed throughout the stock which is approximately 1000 metres in diameter. There were no•significant geochem rock chip assays. Several small syenite intrusions are seen peripheral to the main stock.
4. Structural Geology

The Ta Hoola property is situated in a belt of locally complex folded and regionally block faulted rocks. A lack of informative structural field data prevents an accurate structural interpretation. Geologic mapping of the property supports a northwest structural trend.

Bedding

Overall on the property, bedding strikes northwest-southeast. Field data suggests that in the southwestern portion of the property, bedding in chert units appears to dip to the southwest with dips varying from $65-90^{\circ}$ and striking between $280-320^{\circ}$.

Further north and south of Deer Lake, bedding in limestone is $295 / 90^{\circ}$. Locally, however, bedding is $300 / 30^{\circ} \mathrm{SW}$.

The sediment package to the northeast generally displays bedding of $300 / 90^{\circ}$ to $75^{\circ} \mathrm{NE}$.

Folds
No folds were observed in the area mapped, but previous work by Ruck (SMDC 1982), has inferred that sedimentary rocks in the northeastern part of the claims suggest that tight, isoclinal, inclined folds exist. Fold axes are closely spaced and their general trend is parallel to bedding which strikes about 300°. To the southwest of the property, folding is inferred from the arcuate limestone belt which trends southwest from the south end of Deer Lake from a foid nose, and swings to a southeast trend southeast of Deer Lake.

Faults

Structural lineament interpretation from air photos suggests a northwest trend, possibly due to block faulting. Ruck's previous work suggests some strike faulting with various trends to the north, west, northwest and northeast are on the property.

Schistosity

Volcanic rocks south of Meadow Lake and west of Silver Lake have developed a moderate schistosity with a general foliation of 290° to 310° and dipping near vertical. These rocks are surrounded by massive diorite and are probably related to the volcanic-intrusive contact effect.

Deformation

Soft sediment deformation within the interbedded siltstoneargillite unit show siltstone slumping into argillite, inferring tops are to the southwest.

Joints

Joints are abundant in outcrop throughout the property as moderately to steeply dipping.
5. Lithogeochemical, Mineralization and Alteration

During the course of geological mapping a total of 118 rock samples were collected (55 in 1984, 63 in 1985) for geochemical analysis. All bedrock chip samples were analyzed for 30 elements (ICP) and gold (FA + AA) by Acme Analytical Labs. Ltd. of Vancouver. All samples are located on the accompanying geological plans (Figure l2a to 12f, back pocket) and Certificate of Analysis appear in Appendix 1 (1984) and Appendix 2 (1985).

Mineralization on the Ta Hoola, Silver and HC claims consists of galena, chalcopyrite, sphalerite, tetrahedrite, bornite, molybdenite, pyrrhotite, magnetite and pyrite. Pyrite is by far the most common, occuring in all units varying between trace to 15%.

On the claims, 13 old and new trenches host the best mineralization seen to date.

The Friendly Lake T-trench, SMDC's Area 3, consists of carbonatized and strongly fractured magnetite-rich basalts. In the north branch of this trench mineralization ranges between llo-660 ppb gold over 23 metres while the east branch ranges between $105-390$ ppb gold over 24 metres. The rocks are intensely altered consisting of granular patches and irregular veins of calcite and ankerite/siderite with minor silica and albite. Pyrite ranges from 3-5\%. An interpretation of the SMDC trench assay data reveals a gold-bearing carbonitized basalt section 50 m along strike NW X 16 m thick averaging $300 \mathrm{ppb} \mathrm{Au}, 200 \mathrm{ppm} \mathrm{As}$, and 82 ppm Mo. The mineralized zone lies between a northweststriking regional fault to the west and the volcanicsedimentary major lineament to the east. An aeromagnetic "high" underlies this area and could possibly indicate a buried intrusion.

BP Trench \#1985-5, located on the south central part of Ta Hoola 9, was excavated during the 1985 field season. A shear zone within andesite flow rocks was discovered over a distance of 1 l/2 metres. Within and adjacent to this zone rock chip values ranged from $45-1800$ ppb gold, 171-4649 ppm copper and 1.1-23.3 ppm silver.

BP Trench \#1985-4, located near the southwest corner of HC, had one anomalous rock chip with 1690 ppb gold, 2736 ppm lead, 449 ppm zinc and 10.2 ppm silver taken from an interval which contained several small quartz veins. Carbonate-pyrite altered andesite agglomerates did not contain anomalous values. Just off of the southwest end of the trench a 1984 rock chip of a feldspar porphyry dyke + related mineralized quartz with visible galena assayed 150 ppb gold, 217 ppm copper, 19,481 ppm lead, 4653 ppm zinc and 12.2 ppm silver.

The 1985 HC Trench \#l had 18 rock chip samples assay over 100 ppb gold out of 44 samples collected. Values ranged from $110-1180 \mathrm{ppb}$ gold in these samples. 35 samples assayed between 206-2163 ppm copper. Lead, zinc and silver were elevated with sporadic values. A carbonate altered andesite flow was the only rock type present within the
trench with quartz veins cutting the unit occasionally. Minor fushite(?) or green carbonate and 3-5\% pyrite were also present.

Mineralized quartz-carbonate veins are seen in several old trenches and shafts on the HC claim block. A 1984 rock chip taken from one such vein hosted in siltstone assayed +7.0 oz silver, 165 ppb gold, 9884 ppm copper, 644 ppm lead, and 6169 ppm zinc. Tetrahedrite, sphalerite, galena and pyrite were seen.

Mineralized quartz veins in shear zones hosted within silicified, carbonatized andesite flow, assayed anomalous values in the 1985 Trench \#29 located in the east central part of Ta Hoola 2 claim. Values ranged from $196-1665$ ppm molybdenum, 375-796 ppm copper, 429-1024 ppm lead and 3.2-9.8 ppm silver. Two rock chips at the west end of the trench within altered volcanics ran $250-350 \mathrm{ppb}$ gold and 704-870 ppm copper.

Argentiferous galena, chalcopyrite and pyrite were seen in several smokey grey quartz veins found in old trenches within the Ta Hoola 1 and 2 claim blocks and to the west within the BOGG claims. All of these veins appear
peripheral - within 2000 metres - to the west, east and southeast of the syenite stock. The veins intrude the brecciated andesite, andesite breccia, andesite flow and locally siltstone. Rock chip values ranged from 86-469 ppm molybdenum, 386-2536 ppm copper, 295-1622 ppm lead and 5.4-17.5 ppm silver.

A boulder from an old trench located in the south central part of the Ta Hoola 2 claim block consists of 40-50\% sulphides. Galena, chalcopyrite, pyrrhotite/magnetite and pyrite were seen. Quartz/carbonate veins cut the boulder. The trench consists of andesite breccia and a rock chip of it ran elevated values in molybdenum, copper, lead and silver. The sulphide boulder assayed 100 ppb gold, 41 ppm molybdenum, $12,883 \mathrm{ppm}$ copper, 688 ppm lead, 353 ppm zinc and 25.7 ppm silver (Sample No. 8185562932032). This boulder and nearby trench appear to be within the same system as the previously mentioned smokey grey quartz veins peripheral to the syenite intrusion which lie just to the west of the major northwest-southeast trending fault lineament.

Argentiferous galena with minor chalcopyrite is also seen in old Anaconda trenches in the AG zone within the RO claim
block. Trench and diamond drilling reports indicate the rocks are brecciated andesites. Silver values ranged up to approximately $1.0 \mathrm{oz} /$ ton. Mineralization appears to be related to a fracture-controlled metasomatic alteration assemblage consisting of chlorite+carbonate+sodic amphibole (richterite) +chalcedony+albite which may be genetically related to the intrusion of the syenite stock to the north.

Skarn-type mineralization consisting of massive pyrrhotite and magnetite with minor chalcopyrite and pyrite are found to exist within a broad arcuate limestone belt south and southwest of Deer Lake. An extensive diorite intrusive lies adjacent to the west. Rock chip samples collected from the old Lakeview Mine located at the southwest corner of Deer Lake assayed 835-31,000 ppb gold, l360-2801 ppm copper, 1.4-6.0 ppm silver, 141-318 ppm nickel, 281-1909 ppm cobalt and 983-29,014 ppm arsenic, see Figure 13.

In addition, percussion drill data by Lornex (1983) encountered geochemically anomalous gold values. The best values obtained are in TA PDH \#83-1 and TA PDH \#83-9 which lie in SMDC's area \#l, see accompany table of "Geochemically Anomalous Intersections." The placement of the Lornex holes are suspect with relation to the best

GEOCHEMICALLY ANOMALOUS INTERSECTIONS

HOLE NUMBER		INTERVAL (feet)	Au (ppb)	$\begin{aligned} & \mathrm{Ag} \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \text { As } \\ & \text { (ppm) } \end{aligned}$	$\begin{aligned} & \text { Mo } \\ & \text { (ppm) } \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & \text { (ppm) } \end{aligned}$
	PDH83-1	8-118	254	4.8	88	16	509
	-2	25-200	51	1.4	35	6	223
		(90-170)	66	1.3		7	277)
	-3	20-200	75	1.5	59	18	401
		(60-100)	140	2.1		33	672)
	-4	12-200	38	1.8	64	3	75
		(20-30)	385	3.1		6	330)
	-5	15-220	42	1.7	60	4	161
		(40-70)	123	3.3		3	$86)$
-6		10-300	$\cdots 35$	1.5	39	4	83
		(70-130)	68	2.1		4	148
-7		10-210	7	1.2	40	6	160
		(190-210	ins	ificant	values		555)
-8		12-200	14	1.3	5	7	184
-9		8-200	118	2.1	56	14	248
		(60-100)	310	3.9		25	522
		(110-150)	150	2.5		10	161
-10		16-170	48	1.1	69	13	393
		(120-140)	155	1.3		8	272
-11		10-190	50	1.3	22	6	191
		(120-140)	100	1.8		9	572
-12		5-200	21	1.1	3	4	99
		(50-60)	120	1.2		6	165
-13		10-150	49	1.2	59	14	159
		(80-90)	220	3.2		63	378

parts of SMDC's anomalous IP zones. The geochemically anomalous response of $254 \mathrm{ppb} \mathrm{Au}, 4.8 \mathrm{ppm} \mathrm{Ag}, 88 \mathrm{ppm} \mathrm{As}$ over the entire hole TA PDH \#83-1 (118 feet) was spotted on the flank of an anomalous IP response. The core of this IP anomaly remains to be fully tested.
6. Summary of 1985 Geological Fieldwork

During the 1985 field season emphasis was placed on mapping the Silver 3 and Silver 4 claim blocks to further dilineate the northwest-southeast trending Nicola Group volcanic and sedimentary belts, which were defined in previous years work on the Ta Hoola claims to the south and west. Old Anaconda and SMDC trenches were also re-examined and rock chipped to verify geology and anomalous responses.

1. Silver 3

Andesite breccia and pyroxene porphyritic andesite flow were mapped on the eastern side of Silver 3. Limey fragments up to 3 cm were seen to exist within the breccia. On the western side of the claim, massive siltstone - occasionally bedded is seen. No anomalous rock chip samples were returned from the claim.
2. Silver 4

Mapping on the silver 4 claim revealed extensions of the known sedimentary and volcanic belts mapped previously. Massive
siltstone carrying between 2-5\% disseminated pyrite appears to be the most common lithology forming a proximal northwestsoutheast trending belt adjacent to pyroxene porphyritic andesite flows and breccias. The volcanic flows were seen on the western side of the claim as well as further to the east. A narrow belt of argillaceous sediments appears to be more distal lies to the east of the siltstones.

Within the southwest corner of Silver 4 there appears to be a 700 metre diameter, bedded chert basin. Bedding within the western side of the basin varies from $105 / 85 \mathrm{~N}$ in the north to $350 / 32 \mathrm{E}$ in the east. 5-15\% finely disseminated and fracture controlled pyrite is present.

A sedimentary chert conglomerate with sub-rounded calcareous and fine grained chert fragments up to $11 / 2 \mathrm{~cm}$ was found also on the west side of the basin. The unit trends approximately 135 . 5% disseminated pyrite is present within the matrix.

INDUCED POLARIZATION AND RESISTIVITY SURVEY

1. Introduction

An Induced Polarization and Resistivity survey has been completed on the Ta Hoola project, British Columbia, on behalf of Selco Division - BP Resources Canada Limited by Phoenix Geophysics.

The objective of the IP and resistivity survey was to outline areas of anomalous responses which are caused by increased sulphide content in the host rock. Gold values may be directly related to sulphide content in this area.

A Phoenix Model IPV-a, IP and resistivity receiver was used in conjunction wioth a Phoenix Mode IPT-1, IP and resistivity transmitter powered by a 2.0 kw metre generator. IP effect is recorded directly as Percent Frequency Effect (P.F.E.) at operating frequencies of 4.0 HZ and 0.25 HZ . Apparent resistivity values are normalized in units of ohm-metres, while metal factors are calculated according to the formula: $M F=(P . F . E . X 1000)-$ Apparent Resistivity

Dipole-Dipole array was utilized, with a basic inter-electrode distance of 50 metres. Two test lines were run at distances of 25 m .

Four dipole separations were recorded. Number of line km surveyed was 34.5

Field work was carried out during February and March 1985, under the supervision of Mr . John Marsh, geophysical crew leader. Supervision was provided by Dave Gamble and Alan Wynne.
2. Presentation of Data

The Induced Polarization and Resistivity results are shown on the following data plots in the manner described in Appendix 9 .

Grid
SILVER LAKE $146+00 \mathrm{~N}$
$145+00 \mathrm{~N}$
$144+00 \mathrm{~N}$
$143+00 \mathrm{~N}$
143+00N
$142+00 \mathrm{~N}$
141
$140+00 \mathrm{~N}$
$138+00 \mathrm{~N}$
50
$136+00 \mathrm{~N} \quad 50$
$132+00 \mathrm{~N} 50$
$128+00 \mathrm{~N} \quad 50$
$124+00 \mathrm{~N} \quad 50$
$124+00 \mathrm{~N} \quad 25$
$120+00 \mathrm{~N} 50$
$116+00 \mathrm{~N} \quad 50$
$112+00 \mathrm{~N} \quad 50$17

$110+00 \mathrm{~N} \quad 50$
$110+00 \mathrm{~N}$ 18

Line	Electrode Interval	Drawing No.
$108+00 \mathrm{~N}$	50	19
$106+00 \mathrm{~N}$	50	20
$104+00 \mathrm{~N}$	50	21
$102+00 \mathrm{~N}$	50	22
$100+00 \mathrm{~N}$	50	23
$96+00 \mathrm{~N}$	50	24
$92+00 \mathrm{~N}$	50	25
$88+00 \mathrm{~N}$	50	26
$84+00 \mathrm{~N}$	50	27
$80+00 \mathrm{~N}$	-50	28

Also enclosed with this report is map \#29, a plan map of the frequency effect data, map \#30, a plan of the resistivity data, and map \#31, an interpretation map. The definite, probably and possible anomalies are indicated by bars, in the manner shown in the legend on this interpretation map. These bars represent the surface projection of the anomalous zone.

Since the IP measurement is essentially an averaging process, it is difficult to pinpoint the exact location of an anomaly. No anomaly can be located more accurately then the electrode interval. In order to definitely locate a thin shallow source, shorter electrode spacings are necessary. To locate
a deep source, larger spacings are necessary. Therefore, while the centre of the indicated anomaly corresponds fairly well to the source, the length of the indicated anomaly along the line should not be taken to represent the precise edges of anomalous zones.
3. Discussion of Results

Numerous anomalous zones are evident in this data set. Generally, the trend of the anomalous zones are consistent, and trend 20° east of the perpendicular to the lines, or 335°.

The frequency effect indicate at least three different environments within thea reas. The northeast portion of the grid from $146 \mathrm{~N} / 114 \mathrm{E}$ to $136 \mathrm{~N} / 114 \mathrm{~N}$ is characterized by moderate to high frequency effects and moderate resistivity (500-800 ohm-metres) and by a definite contact phenomena on the west side.

The centre of the grid from lines $128 \mathrm{~N}-105 \mathrm{E}$ to 116 E to line $112 \mathrm{~N}-103 \mathrm{E}$ to 117 E is characterized by high frequency effects and variable but generally low resistivity (>500 ohm metres).
45.

The remainder of the grid is characterized by low frequency effects and moderate resistivity.

The compilation map shows definite, probable and possible anomalous zones. As well, axis of recognizable zone are noted. The anomalies fall into three groups as indicated by frequency effect behaviour. There are:

1. discrete shallow conductors
2. discrete deep conductors
3. amorphous frequency effect highs.

Detailed work on line 143 N using 25 m spacings indicates that the target is delineated on a weak, shallow discrete conductor. the 50 m survey over this zone did locate it, but as a very weak effect that would not normally be picked. Therefore, assuming that the primary target is similar to, but of greater dimensions than the trenched zone, the anomalies of most interest are the discrete anomalies, first near surface, and secondly, at depth.

Discrete Zones
$145+00 \mathrm{~N} / 104+00 \mathrm{E}$ to $146+00 \mathrm{~N} / 104+50$
This zone probably correlates to the trenched zone. The f.e.s. are weak but indicate a definite zone and are reflected by low resistivities indicating a fair concentration of sulphides. The zone appears deeper on line $146+00 \mathrm{~N}$.
$140+00 \mathrm{~N} / 104+75 \mathrm{E}$
Shallow, resistivities are high, indicating minor concentrations of sulphides.
$138+00 \mathrm{~N} / 107+50 \mathrm{E}$ to $136+00 \mathrm{~N} / 106+50 \mathrm{~N}$
Shallow discrete zone of weakly disseminated sulphides as indicated by high resistivities.
$132+00 \mathrm{~N} / 102+00 \mathrm{E}$
Buried frequency effect high accompanied by low resistivities beneath a lake. As the lake effects the resistivity readings, it is necessary to ignore the short dipole readings. An interesting weak anomaly at depth.
$124+00 \mathrm{~N} / 104+00 \mathrm{E}$ to $128+00 \mathrm{~N} / 109+00 \mathrm{E}$
This discrete zone consists of moderate quantities of sulphides as indicated by low resistivities, and appears near surface on line $124+00 \mathrm{~N}$, deeper on $128+00 \mathrm{~N}$.
$108+00 \mathrm{~N} / 101+50 \mathrm{E}$
Surficial, appears to have little depth extent.
$102+00 \mathrm{~N} / 101+50 \mathrm{E}$ to $104+00 \mathrm{~N} / 104+50 \mathrm{E}$
This is a weak, discrete zone. There is considerable question as to the strike of this unit. These two shallow anomalies may not be related to the same source (see interpretation map).
$96+00 \mathrm{~N} / 103+00 \mathrm{E}$
Very weak, deep zone along edge of lake.

The remaining anomalies are not easily classified as to shape. Some are manifestations of contact phenomena, while others may be due to faults. Several are due to wide zone of conductive material.
$124+00 \mathrm{~N} / 107+00 \mathrm{E}$ to $132+00 \mathrm{~N} / 111+50 \mathrm{E}$
This zone is shown on the interpretation map as two parallel discrete bodies. These lines indicate rough location of rock type or sulphide concentration changes. The central zone has moderately high frequency effects, and low resistivities indicating a metallic, conductive zone. The zone appears to plunge deeper to the north. An interesting zone.

$$
124+00 \mathrm{~N} / 112+50 \mathrm{E} \text { to } 132+00 \mathrm{~N} / 116+75 \mathrm{E}
$$

A shallow, conductive zone in a region of generally enhanced frequency effect. A pronounced resistivity low accompanies the zone.
$136+00 \mathrm{~N} / 114+50 \mathrm{E}$ to $146+00 \mathrm{n} / 118+00 \mathrm{E}$ Zone of high frequency effect and high resistivity caused by probable rock change and severe topography. This zone appears to truncate south of line $136+00 \mathrm{~N}$, perhaps indicating an east-west fault. Low priority.
$140+00 \mathrm{~N} / 104+75 \mathrm{E}$ to $141+00 \mathrm{~N} / 106+00 \mathrm{E}$ A deep, weak anomaly.
$142+00 \mathrm{~N} / 108+25 \mathrm{E}$ to $146+00 \mathrm{~N} / 109+50 \mathrm{E}$
Perhaps the continuation of the previous zone, very weak and deep to the north but appears quite shallow on line $142+00 \mathrm{~N}$. Low resistivities indicate considerable quantities of conductive disseminated sulphides.
$143+00 N / 104+00 \mathrm{E}$ to $146+00 \mathrm{~N} / 104+50 \mathrm{E}$
Weak zone correlating to the detail anomaly on line $143+00 \mathrm{~N}$. Low resistivities indicate sulphide material.
$120+00 \mathrm{~N} / 104-110 \mathrm{E}$ to $112+00 \mathrm{~N} / 104-108 \mathrm{E}$This is a highly polarizable, moderately conductivezone. Contacts are quite distinct in the frequencyeffect profiles, and probably relate to a largevariation of sulphides within the zone compared towithout. Backgrounds to the east remain elevated. Aninteresting zone.,
$112+00 \mathrm{~N} / 114+00 \mathrm{E}$An elevated zone within a high background area. Thiszone may be a "massive core" to a disseminated halo.
$96+00 \mathrm{~N} / 101+50 \mathrm{E}$
A weak zone below a lake.
$92+00 \mathrm{~N} / 104+00 \mathrm{E}$High frequency effect and high resistivity indicating adisseminated source at depth.
$88+00 \mathrm{~N} / 106+00 \mathrm{E}$ to $80+00 \mathrm{~N} / 102+50 \mathrm{E}$A zone of low resistivity indicating conductivematerials. The zone appears to plunge to the south.
4. Summary and Conclusions

Targets of primary interest would be:

1. The large, conductive zone in the center of the grid ($120+00 \mathrm{~N}-104 \mathrm{E}-110 \mathrm{E}$ to $112+00 \mathrm{~N} / 104 \mathrm{E}-108 \mathrm{E})$.
2. The discrete conductors.
3. Any conductors close to the "fault" or break between lines $136+00 \mathrm{~N}$ and $132+00 \mathrm{~N}$.

SOIL GEOCHEMICAL SURVEYS

1. Sample Collection and Analysis

Soil geochemical surveys were conducted on the Ta Hoola property in 1984 with a total grid coverage of 93 line kms, see Figure 14. Approximately 866 soil samples were collected on a 400 m X 100 m sample density, see Figure 5, and geóchemically assayed for 30 element (ICP) + gold (FA + AA) by Acme Analytical Laboratories Ltd., see Appendix 3, Certificate of Analysis for BP's 1984 soil geochemistry.

Previous soil samples taken by SMDC in their 1981-1982 surveys consisted of soil coverage outside the BP 1984 soil coverage limits, see Figure 5. A total of 2062 soil samples had 30 element ICP data available at Acme Analytical

Laboratories Ltd. This data package contained the balance of the 30 element ICP analyses previously unknown to SMDC. For a nominal charge of $\$ 1.00$ per sample this data was purchased on disc form and incorporated for a comprehensive soil data base, see Appendix 4, Certificate of Analysis for SMDC soil geochemistry.

The 30 element (ICP) package consists of the following elements; Mo, $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{N}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{U}, \mathrm{Au}, \mathrm{Th}$, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, and W. All samples were reanalyzed for gold following a fire assay preconcentration technique and Atomic Absorption determination. Analytical procedures are reported in Appendix 7.

In 1985, twelve (12) small grids totalling 25.4 line kms were detailed soil sampled to followup previous gold anomalous results from the SMDC and BP 1984 survey, see Figure 7. The minigrids were soil sampled at a $100 \mathrm{~m} \times 50 \mathrm{~m}$ density in areas anomalous in gold. A total of 565 samples were collected and analyzed for 30 element (ICP) + gold (FA + AA), see Appendix 5, Certificate of Analysis for BP's 1985 soil geochemistry.

Till is the predominant overburden type with glacial direction typically from south to north. Inspection of several trenches revealed a typical cross section consisting of:

1. The Soil Profile - up to 1 m thick comprising a 10 cm dark, organic-rich A horizon, red brown $B F$ horizon up to 50 cm thick and a olive brown $B M$ horizon several tens of centimetres thick.
2. An intermediate till layer deposit formed at the base of a glacier, (i.e., basal meltout till) - sub-glacially entrained, containing rock graments of variable size, angularity and type, ranging in thickness of less than 1 m to several metrest, olive grey in colour, moderately compacted and derived from sources hundreds of metres to kilometres upice.
3. Lodgement Till - contains variable size rock fragments commonly of a single rock type, blueish grey to blackish grey in colour, unknown thickness, highly compacted and thought to be locally derived.

2. Method of Data Evaluation

Histograms were drawn to summarize the distribution of metal values, see Figure 32. Selection of arithmetic or logarithmic scales is determined by reference to the detection limit for an element and a number 25 x that detection limit. If the maximum value is less than 25 X the detection limit, the histogram is calculated by incrementing the detection limit value arithmetically up to 25 X the detection limit. If the maximum value exceeds 25 X the detection limit, both arithmetic and logarithmic scales have been plotted, scale increments beirg a constant factor of the detection limit or the standard deviation interval.

In view of the abnormally great influence exceptionally high values have on the construction of a histogram, data sets have been truncated where this is prudent (i.e., where the maximum value is $>25 \mathrm{X}$ the detection limit and truncation does not leave the remaining maximum values $>25 \mathrm{X}$ the detection limit). Truncated data have been replotted in arithmetic or logarithmic format; all values greater than the mean plus 1.9 standard deviation interval truncation limit being plotted in the greatest concentration class interval.
3. Method of Data Presentation

Histograms are interpreted subjectively to arrive at size coding intervals. Largest dots represent the most anomalous conditions; numbers printed next to the largest dots represent the maximum values of the survey. The second largest dots represent weakly anomalous values. Dot selection otherwise attempts to divide the data into recognizable populations. Each population is subdivided by dot size selection to highlight the uppermost 5 to 10 percentile of that population. Anomalous conditions do not necessarily have to be indicated by the very largest symbols, but can also be defined relative to the majority of surrounding lower values. The larget symbols are considered anomalous under all conditions, save their random distribution throughout the survey area. The method of histogram interpretation is reported in Appendix 8.

4. Survey Results

Soil geochemical survey plots of the 1984 BP soil survey and the incorporated SMDC re-run data are presented in Figures 32 a to $32 y$ which corresponds to $\mathrm{Au}, \mathrm{Ag}, \mathrm{As} ; \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}$, Cd, Bi, Ni, Co, Cr, V, Mn, Fe, Sn, ti, B, Ba, Mg, Sr, K, Ca, Al, and P in soils respectively, (l:25 000 back pocket).

In addition, a series of $1: 10000$ scale soil geochemical maps illustrate sample location numbers, the significant elements $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Pb}$, and Zn in soils for the Ta Hoola north and south map sheets, see Figures $33 a$ (N and S) to Figure 33 g (N and S), back pocket, respectively). Also incorporated in the data set are results from a previous soil geochemical survey on the BP Resources Canada Limited HC-l claim lying adjacent to the SMDC claim block in the southeast.

The results of the soil survey yielded a number of gold anomalies ($>50 \mathrm{ppb}$ to 6260 ppb Au) and ars \in nic anomalies (>40 ppm - 258 ppm As); see Figure 34 , Anomaly Compilation, in addition to the previously defined SMDC's anomalous zones, area \#1, \#2, \#3, and \#4.

In response to these zones the detailed followup minigrids on twelve of these zone (see Figure 7) was carried out. Plots for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Pb}$, and Zn (Figures 32 aa to $32 \mathrm{ff}, \mathrm{l}: 25$ 000, back pocket) illustrate the results.

The results of the detailed followup generally show low-level geochemical enhancement from 50-395 ppb Au. One isolated high response of 2450 ppb Au occurs on mini-grid E , L93+00MN/110+50ME, sample \#9322121.

The only other samples of significance to report on are two adjacent samples on grid L , on Ll37+00MN/99+50-100+00ME, where $C u$ values of 1167 and 1131 ppm occur, respectively, however, no other elements of significance are associated at this location.

The net result of the 1985 detailed soil followup survey is that the original zones defined in the 1984 survey have not been substantially enhanced geochemically or broadened areally to upgrade these zones.

Gold anomalies found in till, along the broad valley occupying the central portion of the property, are believed derived from isolated mineralized boulders in the till. Location of bedrock source(s) cannot be adequately ascertained from the detail soil sampling to date.

TRENCHING PROGRAM

1. Introduction

During the 1985 field season 5 km of cat trails were constructed to provide access to 31 proposed trench locations. The trenches were excavated by a hydraulic backhoe in an attempt to followup favourable IP anomalous zones and favourable geologcial/geochemical areas.

A total of 1840 m of trench excavation was completed for the 31 trenches. A total of 17 trenches exposed bedrock, while the remaining 14 trenches were abandoned and back-filled when bedrock was not reached at 15 foot depths. A Trench Summary table listing the location data follows:

TRENCH SUMMARY

TRENCH *	CLAIM	LOCATION COORDINATES	PROPOSED LENGTH OF TRENCB (m)	TARGET	COMMENTS
1	HC 1	$\begin{aligned} & \text { L12N/ } \\ & 7+00-7+50 \mathrm{MW} \end{aligned}$	50	Geochem	
2-	HC 1	$\begin{aligned} & \mathrm{L} 2+50 \mathrm{MN} \\ & 3+00-3+25 \mathrm{MW} \end{aligned}$	25	Geochem	
3	HC 1	$\begin{aligned} & \mathrm{L} 3+00 \mathrm{MN} \\ & 3+25 \mathrm{MW}-4+25 \mathrm{MW} \end{aligned}$	100	Geochem	
4	SILVER 2	$\begin{aligned} & \mathrm{L} 0+00 \mathrm{MN} \\ & 9+00-10+25 \mathrm{MW} \end{aligned}$	125	Geochem	
5	TA 9	$\begin{aligned} & \mathrm{L} 88 \mathrm{~N} / \\ & 105+75-106+00 \mathrm{ME} \end{aligned}$	ME 25	Selco IP	
6	TA 9	$\begin{aligned} & \text { L19S/ } \\ & 15+00-15+50 \mathrm{ME} \end{aligned}$	50	SMDC IP	
7	TA 9	$\begin{aligned} & \mathrm{L} 19 \mathrm{~S} / \\ & 11+50-12+00 \mathrm{ME} \end{aligned}$	50	\cdots SMDC IP	No Bedrock
8	TA 12	$\begin{aligned} & \text { L14S/ } \\ & 13+50-14+00 \mathrm{ME} \end{aligned}$	50	SMDC IP	No Bedrock
9	TA 12	$\begin{aligned} & \text { L15S/ } \\ & 10+50-11+00 \mathrm{ME} \end{aligned}$	50	SMDC IP	No Bedrock
10	TA 12	$\begin{aligned} & \text { L14S/ } \\ & 9+50-10+00 \mathrm{ME} \end{aligned}$	50	SMDC IP	

Sampling and mapping of the trenches was carried out. A 185
CFM diesel powered air compressor was utilized to air clean
the exposed bedrock in the excavations. Samples were
collected over 2.0 m intervals for a total of 389 continuous
chip samples. All sample were analyzed for 30 element (ICP)
$+\mathrm{Au}(\mathrm{FA}+\mathrm{AA})$ at Acme Analtyical Laboratories Ltd., see
Appendix 6, Certificate of Analysis 1985 Trench
Lithogeochemistry.

2. Trench Results

The accompany trench geology and lithogeochemical plans, Figures 35a-35p, illustrate the results. The trenches are located on Figure 8, and on the Geologcial Maps, Figures 12a-12f, back pocket.

Results were generally discouraging, however, two of the better trenches are described as follows:

TRENCH \#l on the HC claim confirmed previous rock chip sampling but failed to upgrade it. A zone of intensely carbonate altered andesite returned sporatic values for gold ranging between $=100 \mathrm{ppb}=\mathrm{to}=180 \mathrm{ppb}$ with the majority in the 100-300 ppb range. The carbonitized-mineralized zone averages $210 \mathrm{ppb} \mathrm{Au}, 2.25 \mathrm{ppm} \mathrm{Ag}$, and 997 ppm Cu over 24 m .

TPENCH \#5 on the Silver 1 claim contains a chloritic shear zone with 25% sulphide (pyrite and chalcopyrite) which returned $1.8 \mathrm{~g} / \mathrm{t}$ Au over 2.0 m or $1.05 \mathrm{~g} / \mathrm{t}$ Au over 4.0 m .

Of the trenches which reached bedrock most explained the source of the IP anomalies. In most cases the IP anomalies are due to primary pyrite disseminated within the sediments and these rocks were found to contain no significant enhancements in gold.

In addition, conductive graphitic argillite is also present in areas of IP anomalous responses.
3. Geology of BP 1985 Trenches

BP Trench 1985-\#1 and \#1A
Located at Ll2N/7+50W on the HC claims. Trench is 76.0 m long. "T" of trench is at 46.0 m and is 32 m long. Throughout both trench \#l and \#lA carbonate altered andesite flow is the only rock type seen. Carbonate alteration varies from weak to strong. Quartz veins up to 30 cm cut the trench rocks and occasionally carry up to 3% sulphides. Anomalous geochemical assays within these veins range from; 130-275 ppb gold, 169-1185 ppm copper, 213-821 ppm lead, 252-787 ppm zinc and $3.2-7.7 \mathrm{ppm}$ silver. Within the carbonate altered andesite unit, $1-3 \%$ pyrite is common and locally $3-8 \%$ pyrite is present. Anomalous geochemical assays within this unit range up to 1180 ppm gold, 5.2 ppm silver, 2163 ppm copper, 119 ppm lead and 324 ppm zinc. The core of the alteration zone averages 210 ppm Au, 2.25 ppm Ag, and 997 ppm Cu over 24 m.

BP Trench 1985-\#2
Located 36 m from L2N/4W at a bearing of 322° and 115 m long. The trench consists of interbedded carbonate altered mafic volcanics and cherty-siltstone-argillaceous sediments. In
the central portion of the trench, the volcanics quite often contain fuschite along with moderate to strong carbonate alteration. 2% pyrite is common in this unit. Rarely 5-10\% pyrite is seen in areas. Anomalous geochemical values range from 115-310 ppb gold within this central zone. Quartz veins locally occur occasionally carrying galena, sphalerite and pyrite. Near the eastern end of the trench 2 banded limey sediment was found but carried no significant geochemical values.

BP Trench $1985-\# 3$
Located 30 m south of Trench \#2 at eastern end. Trench is 43.5 m long with "T" trench at 32.3 m. . Grey to green chert and carbonate altered pyroxene porphyritic andesite interchange along the trench. Fuschite and up to 5% pyrite occur locally within the volcanics. No significant assays.

BP Trench 1985-\#4
Locate 63 m from LON/10W, HC claim post 2 W at a bearing of 76°. Trench is 121 m long. A coarse grained feldspar porpyry dyke between $5.0-17.0 \mathrm{~m}$ is seen to crosscut altered andesite agglomerate and other related mafic fragmental rocks in the western end of the trench. Light grey, carbonate altered (limey) sediments carrying $5-10 \%$ disseminated pyrite
are present with the mid-section of the trench, which then grades into a carbonate altered andesite breccia. Carbonate alteration varies from moderate to intense and 10-15\% disseminated pyrite is present. Anomalous geochemical assays within a zone of carbonate altered volcanics between 60.0-62.0 m ran; 1690 ppb gold, 2736 ppm lead, 449 ppm zinc and 10.2 ppm silver.

BP Trench 1985 - \#5
Located 19.5 m from $\mathrm{L} 88 \mathrm{~N} / 106 \mathrm{E}$ at a bearing of 322°, 18 m long. Pyroxene porphyritic andesite:is the only unit seen. Alteration varies from moderate to strongly chloritic with lo pyrite in most of the trench, except for a one metre zone between 13 and 14 m which displays intense carbonate alteration with 1% pyrite. A shear zone between 9 and 10 m produced geochemical assays of 1800 ppb gold, 23.3 ppm silver, 4649 ppm copper and 102 ppm molybdenum. Other anomalous samples in the trench were taken adjacent to this shear zone and ranged form $80-440$ ppb gold and 171-2041 ppm copper. Within the shear zone; up to $40-50 \%$ sulphides occur as pyrite and chalcopyrite.

BP Trench 1985 - \#6

Located 88 m to $\mathrm{PDH} \# 12$ at a bearing of 63°. Fifty-one metres long. Carbonate altered pyroxene porphyritic andesite
with $1-2 \%$ disseminated pyrite is the only rock type seen. Locally, amygdules filled with epidote and calcite are present in the flow and occasionally $5-8 \%$ is present within narrow zones of the trench. A fourteen metre grab sample of the carbonate altered volcanic from the banks of the trench was the only anomalous zone assaying 105 ppb gold.

BP Trench 1985-\#10
Located 6.5 m from SLI45E/IONE at a bearing of 270°. 51 m long. The lithologies change from a dark green, unaltered, pyroxene porphyry andesite with less than 1% pyrite in the western end of the trench to a rusty weathering cherty sediment unit with interbedded volcaniclastic beds. Chert bedding is $168 / 80$ SW with pyrite content locally 5-8\% py. Within the chert unit are occasional quartz veins with disseminated chalcopyrite and pyrite. The easternmost unit seen in the trench is a volcanic conglomerate with subrounded fragments of volcanics and sediments containing $3-5 \%$ pyrite. Anomalous rock chip geochem values range from $105-355$ ppb gold within the cherty sediments in a zone between $14-28 \mathrm{~m}$.

BP Trench 1985-\#11
Located 12 m from Ll2 $\mathrm{SE} / 14 \mathrm{NE}(\mathrm{SMDC})$ on a bearing 358° towards the east end of the trench. Trench bearing is at
042° and has 13.5 m of exposed bedrock. The lithologies are andesite breccia with 3-5\% pyrite throughout the majority of the trench changing to an andesitic pyroxene porphyritic flow with $1-3 \%$ pyrite at the northeast end. No significant assays.

BP Trench 1985-\#12
Located 8 m from Ll25E/15+25NE at a bearing of 20°. 17.4 m long. The lithologies change from a green pyroxene porphyritic andesite with $1-2 \%$ pyrite in the west half of the trench to a massive medium grained diorite with 1\% disseminated pyrite in the eastern portion. No significant assays.

BP Trench 1985-\#19
Located 13 m from Ll06N/104+50E at a bearing of 130°. 19 m long. The trench consists of intensely fractured, bedded, black argillite and shale with 1% disseminated pyrite. Locally, volcaniclastic fragments are seen within the unit. No significant assays.

BP Trench 1985-\#24 (or AG 3)
Located 15 m from L136B/118+50E at a bearing of 348°. 23 m long. The lithologies grade from a pyroxene porphyry
andesite flow in the western half of the trench to a light green fragmental andesite unit with patchy epidote alteration and 2-3\% disseminated pyrite. No significant assays.

BP Trench 1985-\#25 (or SW AG 3)
Located 42 m from L136N/118E at a bearing of 225°. 25 m long. Andesite fragmental with pyroxene porphyry clasts varying from 3-30 cm in size. Variable chlorite-epidote-carbonate alteration with 1-2\% pyrite. Possibly richterite with 5-8\% pyrite at western end of trench. No significant assays.

BP Trench 1985-\#26
Located 62 m from L142N/108E at a bearing of 54°. 23 m long. The trench consists of discontinuous outcrop of epidote-filled amygdoloidal basalt with less than 1% pyrite. No significant assays.

BP Trench 1985-\#28
Located 5 m from Ll38N/107+50E at a bearing of 16°. 16 m
long. The trench has continuous outcrop of black, brecciated, argillite with less than 1% disseminated pyrite. Occasional narrow calcite veinlets along fractures. Bedding is $055 / 60$ SE. No significant assays.

BP Trench 1985-\#29
Located 61 m from L107+32N/125+25E at a bearing of 345°. The trench consists of interbedded pyroxene porphyritic andesite flow and fine grained, sometimes bedded, chert. The west half of the trench is moderately to strongly silicified, has moderate carbonate alteration and between 3-15\% disseminated pyrite. Minor galena, chalcopyrite and pyrite are seen in quartz veins. Narrow $2-3 \mathrm{~mm}$ purple amethyst veinlets are seen between 2-5 metres. Pyrite content in the east half of the trench appears to decline to l-10\%. As well, the volcanic unit becomes sheared and brecciated. Anomalous values of 250-350 ppb gold were found at the extreme western end of the trench in intensely silicified rock. Shear zones in andesite at both ends of the trench give anomalous values in molybdenum (196-1665 ppm), copper (375-796 ppm), lead (429-1024 ppm) and silver (3.2-9.8 ppm).

BP Trench 1985-\#30
Located 36 m from LlllN/128+25E at a bearing of 106°. Trench is 122.1 m long. The trench consists of massive fine to medium grained diorite and fine grained bedded green chert. Pyrite content varies from $1-8 \%$ in both units. $5-6 \%$ pyrite is seen in a shear zone located between 84-92 m. No significant assays.

Located 6 m from LII7+08N/125+50E at a bearing of 195°. 76.5 m long. Five rock types are seen in the trench. From west to east they are:

1) Massive fine grained diorite with less than 1% pyrite.
2) Sedimentary conglomerate with interbedded laminated siltstones. Bedding is 140/75 NE.
3) Black argillaceous conglomerate with matrix supported clasts up to 3.5 cm in size. Locally laminated sediments indicate younging to the $S W$ and bedding of 120/80 SW.
4) Pyroxene porphyritic andesite flow with calcite filled amygdules.

Pyrite content varies from 2-5\% in the diorite and 1-3\% in the conglomerates and siltstones. No significant assays.

SUMMARY OF SAMPLE NUMBERS

TA HOOLA TRENCHES BP 1985

TRENCH	SAMPLE NUMBER	NO. OF SAMPLES
\#1	8185562932406-429/932445-450	30
\#1A	8185562932430-444	14
\# 2	932054-932108	55
\#3	932109-932130	22
\#3A	932131-932135	5
\# 4	932136-932175	40
\# 5 .	932176-932184	9
\# 6	932185-932204	20
\# 9	932241 -	1
\#10	932219-932240	22
\#11	932213-932218	6
\#12	932205-932212	8
\#19	932242-932248	7
\# 24	932249-932260	12
\# 25	932261-932274	14
\# 26	932294-932399	6
\# 28	932387-932393	7
\#29	932275-932306	32
\# 30	932307-932353	47
\# 31	932354-932386	33
	TOTAL	389

CONCLUSIONS AND RECOMMENDATIONS

Based on exploration to date the following conclusions can be drawn:

- The Ta Hoola property sits within the core of an alkalic volcanic-sedimentary belt. This Triassic to Jurassic assemblage exhibits lithological and magnetic similarities to other areas in the Quesnel Trough that have proved favourable for both porphyry copper-gold deposits, e.g., Afton, and for gold deposits, e.g., Dome's Quesnel River, (QR).

Zones of strongscarbonitization of volcanics plus pyritization appear to be the best host for geochemically enhanced gold zones to date. The bestizones that carry such enhancements are the SMDC area \#2 and \#3, and the BP Trench 1985-1 area on the HC 1 claim. However, there is a noticeable lack of propylitization associated with these zone to date, in contrast to its occurrence and significance at the $Q R$ deposit setting.

- Spotty gold values occurrying in the till are believed derived from isolated weakly mineralized boulders in the till. Followup on initial soil geochemical anomalous zones with detailed check sampling did not enhance the original zones appreciably.
- The Induced Polarization survey has outlined zones of pyrite-rich sediments, graphitic sediments and to a lesser degree pyritized volcanics. The pyrite-carbonate zone of Area \#3 has a very weak IP response at best (Ll43N/104+25ME).
- Trenching of IP zones, geochemical anomalous zones, and favourable geological zones in 1985 have returned several geochemically enhanced gold zones BP Trench \#l and \#5.

It is recommended that several diamond drill holes be placed within and along strike of the area \#3 pyritized-carbonitized volcanic gold-bearing zone. In addition, ${ }^{\text {a }}$ several diamond drill holes should also be placed on the SMDC area \#2 on the IP anomalous zone (SMDC 1982 data) that flanks the percussion drill hole PDH 83-1 (Lornex 1983 data).

It is also recommended that one diamond drill hole be placed to test the anomalous gold zone on the HC 1 claim, BP Trench 1985 \# 1.

These three zones should be adequately drill tested at this time prior to committing any further ground surveys over the project area.

COST STATEMENT

(Filing for Report Preparation only)
A) Report Preparation - 16 February - 15 March, 1986
(1) Dave Gamble, Project Geologist 11 days @ $\$ 190 /$ day $\$ 2090.00$
(2) Drafting 27 days @ \$120/day 3240.00
(3) Geochemical Plotting - Bob Sandu 1 day @ \$110/day 110.00
(4) Secretarial (typing, copying, binding) 4 days @ \$90/day 360.00
(5) Reproduction Costs 200.00
B) Compile Report to Assessment, Report Format,
Fill Out Statement of Exploration andDevelopment, Forms, etc.
7 - 8 October, R. Farmer - Project Geologist 2 days $\$ 170 /$ day 340.00
Total $\$ 6340.00$

COST ALLOCATION

A) Ta Hoola 2 Group (Ta Hoola 2,4,6,11, Silver 3,4, - 96 units)
53% of total cost of $\$ 6340.00 \quad \$ 3360.20$
Plus PAC withdrawal of $19,05 \%$ of $\$ 3360.20 \quad 639.80$
Total Applied for Assessment $\$ 4000.00$

One Year Applied to Silver 4 Claim (20 units)
B) Ta Hoola 9 Group (Ta Hoola $9,10,12,13$, Silver $1,2-90$ units)
43% of total cost of $\$ 6340.00$ \$2979.80
Plus PAC withdrawal of " 7.39\% of $\$ 2979.80 \quad \underline{220.20}$
Total Applied for Assessment $\$ 3200.00$
One Year Applied to Silver 1 Claim (16 units)

STATEMENT OF QUALIFICATIONS

I, Alan J. Wynne of the town of Sidney, in the Province of British Columbia, do hereby certify that:

1. I am a geophysicist residing at 8573 Ebor Terrace, Sidney, B.C.
2. I am a graduate of the University of British Columbia, with a B.Sc degree.
3. I am a member of the Society of Exploration Geophysicists and the Geological Association of Canada Pacific Section.
4. I have been practising my profession for ten years.
5. I have no interest directly or indirectly in the properties of securities of Selco Division - BP Resources Canada Limited.

CERTIFICATE OF AUTHOR

I, Dave Gamble, of 7182 Blackwell Road, Kamloops, British Columbia, hereby certify that:

1. I am a geologist residing at the above address.
2. I am a graduate of the University of Ottawa with an Honours B.Sc. degree in Geology (1973) and have completed two years graduate studies leading to a M.Sc. at Laurentian University.
3. I have practised my profession for more than nine years.
4. I supervised the geological, geophysical, and geochemical survey work on the Ta Hoola Project Claims and interpreted the results of the surveys described herein.
5. I hold no interest, direct or indirect, in the Ta Hoola Project Claim Group which is the subject of this report.

Respectfully submitted,
A.P.D. Gamble Project Geologist

March, 1986
Kamloops, B.C.

CERTIFICATE OF AUTHOR

I, Randy Farmer of \#llo - 44 Whiteshield Crescent South, Kamloops, British Columbia, hereby certify that:

1. I am a geologist residing at the above address.
2. I am a graduate of Lakehead University, Thunder Bay, Ontario, with an Honours B.Sc. degree in Geology (1980).
3. I have practised my profession for more than six years.
4. I reviewed the geological, geophysical and geochemical surveys work and supervised the trenching program on the Ta Hoola Project Claims described herein.
5. I hold no interest, direct or indirect, in the Ta Hoola Project Claim Group which is the subject of this report.

Respectfully submitted,

Randy Farmer Project Geologist

October, 1986
Kamloops

APPENDIX 1

CERTIFICATE OF ANALYSIS - 1984 LITHOGEOCHEMISTRY

SELCD－A DIVISION DF EF FFOJECT \＃ 10141 FILE \＃日4－349日
FAGE 1

Sthelei	no	Cu	Pb	In	Ag	Ni	Co	ln	Fe	As	\checkmark	Au	in	Sr	Cd	Sb	8 B	v	Ca	p	Ld	Lr	Hg	Bd		1					
	ppa	ppa	ppa	ppa	pp：	ppz	pD：	ppi	1	ppe	ppa	ppe	ppt	pps	ppa	ppt	ppa	ppa	2	1	ppa	ppa	，	PPs	1	ppa	2	1	2	DP6	ppb
510 C	20	58	13	128	6.8	68	26	1072	4.02	10	17	7	33	11	16	15	18	58	． 45	． 11	38	55	． 90	184	． 01	39	1.75	． 06	． 10	13	－
8184562532001	3	14	15	63	． 2	10	12	705	3.15	11	5	no	2	112	，	，	2	62	2.11	． 12	10	134	2.65	36	． 04	1	2.30	． 01	． 01	2	13
8181502932000	11	71	6	61	． 5	62	16	95	3.19	12	6	Ho	2	11	1	2	2	25	3.16	． 11	5	16	． 18	58	． 06	2	． 93	． 02	． 62	2	5
10104562 93200］	2	142	9	38	． 1	12	18	351	4．11	10	5	H2	2	22	1	2	2	71	． 55	． 11	1	11	1.10	18	． 13	3	1.10	． 02	． 03	2	31
6184562932604	2	112	5	12	． 6	33	10	314	3.98	3070	5	No	2	91	1	2	2	7	8． 61	． 11	3	5	． 01	9	． 03	2	． 27	． 01	． 01	2	E
8181562932005	3	72	11	21	.1	8	5	118	16.76	79	5	ND	2	16	1	11	2	12	1.89	． 33	25	18	． 16	16	． 02	1	． 52	． 01	． 02	3	6
8184562732006	5	101	12	28	.1	11	12	333	11.60	30	5	Nid	2	1	1	6	3	202	． 98	． 13	5	10	． 38	24	． 03	2	． 71	． 01	． 03	2	16
8164562932007	2	962	6	36	． 6	54	59	112	11.01	70	7	ND	2	10	1	2	2	164	2.90	． 28	19	16	． 59	10	． 04	2	1.05	． 01	． 01	5	38
8164562932008	2	54	5	51	． 1	10	13	591	4.10	16	5	Hid	1	32	1	？	2	70	． 78	． 21	13	12	1.23	23	． 13	5	1.12	． 02	． 03	2	18
1184562 93200？	1	2801	8	7	5.9	3	7	671	9.11	51	7	NiS	2	17	1	2	2	68	5.59	． 13	8	，	． 15	14	． 02	2	． 71	． 01	． 01	B	835
8184562932030	3	1913	35	52	1.1	151	281	161	30.61	983	5	2	2	8	1	13	3	21	． 60	． 15	11	2	． 08	15	． 01	δ	． 11	． 01	． 01	2	1880
618156？932011	10	1360	35	60	6.0	318	1909	519	25.02	29011	235	51	2	21	1	61	5	15	1.98	． 59	26	12	． 18	21	． 01	2	． 34	． 01	． 02	2	11600
$818456293201 ?$	2	62	1	13	.1	15	24	501	5.87	110	5	ND	2	21	1	2	2	176	． 54	． 03	1	5	1.71	8	． 13	3	1.92	． 01	． 01	2	76
8184552 9 20013	3	122	11	112	． 3	8	14	1338	3.99	13	5	ND	2	60	1	3	2	20	2.51	． 16	1	1	． 69	102	． 01	2	1.06	． 01	． 09	2	175
8186562932014	1	$5 \hat{8}$	1	19	． 2	48	14	611	4.91	41	5	H0	2	104	1	5	3	25	1.53	． 15	2	9	．63	31	． 01		． 11	． 04	． 05	2	14
8184562932015	2	2568	19	31	1.1	θ	110	1070	14．36	114	6	N0	2	12	1	2	2	14	6.04	． 03	20	1	． 13	11	． 01	2	． 34	． 01	． 04	5	112
8184562931001	2	154	3	59	． 2	17	19	785	4.12	22	5	N0	2	101	1	2	2	71	2.22	． 20	3	29	1.81	63	． 06	2	1.65	． 01	． 01	2	36
8184562931002	3	152	10	62	.1	21	22	828	5.03	12	5	N0	2	66	1	，	2	99	1.86	． 18	8	31	1.98	31	.11	5	1.75	． 02	． 01		38
0184562931003	1	78	5	52	． 1	18	11	656	4．53	17	5	N0	2	17	1		2	94	1.14	.13	5	30	1.86	20	． 01	J	1.96	． 02	． 04	2	21
8181562931001	1	17	，	28	.1	10	1	381	2.85	23	5	HD	2	59	1	2	3	48	． 88	． 12	1	12	1.29	15	． 06	2	1.35	． 02	． 02	2	11
8181562 931005	1	55	5	13	.1	11	12	1006	5.00	11	5	N0	2	208	1	2	2	121	2.76	． 12	3	18	1.86	13	． 03		2.28	． 02	． 05	2	9
8104562931006	1	55	1	18	． 1	12	1	215	2.11	，	5	ND	2	34	1		3	19	． 19	． 20	1	17	． 68	27	． 06	3	． 13	． 03	． 05	2	5
8181562931007	8	39	20	92	2.8	23	J	76	1.85	24	5	H0	3	15	1	6	1	13	． 10	． 03	9	13	． 18	113	． 01		． 36	． 01	． 10	2	21
8181562931008	3	1054	9	31	． 3	287	82	188	7.91	11	5	no	2	16	1	，	2	21	． 54	． 12	2	$1)$	． 63	32	． 09	2	． 65	． 02	． 12	2	10
8181562931009	3	1853	26	125	5.1	87	300	928	22.85	126	5	ND．	2	6	1	2	5	13	． 11	． 05	7	－	1.11	11	． 06	2	2.85	． 01	． 04	2	1100
8181562951001	2	52	，	51	． 3	16	10	879	4.75	13	5	ND	2	59	1		2	127	3.08	． 11	6	51	1.71	24	． 06	2	2.05	． 01	． 05	2	11
8184562934002	2	231	1	60	.1	11	22	223	5.06	5	5	NE	2	58	1		2	111	1.09	． 15	5	1	2.35	128	． 17	1	2.21	． 02	． 04	2	11
8101562931003	2	25	1	23	． 1	5	1	163	4.53	17	J	ND	2	50	1		2	103	2.10	． 20	6	2	2.32	32	． 02	3	2.39	． 03	． 04	2	14
RE 8181562932014	7	58	10	17	． 3	17	12	612	4.11	25	5	ND	2	104	1	2	$\cdot 2$	25	1.52	． 15	1	，	． 64	31	． 01	2	． 16	． 04	． 05	2	16
8181562934004	1	90	3	17	． 2	6	15	174	5.02	12	13	ND	2	32	I	，	2	101	． 52	． 05	2	2	1.78	21	． 20	2	1.65	． 01	． 08	2	59
8184562932029	5	108	23	133	1.6	92	15	134	5.39	52	5	NO	2	140	，		2	96	J． 16	.16	6	19	1.51	21	． 01	，	． 21	． 03	． 09	2	88
8181562932030	3	55	10	65	． 5	Q2	22	1485	4.85	19	5	NI	2	298	1	2	2	51	9.92	． 11	1	120	3.43	83	． 01	3	． 78	． 01	． 10	2	11
8181562932031	3	89	11	199	． 1	23	12	693	5．18	12	5	N0	2	41	，	2	＜2	125	1.85	． 12	6	46.	1.80	21	． 05	2	1.71	． 02	． 04	2	32
8181562932032	2	60	1	78	． 2	24	12	851	4.89	13	5	N0	2	31	1	2	3	176	1.69	． 13	5	54	2.15	31	． 10	2	2.26	． 02	． 03	2	16
8181562932033	2	98	6	74	． 3	93	21	755	1.57	13	5	ND	2	67	1	2	2	89	1.79	． 15	5	312	3.47	21	． 15	1	2.33	． 01	． 21	2	6
8184562932034	d	130	25	535	． 8	78	18	131	4.99	67	5	$N 0$	2	99	10	2	2	109	1.67	． 15	6	13	1.67	15	． 01	5	． 97	． 03	． 06	2	93
8181562932035	2	66	9	102	.1	113	32	1432	6．88	57	5	ND	2	210	1	2	2	144	1.10	． 17	3	378	1.78	38	． 01	2	3.11	． 01	． 03	2	10
8184562932036	2	92	9	73	． 3	89	24	679	4.87	16	5	NO	2	15	1	2	2	12	1.31	． 19	8	260	2.08	38	． 01	1	1.78	． 02	． 03	2	9
510 C／AUS 0.5	19	57	42	125	6.6	67	25	1051	3.94	10	17	6	32	46	16	16	19	51	． 14	． 14	38	54	． 88	181	． 07	38	1.72	． 06	． 09	13	505

ACME ANALYTICAL LABORATORIES LTD.

. PHONE: 253-3158
852 East Hastings St., Vancouver, b.c. V6A 1R6
Flle:
日4-3498
Date: DEEC 4 19134

APPENDIX 2

$$
\$ 815.85
$$

ACME ANALYTICAL LABORATORIES LTD.
B52 E.HASTINGS ST. VANCOUVER B.C. VBA IRG
PHONE 253-315日
DATA LINE 251-1011

SAMPLEI	Ho	Cu	Pb	In	Ag	Ni	Co	Mn	Fz	As	U	Au	It	Sr	cd	54	81	V	C2	p	La	cr	Hg	8	Ii	1	A!	Ma	k	N	Aust
	PPM	PPK	PPK	PPM	PPM	PPM	PPM	PPM	1	PPK	PPM	PPM	PPM	PPK	PPM	PPM	PPM	PPK	1	1	PPM	PPM	1	PPM	1	PPM	1	1	1	PPK	PPB
8185562932037	2	107	8	34	. 2	35	9	352	4.32	25	5	no	1	17	1	2	2	122	. 89	. 13	7	48	1.18	10	. 26	21	1.57	. 05	. 06	1	1
8185562932038	11	201	41	62	1.0	92	9	1120	2.71	5	5	ND	1	123	1	2	9	80	7.82	. 08	1	86	2.50	144	. 01	1	. 01	. 01	. 01	2	12
0185562 932040	7	31	2	11	. 1	31	13	193	1.82	43	5	MD	1	16	1	2	2	73	. 90	. 13	B	38	. 56	10	. 19	5	. 73	. 05	. 06	2	$3!$
8185562932041	2	61	2	23	. 1	31	11	182	3.71	21	5	no	3	19	1	2	2	159	. 73	. 15	10	56	1.55	16	. 28	5	1.19	. 06	. 21	1	1
18185562 932012	13	140	8	28	. 2	35	1	181	3.78	16	5	N	J	12	1	2	2	173	. 74	. 16	13	41	. 88	28	. 29	4	. 81	. 06	. 05	1	19
8185562932043	8	197	3	17	. 3	26	9	2 Cl	3.78	6	5	ND	3	118	1	2	2	97	1.15	. 16	11	30	. 52	35	. 25	7	. 85	. 06	.18	2	1
510 C	20	59	10	137	7.2	12	25	1133	3.89	39	17	1.	36	53	16	16	20	60	. 51	. 13	31	60	. 87	179	. 09	37	1.78	. 06	. 12	11	
8185562932014	1	1	5	14	. 2	4	1	89	. 62	2	5	K0	3	44	1	2	2	31	. 05	. 02	2	8	. 03	145	. 01	2	. 15	. 05	. 08	2	1
8185562 937045	1	11	3	6	. 3	1	1	108	. 35	2	5	N0	2	30	1	2	2	33	. 06	. 01	2	7	. 01	120	. 01	3	. 10	. 03	. 08	1	1
8185562932046	1	24	3	12	. 2	4	1	122	. 66	2	5	ND	2	60	1	3	2	41	. 02	. 02	2	B	. 01	204	. 01	3	. 14	. 05	. 08	1	1
8195562932047	1	22	6	19	. 2	6	2	261	. 81	3		ND		119	1	2	2	38	. 25	. 02	3	10	. 01	388	. 01	2	. 15	. 05	. 09	3	1
8185562932048	1	117	14	90	. 3	13	5	532	1.84	2	5	ND	1	27	1	2	2	133	1.01	. 07	5	18	. 82	228	. 23	2	. 13	. 16	. 12	1	1
8185562932049	1	132	11	19	. 1	12	-	324	4.58	5	5	KD	,	50	1	2	2	89	1.14	. 14	7	12	1.63	46	. 25	7	1.74	. 05	. 39	2	1
8185562932050	20	94	55	18	. 8	17	1	164	4.60	7	5	ND	2	31	1	2	2	100	. 52	. 16	8	34	1.13	34	. 23	6	. 83	. 01	. 59	1	1
8185562932051	64	91	24	19	. 3	15	5	83	4.81	6	5	KD	2	23	1	2	2	83	. 12	. 14	1	27	.67	21	. 07	1	. 55	. 08	. 12	1	2
8185562932052	302	1821	295	67	3.1	24	5	1255	1.55	2	5	KD	1	17	1	2	15	55	. 94	. 04	10	15	. 22	28I	. 02	1	. 10	. 06	. 08	1	14
8185562932053	12	Bo	24	82	. 6	32	12	890	4.06	6	5	K0	,	95	1	2	3	103	5.45	. 15	5	17	2.03	36	. 01	J	. 11	. 01	. 09	1	6
0185562 933001	8	151	207	33	. 9	21	11	526	1.10	9	5	No	1	17	1	2	4	88	. 63	. 03	3	6	. 28	42	. 07	2	. 12	. 10	. 08	2	2
8185562933002	. 6	247	157	32	1.4	18	4	435	1.30	4	5	MD		120	1	2	2	46	1.72	. 10	1	22	. 64	292	. 17	1	. 37	. 10	. 31	2	1
8185562933003	4	62	17	114	. 1	29	11	1153	5.11	1	5	ND	1	46	1	2	2	157	1.91	. 12	10	52	1.65	62	. 31	9	2.32	. 08	. 08	1	1
8185562933004	11	116	14	282	. 6	38	12	123	4.66	10	5	ND	3	28	2	2	2	197	1.05	. 11	8	41	1.12	80	. 26	5	1.14	. 06	. 08	1	2
8185562933005	1	17	5	16	. 1	4	1	69	. 17	2	5	n	2	91	1	2	3	45	. 05	. 01	2	9	. 05	230	. 02	1	. 22	. 06	. 10	1	1
日E 0185562 933002	5	255	161	33	1.3	20	1	434	1.34	4	5	K0	1	124	1	2	3	47	1.71	. 11	7	23	. 66	305	. 18	3	. 39	. 10	. 31	2	1
8185562933006	6	18	6	21	. 3	7	2	202	. 81	2	5	NO	,	91	1	2	2	32	. 28	. 02	2	-	. 03	318	. 01	1	. 16	. 03	.13	1	11
8185562933007	2	90	7	20	. 5	47	6	210	2.54	18	5	10	1	85	1	2	2	68	1.89	. 14	4	104	. 62	25	. 23	8	. 95	. 04	. 11	1	16
8185562933008	7	105	I	27	. 8	10	7	528	5.18	14	5	no	4	15	- 1	2	2	135	. 61	. 19	14	18	1.68	30	. 17	5	1.11	. 06	. 08	1	18
8185562933009	2	65	11	86	. 3	45	13	608	5.95	10	5	N0	2	33	1	2	2	150	1.28	. 16	1	70	2.34	29	. 21	6	1.93	. 07	. 09	1	8
8185562933010	5	16	9	58	. 1	58	16	830	5.21	4	5	$N \mathrm{D}$	1	67	1	2	2	33	1.82	. 16	7	21	. 75	25	. 01	5	. 35	. 05	. 14	1	15
STD C/FA-AU	20	80	38	132	7.0	70	25	1132	3.97	38	18	7	36	49	16	15	22	11	. 48	. 13	31	57	. 88	178	. 07	40	1.73	. 06	. 10	12	. 18

APPENDIX 3

CERTIFICATE OF ANALYSIS - 1985 LITHOGEOCHEMISTRY

```
    RECEIVED
ACME RNELSTICAL LABORATOHIES LTD. B52 E.HASTINGS ST.VANCOUVER B.C. VGA IRG PHONE 253-315G DATA LINE 251-10II
```



```
DATE RECEIVED: SEPI 17 1984 DATE REPORT MAILED:
                                    SELCD - A DIVISION OF BP PRDJECT # 10141 FILE # 84-2644

SAKPLE:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5081562931001 & 2 & 82 & 9 & 124 & . 9 & 29 & 31 & 559 & 6.09 & \({ }^{6}\) & 5 & no & 3 & 18 & 1 & 2 & 3 & 102 & . 17 & . 19 & 2 & 70 & . 97 & 78 & . 14 & 7 & 3.26 & . 01 & . 04 & 2 & 5 & 5.6 \\
\hline 5081562 931002 & 1 & 27 & 10 & 59 & . 5 & 14 & 11 & 657 & 3.57 & 8 & 5 & K0 & 2 & 15 & 1 & 2 & 3 & 69 & . 16 & . 21 & 9 & 53 & . 15 & 63 & .11 & 2 & 1.73 & . 01 & .03 & 2 & 5 & 5.1 \\
\hline 5081552931003 & 2 & 80 & 12 & 65 & . 6 & 36 & 17 & 392 & 5.73 & 10 & 5 & H0 & 2 & 24 & 1 & 2 & 3 & 108 & . 27 & . 12 & 2 & 108 & 1.33 & 68 & . 12 & 5 & 2.45 & . 01 & . 01 & 2 & 50 & 5.8 \\
\hline 5081562931004 & 1 & 58 & 12 & 157 & . 6 & 27 & 16 & 647 & 4.27 & 6 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 14 & . 19 & . 11 & 10 & 83 & . 78 & 82 & . 07 & 1 & 2.11 & . 01 & .0] & 2 & 80 & 3.3 \\
\hline 5 T C & 19 & 51 & 38 & 124 & 6.4 & . 67 & 27 & 1011 & 3.75 & 40 & 19 & 7 & 35 & 47 & 15 & 16 & 18 & 57 & . 12 & . 13 & 42 & 55 & . 86 & 179 & . 06 & 38 & 1.61 & . 06 & .12 & 13 & - & - \\
\hline 5084562931005 & 2 & 19 & 8 & 68 & . 8 & 31 & 12 & 238 & 4.25 & 12 & J & no & 2 & 12 & 1 & 2 & 2 & 72 & . 15 & . 10 & 10 & 93 & . 65 & 67 & . 11 & 9 & 2.88 & . 01 & . 02 & 2 & 5 & 5.7 \\
\hline 5084562931006 & 3 & 41 & 15 & 71 & . 3 & 18 & 10 & 212 & 6.39 & 11 & 5 & ND & 1 & 14 & 1 & & 2 & 8J & . 12 & . 06 & 1 & 70 & . 68 & 72 & . 09 & 5 & 3.80 & . 01 & . 02 & 2 & 5 & 5.5 \\
\hline 5084562931007 & 1 & 20 & 21 & 67 & . 5 & 6 & 1 & 145 & 3.28 & 10 & & WD & 2 & 16 & 1 & 2 & 2 & 80 & . 16 & . 09 & 7 & 18 & . 25 & 时 & . 11 & 3 & 1.00 & . 01 & . 02 & 2 & 5 & 4.9 \\
\hline 5081562931008 & 1 & 52 & 15 & 136 & . 4 & 19 & 17 & 398 & 5.29 & , & 5 & K0 & 2 & 14 & 1 & 2 & 2 & 78 & . 16 & . 41 & 2 & 63 & . 78 & 66 & . 08 & 1 & 2.59 & . 01 & . 03 & 2 & 5 & 5.1 \\
\hline 5081552931009 & 1 & 48 & 9 & 64 & . 0 & 13 & 10 & 233 & 4.55 & 13 & 5 & N0 & 2 & 40 & 1 & 2 & 2 & 111 & . 23 & . 09 & 3 & 37 & . 58 & 34 & . 14 & J & 1.15 & . 01 & .03 & 2 & 5 & 5.1 \\
\hline 5081552931010 & 2 & 34 & 27 & 114 & . 6 & 19 & 7 & 228 & 5.26 & 10 & & XD & 2 & 15 & 1 & 2 & 2 & 121 & . 16 & . 10 & 2 & 87 & . 60 & 49 & . 21 & 3 & 1.15 & . 01 & . 03 & 2 & 5 & 5.2 \\
\hline 5081582931011 & 2 & 43 & 22 & 118 & . 6 & 19 & 17 & 468 & 6.08 & 15 & 5 & 40 & 2 & 38 & 1 & 2 & 2 & 108 & . 28 & . 29 & 2 & 51 & \({ }^{1} 89\) & 80 & . 14 & 1 & 2.08 & . \(01{ }^{\circ}\) & . 03 & 2 & 5 & 5.1 \\
\hline \(5081562 \cdot 931012\) & 1 & 18 & 9 & 38 & . 7 & , & 1 & 128 & 2.65 & 8 & 5 & WD & 2 & 18 & 1 & , & 2 & 67 & . 17 & . 11 & 5 & 18 & . 31 & 42 & . 10 & 2 & 1.23 & . 01 & . 02 & 2 & 5 & 5.1 \\
\hline 5081562931013 & 1 & 50 & 11 & 98 & . 1 & 25 & 13 & 329 & 5.08 & 12 & 5 & ND & 2 & 25 & 1 & 2 & 2 & 91 & . 24 & . 22 & 3 & 80 & 1.03 & 70 & . 11 & 6 & 1.94 & . 01 & . 03 & 2 & 5 & S. 2 \\
\hline 5084582931014 & 2 & 113 & 22 & 169 & 1.1 & 28 & 25 & 459 & 5.75 & 26 & 5 & N0 & 2 & \(2!\) & 1 & 2 & 2 & 78 & . 24 & . 23 & 2 & 59 & . 82 & 95 & . 13 & 8 & 2.37 & . 01 & . 01 & 2 & 5 & 5.5 \\
\hline 5081562931015 & 2 & 51 & 14 & 118 & . 5 & 21 & 19 & 755 & 4.60 & 12 & 5 & no & 2 & 23 & 1 & 2 & 2 & B3 & . 23 & . 20 & 2 & 68 & . 73 & 69 & . 08 & 3 & 2.23 & . 01 & . 03 & 2 & 5 & 5.5 \\
\hline 5081562931016 & 1 & 30 & 10 & 118 & . 6 & 25 & 15 & 436 & 3.61 & 7 & 5 & no & 2 & 17 & 1 & 2 & , & 70 & . 18 & . 13 & 5 & 71 & . 71 & 75 & . 10 & 6 & 1.82 & . 01 & . 03 & 2 & 15 & 5.3 \\
\hline 5004562931017 & 4 & 58 & 8 & 137 & . 4 & 37 & 12 & 631 & 5.39 & 26 & 10 & No & 2 & 125 & 1 & 2 & 2 & 112 & . 29 & . 22 & 2 & 86 & 1.10 & 175 & . 06 & 4 & 2.18 & . 01 & . 06 & 3 & 5 & 5.1 \\
\hline 5081542931018 & 7 & 56 & 9 & 153 & . 5 & 50 & 15 & 337 & 4.58 & 28 & 5 & NO & 2 & 16 & 1 & 2 & , & 103 & . 14 & . 11 & 7 & 99 & . 98 & 92 & . 07 & 2 & 2.14 & . 01 & . 04 & 2 & 5 & 5.2 \\
\hline 5083562931019 & 4 & 126 & 14 & 201 & 1.3 & 50 & 15 & 1102 & 4.21 & 29 & 5 & No & 2 & 39 & 2 & 2 & , & 93 & 1.26 & . 12 & 1 & 104 & . 11 & 88 & . 06 & 1 & 2.17 & . 01 & . 05 & 2 & 25 & 6.1 \\
\hline 5081562931020 & 9 & 51 & 10 & 180 & . 1 & 63 & 12 & 105 & 4.84 & 4 & 5 & KD & 2 & 13 & 1 & 2 & & 105 & . 17 & . 07 & 6 & 179 & 1.03 & 104 & . 07 & 3 & 1.71 & . 01 & . 05 & 3 & 5 & 5.3 \\
\hline 5081562931021 & 5 & 72 & 17 & 137 & . 3 & 55 & 15 & 327 & 5.22 & 45 & 5 & ko & 2 & 16 & 1 & 3 & 3 & 102 & . 21 & . 11 & , & 115 & 1.23 & 13 & . 08 & 6 & 2.05 & . 01 & . 04 & 3 & 45 & 5.2 \\
\hline 5081562931022 & 1 & 45 & 10 & 166 & . 8 & 48 & 13 & 291 & 4.99 & 29 & 5 & H & , & 13 & , & 2 & J & 101 & . 14 & . 24 & 1 & 113 & . 90 & 103 & . 09 & 2 & 2.30 & . 01 & . 04 & 2 & 5 & 5.5 \\
\hline 5081562931023 & 1 & 42 & 16 & 74 & .9 & 11. & 6 & 171 & 3.71 & 23 & 5 & ND & 2 & 35 & 1 & 2 & 2 & 106 & . 10 & . 05 & 8 & 32 & . 11 & 111 & . 10 & & 1.56 & . 01 & . 03 & 2 & 5 & 5. 1 \\
\hline 5081562931024 & 6 & 47 & 16 & 12k & . 5 & 36 & 9 & 254 & 4.99 & 31 & 5 & No & 2 & 24. & I & 2 & , & 121 & . 35 & . 06 & 1 & 14 & . 76 & 95 & . 11 & 6 & 1.90 & . 01 & . 04 & 3 & 5 & 5.1 \\
\hline 5081562931025 & 3 & 12 & 16 & 190 & . 8 & 40 & 14 & 871 & 1.39 & 19 & 5 & No & 2 & 19 & 1 & 2 & & 86 & . 32 & . 18 & 9 & 63 & . 72 & 114 & . 11 & 2 & 2.79 & . 01 & . 04 & 2 & S & 5.5 \\
\hline 5081562931026 & 5 & 85 & 14 & 113 & .6 & 54 & . 16 & 804 & 5.00 & 33 & 5 & No & 2 & 41 & 1 & 2 & 3 & 100 & . 81 & . 12 & 1 & 91 & 1.25 & 76 & . 06 & 3 & 2.03 & . 01 & . 01 & 3 & 5 & 6.0 \\
\hline 5084562931027 & \({ }^{6}\) & 88 & 15 & 139 & 1.2 & 17 & 15 & 501 & 5.78 & 31 & 5 & N0 & 2 & 28 & 1 & 2 & 2 & 127 & . 25 & . 09 & , & 89 & . 93 & 127 & . 09 & 2 & 2.10 & . 01 & . 06 & 2 & 5 & 5.0 \\
\hline 5081562931028 & 3 & 35 & 6. & 124 & . 6 & 82 & 11 & 159 & 4.38 & 24 & 5 & N0 &  & 17 & 1 & 2 & 2 & 106 & . 22 & . 11 & 1 & 170 & 1.10 & 105 & . 12 & 2 & 1.13 & . 01 & . 01 & 2 & 5 & 5.3 \\
\hline 5084562931029 & 5 & 91 & 10 & 80 & 1.6 & 10 & , & 1075 & 3.07 & 16 & 5 & ND & 2 & 38 & 1 & 2 & 2 & 58 & . 71 & . 11 & 11 & 79 & . 63 & 128 & . 08 & 2 & 2.18 & . 02 & . 03 & 2 & 5 & 6.1 \\
\hline 5084562931030 & 1 & 37 & 11 & 91 & 1.2 & 25 & 7 & 178 & 3.57 & 18 & 5 & \% 1 & 2 & 17 & 1 & 2 & 2 & 93 & . 15 & . 04 & 9 & 72 & . 58 & 87 & . 09 & 2 & 1.76 & . 01 & . 02 & 2 & 5 & 5.2 \\
\hline RE 5081562 931018 & 5 & 53 & 10 & 152 & . 5 & 50 & 15 & 334 & 1.58 & 25 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 104 & . 15 & . 11 & 9 & 91 & . 91 & 91 & . 08 & 2 & 2.15 & . 01 & . 04 & 2 & 5 & - \\
\hline 5084562931031 & 5 & 73 & 14 & 125 & . 9 & 13 & 15 & 351 & 5.55 & 28 & 5 & N0 & 2 & 22 & 1 & 2 & 2 & 123 & . 32 & . 2 & 1 & 81 & 1.08 & 86 & . 11 & 2 & 1.98 & . 01 & . 06 & 2 & 5 & 5.5 \\
\hline 5084562931032 & 7 & 133 & 15 & 158 & 2.0 & 69 & 16 & 932 & 5.16 & 36 & 5 & K0 & 2 & 32 & 1 & 3 & 2 & 105 & . 47 & . 09 & 11 & 95 & 1.07 & 186 & . 10 & 8 & 2.81 & . 01 & . 01 & 2 & 5 & 6.0 \\
\hline 5081562 93103] & 6 & 107 & 22 & 179 & . 6 & 64 & 16 & 803 & 4.72 & 28 & 5 & ND & 2 & 38 & 1 & & , & 9 & . 55 & . 07 & 11 & 98 & 1.29 & 176 & . 09 & 6 & 2.32 & . 01 & . 06 & & 5 & 6.2 \\
\hline 5084562 931034 & 5 & 54 & 12 & 96 & . 1 & 39 & 13 & 119 & 4.85 & 23 & 5 & ND & 2 & 22 & & 2 & 2 & 111 & . 23 & . 17 & 5 & 91 & 1.03 & 89 & .10 & 2 & 1.98 & . 01 & . 05 & 2 & 5 & 3.3 \\
\hline 5081562 931035 & 7 & 11 & 15 & 133 & . 5 & 48 & 12 & 586 & 5.61 & 35 & 5 & HD & 2 & 26 & 1 & & 2 & 119 & .14 & . 24 & 6 & 104 & 1.10 & 106 & . 07 & 2 & 2.39 & . 01 & . 04 & 2 & 5 & 4.9 \\
\hline 5081562931036 & 7 & 53 & 10 & 135 & . 6 & 14 & 11 & 285 & 4.67 & 26 & 5 & NO & 2 & 18 & 1 & 3 & 2 & 103 & . 16 & .08 & 11 & 95 & 1.91 & 59 & . 09 & 6 & 1.79 & . 01 & . 06 & 2 & 5 & 5.0 \\
\hline 5084562931037 & J & 49 & 5 & 115 & . 8 & 25 & 14 & 587 & 5.38 & 12 & 5 & KD & 2 & 38 & 1 & 2 & 2 & 126 & . 62 & . 08 & 2 & 38 & 1.50 & 80 & . 18 & 1 & 2.55 & . 02 & . 11 & 2 & 5 & 5.2 \\
\hline SID C/AU-0.5 & 20 & 59 & 38 & 124 & 6.6 & 69 & 27 & 1071 & 3.82 & 39 & 18 & 7 & 36 & 19 & 15 & 15 & 10 & 59 & . 14 & .13 & 39 & 57 & . 88 & 182 & . 07 & 10 & 1.60 & . 06 & . 13 & 11 & 190 & - \\
\hline
\end{tabular}

SELCD - A DIVISION OF EP FRDJECT \# 10141 FILE \# 日4-2644
PAGE 2

SAXPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5081562 931038 & 5 & 51 & 9 & 111 & . 4 & 4 & 12 & 108 & 4.41 & 26 & 5 & NO & 2 & 24 & 1 & & 1 & 3 & 109 & . \(25{ }^{\text { }}\) & . 12 & 16 & 9 & 1.17 & 16 & . 09 & 2 & 1.95 & . 01 & . 06 & 4 & 5 & 5.1 \\
\hline 5081562931039 & 8 & 95 & 15 & 133 & . 9 & 57 & 17 & 630 & 5.03 & 21 & 5 & ND & 2 & 38 & 1 & & 2 & 2 & 117 & . 71 & . 06 & 8 & 97 & 1.52 & 102 & . 11 & 2 & 2.15 & . 01 & . 07 & 2 & 5 & 6.1 \\
\hline 5084562931040 & 13 & 278 & 16 & 171 & 1.9 & 78 & 19 & 1117 & 6.18 & 33 & 3 & ND & 2 & 11 & 2 & & 3 & 2 & 130 & 1.37 & . 13 & 18 & 109 & 1.10 & 212 & . 08 & 3 & 3.14 & . 02 & . 13 & 3 & 10 & 6.2 \\
\hline 5081562931041 & 9 & 635 & 16 & 111 & 1.3 & 73 & 20 & 1526 & 4.09 & 14 & 5 & ND & 2 & 63 & 2 & & 3 & 1 & 66 & 1.49 & . 18 & 15 & 101 & 1.06 & 131 & . 08 & 8 & 2.86 & . 02 & . 07 & 2 & 5 & 6.5 \\
\hline 50B\$562 931042 & 12 & 301 & 24 & 70 & . 5 & 55 & 28 & 415 & 6.91 & 23 & 5 & NO & 3 & 21 & 1 & & 2 & 3 & 128 & . 26 & . 07 & 9 & 102 & 1.85 & 51 & . 15 & 2 & 2.53 & . 01 & . 08 & 2 & 125 & 5.2 \\
\hline 5081562931043 & 12 & 219 & 17 & 65 & . 7 & 45 & 18 & 371 & 7.44 & 21 & 5 & ND & 2 & 19 & J & & 2 & 3 & 143 & . 20 & . 08 & 6 & 113 & 1.79 & 19 & . 18 & 2 & 2.39 & . 01 & . 07 & 2 & 90 & 5.0 \\
\hline 5081562931044 & 1 & 58 & 14 & 71 & . 6 & 30 & 8 & 235 & 4.21 & 16 & 5 & KD & 2 & 22 & 1 & & 2 & 2 & 108 & . 33 & . 06 & 10 & 59 & . 86 & 78 & . 10 & 3 & 1.57 & . 01 & . 07 & 2 & 5 & 5.0 \\
\hline 5081562931045 & 11 & 81 & 16 & 116 & . 1 & 39 & 14 & 114 & 3.81 & 14 & 5 & ND & 2 & 50 & 1 & & 2 & 2 & 53 & 1.28 & . 10 & 8 & 39 & . 71 & 109 & . 13 & \(b\) & 3.07 & . 02 & . 05 & 2 & 5 & 5.9 \\
\hline 5081562 931046 & 13 & 202 & 22 & 123 & 1.0 & 71 & 20 & 459 & 5.67 & 23 & 5 & N0 & 2 & 33. & 1 & & 2 & 2 & 120 & . 55 & . 05 & 9 & 97 & 1.76 & 123 & . 15 & 2 & 2.95 & . 01 & . 11 & 2 & 15 & 6.0 \\
\hline 5081562931047 & 5 & 31 & 16 & 61 & . 5 & 18 & 5 & 201 & 4.26 & 13 & 5 & KD & 2 & 13 & 1 & & 2 & 2 & 94 & . 15 & . 18 & 13 & 48 & .63 & 63 & . 12 & 2 & 2.14 & . 01 & . 04 & 2 & 5 & 5.3 \\
\hline 5084562931088 & 7 & 63 & 15 & 234 & 3.1 & 14 & 12 & 311 & 4.24 & 13 & 5 & N0 & 2 & 11 & 3 & & 5 & 2 & 90 & . 20 & . 06 & 17 & 37 & . 60 & 99 & . 01 & 2 & 2.57 & . 01 & . 03 & 2 & 5 & 5.2 \\
\hline 5084562951049 & 5 & 29 & 11 & 147 & . 6 & 23 & 6 & 198 & 4.30 & 12 & 5 & KD & 2 & 11 & 1 & & 3 & 2 & 88 & . 12 & . 13 & 12 & 39 & . 15 & 91 & . 08 & 1 & 2.74 & . 01 & . 04 & 2 & 5 & 5.1 \\
\hline 5081562931050 & 1 & 36 & 11 & 138 & . 6. & 26 & 5 & 187 & 5.21 & 15 & 5 & ND & 2 & 14 & 1 & & 1 & 2 & 129 & . 07 & . 08 & 11 & 16 & . 58 & 93 & . 07 & 2 & 2.28 & . 01 & . 03 & 2 & 5 & 4.9 \\
\hline 5081562931051 & 3 & 17 & 12 & 67 & . 8 & 10 & 2 & 99 & 2.87 & 8 & 5 & ND & 2 & 13 & 1 & & 2 & , & 65 & . 15 & . 09 & 9 & 23 & . 25 & 91 & . 01 & 3 & 1.78 & . 01 & . 03 & 2 & 5 & 5.1 \\
\hline 5084562931052 & 6 & 33 & 13 & 125 & . 1 & 26 & 5 & 306 & 4.45 & 19 & 5 & NO & 2 & 9 & 1 & & 2 & 2 & 109 & . 15 & . 11 & 11 & 11 & . 61 & 89 & . 06 & 2 & 1.85 & . 01 & . 05 & 2 & 5 & 4.8 \\
\hline 5031562931053 & 6 & 51 & 13 & 256 & 1.8 & 11 & 17 & 1288 & 4.24 & 22 & 5 & NO & 2 & 53 & 1 & & 1 & 2 & 11 & 1.02 & . 12 & 11 & 15 & . 63 & 126 & . 06 & 6 & 2.83 & . 01 & . 01 & 2 & 5 & 6.1 \\
\hline 5081562931054 & 5 & 41 & 14 & 166 & 3.5 & 29 & 11 & 346 & 3.13 & 8 & 5 & NO & 2 & 23 & & & 2 & 2 & 80 & . 34 & . 06 & 15 & 32 & . 13 & 180 & . 05 & 2 & 2.72 & . 01 & . 03 & 2 & 5 & 5.6 \\
\hline 5081562931055 & 7 & 30 & 11 & 213 & . 6 & 50 & 11 & 385 & 4.70 & 13 & 5 & KD & 2 & 20 & 2 & & 4 & 3 & 89 & . 32 & . 09 & 16 & 12 & 1.01 & 155 & . 04 & 2 & 2.31 & . 01 & . 05 & 2. & 5 & 5.1 \\
\hline 5081562931056 & 1 & 26 & 13 & 95 & . 5 & 20 & 1 & 211 & 3.11 & 10 & 5 & N0 & 2 & 12 & 1 & & 2 & 3 & 88 & . 13 & . 06 & 11 & 31 & . 17 & 19 & . 06 & 2 & 1.62 & . 01 & . 04 & 2 & 5 & 5.0 \\
\hline 5081562931057 & 5 & 155 & 12 & 255 & 3.1 & 63 & 13 & 686 & 4.25 & 19 & 5 & N0 & 2 & 61 & 6 & & 3 & 3 & 75 & . 99 & . 10 & 23 & 39 & . 66 & 133 & . 08 & 1 & 3.17 & . 01 & . 06 & 2 & 5 & 6.1 \\
\hline 5081562931058 & 5 & 19 & 12 & 271 & 3.0 & 36 & 12 & 620 & 3.88 & 9 & 5 & ND & 2 & 26 & 1 & & 2 & 2 & 70 & . 18 & . 09 & 14 & 39 & . 53 & 100 & . 09 & 2 & 2.85 & . 01 & . 06 & 2 & 5 & 5.5 \\
\hline SID C & 18 & 57 & 39 & 121 & 6.1 & 67 & 26 & 1043 & 3.70 & 39 & 11 & 8 & 35 & 17 & 16 & 16 & 6 & 20 & 56 & . 12 & . 14 & 39 & 56 & . 81 & 175 & . 06 & 37 & 1.60 & . 05 & . 12 & 12 & - & - \\
\hline 5081562 931059 & 5 & 106 & 11 & 170 & 2.8 & 58 & 13 & 637 & 4.15 & 19 & 5 & WD & 2 & 43 & 3 & & 2 & 2 & 72 & . 92 & . 10 & 20 & 52 & . 17 & 164 & . 08 & 5 & 3.17 & . 01 & . 07 & 3 & 5 & 6.2 \\
\hline RE 5001562 931057 & 5 & 162 & 8 & 254 & 3.5 & 61 & 13 & 685 & 4.18 & 22 & 5 & ND & 2 & 61 & 6 & & 2 & 2 & 7 & 1.00 & . 10 & 21 & 57 & . 68 & 135 & . 08 & 1 & 3.10 & . 01 & . 06 & 2 & 5 & - \\
\hline 5081562931050 & 3 & 50 & B & 100. & . 9 & 26 & 9 & 383 & 3.41 & 9 & 5 & ND & 2 & 11 & 1 & & 2 & 2 & 81 & . 14 & . 06 & 12 & 35 & . 62 & 118 & . 09 & 1 & 2.33 & . 01 & . 01 & 2 & 5 & 6.3 \\
\hline 5081562931061 & 3 & 5! & \(\dagger\) & 120 & . 9 & 29 & 9 & 319 & 3.56 & 11 & 5 & No & 2 & 23 & 1 & & 2 & 2 & 78 & . 37 & . 05 & 12 & 34 & . 54 & 111 & . 07 & 3 & 2.05 & . 01 & . 05 & 2 & 5 & 5.8 \\
\hline 5081562931062 & 1 & 43 & 8 & 127 & . 6 & 30 & 8 & 334 & 4.13 & 9 & 5 & ND & 2 & 21 & 1 & & \(J\) & 2 & 89 & . 30 & . 04 & 11 & 12 & . 83 & 121 & . 08 & 3 & 2.34 & . 01 & . 04 & 2 & 5 & 5.2 \\
\hline 5084562931063 & 6 & 46 & 7 & 127 & . 1 & 29 & 8 & 322 & 3.85 & 9 & 5 & ND & 2 & 18 & 1 & & 2 & 2 & 81 & . 21 & . 08 & 12 & 19 & . 87 & 120 & . 06 & 5 & 2.51 & . 01 & . 05 & 2 & 5 & 5.1 \\
\hline 5081562931054 & 1 & 120 & 9 & 193 & 1.2 & 57 & 16 & 1355 & 5.01 & 11 & 5 & N0 & 2 & 51 & 2 & & 2 & & 87 & . 89 & . 10 & 12 & 58 & . 90 & 185 & . 07 & S & 3.14 & . 01 & . 08 & 2 & J & 6.1 \\
\hline 5084562931065 & 3 & 23 & 7 & 61 & . 3 & 15 & 1 & 201 & 3.13 & 8 & 5 & KD & 2 & 19 & 1 & & 2 & 2 & 81 & . 21 & . 07 & 10 & 27 & . 19 & 83 & . 08 & 3 & 1.52 & . 01 & . 04 & 2 & 5 & 5.0 \\
\hline 5081562931066 & 4 & 40 & 15 & 140 & 1.0 & 26 & 7 & 212 & 4.25 & 10 & 5 & NO & 2 & 24 & 1 & & 4 & 2 & 85 & . 36 & . 09 & 11 & 38 & . 63 & 137 & . 07 & & 2.35 & . 01 & . 04 & 3 & 5 & 5.4 \\
\hline 5084582931067 & 3 & 53 & 7 & 107 & . 6 & 28 & 8 & 211 & 4.17 & 7 & 5 & H0 & 2 & 19 & 1 & & 2 & 2 & 88 & . 23 & . 08 & 11 & 13 & . 65 & 132 & . 08 & 2 & 2.91 & . 01 & . 05 & 2 & 5 & 5.5 \\
\hline 5081562931068 & 1 & 30 & 7 & 87 & . 3 & 20 & 6 & 295 & 4.12 &  & 5 & Ko & 2 & 12 & 1 & & 2 & 2 & 88 & . 18 & . 14 & 9 & 36 & . 65 & 14 & . 10 & 3 & 2.19 & . 01 & . 03 & 2 & 5 & 4.8 \\
\hline 5081562931069 & 1 & B6 & 8 & 122 & 1.2 & 35 & 9 & 1469 & 3.12 & 9 & & NO & 2 & 77 & 2 & & 2 & 2 & 69 & 1.01 & . 13 & 28 & 38 & . 47 & 87 & . 08 & 1 & 3.12 & . 02 & . 04 & 2 & 3 & 6.2 \\
\hline 5084562951070 & 2 & 24 & 8 & 81 & . 5 & 15 & 5 & 284 & 3.16 & 6 & 5 & KJ & 2 & 17 & 1 & & 2 & 2 & 83 & . 21 & . 06 & 10 & 27 & . 15 & 11 & . 09 & 1 & 1.65 & . 01 & . 03 & 2 & 5 & 1.8 \\
\hline 5084562931071 & 4 & 96 & 13 & 215 & 1.3 & 66 & 16 & 119 & 5.28 & 14 & 5 & ND & 3 & 36 & 1 & & 3 & 3 & 91 & . 18 & . 10 & 16 & 62 & . 82 & 225 & . 07 & 5 & 3.91 & . 01 & . 08 & 2 & 5 & 5.1 \\
\hline 5084562931072 & 2 & 27 & 12 & 85 & 1 & 16 & 1 & 216 & 4.14 & 10 & 5 & NO & 2 & 11 & 1 & & 2 & 3 & 88 & . 15 & . 11 & 8 & 26 & . 56 & 69 & . 11 & 3 & 1.93 & . 01 & . 03 & 2 & 5 & 5.1 \\
\hline 5081562931073 & 2 & 19 & 10 & 69 & 1 & 14 & 3 & 206 & 3.13 & 8 & 5 & ND & 2 & 16 & 1 & & 2 & 1 & 84 & . 24 & . 13 & 5 & 24 & . 29 & 65 & . 11 & 2 & 1.06 & . 01 & . 03 & 2 & 5 & 4.7 \\
\hline 5081562931074 & 1 & 102 & 12 & 192 & 1.7 & 57 & 12 & 601 & 4.73 & 10 & 5 & N0 & 2 & 21 & 2 & & 2 & 3 & 90 & . 41 & . 12 & 22 & 51 & . 69 & 151 & . 08 & 5 & 3.94 & . 01 & . 05 & 3 & 5 & 5.5 \\
\hline SID C/AU-0.5 & 19 & 59 & 38 & 125 & 6.5 & 69 & 27 & 1067 & 3.82 & 12 & 18 & 8 & 36 & 49 & 16 & & 5 & 21 & 59 & .14 & . 14 & 10 & 58 & . 88 & B2 & . 07 & 10 & 1.68 & . 06 & . 12 & 13 & 500 & \\
\hline
\end{tabular}

SELCD - A DIVISIDN DF BP FFOJECT \# 10141 FILE \# 84-2644
F:AGE 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & no & CU & PB & 2N & AG & NI & CO & nK & FE & AS & U & AU & TH & SR & co & 58 & 81 & \(V\) & CA & P & LA & CR & N6 & BA & II & P & AL & * & \(k\) & \({ }^{\prime}\) & AUI & PH \\
\hline & PPM & PPK & PPM & PPM & PPM & PPM & PPM & PPK & 2 & PPM & PPM & PPM & PPM & PPM & PPM & PPK & PPK & PPM & 1 & 1 & PPM & PPM & 1 & PPK & 1 & PPM & 1 & 2 & 1 & PPM & Pfi & \\
\hline 9081562931075 & 2 & 68 & 9 & 122 & 1.3 & 32 & 10 & 834 & 3.60 & 5 & 5 & NO & 2 & \(\times 17\) & 2 & 2 & 2 & 71 & . 97 & . 10 & 12 & 39 & . 57 & 116 & . 10 & 3 & 2.69 & . 02 & . 05 & 2 & 5 & 6. \\
\hline 5081562931076 & 2 & 39 & 9 & 133 & . 7 & 22 & 1 & 281 & 3.60 & 5 & 5 & ND & 2 & - 32 & 1 & 2 & 2 & 81 & . 61 & . 08 & 11 & 34 & . 59 & 83 & . 12 & 1 & 2.70 & . 01 & . 03 & 2 & 5 & 6. \\
\hline 5081562932001 & 3 & 32 & 8 & 74 & . 5 & 81 & 13 & 346 & 3.80 & 14 & 5 & no & 2 & 15 & 1 & 2 & 3 & 103 & . 25 & . 12 & 2 & 263 & 1.36 & 12 & . 15 & 1 & 1.37 & . 02 & . 06 & 2 & 5 & 4. \\
\hline 5081562932002 & 5 & 39 & 15 & 103 & 1.0 & 74 & 11 & 289 & 5.38 & 30 & 5 & NO & 2 & 12 & 1 & 2 & 3 & 153 & .18 & . 08 & 3 & 225 & 1.34 & 31 & . 16 & 2 & 1.51 & . 02 & . 04 & 2 & 20 & 5. \\
\hline 5081562932003 & 4 & 82 & 39 & 75 & . 6 & 266 & 11 & 819 & 6.61 & 56 & 5 & No & 2 & 14 & 1 & 2 & 3 & 180 & . 29 & . 10 & 2 & 833 & 4.68 & 39 & . 17 & 2 & 3.23 & . 01 & . 16 & 2 & 5 & 5.5 \\
\hline 5081562932004 & 1 & 40 & 9 & 99 & . 6 & 59 & 10 & 237 & 4.24 & 28 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 106 & . 19 & . 11 & 5 & 156 & 1.12 & 80 & . 09 & 2 & 1.64 & . 01 & . 05 & 2 & 5 & 5. \\
\hline 5084562932005 & 6 & 46 & 11 & 110 & . 6 & 49 & 11 & 231 & 4.71 & 26 & 5 & N0 & 2 & 15 & 1 & 2 & 2 & 122 & . 16 & . 11 & 2 & 95 & . 93 & 67 & . 10 & 2 & 1.31 & . 01 & . 05 & 2 & 5 & 5.5 \\
\hline 5081562 932006 & 5 & 43 & 13 & 161 & . 5 & 30 & 13 & 388 & 1.12 & 35 & 5 & ND & 2 & 14 & 1 & 2 & 2 & 91 & . 17 & . 09 & 7 & 62 & . 58 & 67 & .08 & 3 & 1.17 & . 01 & . 05 & 2 & 5 & 5. \\
\hline 5081562932007 & 6 & 61 & 13 & 157 & . 6 & 13 & 11 & 112 & 4.95 & 28 & 5 & ND & 2 & 11 & 1 & 2 & 3 & 99 & . 10 & . 20 & 6 & 95 & . 85 & 70 & . 10 & 2 & 2.90 & . 01 & . 01 & 2 & 15 & 5.5 \\
\hline 5081562932008 & 8 & 142 & 23 & 175 & . 1 & 76 & 26 & 686 & 6.26 & 58 & 5 & HD & 3 & 11 & : & 2 & 2 & 116 & . 17 & . 17 & 5 & 129 & 1.58 & 81. & . 10 & 3 & 2.52 & . 02 & . 01 & 2 & 15 & 5.8 \\
\hline 5081562932009 & 1 & 65 & 12 & 129 & . 5 & 51 & 16 & 402 & 5.29 & 27 & 5 & NO & 3 & 20 & 1 & 3 & 4 & 115 & . 20 & . 12 & 8 & 114 & 1.09 & 89 & . 11 & 2 & 2.73 & . 01 & . 05 & 2 & 5 & 5.8 \\
\hline 5081562932010 & 6 & 25 & 18 & 88 & . 8 & 19 & 11 & 361 & 5.23 & 17 & 5 & ND & 2 & 17 & 1 & 2 & 5 & 123 & . 21 & . 21 & 7 & 81 & . 53 & 83 & . 16 & 5 & 2.17 & . 02 & . 05 & 2 & 5 & 5.5 \\
\hline 5081562 932011 & 1 & 37 & 8 & 127 & . 5 & 39 & 9 & 226 & 5.01 & 20 & 5 & N0 & 2 & 11 & 1 & 2 & 1 & 120 & . 15 & . 09 & 1 & 97 & . 88 & 67 & . 17 & 2 & 1.80 & . 01 & . 01 & 2 & 5 & 1.8 \\
\hline 5081562932012 & 1 & 43 & 11 & 110 & . 6 & 51 & 15 & 368 & 5.33 & 32 & 5 & NO & 2 & 14 & 1 & 2 & 1 & 122 & .14 & . 17 & 6 & 131 & . 96 & 86 & . 10 & 2 & 2.04 & . 01 & . 01 & 2 & 5 & 5.1 \\
\hline 5081562932013 & 1 & 82 & 20 & 280 & . 6 & 56 & 17 & 1309 & 4.85 & 23 & 5 & NO & 2 & 60 & 1 & 2 & 5 & 90 & . 69 & . 10 & 10 & 111 & 1.13 & 155 & . 10 & 2 & 2.52 & . 02 & . 05 & 2 & 25 & 1.2 \\
\hline 5084562932014 & 3 & 41 & 13 & 91 & 1.1 & 29 & 9 & 376 & 4.12 & 14 & 5 & No & 2 & 27 & 1 & 2 & 3 & 84 & . 29 & . 07 & 6 & 108 & . 69 & 85 & . 09 & 2 & 1.50 & . 01 & . 03 & 2 & 50 & 5.6 \\
\hline 5084562932015 & 5 & 18 & 13 & 161 & . 9 & 53 & 14 & 900 & 5.12 & 31 & 5 & NO & 2 & 15 & 1 & J & 3 & 116 & . 18 & . 11 & 1 & 122 & 1.02 & 134 & . 11 & 3 & 2.11 & . 01 & . 01 & & 5 & 5.5 \\
\hline 5084562932016 & 29 & 108 & 312 & 238 & 23.8 & 59 & 17 & 381 & 8.18 & 112 & 5 & 6 & 3 & 19 & 1 & 1 & 9 & 111 & . 22 & . 11 & 2 & 112 & 1.23 & 81 & . 11 & 2 & 2.05 & . 01 & . 06 & 1 & 6260 & 4.5 \\
\hline 5081562932017 & 5 & 51 & 18 & 126 & . 9 & 11 & 9 & 212 & 4.19 & 27 & 5 & ND & 2 & 14 & 1 & 2 & 3 & 102 & . 19 & . 19 & 8 & 86 & . 90 & 79 & . 09 & 2 & 1.75 & . 01 & . 03 & 3 & 55 & 1.9 \\
\hline 5081562932018 & 7 & 79 & 13 & 222 & . 6 & 67 & 17 & 516 & 4.86 & 33 & 5 & ND & 3 & 19 & 1 & 2 & 2 & - 108 & . 28 & . 11 & 8 & 109 & 1.31 & 115 & . 08 & 1 & 2.30 & . 01 & . 06 & 2 & 10 & 1.8 \\
\hline 5081562932019 & 1 & 35 & 14 & 160 & . 7 & 33 & 8 & 231 & 4.66 & 24 & 5 & no & 2 & 13 & 1 & 2 & 2 & 111 & .11 & . 11 & 10 & 82 & . 67 & 71 & . 09 & 9 & 1.52 & . 01 & . 04 & 3 & 5 & 4.4 \\
\hline SID C & 19 & 57 & 11 & 126 & 6.5 & 70 & 26 & 1018 & 3.78 & 12 & 18 & 7 & 36 & 47 & 15 & 16 & 20 & 59 & . 14 & . 14 & 31 & 62 & . 81 & 175 & . 07 & 11 & 1.80 & . 06 & . 12 & 13 & & \\
\hline 5081562932020 & 1 & 51 & 16 & 147 & 1.3 & 60 & 15 & 304 & 4.94 & 27 & 5 & \% 0 & 5 & 35 & 1 & 2 & 3 & 95 & .63 & . 09 & 10 & 93 & . 67 & 107 & . 13 & 1 & 3.92 & . 02 & . 05 & 2 & 5 & 6.2 \\
\hline 5081562932021 & 6 & 42 & 15 & 157 & . 7 & 19 & 14 & 368 & 5.94 & 28 & 5 & ND & 3 & 16 & 1 & 2 & 2 & 115 & . 18 & . 23 & 6 & 112 & . 63 & 128 & . 11 & 2 & 2.03 & . 02 & . 04 & 2 & 5 & 5.5 \\
\hline 5081562932022 & 9 & 52 & 11 & 153 & 1.6 & 32 & 8 & :10 & 4.39 & 31 & 5 & K0 & 2 & 10 & 1 & 2 & 2 & 95 & . 11 & . 05 & 12 & 14 & . 37 & 129 & . 06 & - & 3.02 & . 02 & . 02 & 2 & 15 & 5.3 \\
\hline 5081562932023 & 9 & 116 & 18 & 285 & . 5 & 89 & 20 & 170 & 5.35 & 72 & 5 & NO & 3 & 21 & 1 & 3 & 2 & 85 & . 23 & . 12 & 10 & 93 & 1.17 & 87 & . 02 & 8 & 2.17 & . 01 & . 06 & 2 & 25 & 9.6 \\
\hline 5081562932024 & 6 & 55 & 9 & 179 & . 5 & 53 & 15 & 367 & 4.27 & 27 & 5 & ND & 3 & 21 & . & 3 & 2 & 89 & . 20 & . 07 & 10 & 92 & 1.05 & 89 & . 09 & 7 & 2.08 & . 01 & .03 & J & 15 & 5.1 \\
\hline 5081562 '932025 & 2 & 21 & 11 & 59 & . 7 & 11 & \(b\) & 514 & 2.79 & 12 & 5 & N0 & 2 & 17 & , & , & 2 & 67 & . 21 & . 08 & 9 & 45 & . 38 & 88 & . 08 & J & 1.08 & . 01 & . 03 & 2 & 5 & 5.3 \\
\hline 5081562932026 & 20 & 12 & 3 & 9 & . 1 & 2 & 5 & 9713 & . 58 & 3 & 11 & ND & 2 & 218 & , & 2 & 2 & & 5.60 & . 09 & 2 & 2 & . 11 & 691 & . 01 & 17 & . 11 & . 01 & . 01 & 2 & 5 & 6.3 \\
\hline 5081562932027 & 2 & 6 & 3 & 11 & . 1 & 3 & 1 & 287 & . 55 & 2 & 5 & NO & 2 & 51 & 1 & 2 & & 17 & 1.24 & .13 & 7 & 7 & . 08 & 18 & . 10 & 9 & . 86 & . 03 & . 01 & 2 & 5 & 6.1 \\
\hline 5081562932028 & 1 & 49 & 12 & 122 & . 7 & 30 & 13 & 333 & 5.86 & 17 & 5 & NO & 3 & 29 & 1 & 2 & & 99 & . 33 & . 08 & 1 & 65 & . 78 & 118 & . 15 & - & 3.23 & . 02 & . 03 & 2 & 5 & 5.6 \\
\hline 5084562932029 & 1 & 16 & 10 & 134 & . 1 & 28 & 9 & 1189 & 3.93 & 20 & & NO & 2 & 23 & 1 & 2 & 2 & 98 & . 31 & . 07 & 7 & 69 & . 62 & 263 & . 09 & 6 & 1.43 & . 01 & . 04 & 2 & 15 & 5.5 \\
\hline RE 5084562932016 & 29 & 106 & 318 & 241 & 24.8 & 57 & 17 & 376 & 8.04 & 106 & J & 7 & J & 20 & , & 1 & & 109 & . 23 & . 11 & 2 & 111 & 1.21 & 81 & . 11 & 1 & 2.02 & . 02 & . 06 & 3 & 6200 & - \\
\hline 5081562932030 & 2 & 18 & 10 & 63 & . 9 & 11 & 5 & 1773 & 1.82 & 6 & & KD & 2 & 16 & 1 & 2 & 2 & 54 & . 22 & . 01 & 8 & 28 & . 19 & 163 & . 07 & 5 & . 72 & . 01 & . 04 & 2 & 5 & 5.6 \\
\hline 5081562932031 & 2 & 51 & 12 & 161 & . 6 & 31 & 15 & 553 & 5.01 & 14 & 5 & NO & 2 & 16 & 1 & 2 & 3 & 110 & . 22 & . 21 & 6 & 74 & . 80 & 91 & . 11 & 5 & 1.99 & . 01 & . 01 & 2 & 3 & 5.0 \\
\hline 5081562932032 & 2 & 21 & 8 & 62 & . 5 & 16 & 1 & 135 & 3.16 & 10 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 80 & .14 & .10 & 10 & 51 & . 37 & 81 & . 09 & 1 & 1.20 & . 02 & . 03 & 2 & 5 & 5.1 \\
\hline 5084562932033 & 2 & 51 & 10 & 125 & . 9 & 52 & 14 & 399 & 4.67 & 17 & 5 & ND & 2 & 36 &  & 2 & 3 & 108 & . 13 & . 06 & 11 & 111 & 1.18 & 92 & . 10 & d & 2.35 & . 01 & . 06 & 3 & 150 & 5.2 \\
\hline 5084562932034 & 2 & 36 & 24 & 63 & . 5 & 12 & 6 & 197 & 5.38 & 47 & 5 & ND & 2 & 12 & 1 & 2 & 2 & 89 & . 08 & . 21 & 10 & 11 & . 31 & 65 & . 09 & & 2.04 & . 01 & . 02 & 3 & 5 & 4.8 \\
\hline 5084562932035 & 1 & 62 & 11 & -111 & . 1 & 18 & 13 & 516 & 4.39 & 23 & 5 & ND & 2 & 16 & 1 & 2 & 3 & 98 & .19 & .13 & 10 & 106 & 1.03 & 93 & . 08 & 7 & 1.73 & . 01 & . 05 & 3 & 25 & 5.0 \\
\hline \(510 \mathrm{C} / \mathrm{AU}-0.5\) & 18 & 59 & 39 & 124 & 6.6 & 69 & 27 & 1099 & 3.82 & 39 & 17 & 7 & 35 & 49 & 16 & 15 & 21 & \(59^{\circ}\) & . 11 & . 14 & 38 & 57 & . 88 & 182 & . 07 & 40 & 1.60 & . 06 & . 12 & 13 & 490 & - \\
\hline
\end{tabular}

SELCD - A division of bp froject \# 10141 File \# 84-2644
\(F=j E \quad 4\)

SAMPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5081562 932036 & 2 & 28 & 13 & 98 & . 6 & 26 & 7 & 291 & 3.90 & 20 & 5 & K0 & 2 & 17 & 1 & 2 & 2 & 89 & . 20 & . 11 & 12 & 75 & . 62 & 93 & . 11 & 11 & 1.98 & . 01 & . 05 & & 5 & 5. \\
\hline 5084562932031 & 1 & 48 & 9 & 97 & .4 & 39 & 8 & 231 & 4.18 & 23 & 7 & ND & 2 & 18 & 1 & 2 & 2 & 102 & .17 & . 11 & 13 & 90 & . 93 & 81 & . 10 & 12 & 1.98 & . 01 & . 07 & i & 5 & 5.0 \\
\hline 5001562932038 & 3 & 72 & 10 & 137 & 1.3 & 12 & 11 & 614 & 4.13 & 27 & 7 & ND & 2 & 11 & 1 & 2 & 2 & 87 & . 74 & . 06 & 15 & 68 & . 16 & 191 & . 10 & 9 & 2.49 & . 02 & . 05 & \(i\) & 5 & 6. \\
\hline 5084562932039 & 2 & 21 & 13 & 57 & . 6 & 19 & 5 & 352 & 3. 98 & 14 & 5 & No & 2 & 15 & 1 & 2 & 2 & 101 & .19 & .08 & 11 & 66 & . 38 & 91 & . 12 & 7 & 1.28 & . 01 & . 04 & \(i\) & 5 & 5. \\
\hline 5081562932050 & 2 & 23 & 10 & 46 & . 2 & 16 & 5 & 172 & 2.75 & 13 & 5 & HD & 2 & 15 & 1 & 2 & 2 & 86 & . 15 & . 06 & 12 & 18 & . 35 & 56 & . 01 & 6 & . 95 & . 01 & . 03 & ; & 5 & 4.2 \\
\hline 510 C & 21 & 57 & 40 & 126 & 6.1 & 73 & 21 & 1069 & 3.90 & 42 & 17 & \(\checkmark\) & 38 & 19 & 16 & 16 & 19 & 61 & . 45 & . 11 & 38 & 59 & . 90 & 169 & . 07 & 36 & 1.68 & . 06 & .13 & 11 & - & \\
\hline 5081562932011 & 1 & 18 & 8 & 21 & 1.2 & 15 & 3 & 51 & 1.36 & 2 & 7 & NO & 2 & 39 & 1 & 2 & 2 & 31 & .12 & . 10 & 12 & 24 & . 19 & 110 & . 01 & 1 & 1.21 & . 01 & . 03 & : & 5 & 1. \\
\hline 5081562932012 & 2 & 19 & 9 & 47 & . 3 & 15 & 3 & 168 & 2.33 & 12 & 5 & NO & 2 & 17 & 1 & 2 & 2 & 11 & . 16 & . 07 & 12 & 10 & . 13 & 96 & . 10 & 6 & 1.06 & . 01 & . 03 & ; & 5 & 5.0 \\
\hline 5081582932013 & 3 & 59 & 10 & 106 & . 3 & 45 & 13 & 392 & 4.60 & 29 & 5 & N0 & 3 & 25 & 1 & 2 & 2 & 97 & . 23 & . 01 & 9 & 105 & 1.08 & 131 & . 10 & 9 & 1.95 & . 01 & . 03 & : & 5 & 5.2 \\
\hline 5081562932014 & 2 & 39 & 11 & If & . 3 & 37 & 11 & 310 & 3.92 & 23 & 7 & NO & 2 & 25 & 1 & 2 & 2 & 86 & . 30 & . 07 & 10 & 86 & . 88 & 114 & . 10 & 8 & 2.12 & . 01 & . 03 & ; & 5 & 5.2 \\
\hline 5081562932015 & 2 & 234 & 5 & 33 & 1.0 & 20 & 5 & 1979 & 1.14 & 7 & . 10 & ND & 2 & 88 & 1 & 3 & 2 & 31 & 2.38 & . 21 & 6 & 73 & . 21 & 109 & . 03 & 7 & 1.15 & . 02 & . 02 & 2 & 5 & 6.5 \\
\hline 5084562 932046 & 2 & 49 & 10 & 85 & . 5 & 28 & 9 & 463 & 4.71 & 13 & 5 & ND & 2 & 22 & 1 & 2 & 2 & 91 & . 21 & . 01 & 8 & 91 & . 89 & 102 & . 11 & 1 & 1.85 & . 01 & . 04 & : & 5 & 5. \\
\hline 5081562932017 & 1 & 90 & 11 & 76 & . 5 & 34 & 9 & 314 & 4.13 & 24 & 5 & KD & 2 & 14 & 1 & 2 & 2 & 98 & . 14 & . 09 & 12 & 85 & . 67 & 78 & . 11 & 10 & 1.11 & . 01 & . 03 &  & 5 & 1.1 \\
\hline 5081562932018 & 2 & 73 & 10 & 66 & . 8 & 32 & 10 & 2 B 2 & 4.52 & 19 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 83 & . 18 & . 08 & I & 95 & . 95 & 61 & . 09 & 1 & 1.71 & . 01 & . 01 & ; & 5 & 1.9 \\
\hline 5081562 932019 & 1 & 36 & 6 & 50 & . 6 & 16 & 6 & 134 & 2.92 & 10 & 5 & ND & 2 & 16 & 1 & 2 & 2 & 昍 & .14 & . 02 & 11 & 96 & . 31 & 92 & . 12 & 1 & 1.34 & . 11 & . 02 & : & 5 & 5.3 \\
\hline 5081562932050 & 2 & 63 & 14 & 94 & . 5 & 32 & 14 & 188 & 4.65 & 12 & 5 & No & 2 & 16 & 1 & 2 & 2 & 86 & .19 & . 17 & 6 & 89 & . 97 & 68 & . 11 & 10 & 2.37 & . 01 & . 03 & ? & 20 & 1.9 \\
\hline 5081562 932051 & 2 & 61 & 9 & 53 & . 5 & 38 & 11 & 344 & 3.98 & 13 & 5 & ND & 2 & 22 & 1 & 2 & 2 & 87 & . 27 & . 09 & 1 & 154 & 1.08 & 73 & . 12 & 10 & 1.50 & . 01 & . 04 & \(i\) & 5 & 5.0 \\
\hline 5084562932052 & 2 & 68 & 12 & 69 & . 7 & 29 & 11 & 330 & 4.56 & 15 & 5 & ND & 2 & 25 & 1 & 2 & 2 & 93 & . 28 & .13. & 1 & 88 & .93 & 68 & . 11 & 7 & 2.31 & . 01 & . 03 & i & 40 & 5.1 \\
\hline 5091562 132053 & 1 & 31 & 9 & 15 & .4 & 17 & 7 & 202 & 4.04 & 9 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 97 & .17 & . 11 & 9 & 68 & . 56 & 49 & . 13 & 10 & 1.41 & . 01 & . 04 & : & 5 & 1.3 \\
\hline 5085562932054 & 2 & 185 & 10 & 59 & . 5 & 31 & 16 & 772 & 3.81 & 15 & 5 & ND & 2 & J1 & 1 & 2 & 2 & 11 & . 55 & . 10 & 13 & 114 & . 96 & 59 & . 09 & 6 & 2.21 & . 01 & . 01 & : & 25 & 5.6 \\
\hline 5081562932055 & 2 & 17 & 13 & 73 & . 4 & 28 & 0 & 191 & 4.56 & 18 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 91 & .13 & . 05 & 11 & 116 & . 53 & 65 & . 11 & 8 & 2.53 & . 01 & . 03 & 1 & 5 & 5.0 \\
\hline 5081562 932056 & 2 & 51 & 13 & 81 & .1 & 67 & 18 & 860 & 4.16 & 16 & 5 & ND & , & 21 & 1 & 2 & 3 & 91 & . 25 & . 11 & 9 & 258 & 1.69 & 124 & . 11 & 9 & 1.76 & . 01 & . 06 & \(i\) & 5 & 4.7 \\
\hline 5081562932057 & 1 & 15 & 11 & 58 & . 1 & 13 & 4 & 118 & 2.74 & 12 & 5 & NO & 2 & 9 & 1 & 2 & 2 & 65 & . 09 & . 13 & 9 & 68 & . 28 & 19 & . 12 & 1 & 1.13 & . 01 & . 02 & 2 & 5 & 1. \\
\hline 5081562932058 & 1 & 14 & 13 & 105 & . 5 & 12 & 15 & 520 & 4.32 & 21 & 5 & ND & 2 & 16 & 1 & 2 & 3 & 81 & . 20 & . 14 & 12 & 138 & . 98 & 68 & .13 & 7 & 2.07 & . 01 & . 06 & : & 5 & 5.1 \\
\hline 5084562932059 & 1 & 30 & 8 & 81 & . 5 & 32 & 11 & 154 & 4.05 & 15 & 5 & NO & 2 & 17 & 1 & 2 & 2 & 42 & . 21 & . 19 & 7 & 163 & . 79 & 70 & . 12 & 1 & 1.10 & . 01 & . 04 & : & 5 & 1.9 \\
\hline 5081562932060 & 3 & 35 & 15 & 231 & . 9 & 34 & 10 & 554 & 5.99 & 20 & 5 & NO & 2 & 12 & 1 & 2 & 3 & 116 & . 15 & .17 & 5 & 190 & 1.00 & 78 & . 19 & 7 & 2.14 & . 01 & . 05 & 2 & 5 & 5.1 \\
\hline 5081562932061 & 2 & 20 & 12 & 75 & . 5 & 21 & 7 & 353 & 2.91 & 12 & 5 & kD & , & 9 & , & 2 & 2 & 81 & . 08 & . 14 & 8 & 81 & . 11 & 93 & . 12 & 5 & . 98 & . 01 & . 01 & 6 & 5 & 5.1 \\
\hline 5084562932062 & 1 & 12 & 6 & 49 & . 6 & 195 & 18 & 303 & 4.16 & 14 & 5 & ND & 2 & 9 & 1 & 2 & & 109 & . 22 & . 10 & 6 & 56日 & 2.58 & 58 & . 18 & 1 & 2.03 & . 01 & . 06 & i & 5 & 5.3 \\
\hline 5081582932063 & 2 & 53 & 8 & 163 & 1.2 & 59 & 15 & 173 & 4.65 & 24 & 5 & KD & 2 & 13 & 1 & 2 & 2 & 103 & . 15 & . 10 & 8 & 169 & 1.11 & 89 & . 12 & 1 & 2.21 & . 01 & . 05 & : & 5 & 5.4 \\
\hline 5081562932084 & 3 & 254 & 20 & 162 & . 1 & 90 & 25 & 730 & 5.31 & 24 & 5 & ND & 3 & 45 & 2 & 2 & 2 & 97 & .13 & . 07 & 9 & 199 & 1.34 & 90 & . 15 & 6 & 2.91 & . 02 & . 05 & i & 5 & 5. \\
\hline 5084562 932065 & 2 & 31 & 10 & 130 & .7 & 71 & 21 & 486 & 5.71 & 8 & \(J\) & No & 2 & 28 & 1 & 2 & 2 & 115 & . 48 & . 07 & 2 & 322 & 2.56 & 37 & . 19 & 1 & 2.05 & . 01 & . 10 & - & 5 & 5.6 \\
\hline 5081562932066 & 2 & 26 & 15 & 110 & . 8 & 35 & 12 & 301 & 4.25 & 20 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 101 & . 21 & . 14 & 5 & 161 & . 11 & 16 & . 13 & 3 & 1.23 & . 01 & . 05 & \(i\) & 5 & 5.3 \\
\hline RE 5001562932058 & 2 & 14 & 10 & 106 & . 6 & 12 & 15 & 510 & 4.29 & 22 & 5 & ND & 3 & 17 & 1 & 2 & 2 & 87 & . 20 & . 14 & 9 & 145 & . 97 & 68 & . 13 & 5 & 2.05 & . 02 & . 06 & 2 & 5 & \\
\hline 5084562932067 & 3 & 70 & 18 & 179 & . 5 & 58 & 18 & 923 & 4.79 & 19 & 5 & No & 2 & 31 & 1 & 2 & 2 & 109 & .43 & . 14 & 1 & 228 & 1.61 & 124 & . 13 & 1 & 1.66 & . 01 & . 06 & \(i\) & 15 & 5. \\
\hline 5081562 932068 & 6 & 335 & 29 & 167 & 1.0 & 11 & 16 & 1600 & 5.11 & 27 & 6 & NO & 2 & 52 & 2 & 2 & 2 & 97 & . 90 & . 15 & 17 & 131 & . 11 & 90 & . 11 & 7 & 3.10 & . 02 & . 05 & J & 5 & 6. \\
\hline 5081562932069 & 6 & 135 & 22 & 173 & . 9 & 75 & 22 & 1009 & 4.91 & 15 & 5 & KD & 2 & 31 & 1 & 2 & 2 & 100 & . 44 & . 09 & 1 & 218 & 1.19 & 73 & . 16 & 6 & 2.52 & . 02 & . 06 & : & 5 & 5.9 \\
\hline 5081562932070 & 3 & 55 & 13 & 137 & . 6 & 70 & 23 & 170 & 5.10 & 19 & 5 & NO & 2 & 25 & 1 & 2 & 2 & 111 & . 33 & . 14 & 2 & 250 & 2.08 & 49 & . 16 & 5 & 2.38 & . 01 & . 09 & J & 5 & 5.5 \\
\hline 5084562 932071 & 5 & 63 & 33 & 89 & 1.8 & 41 & 10 & 310 & 4.97 & 24 & 5 & no & 2 & 26 & 1 & 2 & 2 & 126 & . 25 & . 08 & 6 & 168 & . 89 & 82 & . 11 & 3 & 1.29 & . 01 & . 05 & 2 & 5 & 5.3 \\
\hline 5081562932072 & 2 & 17 & 14 & 67 & . 1 & 17 & 5 & 106 & 2.75 & 12 & 5 & KD & 2 & 13 & 1 & 2 & 2 & 91 & . 16 & . 06 & 7 & 89 & . 36 & 53 & . 11 & 2 & . 58 & . 01 & . 04 & 2 & 5 & 5.2 \\
\hline 550 C/AU-0.5 & 20 & 59 & 39 & 124 & 6.7 & 69 & 27 & 1060 & 3.82 & 41 & 18 & 7 & 36 & 19 & - 16 & 15 & 19 & 59 & . 14 & . 14 & 36 & 57 & . 88 & 182 & . 07 & 38 & 1.59 & . 06 & . 12 & 13 & 500 & \\
\hline
\end{tabular}

SELCO - A DIVISION OF BP PFOJECT \# 10141 FILE \# 84-2644
FAGE 5

\(\square\) \begin{tabular}{c} 
CR \\
\(P P K\) \\
\hline
\end{tabular} KG IA 11 \(N\)
1 KA
1 \(\begin{array}{cc}\text { y } & \text { RUI } \\ \text { PPM } & \text { PPs }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5084582132073 & 1 & 66 & 17 & 132 & . 9 & 60 & 22 & 437 & 5.16 & 28 & 5 & XD & 2 & 10 & 1 & 3 & 2 & 115 & . 16 & . 10 & 2 & 263 & 1.93 & 49 & . 16 & 1 & 2.59 & . 01 & . 07 & 2 & 5 & 5.5 \\
\hline 5081562932074 & 1 & 23 & 1 & 71 & . 5 & 32 & 15 & 1822 & 3.55 & 5 & 5 & K0 & 2 & 8 & 1 & 2 & 2 & 88 & . 13 & . 07 & 2 & 164 & . 82 & 92 & . 16 & 3 & . 78 & . 01 & . 03 & 2 & 5 & 5.0 \\
\hline 5081582932075 & J & 65 & 8 & 159 & . 6 & 12 & 16 & 508 & 5.21 & 56 & 5 & K0 & 2 & 19 & 1 & 1 & 2 & 117 & . 27 & . 13 & 2 & 61 & 1.20 & 90 & . 11 & 5 & 2.53 & . 01 & . 05 & 2 & 5 & 5.2 \\
\hline 5084562932076 & 3 & 25 & 8 & 76 & . 1 & 33 & 10 & 230 & 3.69 & 12 & 5 & NO & 2 & 11 & 1 & 2 & 2 & 71 & . 17 & . 15 & 7 & 101 & . 74 & 76 & . 13 & 1 & 2.33 & . 01 & . 03 & 2 & 5 & 5.8 \\
\hline 5084562932077 & 2 & 11 & 10 & 73 & . 3 & 55 & 10 & 255 & 4.68 & 22 & 5 & no & 3 & . 20 & . 1 & 3. & 2 & 18 & . 19 & . 09 & 1 & 135 & 1.21 & 89 & . 13 & 2 & 2.20 & . 01 & . 04 & 2 & 5 & 5.3 \\
\hline 5081562932078 & 3 & 51 & 12 & 88 & . 5 & 48 & 19 & 175 & 4.13 & 25 & 5 & N0 & 2 & 63 & 1 & 2 & 2 & 78 & . 98 & . 05 & 2 & 124 & 1.13 & 108 & . 10 & 5 & 1.77 & . 02 & . 01 & 2 & 105 & 6.2 \\
\hline 5081562132079 & 2 & 58 & 11 & 72 & . 5 & 50 & 12 & 239 & 4.46 & 24 & 5 & KD & , & 29 & 1 & 2 & 2 & 95 & . 36 & . 04 & 3 & 163 & 1.01 & 78 & . 17 & 8 & 2.35 & . 02 & . 03 & 2 & 5 & 6.0 \\
\hline 5081562 932080 & 1 & 27 & 8 & 64 & . 3 & 34 & \| & 225 & 3.13 & 16 & 5 & \(x\) & 2 & 17 & 1 & 2 & 2 & 11 & . 20 & . 09 & 2 & 150 & . 72 & 5 & . 13 & 2 & 1.03 & . 01 & . 01 & 2 & 5 & 5.1 \\
\hline 5081562 932081 & 1 & 22 & 1 & 69 & . 3 & 37 & 1 & 208 & 3.34 & 1 & 5 & 10 & 2 & 18 & 1 & 2 & 3 & 79 & . 21 & . 11 & 1 & 158 & . 83 & 37 & . 11 & 2 & 1.19 & . 01 & . 04 & 2 & 5 & 4.8 \\
\hline 5081562932082 & 1 & 60 & 9 & 117 & . \(\%\) & 13 & 22 & 351 & 4.52 & 23 & 5 & N0 & 2. & 27 & 1 & 2 & 2 & 48 & . 15 & . 09 & 2 & 205 & 1.17 & 57 & . 15 & 5 & 1.76 & . 01 & . 11 & 2 & 5 & 6.1 \\
\hline 5081562 932083 & 3. & 63 & * & 119 & . 1 & 89 & 24 & 371 & 5.04 & 20 & 5 & no & 2 & 23 & 1 & 2 & 2 & 101 & . 34 & . 08 & 2 & 212 & 1.32 & 90 & . 11 & 2 & 2.41 & . 01 & . 05 & 2 & 5 & 5.9 \\
\hline 5081562 932084 & 2 & 33 & 12 & 105 & . 1 & 70 & 13 & 108 & 4.62 & 22 & 5 & no & , & 15 & 1 & \(2^{\prime}\) & 1 & 121 & . 26 & . 13 & 2 & 222 & 1.5 & \({ }^{6}\) & . 11 & 3 & 1.18 & . 11 & . 04 & 2 & 5 & 4.5 \\
\hline 5081562 932085 & 2 & 38 & 20 & 329 & . 9 & 55 & 19 & 455 & 4.78 & 29 & 5 & no & 2 & 23 & 1 & 3 & 2 & 91 & . 28 & . 21 & , & 114 & . 98 & 82 & . 11 & 1 & 2.13 & . 01 & . 07 & 2 & 5 & 5.1 \\
\hline 5081582733001 & 7 & 75 & 12 & 154 & . 6 & 67 & 16 & 283 & 6.31 & 53 & 5 & N0 & & 17 & 1 & 1 & 2 & 128 & . 18 & . 20 & 2 & 135 & 1.32 & 57 & . 11 & J & 1.91 & . 01 & . 07 & 3 & 5 & 4.4 \\
\hline 5081582933002 & 1 & 67 & 15 & 67 & . 3 & 80 & 18 & 577 & 4.53 & 33 & 5 & N0 & 2 & 25 & 1 & 1 & 2 & 111 & . 38 & . 12 & 5 & 216 & 1.18 & 42 & . 11 & 1 & 1.69 & . 01 & . 06 & 2 & 15 & 5.4 \\
\hline 5081582 935003 & 2 & 114 & 1 & 199 & 2.0 & 268 & 11 & 1672 & 4.17 & 16 & 5 & ND & 2 & 21 & 2 & 2 & 2 & 11 & . 33 & . 11 & 11 & 343 & 1.57 & 13 & . 14 & 1 & 3.30 & . 02 & . 01 & 2 & 3 & 5.9 \\
\hline 5085562 935004 & 2 & 40 & 12 & 171 & . 1 & 135 & 21 & 539 & 4.15 & 19 & 5 & \(N\) & 2 & 19 & 1 & , & 2 & 115 & . 30 & . 14 & 2 & 310 & 2.14 & 56 & . 11 & 1 & 2.37 & . 01 & . 07 & 2 & 3 & 8.0 \\
\hline 5081562133005 & 2 & 43 & 7 & 13 & . 5 & 183 & 15 & 167 & 5.62 & 22 & 5 & W0 & 1 & 10 & 1 & 2 & 2 & 128 & . 12 & . 4 & 3 & 360 & 1.13 & 33 & . 20 & \(J\) & 2.99 & . 01 & . 03 & 2 & 5 & 3.8 \\
\hline 3084562 \$33006 & 3 & 109 & 17 & 45 & . 5 & 28 & 10 & 589 & 5.23 & 20 & 5 & K0 & 2 & 27 & 1 & 2 & 2 & 105 & . 12 & . 07 & 5 & 88 & . 67 & 115 & . 13 & 2 & 2.07 & . 01 & . 02 & 2 & 5 & 5.9 \\
\hline 5081512933007 & 2 & 59 & 21 & 172 & . 5 & 50 & 17 & 14 & 4.51 & 18 & 5 & N0 & 2 & 17 & 1 & 2 & 2 & 106 & . 22 & . 13 & 3 & 15\% & 1.21 & 86 & . 12 & 2 & 1.58 & . 02 & . 04 & 2 & 35 & 5.5 \\
\hline 5084562 935008 & 2 & 99 & 20 & 104 & 2.4 & 30 & 1 & 456 & 2.90 & 12 & 5 & N0 & 2 & 52 & 1 & 2 & 2 & 56 & . 95 & . 08 & 1 & 18 & . 38 & 70 & . 13 & 1 & 2.14 & . 02 & . 02 & 2 & 5 & 4.0 \\
\hline 5081562933009 & 1 & 510 & 26 & 204 & 3.6 & 116 & 22 & 1757 & 6.15 & 30 & 5 & 10 & 2 & 65 & \(\therefore 2\) & 2 & 2 & \(13!\) & . 89 & . 11 & 1 & 230 & 1.81 & 121 & . 12 & 3 & 3.16 & . 01 & . 11 & 2 & 5 & 6.2 \\
\hline 5081562133010 & 1 & 150 & 22 & 179 & . 1 & 12 & 23 & 171 & 5.13 & 21 & 5 & K & 2 & 42 & 1 & 2 & 4 & 120 & . 43 & . 01 & 1 & 220 & 1.84 & 12 & . 15 & 5 & 2.55 & . 01 & . 08 & 3 & 5 & 5.8 \\
\hline 81) C & 20 & 41 & 39 & 125 & 1.5 & 78 & 21 & 1068 & 3.81 & 12 & 17 & 8 & 37 & 49 & 16 & 17 & 20 & 60 & . 11 & . 14 & 36 & 58 & . 90 & 181 & . 01 & 40 & 1.6 & . 81 & .13 & 12 & - & \\
\hline 5081512 933011 & 1 & 20 & 11 & 71 & . 5 & 25 & 1 & 211 & 2.86 & 1 & 5 & \(x\) & 2 & 21 & 1 & 2 & 2 & 78 & . 20 & . 09 & 4 & 115 & . 19 & 41 & . 15 & , & . 80 & .01 & . 05 & . 2 & 5 & 5.7 \\
\hline 5081562953012 & 8 & 187 & 14 & 107 & 2.0 & 64 & 17 & 1058 & 3.89 & 14 & 5 & 10 & 2 & 86 & 1 & 2 & 2 & 17 & . 17 & . 11 & 11 & 181 & 1.07 & 98 & . 10 & 1 & 2.06 & . 02 & . 01 & 2 & 5 & 5.8 \\
\hline 5081562935013 & 2 & 32 & 12 & 71 & . 1 & 48 & 12 & 232 & 4.01 & 1 & 5 & N0 & 2 & 17 & 1 & 2 & 2 & 100 & . 20 & . 07 & 6 & 208 & . 81 & 15 & . 18 & 5 & 1.36 & . 02 & . 01 & 2 & 5 & 5.6 \\
\hline 5084562 135014 & 1 & 93 & 17 & 145 & . 5 & 12 & 28 & 477 & 5.51 & 15 & 5 & no & 2 & 26 & 1 & 2 & 2 & 122 & . 33 & . 08 & 3 & 281 & 2.08 & 16 & .17 & 1 & 2.21 & . 01 & . 10 & 2 & 5 & 5.8 \\
\hline 5081562 133015 & 2 & 56 & 12 & 148 & . 9 & 85 & 23 & 163 & 5.00 & 16 & 5 & 10 & 2 & 16 & 1 & 2 & 2 & 107 & . 21 & . 15 & 7 & 295 & 1.84 & 9 & . 14 & 2 & 2.10 & . 01 & . 11 & 2 & 85 & 6.0 \\
\hline 5081562933016 & 1 & 18 & 1 & 73 & . 3 & 21 & 7 & 22 & 2.11 & 10 & 5 & N0. & 2 & 14 & 1 & 2 & 2 & 19 & . 21 & . 09 & 7 & 114 & . 51 & 50 & . 12 & 2 & .71 & . 01 & . 05 & 2 & 10 & 5.2 \\
\hline 5081562933017 & 3 & 32 & 17 & 124 & . 1 & 19 & 17 & 34 & 4.57 & 11 & , & N0 & 2 & 19 & 1 & 1 & 3 & 109 & . 24 & . 12 & 7 & 224 & 1.11 & 62 & . 11 & 2 & 2.08 & . 01 & . 08 & 2 & 5 & 5.6 \\
\hline 5081562 935011 & 2 & 10 & 14 & 191 & . 1 & 54 & 11 & 315 & 5.54 & 23 & 5 & no & 2 & : 12 & 1 & 2 & 2 & 120 & . 13 & . 10 & , & 188 & 1.03 & 67 & . 17 & 2 & 2.19 & . 01 & . 05 & 3 & 35 & 5.5 \\
\hline 5081562935019 & 4 & 102 & 27 & 209 & . 8 & 111 & 36 & 1051 & 6.78 & 38 & 5 & no & 3 & 39 & 1 & 2 & 2 & 125 & . 58 & . 07 & 2 & 319 & 2.52 & 82 & . 18 & 2 & 2.37 & . 02 & . 10 & 2 & 25 & 5.8 \\
\hline 3014542 133020 & 2 & 114 & 16 & 122 & . 3 & 79 & 18 & 311 & 5.01 & 36 & 5 & 0 & 2 & 13 & 1 & 2 & 2 & 109 & . 18 & . 11 & 11 & 179 & 1.58 & 5 & . 11 & 2 & 2.34 & . 01 & . 01 & 2 & 30 & 5.0 \\
\hline RE 5081562 933003 & 2 & 117 & 12 & 212 & 2.0 & 284 & 21 & 1784 & 4.15 & 17 & 5 & \(n 0\) & 2 & 24 & 2 & 2 & 3 & 15 & . 36 & . 12 & 24 & 358 & 1.63 & 66 & . 14 & 3 & 3.13 & . 02 & . 05 & 2 & 5 & \\
\hline 5084562 13302! & 3 & 42 & 13 & 160 & .4 & 20 & 14 & 324 & 4.82 & 20 & 5 & mo & 2 & 17 & \(t\) & 2 & 2 & 111 & . 22 & . 07 & 11 & 201 & 1.53 & 14 & .13 & 1 & 2.03 & . 01 & . 06 & 3 & 5 & 5.2 \\
\hline 5084562135022 & 2 & 45 & 14 & 172 & .1 & 36 & 13 & 113 & 5.24 & 32 & 5 & n & 2 & 17 & , & 2 & 2 & 8 & . 19 & . 21 & 7 & 114 & 1.00 & 70 & . 11 & 2 & 2.28 & . 01 & . 04 & 3 & 5 & 5.3 \\
\hline 5081562 133023 & 2 & 26 & 14 & 79 & .4 & 57 & 8 & 230 & 4.09 & 14 & 5 & 0 & 2 & 17 & , & 2 & 3 & 85 & . 19 & . 31 & 10 & 108 & . 79 & 68 & . 11 & 3 & 2.25 & . 01 & . 04 & 2 & 5 & 5.1 \\
\hline 5081562 135024 & 3 & 53 & 11 & 11 & . 4 & 6 & 19 & 12 & 1.38 & 9 & 5 & No & 2 & 41 & 1 & 2 & 2 & 131 & .33. & . 20 & 4 & 27 & 2.00 & 14 & . 18 & 1 & 2.05 & . 02 & . 20 & 2 & 5 & 4.8 \\
\hline sil C/NL-0.5 & 19 & 58 & 39 & 125 & 6.1. & 70 & 27 & 1062 & 3.12 & 13 & 18 & B & 36 & 49 & 16 & 15 & 18 & 59 & . \(44^{\circ}\) & . 14 & 38 & 38 & . 88 & 101 & . 07 & 71 & 1.68 & . 06 & . 12 & 13 & 190 & \\
\hline
\end{tabular}

SELCO - A DIVISION DF BP FROJECT \# 10141 FILE \#84-2644
FAGE 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & no & CU & PI & \% & Af & H1 & CO & HN & FE & AS & U & R.t & IH & SR & co & 58 & & 81 & \(v\) & CA & P & LA & CR & N6 & 日A & II & 8 & AL & KA & \(\underline{x}\) & 1 & AU* & PH \\
\hline & PPM & PPK & PPK & PPM & PPM & PPK & PFK & PPK & 1 & PPM & PPM & PPM & PPM & PPK & PPM & PPK & & PPK & PPM & 1 & \(\lambda\) & PPK & PPM & 1 & PPK & 1 & PPM & : & 1 & 1 & PFP & PPP & \\
\hline 5081562933025 & 1 & 36 & 6 & 109 & . 2 & 78 & 23 & 452 & 6.28 & 10 & 5 & No & 2 & 16 & 1 & 2 & & 2 & 113 & . 38 & . 19 & 2 & 212 & 2.51 & 51 & . 16 & 1 & 2.25 & . 01 & . 16 & ; & s & 5.0 \\
\hline 5081562933026 & 2 & 92 & 7 & 126 & . 2 & 80 & 24 & 496 & 6.07 & 7 & 5 & ND & 2 & 39 & 1 & 2 & & 2 & 138 & . 24 & . 08 & 2 & 251 & 2.11 & 51 & . 11 & 5 & 2.70 & . 01 & . 08 & & 50 & 5.3 \\
\hline 5081562933027 & 1 & 32 & 6 & 12 & . 3 & 32 & 11 & 336 & 3.90 & 5 & 5 & NO & 2 & 21 & 1 & 2 & & 2 & 12 & . 20 & . 14 & 3 & 188 & . 99 & 54 & . 11 & 6 & . 95 & . 02 & . 07 & : & 5 & 1.9 \\
\hline 5081562933028 & 1 & 56 & 9 & 124 & . 2 & 55 & 19 & 165 & 5.65 & 9 & 5 & ND & 2 & 23 & 1 & 2 & & 2 & 114 & . 23 & . 18 & 2 & 251 & 1.74 & 36 & . 11 & 2 & 1.94 & . 01 & . 07 & : & 5 & 5.1 \\
\hline 5081562933029 & 2 & 28 & 9 & 118 & .7 & 17 & 6 & 210 & 3.36 & 6 & 5 & ND & 2 & 27 & 1 & 2 & & 2 & 11 & . 19 & . 12 & 5 & 99 & . 13 & 48 & . 13 & 5 & . 78 & . 01 & . 05 & i & 5 & 4.8 \\
\hline 5084562933030 & 2 & 19 & 9 & 71 & . 6 & 15 & 1 & 282 & 2.08 & 2 & 5 & ND & 2 & 22 & 1 & 2 & & 2 & 57 & . 20 & . 05 & 5 & 58 & . 35 & 56 & . 17 & 6 & . 62 & . 02 & . 03 & : & 5 & 5.2 \\
\hline 5081562933031 & 2 & 16 & 9 & 56 & . 1 & 19 & 1 & 188 & 3.20 & 5 & 5 & ko & 2 & 15 & 1 & 2 & & 2 & 69 & . 11 & . 20 & 3 & 108 & . 17 & \({ }^{1}\) & . 18 & 3 & . 94 & . 02 & . 04 & & 5 & 5.0 \\
\hline 5081562933032 & 2 & 20 & 8 & 87 & . 3 & 28 & B & 208 & 5.18 & 9 & 5 & kO & J & 21 & 1 & 2 & & 3 & 94 & . 19 & . 28 & 2 & 139 & . 51 & 70 & . 16 & 6 & 2.50 & . 01 & . 05 & ! & 5 & 4.8 \\
\hline 5081562 933033 & 2 & 15 & 10 & 51 & . 4 & 13 & 3 & 110 & 3.11 & 5 & 5 & N0 & 2 & 18 & 1 & 2 & & 3 & 68 & . 16 & . 17 & 5 & 88 & . 25 & 11 & . 13 & 4 & 1.51 & . 01 & . 03 & ¢ & 5 & 5.1 \\
\hline 5081562933034 & 2 & 35 & 10 & 118 & . 2 & 38 & 7 & 243 & 3.99 & 11 & 5 & N0 & 2 & 24 & 1 & 2 & & 2 & 95 & . 26 & . 08 & 3 & 115 & . 96 & 91 & . 15 & 3 & 1.51 & . 01 & . 04 & : & 5 & 5.3 \\
\hline 3081562933035 & 3 & 46 & 9 & 189 & . 3 & 41 & 12 & 315 & 5.07 & 17 & 5 & No & 2 & 28 & 1 & 2 & & 3 & 100 & . 21 & . 10 & 5 & 121 & 1.02 & 87 & . 11 & 9 & 2.11 & . 01 & . 04 & - & 5 & 5.0 \\
\hline 5081562933036 & 3 & 72 & 1 & 18 & .7 & 24 & 10 & 1970 & 2.58 & 1 & 1 & N 1 & 2 & 4 & 1 & 2 & & 2 & 53 & 1.81 & . 11 & 3 & 58 & . 34 & 315 & . 05 & 6 & 1.39 & . 02 & . 01 & i & 5 & 6.3 \\
\hline 5081562933037 & 3 & 11 & 12 & 83 & . 2 & 19 & 7 & 324 & 6.74 & B & 5 & Ni & 2 & 18 & 1 & 2 & & 1 & 85 & . 26 & . 25 & 1 & 83 & . 11 & 171 & . 10 & 1 & 1.14 & . 01 & . 04 & 1 & 25 & 5.2 \\
\hline 5081562.933038 & 3 & 67 & - 10 & 66 & . 1 & 35 & 17 & 286 & 6.10 & 9 & 6 & ND & 2 & 21 & 1 & 2 & & 2 & 110 & . 18 & . 11 & 1 & 121 & . 86 & 139 & . 09 & 5 & 1.51 & . 01 & . 06 & & 5 & 5.0 \\
\hline STD C & 21 & 59 & 39 & 129 & 6.2 & 70 & 28 & 1068 & 3.91 & 12 & 18 & 7 & 38 & 19 & 17 & 16 & & 22 & 61 & . 15 & . 15 & 10 & 58 & . 90 & 173 & . 01 & 38 & 1.65 & . 06 & . 14 & \(1:\) & - & - \\
\hline 5081562933039 & 1 & 46 & 11 & 76 & . 3 & 42 & 20 & 319 & 5.14 & 6 & 5 & KD & , & 22 & 1 & 2 & & 6 & 98 & . 25 & . 17 & & 129 & . 98 & 146 & . 13 & 5 & 2.62 & . 01 & . 05 & : & 5 & 5.3 \\
\hline 5081562 133010 & 3 & 331 & , & 68 & . 3 & 61 & 21 & 375 & 6.65 & 11 & 5 & no & , & 24 & 1 & 2 & & 3 & 105 & . 24 & . 13 & 1 & 193 & 1.56 & 117 & . 13 & 7 & 2.11 & . 01 & . 08 & : & 5 & 5.1 \\
\hline 5081562935011 & 2 & 13 & 9 & 87 & . 1 & 43 & 11 & 341 & 4.04 & 2 & 5 & NO & 2 & 42 & 1 & 2 & & 2 & 92 & . 61 & . 08 & & 134 & 1.68 & 136 & . 16 & 5 & 1.82 & . 02 & . 07 & : & 5 & 5.9 \\
\hline 5081562 933012 & 2 & 34 & 18 & 139 & . 1 & 22 & 20 & 1013 & 4.81 & 13 & 5 & NO & 2 & 22 & 1 & 2 & & 2 & 88 & . 20 & . 16 & - & 101 & . 63 & 138 & . 11 & 1 & 1.08 & . 01 & . 05 & ; & 5 & 5.0 \\
\hline 5081562933013 & 1 & 16 & 10 & 75 & . 4 & 14 & 7 & 269 & 3.27 & 7 & 5 & NO & 2 & 19 & 1 & 2 & & J & 12 & . 16 & . 11 & 5 & 92 & . 15 & 91 & . 11 & J & . 90 & . 01 & . 04 & : & 5 & 5.2 \\
\hline 5081562933044 & 1 & 29 & 16 & 187 & . 1 & 24 & 14 & 301 & 4.88 & 21 & 5 & vo & 2 & 17 & 1 & 2 & & 1 & 89 & . 14 & . 30 & 3 & 104 & . 58 & 131 & . 11 & 3 & 2.14 & . 01 & . 05 & d & 5 & 5.1 \\
\hline 5081562933015 & 1 & 36 & 17 & 107 & . 5 & 22 & 11 & 251 & 4.68 & 19 & 5 & NO & 2 & 14 & 1 & 2 & & 2 & 85 & . 18 & . 06 & 5 & 80 & . 66 & 108 & . 09 & 3 & 1.89 & . 01 & . 05 & 1 & 5 & 5.8 \\
\hline 5084562933046 & 2 & 21 & 18 & 156 & . 8 & 56 & 15 & 122 & 3.78 & 23 & 5 & N0 & , & 25 & 1 & 2 & & 3 & 73 & . 28 & .13 & 4 & 126 & . 60 & 50 & . 13 & 2 & 2.15 & . 02 & . 01 & : & 15 & 5.8 \\
\hline 5081562933017 & 5 & 14 & 31 & 171 & . 5 & 33 & 9 & 230 & 4.92 & 42 & 5 & N0 & 3 & 17 & 1 & 1 & & 2 & 104 & . 16 & . 12 & & 58 & . 51 & 96 & . 06 & 3 & 1.68 & . 01 & . 04 & \(!\) & 45 & 5.1 \\
\hline 5081582933019 & 6 & 13 & 19 & 139 & . 6 & 35 & 7 & 149 & 4.74 & 36 & 5 & N0 & 2 & 34 & 1 & 2 & & 2 & 102 & . 64 & . 05 & 7 & 61 & . 57 & 97 & . 05 & 8 & 2.26 & . 01 & . 05 & : & 5 & 6.0 \\
\hline 5084562933049 & 1 & 25 & 9 & 75 & . 1 & 10 & 12 & 236 & 2.82 & 9 & 5 & M & 3 & 19. & 1 & 2 & & 2 & 53 & . 20 & . 17 & 11 & 66 & . 66 & 76 & . 11 & 5 & 3.19 & . 01 & . 04 & : & 5 & 5.8 \\
\hline 5081562933050 & 2 & 22 & 10 & 67 & . 1 & 22 & 6 & 151 & 3.33 & \(B\) & 5 & No & J & 14 & 1 & 2 & & 2 & 82 & .12 & . 07 & 7 & 47 & . 42 & 53 & . 11 & 1 & 1.59 & . 01 & . 04 & j & 5 & 5.2 \\
\hline 5084562933051 & 6 & 71 & 15 & 102 & 1.6 & 51 & 8 & 28 J & 3.91 & 16 & 5 & N0 & 3 & 21 & 1 & 2 & & 2 & 81 & . 30 & . 06 & 13 & 68 & . 12 & 128 & . 12 & 5 & 2.78 & . 02 & . 08 & : & 45 & 5.1 \\
\hline 5081562933052 & 3 & 21 & 10 & 55 & . 2 & 20 & 1 & 152 & 3.99 & 11 & 5 & NO & 3 & 24 & 1 & 2 & & 3 & 100 & . 21 & . 05 & 9 & 19 & . 51 & 65 & . 12 & 3 & 1.64 & . 01 & . 04 & \(\vdots\) & 5 & 5.6 \\
\hline 5081562933053 & 6 & 51 & 13 & 101 & . 6 & 39 & 8 & 286 & 1.22 & 14 & 5 & N0 & 2 & 30 & 1 & 2 & & 3 & 95 & . 16 & . 05 & 9 & 58 & . 12 & 112 & . 13 & 2 & 2.51 & . 02 & . 07 & : & 5 & 6.0 \\
\hline 5084562933054 & 1 & 16 & 7 & 52 & . 3 & 13 & 1 & 193 & 2.62 & 1 & 5 & no & 2 & 17 & 1 & 2 & & 2 & 67 & .15 & .08 & 10 & 30 & . 33 & 55 & . 11 & 2 & 1.06 & . 01 & . 04 & : & 5 & 4.7 \\
\hline 5081562933055 & 1 & 109 & 12 & 275 & . 6 & 11 & 20 & 1381 & 1.63 & 28 & 5 & N0 & 2 & 11 & 3 & 2 & & 2 & 93 & . 91 & . 09 & 10 & 89 & 1.11 & 82 & . 11 & 1 & 2.20 & . 02 & . 08 & i & 15 & 6.1 \\
\hline 5081562 933056 & 2 & 29 & 11 & 90 & . 2 & 31 & 7 & 251 & 4.19 & 21 & 5 & ND & 2 & 16 & 1 & 2 & & 3 & 112 & . 18 & . 14 & 7 & 56 & . 61 & 19 & . 11 & 2 & 1.45 & . 02 & . 05 & : & 80 & 4.8 \\
\hline 5084562933057 & 1 & 20 & 17 & 110 & . 1 & 21 & 5 & 168 & 4.15 & 17 & 5 & k0 & 2 & 18 & 1 & 2 & & 3 & 98 & . 28 & . 22 & 11 & 50 & . 50 & 60 & . 13 & 3 & 1.67 & . 01 & . 04 & ; & 5 & 5.2 \\
\hline 5081562 933058 & 5 & 21 & 12 & 70 & . 2 & 11 & 5 & 219 & 3.78 & 13 & 5 & KD & 2 & 9 & 1 & 2 & & 3 & 92 & .12 & . 09 & 7 & 19 & . 15 & 34 & . 13 & 2 & . 61 & . 01 & . 04 & i & 5 & 4.1 \\
\hline RE 5081562933039 & 1 & 16 & 13 & 75 & . 2 & 43 & 20 & 316 & 5.15 & 10 & 5 & H0 & 3 & 22 & 1 & 2 & & 1 & 96 & . 24 & . 17 & 7 & 127 & . 99 & 118 & . 15 & J & 2.65 & . 01 & . 05 & * & 5 & - \\
\hline 5084562933059 & 1 & 26 & 14 & 184 & . 1 & 18 & 7 & 1178 & 3.17 & 18 & 5 & NO & 2 & 17 & 1 & 2 & & 3 & 16 & . 39 & . 08 & 1 & 30 & . 10 & 70 & . 13 & 2 & 1.24 & . 02 & . 04 & ! & 5 & 5.0 \\
\hline 5081562933060 & 5 & 119 & 20 & 277 & . 9 & 60 & 17 & 693 & 4.93 & 82 & 5 & No & 1 & 38 & 2 & 2 & & 4 & 86 & . 90 & . 10 & 11 & 48 & . 82 & 70 & . 13 & 4 & 3.26 & . 02 & . 05 & ! & 35 & 8.0 \\
\hline 5081562933061 & 2 & 19 & 18 & 288 & . 3 & 20 & 5 & 810 & 2.16 & 10 & 5 & NO & 2 & 1 & 1 & & & 2 & 36 & . 11 & . 10 & 6 & 11 & .11 & 11 & . 15 & 2 & 1.80 & . 02 & . 04 & : & 5 & 5.5 \\
\hline SID C/ALI-0.5 & 20 & 58 & 39 & 125 & 6.2 & 69 & 27 & 1062 & 3.82 & 12 & 17 & 1 & 35 & 49 & 16 & 15 & & 19 & 59 & .14 & . 14 & 37 & 57 & . 88 & 181 & . 07 & 38 & 1.80 & . 06 & . 13 & 11 & 500 & - \\
\hline
\end{tabular}

SELCO - A division of bF froject \# 10141 File \# 34-2s44
FAGE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Smiflel & 50 & cl & F8 & il & A5 & HI & co & M Ml & FE & AS & U & AU & TH & Sf. & Co & S8 & Bl & \% & CA & \(f\) & LA & cif & H0 & \(8{ }_{\text {B }}\) & 11 & b & AL & Hin & 1 & * & nut & PM \\
\hline & PFM & FPM & PFM & ffr & FPM & P9\% & P9\% & PFM & : & iPM & PPA & FPh & PPM & Pf & PP8 & PPK & PPK & PFM & : & : & PPK & FPK & " & PPM & : & PPM & & : & & ff & PP8 & \\
\hline SOBSEL2 ¢ 930 L 2 & : & 88 & 12 & 21: & . 6 & i? & 15 & 318 & E.15 & 50 & 5 & 110 & 2 & 18 & 1 & 2 & 2 & 121 & . 21 & .13 & 9 & 48 & . & 55 & . 16 & : & 2.90 & . 01 & . 04 & i & 10 & 5.3 \\
\hline 508156: 9 9303J & 三 & 6 & \(1:\) & 176 & . 1 & 20 & ? & 312 & 1.3iz & 25 & 5 & ND & 2 & 12 & 1 & 3 & 2 & \(1: 0\) & . 18 & . 11 & 12 & 3 & . 6 & : & . 11 & J & 1.10 & . 01 & .0? & , & 25 & 5.1 \\
\hline 50b456: \(93004^{4}\) & 6 & 17 & 11 & \(1: 19\) & . 9 & 10 & 10 & 24: & S.i: & 35 & 5 & 110 & 2 & 46 & 1 & 2 & - 2 & 132 & 1.10 & . 08 & 10 & 91 & . 30 & 81 & . 16 & 2 & 2.67 & . 02 & . 09 & 2 & 5 & 6.1 \\
\hline 50845S2 93Y065 & : & 3 & 11 & 155 & . & 106 & 32 & 18* & 4.80 & 15 & 5 & ND & 2 & 21 & 1 & 2 & 2 & 98 & . 35 & . 5 & 7 & 351 & 2.12 & as & . 19 & 2 & 2.50 & . 01 & . 01 & 2 & 5 & 5.? \\
\hline STO C & 20 & 5 & 42 & 128 & 6.7 & :1 & 23 & 1081 & 3.91 & 10 & 19 & 6 & 33 & 19 & 17 & 15 & 22 & 61 & . 16 & . 15 & 38 & SR & . 90 & 169 & . 07 & 3 & 1.64 & . 00 & . 13 & 14 & - & - \\
\hline 5081562 9730ss & 1 & 35 & 11 & 102 & . 1 & 55 & 15 & 125 & 4.31 & 21 & 5 & ND & 4 & 20 & 1 & 2 & 3 & II & . 31 & . 10 & 10 & 155 & 1.19 & 52 & . 11 & 5 & 1.72 & . 02 & . 05 & : & 5 & 5.0 \\
\hline 3081562 93306\% & ; & 46 & 19 & 205 & . 1 & S9 & 18 & 38 & 3.14 & 21 & 5 & N0 & 2 & 28 & 1 & 2 & ิ & 425 & . 12 & . 15 & ! & 162 & 1.19 & 120 & . 15 & 2 & :. \({ }^{1}\) & . 0 & . 06 & 2 & 5 & 5.8 \\
\hline 5081562 935088 & 9 & 1700 & 15 & 142 & 3.5 & 150 & 11 & 1475 & 1.88 & 5 & 16 & U & 2 & 172 & 6 & ¢ & 8 & 3 & 2.80 & . 22 & 11 & 81 & . 3 & 39 & . 04 & \% & 1.51 & . 02 & . 05 & : & 15 & 8.5 \\
\hline 5081562 ? 35069 & 1 & 112 & 16 & 24 & 2.0 & 78 & 20 & 520 & 4.94 & 27 & J & KD & 2 & 58 & 1 & 2 & 1 & 96 & . 74 & . 12 & 13 & 115 & 1.03 & 131 & . 16 & 1 & 3.47 & . 02 & . 06 & 2 & 5 & 6.1 \\
\hline 5084582 933070 & : & \({ }^{63}\) & 12 & 215 & . 5 & 3 & 21 & 108 & 4.66 & 22 & 5 & 110 & 2 & 21 & 1 & 3 & 3 & 108 & . 21 & . 11 & 12 & 14 & 1.13 & 81 & . 15 & 3 & 2.45 & . 01 & . 04 & 2 & 5 & 5.5 \\
\hline 5081562 933071 & : & 224 & 81 & 139 & 1.8 & 91 & 23 & \(1: 32\) & 4.61 & 27 & 5 & Mb & 2 & 98 & 2 & 3 & 2 & 90 & 1.42 & .15 & 11 & 236 & 1.62 & 130 & . 09 & 5 & 2.70 & . 02 & . 12 & i & 10 & 6.2 \\
\hline RE 5081562 93J081 & 1 & 37 & 13 & 83 & . 2 & 31 & 10 & 236 & 3.75 & 14 & 5 & ND & 2 & 13 & 1 & 2 & 3 & 87 & . 17 & . 88 & 11 & 94 & . \(i 1\) & 7 & .12 & 3 & 1.81 & . 01 & . 03 & 2 & 10 & - \\
\hline SOB4562 935072 & 1 & 60 & 29 & 132 & . 6 & 11 & 22 & 457 & 5. 5.8 & 15 & * & WD & 2 & 21 & 1 & 2 & 2 & 130 & . \(3:\) & . 06 & : & 310 & 2.41 & 129 & . 18 & 1 & 2.56 & . 02 & . 13 & \% & 5 & 6.1 \\
\hline 5081562 9350;3 & 1 & 10 & 15 & 118 & . 5 & 55 & 18 & 230 & 4.69 & 12 & 5 & KD & 2 & 21 & 1 & 2 & 2 & 104 & . 34 & . 09 & 7 & 165 & 1.14 & 67 & . 18 & 1 & 2.30 & . 01 & . 06 & 2 & 5 & 3.5 \\
\hline 3001562 933074 & 2 & 181 & \(1:\) & 84 & 1.1 & 57 & 15 & 1038 & 3.58 & 19 & 5 & ND & 2 & 85 & 1 & 3 & 2 & TS & 1.28 & . 15 & 13 & 152 & 1.01 & 148 & . 08 & 1 & 2.26 & . 02 & . 06 & 2 & 5 & 6.7 \\
\hline 5089552 935075 & 1 & 22 & 12 & 31 & . 5 & 21 & \(g\) & 168 & 3.16 & 9 & 5 & 10 & 2 & 9 & 1 & 2 & 2 & 99 & . 11 & . 14 & s & 105 & . 5 & 56 & . 15 & 2 & 1.30 & . 01 & . 04 & 2 & S & 5.2 \\
\hline 5081582 933076 & 3 & 58 & 19 & 15? & . 2 & 31 & \(1:\) & 367 & 4.12 & 19 & 5 & HD & 2 & 17 & 1 & ; & 2 & 103 & . 21 & . 11 & 8 & 151 & 1.11 & 59 & . 11 & 1 & 1.80 & . 01 & . 05 & 3 & 10 & 4.9 \\
\hline 508456: 933077 & 1 & 19 & 18 & 80 & . 2 & 20 & 5 & 217 & 3.01 & 11 & 5 & HD & 2 & 10 & 1 & 2 & 2 & 78 & . 11 & . 15 & 8 & 59 & . 13 & 51 & . 11 & 2 & 1.02 & . 01 & . 02 & 2 & & 1.6 \\
\hline 5081562 933078 & 2 & 39 & 12 & 107. & . 1 & \(5 t\) & 14 & 242 & 4.68 & 11 & 5 & ND & 2 & 28 & 1 & 2 & 2 & 115 & . 18 & . 04 & 8 & 168 & . 97 & 40 & . 16 & 1 & 1.56 & . 01 & .03 & 2 & 5 & 5.9 \\
\hline 5094552 935079 & 2 & 98 & 16 & \(89^{\circ}\) & 1.1 & 85 & 12 & 262 & 4.98 & 23 & 5 & HD & 2 & 41 & 1 & 2 & 2 & 97 & . 11 & . 07 & 11 & 198 & 1.01 & 56 & . 15 & 5 & 2.50 & . 01 & . 04 & 2 & 25 & 8.2 \\
\hline 5084562 935080 & 1 & 69 & 13 & 100 & . 1 & 18 & 14 & 316 & 4.87 & 28 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 113 & . 29 & . 11 & 8 & 114 & 1.21 & 12 & . 14 & 2 & 1.87 & . 01 & . 04 & 2 & 5 & 5.1 \\
\hline 5081582 933081 & 1 & 39 & \(1:\) & 82 & . 1 & 31 & 10 & 220 & J. 51 & 11 & 5 & ND & 2 & 12 & 1 & 2 & 2 & 85 & . 15 & . 27 & 10 & 97 & . 59 & 7 & . 12 & 2 & 1.79 & . 01 & . 04 & 2 & 5 & 5.5 \\
\hline 5081562933082 & 1 & 87 & 17 & 107 & . 1 & 102 & 28 & 3835 & 5.60 & 32 & 5 & ND & 2 & 81 & 1 & 2 & 2 & 119 & 1.22 & . 11 & 1 & 328 & 2.51 & 157 & . 08 & 2 & 2.00 & . 01 & . 07 & 2 & 10 & 6.1 \\
\hline 5081562 933083 & 7 & 153 & 21 & 146 & . 6 & 113 & 29 & 1198 & 7.54 & 16 & 5 & ND & 2 & 68 & 2 & 3 & 2 & 151 & 1.21 & . 13 & ' & 330 & 2.34 & 11 & . 01 & 5 & 2.66 & . 01 & . 02 & 2 & 15 & b. 3 \\
\hline 3084562 933084 & 2 & 118 & 12 & 50 & . 1 & ?8 & 11 & 612 & 2.59 & ? & 10 & ND & 2 & 118 & 2 & 2 & 2 & 58 & 1.85 & . 14 & 6 & 156 & . 73 & 152 & . 04 & 5 & 1.28 & . 01 & . 05 & 2 & 5 & 5.6 \\
\hline 5084552 935085 & 9 & 105 & 27 & 187 & . 4 & 108 & 17 & 918 & 8.80 & 247 & 5 & MO & : & 78 & 2 & 1 & 3 & 118 & 1.47 & . 14 & 2 & 271 & 1.5J & 104 & . 07 & 10 & 2.67 & . 01 & . 02 & 2 & 50 & 5.6 \\
\hline 5084562 933086 & 1 & 27 & 20 & 18 & . 1 & 87 & 10 & 188 & 4.65 & 18 & 5 & N0 & 2 & 20 & 1 & 2 & 3 & 126 & . 30 & . 04 & 10 & 324 & 1.07 & \% & . 22 & 2 & 1.22 & . 02 & . 02 & 2 & 5 & 4.7 \\
\hline 5081532 923087 & 1 & 38 & 13 & 61 & . 1 & 266 & 30 & 71d & 5.60 & 10 & 5 & HD & 2 & 22 & 1 & 2 & 2 & 135 & . 55 & . 11 & 1 & 501 & 3.71 & 14 & .20 & 1 & 2.56 & . 01 & . 12 & 2 & 5 & 5.5 \\
\hline 50855:2 935088 & 1 & 10 & 10 & 210 & . 3 & 11 & 10 & 1034 & 3.18 & 1 & 8 & ND & 2 & 102 & 1 & 2 & 3 & 75 & 1.30 & . 46 & * & 103 & . 85 & 389 & . 10 & 29 & 1.50 & . 19 & . 51 & 2 & 5 & 6.4 \\
\hline 5084532 955089 & 1 & 31 & 14 & 99 & .1 & 58 & 11 & 322 & 4.91 & 18 & 5 & H0 & 2 & 20 & 1 & 2 & 2 & 120 & . 8 & . 07 & 8 & 175 & 1.35 & 78 & .17 & 3 & 1.57 & . 02 & . 08 & 2 & 5 & 5.3 \\
\hline 5081562923090 & 2 & 126 & 28 & 124 & . 4 & 19 & 23 & 143 & 5.38 & 21 & 5 & 110 & 2 & 39 & 1 & 2 & 1 & 10? & . 3 & . 08 & 8 & 118 & 1.63 & 86 & . 14 & 5 & 2.70 & . 01 & . \(0:\) & 2 & 25 & 5.5 \\
\hline 5084562 933091 & 1 & 21 & 12 & 3 & . 1 & 8 & 3 & 109 & 4.32 & ; & 5 & 10 & 2 & 25 & 1 & 2 & J & 82 & . 19 & . 07 & ; & 12 & . 5 & 51 & . 11 & 2 & . 68 & . 02 & . 02 & 2 & 60 & 5.1 \\
\hline 5081562935092 & 1 & 437 & 14 & 102 & 2.1 & 56 & 17 & 431 & 4.88 & 23 & 5 & H0 & 2 & 15 & 1 & 2 & 3 & 76 & . 55 & . 09 & 17 & 78 & . 96 & 134 & . 15 & \% & 4.54 & .03 & . 06 & 2 & 25 & 6.0 \\
\hline 5089562 93j033 & 2 & 88 & 12 & 132 & . 2 & 4 ! & 13 & 503 & 4.11 & 18 & 5 & HD & 2 & 35 & 1 & 2 & 2 & 98 & . 10 & . 15 & 7 & 69 & 1.28 & 60 & . 12 & 1 & 2.01 & . 01 & .0? & J & 10 & 5.6 \\
\hline 50st5i2 93jost & 。 & 35 & 12 & 211 & . 2 & 10 & 11 & 300 & 5.06 & 15 & 5 & K0 & 2 & 23 & 1 & 2 & 2 & 111 & .11 & . 10 & 3 & \({ }^{6}\) & 1.02 & 10 & . 13 & 6 & 2.05 & . 01 & . 06 & 2 & \(\pm\) & 5.1 \\
\hline 5084562 933095 & 1 & 210 & 19 & 83 & 1.2 & 49 & 10 & 255 & 5.30 & 9 & 5 & No & 2 & 35 & 1 & 2 & 2 & 90 & . 57 & . 09 & 11 & 11 & . 71 & 11 & . 16 & \(\delta\) & 3.05 & . 02 & . 01 & 2 & 5 & 5.: \\
\hline 5084512935096 & 1 & 35 & 20 & 48 & . 5 & 12 & 5 & 120 & 1.84 & 5 & 5 & 110 & 2 & 20 & 1 & 2 & 3 & 146 & . 17 & . 09 & 3 & 17 & . 61 & 27 & . 19 & 5 & . 88 & . 01 & . 0 ? & 2 & 30 & 4.3 \\
\hline 5084562 925097 & 3 & 12 & 13 & 120 & . & 30 & 8 & 271 & 1.22 & 18 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 99 & . 21 & . 1. & \(!\) & 11 & . 67 & 18 & . 09 & 2 & 1.76 & . 01 & . 05 & 2 & 5 & 5.5 \\
\hline 5088562 933098 & 2 & 26 & 11 & if & . 1 & 21 & 6 & 314 & 2.99 & 11 & 5 & HD & 2 & 24 & 1 & 2 & 2 & 82 & . 27 & . 10 & 9 & 35 & . 59 & 80 & . 10 & 1 & 1.18 & . 01 & . 08 & 2 & 5 & 5.1 \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

SELCO - A DIVISION OF bP FROJECT \# 10141 FILE \# 34-2544
FAGE E
36inflet

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5061562 93509\% & 2 & 48 & 7 & 111 & . 1 & 39 & 8 & 297 & 4.20 & 23 & 6 & 110 & \$ & 21 & 1 & 2 & 2 & 91 & . 24 . & . 15 & 12 & 58 & . 81 & 79 & . 08 & 10 & 1.95 & . 01 & . 06 & : & 5 & 5. \\
\hline 50a4532 935100 & ? & 35 & 8 & 100 & . 5 & 28 & 9 & 336 & 3.11 & 20 & 5 & 110 & j & 19 & 1 & 2 & 2 & 80 & . 23 & . 18 & ? & 17 & . 58 & : & . 0 ? & 10 & 1.58 & . 01 & . 26 & 2 & 5 & \\
\hline \(50545 i_{2}^{2} 933101\) & 1 & 16 & 8 & 119 & . 6 & 18 & 6 & 41: & S.27 & 11 & 5 & 110 & 2 & 21 & 1 & 2 & 2 & 117 & . 22 & . 15 & 3 & 51 & 1.8j & 51 & . 15 & 12 & 1.85 & . 02 & . 15 & 2 & 5 & \\
\hline 5094ES2 8JJIC: & 1 & 50 & 14 & 118 & 1.2 & 25 & 10 & 331 & 4.98 & 30 & 3 & HD & & 8 & 1 & 2 & 2 & 94 & . 10 & . 28 & 8 & \(3:\) & . 54 & s8 & . 0 ? & 10 & 2.14 & . 01 & . 01 & I & 5 & \\
\hline STD C & 18 & \(5 ¢\) & 36 & 122 & 5.5 & 68 & 26 & 1013 & 3.73 & 11 & 12 & : & 36 & 48 & 16 & 16 & 20 & 58 & . 12 & . 14 & 35 & 5 & . 85 & 106 & . 07 & 37 & 1.S\% & . 06 & .12 & 13 & - & \\
\hline 5094562 935103 & 3 & 21 & 8 & 81 & . 8 & 11 & 5 & 317 & 2.37 & 13 & 5 & N0 & 2 & 31 & 2 & 7 & 2 & 65 & . 80 & . 08 & 1 & 24 & . 27 & \(10 \%\) & . 05 & 7 & . 63 & . 01 & . 04 & 2 & 5 & \\
\hline 5081562 ¢53104 & 3 & 18 & 18 & 15 & . 6 & 3 & 1 & 298 & 4.96 & 18 & 5 & W0 & 3 & 16 & 1 & 2 & 2 & 108 & . 21 & . 09 & 8 & 18 & . 74 & 99 & . 08 & 11 & 2.30 & . 01 & . 05 & 3 & 5 & \\
\hline 5084562933105 & 1 & 72 & 16 & 201 & 1.1 & 50 & 10 & 345 & 4.95 & 20 & 5 & MD & 2 & 13 & 1 & 3 & 2 & 105 & . 15 & . 09 & 9 & 11 & . 87 & 120 & . 03 & 9 & 2.83 & . 01 & . 06 & 2 & 5 & \\
\hline 5081562933108 & 1 & 11 & 12 & 135 & . 8 & 28 & 7 & 329 & 4.15 & 16 & 5 & No & 3 & 12 & 1 & 2 & 2 & 99 & . 12 & .08 & 7 & 10 & . 59 & 80 & . 06 & 10 & 2.04 & . 01 & . 01 & 2 & 5 & \\
\hline 50915 2 93310: & 2 & 20 & 12 & 82 & .7 & 14 & 3 & 153 & 3.00 & 8 & 5 & No & 2 & 20 & 1 & 2 & 2 & 91 & . 50 & . 05 & 8 & 24 & . 34 & 165 & . 07 & 6 & 1.17 & . 01 & . 3 & 2 & 5 & \\
\hline 5081562933108 & 1 & 14 & 20 & 356 & 3.2 & 21 & 7 & 583 & 3.17 & 17 & 5 & KD & 2 & 28 & 1 & 3 & 2 & 96 & . 51 & . 09 & 7 & 36 & . \(5 t\) & 110 & .02 & 1 & 2.16 & . 01 & .03 & 2 & 5 & \\
\hline 5084552 935109 & 3 & 27 & 11 & 188 & . 8 & 16 & 1 & 160 & 4.18 & 15 & 5 & Ho & 2 & 16 & 2 & 2 & & 98 & . 28 & . 06 & 10 & 32 & . 36 & 110 & . 06 & 9 & 2.29 & . 01 & . 02 & 1 & 5 & \\
\hline 5081562933110 & 2 & 10 & 13 & 171 & 1.1 & 43 & 11 & 231 & 4.20 & 11 & 3 & No & 1 & 26 & 1 & 2 & 2 & 80 & . 10 & . 07 & 9 & 12 & . 58 & \(13 i\) & . 07 & 9 & 2.85 & . 01 & . 05 & 2 & 5 & \\
\hline 5031562935111 & 3 & 80 & 14 & 176 & 1.1 & 62 & 13 & 820 & 1.12 & 15 & 5 & N0 & 3 & 29 & 2 & 3 & & 81 & . 57 & . 07 & 14 & 52 & . 33 & 1i: & . 08 & 12 & 2.:3 & . 01 & . 08 & : & 5 & \\
\hline 50b15t2 933112 & 2 & 62 & 11 & 125 & . 7 & 14 & 10 & 307 & 4.19. & 19 & 5 & HO & 2 & 36 & 1 & 2 & 2 & 88 & . 54 & .10 & 12 & 52 & . \(8:\) & 160 & . 05 & 9 & 2.65 & . 01 & . 06 & 2 & g & 5 \\
\hline 5081582933115 & 2 & 118 & 14 & 201 & 1.2 & 51 & 11 & 517 & 4.81 & 24 & 10 & N0 & 2 & 30 & 1 & 2 & 2 & 85 & . 14 & . 10 & 17 & 5" & . 31 & 201 & . 08 & 10 & 3.28 & . 02 & . 07 & 2 & 3 & \\
\hline 5084562 933114 & 1 & 12 & 14 & 268 & . 9 & 15 & 13 & 587 & 4.80 & 22 & 5 & K0 & : & 30 & 1 & 2 & 2 & 88 & . 55 & . 07 & 11 & 51 & . 68 & 160 & . 09 & ¢ & 3.05 & . 01 & . 05 & 2 & 5 & \\
\hline 5081562933115 & 5 & 37 & 11 & 100 & 1.5 & 30 & 10 & 990 & 3.12 & 13 & 5 & ND. & 3 & 38 & , & . 2 & 2 & 88 & . 79 & . 11 & 19 & 35 & . 38 & 125 & .07 & \% & 2.71 & . 01 & . 05 & 2 & 5 & \\
\hline 5084562935116 & 5 & 65 & 10 & 608 & 1.1 & 63 & 8 & 610 & 3.12 & 13 & 8 & No & 2 & 日 & 11 & , & 2 & 56 & 1.13 & . 11 & & 15 & . 63 & 91 & . 07 & 8 & 2.31 & . 02 & . 0 & 2 & 5 & \\
\hline 5001562 935117 & 2 & 25 & 12 & 132 & . 6 & 25 & 9 & 481 & 3.18 & 17 & 5 & 10 & 2 & 18 & 1 & 2 & 2 & 86 & .24 & . 11 & ; & 11 & . 32 & 88 & . \(0 \%\) & 5 & 1.10 & . 01 & . 04 & 2 & 5 & \\
\hline 3081562953118 & 3 & 16 & 13 & 127 & . 8 & 15 & 11 & 321 & 7.28 & 18 & 5 & N0 & 2 & 16 & 1 & 2 & 2 & 136 & . 22 & . 16 & 5 & 35 & . 48 & 53 & . 16 & 9 & 2.09 & . 01 & . 01 & 2 & 5 & \\
\hline 5081562935119 & 1 & 24 & 14 & 86 & .7 & 16 & 5 & 222 & 4.56 & 11 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 99 & . 11 & . 14 & 11 & 39 & . 16 & \(\because\) & . 11 & 8 & 2.81 & . 01 & . 03 & 2 & 5 & \% \\
\hline 5081562933120 & 1 & 17 & 11 & 56 & . 5 & 14 & 1 & 157 & 2.73 & , & 5 & No & 2 & 30 & 1 & 2 & 2 & 75 & . 3 & . 08 & , & 26 & . 34 & 82 & . 08 & 3 & 1.08 & . 01 & . 05 & 2 & 5 & 3. \\
\hline 50915t2 933121 & 2 & 16 & 13 & 87 & . & 33 & 9 & 279 & 1.59 & 20 & 5 & ND & 2 & 18 & , & 2 & 2 & 111 & . 20 & . 06 & 8 & 58 & . 74 & 79 & . 08 & 6 & 2.25 & . 01 & . 04 & 2 & 5 & \\
\hline 5081562933122 & 1 & 17 & 10 & 118 & . 5 & 33 & 12 & 751 & 4.03 & 17 & 5 & NO & 2 & 24 & 1 & , & 2 & 80 & . 27 & . 11 & 8 & 19 & . 78 & 169 & . 06 & \(\ell\) & 1.74 & . 01 & . 05 & 2 & 5 & \\
\hline 5081562933123 & 2 & 58 & 13 & 106 & . 8 & 31 & 9 & 451 & 3.79 & 17 & 5 & H0 & 2 & 30 & 1 & 2 & 2 & 90 & . 16 & . 07 & 8 & 48 & . 58 & 120 & .07 & \(\downarrow\) & 2.23 & .02 & . 07 & 2 & 5 & 3.1 \\
\hline 5081562933124 & 2 & 96 & 18 & 85 & . 1 & 31 & 15 & 758 & 4.59 & 21 & 5 & NO & 2 & 23 & 1 & 2 & 2 & 79 & . 25 & . 13 & - & 81 & 1.08 & 89 & . 08 & 5 & 1.70 & . 01 & .05 & 2 & 10 & S. \\
\hline 5081562933125 & 3 & 233 & 38 & 175 & .? & 16 & 30 & 3216 & 7.70 & 30 & 5 & NO & 1 & 11 & 1 & 2 & 2 & 53 & . 21 & . 23 & 12 & 33 & 1.04 & 58 & . 03 & 15 & 1.87 & . 01 & . 03 & J & 30 & \\
\hline \(508152^{\text {935126 }}\) & 1 & 23 & 13 & 55 & . 5 & 20 & J & 187 & 1.06 & 13 & & ND & 2 & 16 & 1 & 2 & 2 & 82 & . 16 & . 11 & 6 & ? & . 31 & 97 & . 15 & 15 & 2. 27 & . 01 & . 02 & 2 & , & 5. \\
\hline 5081582 & 2 & 3 & 12 & 92 & . 5 & 33 & 11 & 3a3 & 1.18 & 18 & 5 & NO & : & 15 & , & 2 & 2 & 110 & . 16 & . 18 & , & 117 & . 89 & 51 & . 11 & d & 1.26 & . 01 & . 01 & 2 & 15 & \\
\hline 5081562933128 & 2 & 23 & 16 & 63 & . 6 & 23 & , & 201 & 3.13 & 14 & & N0 & 2 & 9 & 1 & 2 & 2 & 3 & . 09 & . 12 & 6 & 90 & . 38 & 92 & . 12 & 3 & 1.50 & . 01 & . 02 & 2 & 5 & S. \\
\hline 5081562933129 & 2 & 26 & 13 & 56 & . 1 & 39 & 7 & 184 & 4.05 & 13 & 5 & ND & & 13 & , & 2 & 2 & 93 & . 17 & . 24 & 6 & 118 & . 59 & 38 & . 15 & & 1.00 & . 01 & . 05 & 2 & 5 & \\
\hline RE 50815ia 933114 & 3 & 59 & 12 & 285 & . 8 & 11 & 13 & 567 & 4.63 & 20 & 5 & HD & 2 & 29 & & 2 & 2 & 82 & . 52 & . 07 & 11 & 50 & . 68 & 15 & . 09 & 6 & 2.95 & . 01 & . 05 & 2 & 5 & \\
\hline 5088562933150 & 1 & 23 & 13 & 62 & . 5 & 41 & 8 & 207 & 3.64 & 8 & 5 & Ho & 2 & 9 & 1 & 2 & 2 & 31 & . 11 & . 24 & 5 & 150 & . 50 & ss & . 16 & ; & 2.01 & . 01 & . 63 & 2 & 5 & 1. \\
\hline 5084562 933131 & 1 & 106 & 9 & 54 & . 1 & 92 & 22 & 393 & 5.73 & 15 & & ND & & 12 & 1 & 2 & & 118 & . 35 & . 15 & & 293 & 2.35 & 29 & .17 & 9 & 2.28 & . 01 & . 06 & 2 & 5 & s. \\
\hline 5081582933152 & , & 30 & 12 & 57 & . 5 & 57 & 11 & 217 & 3.36 & 11 & 5 & No & 2 & 13 & 1 & 2 & 3 & 71 & . 18 & . 09 & 1 & 157 & . 74 & 12 & . 12 & 2 & 1.2in & . 01 & . 01 & 2 & 5 & 5.8 \\
\hline 5081562933133 & 2 & 59 & 12 & 71 & . 6 & 151 & 21 & 334 & 5.04 & 13 & 5 & ND & 2 & 19 & 1 & 2 & 5 & 108 & . 3 & . 09 & 2 & 101 & 2.39 & 5 & . 16 & 1 & 2.09 & . 01 & . 16 & , & 50 & 6. \\
\hline 5084562933134 & 1 & 12 & 16 & 190 & . 6 & 86 & 17 & 808 & 4.71 & 12 & 5 & H0 & 2 & 21 & 1 & 2 & 3 & 109 & . 26 & . 16 & 5 & 243 & 1.52 & 114 & . 15 & 2 & 1.88 & . 01 & . 07 & 3 & 5 & b. \\
\hline 5081562933135 & 1 & 87 & 14 & 97 & . 6 & 90 & 21 & 123 & 6.32 & 25 & 5 & K0 & 2 & 16 & 1 & 2 & 1 & 132 & . 28 & . 10 & 2 & 318 & 2.16 & 82 & .17 & 3 & 2.32 & . 01 & . 10 & 2 & 15 & 5. \\
\hline STO C/AU 0.5 & 18 & 80 & 40 & 125 & b. 6 & 30 & 27 & 1093 & 3.82 & 39. & 18 & 8 & 36 & 48 & .17 & 15 & 18 & 59 & . 41 & . 15 & 38 & 58 & . 88 & 182 & . 07 & 39 & 1.50 & . 06 & . 15 & 12 & 510 & \\
\hline
\end{tabular}

SELCO - A DIVISION OF BP FROJECT \# 10141 FILE \# 34-2544
FIAGE C
SAMPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5034522933136 & 2 & 90 & 11 & 146 & . 7 & 95 & 28 & 608 & 6.21 & 29 & 5 & 110 & 2 & 17 & 1 & 2 & 2 & 137 & . 29 & . 10 & 8 & 309 & 2.65 & 64 & . 17 & 10 & 2.03 & .f1 & . 09 & 2 & 25 & 0.2 \\
\hline 5081562933137 & 2 & 32 & 19 & 127 & 1.5 & 91 & 22 & 596 & 5.05 & 16 & 5 & ND & 2 & 22 & 1 & : & 2 & 110 & . 12 & . 10 & ? & 301 & 1.99 & T3 & . 17 & 13 & 2.05 & . 01 & . 05 & 2 & 10 & 3. \({ }^{\text {a }}\) \\
\hline 508156? 933158 & 2 & \(5:\) & 9 & 114 & . 1 & 02 & 21 & 482 & 6.02 & 25 & 5 & ND & 2 & 27 & 1 & 2 & 2 & 116 & . 34 & . 18 & 7 & 200 & 1.54 & i1 & . 16 & 11 & 2.00 & . 01 & .00 & - & 5 & 5.9 \\
\hline 5081562933139 & 1 & 64 & , & 213 & . 5 & 86 & 26 & 572 & 5.78 & 28 & 5 & HD & 2 & 25 & 1 & 2 & 3 & 115 & . 31 & . 11 & 9 & 199 & 1.53 & 89 & . 13 & 10 & 2.55 & . 0 ! & . 06 & 2 & 5 & S. 1 \\
\hline STO C & 19 & 57 & 40 & 126 & 6.1 & 89. & 26 & \(105{ }^{\text {c }}\) & 3.84 & 13 & 18 & 8 & J5 & \(4{ }^{\circ}\) & 16 & 15. & 20 & 60 & . 16 & . 15 & 37 & \(5 i\) & . 90 & 163 & . 07 & 39 & 1.60 & . 05 & . 12 & 12 & - & - \\
\hline 5081562933140 & 2 & 39 & 8 & 124 & . 5 & 63 & 20 & 278 & 6.53 & 21 & 5 & ND & 2 & 11 & 1 & 2 & 2 & 13s & .17 & . 05 & 7 & 266 & 2.38 & 55 & . 17 & 10 & 2.25 & . 02 & . 03 & 2 & 5 & 5.5 \\
\hline 5081562 933141 & 2 & 63 & 13 & 122 & . 2 & 31 & 20 & 472 & 4.82 & 24 & 5 & 110 & 2 & 26 & 1 & 2 & 2 & 112 & . 35 & . 14 & 9 & 164 & 1.89 & 70 & . 15 & 1 & 2.24 & . 01 & . 09 & 2 & 5 & 5.7 \\
\hline 5081552933112 & 1 & 14 & 6 & 19 & . 3 & 8 & 5 & 163 & 2.81 & 5 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 79 & . 15 & . 07 & 8 & 25 & . 35 & 32 & . 09 & 1 & 1.01 & . 01 & . 02 & 2 & \(j\) & 5.1 \\
\hline 5081562 933143 & , & 134 & 7 & 63 & . 1 & 16 & 17 & 315 & 6.81 & 10 & 7 & KD & j & 12 & 1 & 2 & 2 & 57 & . 11 & . 26 & 12 & 33 & . 92 & \({ }^{\text {b }}\) & . 03 & 11 & 2.35 & . 91 & . 02 & 2 & 5 & 5.1 \\
\hline 5081562933144 & 1 & 61 & 11 & 72 & . 2 & 22 & 17 & 876 & 5.91 & 15 & 5 & MD & 2 & 13 & 1 & 2 & 2 & 32 & . 11 & . 13 & 9 & 88 & . 35 & bs & . 10 & 10 & 2.14 & . 01 & . 02 & 2 & 5 & 5.j \\
\hline 5081562933145 & 2 & 25 & 12 & 53 & . 2 & 13 & 9 & 290 & 5.19 & 20 & 5 & ND & 2 & 15 & \(!\) & 2 & 2 & 107 & . 11 & . 11 & 8 & 55 & . 50 & 79 & . 09 & \(t\) & 1.32 & . 01 & . 05 & 2 & 25 & 8.5 \\
\hline 5081562933146 & 2 & 55 & 10 & 91 & . 1 & 50 & 18 & 480 & 4.10 & 25 & 5 & no & & 21 & 1 & 2 & 2 & 85 & . 18 & . 17 & 9 & 131 & 1.06 & 78 & . 11 & 8 & 1.93 & . 01 & . 05 & 2 & 10 & \(5 .-\) \\
\hline 5081562933147 & 2 & 33 & 7 & 12 & . 3 & 28 & 8 & 224 & J. 71 & 13 & 5 & ND & 2 & 17 & 1 & ; & 2 & 71 & . 19 & . 14 & 8 & B8 & . 61 & 31 & . 10 & 6 & 1.89 & . 01 & .05 & 2 & 5 & 5.1 \\
\hline 5081562933148 & 1 & 43 & 8 & 134 & .1 & 58 & 13 & 460 & 3.17 & 11 & 5 & MD & & 21 & 1 & & 2 & 7 & . 20 & . 10 & 10 & 100 & . 90 & ii & . 12 & 9 & 1.88 & . 01 & . 05 & 2 & 5 & 5.5 \\
\hline 5089562 93il19 & 1 & 67 & 6 & 102 & . 6 & 52 & 12 & 511 & 3.18 & 20 & 5 & ND & J & 28 & 1 & 1 & 2 & 76 & . 41 & . 07 & 12 & 105 & 1.01 & 99 & . 12 & 1 & 2.00 & . 01 & . 03 & 2 & 5 & 6.0 \\
\hline 5081552933150 & 3 & 28 & 7 & 98 & . 2 & 28 & 7 & 200 & 3.79 & 9 & 5 & no & 2 & 37 & 1 & 2 & 2 & 89 & . 23 & . 07 & 7 & 128 & . 84 & Ib & . 16 & 6 & 1.09 & . 01 & .03 & 2 & 5 & 4.5 \\
\hline 5081562933151 & 3 & 129 & 10 & 104 & . 9 & 63 & 14 & 1125 & 3.38 & 20 & 5 & ND & , & 80 & 2 & 5 & 2 & 72 & 1.59 & . 18 & - & 146 & 1.22 & 98 & . 05 & 10 & 1.70 & . 01 & . 04 & 2 & 5 & 6.3 \\
\hline 5084582933152 & 1 & 33 & 14 & \(13 i\) & . 1 & 32 & 11 & 534 & 4.78 & 18 & 5 & MD & 2 & 19 & 1 & 2 & 2 & 11 & . 21 & . 16 & 8 & 97 & . 35 & \(8:\) & . 11 & ! & 1.56 & . 01 & . 04 & 3 & 5 & 4.è \\
\hline 5081562933153 & 3 & 24 & 14 & 105 & . 3 & 11 & 15 & 555 & 4.93 & 23 & 5 & ND & 2 & 25 & 1 & 2. & 2 & 125 & . 35 & . 20 & ; & 170 & . 97 & 90 & . 17 & ; & 1.22 & . 01 & . 05 & j & 5 & 5.5 \\
\hline 5084562 733154 & 1 & 25 & 14 & 141 & . 5 & 13 & 12 & 288 & 1.36 & 30 & 5 & ND & 2 & 18 & 1 & , & 2 & 100 & . 25 & .ib & 5 & 187 & . 90 & So & . 15 & 6 & 1.99 & . 01 & . 04 & 2 & 5 & 5.1 \\
\hline 5081562933155 & 2 & 86 & 17 & 121 & 1.3 & 59 & 11 & 613 & 3.82 & 25 & 5 & NO & 2 & 38 & 1 & 2 & 2 & 72 & . 64 & . 08 & 12 & 138 & . 86 & 97 & . 15 & ; & 2.Bo & .0i & . 04 & 2 & 5 & 6.3 \\
\hline 5084582933156 & 2 & 81 & 9 & 91 & . 3 & 23 & 11 & 437 & 5.3J & 21 & 5 & ND & 2 & 36 & 1 & & 2 & 99 & . 53 & . 20 & \$ & 82 & . 89 & is & . 11 & 1 & 1.71 & .c: & . 05 & 2 & 5 & 4.3 \\
\hline 5086562933157 & 3 & 80 & 11 & 143 & . 3 & 26 & 22 & B88 & 5.33 & 26 & 5 & ND & 2 & 35 & 1 & 2 & , & 90 & . 19 & . 20 & \(\varepsilon\) & \(5 i\) & . 86 & 88 & . 12 & : & 1.36 & . 01 & . 05 & 2 & 65 & 5.2 \\
\hline 5081562933158 & 3 & 22 & ; & 153 & . 7 & 25 & & 192 & 3. 26 & 24 & 5 & ND & 2 & 21 & , & - & 2 & 112 & . 16 & . 17 & 5 & 39 & . 41 & i & . 12 & 8 & 1.66 & . 01 & . 04 & 2 & 5 & 4.: \\
\hline 5081562 983159 & 3 & 28 & 5 & 53 & 1.7 & 9 & 1 & 90 & 2.02 & 6 & 5 & ND & 2 & 72 & 1 & 1 & 2 & 60 & 1.06 & . 03 & 5 & 25 & . 18 & 31 & . 09 & \(P\) & 1.01 & . 01 & . 02 & 2 & 5 & 0.1 \\
\hline 5081562933160 & 2 & 99 & - & 113 & . 3 & Ss & 20 & 281 & \(4.40^{\circ}\) & 26 & 5 & N0 & & 40 & 1 & , & & 119 & . 50 & . 08 & 7 & 105 & 1.17 & 91 & . 11 & 11 & 2.11 & . 01 & . 07 & 2 & 5 & 5.7 \\
\hline 5081562933161 & 1 & 31 & 8 & 78 & . 3 & 26 & 8 & 209 & 3.23 & 15 & 5 & ND & 2 & 31 & 1 & 2 & , & 97 & . 36 & . 08 & , & 68 & . 63 & 51 & . 12 & ; & 1.19 & . 02 & . 04 & 2 & 5 & 0.2 \\
\hline 5081562933162 & 2 & 30 & 9 & 94 & . 3 & 15 & 11 & 311 & 4.65 & 23 & 5 & ND & 2 & 31 & 1 & 2 & 2 & 98 & . 36 & . 13 & 10 & 117 & 1.29 & 30 & . 13 & 9 & 2.28 & . 01 & . 04 & & 5 & 5.: \\
\hline 5081502953163 & 1 & 52 & 14 & 201 & . 6 & 32 & 16 & © 51 & 3.50 & 42 & 5 & N0 & & 43 & , & ; & 2 & 101 & . 76 & . 27 & 9 & 70 & . 79 & 93 & . 10 & 10 & 1.74 & . 01 & . 06 & : & 5 & 5.9 \\
\hline 5081562933164 & 1 & ; & 1 & J6 & . 1 & 8 & 2 & 60 & 1.13 & 5 & 5 & ND & , & 13 & 1 & 2 & 2 & 51 & . 15 & . 02 & 1 & 20 & . 3 & 25 & . 09 & & . 3 & . 01 & . 01 & , & 5 & 4.: \\
\hline 5081562 ¢33165 & 3 & 164 & 12 & 100 & . 6 & 51 & 20 & 771 & 4.03 & 28 & 5 & ND & 2 & 60 & 1 & 2 & 2 & is & . 71 & . 07 & 12 & 120 & 1.17 & 91 & .12 & , & 1.57 & . 02 & . 08 & 2 & J & 6.1 \\
\hline 5081552 933168 & 1 & 88 & 11 & 100 & . 1 & 28 & 18 & 591 & 4.73 & 28 & 5 & ND & 3 & 26 & 1 & 2 & & 96 & . 25 & . 08 & 9 & 103 & . 37 & 69 & . 18 & 1 & 1.79 & . 0 & . 05 & 2 & 5 & 5. \\
\hline \(50815 i 2933167\) & 1 & 46 & 9 & 3 & . 5 & 15 & 8 & 158 & 3.04 & 20 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 73 & . 20 & . 15 & 5 & 17 & . 34 & 47 & . 15 & 7 & .it & . 01 & . 03 & 2 & 5 & 1.5 \\
\hline 5084562933138 & 1 & 36 & 10 & 70 & .1 & 17 & 13 & 810 & 4.32 & 16 & 5 & ND & 2 & 22 & & 2 & 2 & 96 & . 20 & . 11 & d & 81 & . 59 & 83 & . 15 & 1 & . 72 & . 01 & . 05 & 2 & 5 & 5.: \\
\hline 5084562933169 & 1 & 14 & 7 & 32 & . 2 & 7 & 5 & 211 & 2.02 & 7 & 5 & HD & 2 & 27 & 1 & : & 2 & 63 & . 31 & . 05 & , & 38 & .19 & 17 & . 09 & 1 & . 5 & . 01 & . 04 & 2 & 25 & 4.5 \\
\hline 5084562931001 & 3 & 100 & 18 & 150 & . & 72 & 22 & 836 & 5.64 & 42 & 5 & ND & 3 & 11 & 1 & 2 & 2 & 126 & . 65 & . 09 & 9 & 144 & 1.63 & 194 & . 13 & ; & 2.58 & . 02 & .07 & 1 & 5 & 5.5 \\
\hline RE 5081562 933146 & 1 & 55 & 13 & 92 & . 1 & 51 & 18 & 499 & 4.46 & 22 & 5 & HO & 2 & 22 & 1 & 2 & 2 & 87 & . 27 & . 17 & 6 & 111 & 1.09 & 81 & . 11 & 3 & 1.96 & . 01 & . 05 & 2 & 5 & - \\
\hline 5081552 931002 & 3 & 17 & 15 & 110 & . 8 & 25 & 9 & 526 & 1.40 & 20 & 5 & HD & 2 & 15 & 1 & 2 & 2 & 105 & . 13 & . 11 & 8 & 70 & . 62 & 102 & . 10 & 3 & 1.75 & . 01 & . 05 & 2 & 5 & \(5 .:\) \\
\hline 5084562934003 & 2 & 6 & 12 & 205 & 1.1 & 35 & 17 & 919 & 5.07 & 17 & 5 & ND & 2 & 18 & 1 & 2 & 2 & BJ & . 19 & . 24 & 10 & 71 & . 75 & 150 & . 11 & 3 & 2.95 & . 01 & . 00 & 3. & 5 & 5.3 \\
\hline SID C'AU 0.5 & 20 & 58 & 39 & 124 & 8.5 & 89 & 27 & 1079 & 3.82 & 10 & 19 & 8 & 37 & 19 & 17 & 15 & 20 & 59 & . 14 & . 14 & 37 & 57 & . 98 & 180 & . 07 & 39 & 1.53 & . 07 & . 15 & 12 & 505 & , \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{jakflel} & \multicolumn{29}{|c|}{ELCO - A D} & \multicolumn{2}{|r|}{Finge} & \(1:\) \\
\hline & no & cu & fs & 21 & 46 & 41 & CO & KM & fE & A5 & 0 & AJ & IH & \(5 R\) & CD & 58 & 81 & \(v\) & CH & P & L6 & CP & M6 & 8 A & 11 & 8 & AL & Hin & \(\mathfrak{k}\) & \(x\) & \(\underline{n}=1\) & PH \\
\hline & PPM & PPM & PPM & PPM & PFM & 8FM & PPM & PFM & \% & FPM & PPM & FPM & PFK & PPK & PPM & PFK & PPM & ffn & - & : & PPM & PFM & : & PPM & * & PFh & : & : & : & PPM & F!? & \\
\hline \(5 T 0 \mathrm{C}\) & 20 & 56 & 10 & 124 & 6.3 & 70 & 27 & 1085 & 3.82 & 40 & 19 & 8 & 37 & 19 & 17 & 16 & 19 & 59 & . 14 & . 14 & 36 & 57 & . 88 & 180 & . 07 & 31 & 1.65 & . 01 & . 11 & is & - & - \\
\hline 5081582934041 & 1 & 16 & 33 & 185 & . 5 & 31 & 14 & 146 & 8.93 & 36 & 5 & NO & 2 & .20 & 1 & 2 & \(n\) & 150 & . 25 & . 09 & T & 52 & . 25 & 79 & . 16 & 1 & 2.55 & . \(0:\) & . 06 & 5 & 5 & 9.t \\
\hline 50815:2 931012 & ; & 72 & 16 & 207 & . 5 & 35 & 12 & 350 & 5.77 & 11 & 5 & Ho & 2 & 21 & 1 & 2 & 2 & 127 & . 20 & . 08 & 9 & 61 & . 86 & it & . 11 & 7 & B. 20 & . 01 & . 05 & 2 & : & 3.5 \\
\hline 5081562 934043 & 8 & 52 & 17 & 211 & 1.1 & 3 & 11 & 371 & 5.59 & 98 & \$ & NO & 2 & 28 & , & i & 2 & 152 & . 3 & . 10 & 8 & 34 & . 97 & 116 & . 17 & 1 & : 10 & . 01 & .08 & 2 & 15 & 8.! \\
\hline 5089562 5.1044 & 1 & 24 & 10 & 219 & .1 & 25 & 11 & 415 & 3.98 & 11 & 3 & H0 & 2 & 28 & 1 & 2 & 2 & 99 & . 34 & .13 & 6 & 38 & . 59 & 69 & . 15 & 1 & 2.36 & .0: & . 07 & , & . & 8.0 \\
\hline 50815629 931045 & 3 & 57 & 17 & 364 & . 5 & 49 & 16 & 500 & 8.34. & 82 & 5 & MD & 2 & 20 & 1 & 2 & 2 & 112 & . 35 & . 12 & 9 & 65 & 1.11 & 100 & .17 & 1 & 3.05 & . 01 & . 06 & 2 & : & 3.2 \\
\hline 5081562 951046 & 3 & 57 & 13 & 171 & . 3 & 29 & 11 & 339 & 3.3: & 35 & 5 & 110 & 3 & 17 & 1 & 2 & 2 & 132 & . 17 & . 15 &  & 57 & . 88 & 91 & . 18 & 1 & J. 19 & . 02 & . 05 & 5 & , & 5.8 \\
\hline STO C & 21 & 60 & 40 & 127 & 6.9 & 3 & 28 & 1088 & 3.90 & 12 & 20 & 8 & 38 & 50 & 18 & 16 & 19 & so & . 15 & . 15 & I & 59 & . 90 & 181 & . 07 & 3 & 1.65 & . 0 ? & . 14 & 15 & - & - \\
\hline
\end{tabular}

\section*{ACME ANALYTICAL LABORATORIES LTD.}

PHONE: 253-3158
852 East Hastings St., Vancouver, B.C. V6A 1R6
File:
54-2544

Date:
SEPT 24 :9日4
RECEIVED
SELCD - A DIVISIDN DF EF 700 - EOO W. PENDER ST VANCOUVEF: E.C. VÓC 1 Ḱs

SEP 251984
SELCO-DP REGOUROES VANCOUVER, E.C.

TERMS:
net two weeks \(2 \%\) PER MONTH CHARGED ON OVEROUE ACCOUNTS.



SELCO~A DIVISION/OF BP FROJECT H 10141 FILE \# 84-2734
samflet



\section*{5054562931118} 50at562931119 \(50045 \leq 2931120\) sobicleqsil2 \(50815 t 253112\)

5084562931123 5081562931124 508156.931124
s084562931125 \(508+562931125\)
5084562931125 5084562931123
3081562921127

\section*{5094562951129}
\(50815 t 2931129\)
s036582931130
5081562931131
5081562931132
50815629511J5 508858293113 5084562931138 5081562931137

5081552931178 5085582931138 5081552931110 SOBSEL2931111

5081562831113 RE S084562931129
508456293208
508456293208？
5081562932088
5084562932089
5081562932090
5094562932091
50815679：209
\(510 \mathrm{C} / \mathrm{AU}-0.5\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 19 & 56 & \(3:\) & 124 & 4.1 & 39 & 27 & 1080 & 3．75 & 41 & 17 & 7 & 35 & 19 & 16 & 14 & 19 & 58 & ． 13 & ． 11 & 37 & 57 & ． Bi & 18i & ．0： & 38 & R．ct & ． 06 & ． 12 & 13 & － & \\
\hline 3 & 43 & 13 & 124 & ． 3 & 38 & 13 & 301 & 1．06 & 2t & 5 & 110 & ？ & 19 & 1 & 2 & 2. & 25 & ． 25 & ． 10 & 5 & 30 & 1.01 & 98 & ． \(0:\) & 3 & 2.05 & ． 01 & ． 3 & ； & ： & ¢． \\
\hline 2 & 61 & 11 & 137 & ． 4 & 53 & 15 & 612 & 4．2i & 25 & 5 & 110 & 2 & \({ }^{5} 5\) & 1 & 2 & 2 & 91 & ． 75 & ． 08 & 7 & 9 & 1.17 & 136 & ． 01 & 10 & 2.09 & ． 01 & ． 12 & 1 & s & \(\underline{5.5}\) \\
\hline 2 & 35 & 16 & 129 & .2 & SB & 19 & 865 & 4.17 & 20 & 5 & 10 & 2 & 21 & 1 & 2 & 1 & 89 & ． 30 & ． 10 & 10 & 82 & ． 80 & 105 & ． 10 & 11 & ：．13 & ． 01 & ．\(\because 2\) & & 5 & ：．\({ }^{\text {2 }}\) \\
\hline ： & 32 & 6 & 198 & ． 1 & 34 & 12 & 240 & 4.62 & 11 & S & 10 & 2 & 23 & 1 & 2 & 2 & 87 & ． 24 & ． 12 & 5 & 13 & ． 76 & 81 & ． 12 & 12 & 2.45 & ． 01 & ． 25 & 2 & 5 & 5.3 \\
\hline 2 & 112 & 14 & 94 & ． 8 & 38 & 12 & 344 & 3.37 & 13 & 5 & ND & 2 & 20 & 1 & i & 2 & is & ． 22 & ． 05 & 13 & 57 & ． 50 & 113 & ． 09 & 8 & 2.14 & ． 02 & ．as & & 5 & ¢．\({ }^{\text {a }}\) \\
\hline 2 & 50 & 12 & 97 & ． 1 & 27 & 13 & 396 & 3.35 & 11 & 5 & NO & 2 & 22 & 1 & 2 & 2 & 11 & ． 12 & ． 01 & 12 & 57 & ． 58 & R？ & ． 08 & 11 & 2.26 & ． 01 & ． 01 & 2 & 5 & 6.2 \\
\hline 3 & i3 & 11 & 147 & 2 & s0 & 17 & 378 & 4.59 & 27 & 5 & HO & 2 & 25 & 1 & 2 & 2 & 43 & ． 21 & ． 14 & 8 & 89 & 1.24 & 95 & ． 10 & J & 2．t5 & ． 01 & ． 3 & 1 & 5 & 5.7 \\
\hline 2 & 111 & 12 & 92 & 1 & 31 & 10 & 290 & 3.54 & 13 & 5 & 1 NO & 2 & 16 & 1 & 2 & & 66 & ． 74 & ． 01 & 10 & 19 & ． 62 & 95 & ． 06 & 5 & 2.05 & ． 01 & ． 01 & 2 & 5 & 5.8 \\
\hline 2 & 313 & 23 & 174 & 1.8 & 79 & 18 & 1159 & 5.89 & 35 & 5 & ND & 2 & 10 & 1 & 2 & 2 & 87 & ． 32 & \(.15{ }^{\circ}\) & 15 & 78 & ． 80 & 235 & ． 14 & 9 & 1.96 & ． 02 & .15 & j & 9 & ¢．： \\
\hline 1 & 93 & 11 & 116 & 1.0 & 14 & 12 & 355 & 4.10 & 18 & 5 & HD & 2 & 17 & 1 & 2 & 2 & 71 & ． 95 & ． 06 & 10 & 68 & ． 81 & 127 & ． 08 & 3 & 2.46 & ． 01 & .10 & 2 & S & \(\pm .2\) \\
\hline 3 & 84 & 11 & 109 & ． 8 & 45 & 14 & 337 & 4.31 & 22 & 5 & ND & 2 & 29 & 1 & 2 & J & 98 & ． 47 & ． 07 & 6 & 32 & ． 82 & 108 & ． 08 & 10 & 2.25 & ． 01 & ． 33 & 2 & 5 & 3.1 \\
\hline 6 & 309 & 11 & 69 & .2 & 39 & 19 & 531 & 5.13 & 7 & 5 & 110 & 2 & 11 & 1 & ． 2 & 2 & 102 & ． 13 & ． 12 & 14 & 61 & ． 85 & 87 & ． 09 & 1 & 1.88 & ． 01 & ． 08 & 2 & 5 & \(\pm\) \\
\hline 3 & 38 & 16 & 88 & ． 8 & 22 & 10 & 189 & 4.97 & 13 & 5 & ND & ： & 25 & 1 & 2 & 2 & 97 & ． 21 & ． 09 & 2 & ：1 & ． 31 & 95 & ． 14 & 16 & 1.91 & ． 01 & ． 01 & 2 & 5 & E． \\
\hline 2 & 34 & 14 & 96 & .1 & 30 & 13 & 492 & 1．35 & 23 & 5 & HD & 2 & 23 & 1 & 2 & 2 & 106 & ． 39 & ． 21 & 3 & 19 & 1.05 & 130 & ． 10 & 10 & 1.70 & ． 01 & ． 20 & 2 & 5 & E． 9 \\
\hline 1 & 31 & 8 & 111 & ． 3 & 32 & 10 & 205 & 1．16 & 18 & 5 & KD & 2 & 14 & 1 & 2 & 2 & 97 & .15 & ． 14 & 2 & 85 & ．i3 & \(i 1\) & ． 11 & 5 & 1.88 & ． 01 & ． 01 & 2 & S & £． \\
\hline 3 & 18 & 21 & 97 & .9 & 32 & 12 & 183 & 4.92 & 11 & 5 & 110 & 2 & 15 & 1 & 2 & 1 & 106 & ． 18 & ． 07 & 2 & 69 & ． 62 & \％ & ． 16 & 2 & 2.31 & ． 01 & ． 24 & 2 & 5 & \(\pm .1\) \\
\hline 1 & 28 & 13 & 91 & ． 1 & 28 & 11 & 173 & 1．05 & 16 & 5 & H0 & 2 & 14 & 1 & 3 & 2 & 96 & ．13 & ． 07 & 1 & 31 & ． 38 & 81 & ． 12 & 5 & 2.02 & ． 01 & ． 08 & 2 & 5 & E． \\
\hline 3 & 78 & 18 & 82 & ． 6 & 15 & 12 & 268 & 4.61 & 21 & 5 & KD & 2 & 61 & ， & 2 & 2 & 120 & ． 67 & ．05 & & 81 & ． 91 & 159 & ． 08 & \(?\) & 2.15 & ． 01 & ． 01 & 2 & & E．5 \\
\hline 2 & 58 & 13 & 89 & ． 2 & 33 & 13 & 314 & 3.00 & 17 & 5 & ND & 2 & 13 & ， & 2 & 2 & 104 & ． 15 & ． 07 & 5 & 31 & ． 35 & 83 & ． 10 & 2 & 2.32 & ． 01 & ． 05 & ， & s & E． 0 \\
\hline 3 & 17 & 9 & 11 & .1 & 12 & 6 & 351 & 2.80 & 3 & 5 & no & 2 & 10 & 1 & 2 & 2 & 69 & ． 07 & ． 05 & 1 & 22 & ． 21 & 96 & ． 07 & 1 & ． 78 & ． 01 & ． 06 & 2 & 5 & 2.5 \\
\hline 2 & 86 & 12 & 81 & ． 1 & 25 & 17 & 647 & 4.78 & 11 & 5 & IID & 2 & 18 & ， & ， & 3 & 3 & ． 15 & ． 06 & 7 & 37 & ． 53 & 101 & ． 09 & 1 & 2.16 & ． 01 & ． 12 & 2 & & 4.3 \\
\hline 2 & 50 & 12 & 81 & ． 1 & 28 & 11 & 218 & 3.96 & 8 & & NO & 2 & 16 & 1 & 2 & 2 & 90. & ． 17 & ． 05 & 1 & 56 & ． 71 & 7 & ． 08 & 6 & 1.52 & ． 01 & ． 09 & 2 & 5 & 5.1 \\
\hline 3 & 33 & 14 & 83 & ． 1 & 21 & 10 & 310 & \(5.7{ }^{\circ}\) & 11 & 5 & H0 & 2 & 11 & ， & 2 & i & 107 & ． 10 & ． 12 & 5 & 13 & ． 81 & 75 & ． 13 & 5 & 1.52 & ． 01 & ． 18 & 2 & 5 & 4．： \\
\hline 1 & 11 & 12 & 122 & \(\cdot 1\) & 37 & 11 & 131 & 5.10 & 17 & 5 & N0 & 2 & 11 & 1. & 2 & 2 & 111 & ． 14 & ． 09 & 3 & 65 & 1.07 & 90 & ． 10 & 5 & 2.22 & ． 01 & ． 25 & 2 & 5 & 4.9 \\
\hline 1 & 33 & 11 & 117 & ． 1 & 23 & 14 & 138 & 3.93 & 8 & 5 & \(n\) & 2 & 17 & 1 & 2 & 1 & 19 & ． 27 & ． 13 & 3 & 11 & ． 33 & 11 & ． 09 & d & 1．26 & ． 01 & ． 09 & 2 & 5 & E．5 \\
\hline 3 & 54 & 12 & 103 & 1.0 & 28 & 10 & 2888 & 3.11 & 11 & 5 & 110 & 2 & 58 & 1 & 2 & 3 & 51 & 1.02 & ． 06 & 10 & 56 & ． 16 & 12i & ． 11 & 11 & 2.82 & ． 02 & ． 01 & 2 & 5 & b．： \\
\hline 1 & 80 & 10 & 122 & 1.2 & \(3 i\) & 12 & 121 & 3.78 & 15 & 5 & nd & 2 & 30 & 1 & 2 & 2 & 69 & ． 84 & ． 06 & 10 & 6 & ． 75 & 11 & ． 11 & 11 & 2.98 & ． 22 & ． 23 & ； & 10 & ＝．9 \\
\hline 1 & 45 & 11 & 123 & 1 & 39 & 17. & 185 & 4．16 & 13 & S & ND & 2 & 15 & 1 & 2 & 2 & 11 & ． 57 & ． 05 & S & 66 & ． 78 & EJ & ． 10 & ， & 2．25 & ． 01 & ． 01 & 2 & ， & E． 5 \\
\hline 2 & so． & 10 & 190 & ． 6 & SS & 20 & 213 & 5.52 & 20 & 5 & IID & 2 & 27. & 1 & 2 & 3 & 102 & ． 21 & ． 09 & 1 & 33 & ． 22 & 138 & ． 13 & 1 & 4.27 & ． 01 & ． 12 & 2 & 5 & E．5 \\
\hline 2 & 21 & 13 & 106 & 1 & 30 & 18 & 558 & 5.01 & 10 & s & ND & 2 & 19 & i & 3 & 2 & 58 & ． 11 & ． 13 & 3 & 34 & ． 78 & 97 & ． 08 & 1 & \(2.3 i\) & ． 01 & ． 04 & ， & 5 & 2.0 \\
\hline 3 & 16 & 18 & 94 & .7 & 29 & 11 & 175 & 4.75 & 18 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 100 & ． 16 & ． 06 & 2 & 88 & ． 59 & 31 & ． 15 & 3 & 2.21 & ． 01 & ． 01 & 2 & 5 & \\
\hline 1 & 14 & 16 & 176 & ． 8 & 32 & ［J & 602. & 3.20 & 50 & 5 & HD & 2 & 47 & 1 & 3 & 2 & 58 & ． 58 & ． 06 & 3 & 57 & ． 73 & 101 & ． 08 & 1 & 2.18 & ． 01 & ． 01 & ， & ， & \(\pm .2\) \\
\hline 1 & 12 & 3 & st & ． 3 & 13 & 7 & 195 & 1．88 & 8 & 5 & 10 & 2 & 13 & 1 & 1 & 2 & 15 & ． 16 & ． 06 & 2 & ． 31 & ． 31 & 11 & ． 08 & 2 & ． 36 & ． 01 & ． 01 & 2 & 5 & \(\pm .2\) \\
\hline 1 & 90 & 12 & 99 & ． 2 & 59 & 20 & 817 & 4．28 & 22 & 5 & 120 & 2 & 33 & 1 & 2 & 2 & 88 & ． 50 & ． 11 & e & 115 & 1.19 & 75 & ． 11 & 3 & 2.00 & ． 01 & ． 29 & & 5 & \(\pm .9\) \\
\hline 2 & 37 & 12 & 75 & ． 5 & 21 & 10 & 306 & 4.12 & 51 & 5 & ND & 2 & 20 & 1 & 2 & 3 & 76 & ． 50 & ． 08 & 2 & 59 & ． 19 & 70 & ． 13 & 2 & 1.56 & ． 01 & ． 01 & 2 & 35 & E． 9 \\
\hline 1 & 31 & 19 & 100 & ． 5 & 36 & 12 & 237 & 1.09 & 16 & 2 & KD & 2 & 9 & 1 & 2 & 2 & 96 & ． 10 & ． 14 & 2 & 106 & ． 78 & 51 & ． 12 & 2 & 1．65 & ． 01 & ． 01 & 2 & 15 & 5.1 \\
\hline 1 & 22 & 12 & 101 & ． 8 & 32 & 11 & 217 & 4.87 & 11 & 5 & HD & 2 & 13 & & 2 & J． & 91 & ． 14 & ． 16 & 2 & 156 & ． 11 & 69 & ． 13 & 2 & 2.03 & ． 01 & ． 01 & 2 & 5 & 1.3 \\
\hline 1 & 78 & ． 24 & 118 & ． 2 & 11 & 21 & 553 & 5.59 & 19 & 5 & 110 & 2 & 18 & 1 & 2 & 2 & 124 & ． 25 & ． 14 & 1 & 257 & 2.12 & 75 & ． 12 & ¢ & 2.01 & ． 01 & ． 20 & 2 & 10 & 4.1 \\
\hline
\end{tabular}

\section*{.9}


EAHPLE!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline S085E229320¢3 & 1 & : & 5 & 12 & . & \(i\) & I & 32 & . 85 & 3 & 5 & 110 & 2 & 10 & 1 & 3 & 2 & 30 & . 10 & . 01 & 3 & 10 & . 03 & 50 & . 07 & \(i\) & . & . 01 & . 08 & & & i. 3 \\
\hline 5039552932094 & 2 & 84 & 8 & 43 & . 1 & \(35^{\circ}\) & 17 & 285 & 4.83 & 2 & 5 & 110 & 2 & 29 & 1 & 2 & 5 & 103 & . 21 & . 06 & J & 20S & 1.17 & \& & . 18 & ! & 1.33 & . 01 & . 03 & & & ¢.1 \\
\hline 5085EL2922095 & 2 & 62 & 5 & i1 & . 2 & 37 & 16 & 281 & 4.72 & 2 & 5 & 110 & 2 & 29 & 1 & 2 & 5 & 102 & . 4 & . 08 & 6 & 192 & 1.16 & 81 & . 18 & \% & 1.25 & . 01 & . 15 & & S & 4.8 \\
\hline 5091552932096 & 3 & 35 & 12 & if & . 1 & 35 & 16 & 301 & 5.22 & 5 & 5 & 110 & 2 & 31 & 1 & 2 & 5 & 108 & . 23 & . 13 & 5 & 158 & 1.11 & 83 & . 15 & 1 & 1.3 & . 01 & . 01 & & & S. 6 \\
\hline 50895¢29:2097 & 1 & 30 & 7 & 76 & . 1 & 20 & 12 & 28J & 4.64 & 5 & 5 & ND & 2 & 87 & 1 & 2 & 1 & 126 & . 27 & . 10 & \(t\) & 91 & . 56 & 16 & . 18 & 6 & 1.24 & . 01 & . 0 i & 2 & , & 4.4 \\
\hline 5094552953099 & 3 & 29 & 13 & 117 & . 1 & 28 & 13 & 317 & 3.97 & 7 & 5 & N0 & 2 & 51 & 1 & 2 & 3 & 95 & . 29 & . 08 & 7 & 133 & . 21 & 33 & . 16 & 1 & 1.10 & . 01 & . 01 & : & & 1.8 \\
\hline 50815t2932099 & 6 & 51 & 17 & 221 & . 1 & 174 & 28 & 136 & 8.28 & 109 & 5 & 110 & 2 & 37 & 1 & 2 & 8 & 121 & . 21 & . 17 & 10 & 316 & 1.27 & 4 & . 14 & 1 & 2.32 & . 01 & . 06 & - & - & 1.6 \\
\hline 5089562932100 & 3 & 17 & 11 & 149 & . 3 & 25 & 9 & 183 & 3.75 & \({ }^{8}\) & 5 & MD & 2 & 18 & 1 & 2 & 1 & 78 & . 11 & . 13 & 6 & 78 & . 65 & 3 & . 17 & 10 & 1.85 & . 01 & .0? & & & 4.8 \\
\hline 5081562932101 & 5 & 5 & 12 & 185 & . 5 & 35 & 13 & 288 & 1.24 & 10 & 5 & 110 & 2 & 23 & 1 & 2 & 1 & 92 & . 17 & . 09 & 10 & 96 & . 82 & 17 & . 13 & 5 & 1.95 & . 01 & . 01 & Z & ! & 4.1 \\
\hline 5084529332102 & 1 & 35 & 16 & 51 & . 2 & 12 & 9 & 1069 & 4.27 & 8 & 5 & 110 & 2 & 13 & 1 & 2 & 2 & 12 & . 12 & . 14 & 10 & 4 & . 50 & 39 & . 07 & 1 & 1.14 & . 01 & .13 & : & 15 & 1.5 \\
\hline 5081582932103 & 3 & 131 & 3 & 23 & 1.0 & 20 & 5 & 891 & 1.87 & 16 & 5 & 10 & 2 & 51 & 1 & 3 & 3 & 11 & 1.08 & . 11 & 10 & 146 & . 19 & 93 & . 05 & 3 & 1.18 & . 01 & . 05 & 2 & S & 5.9 \\
\hline 5094532932104 & 1 & 43 & 18 & 100 & . 3 & 14 & 15 & 388 & 4.89 & 16 & 3 & ND & 2 & 20 & I & 2 & 5 & 103 & . 26 & . 17 & 13 & 188 & 1.07 & 89 & . 13 & 1 & 1.86 & . 01 & . 05 & : & 5 & 1.5 \\
\hline 5081522932105 & 3 & 34 & 5 & 129 & . 1 & 51 & 17 & 927 & 4.11 & 11 & 5 & kO & 2 & 22 & 1 & 2 & 1 & 82 & . 21 & . 16 & 7 & 161 & 1.17 & 51 & . 30 & 2 & l.td & . 01 & . 01 & Z & : & 5.0 \\
\hline 5084552932106 & 3 & 33 & 16 & 132 & . 4 & 8 & 13 & 117 & 3.90 & 11 & 5 & 1 N & 2 & 29 & 1 & 3 & 1 & 92 & . 34 & . 08 & 1 & 20 & .iJ & 51 & . 08 & 5 & 1.14 & . 01 & . 02 & 2 & 105 & 4.2 \\
\hline 50845t2932107 & 3 & 16 & 5 & 57 & .2 & 9 & 6 & 148 & 2.69 & 8 & 5 & 1 N & 2 & 18 & 1 & 3 & 3 & 78 & .17 & . 01 & 5 & 32 & . 12 & 51 & . 10 & 2 & 1.05 & . 01 & . 01 & 2 & ¢ & 4.5 \\
\hline 5081562932008 & 5 & 19 & 12 & 97 & . 3 & 20 & 8 & 187 & 3.58 & 21 & 5 & MD & 2 & 18 & 1 & 1 & 5 & 108 & . 14 & . 05 & 6 & 55 & . 39 & 48 & . 12 & 5 & 1.23 & . 01 & . 04 & \% & & 1.8 \\
\hline 5081562932109 & 7 & 103 & 21 & 126 & 1.1 & 53 & 19 & 131 & 1.69 & 36 & 5 & N & 8 & 22 & 2 & 10 & 1 & 108 & . 24 & . 10 & St & 108 & 1.21 & 118 & . 12 & 11 & 2.45 & . 06 & 2.08 & 2 & S & s. 5 \\
\hline 5081582932110 & 3 & 13 & 12 & 58 & .6 & 12 & \(\delta\) & 179 & 2.99 & 22 & 5 & 110 & 3 & : & 1 & 12 & 2 & 81 & . 07 & . 09 & 2 & 27 & . 20 & 56 & . 09 & 18 & . 86 & . 01 & . 07 & 2 & * & 4.0 \\
\hline 5084502932111 & 1 & 16 & 7 & 126 & . 7 & 21 & 8 & 775 & 3.79 & 20 & 5 & NO & 2 & 18 & \(i\) & 3 & 2 & 80 & . 26 & . 25 & 3 & 38 & . 28 & 97 & . 14 & 5 & 1.91 & . 01 & . 05 & 2 & 5 & 5.0 \\
\hline 5083552932112 & 7 & 53 & 30 & 309 & . 9 & 131 & 19 & 708 & 5.54 & 34 & 5 & 110 & J & 15 & 1 & 2 & 3 & 103 & . 09 & . 25 & J & 387 & 1.84 & aJ & . 14 & 9 & 2.79 & . 01 & .11 & 2 & 5 & 5.1 \\
\hline 5081562932113 & 8 & 254 & 18 & 276 & 1.1 & 100 & 11 & 1335 & 2.99 & 29 & 6 & k0 & 3 & 105 & 17 & 5 & & 51 & 2.03 & . 21 & 8 & 92 & . 51 & 78 & . 04 & 7 & 2.13 & . 01 & . 01 & 2 & 5 & 3.0 \\
\hline RE 5081562932111 & 1 & 15. & 10 & 130 & . 9 & 23 & , & 766 & 3. 92 & 21 & 6 & 110 & 3 & 17 & \(\cdot 1\) & 6 & 2 & 90 & . 19 & . 25 & 3 & 12 & . 30 & 98 & . 14 & 10 & 1.99 & . 01 & . 09 & 2 & S & \\
\hline 5084562932114 & 2 & 9 & 8 & 58 & . 1 & 8 & 3 & 336 & 1.17 & 11 & 6 & ND & 4 & 17 & 2 & 1 & 2 & 52 & . 30 & . 03 & 1 & 14 & . 14 & 35 & . 09 & 5 & . 51 & . 01 & . 08 & 2 & 5 & 5.2 \\
\hline 5084552952115 & 14 & 34 & 20 & 212 & . 5 & 40 & 11 & 341 & 5.48 & 37 & 5 & N0 & 3 & 20 & 1 & 5 & 5 & 220 & . 22 & . 11 & , & :3 & . 87 & 111 & . 15 & \(B\) & 2.58 & . 01 & . 06 & 2 & & 5.J \\
\hline 5081562932116 & 1 & 11 & 21 & 104 & . 3 & 32 & 11 & 597 & 4.18 & 17 & 5 & ND & 2 & 27 & 1 & 2 & 1 & 125 & . 39 & . 07 & , & 65 & . 86 & 68 & . 15 & 1 & 2.25 & . 01 & . 06 & 2 & c & 5.6 \\
\hline 508455293211: & 8 & 99 & 25 & 153 & . 2 & so & 19 & 524 & 6.03 & 36 & & ND & J & 23 & 1 & 1 & 1 & 157 & . 25 & . 09 & 11 & 31 & 1.11 & 102 & . 15 & 11 & 3.65 & . 01 & . 08 & 2 & 5 & 5.1 \\
\hline 5084562932118 & 5 & 35 & 31 & 156 & . 2 & 38 & 15 & 462 & 5.03 & 26 & 5 & No & J & 27 & 1 & & , & 133 & . 31 & . 07 & , & 6 & . 97 & 107 & . 11 & 2 & 2.69 & . 01 & . 01 & 2 & 250 & 5.2 \\
\hline 5084522932119 & 5 & 30 & 13 & 123 & . 1 & 21 & 11. & 308 & 1.41 & 19 & & ND & 2 & 17 & 1 & 2 & 1 & 121 & . 19 & . 09 & g & +6 & . 31 & 3 & . 15 & 10 & 2.38 & . 01 & . 81 & 2 & 5 & 4.9 \\
\hline 5089E52952120 & 7 & 16 & 11 & 62 & . 3 & 15 & 5 & 172 & 3.57 & 21 & 5 & IID & 2 & 12 & 1 & 4 & 2 & 98 & . 09 & . 01 & 7 & 61 & . 32 & 80 & . 10 & 10 & 1.13 & . 01 & . 07 & 2 & J & 4.7 \\
\hline 50345S2932121 & 5 & 15 & 12 & 95 & 1 & 13 & 7 & 328 & 2.95 & 18 & 5 & HD & 3 & 15. & 1 & 3 & 1 & i3 & . 15 & .10 & \(s\) & 39 & . 29 & 87 & . 08 & 1 & . 99 & . 01 & . 08 & : & 5 & 1.8 \\
\hline 30845:2932122 & 8 & 93 & 21 & 139 & . 7 & 50 & 15 & 1898 & 1.43 & 22 &  & ND & 2 & 31 & 1 & 2 & 3 & 100 & . 17 & . 08 & 17 & 78 & . \(8:\) & 117 & . 07 & 10 & 2.80 & . 01 & .13 & . & 5 & 5.7 \\
\hline 5091552932123 & 5 & 131 & 17 & 149 & 1.3 & 38 & 14 & 3025 & 3.73 & 20 & 5 & ND & 5 & 89 & 3. & 2 & 3 & 83 & 1.90 & . 16 & 14 & 81 & . 43 & 236 & . 06 & 6 & 2.57 & . 01 & . 3 & 5 & 5 & 8.5 \\
\hline Sto C & 21 & 80 & 10 & 127 & 8.8 & 73 & 27 & 1031 & 3.91 & 39 & 18 & 6 & 34 & 15 & 16 & 15 & 21 & 60 & . 18 & . 12 & 38 & 80 & . 89 & 171 & . 97 & 35 & 1.78 & . 05 & . 11 & 14 & - & \\
\hline 5084582932124 & 5 & 111 & 24 & 134 & 1.0 & 30 & 20 & 1230 & 3.59 & 19 & 5 & ND & 4 & 25 & 1 & 3 & + & 120 & . 35 & . 10 & 11 & 62 & . 7 & 205 & .! 3 & ; & 3.30 & . 01 & . 18 & 2 & is & 5.8 \\
\hline 5081562932125 & 6 & 51 & 13 & 99 & . 4 & 39 & 13 & 391 & 4.79 & 23 & 5 & N0 & 2 & 21 & 1 & 2 & 1 & 118 & . 28 & . 12 & 11 & 90 & 1.07 & \(8 i\) & . 10 & 1 & 2.12 & . 01 & . 04 & 2 & 10 & 5.0 \\
\hline 5084562932128 & 5 & 31 & 12 & 81 & . 5 & 24 & 10 & 483 & 3.99 & 13 & 5 & H0 & 1 & 19 & 1 & 1 & 3 & 98 & . 28 & . 10 & 7 & 50 & . 50 & \(12 i\) & . 11 & 8 & 2.11 & . 01 & . 08 & 2 & 15 & 5.5 \\
\hline 50845¢2932127 & 5 & 84 & 14 & 128 & .9 & 43 & 13 & 221 & 4.10 & 22 & 5 & ND & 3 & 25 & 1 & , & 1 & 90 & . 29 & .10 & 8 & 64 & . 65 & 147 & . 12 & 1 & 3.31 & . 01 & . 00 & 2 & 5 & 5.1 \\
\hline 50345629331;0 & 5 & 51 & 7 & 12 & . 5 & 17 & 12 & 238 & 4.71 & 24 & 5 & ND & 3 & 27 & 1 & 6 & 1 & 117 & . 28 & . 01 & 7 & 63 & . 70 & \({ }^{1}\) & . 12 & 6 & 1.79 & . 01 & . 10 & 4 & 5 & 5.1 \\
\hline 5081562933171 & 1 & 6 & 11 & 28 & \({ }^{6} 8\) & 7 & 5 & 130 & 2.26 & 13 & 5 & 110 & 1 & 16 & 1 & 6 & 1 & 65 & . 31 & . 03 & 2 & 30 & . 18 & 10 & . 11 & 6 & . 16 & . 01 & . 14 & 2 & 25 & S. 6 \\
\hline SID C'AU-0.5 & 20 & 58 & 38 & 122 & 6.5 & 68 & 27 & 1028 & 3.82 & 11 & 18 & 7 & 37 & 47 & 16 & 15 & 19 & 58 & . 11 & . 11 & 37 & 57 & . 88 & 178 & . 06 & 31 & 1.71 & . 05 & . 02 & 15 & 190 & \\
\hline
\end{tabular}
sinflet

5081562935172 50345s2930113 50815:2935174 50245s29301\%5 SID C

\section*{5084562933176} 50845L2933177 5081552933178 5081562is3179 50815d2935130

5081562933181 5084562933182 508:562935183 5084562933184
5081562933185

5081582933188
5081562933107 5084562933188
 5081562933199

5081582931190
509595293191 5084582935191 5081582933192 5081582933193 5081562933194

5081562933195 508156293519: 508458293j197 5081562935198
5081562935199

\section*{S0915E2953200} 5081562935201 5081562935202
5084562933203
50e4562933204
5084552933205 5081582933206 5081562933207 5ID CIAU-0.5

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 6 & 6 & 20 & . 6 & 5 & 2 & 105 & 1.67 & 1 & 5 & 110 & 2 & 11 & 1 & 2 & 2 & if & . 24 & . 03 & \(i\) & 14 & . 10 & 27 & . 10 & 10 & . 35 & . 01 & . 01 & 2 & 5 & 4.7 \\
\hline 3 & 215 & 9 & 174 & 2.4 & 3a & 15 & 586 & 4.16 & 91 & 5 & 1 LD & 2 & 38 & 1 & 2 & 2 & 65 & .t6 & . 07 & 1 & 55 & . 60 & 58 & . 10 & 10 & 2.32 & . 01 & . 07 & , & 40 & ¢. \({ }^{\text {a }}\) \\
\hline 2 & 19 & 10 & 45 & . 5 & 10 & 5 & 135 & 3.24 & 9 & 5 & ND & 2 & 13 & 1 & 1 & 2 & \(\pi\) & . 15 & . 07 & 2 & 50 & . 22 & 51 & .12 & \(\varepsilon\) & . 99 & . 01 & . 01 & 2 & S & 4.8 \\
\hline 1 & 92 & 17 & 123 & . 7 & 65 & 18 & 734 & 1.91 & 17 & 5 & 110 & 2 & 31 & 1 & : & 2 & 103 & 1.25 & . 07 & 2 & 217 & 1.85 & 150 & . 11 & 3 & 2.31 & . 01 & . \(0:\) & 2 & 5 & 6.1 \\
\hline 18 & 59 & 40 & 128 & 6.5 & 66 & 28 & 1096 & 4.01 & 38. & 19 & 1 & 35 & 51 & 17 & 1 & 19 & 63 & . 49 & . 11 & 39 & 63 & . 91 & 187 & . 07 & 39 & 1.89 & . 05 & .15 & 13 & - & . \\
\hline 2 & 22 & 13 & 95 & . 9 & 39 & 19 & 311 & 8.14 & 11 & 5 & 110 & 2 & 12 & 1 & 2 & 3 & 144 & . 33 & . 17 & 2 & 172 & 1.82 & 88 & . 19 & 5 & 2.28 & . 02 & . 11 & 2 & : & \(\underline{5.0}\) \\
\hline 3 & 64 & 10 & 5 & . \(B\) & 25 & 13 & 312 & 4.18 & 1 & 5 & HD & 2 & 19 & 1 & 2 & ¢ & 108 & . 13 & . 11 & 2 & 108 & . 87 & 31 & . 11 & 7 & 1.32 & . 01 & . 01 & 2 & 5 & 4.1 \\
\hline 2 & 26 & 12 & 81 & . 5 & 21 & 12 & 317 & 5.25 & 8 & 5 & HD & 2 & 29 & 1 & 2 & 1 & 127 & . 21 & . 14 & 2 & 143 & . 86 & 92 & . 17 & 2 & 1.32 & . 01 & . 01 & 2 & 5 & 4.9 \\
\hline 3 & 101 & 10 & 38 & . 5 & 25 & 18 & 310 & 4.87 & 2 & 5 & NO & 2 & 10 & 1 & 2 & 2 & E & . 12 & . 10 & 8 & 4 & . 16 & 91 & . 05 & 5 & . 71 & . 01 & . 01 & 2 & 5 & 1.1 \\
\hline 2 & 10 & 10 & 89 & . 5 & 16 & 7 & 258 & 2.57 & 2 & 5 & HO & 2 & 27 & 1 & 2 & 2 & 12 & . 50 & . 04 & J & 81 & . 38 & 83 & . 11 & J & 1.60 & . 01 & . 01 & 2 & 5 & 5.2 \\
\hline 3 & 30 & 13 & 92 & . 5 & 21 & 8 & 316 & 3.27 & 6 & 5 & H & 2 & 21 & 1 & 2 & 2 & 70 & . 25 & . 07 & 3 & 90 & . 72 & 59 & . 08 & 3 & 1.35 & . 01 & . 01 & 2 & 5 & 4.5 \\
\hline 3 & 18 & ; & 60 & . 8 & 15 & 8 & 2024 & 2.57 & 2 & 5 & KD & 2 & 23 & 1 & : & 3 & 58 & . 21 & .07 & 3 & 88 & . 12 & 3 & . 09 & 2 & . 85 & . 01 & . 01 & 2 & 5 & 5.1 \\
\hline 3 & 19 & 8 & 63 & . 5 & 16 & P & 622 & 3.68 & 2 & 5 & 10 & 2 & 23 & 1 & 2 & 2 & 60 & . 18 & . 08 & ; & 113 & . 43 & 68 & . 12 & 6 & . 89 & . 01 & . 01 & 2 & & 4.6 \\
\hline 2 & 83 & 6 & 94 & . 4 & 36 & 16 & 535 & 4.52 & ; & 5 & ND & 2 & 3 J & 1 & 2 & 2 & 35 & . 35 & . 09 & 8 & 158 & 1.25 & 81 & . 12 & 1 & 1.92 & . 01 & .15 & 2 & 5 & S. 5 \\
\hline 2 & 12 & 8 & 65 & . 3 & 15 & 6 & 399 & 2.12 & 2 & 5 & ND & 2 & 11 & 1 & 2 & 2 & 57 & . 15 & . 11 & J & 50 & . 12 & 91 & . 09 & 2 & 1.17 & . 01 & . 01 & 2 & 5 & . 4.7 \\
\hline 2 & 88 & 11 & 81 & . 3 & 30 & 14 & 420 & 5.23 & 14 & 5 & no & 2 & 24 & 1 & 2 & 2 & 107 & . 24 & . 12 & 7 & 131 & 1.18 & 78 & . 12 & 2 & 2.05 & . 01 & . 08 & 2 & 5 & 4.5 \\
\hline 2 & 32 & 16 & 102 & . 9 & 16 & 14 & 172 & 5.99 & 7 & 5 & 110 & 2 & 20 & 1 & 2 & 2 & 89 & . 14 & . 21 & 6 & 55 & . 48 & 84 & . 12 & 5 & 1.91 & . 01 & . 03 & 2 & 15 & 4.8 \\
\hline 2 & 53 & 47 & 30 & . 5 & 23 & 15 & 314 & 5.24 & 7 & 5 & 110 & 2 & 10 & 1 & 2 & 2 & 83 & . It & . 08 & 3 & 101 & . 94 & 91 & . 12 & ; & 1.20 & . 01 & . 01 & 2 & 5 & 4.i \\
\hline 2 & 7 & 14 & 16 & . 6 & 6 & 5 & 353 & 2.68 & 2 & 5 & H1 & 2 & 18 & 1 & 2 & & 70 & . 6 & . 10 & 3 & 25 & . 25 & 35 & . 11 & 5 & . 80 & . 01 & . 01 & 2 & 5 & - \\
\hline 1 & 121 & 17 & 59 & 2.0 & 17 & 15 & 353 & 4.15 & 5 & 5 & 10 & 2 & 29 & 1 & 2 & 2 & 15 & . 60 & . 01 & P & 36 & . 24 & 68 & . 17 & 5 & 3.19 & . 02 & . 01 & i & 5 & 8.2 \\
\hline 2 & 22 & 17 & 71 & 1.0 & & - & 358 & 3.65 & 1 & 5 & N0 & 2 & 18 & 1 & 2 & 2 & 75 & . 21 & . 10 & 2 & 40 & . 26 & 61 & . 14 & 1 & 1.0? & . 01 & . 01 & 2 & J & 5.2 \\
\hline 1 & 12 & 11 & 75 & . 6 & 7 & 1 & 351 & 2.53 & 3 & 5 & HD & 2 & 15 & 1 & 2 & 2 & 65 & . 13 & . 10 & 2 & 22 & . 21 & 30 & . 14 & 3 & . 75 & . 01 & . 03 & 2 & 5 & 4.4 \\
\hline 1 & 99 & 14 & 83 & . 4 & 89 & 22 & 1167 & 5.09 & 28 & 5 & ND & 2 & 57 & 1 & 2 & 8 & 103 & . 99 & . 11 & 10 & 267 & 2.00 & 153 & . 11 & 3 & 2.21 & . 02 & . 04 & 2 & 15 & 6.3 \\
\hline 1 & . 17 & 13 & 91 & . 7 & 72 & 18 & 599 & 5.08 & 23 & 5 & H0 & 2 & 25 & 1 & 2 & 1 & 115 & . 39 & . 08 & , & 275 & 1.33 & 81 & . 14 & 2 & 2.46 & . 01 & . 09 & 2 & 45 & 5.7 \\
\hline 1 & 247 & 9 & 152 & 1.2 & 98 & 25 & 1956 & 5.12 & 22 & 5 & 10 & 2 & 93 & 1 & 2 & 2 & 92 & 1.12 & . 11 & 11 & 250 & 1.65 & 181 & . 10 & 10 & 3.05 & . 02 & . 08 & 2 & 5 & 6.2 \\
\hline 2 & 17 & 10 & 107 & . 6 & 63 & 15 & 409 & 4.62 & 11 & 5 & ND & 2 & 34 & 1 & 2 & 2 & 114 & . 45 & . 04 & 8 & 204 & 1.35 & 81 & . 14 & 2 & 2.10 & . 01 & . 01 & 2 & S5 & 5.5 \\
\hline 2 & 166 & 10 & 101 & . 6 & 89 & 31 & 895 & 5.05 & 26 & 5 & 10 & 2 & 60 & 1 & 2 & 2 & 112 & . 85 & . 01 & 12 & 220 & 1.19 & 103 & . 11 & 2 & 2.75 & . 01 & . 12 & 2 & 5 & 6.3 \\
\hline 3 & 71 & 7 & 81 & . 2 & 85 & 19. & 461 & 5.54 & 19 & 5 & \(1{ }^{1}\) & 2 & 30 & 1 & & \(s\) & 111 & . 17 & . 10 & 1 & 272 & 1.93 & 85 & .17 & 2 & 2.21 & . 01 & .i3 & 2 & 5 & 5.1 \\
\hline 3 & 55 & 13 & 14 & . 3 & 64 & \(16^{\prime}\) & C3s & 4.70 & 11 & 5 & HD & 2 & 31 & 1 & 2 & 6 & 101 & . 10 & . 08 & \(?\) & 225 & 1.28 & 162 & . 18 & 1 & 2.48 & . 01 & . 60 & 2 & 5 & 5.4 \\
\hline 2 & 4 & 15 & 52 & . 2 & 74 & 18 & 359 & 4.84 & 10 & 5 & MD & 2 & 26. & 1 & 2 & 6 & 98 & . 30 & . 03 & 1 & 300 & 1.50 & 65 & . 18 & 7 & 2.65 & . 01 & . 04 & 2 & 5 & 4.6 \\
\hline 2 & 55 & 10 & 140 & . 6 & 81 & 18 & 374 & 4.58 & & 5 & N1 & 2 & 34 & 1 & 2 & 1 & 93 & . 12 & . 03 & 5 & 200 & 1.51 & 100 & . 17 & 2 & 2.81 & . 02 & .13 & 2 & 5 & 5.6 \\
\hline 1 & 54 & 9 & 154 & . 5 & 84 & 18 & 352 & 4.50 & ? & 5 & \% & 2 & 33 & 1 & 2 & 2 & 91 & . 36 & . 03 & 5 & 204 & 1.16 & 91 & . 18 & 1 & 3.11 & . 02 & . 01 & 2 & 5 & 5.1 \\
\hline 1 & 24 & 10 & 220 & . 5 & 12 & 23 & 1105 & 5.90 & P & 5 & ND & 2 & 38 & 1 & 2 & 1 & 111 & . 34 & . 24 & 5 & 206 & 1.50 & 238 & . 11 & \(\ell\) & 2.29 & . 01 & . 01 & 2 & 5 & 5.0 \\
\hline 1 & 69 & 10 & 106 & . 5 & 18 & 24 & 591 & d.12 & 9 & 5 & MD & 2 & 35 & 1 & 2 & 2 & 112 & . 31 & . 18 & 5 & 217 & 1.56 & 108 & . 15 & 2 & 2.71 & . 01 & . 09 & 2 & 5 & 5.2 \\
\hline 2 & 46 & 12 & 88 & . 4 & 33 & 17 & 312 & 5.73 & 11 & 5 & WD & 2 & 24 & 1 & 2 & 5 & 109 & . 18 & . 05 & 5 & 137 & . 93 & 13! & . 14 & 2 & 2.04 & . 01 & . 01 & 2 & 5 & 4.9 \\
\hline 2 & 18 & 11 & 78 & . 3 & 14. & 10 & 410 & 3.53 & 6 & 5 & HD & 2 & 11 & 1 & 1 & 2 & 58 & . 11 & . 08 & 1 & 38 & . 29 & 106 & . 08 & 2 & 1.48 & . 01 & . 06 & 2 & 5 & 5.1 \\
\hline 1 & 21 & 7 & 127 & . 5 & 30 & 12 & 370 & 3.98 & 9 & 5 & ND & 2 & 21 & 1 & 2 & 2 & 83 & . 39 & . 02 & 2 & 82 & . 73 & 141 & . 12 & 2 & 2.15 & . 01 & . 10 & 2 & 15 & 5.5 \\
\hline 1 & 8 & 11 & 35 & . 5 & 1 & 2 & 17 & 1.37 & 2 & 5 & H0 & 2 & 17 & , & 1 & 2 & 15 & . 12 & . 02 & 1 & 31 & . 21 & 81 & . 07 & 2 & . 67 & . 01 & . 01 & 2 & 5 & 4.3 \\
\hline 2 & 4 & 18 & 102 & . 6 & 25 & 10 & 432 & 4.32 & 10 & 5 & H0 & 2 & 25 & 1 & 2 & 2 & 89 & . 32 & . 12 & 8 & 95 & . 78 & 117 & . 09 & 7 & 1.37 & . 01 & . 01 & 2 & 5 & 5.1 \\
\hline 19 & 57 & 38 & 127 & 6.2 & 67 & 26 & 1076 & 3.83 & 37 & 18 & 6 & 35 & 18 & 16 & 15 & 20 & 57 & . 41 & . 11 & 10 & 58 & . 89 & 176 & . 06 & 38 & 1.30 & . 05 & . 15 & 12 & 190 & - \\
\hline
\end{tabular}
cspfet

\section*{SII C 50045t2033209 3081562933210 5094562533211 \\  \\ RE 50845i293j237 \\ 5084552933214 50845t2933215 5089582933215}

5084522935217
5081582935217
5084562953218
5084562935218
5084562933220 5081562933221

5084562933222
5081562935223
5081562933221
5081562935225 3081582933225

5081S62933227
508456293322
5081562933229
5081562933230
5081582933232
S08:Sid293:2j3
50645t293J23
\(0845: 293323\)
5091582933238
5084562933237
\(508+582933238\)
508655933299
50865S29j3299
508456293324

5084562953242
sebise2933213
508158293324
508456293321
5 IO C/AU-0.5

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 18 & 59 & 38 & 123 & 6.5 & 69 & 27 & 1094 & 3.83 & 39 & 18 & 6 & 37 & 48 & 15 & 15 & 20 & 58 & . 19 & . 13 & 33 & 57 & . 88 & 180 & . 07 & 39 & 1.85 & . 06 & .1: & 13 & \\
\hline 1 & 25 & 10 & 38 & . 4 & 23 & 9 & 237 & 3.22 & B & 5 & HD & 2 & 17 & 1 & 2 & 2 & 82 & . 25 & . 12 & 10 & 84 & . 16 & B6 & . 09 & ; & 2.09 & . 01 & . 01 & 2 & \\
\hline 1 & 15 & 5 & 131 & 2 & 27 & 11 & 342 & 3.64 & 9 & 5 & 110 & 2 & 18 & 1 & 2 & 2 & 66 & . 22 & . 09 & 9 & 17 & . 75 & 72 & . 10 & 21 & 1.85 & . 02 & . \(0:\) & 2 & 15 \\
\hline 1 & 14 & 13 & 151 & . & 20 & 7 & 73日 & 3.18 & 30 & 5 & 110 & 2 & 18 & 1 & 2 & 2 & 127 & . 16 & . 18 & 9 & 59 & . 3 & 87 & . 12 & 21 & 1.36 & . 02 & . \(0:\) & : & S \\
\hline 3 & 34 & 9 & 113 & . 1 & 31 & 10 & 483 & 4.17 & 3 & 5 & WD & 2 & 20 & 1 & 3 & 2 & 128 & . 24 & . 12 & 11 & 5 & . 71 & 71 & . 10 & 20 & 1.41 & . 02 & . 01 & 2 & S \\
\hline 2 & 13 & 8 & 124 & ...1 & 11 & 6 & 632 & 3.14 & 12 & 5 & No & 2 & 17 & 1 & 2 & 2 & 85 & . 25 & . 10 & 9 & 31 & . 30 & : & . 13 & 6 & . 99 & . 02 & . 04 & : & 5 \\
\hline 3 & 28 & 8 & 13 & . 3 & 29 & 11 & 206 & 3.91 & 14 & 5 & 110 & 2 & :6 & I & 2 & 3 & 81 & . 20 & . 18 & 11 & 12 & . 65 & 84 & . 11 & 21 & 2.58 & . 05 & . 01 & 2 & 5 \\
\hline 1 & 9 & 9 & 51 & . 1 & 8 & 2 & 142 & 1.87 & 8 & 5 & ND & 2 & 10 & 1 & 2 & 3 & 58 & . 11 & . 12 & 8 & 22 & . 17 & \(3 i\) & . 12 & 1 & . 76 & . 03 & . 04 & , & 5 \\
\hline 1 & 8 & 3 & 30 & . 1 & 5 & 3 & 132 & 1.31 & 7 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 31 & . 24 & . 01 & 6 & 1 & . 08 & 48 & . 04 & j & . 26 & . 05 & . 05 & 2 & 5 \\
\hline 1 & 12 & 6 & 43 & . 1 & 11 & 1 & 117 & 2.16 & 3 & 5 & ND & 2 & -11 & 1 & 2 & 3 & 78 & . 18 & . 04 & 8 & 35 & . 34 & 35 & . 13 & 1 & . 67 & . 05 & . 05 & 2 & 5 \\
\hline 2 & 93 & 13 & 100 & .1 & 89 & 21 & 112 & 4.72 & 19 & 5 & N0 & 2 & 21 & 1 & 2 & 3 & 101 & . 19 & . 12 & 12 & 152 & 1.29 & 87 & . 16 & 6 & 3.31 & . 03 & . \(0 t\) & 2 & \\
\hline 3 & 135 & 18 & 345 & 1.3 & 154 & 21 & 1885 & 4.12 & 19 & 5 & N0 & 2 & 72 & 4 & 2 & 2 & 74 & . 81 & . 09 & 10 & 189 & 1.28 & 81 & . 11 & 5 & 2.60 & . 03 & .0: & , & s \\
\hline 1 & 110 & 12 & 110 & . 5 & 10 & 11 & 507 & 4.62 & 32 & 5 & ND & 3 & 32 & 1 & 2 & & 98 & . 39 & . 10 & 14 & 91 & 1.25 & 150 & . 10 & 6 & 2.79 & . 03 & . 01 & : & S \\
\hline 3 & 21 & 9 & \({ }^{3}\) & . 2 & 17 & 5 & 180 & 3.19 & 13 & 5 & ND & 2 & 14 & 1 & 2 & , & 82 & . 15 & . 12 & 10 & 49 & . 34 & 71 & . 11 & 4 & 1.69 & . 03 & . 04 & 2 & 25 \\
\hline 2 & 21 & 5 & 85 & . 1 & 21 & 1 & 418 & 3.11 & 15 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 81 & . 15 & . 09 & 11 & 57 & . 70 & 85 & . 10 & J & 1.30 & . 03 & . 04 & 2 & 10 \\
\hline 2 & 16 & 12 & 58 & . 3 & 8 & 5 & 380 & 2.75 & 9 & 5 & H1 & 2 & 15 & 1 & 2 & 2 & 76 & . 11 & . 07 & 9 & 25 & . 24 & 80 & . 13 & & 1.00 & . 04 & . 02 & 2 & 5 \\
\hline 3 & 32 & 10 & 123. & . 2 & 26 & 8 & 211 & 3.82 & 15 & 5 & H0 & 2 & 17 & 1 & 2 & 2 & 89 & . 14 & . 06 & 10 & 65 & . 66 & 65 & . 09 & 6 & 1.79 & . 05 & . 05 & 2 & 5 \\
\hline 3 & 38 & 10. & 165 & . 1 & 19 & 16 & 408 & 4.82 & 21 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 106 & . 28 & . 09 & 13 & 101 & 1.28 & 132 & .10 & 7 & 2.75 & . 04 & . 06 & 2 & 10 \\
\hline 5 & 28 & 11 & 83 & . 1 & 18 & 5 & 133 & 4.50 & 19 & 5 & KD & 2 & 31 & 1 & 2 & 2 & 130 & . 16 & . 06 & 11 & 50 & . 12 & 110 & . 13 & 8 & 1.48 & . 04 & .03 & 2 & 5 \\
\hline 3 & 33 & 11 & 38 & . 3 & 27 & 9 & 250 & 3.15 & 12 & 5 & N0 & 2 & 18 & 1 & 2 & 2 & 91 & . 23 . & . 05 & 9 & 59 & . 63 & 82 & . 10 & 5 & 1.51 & . 04 & . 06 & 2 & \\
\hline 3 & 26 & 8 & 90 & . 5 & 29 & 8 & 189 & 3.73 & 15 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 85 & . 21 & . 12 & 9 & \(6!\) & . 67 & 72 & . 10 & 7 & 1.68 & . 04 & .05 & 2 & S \\
\hline 3 & 50 & 10 & 118 & . 3 & 13 & 16 & 109 & 4.13 & 22 & 5 & H0 & J & 26 & 1 & 2 & 2 & 11 & . 17 & . 05 & 13 & 76 & . 14 & 106 & . 12 & 29 & 3.19 & . 05 & . 08 & 2 & S \\
\hline 3 & 13 & 11 & 104 & .4 & 33 & 12 & 528 & 4.15 & 21 & 5 & No & 2 & 20 & 1 & 2 & 2 & 96 & . 26 & . 09 & 11 & 18 & . 11 & 87 & . 10 & & 2.09 & . 04 & . 05 & 2 & 10 \\
\hline 1 & 15 & 8 & 63 & . 1 & 11 & 5 & 151 & 2.94 & 9 & 5 & KD & 2 & 14 & 1 & 2 & 2 & 65 & . 11 & . 09 & 8 & 46 & . 35 & 67 & . 10 & 5 & 1.38 & . 05 & . 03 & 2 & 65 \\
\hline J & 25 & 10 & 101 & . 1 & 26 & 9 & 996 & 3.48 & 18 & 5 & 1 NO & 2 & 21 & 1 & 2 & 2 & 89 & . 22 & . 16 & 11 & 66 & . 67 & 109 & . 11 & 5 & 1.20 & . 05 & . 06 & , & 5 \\
\hline 5 & 80 & 8 & 98 & .1 & 46 & 13 & 518 & 3.78 & 20 & 5 & No & 2 & 33 & 1 & 3 & J & 96 & . 42 & . 05 & 11 & 81 & 1.11 & 95 & . 10 & 1 & 1.93 & . 05 & . 08 & 2 & 5 \\
\hline 3 & 71 & 18 & 146 & 1.0 & 34 & 13 & 176 & 3.89 & 22 & J & NO & 2 & 36 & , & 2 & 2 & 83 & . 95 & . 07. & 17 & 61 & . 71 & 105 & . 15 & 25 & 3.26 & . 06 & . 05 & 2 & - \\
\hline 3 & 26 & 11 & 81 & . 1 & 21 & b & 214 & 3.65 & 8 & 5 & HD & 2 & 20 & 1 & 2 & 2 & 104 & . 8 & . 11 & 10 & 54 & . 58 & 4 & . 14 & 26 & 1.28 & . 05 & . 06 & & 300 \\
\hline 1 & 17 & 13 & 158 & . 2 & 54 & 16 & 380 & 4.79 & 24 & 5 & 10 & 3 & 19 & , & 3 & 2 & 111 & . 21 & . 12 & 11 & 95 & 1.24 & 115 & . 12 & 24 & 2.60 & . 05 & .08 & 2 & ! \\
\hline J & 33 & 11 & 81 & . 1 & 31 & 12 & 382 & 3.78 & 13 & 5 & HD & 2 & 25 & 1 & 1 & 1 & 100 & . 21 & . 10 & 12 & 82 & . 93 & 111 & . 09 & 28 & 1.51 & . 06 & . 08 & j & 10 \\
\hline : & 30 & 1 & 139 & . 3 & 30 & 11 & 208 & 4.01 & 15 & 5 & 110 & 2 & 17 & , & 2 & 3 & 84 & . 20 & . 19 & 11 & 63 & . 63 & 83 & . 12 & 21 & 2.67 & . 06 & . 01 & . & E \\
\hline 1 & 102 & 15 & 95 & 1.9 & 36 & 9 & J66 & 3. 12 & 18 & 5 & ND & 2 & 85 & 1 & 2 & 2 & 12 & 1.21 & . 09 & 16 & 57 & . 61 & 130 & . 08 & 21 & 2.87 & .07 & .0s & 2 & ! \\
\hline 4 & 159 & 27 & 154 & 1.9 & 46 & 12 & 635 & 3.86 & 19 & 3 & H0 & 2 & 84 & 2 & 2 & 2 & 79 & 1.36 & . 09 & 18 & 68 & . 70 & 131 & . 08 & 21 & 2.50 & . 07 & . 05 & 2 & 5 \\
\hline 1 & 50 & 12 & 121 & . 3 & 39 & 14 & 382 & 4.78 & 23. & 5 & 110 & 2 & 28 & 1 & 2 & 3 & 123 & . 33 & . 06 & 10 & 80 & . 92 & 112 & . 11 & 24 & 2.18 & . 07 & . 08 & 2 & 5 \\
\hline 4. & 19 & 10 & 105 & . 2 & 10 & 13 & 292 & 4.68 & 23 & 5 & HD & , & 21 & 1 & 2 & 3 & 113 & . 22 & . 11 & 14 & 84 & 1.12 & \(10:\) & . 11 & 25 & 2.29 & . 06 & . \(0 t\) & , & 5 \\
\hline 1 & 113 & 10 & 119 & . & 15 & 13 & 982 & 3.75 & 19 & 5 & K0 & 2 & 79 & & 3 & 2 & 80 & 2.03 & . 13 & 12 & 3 & . 92 & 119 & . 05 & 28 & 2.04 & . 07 & . 08 & 2 & : \\
\hline 1 & 18 & 9 & 72 & . 1 & 20 & 8 & 302 & 4.51 & 26 & 5 & ND & 2 & 28 & 1 & 2 & - 2 & 111 & . 16 & . 07 & 10 & 18 & . 55 & 109 & . 08 & 19 & 1.23 & . 07 & . 04 & 2 & J \\
\hline 3 & 172 & 12 & 153 & . 1 & 39 & 22 & 825 & 5.81 & 27 & 5 & NO & 2 & 20 & & 2 & 3 & 99 & . 16 & . 13 & 15 & 68 & 1.01 & 121 & . 08 & 26 & 2.87 & . 01 & . 0 & 2 & : \\
\hline 3 & 36 & 7 & 67 & . 1 & 30 & 9 & 266 & 3.51 & 11 & 3 & N0 & 2 & 27 & 1 & 2 & 2 & 105 & . 32 & . 06 & 11 & 13 & . 74 & 89 & . 07 & 21 & 1.57 & . 07 & .03 & 2 & * \\
\hline 18 & 57 & 38 & 122 & 6.4 & 88 & 26 & 1074 & 3.78 & 38 & 19 & 6 & 36 & - 48 & 15 & 11 & 21 & 57. & . 14 & . 13 & 37 & 35 & . 87 & 178 & . 07 & 39 & 1.6J & . 12 & 12 & 12 & 49 \\
\hline
\end{tabular}

SELCO－A DIVISION OF BP FFOJECT \＃ 10141 FILE \＃84－2アコ4 FAGE i
sumfe
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3034562933246 & 1 & 30 & 12 & 60 & ． 1 & 9 & 12 & 1119 & 2.95 & 5 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 57 & ． 21 & \(\cdot .13\) & 8 & 15 & ． 25 & 121 & ． 09 & J & 1.05 & ． 01 & ． 01 & 2 & 5 & S． 4 \\
\hline 508456293324； & j & 158 & 18 & 107 & ． 3 & 43 & 20 & 963 & 5.39 & 18 & 5 & MD & 2 & 33 & 1 & 2 & 2 & 89 & ． 18 & ． 12 & 15 & 67 & 1.11 & 158 & ． 08 & 7 & 2.31 & ． 01 & ． 08 & & 5 & ：． \\
\hline S0845i2933248 & 3 & 47 & 13 & 137 & 1 & 32 & 13 & 4 S & 4.74 & 18 & 5 & N0 & 2 & 25 & 1 & 2 & 2 & 95 & ． 32 & ． 08 & 8 & 68 & ． 85 & II： & ． 09 & 1 & 2.07 & ． 01 & ．05 & 2 & S & 5． 3 \\
\hline 5034562933219 & 2 & 11 & 15 & 100 & ． 1. & 31 & 10 & 276 & 1．15 & 18 & 5 & 110 & 2 & 20 & 1 & 2 & 2 & 98 & ． 21 & ．ll & 6 & \(i\) & ． 81 & 30 & ． 09 & \(b\) & 2.02 & ． 01 & ． 0 & 2 & 5 & ：． \\
\hline S081562933250 & 2 & 46 & 13 & 124 & ． 1 & 30 & 9 & 357 & 4．38 & 11 & 5 & H0 & 2 & 18 & 1 & 2 & 2 & 93 & ． 18 & ． 23 & 8 & 65 & ． 82 & 135 & ． 09 & 5 & 1．88 & ． 01 & ．0t & 2 & 5 & £．1 \\
\hline 5084：62933251 & 3 & 15 & 13 & 133 & ． 1 & 31 & 9 & 452 & 4.11 & 12 & \＄ & N0 & 2 & 17 & 1 & \％ & 2 & 96 & ． 11 & ． 22 & ； & 34 & ． 85 & 155 & ． 09 & J & 1.85 & ． 01 & ． 09 & 2 & 5 & \＄．？ \\
\hline 5084St2933252 & 1 & 12 & 14 & 118 & ． 8 & 15 & 12 & 489 & 4.09 & 12 & \(\pm\) & N0 & 2 & 4 & 1 & 2 & 2 & 90 & ． 50 & ． 07 & 10 & 17 & ． 97 & 13 & ． 08 & 5 & 2.15 & ． 02 & ． 08 & 2 & 5 & ¢．f \\
\hline 508456293jaj & 3 & 59 & 15 & 114 & ． 5 & 38 & 11 & 35b & 3．22 & 11 & 5 & 110 & ？ & 45 & 1 & 2 & 2 & 81 & ． 35 & ． 05 & 7 & 59 & ． 22 & 153 & ． 09 & 2 & 2.17 & ． 02 & ． \(0:\) & 2 & 5 & ： 1 \\
\hline S084562933254 & 7 & 164 & 16 & 163 & 1.1 & 72 & 13 & 1008 & S．11 & 22 & 5 & H0 & 2 & 59 & 2 & 2 & 2 & 103 & ． 86 & ． 10 & 17 & 105 & 1.12 & 205 & ． \(0 t\) & 2 & J．15 & ． 01 & ． 14 & 3 & 5 & 3.0 \\
\hline 503：S6293325s & 1 & 19 & 13 & 127 & ．\({ }^{\prime}\) & 45 & 15 & 2128 & 4.70 & 23 & 5 & H0 & 2 & 60 & 1 & 2 & 2 & 90 & 1.10 & ． 18 & 11 & 94 & 1.16 & 120 & ． 04 & 1 & 2.30 & ． 01 & ． 08 & 3 & 5 & \＆．2 \\
\hline 5084562933256 & 3 & 29 & 12 & 71 & ． 2 & 18 & 6 & 355 & 3.02 & 11 & 5 & 110 & 2 & 19 & 1 & 2 & 2 & 83 & ． 24 & ． 06 & 9 & 17 & ． 47 & 68 & ． 07 & \(i\) & 1.66 & ． 01 & ． 05 & 2 & 5 & 5.6 \\
\hline 508456293325\％ & 8 & 193 & 18 & 180 & 1.4 & 80 & 19 & 931 & 5．38 & 21 & 8 & 10 & 2 & 50 & 2 & 2 & 2 & 125 & ． 11 & ． 08 & 21 & 118 & 1.31 & 218 & ． 10 & 5 & 3.13 & ． 02 & ． 12 & ， & 5 & 8．\({ }^{\text {d }}\) \\
\hline 5081562933258 & 5 & 85 & 15 & 113 & ． 2 & 60 & 21 & 832 & 4.92 & 25 & 5 & N0 & 2 & 39 & 1 & 2 & 2 & 116 & ． 57 & ． 08 & 10 & 101 & 1.61 & 117 & ． 11 & 5 & 2.17 & ． 01 & ． 11 & 2 & 10 & 3.1 \\
\hline 5084552933259 & 5 & 88 & 19 & 139 & ． 3 & 12 & 17 & 2244 & f．s： & 18 & 5 & no & 2 & 31 & 1 & 2 & 2 & 109 & ． 31 & ．13 & 12 & 31 & ． 81 & 24 & ． 11 & 3 & 2.05 & ． 01 & ． 02 & 2 & 5 & E．！ \\
\hline 3084562932260 & 1 & 25 & 52 & 63 & ． 2 & 12 & 5 & 258 & 3.19 & 9 & s & \(n 0\) & 2 & 17 & 1 & 2 & 5 & 13 & ． 08 & ． 07 & 1 & 28 & ． 27 & 33 & ． 10 & 2 & ． 80 & ． 01 & ． 09 & 2 & 5 & 4.8 \\
\hline 5084562933261 & 2 & 12 & 15 & 32 & ． 3 & 8 & 2 & 74 & 2.32 & 4 & 6 & N0 & 2 & 10 & 1 & 2 & 2 & 17. & ． 12 & ． 08 & 8 & 26. & ． 19 & 17 & ． 13 & 2 & 1.08 & ． 01 & ． 04 & 2 & 5 & E．： \\
\hline 50815t2933262 & 1 & 64 & 14 & 73 & ． 2 & 36 & 12 & 197 & 8．11 & 14 & J & HD & 2 & 28 & 1 & 2 & 2 & 101 & ． 36 & ． 07 & 8 & 16 & 1.09 & 145 & ． 09 & 7 & 1.88 & ． 01 & ． 01 & 2 & 10 & 4.6 \\
\hline 508456293326］ & 1 & 24 & 11 & bo & ． 1 & 18 & 6 & 286 & 3.38 & 9 & 5 & 10 & 2 & 16 & 1 & 2 & 2 & 39 & ． 18 & ． 10 & 5 & 38 & ． 14 & 3 & ． 12 & 2 & 1.22 & ． 01 & ． 08 & 2 & 5 & S．\({ }^{\text {c }}\) \\
\hline 5084562933264 & 5 & 33 & 12 & 61 & ． 3 & 22 & 7 & 165 & 4．06 & 12 & 5 & 180 & 2 & 16 & 1 & 2 & 2 & 116 & ． 20 & ． 01 & 6 & 51 & ． 59 & 69 & ． 12 & 2 & 1.59 & ． 01 & ． 05 & 2 & 35 & 4.5 \\
\hline 5081562933265 & 1 & 11 & 15 & 125 & ． 2 & 34 & 12 & 801 & 1.62 & 16 & 5 & ND & 2 & 20 & 1 & 2 & 2 & 107 & ． 19 & ． 10 & 7 & 67 & ． 93 & 35 & ． 12 & 6 & 2.10 & ． 01 & ． 06 & 2 & 5 & S．： \\
\hline 5084562933268 & 2 & 19 & 12 & 53 & ． 1 & 15 & ： & 153 & 3.09 & 6 & J & ND & 2 & 18 & 1 & 2 & 2 & 92 & ． 18 & ． 09 & 7 & 11 & ． 40 & 56 & ． 13 & 1 & 1.10 & ． 01 & ． 08 & 2 & J & 4.7 \\
\hline 5084562953267 & 3 & 38 & 12 & 3 3 & ． 2 & 25 & 8 & 234 & 3.04 & 10 & 5 & KD & 2 & 26 & 1 & 2 & & 85 & ． 26 & ． 07 & 8 & 51 & ． 31 & is & ． 11 & 2 & 1.35 & ． 01 & ． 01 & 2 & 5 & 4.9 \\
\hline 5084562933268 & 3 & 64 & 15 & B5 & .1 & 11 & 15 & 194 & 4.21 & 13 & 5 & No & 2 & 27 & 1 & 2 & 2 & 111 & ． 38 & ． 06 & 9 & 70 & 1.31 & 92 & ． 11 & 5 & 1.96 & ． 01 & ． 08 & 2 & 5 & 4.8 \\
\hline 5084562933269 & 2 & 39 & 12 & \({ }^{83}\) & ． 3 & 27 & 8 & 235 & 3.56 & 11 & 5 & ND & 2 & 35 & 1 & 2 & 2 & 95 & ． 38 & ． 05 & 8 & 53 & ． 21 & 131 & ． 12 & 3 & 1.82 & ． 01 & ． 08 & 2 & 5 & E． \\
\hline 5081562933270 & 1 & 222 & 15 & 136 & ． 3 & 12 & 7 & 2358 & 8.89 & 9 & 5 & K & 2 & 21 & 1 & 2 & 2 & 71 & ． 18 & ． 33 & 3 & 15 & ． 15 & 5 & ． 10 & 2 & 2.70 & ． 01 & ． 05 & 2 & 5 & I． 1 \\
\hline 5084532934047 & 2 & 39 & 13 & 152 & ． 1 & 16 & 12 & 321 & 1.00 & 7 & 5 & 110 & 2 & \(1 i\) & 1 & 2 & 2 & 86 & ． 19 & ． 13 & 9 & 88 & 1.02 & \％ & ． 12 & 5 & 2.08 & ． 01 & ． 05 & J & \(\pm\) & 4．？ \\
\hline 50815ti934018 & 1 & 33 & 11 & 78 & .1 & 3 & 9. & 240 & 3.06 & 7 & 5 & H0 & ， & 16 & 1 & 2 & 2 & 30 & ． 18 & ． 11 & 9 & 11 & ． 67 & 7 & ． 11 & 1 & 1.80 & ． 01 & ． 05 & 2 & 5 & 5.2 \\
\hline 5084562931049 & 1 & 4 & 9 & 103 & .1 & 14 & 13 & 394 & 3．59 & 17 & 5 & 110 & 3 & 18 & 1 & 2 & 2 & 85 & ． 26 & ． 12 & 10 & 96 & 1.07 & is & ． 11 & 2 & 1.88 & ． 01 & ． 08 & 2 & 5 & S．i \\
\hline SID C & 20 & 80 & 39 & 128 & 8.2 & 73 & 28 & 1103 & J．95 & 12 & 17 & 8 & 35 & \(50^{\circ}\) & 17 & 18 & 21 & 62 & ． 18 & ． 15 & 37 & \(b\) & ． 92 & 181 & ． 01 & 39 & 1.75 & ． 08 & ． 14 & 12 & － & \\
\hline 5084552934050 & 2 & 3 & 12 & 72 & ． 2 & 15 & 13 & 353 & 3.65 & 13 & 5 & 110 & ， & 18 & 1 & 2 & 2 & 90 & ． 25 & ． 11 & 8 & 101 & 1.00 & i & ． 11 & 3 & 1.84 & ． 02 & ． 05 & 2 & \(s\) & E．？ \\
\hline 5081562930051 & 2 & 50 & 17 & 63 & ． 8 & 68 & 13 & 331 & 3.78 & 11 & 5 & 110 & 2 & 58 & 1 & 2 & 2 & 68 & ． 80 & ． 08 & 11 & 142 & ．t5 & 72 & ． 14 & 5 & 3.28 & ． 02 & ． 09 & 2 & 30 & 6.3 \\
\hline RE 5084532931048 & 1 & 31 & 9 & 7 & ． 3 & 33 & 9 & 229 & 2.96 & 6 & 5 & HD & 2 & 18 & 1 & 2 & 2 & 88 & ． 18 & ． 11 & 8 & 71 & ． 16 & 67 & ． 10 & 1 & 1.73 & ． 11 & ． 05 & 2 & \(s\) & － \\
\hline 50815：2931052 & \(\cdot 2\) & 87 & 18 & 136 & ． 3 & 58 & 18 & 821 & 4．48 & 22 & 5 & 10 & 2 & 45 & 1 & 2 & 2 & 明 & ． 13 & ． 08 & 12 & 96 & 1.19 & 111 & ． 09 & 6 & 2.30 & ． 02 & ． 0 ？ & 2 & 20 & t． 4 \\
\hline 5084522934053 & 2 & 35 & 3 & 122 & ． 1 & 17 & 9 & 301 & 4.05 & 8 & 5 & no & 2 & 19 & 1 & 2 & 2 & 92 & ． 33 & ． 14 & 5 & 91 & 1.06 & 49 & ． 18 & 2 & 2.01 & ． 02 & ． 05 & 3 & 5 & 5.7 \\
\hline 50815t2934054 & 3 & \({ }^{55}\) & 12 & 82 & ． 1 & 19 & 16 & 317 & 5.01 & 29 & 5 & N0 & 2 & 23 & 1 & 2 & 3 & 113 & ． 28 & ． 13 & 6 & 89 & 1.14 & 61 & ． 14 & 5 & 2.60 & ． 01 & ． 05 & 3 & 5 & 5.3 \\
\hline 5084562931055 & 4 & 72 & 14 & 279 & ． 3 & 25 & 15 & 332 & 8.04 & 25 & 5 & no & 2 & 14 & 1 & 2 & 2 & 139 & ． 11 & ． 29 & 7 & 41 & ． 58 & 59 & ． 15 & 3 & 2.11 & ． 01 & ． 05 & 2 & 25 & 5.1 \\
\hline 5081562931050 & 1 & 17 & 21 & 274 & 1 & 34 & 11 & 948 & 8.54 & 13 & 5 & N0 & 2 & 17 & 1 & 2 & 2 & 148 & ． 25 & ． 18 & 8 & 51 & 1.09 & 11 & ． 16 & 5 & 2.16 & ． 01 & ． 06 & 2 & 3 & 5.5 \\
\hline 5084562931057 & 3 & 91 & 14 & 250 & ． 1 & 50 & 17 & 470 & 6.40 & 19 & 5 & HD & 2 & 15 & 1 & \(\therefore 2\) & & 132 & ． 22 & ． 21 & 7 & 54 & 1.17 & 87 & ． 12 & 2 & 3.51 & ． 01 & ． 05 & 2 & 80 & 5.3 \\
\hline 5081562931058 & 1 & 11 & 18 & 219 & ． 3 & 30 & 11 & 580 & 8.53 & 30 & 5 & no & 2 & 10 & 1 & 2 & 2 & 138 & ． 20 & ． 31 & 8 & 50 & ． 65 & 84 & ． 13 & 5 & 2.70 & ． 01 & ． 05 & 2 & 5 & 5.1 \\
\hline SID C．＇Ald－0．5 & 18 & 57 & 39 & 124 & 6.5 & 69 & 27 & 1057 & 3.83 & 40 & 18 & 7 & 35 & 18 & 17 & 15 & 21 & 58 & ． 41 & ． 14 & 38 & 57 & ． 88 & 170 & ． 07 & 39 & 1.65 & ． 06 & ． 13 & 13 & & － \\
\hline
\end{tabular}

SELCO-A DIVISION OF BP FFOJECT \# 10141 FILE \# 34-27こ4
fage -
EAKPLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5081562933058 & 5 & 48 & 20 & 317 & . 1 & 84 & 16 & [36 & S. 88 & 86 & 5 & N0 & 2 & 15 & 1 & 1 & 2 & 134 & . 16 & . 16 & 9 & 95 & 1.08 & 109 & . 13 & 27 & 3.25 & . 01 & . 05 & 2 & !: 5.2 \\
\hline 5034552931000 & 2 & 88 & 16 & 203 & . 3 & 65 & 16 & 485 & 4.31 & is & 5 & 110 & 2 & 18 & 1 & 3 & 2 & 124 & . 16 & . 11 & 10 & 101 & 1.12 & 117 & . 18 & \(i\) & 3.49 & . 02 & . 05 & 2 & \% 5. \\
\hline 50645as931061 & 3 & 58 & 14 & 223 & . 2 & 54 & 17 & 176 & 6.05 & 39 & 5 & 10 & 2 & 27 & 1 & 2 & 2 & 147 & . 34 & . 19 & 1 & 89 & 1.12 & 95 & . 18 & P & 3.27 & . 01 & . 05 & & 2: 5. \\
\hline 5091562934052 & 12 & 5 & 23 & 291 & 2.1 & 49 & 13 & 653 & 5.29 & I & 5 & 10 & 2 & 13 & 1 & 1 & 2 & 96 & .19 & . 16 & 9 & 65 & 1.12 & 182 & . 12 & 1 & 1.98 & . 01 & . 0 & 2 & : 5 \\
\hline 5084562931063 & 6 & S & 21 & 367 & 2.9 & \$2 & 13 & [93 & 4.75 & 22 & 7 & K0 & 2 & 15 & 2 & 2 & 2 & 100 & .17 & . 10 & 11 & 58 & . 58 & 150 & . 13 & 25 & 2.11 & . 01 & . 04 & 2 & 5.6 \\
\hline 5089562934034 & 1 & 22 & 11 & 103 & . 2 & 30 & 8 & 211 & 3.55 & 15 & 5 & No & 2 & 19 & ! & 2 & 2 & 86 & . 24 & . 19 & ! & 71 & . 82 & 93 & . 14 & 26 & 1.81 & . 02 & . 04 & 2 & E.: \\
\hline 5081562931065 & 3 & 11 & 11 & 118 & . 1 & 30 & 10 & 246 & 5.11 & 21 & 6 & \% & 2 & 34 & 1 & 2 & 2 & 124 & . 13 & . 05 & 13 & 76 & . 79 & 118 & . 17 & 21 & 2.54 & . 02 & . 05 & 2 & 1: 6.9 \\
\hline 503453293103s & 2 & 31 & 20 & 249 & . 6 & 42 & 12 & 326 & 5.84 & 19 & 5 & K0 & 2 & 19 & 1 & 2 & 2 & 113 & . 35 & . 39 & 9 & 88 & . 84 & 120 & . 17 & 24 & 3.36 & . 02 & . 05 & 2 & ¢ 5 5.2 \\
\hline 50845ti931067 & 1 & 36 & 11 & 131 & . 1 & 36 & 12 & 384 & 1.39 & IS & 5 & N0 & 2 & . 21 & 1 & 2 & 2 & 107 & . 31 & . 24 & 9 & 83 & . 99 & 100 & . 12 & 26 & 2.15 & . 02 & . 06 & 2 & 1. 5 \\
\hline 508455:931058 & 1 & 13 & 8 & 81 & . 2 & 111 & 23 & 708. & 4.91 & 14 & 5 & HD & 2 & 17 & 1 & 2 & 2 & - 98 & . 28 & . 09 & 6 & J84 & 2.06 & 62 & . 19 & 32 & 1.91 & . 02 & . 05 & : & 13: 4.- \\
\hline 508iSt2931069 & 2 & 33 & 14 & 101 & . 2 & 88. & 13 & 285 & 5.21 & 16 & 5 & H0 & 2 & 21 & 1 & 2 & 2 & 149 & . 26 & . 05 & 8 & 243 & 2.03 & 107 & . 19 & 31 & 1.89 & . 02 & . 08 & 2 & 1.5 \\
\hline 5084562934069 A & 2 & 18 & 12 & 162 & . 1 & 13 & 12 & 276 & 4.88 & 19 & 5 & 110 & 2 & . 11 & 1 & 2 & 2 & 119 & . 16 & . 08 & 8 & 95 & . 31 & 120 & . 14 & 22 & 2.55 & . 02 & . 06 & 2 & 15 4.: \\
\hline 50815t2934070 & 5 & 72 & 16 & 183 & . 8 & 31 & IJ & 332 & 6.92 & 3 & 5 & ND & 2 & 37 & 1 & 2 & 2 & 97 & . 13 & . 11 & 9 & 74 & . 75 & 170 & . 10 & 22 & 2.69 & . 02 & . 04 & 2 & 5.7 \\
\hline 5081562931071 & 1 & b1 & 20 & 121 & . 1 & 31 & 12 & 403 & 5.02 & 28 & 5 & Ho & 2 & 19 & 1 & 2 & 2 & 98 & . 17 & . 15 & 9 & 90 & . 86 & 120 & . 10 & i3 & 2.91 & . 01 & . 05 & 2 & 5.: \\
\hline 5081562931072 & 3 & 35 & 13 & B8 & . 1 & 31 & 7 & 336 & 9.66 & 24 & 5 & KD & 2 & 18 & 1 & 2 & 2 & 120 & . 14 & . 18 & 7 & 80 & . 69 & 85 & . 13 & 21 & 1.67 & . 02 & . 01 & , & 4.3 \\
\hline RE 5081582931088 & 1 & 31 & 18 & 235 & . 7 & 40 & - 11 & 313 & 5.50 & 24. & 5 & ND & 2 & 19 & 1 & 2 & 2 & 108 & . 20 & . 36 & 8 & 85 & . 79 & 120 & . 16 & 28 & 3.24 & . 02 & . 05 & : & 320 \\
\hline Sti C & 18 & 59 & 38 & 126 & 8.1 & 68 & 26 & 1078 & 3.78 & 13 & 17 & I & 36 & 51 & 16 & 16 & 20 & 62 & . 45 & . 11 & 38 & 61 & . 88 & 180 & . 06 & 10 & 1.80 & . 06 & . 14 & 12 & - - \\
\hline 5084552931073 & 1 & 38 & 15 & 104 & . 1 & 18 & 12 & ;73 & 3.98 & 9 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 92 & . 2 i & . 12 & ? & 13 & . 53 & 128 & . 11 & 12 & 1.is & . 01 & . 01 & 2 & 4.: \\
\hline 50815t2934074 & 2 & 120 & 19 & 123 & . 1 & 64 & 21 & 521 & 5.01 & 28 & 5 & ND & 3 & 19 & 1 & 2 & 2 & 106. & . 22 & . 13 & 9 & 110 & 1.10 & 137 & . 11 & 36 & 3,37 & . 01 & . 06 & 2 & 5.2 \\
\hline 508156293107S & 1 & 28 & : & 57 & . 2 & 17 & \(\delta\) & 155 & 3.08 & ; & 5 & KD & - & 34 & 1 & 2 & 2 & 7 & .11 & . 10 & 8 & 14 & . 33 & 68 & . 11 & it & 1.92 & . 02 & . 03 & 2 & 4.5 \\
\hline 5081562931076 & 2 & 135 & 11 & 130 & 2.6 & 16 & 9 & 1140 & 3.18 & 17 & 5 & ND & 2 & 56 & . 2 & 2 & 2 & 60 & 1.04 & . 11 & 16 & 66 & . 17 & 190 & .13 & 26 & 3.66 & . 04 & . 01 & 2 & 6.2 \\
\hline 5084562934077 & 2 & 19 & 15 & 130 & . 3 & 35 & 11 & 315 & 5.58 & 27 & \$ & N0 & 2 & 19 & 1 & 2 & 2 & 112 & . 20 & . 09 & 10 & 92 & . 76 & 11 & . 14 & 21 & 3.17 & .02 & . 04 & 2 & 5.: \\
\hline 51 C C/Au-0.3 & 18 & 58 & 39 & 125 & 6.0 & 10 & 27 & 1097 & 3.83 & 11 & 17 & . 7 & 33 & 19 & 17 & 15 & 19 & 59 & . 14 & . 15 & 36 & 58 & . 88 & 181 & . 07 & 39 & 1.65 & . 06 & . 12 & 13 & 510 \\
\hline
\end{tabular}

\section*{ACME ANALYTICAL LABORATORIES LTD.}

PHONE: 253-3158
852 East Hastings St., Vancouver, B.C. V6A 1 R6
File:
54-2734
Date: SEPT 291794

TERMS:
NET TWO WEEKS
\(2 \%\) per month charged on overoue accounts.



- SAKPLE TYFE: SOILS - REJECI SAVED AUI ANALYSIS EY AA FROM 10 GRAK SAPPLE.

DATA LINE 251-1011
OCT 11 1984
semeo-maniseonmes
Wamboner, e.c.
date received: oct 1 isa date refort malled: Oct \(10 / 84\) assayer. Dobabejfy.dean toye. certified b.c. assayer
\[
\text { SELCD-A DIVISION OF BP' FROJECT \# } 10141 \text { FILE \# 84-2B27 }
\]

FAGE
SAKPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5084562931141 & 11 & 84 & 24 & 171 & . 3 & 61 & 19 & 483 & 5.63 & 20 & 5 & KO & 2 & 25 & 1 & 2 & 2 & 122 & . 22 & 13 & 30 & 165 & 1.18 & 124 & . 14 & 1 & 1.92 & . 01 & . 06 & 2 & 3 & 5.8 \\
\hline 5084562931145 & 12 & 87 & 14 & 450 & . 9 & 65 & 14 & 1278 & 4.88 & 21 & 5 & H0 & 2 & 69 & 6 & 2 & 2 & 72 & 1.35 & . 25 & 25 & 61 & . 52 & 280 & . 03 & 10 & 1.38 & . 01 & . 02 & 2 & 5 & 6.1 \\
\hline 5084562931146 & 2 & 42 & 12 & 189 & . 2 & 195 & 28 & 501 & 7.30 & 8 & 5 & H0 & 2 & 15 & 1 & 2 & 2 & 160 & . 23 & . 11 & 29 & 708 & 3.95 & 111 & . 14 & 2 & 2.93 & . 01 & . 11 & 2 & 5 & 5.5 \\
\hline 5084552931147 & 4 & 28 & 11 & 105 & .3 & 27 & 8 & 323 & 3.60 & 26 & 5 & HO & 2 & 15. & 1 & 2 & 2 & 103 & 19 & . 15 & 19 & 67 & . 57 & 68 & . 08 & 3 & 1.08 & . 01 & . 04 & 5 & 5 & 5.2 \\
\hline 5084562931148 & \(\cdot 7\) & 102 & 59 & 122 & .2 & 11 & 16 & 481 & 4.37 & 13 & 5 & ND & 2 & 31 & , & 3 & 2 & 94 & . 15 & . 09 & 25 & 11 & 1.11 & 95 & . 14 & 2 & 1.94 & . 01 & . 07 & 2 & 5 & 6.2 \\
\hline 5085562931119 & 6 & 52 & 11 & 125 & . 5 & 34 & 11 & 310 & 3.33 & 8 & 5 & No & 2 & 25 & 1 & 2 & 2 & 76 & . 50 & . 06 & 19 & 53 & . 68 & 86 & .13 & 5 & 2.18 & . 01 & . 04 & 2 & 5 & 6.3 \\
\hline 5084562931150 & 5 & 62 & 31 & 95 & . 1 & 10 & 15 & 117 & 4.10 & 15 & 5 & 80 & 2 & 39 & 1 & 2 & 2 & 85 & . 67 & . 08 & 20 & 62 & . 92 & 79 & . 11 & 1 & 1.17 & . 01 & . 08 & 2 & 35 & 6.4 \\
\hline 5084562931151 & 5 & 75 & 20 & 108 & . 3 & 33 & 14 & 352 & 5.70 & 14 & 5 & ko & 2 & 22 & 1 & 2 & 2 & 93 & . 28 & . 23 & 26 & 76 & . 91 & 86 & . 12 & 6 & 1.95 & . 01 & . 04 & 2 & 200 & 5.1 \\
\hline 5084562931152 & 3 & 55. & 15 & 89 & .1 & 26 & 11 & 439 & 5.50 & 9 & 5 & K0 & 2 & 32 & 1 & 2 & 2 & 101 & . 16 & . 25 & 23 & 62 & . 78 & 129 & . 14 & 5 & 2.39 & . 01 & . 04 & 2 & 25 & 5.2 \\
\hline 5081562 931155 & 2 & 26' & 17 & -103 & . 2 & 21 & 6 & 160 & 3.78 & 9 & 5 & K0 & 2 & 18 & 1 & & 2 & 104 & . 21 & .12 & 18 & 52 & . 53 & 85 & . 15 & 2 & 1.29 & . 01 & . 08 & 2 & 5 & 5.1 \\
\hline 5084562931154 & 5 & 72 & 25 & 132 & . 3 & 45 & 15 & 427 & 5.28 & 20 & 5 & KD & 2 & 33 & 1 & 2 & 2 & 122 & . 59 & . 08 & 24 & 79 & . 95 & 91 & . 11 & 7 & 2.81 & . 01 & . 05 & 2 & 5 & 5.3 \\
\hline 5084562931155 & 1 & 78 & 24 & 119 & .1 & 26 & 20 & 576 & 6.07 & 9 & 5 & N0 & 2 & 34 & 1 & 2 & 2 & 135 & . 31 & . 10 & 23 & 19 & . 82 & 109 & . 16 & 1 & 2.10 & . 01 & . 01 & 2 & 5 & 5.0 \\
\hline 5084562931158 & 3 & 55 & 22 & 102 & .1 & 37 & 16 & 179 & 4.74 & 11 & 5 & K0 & 2 & 16 & 1 & 2 & 2 & 95 & . 17 & . 18 & 19 & 10 & . 80 & 92 & . 14 & 6 & 3.13 & . 01 & . 04 & 2 & 5 & 5.1 \\
\hline 5084562931157 & 1 & 13 & 11 & 32 & . 1 & 10 & 5 & 270 & 1.80 & 2 & 5 & \% & 2 & 10 & 1 & 2 & 2 & 35 & . 11 & . 06 & 10 & 18 & . 17 & 12 & . 10 & 3 & . 78 & . 01 & . 01 & 2 & 5 & 5.3 \\
\hline 5084562931158 & 1 & 16 & 10 & 54 & . 1 & 13 & 5 & 151 & 2.87 & . & 5 & K & 2 & 11 & 1 & 2 & 2 & 71 & . 11 & .08 & 13 & 26 & . 27 & 51 & . 09 & 5 & 1.43 & . 01 & . 01 & 2 & 5 & 5.0 \\
\hline 5084582931159 & 1 & 13 & 10 & 123 & .2 & 35 & 13 & 361 & 4.37 & 17 & 5 & kD & 2 & 19 & 1 & 2 & 2 & 93 & . 22 & . 09 & 19 & 50 & . 85 & 90 & . 08 & 2 & 2.32 & . 01 & . 04 & 2 & 5 & 5.2 \\
\hline 5081562931160 & 3 & 172 & 14 & 154 & 1.1 & 71 & 13 & 1001 & 3.85 & 21 & 5 & KD & 2 & 13 & 2 & 2 & 2 & 64 & 1.07 & . 13 & 22 & 47 & . 67 & 95 & . 10 & 7 & 2.93 & . 02 & . 03 & 2 & 5 & 8.1 \\
\hline 5081562931161 & 1 & 50 & 12 & 103 & . 3 & 34 & 12 & 658 & 4.11 & 18 & 5 & x & 2 & 34 & 1 & \(2 \cdot\) & 2 & 90 & . 42 & . 15 & 18 & 52 & . 82 & 101 & . 08 & 8 & 1.76 & . 01 & . 05 & 2 & 5 & 5.1 \\
\hline 5081562 931182. & 3 & 74 & 11 & 160 & . 6 & 46 & 19 & 1381 & 4.27 & 19 & 5 & ko & 2 & 52 & 1 & 2 & 2 & 78 & 1.17 & . 13 & 18 & 63 & . 85 & 121 & . 08 & 9 & 2.39 & . 02 & . 03 & 2 & 5 & 6.2 \\
\hline 510. & 19 & 59 & 37 & 122 & 6.3 & 69 & 26 & 1042 & 3.64 & 37 & 17 & 1 & 35 & 48 & 16 & 16 & 19 & 58 & . 12 & . 14 & 36 & 54 & . 83 & 181 & . 07 & 37 & 1.59 & . 06 & . 11 & 13 & - & - \\
\hline RE 5081562931160 & 2 & 179 & 14 & 160 & 1.7 & 71 & 14 & 1038 & 3.95 & 19 & 5. & N0. & 2 & 4 & 2 & 2 & & 66 & 1.11 & . 13 & 20 & 47 & . 69 & 99 & . 11 & 6 & 3.07 & . 02 & . 04 & 2 & 5 & - \\
\hline 5081562931163 & 1 & 35 & 16 - & & :1 & 28 & 10 & 595 & 4.20 & 25 & 5 - & k0 & 2 & 15 & 1 & 2 & & 100 & . 21 & . 11 & 15 & 45 & . 72 & 103 & . 01 & 6 & 1.98 & . 01 & . 03 & 2 & 5 & 4.8 \\
\hline 5081562931164 & \(!\) & 23 & 13 & 170 & .6 & 22 & 8. & 219 & 4.74 & 11 & 5 & N0 & 2 & 18 & 1 & , & 2 & 100 & . 21 & . 14 & 14 & 10 & . 56 & 66 & . 09 & 3 & 2.00 & . 01 & . 02 & 2 & 5 & 4.9 \\
\hline 5084562931165 & J & 38 & 11 & 101 & . 3 & 78 & 27 & 270 & 4.84 & 18 & 5 & ND & 2 & 17 & 1 & 2 & 2 & 80 & . 34 & . 08 & 15 & 168 & . 46 & 32 & . 16 & 7 & 2.04 & . 01 & . 01 & 2 & 5 & 5.6 \\
\hline 5081562931166 & 2 & 39 & 13 & 245 & . 2 & 140 & 18 & 301 & 3.53 & 12 & 5 & N0 & 2 & 19 & 1 & 2 & 2 & 66 & . 11 & . 67 & 10 & 234 & 1.18 & 12 & . 17 & 3 & 2.33 & . 02 & . 02 & , & 5 & 5.9 \\
\hline 5081562931167 & 1 & 96 & 18 & 194 & . 8 & 71 & 16 & 920 & 5.25 & 16 & 5 & K0 & 2 & 34 & 1 & 2 & 2 & 99 & . 31 & . 09 & 20 & 91 & . 88 & 178 & . 10 & 8 & 3.19 & . 02 & . 08 & 2 & 5 & 6.0 \\
\hline 5084562931168 & 1 & 34 & 9 & 92 & . 3 & 21 & 6 & 215 & 3.64 & 10 & 5 & H0 & 2 & 17 & 1 & 2 & 2 & 14 & . 26 & . 11 & 13 & 36 & . 57 & 86 & . 09 & 3 & 2.84 & . 01 & . 02 & 2 & 5 & 5.0 \\
\hline 5084562931169 & 2 & 81 & 13 & 130 & . 7 & 14 & 11 & 356 & 3.66 & 10 & 5 & no & 2 & 47 & 1 & & & 83 & . 61 & . 09 & 18 & 13 & . 59 & 169 & . 01 & 6 & 2.92 & . 01 & . 05 & 2 & 5 & 5.9 \\
\hline 5084562931170 & 1 & 16 & 12 & 69 & .1 & 14 & , & 241 & 3.20 & 8 & 5 & H0 & 2 & 17 & 1 & 2 & 2 & 82 & . 26 & . 13 & 10 & 23 & . 39 & 88 & . 10 & 2 & 1.39 & . 01 & . 05 & 2 & 5 & 4.7 \\
\hline 5084562931171 & 3 & 40 & 11 & 90 & . 8 & 23 & 1 & 1034 & 2.38 & 3 & 5 & mo & 2 & 87 & 2 & 3 & & & 2.02 & .13 & 8 & 25 & . 45 & 113 & . 65 & 1 & 1.58 & . 01 & . 03 & 2 & 5 & 6.1 \\
\hline 5081562931172 & 2 & 87 & 15 & 154 & 2.3 & 50 & 13 & 608 & 4.38 & 15 & 5 & ND & 2 & 17 & 2 & J & \(2{ }^{\circ}\) & 90 & . 68 & . 10 & 23 & 57 & . 71 & 175 & . 09 & 5 & 3.03 & . 01 & . 06 & 2 & 5 & 6.3 \\
\hline 5084562931173 & 2 & 18 & 14 & 99 & .1 & 16 & 5 & 176 & 3.40 & 7 & 5 & 10 & 2 & 11 & 1 & 2 & 2 & 89 & . 28 & . 09 & 11 & 26 & . 41 & 62 & . 12 & 1 & 1.93 & . 01 & . 01 & 2 & 5 & 5.2 \\
\hline 5084562931174 & 2 & 20 & 13 & 57 & . 2 & 10 & 1 & 145 & 3.28 & 5 & 5 & M0 & 2 & 19 & 1 & 2 & 2 & 93 & . 28 & . 09 & 10 & 19 & . 26 & 75 & . 13 & 1 & 1.25 & . 01 & . 04 & & 5 & 5.0 \\
\hline 5084562931175 & 2 & 40 & 17 & 121 & . 5 & 31 & 9 & 190 & 3.65 & 11 & 5 & 40 & 2 & 31 & , & 2 & 2 & 81 & . 51 & . 07 & 12 & 3 & . 39 & 115 & . 09 & 6 & 2.15 & . 01 & . 04 & 2 & 5 & 5.4 \\
\hline 5084562931176 & 1 & 32 & 12 & 91 & . 1 & 26 & 10 & 304 & 3.79 & 5 & 5 & K & 2 & 28 & 1 & , & 2 & 99 & . 32 & . 05 & 14 & 40 & . 89 & 74 & . 13 & 1 & 2.20 & . 01 & . 03 & 2 & 5 & 4.9 \\
\hline 5081582932123 & 2 & 22 & 8 & 73 & . 1 & 21 & \(\theta\) & 196 & 2.98 & 15 & 5 & ND & 2. & 15 & 1 & 2 & 3 & 78 & . 19 & . 08 & 9. & 28 & . 37 & 74 & . 07 & 3 & 1.05 & . 01 & . 04 & 2 & 10 & 4.5 \\
\hline 5084562932129 & 5 & 63 & 21 & 83 & . 7 & 59 & \(11^{\circ}\) & 1350 & 3.65 & 17 & 5 & H0 & 2 & 11 & 1 & 2 & & 81 & 1.15 & . 01 & 11 & 60 & . 80 & 113 & . 12 & 9 & 2.17 & . 02 & . 02 & & 5 & 6.0 \\
\hline 5084562932130 & 17 & 65 & 21 & 112 & .1 & 59 & 16 & 333 & 4.35 & 17 & 5 & WD & 2 & 24 & 1 & 2 & 2 & 90 & . 17 & . 04 & 12 & 72 & 1.00 & 112 & .i3 & 1 & 2.05 & . 01 & . 06 & 2 & 25 & 6.1 \\
\hline 5081562932131 & 15 & 81 & 45 & 67 & . 1 & 35 & 10 & 297 & 4.41 & 13 & 5 & H0 & 2 & 27 & 1 & 3 & 1 & 116 & . 33 & . 10 & 10 & 75 & 1.10 & 109 & . 15 & 4 & 1.11 & . 01 & . 10 & 2 & 5 & 5.3 \\
\hline \(510 \mathrm{Cl} / \mathrm{Al}\) & 19 & 58 & 39 & 128 & 6.1 & 72 & 28 & 1102 & 3.82 & 10 & 18 & 7 & 35 & 50 & 17 & 15 & 19 & 60 & . 14 & . 15 & 38 & 57 & 8 & 185 & 7 & 37 & 4 & . 06 & . 12 & 12 & 500 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 50815t：932132 & 25 & 88 & 31 & 70 & ． 1 & 39 & 7 & \(3!7\) & 5.95 & 12 & 11 & ND & 2 & 81 & 1 & 2 & 2 & 129 & ． 19 & ． 15 & 2 & 135 & 1.60 & 171 & ． 21 & 2 & 1．75 & ．2： & ． 3 f & 2 & 5 & 3.0 \\
\hline 50a4532 33213 J & 15 & 31 & 23 & 105 & 2.8 & 38 & 8 & 235 & 2.69 & 8 & ， & ND & 2 & 4 & 1 & 2 & 2 & ss & ． 90 & ． 10 & 13 & 19 & ． 57 & 91 & ． 13 & J & 2.29 & ． 0 & ． 6 & ？ & 5 & S． 9 \\
\hline \(50 \mathrm{BT5t2} 982134\) & 9 & 5 & 20 & 95 & ． 2 & 36 & 15 & 104 & 5.61 & 17 & 5 & ND & 2 & 27 & 1 & 2 & 2 & 138 & ． 55 & ． 15 & 4 & is & 1.86 & 76 & ． 24 & 2 & 1.72 & ． 02 & ． 0 & ？ & 5 & 4.8 \\
\hline 5081562932135 & 5 & 10 & 20 & 81 & ． 5 & 22 & 10 & 310 & 4.82 & ； & 5 & ND & 2 & 26 & 1 & 2 & 2 & 105 & ． 43 & ． 32 & ， & 53 & ． 19 & 10： & ． 18 & 2 & 1.23 & ．2̃ & ． 87 & 2 & 5 & 5.3 \\
\hline 50015i2 922130 & 10 & 32 & 26 & 30 & ． 5 & 24 & 7 & 205 & 4.31 & 13 & 7 & 118 & 2 & 22 & 1 & 2 & 3 & 114 & ． 31 & ． 06 & 7 & 68 & ． 41 & 11 & ． 23 & 2 & 1.46 & ．02 & ． 07 & 2 & 5 & 5.1 \\
\hline 5009562 932137 & 34 & 68 & 20 & 82 & 2.4 & 13 & 14 & 216 & 3.34 & 12 & 5 & KD & 2 & 29 & 1 & 2 & 3 & 92 & ． 14 & ． 06 & 9 & 61 & ． 71 & 32 & ． 15 & 2 & 2.98 & ． 01 & ． 08 & 2 & 10 & 5.7 \\
\hline 5081562 932138 & ： & 68 & 30 & 98 & ． 5 & 33 & 11 & 392 & 5.82 & 6 & 1 & H2 & 2 & 18 & 1 & 2 & 2 & 140 & ． 36 & ． 15 & 1 & 89 & 1.60 & 7 & ． 23 & 2 & 1.86 & ． 02 & ．16 & 2 & 5 & 5.0 \\
\hline 5094562 932139 & 8 & 3 & 31 & 98 & ． 2 & 4 & 11 & 330 & 1.95 & 8 & 5 & ND & 2 & 20 & 1 & 2 & 2 & 118 & ． 41 & ． 15 & 5 & 88 & 1.53 & 65 & ． 19 & 2 & 1.78 & ． 01 & ，13 & 2 & s & 5.3 \\
\hline 5084562932140 & 5 & 15 & 29 & 60 & ． 3 & 18 & 8 & 371 & 3.74 & 1 & 5 & KD & 2 & 19. & 1 & 2 & 2 & 104 & ． 47 & ． 16 & 5 & 14 & ． 90 & 97 & ． 20 & 2 & 1.22 & ． 02 & ． 09 & 2 & 5 & 5.1 \\
\hline 5084562 932141 & 5 & 90 & 27 & 60. & ． 5 & 24 & 6 & 196 & 3.16 & 7. & 5 & ND & 2 & \(23^{\circ}\) & 1 & 2 & 2 & 94 & ． 38 & ． 69 & 9 & 52 & ． 84 & 133 & ． 17 & 2 & 1.36 & ．01 & ． 09 & 2 & 5 & 5.3 \\
\hline 5081562932142 & 29 & 179 & 29 & 126 & 3.8 & 68 & 12 & 114 & 1.60 & 16 & 5 & \(N 1\) & 2 & 52 & 1 & 2 & 2. & 87 & ． 95 & ． 11 & 18 & 72 & ． 85 & 202 & ． 11 & 2 & J． 03 & ． 02 & ． 11 & 2 & \(\pm\) & 5.9 \\
\hline 5084562 13214］ & 30 & 259 & 57 & 123 & 2.4 & 54 & 14 & 804 & 5.01 & 22 & 5 & ND & 2 & 58 & 1 & 2 & 3 & 108 & ． 83 & ． 10 & 13 & 79 & 1.17 & 193 & ． 10 & 2 & 2.17 & ． 02 & ． 18 & 2 & 5 & 5.7 \\
\hline 5084562932141 & 13 & 114 & 59 & 99 & 1.1 & 47 & 13 & 463 & 4.31 & 15 & 5 & ND & 2 & 10 & － 1 & 2 & 2 & 109 & ． 64 & ． 10 & ， & 81 & 1.53 & 120 & ． 11 & 2 & 1.95 & ． 01 & ． 13 & 2 & 15 & 5.6 \\
\hline 5084562932145 & 1 & 119 & 19 & 189 & 1.1 & 55 & 15 & 739 & 4.72 & 13 & 5 & ND & 2 & 17 & 3 & 2 & 2 & 105 & ． 94 & ． 11 & 26 & 59 & ． 85 & 202 & ． 06 & 2 & 3.65 & ． 02 & ． 10 & 2 & 5 & 5.8 \\
\hline 5081562932146 & 2 & 69 & 14 & 173 & 2.7 & 38 & 10 & 585 & 3.65 & 10 & 5 & נא & 2 & 19 & 3 & 2 & 2 & 71 & 1.11 & ． 11 & 15 & 44 & ． 88 & 153 & ． 10 & 2 & 3.26 & ． 02 & ． 05 & 2 & 5 & 6.1 \\
\hline 5081562932147 & 3 & 130 & 14 & 261 & 2.7 & 53 & 15 & 1851 & 4.25 & 16 & 5 & KD & ＋2 & 46 & 6 & 2 & & 87 & 1.07 & ． 14 & 25 & 54 & ． 3 & 133 & ． 07 & 2 & 3.02 & ． 01 & ． 07 & 2 & 5 & 6.2 \\
\hline 5031562932118 & 3 & 76 & 10 & 98 & 4.5 & 28 & 1 & 759 & 2.53 & 8 & 5 & KD & 2 & 64 & 1 & 2 & 2 & 48 & 1.76 & ． 16 & 29 & 30 & ． 55 & 125 & ． 04 & 1 & 1.99 & ． 02 & ． 05 & 2 & 5 & 8.2 \\
\hline 5001562932149 & 2 & 14 & 11 & 130 & ． 6 & 34 & 10 & 378 & 3.55 & 11 & 5 & ND & －2 & 28 & 1 & & 2 & B2 & ． 59 & ． 07 & 12 & 15 & ． 7 & 129 & ． 08 & 2 & 2.25 & ． 01 & ． 09 & 2 & 5 & 6.0 \\
\hline 5081562932150 & 6 & 25 & 11 & 192 & ．． 1 & 27 & 7 & 261 & 3.93 & 7 & 5 & ND & 2 & 19 & 1 & & 2 & 111 & ． 29 & ． 18 & 8 & 11 & ． 64 & 100 & ． 13 & 2 & 1．92．＊ & ． 01 & ． 06 & 2 & 5 & 5.6 \\
\hline 5081562932151 & 3 & 20 & 11 & 177 & ． 1 & 23 & 10 & 291 & 3.78 & 13 & 5 & ND & ， & 25 & 1 & 2 & 2 & 93 & ． 40 & ． 22 & 11 & 38 & ． 17 & 143 & ． 10 & 2 & 2.16 & ． 01 & ． 08 & 2 & 5 & 5.7 \\
\hline 5081562932152 & ， & 18 & 15 & 107 & ． 3 & 16 & d & 217 & 3.29 & 7 & 5 & ND & & 21 & 1 & 2 & 2 & 88 & ． 32 & ． 09 & 10 & 27 & ． 19 & 85 & ． 13 & J & 1.87 & ． 01 & ． 08 & 2 & 5 & 5.4 \\
\hline 5084562932153 & 2 & 27 & IJ & 98 & ． 3 & 19 & 8 & 319 & 3.58 & 14 & 5 & ND & ， & 18 & 1 & 2 & 2 & 84 & ． 24 & ． 12 & 1 & 32 & ． 52 & 98 & ． 10 & 2 & 1.98 & ． 01 & ． 05 & 2 & 5 & 5.0 \\
\hline 5084562932154 & 2 & 13 & 9 & 56 & ． 3 & & 3 & 187 & 1.83 & 5 & 5 & NT & & 18 & 1 & 2 ＂ & 2 & 57 & ． 23 & ． 13 & 7 & 16 & ． 20 & 114 & ． 07 & 】 & ． 91 & ． 01 & ． 05 & 2 & 5 & 4.1 \\
\hline 5081562 932155 & 5 & 37 & 12 & 185 & ． 8 & 20 & 5 & 204 & 1.31 & 17 & 5 & ND & 2 & 16 & f & 3 & 2 & 84 & ． 23 & ． 15 & 11 & 21 & ． 40 & 166 & ． 05 & 2 & 1.63 & ． 01 & ． 06 & 2 & 5 & 1.7 \\
\hline 5081562932156 & 3 & 37 & 9 & 110 & ． 9 & 25 & 6 & 596 & 2.07 & 5 & 7 & ND & 2 & 70 & 3 & 2 & 2 & 45 & 1.48 & ． 12 & 9 & 19 & .19 & 131 & ． 06 & 2 & 1.82 & ． 01 & ． 05 & 2 & 5 & 6.0 \\
\hline 5091562932157 & ， & 12 & 8 & 101 & ． 1 & 10 & & 248 & 2.17 & 6 & 5 & HD & 2 & 18 & 1 & 2 & & 53 & ． 24 & ． 12 & 7 & 15 & ． 21 & 89 & ． 07 & 2 & 1.04 & ． 01 & ． 07 & 2 & 5 & 4.9 \\
\hline 5081562932158 & 2 & 17 & 14 & 108 & ． 2 & 15 & 5 & 308 & 3.38 & 13 & 5 & K0 & 2 & 13 & 1 & 2 & 2 & 86 & ． 18 & ． 09 & 6 & 22 & ． 28 & 69 & ． 12 & 2 & 1．58 & ． 01 & ． 05 & 2 & 10 & 4.8 \\
\hline SID \(¢\) & 19 & 56 & 38 & 123 & 6.3 & 39 & 21 & 1028 & 3.75 & 11 & 17 & 7 & 31 & 19 & 16 & 16 & 19 & 57 & ． 14 & ． 14 & 37 & 61 & ． 86 & \(1 ? 7\) & ． 08 & 38 & 1.66 & ． 06 & ． 13 & 12 & － & \\
\hline 5081562932159 & 2 & 21 & 12 & 100 & ． 3 & 20 & 8 & 326 & 3.36 & 10 & 5 & ND & 2 & 23 & 1 & 2 & 2 & 93 & ． 41 & ． 06 & 9 & 33 & ． 51 & 126 & ． 09 & 2 & 2.05 & ． 01 & ． 05 & 2 & 5 & 5.0 \\
\hline 5091562932180 & 6 & 67 & 21 & 207 & ． 1 & 45 & 22 & 2625 & 4.32 & 16 & 5 & ND & 2 & 25 & 1 & 2 & 2 & 76 & ． 47 & ． 19 & 25 & 46 & ． 15 & 96 & ． 16 & 1 & 3.43 & ． 02 & ． 03 & 2 & 5 & d． 1 \\
\hline RE 5084562 932152 & 1 & 18 & 13 & 109 & ． 3 & 17 & ， & 250 & 3.37 & 9 & 5 & ND． & 2 & 21 & 1 & 2 & 2 & 89 & ． 35 & ． 09 & 10 & 28 & ． 50 & 13 & ． 13 & 2 & 1．86 & ． 01 & ． 07 & 2 & 5 & － \\
\hline 5081562 932161 & 5 & \({ }^{6}\) & 19 & 156 & ． 1 & 35 & 12 & 712 & 4.12 & 15 & 5 & N0 \({ }^{\circ}\) & 2 & 27 & 1 & 2 & 2 & 98 & ． 19 & ． 19 & 10 & 49 & ． 86 & 131 & ． 12 & J & 2.16 & ． 01 & ． 08 & 2 & 5 & 4.9 \\
\hline 5081562932162 & 1 & 150 & 14 & 178 & 2.0 & 68 & 11 & 608 & 5.12 & 17 & 5 & ND＇ & 2 & 57 & 2 & 2 & 1 & 98 & 1.03 & ． 17 & 29 & 68 & ． 82 & 189 & ． 07 & 5 & 3.68 & ． 02 & ． 15 & 2 & 5 & 5.8 \\
\hline 5084562932163 & 1 & 23 & 16 & 55 & ． 2 & 18 & 5 & 211 & 3．06 & ， & 5 & ND & 2 & 17 & 1 & 2 & J & 68 & ． 32 & ． 10 & 10 & 11 & ． 41 & 65 & ． 13 & 2 & 2.10 & ． 02 & ． 03 & 2 & 5 & 5.2 \\
\hline 5081562 932164 & 3 & 13 & 9 & 26 & ． 2 & 8 & ， & 82 & 1.68 & 1 & 5 & ND & ， & 11 & 1 & 2 & 3 & 57 & .16 & ． 04 & 8 & 15 & ． 16 & \(n\) & ． 11 & 2 & ． 62 & ． 01 & ． 01 & 2 & 15 & 4.3 \\
\hline 5081562932165 & 1 & 14 & 14 & 47 & ． 1 & 13 & 5 & 267 & 2.32 & 3 & 5 & No & 2 & 26 & \(!\). & 2 & 2 & 13 & ． 79 & ． 10 & 5 & 33 & ． 36 & 95 & ． 19 & 2 & 1.10 & ． 02 & ． 15 & 2 & 5 & 4.8 \\
\hline 5081562932168 & 9 & 115 & 7 & 81 & ． 5 & 88 & 12 & 178 & 2.52 & 1 & 8 & K & 2 & 27 & 1 & 2 & 3 & 44 & ． 50 & ． 11 & 26 & 40 & ． 42 & 72 & ． 03 & 1 & 1.58 & ． 01 & ． 12 & 2 & & 5.7 \\
\hline 5004562952187 & 2 & 25 & 11 & 32 & ． 1 & 但 & 5 & 162 & 2.16 & 3 & 5 & HD & 2 & 22 & 1 & 2 & 2 & 81 & .12 & ． 07 & 6 & 57 & ． 62 & 67 & ． 25 & d & 1.00 & ． 02 & ． 01 & 2 & 5 & 4.7 \\
\hline 5081562932168 & 3 & 14 & 11 & 52 & .1 & 27 & 8 & 231 & 4.11 & 11 & 5 & K0 & 2 & 20 & 1 & 2 & 2 & 107 & ． 35 & ． 18 & 7 & 55 & 1.08 & 39 & ． 20 & S & 1.49 & ． 02 & ． 10 & 2 & 5 & 4.6 \\
\hline Sid CJAU－0．5 & 19 & 59 & J7 & 125 & 6.6 & 70 & 27 & 1073 & 3.82 & 10 & 19 & 7 & ． 37 & 51 & 17 & 15 & 18 & 58 & ． 14 & ． 14 & 37 & 58 & ． 88 & 188 & ． 07 & 38 & 1.63 & ． 06 & ． 12 & 12 & 500 & \\
\hline
\end{tabular}

SELCO-A DIVISION OF BF FRDJECT \# 10141 FILE \# 84-2日27
Fage \(\approx\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SNKPLEI & H0 & cu & P3 & 2 H & AG & H1 & co & H* & FE & AS & U & av & זH & 58 & CO & 58 & 81 & \(V\) & CH & \(p\) & LA & C. & Kó & \({ }^{64}\) & II & \% & al & KA & K & * & AUP & \\
\hline & PFM & PPK & PPK & PFH & Pi:\% & PPK & PPM & PPK & 1 & PPK & PPM & PPK & PPK & PPK & PFK & PPH & PPM & PPM & 1 & \% & Pf\% & PPK & 2 & PFK & 1 & PPK & 1 & 2 & 1 & PPK & PPB & \\
\hline 5084562933169 & 1 & 12 & 7 & 20 & . 1 & 12 & 2 & 92 & 1.29 & 2 & 5 & N0 & 2 & 18 & 1 & 2 & 2 & 46 & . 22 & . 05 & 3 & 30 & . 35 & 60 & . 09 & 30 & . 63 & . 02 & . 09 & 2 & 5 & 4. \\
\hline 5089562 932170 & 6 & 155 & 13 & 34 & . 9 & 18 & j & 107 & 1.89 & 6 & 5 & \% & 2 & 35 & 1 & 2 & 2 & 47 & . 71 & . 01 & 10 & 23 & . 27 & 75 & . 08 & 31 & 1.01 & . 02 & . 04 & 2 & 5 & 5. \\
\hline 5088562932171 & 2 & 15 & 15 & 35 & . 2 & 9 & 3 & 105 & 2.19 & 7 & 5 & ND & 2 & 16 & 1 & 2 & 2 & 69 & . 22 & . 11 & 9 & 22 & . 28 & 14 & . 13 & 32 & . 16 & . 02 & . 04 & 2 & 5 & 4.7 \\
\hline 5084562 932172 & 1 & 11 & 13 & 39 & . 1 & 7 & 2 & 111 & 2.53 & 1 & 5 & HD & 2 & 14 & 1 & 2 & 2 & 69 & . 18 & . 07 & 8 & 20 & . 25 & 11 & . 09 & 28 & 1.20 & . 01 & . 02 & 2 & 5 & 1.1 \\
\hline 5084562932173 & 2 & 20 & 11 & 47 & . 2 & 12 & 4 & 171 & 2.83 & 7 & 5 & ND & 2 & 19 & 1 & 2 & - 2 & 79 & . 23 & . 07 & 8 & 25 & . 42 & 99 & . 08 & 29 & 1.18 & . 01 & . 03 & 2 & 5 & 4.2 \\
\hline 5084562 932174 & 2 & 24 & 14 & 91 & . 1 & 17 & 5 & 241 & 4.00 & 12 & 5 & 10 & 2 & 15 & 1 & 2 & 2 & \({ }^{83}\) & . 22 & . 14 & \(\cdot 10\) & 33 & . 51 & 89 & . 04 & 29 & 2.19 & . 01 & . 04 & 2 & 5 & 4.9 \\
\hline 5081562932175 & 2 & 26 & - & 130 & . 1 & 20 & 8 & 421 & 3.71 & 14 & 5 & ND & 2 & 20 & 1 & 2 & 2 & 84 & . 29 & . 21 & 12 & 36 & . 64 & 193 & . 07 & 31 & 1.90 & . 01 & . 03 & 2 & 5 & 5.1 \\
\hline SID C & 18 & 58 & 37 & 121 & 6.3 & 63 & 26 & 1033 & 3.65 & 10 & 17 & 6 & 31 & 45 & 15 & 15 & 19 & 60 & . 10 & . 13 & 36 & 57 & . 83 & 178 & . 06 & 39 & 1.53 & . 06 & . 11 & 13 & - & \\
\hline 5084562932176 & 1 & 13 & 14 & 54 & .1 & 9 & 1 & 1319 & 1.99 & 7 & 5 & MD & 2 & 22 & 1 & 2 & 2 & 66 & . 37 & . 08 & 7 & 21 & . 31 & 171 & . 08 & 26 & . 98 & . 01 & . 04 & 2 & 5 & 4.6 \\
\hline 5089562933271 & 8 & 41 & 17 & 12 & . 1 & 17 & 5 & 171 & 3.57 & 14 & 5 & KD & 2 & 23 & 1 & 2 & 2 & 107 & . 35 & . 06 & 10 & 4 & . 16 & 128 & . 12 & 30 & 1.02 & . 01 & . 03 & 2 & 20 & 4.5 \\
\hline 5094562 933272 & 5 & 29 & 33 & 24 & . 3 & 1 & 3 & 95 & 2.33 & 7 & 5 & N0 & 2 & 13 & 1 & 2 & 2 & 11 & . 09 & . 09 & 7 & . 23 & . 19 & 62 & . 12 & 28 & . 66 & . 02 & . 03 & 2 & 5 & 4. \\
\hline 5084562 933273 & 3 & 39 & 18 & \({ }^{6}\) & . 2 & 26 & 9 & 562 & 3. 81 & 15 & 5 & KD & 2 & 17 & 1 & 3 & 2 & 100 & . 24 & . 11 & 12 & 58 & . 81 & 108 & . 11 & 36 & 1.73 & . 02 & . 06 & 2 & 5 & 5.7 \\
\hline 5084562933214 & 4 & 76 & 25 & 87 & . 1 & 15 & 15 & 425 & 4.38 & 19 & 5 & ND & 2 & 20 & 1 & 3 & 3 & 101 & . 25 & . 09 & 14 & 87 & 1.35 & 90 & . 13 & 41 & 2.22 & . 01 & . 06 & 2 & 5 & 5.0 \\
\hline 5081562933275 & 1 & 67 & 16 & 101 & . 3 & 45 & 15 & 515 & 4.60 & 22 & 7 & ND & 3 & 23 & 1 & 2 & 2 & 112 & . 29 & . 09 & 13 & 89 & 1.10 & 110 & . 11 & 35 & 2.14 & . 02 & . 10 & 2 & 5 & 5. \\
\hline 5084562 935276 & 7 & 98 & 20 & 180 & . 9 & 52 & 12 & 1310 & 3.86 & 16 & 5 & KD & 3 & 36 & 1 & 2 & 3 & 76 & . 58 & . 06 & 15 & 71 & . 79 & 205 & . 14 & 34 & 2.95 & . 03 & . 05 & 2 & 5 & 6. \\
\hline 5084562933277 & 1 & 45 & 19 & 88 & . 2 & 32 & 13 & 291 & 4.06 & 16 & 5 & N0 & 2 & 21 & 1 & 2 & - 2 & 103 & . 23 & . 04 & 11 & 65 & . 89 & 129 & . 12 & 27 & 1.94 & . 02 & . 06 & 2 & 5 & 5. \\
\hline 5081562933778 & 3 & 51 & 22 & 78 & . \(]\) & 26 & 9 & 312 & 4.63 & 14 & 5 & N0 & 2 & 20 & 1 & 2 & 3 & 116 & . 15 & . 17 & - & 11 & . 74 & 92 & . 12 & 26 & 2.40 & . 01 & . 04 & 2 & 5 & 5. \\
\hline 5084562933379 & 2 & 31 & 15 & 80 & . 2 & 21 & 9 & 527 & 3.35 & 12 & 5 & N0 & 2 & 23 & 1 & 2 & 2 & 88 & . 26 & . 08 & 8 & 52 & . 64 & 122 & . 11 & 27 & 1.48 & . 02 & . 06 & 2 & 5 & 5. \\
\hline 5081562 933280 & , & 10 & 9 & 29 & . 1 & 5 & 3 & 208 & 1.76 & 8 & 5 & no & 2 & 13 & 1 & 2 & 2 & 63 & . 17 & . 06 & 1 & 13 & . 12 & 64 & . 10 & 31 & . 30 & . 02 & . 04 & 2 & 5 & 4. \\
\hline 5081562933281 & 1 & 12 & 15 & 127 & .1 & 9 & 5 & \(47!\) & 3.24 & 15 & 5 & ND & 2 & 14 & 1 & 2 & 2 & 87 & . 18 & . 22 & 7 & 30 & . 34 & 78 & . 11 & 31 & 1.33 & . 02 & . 03 & 2 & 5 & 5.2 \\
\hline 5081562933282 & 4 & 120. & 1 & 52 & 3.5 & 30 & 6 & 372 & 2.08 & 14 & 5 & 10 & 2 & 57 & 1 & 2 & 2 & 42 & 1.82 & . 12 & 21 & 29 & . 26 & 76 & . 04 & 33 & 1.42 & . 02 & . 03 & 2 & 5 & 6.1 \\
\hline 5084562933283 & & 79 & 22 & 88 & . 3 & 71 & 13 & 128 & 5.73 & 23 & 5 & N0 & 2 & 21 & 1 & 2 & 2 & 135 & . 28 & . 13 & 7 & 197 & 2.30 & 54 & . 18 & 40 & 2.25 & . 02 & . 08 & 2 & 25 & S. \\
\hline 5081562933284 & 6 & 11 & 12 & 26 & . 1 & 18 & 3 & 18 & 2.11 & 6 & 5 & ND & 2 & 15 & , & 2 & 2 & 102 & . 21 & . 02 & , & 56 & . 55 & 70 & . 21 & 30 & . 86 & . 02 & . 05 & 2 & 5 & 5. \\
\hline 5004562 933285 & 3 & 12 & 11 & 34 & . 5 & 13 & 3 & 111 & 2.86 & 19 & 5 & K0 & 2 & 12 & 1 & & 2 & 106 & . 12 & . 08 & 9 & 29 & . 21 & 90 & . 10 & 21 & . 56 & . 02 & . 04 & 2 & 110 & 1. \\
\hline 5084562933286 & J & 19 & 21 & 155 & . 4 & 32 & 20 & 413 & 8.02 & 15 & 5 & NO & 2 & 10 & 1 & 2 & 2 & 230 & . 20 & . 15 & 5 & 154 & 2.53 & 88 & . 24 & 37 & 2.11 & . 02 & . 34 & 1 & 5 & 5.0 \\
\hline RE 5084562.933281 & \(-1\) & . 13 & 12 & : 124 & . 3 & 10 & 5 & 458 & 3.21 & 15 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 88 & . 18 & . 21 & 5 & 30 & . 35 & 75 & . 11 & 23 & 1.30 & . 02 & . 04 & 2 & 5 & \\
\hline 5081562 933287 & 3 & 29 & 19 & 143 & . 5 & 26 & 12 & 311 & 4.70 & 14 & 5 & k & 2 & 16 & 1 & 2 & 2 & 120 & . 25 & . 20 & & 68 & 1.16 & 119 & . 15 & 35 & 1.35 & . 02 & . 09 & 2 & 5 & 1.8 \\
\hline 5084562 933288 & 24 & 90 & 27 & 211 & . 6 & 21 & 11 & 365 & 4.68 & 18 & 5 & \(\times 1\) & 2 & 15 & 1 & 2 & 2 & 112 & . 23 & . 14 & 7 & 65 & 1.05 & 176 & . 13 & 36 & 1.46 & . 02 & . 07 & 2 & 5 & . \\
\hline 5081562 933289 & 1 & 16 & 10 & 58 & . 3 & 9 & 3 & 132 & 2.28 & 13 & & Kid & 2 & 15 & 1 & 2 & 2 & 69 & .17 & . 10 & 8 & 21 & . 25 & 98 & . 09 & 27 & . 76 & . 02 & . 04 & 2 & 15 & 1. \\
\hline 5084562933290 & 2 & 39 & 13 & 156 & . 1 & 30 & 11 & 292 & 4.97 & 33 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 105 & . 22 & . 23 & 12 & 55 & . 72 & 110 & . 01 & 33 & 3.26 & . 01 & . 04 & 2 & 5 & 5. \\
\hline 5094562933291 & 2 & 53 & 10 & 115 & . 3 & 33 & 12 & 419 & 4.11 & 24 & 5 & ND & 2 & 16 & 1 & 2 & 2 & 97 & . 20 & . 10 & 12 & 56 & . 93 & 116 & . 01 & 28 & 2.15 & . 01 & . 05 & 2 & 5 & 5.5 \\
\hline 5084562933292 & 5 & 11 & 10 & B9 & . 2 & 23 & 6 & 185 & 3.81 & 32 & 5 & n \({ }^{\text {d }}\) & 1 & 17 & 1 & & 2 & 115 & . 15 & . 07 & & 17 & . 50 & 130 & .06 & 28 & 1.16 & . 01 & . 08 & 2 & 10 & 4.2 \\
\hline 5081562933293 & 1 & 16 & 10 & 85 & . 5 & 10 & 1 & 188 & 3.19 & 14 & 5 & no & 2 & 19 & 1 & 2 & 2 & 89 & . 27 & . 14 & & 32 & . 29 & 62 & . 08 & 1 & 1.60 & . 01 & . 04 & 2 & 25 & 5.2 \\
\hline 5081562933294 & 4 & 35 & 20 & 75 & . 1 & 8 & 11 & 355 & 6. 39 & 12 & 5 & No & 2 & 68 & 1 & 2 & 2 & 142 & . 18 & . 28 & \(b\) & 14 & . 26 & 176 & . 11 & 27 & . 98 & . 01 & . 04 & 2 & 20 & 4. \\
\hline 5084562933295 & 1 & 21 & 22 & 88 & . 3 & 15 & 5 & 153 & 4.07 & 14 & 5 & N0 & 2 & 13 & 1 & 5 & 2 & 98 & . 16 & . 08 & 12 & 36 & . 17 & 113 & . 01 & 21 & 1.54 & . 01 & . 03 & 2 & 5 & 5. \\
\hline 5084562933298 & 1 & 26 & 10 & 7 & . 7 & 14 & 1 & 151 & 3.02 & 17 & 5 & W0 & 2 & 13 & 1 & 2 & 2 & 日2 & . 18 & . 09 & 8 & 38 & . 28 & 62 & . 05 & 3 & 1.81 & . 01 & . 03 & 2 & 5 & 5. \\
\hline 5084562933297 & 1 & 20 & 11 & 52 & . 3 & 11 & 3 & 113 & 2.84 & 10 & 5 & ND & 2 & 12 & 1 & 2 & 2 & 97 & . 12 & . 10 & 1 & 18 & . 25 & 86 & . 01 & 1 & 1.01 & . 01 & . 04 & 2 & & 4. \\
\hline 5084562933298 & & 43. & & - 103 & - : 1 & 29 & \(B\) & 285 & 4.51 & 20 & 5 & - KD - & & - 26 & 1 & 2 & 2 & 99 & . 21 & . 10 & 13 & 56 & . 95 & 170 & . 05 & 25 & 2.17 & . 01 & . 04 & 2 & 5 & 5. \\
\hline 5084562933299 & 2 & 71 & 13 & 69 & . 5 & 29 & 10 & 367 & 3.46 & 22 & 5 & ND & 2 & 37 & 1 & 2 & 2 & 79 & . 69 & . 07 & 18 & 45 & . 15 & 154 & . 05 & d & 2.30 & . 01 & . 03 & 2 & 5 & \\
\hline SID C/AU-0.5 & 18 & 57 & 39 & 122 & 6.5 & 67 & 26 & 1088 & 3.82 & 11 & 18 & 7 & 36 & 49 & 16 & 15 & 19 & 63 & .41 & . 14 & 39 & 61 & . 88 & 172 & . 07 & 42 & 1.63 & . 06 & . 12 & 13 & 490 & \\
\hline
\end{tabular}

SELCO－A DIVISION OF BP FFOJECT \＃10141 FILE \(\#\) 34－2827
fage 4
SMRPLEI no PFM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5084562 935300 & 2 & 47 & 13 & 122 & ． 6 & 3 & 12 & 190 & 4.01 & 15 & 5 & H0 & 3 & 37 & 1 & 2 & J & 90 & ． 60 & ． 06 & 9 & 52 & ． 62 & 125 & ． 07 & 18 & 2.35 & ． 01 & ． 05 & ： & 5 & 5.7 \\
\hline 5084562 935301 & 2 & 12 & 13 & 108 & ． 7 & 30 & ：0 & 479 & 3． 55 & 13 & 5 & ND & 2 & \(\bigcirc 36\) & 1 & 2 & 2 & 85 & ． 52 & ． 05 & 7 & 16 & ． 0 & 106 & ． 07 & j & 2.08 & ． 01 & ． 04 & 2 & － & 5.7 \\
\hline 50915t2 935302 & 3 & 191 & 20 & 154 & 1.6 & 88 & 17 & 1734 & 6.06 & 27 & 5 & KD & 1 & 54 & 1 & 3 & & 105 & 1．11 & ． 08 & 24 & 102 & 1.04 & 216 & ． 05 & 12 & 2.14 & ．02 & ． 10 & 2 & 5 & 6.3 \\
\hline Sti \(¢\) & 18 & 61 & 31 & 119 & 8.2 & 66 & 26 & 1062 & 3.76 & 31 & 17 & 8 & 36 & 46 & 18 & 17 & 20 & 55 & ． 13 & ． 14 & 36 & 56 & ． 86 & 171 & ． 07 & 37 & 1．62 & ． 06 & ． 12 & 12 & － & \\
\hline 50845t2 93JJ03 & 2 & 71 & 14 & 124 & ． 2 & 38 & 12 & 379 & 6.11 & 29 & 5 & H & 3 & 19 & 1 & 3 & 1 & 113 & ．17 & ． 15 & 9 & 67 & ． 99 & 98 & ． 05 & & 3.30 & ． 01 & ． 80 & 2 & J & 5.8 \\
\hline 5094562933304 & 2 & 62 & 12 & 86 & ． 4 & 30 & 11 & 2310 & 3.51 & 13 & 5 & H0 & 3 & 55 & 1 & 2 & 2 & 8 & 1.11 & ． 10 & 7 & 45 & ． 65 & \(13:\) & ． 05 & 5 & 2.22 & ． 01 & ． 04 & 2 & 5 & 6.2 \\
\hline 50815029833305 & 4 & 128 & 19 & 165 & 1.1 & 55 & 15 & 853 & 5． 11 & 29 & 5 & HD & 3 & 58 & 1 & 3 & ， & 90 & ． 87 & ． 12 & 14 & 63 & ． 97 & 210 & ． 06 & 6 & 3.15 & ． 01 & ． 08 & 2 & 5 & d． 0 \\
\hline 5084562933506 & 1 & 107 & 13 & 109 & ． 6 & 13 & 12 & 550 & 1．98 & 29 & 5 & HD & 3 & 43 & 1 & J & 2 & 99 & ． 64 & ． 08 & 15 & 61 & ． 77 & 175 & ． 04 & 1 & 2.95 & ． 01 & ． 06 & 2 & 5 & 6.1 \\
\hline 5081562933307 & 1 & 11 & 9 & 46 & ． 5 & 9 & 3 & 117 & 1.86 & ， & 5 & ND & 2 & 10 & 1 & 2 & 2 & 50 & ． 14 & ． 06 & 6 & 17 & ． 19 & 54 & ． 05 & 2 & ． 72 & ． 01 & ． 05 & 2 & 5 & 5.1 \\
\hline 5084562933308 & 1 & 14 & 11 & B6 & ． 1 & 29 & 8 & 285 & 4．31 & 13 & 5 & KD & － 3 & 25 & 1 & 3 & 2 & 84 & ． 24 & ． 11 & 9 & 19 & ． 86 & 30 & ． 05 & 2 & 1.95 & ． 01 & ． 06 & 2 & 5 & 5.2 \\
\hline 5084562933309 & 1 & 51 & 13 & 150 & ． 5 & 26 & 12 & 1269 & J． 88 & 11 & 5 & KD & 2 & 20 & 2 & 2 & 2 & 82 & ． 34 & ． 07 & 6 & 11 & ． 58 & 94 & ． 07 & 2 & 1.85 & ． 01 & ． 04 & 2 & 5 & 5.5 \\
\hline 5084562933310 & 1 & 31 & 13 & 111 & ． 3 & 29 & 12 & 274 & 4.18 & 12 & 5 & ND & I & 13 & 1 & 2 & ， & 14 & ． 16 & ．11 & 12 & 12 & ． 66 & 117 & ． 09 & 5 & 2.83 & ． 01 & ． 06 & 2 & 5 & 5.6 \\
\hline 5084562933311 & 2 & 32 & 14 & 98 & ． 1 & 19 & 14 & 1487 & 4.37 & 16 & 5 & NJ & 2 & 17 & 1 & 2 & ， & 99 & ． 16 & ． 20 & 8 & 43 & ． 46 & 108 & ． 06 & 5 & 2.07 & ． 01 & ． 03 & 2 & 5 & 5.2 \\
\hline 5084562933312 & J & 25 & 15 & 119 & ． 5 & 26 & 6 & 197 & 3.37 & 6 & 5 & ND & 2 & 21 & 1 & 2 & 2 & 35 & ． 35 & ． 06 & 8 & J6 & ． 16 & 108 & ． 08 & 3 & 1.97 & ． 01 & ． 01 & 2 & 5 & 5.1 \\
\hline S084502 93J313 & 1 & 29 & 12 & 95 & ． 5 & 19 & 5 & 163 & 4.44 & 10 & 5 & ND & 3 & 19 & 1 & 3 & 2 & 90 & ． 25 & ． 05 & 9 & 36 & ． 48 & 113 & ．0日 & 3 & 2.79 & ． 01 & ． 03 & 2 & 5 & 5.1 \\
\hline 5081552933314 & 4 & 25 & 14 & 108 & ． 4 & 19 & 5 & 213 & 4.11 & 10 & & HD & 2 & 11 & 1 & 2 & 2 & 99 & ．11 & ． 08 & 9 & 34 & ． 18 & 118 & ． 01 & 2 & 1.67 & ． 01 & ． 03 & 2 & 5 & 4.8 \\
\hline 5084562 933315 & 1 & 17 & 24 & 105 & ． 2 & 150 & 19 & 346 & 4．53 & 2 & 9 & H0 & 7 & 323 & 1 & 2 & 2 & 66 & 1.05 & ． 17 & 37 & 317 & 3.73 & 582 & ． 17 & 5 & 1.93 & ． 04 & ． 29 & 2 & 5 & 4.9 \\
\hline 5084562933316 & 1 & 95 & ？ & 172 & 2.1 & 16 & 9 & 378 & 2.66 & 8 & 5 & ND & \(\because 2\) & 81 & 5 & 2 & 2. & 45 & 1.96 & ． 18 & 15 & 37 & ． 55 & 118 & ． 04 & 5 & 1.76 & ． 01 & ． 04 & 2 & 5 & 3.1 \\
\hline 5084562933317 & 4 & 28 & 12 & 128 & ． 6 & 29 & 6 & 251 & 3.31 & 13 & 5 & ND & 2 & 22 & 1 & 3 & 2 & 84 & ． 11 & ． 07 & ， & 4 & ． 54 & 113 & ． 06 & 1 & 1.65 & ． 01 & ． 05 & 2 & 5 & 5.2 \\
\hline 5084562 933518 & 2 & 17 & 7 & 60 & ． 3 & 14 & 3 & 132 & 2.04 & 6 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 53 & ． 16 & ． 11 & 10 & 28 & ． 30 & 111 & ． 06 & 1 & ． 88 & ． 01 & ． 03 & 2 & 5 & 4.5 \\
\hline 5084562．933319 & 1 & 35 & 12 & 183 & .7 & 31 & 9 & 291 & 1.27 & 12 & 5 & ND & 2 & 38 & 1 & 2 & 2 & 86 & ． 52 & ． 10 & 12 & 42 & ． 80 & 139 & ． 07 & 6 & 2.17 & ． 01 & ． 04 & 2 & 5 & 8.0 \\
\hline 5081562933320 & 5 & 4 & 11 & 146 & ． 1 & 23 & 11 & 369 & 1．66 & 18 & 5 & ND & 2 & 32 & 1 & 2 & 2 & 81 & ． J 9 & ． 31 & 9 & 32 & ． 3 & 122 & ． 05 & 5 & 2.00 & ． 01 & ． 05 & 2 & 5 & 5.8 \\
\hline 5084562 933321 & 2 & 6 & 5 & 24 & ． 3 & 1 & 1 & 14 & ． 88 & 4 & 5 & ND & 2 & ： 9 & 1 & － 2 & 2 & 46 & ． 11 & ． 02 & 5 & 10 & ． 08 & 13 & ． 05 & 2 & ． 52 & ． 01 & ． 03 & 2 & 5 & 4.4 \\
\hline 5084562933322 & 3 & 22 & 9 & 61 & ． 1 & 14 & J & 110 & 2.07 & 4 & 5 & ho & 2 & 19 & 1 & 2 & 2 & 55 & ． 25 & ． 06 & 9 & 21 & ． 29 & 81 & ． 06 & 4 & 1.04 & ． 01 & ． 06 & 2 & 5 & 5.0 \\
\hline 5084562933323 & 4 & 38 & 14 & 169 & 1.0 & 30 & 8 & 789 & 4.21 & 11 & 5 & KD & 2 & 13 & 1 & 2 & 2 & 80 & ． 17 & ． 13 & 10 & 36 & .41 & 179 & ． 01 & 5 & 2.05 & ． 01 & ． 01 & 2 & 5 & 4.9 \\
\hline 5084562 933524 & 2 & 12 & 11 & 115 & 2.6 & 28 & 10 & 1688 & 3.19 & 10 & 5 & HD & 2 & 93 & 3 & 2 & 2 & 81 & ． 95 & ． 14 & 16 & 33 & ． 17 & 203 & ． 05 & 1 & 2.11 & ． 01 & ． 05 & & 5 & 5.9 \\
\hline 50日⿰562 933525 & 2 & 24 & 10 & 72 & 1 & 19 & 5 & 228 & 3.67 & 1 & 5 & 10 & 1 & 17 & 1 & ， & 2 & 73 & ． 23 & ． 03 & 13 & 33 & ． 64 & 93 & ． 09 & 6 & 1.67 & ． 01 & ． 05 & 2 & 5 & 4.8 \\
\hline 5084562933326 & 5 & 63 & 20 & \(1: 1\) & ． 3 & 35 & 12 & 1460 & 6． 81 & 8 & 5 & no & 2 & 19 & 1 & 2 & 2 & 108 & ． 214 & ． 13 & 9 & 38 & ． 68 & 124 & ． 13 & 7 & 2.35 & ． 01 & ． 05 & 2 & 5 & 1.7 \\
\hline 5084562933527 & 3 & 72 & 13 & 138 & ． 2 & 5 & 12 & 389 & 1．67 & 14 & 5 & N9 & 1 & 11 & 1 & 2 & 2 & 90 & ． 17 & ． 08 & 12 & 52 & ． 99 & 135 & ． 09 & 2 & 3.21 & ． 01 & ． 07 & 2 & 5 & 5.3 \\
\hline 5084562933328 & 2 & 26 & 13 & 150 & ． 4 & 20 & 8 & 191 & 3．50 & 10 & 5 & HD & 3 & 23 & 1 & 2 & 3 & 60 & ． 50 & ． 20 & 10 & 30 & ． 11 & 71 & ． 12 & 5 & 3.94 & ． 02 & ． 04 & 2 & 5 & 2． 1 \\
\hline 5084562933329 & 1 & 61 & 14 & 237 & 2.2 & 30 & 8 & 1678 & 2.83 & 3 & 5 & N0 & 2 & 38 & 3 & 2 & 2 & 50 & ． 91 & ． 15 & 13 & 38 & ． 49 & 123 & ． 09 & 5 & 2.36 & ． 02 & ． 04 & 2 & 5 & 0.0 \\
\hline 5084562933330 & 8 & 31 & 9 & 88 & ． & 21 & ； & 755 & 2.52 & 5 & 5 & 10 & 2 & 30 & 1 & & 3 & 61 & ． 34 & ． 11 & 10 & 28 & ． 46 & 111 & ． 06 & 5 & 1.49 & ． 01 & ． 05 & 2 & 5 & 5.9 \\
\hline 5084562 933Jj1 & 8 & 21 & 34 & 48 & ． 1 & 20 & 5 & 221 & 3.22 & 9 & 5 & KD & 2 & 18 & 1 & 2 & 4 & 91 & ． 52 & ． 09 & b & 37 & ． 58 & 81 & ． 18 & 3 & 1.17 & ． 01 & ． 05 & 2 & 5 & 4.9 \\
\hline RE 5084562 933327 & 3 & 35 & 14 & 145 & .1 & 47 & 13 & 398 & 4．86 & 13 & 5 & W0 & 1 & 12 & 1 & 2 & 3 & 91 & ． 18 & ． 09 & 12 & 58 & 1.05 & 138 & ． 09 & 3 & 3.31 & ． 01 & ． 07 & 2 & 5 & \\
\hline 5084562933332 & 11 & 40 & 23 & 65 & ． 2 & 35 & 16 & 124 & 3.83 & 1 & 5 & ND \({ }^{\circ}\) & 2 & 26 & 1 & 2 & 2 & 87 & ． 55 & ． 06 & 1 & 50 & ． 80 & 87 & ． 12 & 3 & 1.33 & ． 01 & ． 06 & 2 & 5 & 5.3 \\
\hline 5081562 93JJ33 & J & 15 & 11 & 38 & ． 1 & 9 & J & 138 & 3.08 & 5 & 5 & ND & \(\cdot 2\) & 7 & 1 & 2 & 3 & ： 64 & ． 12 & ． 13 & 6 & 32 & ． 24 & 36 & ． 11 & 2 & 2.17 & ． 01 & ． 04 & 2 & 5 & 5.2 \\
\hline 5084562933334 & 2 & 22 & 11 & 55 & ． 3 & 13 & 1 & 164 & 2.78 & ： & 5 & N0 & 2 & 19 & 1 & 2 & 2 & 69 & ． 25 & ． 08 & 10 & 28 & ． 14 & 82 & ． 08 & & 1.37 & ． 01 & ． 01 & 2 & 2 & 4.5 \\
\hline 5084562933335 & 2 & 21 & 13 & 103 & 4 & 18 & 5 & 206 & 3.27 & 7 & 5 & 80 & 2 & 24 & 1 & 2 & 2 & 89 & ． 51 & ． 07 & 9 & 25 & ． 34 & 92 & ． 10 & 23 & 1.80 & ． 02 & ． 03 & 2 & 5 & 5．； \\
\hline 5081562933356 & 2 & 16 & 11 & 55 & ． 2 & 13 & 1 & 159 & 2.83 & 9 & 5 & N0 & 2 & 9 & 1 & 2 & 2 & 89 & ． 17 & ． 05 & 7 & 23 & ． 24 & 51 & ． 10 & J & 1.12 & ． 01 & ． 03 & 2 & 5 & 4.3 \\
\hline 5 T C／AU－0．5 & 19 & 61 & 38 & 120 & 6.3 & 67 & 26 & 1079 & 3.82 & 37 & 19 & 8 & 35 & 48 & 10 & 15 & 30 & 56 & ． 41 & ． 14 & 37 & 55 & ． 88 & 186 & ． 07 & 36 & 1.64 & ． 06 & ． \(12^{\circ}\) & 13 & 490 & － \\
\hline
\end{tabular}

SARPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5084562 933j37 & 3 & 16 & 9 & \(5 i\) & . 2 & 15 & 1 & 101 & 3.28 & 7 & 5 & HD & 2 & 10 & 1 & 2 & 2 & 106 & . 13 & . 09 & 2 & 21 & . 23 & 72 & . 16 & 16 & 1.31 & . 01 & . 02 & 2 & 5 & 1. \\
\hline 5084562 935358 & 2 & 19 & 10 & do & . 1 & 14 & 5 & 201 & 3.81 & 7 & 5 & ND & 2 & 11 & 1 & \% & 2 & 117 & . 17 & . 09 & 2 & 27 & . 41 & 89 & . 18 & 3 & 1.71 & . 01 & . 22 & 2 & S & 5. \\
\hline 5081502 9310i8 & 1 & 38 & - & 95 & . 1 & 23 & 8 & 271 & 5.28 & 25 & 5 & 110 & 2 & 18 & 1 & 2 & 2 & 135 & . 10 & . 16 & 2 & 53 & . 72 & 95 & . 13 & 12 & 1.95 & . 01 & . 03 & 2 & 5 & 4. \\
\hline 5084562934079 & 3 & 33 & 12 & 79 & . 2 & 24 & 9 & 285 & 4.17 & 11 & 5 & HD & \(\varepsilon\) & i2 & 1 & 2 & 2 & 100 & . 10 & . 08 & 3 & 51 & . 58 & 87 & . 11 & 33 & 1.70 & . 01 & . 03 & 2 & 5 & \\
\hline 5081562931080 & 2 & 12 & 5 & 27 & . 3 & 7 & 3 & 85 & 2.10 & 12 & 5 & HD & 2 & 9 & 1 & 2 & 2 & 79 & . 08 & . 06 & 2 & 23 & . 13 & 56 & . 08 & 28 & . 79 & . 02 & . 02 & 2 & 10 & 4. \\
\hline 5081562931081 & 3 & 30 & 9 & 67 & . 5 & 23 & 11 & 291 & 5.88 & 17 & 5 & ND & 2 & 10 & 1 & 2 & 2 & 84 & . 21 & . 09 & 2 & 4 & . 52 & 71 & . 07 & 11 & 1.81 & . 01 & . 03 & 3 & 5 & \\
\hline 5081562931082 & 3 & 116 & 12 & 260 & 1.3 & 36 & 12 & 1780 & 3.13 & 18 & 5 & N0 & 2 & 95 & 2 & 3 & 2 & 63 & 1.20 & . 13 & 11 & 69 & . 60 & 111 & . 09 & 19 & 2.92 & . 02 & . 04 & 2 & 15 & 6. \\
\hline 5084562 931083 & 5 & 105 & 11 & 187 & 1.0 & 58 & 13 & 503 & 5.81 & 35 & 5 & ND & 2 & 25 & 1 & 1 & 2 & 124 & . 34 & . 13 & 2 & 97 & 1.19 & 201 & . 10 & 3 & 2.52 & . 01 & . 10 & 2 & 20 & \\
\hline 5084562934084 & 5 & 63 & 1 & 116 & . 1 & 38 & 8 & 192 & 3.39 & 14 & 7 & ND & 2 & 7 & 1 & 2 & 3 & 100 & . 10 & . 09 & 2 & 14 & . 69 & 80 & . 05 & 9 & 1.12 & . 01 & . 05 & 2 & 5 & \\
\hline 5084562931085 & 10 & 33 & 11 & 91 & . 6 & 26 & 8 & 333 & 4.81 & 26 & 5 & HD & 2 & 9 & 1 & 2 & J & 150 & . 06 & . 21 & J & 81 & . 32 & 90 & . 11 & 38 & .?2 & . 02 & . 04 & 3 & 5 & 5. \\
\hline 5081562931086 & 14 & 33 & 11 & 103 & . 5 & 26 & 7 & 153 & 6.76 & 25 & 5 & N0 & 2 & 12 & 1 & 2 & 2 & 155 & . 08 & . 25 & 2 & 79 & . 10 & 125 & . 12 & 32 & 1.11 & . 02 & . 05 & 2 & 5 & \\
\hline 5084562931087 & 6 & 27 & 16 & 123 & . 6 & 43 & 11 & 216 & 5.65 & 28 & 5 & HD & 2 & 16 & 1 & 2 & 2 & 153 & . 16 & . 15 & 2 & 123 & . 89 & 141 & . 15 & 40 & 1.47 & . 02 & . 08 & 2 & 5 & 5. \\
\hline 5081562931088 & 3 & 130 & 7 & 131 & 1.0 & 11 & 11 & 1184 & 3.06 & 21 & 12 & KD & 3 & 128 & 3 & 2 & 2 & 66 & \(2.5!\) & . 27 & 7 & 62 & . 66 & 230 & . 04 & 23 & 2.14 & . 01 & . 09 & 2 & 5 & 0.2 \\
\hline 5081562931039 & 6 & 59 & 7 & 163 & 2.4 & 57 & 10 & J89 & 3.15 & 21 & 5 & HD & 2 & 29 & 1 & 2 & 2 & 81 & . 39 & . 11 & 8 & 76 & . 59 & 136 & . 12 & 19 & 2.67 & . 02 & . 05 & ? & 5 & 8. \\
\hline 5084562931090 & 25 & 80 & 11 & 243 & . 1 & 22 & 13 & 405 & 7.89 & 52 & 5 & HD & 2 & 17 & 1 & 2 & 6 & 152 & . 20 & . 26 & 1 & 43 & . 27 & 114 & . 07 & 1 & . 89 & . 01 & . 03 & 2 & 5 & \\
\hline 5084562931091 & 1 & 26 & J & 99 & .4 & 30 & 9 & 242 & 5.32 & 37 & 5 & ND & 2 & 16 & 1 & 3 & 1 & 140 & . 16 & . 21 & 1 & 118 & . 75 & 64 & . 14 & 2 & 1.33 & . 01 & . 08 & 2 & 5 & \\
\hline 5084562931092 & J & 36 & 5 & 100 & . 1 & 29 & 9 & 322 & 3.81 & 18 & 5 & ND & -2 & 17 & 1 & 2 & 2 & 90 & . 20 & . 23 & 6 & 51 & . 80 & 70 & . 10 & 2 & 1.81 & . 01 & . 06 & 2 & 5 & \\
\hline 5084562931093 & 4 & 29 & 12 & 99 & . 8 & 23 & 12 & 481 & 3.92 & 15 & 5 & No & & 13 & 1 & 2 & 3 & 88 & . 16 & . 23 & 5 & 45 & . 13 & 60 & . 11 & 2 & 2.78 & . 01 & . 01 & 2 & 5 & \\
\hline STD C & 19 & \(5 i\) & 31 & 126 & 6.2 & 72 & 27 & 1089 & 3.92 & 40 & 18 & 7 & 35 & 48 & 17 & 14 & 21 & 66 & . 13 & . 15 & 10 & 56 & . 88 & 183 & . 07 & 38 & 1.65 & . 05 & .is & 12 & - & \\
\hline 5081582931094 & 7 & 54 & 11 & 136 & . 1 & 49 & 13 & 298 & 6.01 & 23 & 5 & no & 2 & 24 & , & 2 & 3 & 137 & . 25 & . 22 & 6 & 3 & . 97 & 113 & . 12 & 2 & 2.25 & . 01 & . 07 & 2 & 5 & \\
\hline 5084562934095 & 6 & 41 & 8 & 113 & . 6 & 26 & 11 & 182 & 4.71 & 17 & 6 & ND & 2 & 18 & 1 & 2 & 2 & 103 & . 26 & . 07 & 1 & 51 & . 75 & 59 & . 11 & 1 & 2.23 & . 01 & . 06 & 2 & 5 & 5. \\
\hline 5084562931096 & 3 & 34 & 9 & 199 & . 3 & 28 & 16 & 365 & 6.38 & 19 & 5 & ND & 2 & 22 & 1 & 2 & 3 & 114 & . 32 & . 34 & 5 & 65 & 1.53 & 93 & . 17 & 6 & 2.26 & . 01 & . 12 & & 5 & 5. \\
\hline 5081562931097 & 1 & 31 & 11 & 97 & . 5 & 36 & 11 & 432 & 4.65 & 16 & 5 & NO & 2 & 19 & 1 & 2 & 2 & 115 & . 29 & .at & 5 & 128 & 1.04 & 98 & . 14 & 3 & 1.95 & . 01 & . 07 & 2 & 5 & \\
\hline 5084562931098 & 12 & 15 & 7 & 130 & . 9 & 38 & 8 & 344 & 3.19 & 11 & 7 & ND & 2 & 27 & 1 & 2 & 2 & 103 & . 35 & . 07 & 8 & 81 & 1.02 & 83 & . 12 & 5 & 1.64 & . 01 & . 06 & 2 & 5 & \\
\hline 5084562931099 & 10 & 147 & 10 & 92 & 1.8 & 13 & 13 & 115 & 3.78 & 15 & 7 & ND & 2, & 36 & 1 & 2 & 2 & 101 & . 78 & . 07 & 10 & 92 & . 91 & 105 & . 12 & 1 & 1.61 & . 01 & . 06 & , & 5 & \\
\hline 5081562934100 & 7 & 27 & 15 & 61 & . 6 & 19 & 6 & 169 & 4.29 & 15 & 5 & ND & 2 & 11 & 1 & 2 & 2 & 123 & . 21 & . 08 & 8. & 45 & . 59 & 59 & . 18 & 1 & 1.08 & . 01 & .07 & 2 & 5 & \\
\hline 5084562931101 & 3 & 36 & 12 & 113 & .1 & 28 & 16 & 439 & 5.05 & 9 & 5 & ND & 2 & 20 & 1 & 3 & 2 & '121 & . 21 & . 27 & 8 & 54 & 1.32 & 130 & . 15 & 5 & 1.73 & . 02 & . 08 & & 5 & \\
\hline 5084562931102 & 5 & 24 & ; & 58 & . 1 & 19 & 8 & 233 & 3.83 & 8 & 5 & ND & 2 & 20 & 1 & 2 & 2 & 117 & . 35 & . 08 & J & 40 & . 94 & 115 & . 18 & 5 & 1.19 & . 01 & . 09 & 2 & , & \\
\hline 5084562931103 & 5 & 39 & 23 & 86 & . 5 & 16 & 11 & 346 & 4.76 & 15 & 5 & NO. & 2 & , & 1 & 2 & 2 & 115 & . 18 & . 13 & 7 & 16 & 1.32 & 80 & . 20 & 22 & 1.69 & . 02 & . 13 & & 5 & 5. \\
\hline 5084562931194 & 20 & 50 & 23 & 88 & . 6 & 27 & 12 & 323 & 4.83 & 13 & 8 & ND \({ }^{\circ}\) & 2 & 10 & 1 & 2 & 2 & 112 & . 11 & . 15 & 6 & 71 & 1.29 & 109 & . 18 & 12 & 1.50 & . 02 & . 12 & , & 5 & \\
\hline 5081562934105 & 2 & 13 & 11 & 91 & . 2 & 32 & 10 & 430 & 4.22 & 24 & 5 & NO & 2 & 29 & 1 & 2 & 3 & 110 & . 33 & . 07 & 12 & 57 & . 83 & 127 & . 07 & 30 & 2.00 & . 02 & . 06 & 2 & 5 & 5. \\
\hline 5081562934105 & 2 & 55 & 11 & 127 & . 6 & 33 & 11 & 726 & 3.74 & 22 & 6 & NO & 2 & 14 & 1 & 2 & 3 & 103 & . 64 & . 08 & 16 & 53 & . 69 & 121 & . 05 & 5 & 2.16 & . 01 & . 08 & 2 & 5 & \\
\hline 5084562931107 & 2 & 64 & 15 & 131 & . 5 & 17 & 15 & 580 & 5.10 & 33 & 5 & ND & 2 & 32 & & 2 & 2 & 120 & . 11 & . 09 & 17 & 67 & 1.12 & 167 & . 01 & 18 & 2.71 & . 01 & . 10 & 2 & 5 & \\
\hline 5081562931108 & 2 & 51 & 10 & 172 & . 5 & 38 & 9 & 288 & 5.30 & 23 & 5 & ND & 2 & 29 & & 2 & 1 & 117 & . 18 & . 15 & 9 & 57 & . 66 & 112 & . 08 & 25 & 2.70 & . 01 & . 10 & 2 & 5 & \\
\hline FE 5084562934090 & 24 & 79 & 11 & 240 & . 1 & 22 & 13 & 394 & 7.74 & 19 & 5 & ND & 2 & 17 & 1 & 2 & 1 & 149 & . 19 & . 26 & 16 & 12 & . \(2 i\) & 115 & . 07 & 1 & . 88 & . 01 & . 04 & , & 5 & \\
\hline 5094562 954109 \({ }^{\circ}\) & \({ }^{+1}\) & 27 & 6 & 103 & . 2 & 27 & 10 & 266 & 4.64 & 16 & d & ND & 2 & 22 & 1 & 2 & 2 & 112 & . 25 & . 12 & 12 & \(5!\) & . 71 & 102 & . 10 & 32 & 2.27 & . 01 & . 04 & 2 & 5 & \\
\hline 5081562 931110 & J & 72 & 13 & 125 & . 1 & 51 & 19 & 587 & 5.63 & 25 & 5 & ND: & 2 & 25 & 1 & 3 & 3 & 126 & . 24 & . 18 & 15 & 73 & 1.07 & 123 & . 10 & 1 & 3.16 & . 01 & . 07 & 2 & \(J\) & \\
\hline 5081562931111 & 2 & 52 & 11 & 111 & . 1 & 19 & 17 & 509 & 5.21 & 33 & 5 & N0 & \(\because 2\) & 16 & , & 2 & 2 & 119 & . 20 & . 11 & IJ & 59 & . 84 & 108 & . 10 & 28 & 2.55 & . 01 & . 07 & 2 & 5 & \\
\hline 5081562934112 & 3 & 19 & 9 & 137 & . 3 & 96 & 16 & 406 & 5.95 & 20 & 5 & ND & 2 & 16 & 1 & 2 & 1 & 133 & . 22 & . 18 & 19 & 186 & 1.55 & 92 & . 12 & 11 & 2.67 & . 01 & . 07 & 2 & 5 & \\
\hline SID CJAU-0.5 & 18 & 56 & 38 & 125 & 6.3 & 70 & 27 & 1092 & 3.82 & 38 & \(1 i\) & 7 & 31 & 49 & 16 & 15 & 18 & 65 & . 14 & . 15 & 10 & 59 & . 88 & 181 & . 07 & 39 & 1.65 & . 05 - & . 13 & IJ & 505 & \\
\hline
\end{tabular}

SELCO - A DIVISION OF BP FFROJECT \# 10141 FILE \# 84-2827
FAGE \(:\)

ShMFLEI

PE 508156293112
5081562931138
5081562934139 Sid C
5081552931140
5084562931141
50845629314143
5085562931144
5081562931145
5081562931146
5084562934147
5081562934118
5084562931149
5ID C/AU-0.5




ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. VGA 1FG FHONE 253-J158 DATA LINE 2SI-1OII
GEDCHEMICAL IEF ANALYSIS


- samfle type: solls + reject saved all amal isis ay aa fagh 10 6Rhh sample.

\[
\text { SELCD - A DIVISION OF BP FROJECT \# } 10141 \text { FILE \#84-2984 }
\]

FAGE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{5AKPLEI} & Mo & Cu & Pb & In & \({ }_{\text {Ag }}\) & Ni & & & Fe & & V1 & Au & Th & Sr & Cd & 5b & \({ }_{\text {Bi }}\) & DPA & C 2 & P & \[
\mathrm{L}_{2}
\] & Cr & \[
\mathrm{Mg}
\] & B8 & \(1 i\) & \({ }_{\text {PPa }}\) & \({ }^{\text {Al }}\) & \(\mathrm{H}_{2}\) & \% & \({ }^{1}\) & nut & Ph \\
\hline & ppt & pp & ppa & ppn & ppı & pp: & ppin & ppa & & Ppı & P94 & ppa & ppl & ppi & ppa & ppa & P9: & ppa & 2 & \(\chi\) & ppq & ppa & \% & ppa & 1 & ppa & 1 & 1 & 1 & & & \\
\hline Sto C & 19 & 59 & 38 & 121 & 6.1 & 68 & 26 & 1061 & 3.75 & 39 & 17 & 7 & 35 & 48 & 16 & 11 & 20 & 56 & . 13 & . 11 & 31 & 58 & . 86 & 179 & . 07 & 38 & 1.59 & . 06 & .13 & 12 & - & \\
\hline 5081562933339 & 1 & 41 & 15 & 131 & . 6 & 24 & 10 & 1075 & 3.24 & 18 & 5 & ND & 2 & 25 & 1 & 2 & 2 & 63 & . 12 & . 12 & 2 & 50 & . 51 & 124 & . 07 & 5 & 1.47 & . 01 & . 65 & 2 & 5 & 5.8 \\
\hline 5081562933340 & 19 & 36 & 19 & 123 & . 9 & 31 & 9 & 213 & 4.17 & 32 & 5 & H0 & 2 & 14 & i & 2 & 2 & 81 & .12 & . 19 & 2 & 62 & . 58 & 17 & . 07 & 1 & 1.66 & . 01 & . 04 & 2 & 5 & 5.3 \\
\hline 5081562933341 & 1 & 91 & 19 & 159 & . 5 & 47 & 17 & 142 & 4.85 & 39 & 5 & ND & 2 & 33. & 1 & 2 & 2 & 85 & . 18 & . 12 & 5 & 16 & . 95 & 125 & . 10 & 3 & 2.66 & . 02 & . 04 & 2 & 5 & 6.0 \\
\hline 5064562 933342 & 17 & 125 & 136 & 182 & 7.9 & 65 & 19 & 451 & 6.55 & 73 & 5 & 2 & 2 & 19 & 1 & 2 & 3 & 104 & . 24 & . 69 & 1 & 117 & 1.31 & 75 & . 11 & 2 & 2.11 & . 01 & . 05 & 4 & 5010 & 5.0 \\
\hline 5989562933343 & 5 & 97 & 17 & 198 & . 9 & 59 & 19 & 298 & 5.05 & 38 & 5 & KD & 1 & 17 & 1 & 2 & 2 & 93 & . 21 & . 09 & 3 & 99 & 1.15 & 93 & . 11 & 2 & 2.60 & . 02 & . 06 & 2 & 150 & 5.1 \\
\hline 5081562933344 & 3 & 50 & 17 & 215 & . 6 & 12 & 12 & 301 & 5.23 & 29 & 3 & H0 & 2 & 16 & 1 & 2 & 2 & 100 & . 13 & . 19 & 1 & 87 & . 89 & 81 & . 11 & 1 & 2.00 & . 01 & . 04 & 2 & 15 & 5. \\
\hline 5081562935345 & 4 & 117 & 14 & 109 & 1.2 & 38 & 11 & 2404 & 2.94 & 16 & 5 & H0 & 2 & 124 & 1 & 2 & 2 & 56 & 2.11 & . 15 & 6 & 10 & . 78 & 245 & . 03 & 6 & 1.54 & . 02 & . 04 & 2 & 5 & 6. \\
\hline 5084562933346 & 1 & 60 & 11 & 133 & . 4 & 50 & 13 & 380 & 4.19 & 27 & 5 & ND & 3 & 16 & 1 & 2 & 2 & 101 & . 22 & . 11 & 1 & 105 & 1.13 & 89 & . 08 & 3 & 2.08 & . 01 & . 05 & 3 & 35 & 5.5 \\
\hline 5081562933347 & 1 & 92 & 16 & 164 & . 6 & 65 & 20 & 391 & 5.11 & 41 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 98 & . 30 & . 09 & 5 & 108 & 1.13 & 91 & . 08 & 3 & 2.15 & . 01 & . 05 & 4 & 210 & 5. \\
\hline 5084562933318 & 4 & 75 & 20 & 135 & . 7 & 48 & 19 & 534 & 1,88 & 21 & 5 & ND & 2 & 32 & 1 & 2 & 2 & 92 & . 42. & . 12 & 1 & 100 & . 66 & 123 & . 12 & 3 & 3.27 & . 01 & . 03 & 2 & 5 & 5. \\
\hline 5081562933349 & 3 & 35 & 11 & 14 & . 5 & 13 & 8 & 242 & 3.37 & 15 & 5 & N0 & , & 18 & 1 & 2 & 2 & 64 & . 22 & . 01 & 1 & 32 & . 3 & 69 & . 01 & 1 & 1.23 & . 01 & . 03 & 2 & 5 & 4. \\
\hline 5084562933350 & 5 & 64 & 20 & 176 & . 7 & 39 & 15 & 323 & 5.23 & 33 & 5 & ND & 2 & 30 & 1 & 2 & 2 & 103 & . 10 & . 08 & 3 & 97 & . 78 & 103 & . 09 & 2 & 2.25 & . 01 & . 03 & 2 & 5 & 5. \\
\hline 5081562935351 & 1 & 140 & 17 & 250 & 1.1 & 48 & 13 & 3564 & 3.14 & 15 & 5 . & ND & 2 & 61 & 5 & 2 & 2 & 54 & . 96 & . 11 & 9 & 58 & . 53 & 193 & . 09 & 4 & 2.51 & . 02 & . 03 & 2 & 5 & 6. \\
\hline 5088562 933352 & 1 & 122 & 14 & 136 & 1.2 & 60 & 13 & 821 & 3.81 & 27 & 5 & ND & 2 & 65 & 2 & 2 & 2 & 75 & 1.12 & . 13 & 1 & 91 & 1.00 & 125 & . 05 & d & 1.69 & . 02 & . 04 & 2 & 5 & 6. \\
\hline RE 5081562933342 & 16 & 125 & 141 & 181 & 10.3 & 65 & 19 & 456 & 6.59 & 14 & 5 & 2 & 1 & 19 & 1 & 2 & 2 & 104 & . 23 & . 10 & 1 & 116 & 1.31 & 76 & . 11 & 3 & 2.11 & . 01 & . 06 & 5 & 5300 & \\
\hline 5 TO C/AU-0.5 & 20 & 60 & 39 & 123 & 6.5 & 69 & 27 & 1082 & 3. 83 & 38 & 19 & 1 & 36 & 49 & 16 & 15 & 20 & 57 & . 14 & . 14 & 37 & 59 & . 88 & 183 & . 07 & 39 & 1.62 & . 06 & . 13 & 13 & 500 & \\
\hline
\end{tabular}


\section*{ACME ANALYTICAL LABORATORIES LTD.}
\(\lceil\) SELCD-A DIVISION OF BP EXPLORATION 700 - SCOW FENDER ST VANCOUVER BC VOC 1K5

TERMS:
NET TWO WEEKS
2\% PER MONTH ChARGED ON overdue accounts.


\section*{APPENDIX 4}

CERTIFICATE OF ANALYSIS - 1984 SMDC'S SOIL RERUNS

E.M.D.C. FFOJECT \# Tf-HOOLA 4947 FILE \# B2-0G07

FAEE 112
samfle I
 \(\stackrel{y}{8}\) !
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TAER-4601 & \(\cdots\) & 9 & 5 & J & . 5 & 12 & 1 & 106 & 8.85 & 9 & \(\stackrel{n}{2}\) & ND & 2 & 11 & 1 & 4 & 2 & it & . 15 & . 03 & * & 13 & . 26 & 45 & . 09 & 2 & . 51 & .03 & . 04 & : & : \\
\hline Jath- 1602 & , & 16 & ? & 35 & . 9 & 11 & 1 & 108 & 2.71 & 21 & 2 & 110 & 2 & 10 & I & 2 & 2 & 67 & . 10 & . 06 & 1 & 23 & . 12 & 71 & . 07 & 2 & . 84 & . 0 ? & . 04 & 2 & 5 \\
\hline T \(\mathrm{A}_{2} \mathrm{~F}-480 \mathrm{~S}\) & 2 & 24 & 7 & 92 & . 9 & 23 & 8 & 262 & 3.13 & 30 & 2 & NB & 2 & 11 & , & 2 & 2 & 68 & .14 & . 11 & 5 & 18 & . 12 & 117 & . 05 & 2 & 1.50 & . 02 & . 0 S & , & - \\
\hline Tazf-4604 & 5 & 25 & 10 & 93 & . 8 & 25 & 7 & 161 & 3.92 & 25 & 2 & 180 & 2 & 18 & 1 & 2 & 2 & 95 & .21 & . 07 & 5 & 60 & . 58 & 86 & . 06 & 2 & 1.85 & . O 2 & .05 & 2 & 10 \\
\hline JA2R-460J & 3 & 21 & 10 & 166 & . 8 & 18 & 7 & 181 & 3.84 & 32 & 2 & ND & 2 & 25 & 2 & 2 & 2 & 89 & . 39 & . 07 & , & 19 & . 38 & 117 & . 06 & 2 & 1.85 & . 02 & . 04 & \(\frac{2}{2}\) & \({ }_{5}\) \\
\hline TAif-4006 & 5 & 12 & 12 & 104 & 1.5 & 38 & 12 & 900 & 3.56 & 19 & 2 & ND & 2 & 34 & 2 & 2 & 2 & B2 & . 65 & . 05 & 7 & 65 & . 55 & 169 & . 10 & 2 & 2.32 & . 03 & . 05 & 2 & 5 \\
\hline 1ą̇R-460\% & 12 & 71 & 17 & 456 & 1.7 & 64 & 17 & 335 & 5.94 & 37 & 2 & ND & 2 & 29 & 2 & 2 & 2 & 96 & .49 & .07 & 6 & 53 & . 88 & 158 & . 07 & 2 & 2.30 & . 02 & . 05 & 2 & 5 \\
\hline 162F-4t08 & 1 & 15 & 6 & 56 & . 3 & 35 & 8 & 215 & 2.10 & 4 & 2 & HD & 2 & 18 & 1 & 2 & 2 & 85 & . 30 & . 06 & 2 & 61 & 1.26 & 27 & . 14 & 2 & 1.28 & . 05 & . 04 & \(i\) & 5 \\
\hline 1A2F-4609 & 2 & 26 & 11 & 118 & . 8 & 98 & 18 & 607 & 3.7日 & 10 & 2 & HD & 2 & 15 & 1 & 2 & 3 & 90 & . 35 & . 09 & 1 & 213 & 1.85 & 80 & . 14 & 2 & 2.95 & . 02 & . 07 & 2 & 5 \\
\hline TA2R-4610 & 1 & 19 & 11 & 132 & . 7 & 28 & 15 & 363 & 4.06 & 11 & 2 & N0 & 2 & 11 & 1 & 2 & J & 84 & . 16 & . 19 & 1 & 76 & . 62 & 61 & .10 & 2 & 3.22 & . 02 & . 06 & 2 & 5 \\
\hline TALR-1611 & 1 & 20 & 7 & 120 & . 6 & 29 & 10 & 292 & 3.11 & 11 & 2 & HO & 2 & 16 & 1 & 2 & 2 & 78 & . 21 & . 14 & ; & 65 & . 0 & 66 & .10 & 2 & \(1.8{ }^{\circ}\) & . 02 & & & \\
\hline 1A2R-4612 & 1 & 8 & 5 & 24 & . 2 & 8 & 1 & 165 & 1.85 & 2 & 2 & ND & 2 & 10 & 1 & 2 & 2 & 80 & .18 & . 03 & 2 & 25 & .11 & 25 & . 108 & 2 & \({ }^{1.62}\) & . 02 & . 65 & 2 & 5 \\
\hline TA26-4b13 & J & 25 & 9 & 31 & . 8 & 19 & 9 & 123 & 3.97 & 13 & 2 & N0 & 2 & 9 & 1 & J & 2 & 134 & . 12 & . 01 & 1 & 51 & . 57 & 46 & .12 & 2 & 1.08 & . 02 & . 06 & 2 & 5 \\
\hline [A2f-463 & , & 22 & 8 & 62 & . 6 & 18 & 11 & 357 & 3.58 & 1 & 2 & 110 & 2 & 18 & 1 & 2 & 2 & 90 & . 25 & . 06 & 1 & 12 & . 38 & 112 & . 08 & 2 & . 98 & . 05 & . 06 & 2 & 5 \\
\hline 1A2R-4615 & 2 & 19 & 8 & 13 & . 5 & 8 & 10 & 227 & 2.65 & 10 & 2 & NO & 2 & 13 & 1 & 2 & 2 & 84 & . 18 & . 04 & 3 & 19 & . 45 & 75 & . 09 & 2 & . in \(^{\prime \prime}\) & .05 & . 12 & 2 & 2 c \\
\hline 1428-8616 & \(!\) & 15 & 8 & 75 & . 6 & 22 & 9 & 271 & 3.32 & 10 & & ND & 2 & 13 & 1 & 2 & 2 & 80 & . 15 & . 15 & 3 & Ss & . 59 & 66 & . 09 & 2 & 1.50 & .02 & . 04 & 2 & 5 \\
\hline 1ALR-4617 & 7 & 25 & 14 & 51 & . 6 & 17 & 6 & 171 & 3.18 & 11 & 2 & 110 & 2 & 12 & 1 & & 2 & 110 & . 13 & . 04 & 1 & SS & . 30 & 80 & . 11 & 2 & . 11 & . 02 & . 04 & 2 & 5 \\
\hline tait-1618 & 1 & 1 & 6 & 25 & . 3 & 5 & 3 & TS & 1.25 & 2. & 2 & HD & 2 & 13 & 1 & 2 & & 19 & . 20 & . 02 & 3 & 16 & . 08 & 35 & . 06 & 2 & .12 & . 05 & . 05 & 2 & 5 \\
\hline 1A26-4819 & ! & 3 & 12 & 69 & 1.5 & 27 & 11 & 7\%9 & 2.92 & 18 & 2 & ND & 2 & 35 & 2 & 2 & 2 & 80 & . 68 & . 07 & 5 & 12 & . 3 & 195 & . 09 & 1 & 2.13 & .02 & . 06 & 2 & \\
\hline 1h28-4620 & 5 & 28 & 9 & 148 & . 6 & 23 & 8 & 276 & 3.85 & 36 & 2 & HD & 2 & 15 & 1 & 2 & 2 & 67 & . 15 & . 15 & 5 & 11 & .32 & 65 & . 01 & 2 & 1.2i & .02 & . 05 & 2 & 5 \\
\hline 1A2R-4621 & 10 & 65 & 15 & 116 & . 9 & 67 & \(1:\) & 186 & 5.77 & 88 & 2 & ND & 2 & 10 & 1 & \(\because 5\) & 2 & 103 & . 11 & . 04 & 5 & 120 & . 69 & 81 & .03 & ? & 1.84 & . 01 & . 04 & 2 & 25 \\
\hline TA2F-4622 & 3 & 21 & 9 & 101 & . 9 & 51 & 16 & 528 & 1.24 & 16 & 2 & N0 & 2 & 17 & 1 & 2 & 2 & 96 & . 25 & . 12 & 3 & 272 & 1.30 & 135 & .08 & \(\stackrel{i}{2}\) & 1.75 & . 02 & . 07 & 2 & 5 \\
\hline TA2h-4623 & 7 & 18 & 12 & 202 & . & 59 & 12 & 155 & 5.08 & 11 & 2 & N0 & 2 & 18 & 1 & 2. & 2 & 133 & . 17 & . 05 & , & \(1: 9\) & . 67 & 129 & . 04 & ? & 1.31 & .02 & .0s & 2 & \(8{ }^{\text {c }}\) \\
\hline TAZR-1624 & j & 15 & 10 & 36 & . 8 & 35 & i & 91 & 3.56 & 25 & 2 & 120 & 2 & 32 & 1 & 2 & 2 & 89 & . 36 & . 04 & 3 & 207 & . 17 & 86 & . 08 & 2 & 1.55 & .02 & . 05 & 2 & 5 \\
\hline 1A2R-4bis & 3 & 13 & 9 & 110 & 1.5 & 43 & 10 & 372 & 3.12 & 30 & 2 & ND & 2 & 17 & 1 & 2 & 2 & 101 & . 21 & . 09 & 1 & 165 & . & 235 & . 09 & 2 & I. © & . 02 & . 0 & \({ }^{2}\) & ! \\
\hline TA2S-5697 & 2 & 31 & 6 & 36 & 1.1 & 35 & 12 & 218 & 3.21 & 7 & 2 & HO & & 51 & 1 & 2 & 2 & 85 & 1.19 & . 03 & j & 158 & . 98 & 98 & . 09 & : & \(1 . \mathrm{it}\) & . 02 & . \({ }^{5}\) & 2 & 5 \\
\hline TATR-5678 & 11 & 84 & 10 & 58 & 1.2 & 14 & 20 & 1378 & 3.11 & 17 & 2 & NO & 2 & 65 & 2 & 2 & 2 & 86 & 1.89 & . 11 & \(\%\) & 99 & . .95 & 122 & . 04 & : & 2.85 & . 22 & . 05 & 2 & 10 \\
\hline 1har-Ets9 & 1 & 19 & 14 & 13 & . 7 & 24 & 9 & 150 & 3.15 & 7 & 2 & ND & 2 & 16 & 1 & 2 & 2 & 91 & . 25 & . 05 & 1 & 105 & . 51 & 60 & . 12 & 2 & . 85 & . 02 & .00 & 2 & \\
\hline 1AZ下-5700 & 1 & 39 & 12 & 91 & . 6 & 33 & 11 & 289 & 4.14 & \(3{ }^{3}\) & 2 & Ho & 2 & 23 & 1 & 2 & 2 & 81 & . 26 & . 07 & B & 30 & . 92 & 103 & . 08 & \(\stackrel{8}{2}\) & 2.65 & . 01 & . 06 & \(\stackrel{1}{2}\) & 15 \\
\hline  & J & 251 & 14 & 116 & 3.5 & 99 & 15 & 1035 & 3.84 & Jo & 3 & ND & 2 & 80 & 3 & 2 & 2 & 69 & 1.40 & . 08 & 12 & 96 & . 5 & 138 & . 07 & \({ }_{2}\) & 2.02 & . 0 & . 08 & & 15 \\
\hline TACR-5;02 & , & 26 & 6 & 57 & . 6 & 15 & ; & 270 & 2.03 & 5 & 2 & \(n 0\) & 2 & 27 & 1 & 2 & 2 & 56 & . 39 & . 03 & 1 & 28 & . 14 & 61 & . 08 & 2 & . 91 & . 01 & . 03 & & 10 \\
\hline 14ter-5i03 & 1 & 10 & 6 & 34 & .4 & 10 & 1 & 86 & 1.69 & 8 & a & H0 & 2 & ii & 1 & 2 & 2 & 55 & . 23 & . 04 & 1 & 31 & .22 & 59 & . 07 & 2 & . 70 & . 02 & . Cl & 2 & 15 \\
\hline 1A2R-STO4 & 16 & 25 & 7 & 52 & . 1 & 20 & 5 & 111 & 2.81 & 27 & 2 & ND & 2 & 24 & 1 & 2 & 2 & 3 & . 23 & . 04 & \% & \% & . 19 & 172 & . 04 & 2 & . 21 & . 02 & . 05 & \(\stackrel{\square}{2}\) & 20 \\
\hline TA2E-5705 & 4 & 38 & 9 & 9 & . 8 & 3 & 9. & 232 & 4.35 & 101 & 2 & 1 H & 2 & 31 & 1 & 2 & 2 & 98 & . 21 & .13 & 6 & 65 & . 50 & -84 & . 06 & \(\stackrel{\square}{2}\) & 1.75 & .02 & . 25 & 2 & 40 \\
\hline 1A28-5,06 & 3 & 79 & 12 & 14 & 3.2 & 28 & j & 133 & 2.27 & 18 & 2 & HD & 2 & 84 & 4 & 2 & 2 & 37 & 2.06 & . 05 & , & 34 & . 17 & 190 & . 08 & 2 & 2.8: & . 05 & . 02 & 2 & ! \\
\hline 15\%5-5:07 & 1 & 30 & 9 & 96 & . 6 & 31 & 15 & 3e0 & 4.17 & 13 & 2 & 110 & 2 & 18 & 1 & 2 & 2 & \(9!\) & . 28 & . 11 & 5 & 69 & . 87 & 105 & .08 & : & 2.16 & . 0 & . 05 & 2 & 5 \\
\hline RE-TA2R-1616 & 2 & 15 & 10 & 74 & . \({ }^{\text {a }}\) & 22 & 9 & 265 & 3.25 & 10 & 2 & N0 & 2 & 13 & 1 & 2 & 2 & 79 & . 18 & . 14 & j & 51 & . 59 & 66 & . 09 & 2 & 1.15 & . 02 & . 24 & 2 & 5 \\
\hline \(510 \mathrm{C}-1 / \mathrm{LU}\) & 1 & 30 & IB & 174 & . 1 & 31 & 12 & 964 & 2.74 & 12 & 2 & ND & 2 & 35 & 2 & 2. & 2 & 5 & .65 & . 09 & 7 & is & . 73 & 276 & . 08 & , & 1.98 & . \(0^{\circ}\) & . 21 & 2 & :30 \\
\hline
\end{tabular}

Fnce 11 ：
Shrste ：
 ¢ C ： Cr
Dige
 ii \(1:\)

Thizf－570e
 Th2R－ 5110
TAER 5711
1G2R－5T12
Ta？ 1 －571j
TACR－5714
TATR－5715
TACR 5 －5716
TAZK－571i
Thict－5il8

TALK－5719
TAZR－5720
IAR





 \(\begin{array}{ccc}11 & 290 & 4.74 \\ 13 & 3787 & 2.87 \\ 7 & 126 & 3.37 \\ 13 & 1001 & 2.84 \\ 1 & 321 & 1.52\end{array}\) 0

1G2R－5iso
TA26－5731
1A2R－5732

TAZR－5；Js
taih－sisb
1A2R－573；
TA2R－573B
TA \(2 \mathrm{~F}-5739\)
AE－TM2h－572
SID A－I
TA20－9016
\begin{tabular}{cccc}
12 & 10 & 88 & .5 \\
\(7 j\) & 15 & 194 & 1.1 \\
15 & 6 & 36 & .1 \\
31 & 35 & 182 & .1 \\
12 & \(i\) & 19 & .1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline asnonaras & NNOMNN & anananan & いいかい & NHMNOM & manments & annomrsm \\
\hline 증증종증중 & 증흥층 & 증증동중등 & 증풍동동중 & 증종증증픙 & 증 층즈증 & 증증즁픅훙 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 둥중ㅎㅇ & 증흉흥 & 중증조옹ㅎ & 증동중 & 증증증중흥 & 증 \(\overline{\text { B }}\) 증증 & 증종종픅흥 \\
\hline 0．3n＋mN & anNanNa & Nanconsor & ananamas & nmasmmos & ancmanors & nanamentas \\
\hline くこに㿻合 & がニニジミ &  & がここざ & ニッゴ心気ご & ゴもかここ &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MrnNarn & Mannonas & NasNasN & H3N0Nasas & Manconan & Mrasmen & ancosas \\
\hline Mancos & Mrsernma & catesenenon & Na3n3nsN & amanasNo & \＃narsan & ．2 \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  &  & 흐얘心か &  &  & － &  \\
\hline 二®is &  &  & 或家交安 &  & －Eningay &  \\
\hline O &  & －icios & 우오웅 & －i¢－¢ & 80iosi & ¢98\％ \\
\hline & － & －ucran & \(\cdots\) & いいッニ。 &  & 0．cn－\(\overline{\text { a }}\) \\
\hline
\end{tabular}



 .07
.11
.05
.05
.07 5
5
5
5
5

증동증즈
©

ACME ANALYTICAL LABORATORIES LTD. \(\quad 852\) E. HASTINGS, VANCOUVER B.C. PH: 253-T15B
YEP GEOCHEMICAL ANALYSIS



DATE RECEIVED 1982 DATE REPORTS MAILED_ \(2+23 / 84\) aSSAYER \(=-20-2 y+9\) DEAN TOY, CERTIFIED B.C. ASSAYER
\[
\text { S.M.D.C. FKOJECT \# TA-HOOLA } 4947 \text { FILE \# 日2-0778 }
\]
sample I
 Mg
2 \(\begin{array}{lll}\mathrm{Ha} & \mathrm{Ti} \\ \mathrm{pps} & \mathrm{z} & \mathrm{p}\end{array}\) Al
H
K
i \(\begin{array}{lcc}\text { I } & \text { Y } & \text { Au } \\ i & \text { PPS } & \text { ED }\end{array}\)
S.M.D.C. FF:OJECT \# TA-HOOLA 1947 FILE \# E2-0778

FAGE \# 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Samfle I & \begin{tabular}{l}
Mo \\
ip
\end{tabular} & \({ }_{\text {pla }}^{\text {cu }}\) & ft
\[
\mathrm{PFi}
\] & in
ppı & fig & \[
\begin{aligned}
& \mathrm{Hi} \\
& \text { pph }
\end{aligned}
\] & Co ppL & \[
\mathrm{Mn}_{n}
\]
ppa & \[
\begin{gathered}
\mathrm{Fe} \\
2
\end{gathered}
\] & As & U & \[
\begin{aligned}
& \text { Au } \\
& \text { ppl }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Th } \\
& \text { pps }
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{S}_{1} \\
& \text { ppq }
\end{aligned}
\] & cd & \[
\begin{aligned}
& \text { 5b } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Bi } \\
& \text { ppL }
\end{aligned}
\] & \[
\begin{gathered}
V \\
p H G
\end{gathered}
\] & \[
\begin{gathered}
C_{2} \\
i
\end{gathered}
\] & \[
i
\] & \[
\begin{aligned}
& \text { LI } \\
& \text { pfi }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cr } \\
& \text { pps }
\end{aligned}
\] & \[
\mathrm{Mg}
\] & \[
\begin{aligned}
& \text { E1 } \\
& \text { pRL }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{ii} \\
\mathrm{i}
\end{gathered}
\] & \[
\begin{gathered}
B \\
P D L
\end{gathered}
\] & \(!\) & \[
\begin{gathered}
\mathrm{NJ} \\
\vdots
\end{gathered}
\] & \[
!:
\] & & \[
\begin{aligned}
& \text { ful } \\
& \text { ppb }
\end{aligned}
\] \\
\hline Th28-456; & 1 & 8 & 5 & 27 & . 2 & 5 & 2 & is & 1.29 & 2 & 2 & ND & 2 & 15 & 1 & 2 & 2 & 19 & . 29 & . 03 & 1 & 20 & . 11 & 3; & . 08 & 2 & . 5 & .0: & . 04 & 2 & 5 \\
\hline Thin-45i8 & 2 & 15 & 13 & 95 & . 1 & 15 & 6 & 162 & 3.10 & 16 & 2 & 110 & , & 13 & 1 & 2 & 2 & 82 & . 20 & . 08 & 6 & 39 & . 29 & 55 & . 06 & 2 & 1.2iz & .02 & . 09 & 2 & 15 \\
\hline 1A2R-4569 & j & 22 & 16 & 147 & . 6 & 31 & 11 & 210 & 1.25 & 16 & . & ND & 2 & 19 & 2 & 2 & 2 & 1236 & . 28 & . 05 & 5 & 3 & . 46 & 51 & . 15 & 2 & 1.320 & . 02 & . 05 & 2 & 5 \\
\hline TA25-4570 & 2 & 22 & 10 & 76 & . 1 & 31 & 11 & 230 & 3.37 & 27 & J & ND & 2 & 16 & 1 & 2 & 2 & 97 & . 21 & . 08 & 5 & 104 & . 60 & 79 & . 12 & 2 & 1.25 & . 02 & . 07 & 2 & 5 \\
\hline  & 5 & 59 & 13 & 137 & 1.8 & 35 & 9 & 605 & 3.14 & 33 & 2 & HD & 2 & 91 & J & 2 & 2 & 59 & 2.17 & . 10 & 6 & 55 & . 39 & 80 & . 04 & 2 & 1.75 & . 02 & . 06 & 2 & 5 \\
\hline TA28.4572 & 6 & 171 & 22 & 155 & 2.2 & 51 & 13 & 161 & 3.36 & 16 & 2 & ND & 2 & 57 & 1 & 2 & 2 & 65 & 1.18 & . 07 & 14 & 70 & . 61 & 162 & . 09 & 2 & 2.65 & . 02 & . 07 & 2 & 5 \\
\hline tazt-45:j & 1 & 35 & 16 & 78 & . 8 & 22 & 8 & 153 & 4.10 & 19 & 2 & No & 2 & 26 & 1 & 2 & 2 & 113 & . 38 & . 04 & 1 & 97 & . 5 & 94 & . 13 & 2 & 1.75 & . 02 & . 05 & 2 & 5 \\
\hline thïn-1574 & 1 & 29 & 10 & 70 & . 6 & 80 & 19 & 325 & 1.70 & 14 & 2 & ND & 2 & 15 & 1 & 2 & 2 & 123 & . 32 & . 06 & 1 & 272 & 1.50 & 68 & . 15 & 2 & 1.78 & .02 & . 11 & 2 & 10 \\
\hline Thès-45;5 & 5 & 22 & 13 & 108 & . 6 & 40 & 8 & 117 & 2.75 & 25 & 2 & ND & 2 & 30 & 1 & 2 & 2 & 86 & . 3 & . 04 & 6 & 90 & . 35 & 152 & . 05 & 2 & 1.00 & . 01 & . 04 & i & 5 \\
\hline 1G2Fi-4576 & 1 & 10 & 8 & 60 & . 6 & 10 & 5 & 167 & 2.44 & 7 & 2 & ND & 2 & 15 & 1 & 2 & 2 & 61 & . 24 & . 12 & 1 & 36 & . 19 & 84 & . 10 & 2 & 1.35 & . 02 & . 05 & 2 & 5 \\
\hline IA25-15i] & 1 & 8 & 8 & 31 & 1 & 9 & 1 & 256 & 1.98 & 11 & 2 & ND & 2 & 7 & 1 & 2 & 2 & 59 & . 12 & . 01 & 5 & 31 & . 14 & 30 & . 09 & 2 & . 85 & . 02 & . 08 & 4 & 10 \\
\hline 142F-45;8 & 1 & 122 & 8 & 70 & . 7 & 10 & 15 & 2497 & 3.09 & 19 & 11 & HD & 2 & 102 & 3 & 2 & 2 & 55 & 2.90 & . 11 & 9 & S5 & . 35 & 173 & . 03 & 2 & 2.00 & . 01 & . 06 & 2 & 5 \\
\hline 1A26-15i9 & 3 & 17 & 8 & 34 & . 6 & 11 & 5 & 83 & 2.51 & 13 & 2 & No & 2 & 18 & 1 & 2 & 2 & 83 & . 34 & . 02 & 6 & 34 & . 25 & 91 & . 07 & 2 & 1.39 & . 02 & . 04 & 2 & 5 \\
\hline TA2R-1580 & 1 & 18 & 8 & 102 & . 2 & 17 & 7 & 376 & 3.66 & 14 & 2 & H0 & 2 & 17 & 1 & 2 & 2 & 86 & . 26 & . 21 & & 15 & . 18 & 94 & . 07 & 2 & 1.88 & . 01 & . 06 & 2 & 10 \\
\hline 1A2R-1581 & 2 & 19 & 8 & 102 & . 1 & 31 & 11 & 336 & 4.78 & 30 & 2 & KD & 2 & 25 & 1 & 2 & 2 & 112 & . 34 & . 14 & 8 & 83 & . 90 & 90 & . 06 & 2 & 2.42 & . 01 & . 68 & 2 & 5 \\
\hline 1625-4582 & 1 & 64 & 11 & 112 & . 7 & 45 & 14 & 319 & 4.79 & 27 & , & 10 & 2 & 17 & : & 2 & 2 & 111 & . 41 & . 15 & 5 & 71 & . 15 & ¢ & . 15 & 2 & 4.70 & . 02 & . 17 & 2 & 5 \\
\hline TA2R-5665 & 3 & 33 & 21 & 156 & . 6 & 37 & 11 & 1514 & 5.36 & 3 & J & ND & 2 & 13 & 2 & 2 & 2 & 148 & . 17 & . 18 & 6 & 109 & . 51 & 131 & . 09 & 2 & 1.35 & . 02 & . 05 & 2 & 20 \\
\hline Th2\%-5666 & 1 & 15 & 11 & 119 & . 5 & 23 & 9 & 305 & 3.60 & 15 & 2 & ND & 2 & 13 & 2 & 2 & 2 & 101 & . 23 & . 11 & 5 & 87 & . 19 & 5 & . 11 & 2 & 1.10 & . 02 & . 06 & 2 & 75 \\
\hline TALE-5667 & 1 & 25 & 8 & 156 & . 8 & 82 & 17 & 286 & 4.58 & 26 & & No & 2 & 14 & 1 & 2 & & 128 & . 23 & . 12 & & 334 & 1.99 & 67 & . 14 & 2 & 2.35 & . 02 & . 11 & 2 & 10 \\
\hline Th2F-5668 & 2 & 16 & 11 & 106 & . 5 & 22 & 10 & 282 & 3.58 & 19 & 2 & H0 & 2 & 12 & 1 & 2 & 2 & 85 & . 23 & . 16 & 5 & 70 & . 11 & 70 & . 09 & 2 & 1.6i & . 02 & . 05 & 2 & 5 \\
\hline TA2R-5669 & 1 & 65 & 16 & 128 & 2.1 & 62 & 15 & 468 & 4.12 & 51 & 2 & но & 2 & 14 & 2 & 2 & 2 & 88 & . 94 & . 08 & 9 & 125 & . 35 & 137 & . 08 & 2 & 2.53 & . 01 & . 06 & 2 & 15 \\
\hline TALP-5bio & 5 & 13 & 7 & 62 & . 3 & 21 & 6 & 159 & 2.87 & 10 & 2 & ND & 2 & 17 & 1 & 2 & 2 & 71 & . 34 & . 05 & 5 & 12 & . 20 & 57 & . 05 & 2 & . 63 & . 02 & . 09 & 2 & 5 \\
\hline TA2F-5bil & 6 & 40 & 14 & 210 & 1.0 & 51 & 16 & 897 & 3.55 & 33 & 2 & ND & 2 & 28 & 2 & , & 2 & 66 & . 55 & . 08 & - & 83 & . 52 & 103 & . 08 & 2 & 2.19 & . 02 & . 08 & 2 & 5 \\
\hline TACR-5ici2 & 7 & 57 & 12 & 118 & 1.0 & 68 & 14 & 175 & 4.55 & 17 & 2 & ND & 2 & 12 & , & 2 & 2 & 103 & . 20 & . 01 & 6 & 183 & 1.08 & 81 & . 06 & 2 & 2.74 & . 02 & . 07 & 2 & 25 \\
\hline TALS-56i3 & 3 & 22 & 9 & 66 & . 3 & 79 & 15 & 235 & 4.65 & 53 & 2 & NO & 2 & 12 & , & 2 & 2 & 135 & . 20 & . 06 & 3 & 306 & 1.39 & 37 & . 11 & 2 & 1.64 & .02 & . 05 & , & 10 \\
\hline Thict-56i4 & \(5 \cdot\) & 26 & 45 & 120 & . 8 & 93 & 15 & 222 & \(4.5 i\) & 76 & 2 & 110 & 2 & 11 & 1 & 2 & 2 & 125 & . 20 & . 10 & , & 240 & . 63 & 70 & . 07 & 3 & 1.17 & . 02 & .00 & 2 & 5 \\
\hline 1A2FS-56i5 & 3 & 10 & 9 & 64 & 1.4 & 14 & 1 & 91 & 1.86 & 11 & & ND & 2 & 12 & 1 & & 2 & 49 & . 13 & . 06 & 6 & 33 & . 18 & 66 & . 04 & 2 & . 91 & . 02 & . 07 & 2 & 5 \\
\hline That-5676 & J & 18 & 10 & 9 & . 1 & 18 & 8 & 317 & J.¢6 & 18 & 2 & ND & 2 & 17 & 2 & 2 & 2 & 98 & . 30 & . 09 & 6 & 45 & . 35 & 88 & . 10 & 2 & 1.02 & . 02 & . 00 & 2 & 20 \\
\hline TAL2-56i\% & J & 51 & 13 & 95 & 1.1 & 38 & 12 & 164 & 3.92 & 26 & 2 & No & 2 & 14 & 1 & 2 & 2 & 81 & . 21 & . 08 & 5 & 98 & . 80 & 63 & . 11 & 2 & 4.24 & . 02 & . 06 & 2 & 15 \\
\hline Th2f-56i8 & 5 & 32 & 9 & S5 & . 2 & 17 & 8 & 113 & j. 07 & 21 & 3 & ND & 2 & 9 & 1 & & 2 & 78 & . 18 & . 05 & 1 & 29 & . 26 & 60 & . 05 & 2 & . 87 & . 01 & . 07 & 2 & 10 \\
\hline TA2F-56;9 & I & 34 & 22 & 165 & . 6 & 24 & 11 & 1021 & 4.08 & 26 & 3 & N0 & 2 & '16 & 2 & 2 & 2 & 102 & . 26 & . 12 & 6 & 58 & . 46 & 100 & . 08 & 2 & 1.42 & .02 & . 07 & 2 & 80 \\
\hline Thin-5ibo & 6 & 70 & 21 & 155 & 3.5 & 97 & 15 & 1126 & 3.je & 26 & 2 & Ho & 2 & 50 & 10 & 2 & 2 & 70 & . 83 & . 15 & 12 & 102 & . 80 & 207 & . 12 & 2 & 3.ie & . 05 & . 00 & 2 & 20 \\
\hline TALT-5681 & 6 & 28 & 11 & 132 & . 9 & 17 & 6 & 15 & 3.43 & 47 & 2 & ND & 2 & 10 & 1 & & 2 & 76 & . 87 & . 06 & 6 & 45 & . 29 & 125 & . 05 & 2 & 1.75 & . 02 & . 05 & 2 & S \\
\hline Thin-5682 & 5 & 20 & \(i\) & 68 & .1 & 28 & 6 & 150 & 3.67 & 27 & 2 & No & 2 & 12 & , & 2 & 2 & 101 & . 15 & . 08 & 6 & 65 & . 32 & 59 & . 05 & 2 & 1.27 & . 02 & . 05 & & 15 \\
\hline TA2R-5683 & 6 & 28 & 9 & 118 & . 5 & 30 & 8 & 148 & 4.5s & 51 & - & no & 2 & 10 & 1 & 2 & 2 & 131 & . 15 & . 04 & 6 & 91 & . 30 & 67 & . 03 & 2 & a.al & . 01 & . 05 & 2 & 20 \\
\hline TGATS-5669 & 10 & 16 & 10 & 93 & . 6 & 20 & 5 & 116 & 3.78 & 29 & ! & HD & 2 & 9 & 1 & 2 & 2 & 118 & . 09 & . 09 & 6 & 45 & . 23 & S & . 07 & 2 & 1.31 & . 02 & . 65 & 2 & 40 \\
\hline 1625-5685 & \(\pm\) & 66 & 14 & 91 & .i & 65 & 18 & 324 & 4.95 & 18 & 4 & ND & 2 & 31 & 1 & 2 & 2 & 121 & . 35 & . 12 & 6 & 155 & 1.19 & 91 & . 10 & 2 & 2.41 & . 01 & . 08 & \(\stackrel{1}{2}\) & -s \\
\hline STD \(4-1\) & 1 & 28 & 38 & 176 & . 2 & 33 & 12 & 934 & 2.67 & 10 & 2 & HD & 2 & 29 & 1 & 2 & 2 & 52 & .69 & .10 & 7 & 77 & . 71 & 225 & . 08 & & 1.54 & . 02 & . 19 & 2 & 5 \\
\hline
\end{tabular}

\section*{}

FAGE \# =
Emifle i
 Tiñh-568

 1KïR-Sts0
TA2R-5691
TA2R- 5692
\(1028-593\) TA2K-5693 IA \(2 F-5694\)
\(1 A 25-5695\)

STD A-1
T \(420-9009\) T \(120-90098\)
TA20-9014 TA20-9011
TA2K-9015
\(-9015\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8 & \(\cdots\) & \(1:\) & 180 & 1.0 & : 5 & 11 & 626 & 4.5: & 92 & を & 10 & 2 & 49 & 2 & 2 & 2 & 62 & . 57 & . 05 & 5 & 57 & . 29 & \(1: 3\) & . 6 & 2 & 1.3i & . 0 i & . 06 & : & 15 \\
\hline 10 & 4 & 19 & 25 & . 1 & 28 & 15 & 296 & 4.15 & 82 & 5 & HO & 2 & 15 & j & 13 & 2 & 60 & 1.02 & . 08 & 9 & 10 & . 15 & 89 & . 64 & : & 1.9 & . 01 & . 0 & - & 5 \\
\hline 5 & 22 & 6 & 50 & . 8 & 13 & 4 & 50 & 2.66 & 21 & 5 & 10 & 2 & 14 & 1 & 2 & 2 & 76 & . 17 & . 02 & & 4 & . 20 & 78 & . 97 & 2 & 1.25 & . 0 & . 65 & 2 & 5 \\
\hline J & 76 & 15 & 120 & . 7 & 17 & 8 & \(2: 0\) & 3.57 & 34 & 5 & 1 C & 2. & 15 & 1 & 2 & 1 & 57 & . 27 & . 09 & 5 & 48 & . 5 & 85 & . 03 & 2 & 1.07 & . \(0:\) & .ç & 2 & 5 \\
\hline 5 & 24 & 15 & 105 & . 6 & 18 & 6 & 130 & 4.12 & 30 & 5 & 1 D & 2 & 17 & 1 & -2 & 2 & 70 & . 21 & . 04 & 7 & 45 & . 10 & 112 & . 04 & 2 & 1.6\% & . 01 & .05 & 2 & 5 \\
\hline 9 & 71 & 21 & 161 & . 7 & 46 & 9 & 18: & 6.66 & 80 & 5 & No & 2 & 18 & I & 5 & 3 & 86 & . 26 & . 06 & 7 & 86 & . 41 & 96 & . 03 & 2 & 1.30 & . 01 & . 06 & \% & 15 \\
\hline 1 & 39 & 11 & 201 & . 6 & 35 & 10 & 193 & 4.58 & 36 &  & 110 & 2 & 13 & 1 & 3 & 2 & 80 & . 19 & . 08 & 6 & 60 & . 65 & 84 & . 06 & 2 & 2.25 & . \(0_{4}^{*}\) & . 05 & 2 & 10 \\
\hline 5 & 28 & 10 & 70 & . 8 & 19 & 5 & 89 & 3.59 & 27 & 5 & \(N \mathrm{ND}\) & 2 & 20 & 1 & 2 & 2 & 102 & . 21 & . 03 & 6 & 89 & . 35 & 113 & .0; & 2 & 1.89 & . 02 & . 05 & : & 15 \\
\hline 5 & 19 & 11 & 272 & . 6 & 40 & 15 & 403 & 4.84 & 38 & 5 & 110 & 2 & 15 & 2 & 3 & 3 & 83 & . 26 & . 07 & 9 & B0 & . 85 & i3 & . 07 & 2 & 2.25 & . 01 & . 07 & 2 & 5 \\
\hline 6 & 55 & 13 & 118 & . 7 & 39 & 10 & 166 & 4.82 & 53 & 5 & N0 & 2 & 9 & 1 & 2 & , & 108 & . 15 & . 04 & \(b\) & 98 & . 81 & 81 & . 05 & 2 & 2.55 & . 01 & . 05 & & 10 \\
\hline 6 & 21 & 12 & 76 & . 5 & 16 & 5 & 164 & 3.19 & 29 & 5 & Ho & 2 & 9 & & 2 & 2 & 82 & . 10 & . 06 & 6 & 54 & . 32 & 60 & .03 & 2 & 1.93 & . 01 & . 06 & 2 & 15 \\
\hline 1 & 30 & 43 & 172 & . 3 & 32 & 11 & 905 & 2.85 & 10 & 5 & ND & 2 & 27 & 1 & 2 & 2 & 50 & . 66 & . 10 & 7 & I6 & . 68 & 216 & . 08 & 1 & 1.91 & . 02 & . 18 & 2 & 5 \\
\hline 1 & 33 & 56 & 36 & . 4 & 31 & 22 & 246 & 4.12 & 65 & 5 & Ho & 2 & 29 & 1 & 2 & 2 & 71 & 1.23 & .10 & 3 & 60 & 2.02 & 56 & . 09 & 2 & 2.14 & . 05 & . 6 & 2 & 10 \\
\hline 3 & 18 & 4826 & 15 & 25.8 & 3 & 1 & 432 & . 36 & 14 & 5 & ND & 2 & 14.9 & 1 & 15 & 64 & & 26.37 & . 01 & 8 & 5 & . 10 & 621 & . 01 & 2 & . 01 & . 01 & . 01 & 2 & 50 \\
\hline 5 & 139 & 21 & 112 & . 4 & 185 & 26 & 1290 & 5.04 & 9 & 5 & HD & 2 & 173 & 2 & 2 & 3 & & 10.89 & . 05 & 2 & 105 & 3.99 & S2 & . 01 & 2 & . 18 & . \(0:\) & . 08 & 2 & 10 \\
\hline
\end{tabular}
ACME ANALYTICAL LABORATORIES LTD.
S.M.D.C. FFOJECT' \(\#\) TA-HOOLA 4547 FILE \# 日2-0722

FAGE \# 1
SARFLE I
\(\begin{array}{lll}\text { Mo } & \mathrm{Cu} & \mathrm{FD} \\ \text { DPA } & \text { PPL } & \text { pps }\end{array}\)


570 f-1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ppe & PPG & ppa & \({ }_{\text {In }}^{\text {Ln }}\) & \[
\begin{aligned}
& \text { Ag } \\
& \text { ppi }
\end{aligned}
\] & ppt & \[
\begin{aligned}
& \text { Co } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Kn}_{\mathrm{n}} \\
& \mathrm{ppa}
\end{aligned}
\] & \[
\begin{array}{cl}
\mathrm{Fe} \\
\mathrm{I}
\end{array}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { Din }
\end{aligned}
\] & DP: & AU & ppa & ppı & \[
\begin{aligned}
& \text { Cd }
\end{aligned}
\] & pps & pris & ppz & \[
\mathrm{C}_{1}
\] & \[
\begin{aligned}
& f \\
& q
\end{aligned}
\] & ppı & pps & \[
\mathrm{Kg}_{\mathrm{g}}
\] & ppa & \[
\frac{1 i}{2}
\] & par & \[
4!
\] & \[
\begin{aligned}
& \mathrm{na} \\
& \hline
\end{aligned}
\] & \[
\frac{x}{:}
\] & \[
\begin{gathered}
x \\
\text { nok }
\end{gathered}
\] & \begin{tabular}{l}
hul \\
spb
\end{tabular} \\
\hline 1 & 96 & 65 & 355 & 1.4 & 52 & 18 & 1718 & 4.26 & 50 & \$ & NI & 2 & 10 & 7 & 3 & 2 & 5 & 1.19 & . 08 & 9 & 81 & . 66 & 184 & . 08 & 2 & 2.17 & .0J & . 08 & : & :5 \\
\hline 6 & 25 & 19 & 101 & . 2 & 17 & 8 & \(4 E 1\) & 3.56 & 41 & 2 & ND & 2 & 28 & 1 & 2 & 2 & 90 & . 61 & . 05 & 1 & 50 & . 51 & 93 & . 03 & 2 & 1.35 & . \({ }^{\text {c }}\) & . 09 & 2 & 5 \\
\hline 4 & 78 & 26 & 351 & . 5 & 68 & 18 & 882 & 4.60 & 10 & 5 & 110 & 2 & 29 & 3 & 2 & 2 & 81 & . 21 & . 01 & 8 & 77 & . 81 & 82 & . 10 & 2 & 2.:0 & .03 & . 08 & 2 & 10 \\
\hline 1 & 38 & 23 & 341 & . 5 & 46 & 19 & 952 & 4.71 & 81 & 5 & ND & 2 & 31 & 2 & 2 & 2 & 10 & . 67 & . 07 & 5 & 112 & . 81 & 126 & . 07 & 2 & 2.55 & . 02 & . 08 & 2 & 15 \\
\hline 9 & 33 & 35 & 230 & . 0 & 45 & 11 & 181 & 5.69 & 64 & 5 & ND & 2 & 20 & 1 & 1 & 3 & 131 & . 24 & . 02 & 7 & 148 & . 8 B & 112 & . 08 & 2 & 2.89 & . \({ }^{\text {a }}\) & . 08 & 2 & j0 \\
\hline 7 & 16 & 19 & 127 & . 2 & 11 & 14 & 306 & 5.58 & 37 & 5 & ND & 2 & 23 & 1 & 5 & 2 & 135 & . 29 & . 11 & 1 & 128 & 1.31 & 90 & . 08 & 2 & 2.09 & . 02 & . 09 & 2 & 5 \\
\hline 13 & 17 & 22 & 146 & . 7 & 38 & 13 & 342 & 5.75 & 71 & 5 & N0 & 2 & 30 & 2 & 2 & 2 & 98 & . 62 & . 01 & 7 & 77 & . 12 & ie & . 06 & 2 & 2.00 & . 02 & . 05 & 2 & : \\
\hline & 60 & 16 & 194 & . 3 & 81 & 23 & SB2 & 6.05 & 48 & 5 & K0 & 2 & 25 & 1 & 2 & 2 & 135 & . 33 & . 05 & 1 & 258 & 1.51 & 115 & . 10 & 2 & 3.15 & . 02 & . 09 & 2 & 15 \\
\hline 5 & 45 & 5 & 145 & . 3 & 26 & 10 & \(23 J\) & 3.74 & 12 & 5 & ND & 2 & 15 & 1 & 3 & 3 & 7 & . 21 & . 07 & 6 & 45 & . 17 & 94 & . 01 & 2 & 1.54 & . 02 & . 86 & 2 & 2e \\
\hline 7 & 143 & 12 & 243 & . 2 & 56 & 28 & 580 & 6.40 & 101 & 5 & ND & 2 & 16 & 2 & 3 & 2 & 95 & . 21 & . 07 & 12 & 95 & 1.31 & 105 & . 03 & 2 & 2.74 & . 02 & . 09 & 2 & 50 \\
\hline \(\cdots\) & 117 & 24 & 300 & .1 & 18 & 12 & 260 & 6.11 & 110 & 5 & ND & 2 & 16 & 1 & 2 & 2 & 78 & . 23 & . 09 & 7 & 71 & . 85 & 116 & . 01 & 2 & 2.63 & . 01 & . 07 & 2 & 45 \\
\hline 3 & 54 & 11 & 113 & . 1 & 51 & 15 & 276 & 4.10 & 39 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 109 & . 30 & . 10 & 6 & 123 & 1.35 & 78 & . 10 & 2 & 2.15 & . 02 & . 08 & 1 & 25 \\
\hline 1 & 16 & 7 & 12 & . 5 & 29 & 9 & 208 & 3.20 & 5 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 90 & . 21 & . 11 & 2 & 152 & . 81 & 81 & . 15 & 2 & 1.16 & . 04 & . 07 & & 5 \\
\hline 1 & 15 & 12 & 111 & . 2 & 24 & 9 & 200 & 3.15 & 8 & 5 & N0 & 2 & 10 & 1 & 2 & 2 & 80 & . 23 & . 05 & 3 & 149 & . 73 & 60 & . 15 & 2 & 1.26 & . 03 & . 07 & 2 & 25 \\
\hline 3 & 43 & 22 & 151 & .1 & 37 & 19 & 521 & 4.72 & 28 & 5 & MD & 2 & 14 & 1 & 2 & 2 & 114 & . 25 & . 07 & 5 & 169 & 1.09 & TJ & . 14 & 2 & 2.54 & . 03 & . 07 & 2 & 10 \\
\hline 5 & 19 & 21 & 175 & . 5 & 48 & 17 & 270 & 5.66 & 37 & 7 & NO & 2 & 12 & 2 & 2 & 2 & 130 & . 20 & . 04 & 6 & 221 & 1.16 & 45 & . 17 & 2 & 3.24 & . 02 & . 08 & 2 & 40 \\
\hline 1 & 34 & 21 & 144 & . 2 & 10 & 19 & 515 & 4.87 & 22 & 5 & ND & 2 & 12 & 1 & 2 & 2 & 129 & . 23 & . 10 & 1 & 207 & 1.51 & 71 & .12 & 2 & 2.72 & . 03 & . 0 & : & 100 \\
\hline 1 & 34 & 15 & 134 & . 1 & 59 & 24 & 616 & 5.23 & 17 & 5 & ND & 2 & 14 & 1 & 2 & 2 & 132 & . 27 & . 15 & 2 & 357 & 2.13 & 153 & . 14 & 2 & 2.36 & . 03 & . 11 & 2 & 5 \\
\hline 2 & 48 & 28 & 196 & . 5 & 31 & 15 & 319 & 4.68 & 46 & 5 & 40 & 2 & 11 & 1 & 2 & 2 & 105 & . 16 & . 14 & 1 & 160 & 1.13 & 71 & . 11 & 2 & 2.63 & . 03 & . 0 ? & ? & 30 \\
\hline 3 & 35 & 37 & 155 & . 5 & 47 & 20 & 810 & 1.87 & 28 & 5 & HD & 2 & 15 & 2 & 2 & 2 & 128 & . 33 & . 14 & 3 & 269 & :. 37 & 185 & . 11 & 2 & 1.74 & . 03 & . 08 & . & 35 \\
\hline 1 & 63 & 36 & 125 & 1.0 & 33 & 11 & 213 & 5.34 & 11 & 5 & Mo & 2 & 11 & 1 & 2 & 2 & 156 & . 13 & . 04 & j & 154 & 1.10 & 51 & . 13 & 2 & 2.34 & . 03 & . 06 & 2 & 45 \\
\hline 2 & 36 & 31 & 142 & . 2 & 52 & 22 & 829 & 5.18 & 33 & 5 & ND & 2 & 16 & 1 & 2 & 2 & 143 & . 25 & . 18 & 2 & 289 & 1.63 & 106 & . 13 & 2 & 2.11 & . 03 & . 09 & 2 & 10 \\
\hline 1 & 4 & 62 & 176 & .1 & 43 & 25 & 823 & 6.58 & 30 & 5 & 110 & 2 & 13 & 1 & 3 & 2 & 148 & . 20 & . 09 & 1 & 193 & 1.01 & 138 & . 09 & 2 & 2.03 & . 02 & . 06 & 2 & 110 \\
\hline 1 & 39 & 25 & 168 & . 3 & 19 & 20 & 546 & 4.67 & 23 & 5 & 110 & 2 & 10 & 1 & 2 & 2 & 114 & . 18 & . 09 & 1 & 217 & 1.65 & 100 & . 13 & 2 & 2.40 & . 03 & . 09 & 2 & 5 \\
\hline 6 & 71 & 1159 & 182 & . 7 & 12 & 25 & 132i & 6. 8.8 & 29 & 7 & HD & 2 & , & 5 & 7 & 2 & 126 & . 13 & . 10 & 4 & 193 & 1.01 & 125 & . 09 & 2 & 2.31 & . 02 & . 04 & & 250 \\
\hline i & 30 & 20 & 105 & . 7 & 25 & 11 & 316 & 4.06 & 20 & \(\pm\) & 2 & & 16 & 1 & 2 & 2 & 100 & . 35 & . 13 & 5 & 100 & . 87 & 104 & . 10 & 2 & 1.65 & . 05 & . 08 & 2 & 15 \\
\hline J & 30 & 51 & 164 & 1.3 & 37 & 15 & 451 & 4.78 & 32 & 5 & 3 & 2 & 7 & 1 & 2 & 2 & 105 & . 15 & . 09 & 3 & 175 & 1.10 & 64 & . 11 & 2 & 1.58 & . 03 & . 08 & , & SEO \\
\hline 2 & 14 & 11 & 124 & . 2 & 27 & 15 & 661 & 4.43 & 26 & 5 & NO & 2 & 21 & 1 & 2 & 2 & 108 & . 30 & . 13 & 5 & 68 & . 96 & i3s & . 10 & 2 & 2.16 & . 02 & . 08 & 2 & 55 \\
\hline 1 & 56 & 28 & 114 & 1 & 26 & 13 & 1882 & 3.16 & 15 & 5 & ND & 2 & 39 & 3 & 2 & 2 & 70 & . 90 & . 09 & 6 & 53 & . 59 & 222 & . 10 & \(\stackrel{ }{ }\) & 2.84 & . 03 & .05 & 2 & 15 \\
\hline 1 & 17 & 8 & 89 & .1 & 20 & 10 & 453 & 2.77 & 10 & J & H0 & 2 & 14 & 2 & 2 & 2 & 68 & . 15 & . 13 & 3 & 70 & . 41 & 91 & .10 & 2 & 1.05 & . 01 & . 06 & \% & 5 \\
\hline 2 & 23 & 16 & 194 & . 2 & 24 & 13 & 513 & 4.61 & 38 & 5 & ND & 2 & 14 & 2 & 2 & 2 & 103 & . 22 & . 10 & 3 & il & . 78 & 64 & . 12 & 2 & 2.0 E & . 03 & . 08 & i & 10 \\
\hline 10 & 63 & 116 & 169 & . 9 & 77 & 27 & 1285 & 6.11 & 91 & 5 & H0 & 2 & 20 & j & 16 & 2 & 87 & . 33 & . 16 & 4 & 63 & . 21 & 135 & . 05 & 2 & 1.17 & . 03 & . 08 & 2 & 15 \\
\hline 11 & 16 & 69 & 123 & .1 & 23 & 10 & 291 & 4.13 & 53 & 5 & HD & 2 & 12 & , & 10 & 2 & 91 & . 14 & . 10 & 5 & 38 & . 16 & 83 & . 08 & 2 & .87 & . 03 & . 06 & 2 & 25 \\
\hline 7 & 23 & \% & 141 & .1 & 26 & 9 & 205 & 1,12 & 39 & 5 & ND & 2 & 13 & 1 & 5 & 2 & 76 & . 17 & . 08 & 5 & 13 & . 30 & 97 & . 09 & , & 1.36 & . 03 & . 07 & 2 & 45 \\
\hline 3 & 10 & 11 & 46 & .5 & 12 & 4 & 288 & 2.02 & 10 & 5 & KD & 2 & 12 & 1 & 2 & 2 & 48 & . 19 & . 04 & 1 & 15 & . 06 & 83 & . 06 & 2 & . 34 & . 03 & . 05 & & 10 \\
\hline 1 & 10 & 24 & 27\% & . 8 & 35 & 11 & :53 & 1.70 & 53 & 5 & 110 & 2 & 18 & 2 & 2 & 2 & 96 & . 21 & . 13 & 5 & 73 & . 63 & 127 & . 07 & 2 & 2.27 & . \({ }^{\text {a }}\) & . 07 & 4 & 15 \\
\hline 6 & 23 & 34 & 201 & 1.1 & 24 & 11 & 582 & 4.32 & 35 & & 110 & 2 & 17 & \(i^{\circ}\) & 4 & 2 & 91 & . 22 & . 17 & 5 & 36 & . 35 & 110 & . 09 & ? & 1.51 & . \(0:\) & . 05 & : & 5 \\
\hline 1 & 30 & 11 & 179 & . 2 & 32 & 12 & 970 & 2.68 & 10 & 5. & 10 & 2 & 30 & 1 & 2 & 2 & 52 & . 66 & . 10 & 6 & 31 & . 75 & 239 & . 08 & 5 & 2.15 & .0: & . 21 & 2 & 5 \\
\hline
\end{tabular}

ShHPLE 1
 if \(\begin{array}{ll}\mathrm{li} & \mathrm{Cr} \\ \text { pof }\end{array}\) 80 \(\begin{array}{ll}\text { 8：} \\ \text { ppe } & i \\ i\end{array}\) \(\underset{\text { ppa }}{6}\) \(!\mathrm{ki}\) （1）nut


\begin{tabular}{|c|c|}
\hline 130 & ．\(\because\) \\
\hline 131 & ． 0 \\
\hline 69 & ． 05 \\
\hline & \\
\hline 59 & ．t5 \\
\hline 76 & ． 88 \\
\hline 61 & ． 16 \\
\hline 130 & ． 22 \\
\hline 125 & 1.20 \\
\hline 106 & ． 15 \\
\hline
\end{tabular}
\[
\begin{aligned}
& .15 \\
& .12 \\
& .10 \\
& .05 \\
& .10 \\
& .05 \\
& .05 \\
& .01 \\
& .05 \\
& .10
\end{aligned}
\]
\[
\begin{gathered}
i \\
\varepsilon \\
i \\
16 \\
6
\end{gathered}
\]
\[
\begin{array}{ll}
156 & 2.09 \\
256 & 1.06 \\
34 & .30 \\
19 & .23 \\
20 & .21 \\
31 & .25 \\
32 & .21 \\
123 & 1.16 \\
150 & 1.16 \\
96 & .65
\end{array}
\]
\[
\begin{gathered}
65 \\
74 \\
140 \\
45 \\
182 \\
145 \\
111 \\
73 \\
139 \\
87
\end{gathered}
\]
\[
\begin{aligned}
& .19 \\
& .10 \\
& .02 \\
& .05 \\
& .03 \\
& .02 \\
& .01 \\
& .09 \\
& .05 \\
& .06
\end{aligned}
\]
\[
\begin{array}{lll}
2 & 2.12 & 0 \\
j & 2.17 & 0 \\
5 & 1.96 & 0 \\
j & 1.09 & 0 \\
1 & .87 & .0 \\
5 & 1.26 & .0 \\
i & 1.15 & 0 \\
j & 2.66 & 0 \\
3 & 2.65 & 0 \\
3 & 1.89 & .0
\end{array}
\]
\[
\begin{aligned}
& .05 \\
& .0 \$ \\
& .05 \\
& .01 \\
& .05 \\
& .02 \\
& .02 \\
& .0 j \\
& .02 \\
& .0 j
\end{aligned}
\]
\[
\begin{aligned}
& .09 \\
& .08 \\
& .10 \\
& .06 \\
& .11 \\
& .10 \\
& .11 \\
& .06 \\
& .08 \\
& .06
\end{aligned}
\]
\[
\begin{array}{rr}
2 & 5 \\
2 & 5 \\
2 & 240 \\
2 & 5 \\
2 & 15 \\
2 & 15 \\
2 & 15 \\
2 & 20 \\
2 & 5 \\
2 & 5 \\
2 & 50
\end{array}
\]
\[
\begin{array}{cccc}
2 & 86 & .12 & .10 \\
2 & 82 & .21 & .27 \\
2 & 109 & .20 & .07 \\
2 & 119 & .26 & .08 \\
2 & 94 & .16 & .11
\end{array}
\]
\[
\begin{array}{ll}
17 \\
5 & 17 \\
j & 74 \\
6 & 61 \\
& 69
\end{array}
\]
\[
\begin{aligned}
& .61 \\
& .35 \\
& .80 \\
& .6 i \\
& .92
\end{aligned}
\]
\[
\begin{gathered}
82 \\
109 \\
83 \\
56 \\
66 \\
65
\end{gathered}
\]
\[
\begin{array}{llll}
1 & 1.52 & .05 & .05 \\
5 & 1.84 & .03 & .07 \\
1 & 2.11 & .05 & .07 \\
1 & 1.75 & .05 & .07 \\
5 & 2.05 & .02 & .08
\end{array}
\]
\[
\begin{array}{cc}
6 & 12 \\
5 & 1 \\
7 & 5 \\
7 & 5 \\
8 & 6
\end{array}
\]
\[
\begin{array}{rrrr}
1.49 & 81 & .06 & 1 \\
.12 & 76 & .05 & 5 \\
.55 & 85 & .08 & 1 \\
.56 & 99 & .09 & 5 \\
.86 & 116 & .06 & 1
\end{array}
\]
\[
\begin{array}{ccccc}
1 & 2.67 & .05 & .06 & 2 \\
j & .62 & .0 j & .06 & 2 \\
1 & 2.44 & .03 & .05 & 2 \\
5 & 1.04 & .0 j & .08 & 2 \\
1 & 2.3 i & .03 & .08 & 2
\end{array}
\]
\[
\begin{array}{lllll}
i & 27 & .35 & 101 & .01 \\
6 & 30 & .25 & 66 & .05 \\
6 & 31 & .20 & 162 & .01
\end{array}
\]
\[
\begin{array}{cccccc}
1 & 1.99 & .02 & .09 & i & 205 \\
1 & .99 & .03 & .07 & 2 & 10 \\
1 & 1.50 & .01 & .13 & 2 & 420 \\
3 & 1.04 & .05 & .05 & 3 & i 0 \\
5 & 2.00 & .04 & .05 & 2 & 15
\end{array}
\]
\begin{tabular}{ccc}
2 & 100 & .12 \\
2 & 58 & .11 \\
2 & 186 & .28 \\
\(i\) & 84 & .21 \\
2 & 154 & .30 \\
2 & 124 & .18 \\
2 & 94 & .26 \\
2 & 114 & .16 \\
2 & 100 & .18 \\
2 & 18 \\
2 & 84 & .12 \\
2 & 55 \\
2 & 55 & .08 \\
2 & 142 & .25 \\
2 & 54 & .86
\end{tabular}
\[
\begin{aligned}
& .06 \\
& .11 \\
& .12 \\
& .05 \\
& .10 \\
& .09 \\
& .08 \\
& .15 \\
& .15 \\
& .07 \\
& .05 \\
& .05 \\
& .10
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline 込 &  \\
\hline ロッが & － \\
\hline
\end{tabular}.56
.20
1.55
.28
2.57
.54
.34
.61
.67
.26
.08
1.1035
38
47
135
75
114
93
76
69
65
12
12
71
25
1
\(\vdots\)
\(j\)
1
\(j\)
1
1
1
1
1
\(j\)
\begin{tabular}{lll}
1 & 1.46 & .04 \\
5 & 1.09 & .04 \\
\(j\) & 1.68 & .03 \\
1 & 1.26 & .05 \\
3 & 2.63 & .02 \\
1 & 1.55 & .03 \\
5 & 2.03 & .03 \\
1 & 2.32 & .02 \\
1 & 1.87 & .03 \\
5 & 1.53 & .03 \\
1 & 1.29 & .01 \\
3 & 2.12 & .03 \\
5 & 2.15 & .02
\end{tabular}
\[
\begin{aligned}
& .06 \\
& .06 \\
& .06 \\
& .07 \\
& .11
\end{aligned}
\]


PRGE \# \(\because\)
SARFLE I


1K2F-5665 TAZE-5664 1A20-901: TA \(20-9012\)
TA20-901: 5ID \(\mathrm{h}-1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 19 & \(7{ }^{\circ}\) & . 5 & 15 & 6 & 331 & 2.68 & 30 & : & 110 & \% & 15 & 1 & 2 & 2 & 75 & . 23 & . 07 & s & II & . 5 & \(t)\) & . 06 & 2 & 1.07 & . 0 & . 05 & - & - \\
\hline 5 & 10 & 189 & . & 27 & 10 & 253 & 4.11 & Si & 2 & HD & 2 & 29 & 2 & 2 & : & 15 & . 16 & . 05 & : & 11 & . 52 & 85 & . 06 & 3 & 1.55 & . 02 & . 6 & & 10 \\
\hline i & 6 & 11 & . 2 & 10 & 8 & 435 & 1.80 & 30 & 49 & 10 & : & 130 & 1 & 2 & : & & 16.27 & . 06 & 2 & 7 & . 89 & 5 & . \(0:\) & 4 & 1.00 & . 01 & . 01 & ? & : \\
\hline 22 & 1 & 17 & . 1 & 20 & 17 & 256 & 2.96 & 16 & 14 & HD & 2 & 17 & 1 & 2 & 2 & ti & 1.62 & . 11 & 2 & 35 & . 57 & 28 & . 15 & j & . 86 & . \({ }^{\circ}\) & . 0 & 14 & 15 \\
\hline 131 & 41 & 184 & . 3 & 33 & 12 & 885 & 2.71 & 15 & \(=\) & HD & 2 & 31 & 1 & . 2 & 2 & 53 & . 69 & . 10 & 8 & 71 & . 76 & 258 & . OE & S & 2.15 & .0* & . 82 & 1 & 5 \\
\hline
\end{tabular}

ACME ANALYTICAL LABORATORIES LTD．852 E．HASTINGS，VANCOUVER R．C．FH：253－T． 150
ICF GEOCHEMICAL ANALYSIS


```

SELCO-LP REGOUZここう

```
vancouver，b．C．

DATE RECEIVED 198：
 ASSAYER （2）ciefly DEAN TOYE，CERTIFIED B．C．ASSAYER
s．m．d．c．FROJECT \＃TA HOOLA 4947 FILE \＃82－0624
FAGE \＃ 1
SAMFLE ：
 \(\underset{\text { ppt }}{V}\) \(C 2\)
1 La
ppe
pen
ppa Kis 81
pis \(i i\)
\(i\) \(\underset{\text { ppt }}{\text { Al }}\)


\[
\text { S.M.D.C. FROJECT \# TA HOOLA } 4947 \text { FILE \# B2-0624 }
\]

FAGE \# 2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T \(\mathrm{A}-\mathrm{E} \mathrm{F}-4198\) & 14 & 180 & 20 & 98 & 3.1 & 17 & 11 & 328 & 3.16 & 18 & 2 & ND & 2 & 38 & 2 & - 2 & 2 & 61 & 1.33 & . 08 & is & 51 & . 89 & 137 & . 07 & 4 & 2.77 & . 02 & . 12 & 2 & 10 \\
\hline 1A-2¢-4199 & 9 & 92 & 17 & 91 & . 8 & IB & 17 & 526 & 4.37 & 22 & 2 & ND & 2 & 26 & 1 & 2 & 2 & 105 & . 52 & . 05 & 11 & 78 & 1.33 & 117 & . 10 & \(\downarrow\) & 2.10 & . 01 & . 12 & 2 & 5 \\
\hline 1A-2R-1500 & 7 & 80 & 13 & 68 & 2.6 & 27 & 13 & 381 & 3.33 & 14 & 2 & N1 & 2 & 33 & 2 & 2 & 2 & 78 & . 69 & . 05 & 14 & 50 & . 91 & 109 & . 08 & 1 & 1.95 & . 02 & . 11 & 2 & 5 \\
\hline TA-2R-1501 & 1 & 11 & 15 & 60 & . 8 & 27 & 18 & 452 & 5.13 & 37 & 2 & NO & 2 & 20 & 1 & 2 & 2 & 133 & . 44 & . 11 & 7 & 79 & 2.08 & 104 & . 15 & 5 & 2.13 & . 02 & . & 2 & 15 \\
\hline 1A-2R-4502 & 6 & 36 & 14 & 65 & . 8 & 20 & 13 & 293 & 5.12 & 16 & 2 & No & 2 & 20 & 1 & 2 & 2 & 111 & . 38 & . 09 & 6 & 80 & 1.41 & 103 & . 19 & 5 & 1.69 & . 02 & . 19 & 2 & S \\
\hline 14-25-1503 & 5 & 36 & 16 & 108 & 1.1 & 28 & 17 & 303 & 4.99 & 16 & 2 & NO & 2 & 14 & 1 & \(\hat{2}\) & 2 & 121 & . 21 & . 09 & 6 & 9 & 1.51 & 100 & . 15 & 5 & 1.72 & . 02 & . 20 & 2 & 5 \\
\hline TA-2f-4504 & 31 & 29 & 38 & 66 & . 9 & 10 & 5 & 69 & 1.17 & 11 & 6 & K0 & 2 & 16 & 1 & 2 & 3 & 115 & . 88 & . 01 & 6 & \({ }^{3}\) & . 29 & 123 & . 16 & 5 & . 81 & . 02 & . 08 & 3 & 5 \\
\hline 1A-2R-1505 & 36 & 271 & 55 & 84 & 3.1 & 21 & 9 & 462 & 3.53 & 28 & 1 & ND & 2 & 38 & 3 & 2 & : & 92 & . 70 & . 06 & 14 & 53 & . 14 & 268 & . 07 & 4 & 1.54 & . 02 & . 07 & 2 & 10 \\
\hline 1A-2R-4506 & 29 & 119 & 43 & 135 & 3.0 & 20 & 11 & 161 & 4.52 & 16 & 3 & ND & 2 & 19 & 2 & 2 & 4 & 99 & . 30 & . 05 & 9 & 50 & . 12 & 234 & . 12 & 5 & 1.65 & . 02 & . 06 & 2 & 25 \\
\hline [ \(A-2 \mathrm{~A}-1507\) & 6 & 45 & 11 & 72 & . 6 & 26 & 11 & 320 & 3.91 & 18 & 2 & HD & 2 & 15 & 1 & 2 & 2 & 109 & . 19 & . 06 & 8 & 67 & . 52 & 81 & . 11 & 5 & 1.86 & . 02 & . 09 & 2 & 5 \\
\hline 1A-2R-4508 & 8 & 62 & 16 & 164 & . 8 & 33 & 17 & 843 & 3.88 & 21 & 2 & No & 2 & 24 & 3 & 2 & 2 & 107 & . 35 & . 09 & 10 & 31 & .8: & 193 & . 09 & J & 1.18 & . 02 & . 10 & 2 & 10 \\
\hline 1A-28-1509 & 7 & 21 & 14 & 60 & 1.5 & 18 & 12 & 415 & 3.58 & 17 & 1 & NO & 2 & 9 & 1 & 2 & 2 & 89 & . 16 & . 11 & 6 & 51 & 1.08 & 130 & . 16 & 1 & 1.16 & . 05 & . 11 & 2 & 5 \\
\hline 1A-2R-4510 & J & 73 & 15 & 70 & . 6 & 45 & 18 & 609 & 4.12 & 23 & 2 & NO & 3 & 32 & 1 & 2 & 3 & 112 & . 5 & . 04 & 11 & 94 & 1.15 & 156 & . 11 & 6 & 2.58 & . 02 & . 08 & 2 & 5 \\
\hline 1 A -2R-5556 & 5 & 76 & 12 & 93 & . 7 & 17 & 15 & 231 & 1.65 & 69 & \% & ND & :- 2 & 15 & 1 & 2 & 2 & 103 & . 28 & . 06 & 9 & EJ & 1.19 & 76 & . 10 & 8 & 2.65 & . 02 & . 09 & 2 & 25 \\
\hline 1A-2R-5S57 & 1 & 17 & 9 & 10 & .7 & 11 & 1 & 94 & 2.24 & 12 & 2 & No & 2 & 12 & 1 & 2 & 2 & 82 & .16 & . 03 & 8 & 27 & . 28 & 96 & . 08 & 1 & 1.00 & . 04 & . 07 & 2 & \(\pm\) \\
\hline 1A-2'R-SE58 & 21 & \(100^{\prime}\) & 207 & 71 & 1.3 & 12 & 6 & 280 & 4.13 & 9 & 1 & NO & 2 & 14 & 1 & 2 & 16 & 90 & . 20 & . 12 & 6 & 35 & . 89 & 88 & . 14 & 9 & 1.21 & . 02 & . 11 & 2 & 10 \\
\hline 1A-2R-5559 & 8 & 21 & 19 & 52 & . 8 & 26 & 6 & 163 & J. 55 & 9 & 1 & NO & 2 & 15 & 1 & 2 & , & 88 & . 26 & . 08 & 6 & 76 & . 30 & 82 & . 12 & 5 & 1.14 & . 02 & . 08 & 2 & 5 \\
\hline 1 \(\mathrm{A}-2 \mathrm{R}-\mathrm{SJta}\) & 8 & 11 & 23 & 58 & . 6 & 65 & 9 & 273 & 3.08 & 10 & 2 & HD & 2 & 15 & 1 & 2 & 2 & 75 & . 27 & . 05 & 6 & 108 & 1.46 & 17 & . 13 & 5 & 1.96 & . 02 & . 11 & 2 & 5 \\
\hline 1A-2R-5561 & 15 & 147\% & 22 & 101 & 1.5 & 133 & 18 & 308 & 1.08 & 19 & 3 & ND & 2 & 30 & 3 & 2. & 2 & 89 & . 34 & . 07 & 27 & 65 & . 31 & 133 & . 05 & 5 & 2.70 & . 02 & . 20 & 2 & 40 \\
\hline IA-2R-55i2 & 8 & 75 & 18 & 60 & 1.5 & 11 & 6 & 162 & 2.83 & 11 & 2 & ND & 2 & 20 & 2 & 2 & 2 & 74 & . 13 & . 03 & 9 & 51 & . 20 & 62 & . 09 & 1 & 1.19 & . 02 & . 10 & & 10 \\
\hline TA-2R-556] & 1 & 69 & 28 & 95 & . 7 & 123 & 12 & 256 & 4.09 & 11 & 2 & ND & 2 & 16 & 1 & 2 & 2 & 113 & . 29 & . 07 & : & 343 & 2.62 & 116 & .15 & 1 & 2.50 & . 02 & . 3 & 2 & 15 \\
\hline 1A-2R-5584 & 6 & 117 & 15 & 96 & 2.9 & 30 & 12 & 218 & 3.13 & 11 & 2 & ND & 2 & 11 & , & 2 & 2 & 70 & . 75 & . 04 & 11 & 46 & . 80 & 112 & . 11 & + & 2.90 & . 02 & . 11 & 2 & 25 \\
\hline 1A-2R-5565 & 8 & 47 & 32 & 12 & . 6 & 111 & 20 & 391 & 5.79 & 8 & 6 & N0 & 2 & 15 & 1 & 2 & 2 & 131 & . 28 & . 04 & 1 & 324 & 3.04 & 87 & . 18 & 5 & 2.85 & . 02 & . 18 & 2 & 5 \\
\hline TA-2f-sEtb & 18 & 102 & 102 & 83 & . 8 & 36 & 11 & 371 & 4.75 & 10 & 2 & ND & 2 & 15 & 1 & 3 & , & 105 & . 24 & . 01 & 6 & 117 & 1.84 & 59 & . 17 & 2 & 1.87 & . 02 & . 21 & 2 & 5 \\
\hline 1A-28-5sb \({ }^{\text {\% }}\) & 1 & 35 & 25 & 80 & . 8 & 23 & 10 & 210 & J. 28 & 10 & 3 & ND & 2 & 17 & 1 & 2 & 2 & 77 & . 27 & . 09 & ; & 49 & . 69 & 138 & . 11 & 3 & 1.74 & . 02 & . \(0 \%\) & 2 & 5 \\
\hline TA-28-55 58 & 10 & 12 & 29 & 65 & . 6 & 25 & 8 & 165 & 3.25 & 12 & 3 & No & 2 & 17 & , & 2 & 2 & 80 & . 28 & . 05 & & 55 & . 82 & 75 & . 09 & 3 & 1.82 & . 02 & . 08 & 2 & 5 \\
\hline 1A-2\%-5569 & 22 & 80 & 41 & 38 & 1.8 & 116 & 11 & 220 & 3.26 & 9 & 2 & MD & 2 & 30. & 1 & 2 & & 80 & . 71 & . 01 & ; & 92 & 1.11 & 113 & . 12 & 3 & 1.79 & . 02 & . 15 & & 5 \\
\hline 1A-2F-5570 & 11 & 51 & 59 & 52 & . 7 & 17 & 7 & 207 & 2.81 & 5 & 3 & 110 & 2 & 11 & 1 & & 2 & 80 & . 26 & . 06 & 5 & 31 & . 61 & 172 & . 17 & 3 & 1.10 & . 02 & . 07 & 2 & 5 \\
\hline 1A-28-557! & 2 & 13 & 52 & 59 & . 6 & 76 & 11 & 260 & 3.15 & 4 & 2 & KD & 2 & 15 & 1 & 2 & 2 & 82 & . 45 & . 05 & 1 & 153 & 2.01 & 83 & . 19 & 3 & 1.65 & . 03 & . 10 & 2 & 5 \\
\hline 1A-2¢-5s: 2 & 6 & 14 & 92 & 36 & 1.0 & 20 & , & 176 & 3.06 & 8 & j & ND & , & 10 & 1 & , & \(\downarrow\) & 107 & . 45 & . \(0^{\circ}\) & & 48 & . 82 & 89 & . 16 & 5 & . 98 & . 02 & . 12 & 2 & 5 \\
\hline SID A-1 & 1 & 30 & 39 & \(1 ; 0\) & . 4 & 33 & 12 & 917 & 2.69 & 10 & 2 & ND & J & 31 & 2 & 2 & - & es & . 80 & . 09 & 9 & 74 & . 36 & 268 & . 09 & 5 & 1.95 & . 0 & .al & & s \\
\hline
\end{tabular}
samfle I


S.M.d.C. FROJECT \# TA HODLA 4シ47 FILE H 82-0SE4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T6-26-5E54 & : & 13 & 17 & 79 & . 1 & 3 & 15 & 2?1 & 4.17 & 17 & 2 & 110 & 2 & 29 & 1 & 2 & 2 & 124 & . 36 & . 03 & 7 & E2 & . 91 & 78 & . 14 & 2 & 2.07 & . 01 & . 08 & 2 \\
\hline 1A-2h-5555 & 2 & :0 & 17 & 83 & . 1 & 3 & 14 & 566 & 1.26 & 16 & 2 & ND & 2 & 13 & 1 & 2 & , & 111 & . 56 & . 11 & 6 & 87 & 1.04 & 130 & . 10 & 2 & 2.88 & . 01 & .15 & 2 \\
\hline TA-2R-55ij & 8 & 59 & 62 & 82 & . 6 & 36 & 9 & 138 & 3.81 & 7 & 2 & 110 & 2 & 9 & 1 & \(i\) & 2 & 98 & . 18 & . 08 & 1 & 66 & . 59 & 58 & . 16 & 2 & 2.44 & . 01 & .05 & 2 \\
\hline TA-2R-5574 & 2 & 15 & 21 & 85 & . 1 & 232 & 10 & 370 & 3.74 & 8 & & ND & 2 & 8 & 1 & 2 & 2 & 101 & . 36 & . 07 & 3 & 181 & 3.90 & 81 & . 23 & 2 & 2.8: & . 01 & 1.10 & 2 \\
\hline TA-2R-5575 & 7 & 209 & 237 & 64 & . 8 & 115 & 11 & 309 & 7.28 & 22 & 2 & ND & 2 & 15 & , & 2 & 5 & 122 & .37 & . 07 & 3 & J51 & 2.56 & 111 & . 23 & 2 & 2.14 & . 02 & . 81 & 2 \\
\hline TA-2R-55 \({ }^{\text {d }}\) & 1 & 110 & 51 & 18 & . 3 & 31 & 8 & 292 & 3.18 & 7 & 2 & ND & 2 & 16 & 1 & 2 & 2 & 115 & . 17 & . 07 & 1 & is & 1.17 & 18 & . 0 & 2 & 1.61 & . 02 & . 09 & 2 \\
\hline 1A-2R-55.7 & 3 & 60 & 26 & 43 & . 5 & 25 & 9 & 216 & 4.38 & 9 & 2 & ND & 2 & 11 & 1 & 2 & 2 & 117 & . 57 & . 07 & 5 & 65 & 1.15 & 50 & . 20 & 2 & 1.74 & . 02 & . 09 & 2 \\
\hline 16-2¢-5578 & 9 & 84 & 67 & 53 & . 1 & 11 & 10 & 199 & 4.11 & 10 & 2 & ND & 2 & 17 & 1 & 2 & 2 & 150 & . 90 & . 08 & 5 & 96 & 1.39 & 109 & . 18 & 2 & 1.t6 & . 02 & .13 & 2 \\
\hline 16-2R-5579 & 1 & 72 & 21 & 81 & . 5 & 58 & 12 & 231 & 1.15 & 12 & 2 & ND & 2 & 14 & & 2 & 2 & 105 & . 3 & . 09 & 6 & 127 & 1.38 & il & . 14 & 2 & 2. \({ }^{\text {c. }}\) & . 01 & . 08 & 2 \\
\hline 1A-2f-5580 & 3 & 116 & 26 & 80 & . 1 & 85 & 17 & 327 & 4.13 & 6 & 2 & ND & 2 & 12 & 1 & 2 & 2 & 118 & . 38 & . 09 & 1 & \(1 i 1\) & 1.83 & 65 & . 18 & 2 & 2.5j & . \(0:\) & . 09 & 2 \\
\hline TA-2R-5581 & 20 & 150 & 21 & 83 & . 5 & 56 & 1 & 474 & 1.72 & 99 & j & No & 2 & 6 & 1 & 2 & 2 & 195 & .13 & . 07 & 8 & 129 & . 99 & 70 & . 16 & 2 & 1.50 & . 02 & . 06 & 2 \\
\hline 1A-AR-5582 & 10 & 41 & 21 & 30 & . 2 & 26 & 8 & 143 & 4.73 & 11 & 2 & No & 2 & 8 & , & 2 & 2 & 186 & . 16 & . 01 & 6 & 11 & . 61 & 64 & . 19 & 2 & 1.10 & . 01 & . 06 & 2 \\
\hline 1A-2R-55BJ & 23 & 147 & 34 & 68 & . 3 & \(5 i\) & 11 & 245 & 4.71 & 12 & 2 & HD & 2 & 10 & 1 & 2 & 2 & 149 & . 26 & . 07 & 3 & 127 & 1.63 & 96 & . 23 & 1 & 1.53 & . 02 & . 20 & 2 \\
\hline 1A-28-5584 & 1 & 82 & 19 & 85 & . 4 & 16 & 20 & 693 & 4.33 & 19 & 2 & 110 & 2 & 16 & , & 2 & 2 & 189 & . 31 & . 05 & 11 & 109 & 1.35 & 1;0 & . 11 & 2 & 2.53 & . 02 & . 09 & 2 \\
\hline 1A-2R-s585 & 1 & 130 & 16 & 105 & 1.5 & 51 & 18 & 987 & 1.03 & 21 & 2 & NO & 2 & 114 & j & 2 & 2 & 99 & 1.96 & . 09 & 9 & 102 & 1.28 & 236 & . 00 & 2 & 2.72 & . 02 & .10 & 2 \\
\hline 1A-2R-5596 & 1 & 18 & 12 & in & . 5 & 31 & 12 & 345 & 3.13 & 13 & 2 & ND & 2 & 3 & 1 & 2 & 2 & 107 & . 10 & . 03 & 11 & 86 & . 92 & 152 & . 10 & 2 & 2.04 & . 02 & . 07 & i \\
\hline \(1 A-2 ¢-5587\) & 4 & 200 & 20 & 100 & 2.0 & \(t 1\) & 19 & 1104 & 1.34 & 28 & 2 & 10 & 2 & 94 & 2 & 2 & 2 & 115 & 1.68 & . 08 & 14 & 118 & 1.32 & 235 & . 07 & 2 & 3.21 & . 02 & . 11 & 2 \\
\hline 1A-2f-5588 & 1 & 56 & 11 & 72 & . 3 & 39 & 14 & 261 & 1.50 & 23 & 2 & H0 & - & 21 & 1 & 2 & 2 & 134 & . 32 & . 04 & 7 & 107 & \(1.2 \hat{6}\) & 94 & . 13 & 2 & 2.32 & . 01 & . 07 & , \\
\hline 1A-2R-s589 & j & 30 & 10 & 58 & . 3 & 24 & ¢ & 220 & 3.50 & 12 & & 110 & 2 & 20 & , & 2 & 2 & 104 & . 29 & . 07 & 6 & 69 & . 85 & 34 & . 12 & 2 & 1.71 & . 02 & . 05 & 2 \\
\hline 1A-28-5591 & 5 & 80 & 20 & 115 & . 7 & 18 & 18 & 361 & 4.11 & 18 & 2 & ND & 2 & 10 & 2 & 2 & 2 & 122 & . 57 & . 04 & 9 & 107 & 1.16 & 164 & . 08 & 2 & 2.72 & .0\% & . 08 & 2 \\
\hline 1A-28-5592 & 1 & 61 & 22 & 97 & . 2 & 39 & 20 & 466 & 4.04 & 16 & 2 & N0 & 2 & 51 & 1 & 2 & 2 & 106 & . 57 & . 04 & 8 & 81 & 1.11 & 202 & . 10 & 3 & 2.26 & . 02 & . 08 & 2 \\
\hline 1A-2R-5593 & 1 & 85 & 16 & 33 & . 5 & 11 & 17 & 439 & 4.34 & 20 & 2 & ND & 2 & 35 & 1 & 2 & 2 & 126 & . 53 & . 06 & 10 & 108 & 1.29 & 107 & . 10 & 2 & 2.24 & . 01 & . 09 & 2 \\
\hline TA-i¢-5594 & 1 & 45 & 11 & 70 & . 1 & 35 & 14 & 364 & \$.20 & 22 & 2 & NO & 2 & 35 & 1 & 2 & 2 & 129 & . 43 & . 06 & 8 & 95 & 1.15 & 93 & . 11 & 2 & 1.86 & . 01 & . 07 & 2 \\
\hline 1A-2¢-5595 & 6 & 130 & 60 & 106 & . 9 & 18 & 18 & 373 & 5.52 & 17 & 2. & N0 & 2 & 28 & 1 & 2 & 3 & 127 & . 36 & . 05 & 8 & 101 & 1.11 & 151 & . 11 & 2 & 3.52 & . 02 & . 11 & 2 \\
\hline 1A-2¢-5596 & 2 & 55 & 31 & 99 & . 2 & 37 & 18 & 38i & 4.19 & 16 & 2 & ND & 2 & 16 & 1 & 2 & 2 & 106 & . 29 & . 16 & 5 & 81 & 1.29 & 54 & . 12 & 2 & 2.02 & . 02 & . 08 & 2 \\
\hline 1A-2¢-5597 & 2 & 21 & 26 & 63 & . 2 & 24 & 10 & 204 & 3.68 & 11 & 2 & HD & 2 & 24 & . 1 & 2 & 2 & 108 & . 39 & . 09 & 5 & 61 & .i3 & 63 & . 15 & 2 & 1.73 & . 01 & . 07 & 2 \\
\hline TA-iR-5598 & 3 & 26 & 26 & 51 & . 3 & 20 & 10 & 308 & 3.45 & 12 & 2 & NO & 2 & 20 & 1 & 3 & 2 & 101 & . 27 & . 04 & 6 & 53 & . 65 & do & . 11 & 2 & 1.60 & . 01 & . 06 & 2 \\
\hline 1A-26-5599 & 3 & 51 & 412 & \(8{ }^{1}\) & . 1 & 32 & 15 & 462 & 4.56 & 15 & 2 & HD & 2 & 25 & 1 & 2 & 2 & 128 & . 39 & . 04 & , & 82 & . 90 & 147 & . 13 & 2 & 2.35 & . 02 & . 09 & 2 \\
\hline TA-2R-5600 & 3 & 59 & 11 & 104 & . 5 & 34 & 15 & 465 & 4.02 & 15 & 2 & KD & 2 & 24 & 1 & 2 & 2 & 109 & . 41 & . 10 & 6 & 80 & 1.06 & 134 & . 12 & 2 & 2.2i & . 02 & . 10 & 2 \\
\hline 1A-2n-560! & 2 & 51 & 21 & 60 & . 4 & 24 & 8 & 174 & 2.95 & 10 & 2 & ND & 2 & 21 & 1 & 2 & 2 & 87 & . 33 & . 05 & 7 & 53 & . 72 & 116 & . 10 & 2 & 1.78 & . 01 & . 08 & 2 \\
\hline 1A-2R-5602 & 3 & 40 & 30 & 67 & . 2 & 26 & 13 & 146 & 3.71 & 11 & 2 & K0 & 2 & 21 & 1 & 2 & 2 & 103 & . 29 & . 07 & 7 & 65 & . 83 & 74 & . 11 & 2 & 2.17 & . 01 & . 06 & 2 \\
\hline TA-2¢-560] & 3 & 13 & 28 & 66 & . 2 & 27 & 11 & 404 & 3.65 & 11 & 2 & ND & 2 & 23 & 1 & 2 & 2 & 104 & . 37 & . 07 & ; & 64 & . 96 & 71 & . 11 & 2 & 2.31 & . 01 & . 06 & 2 \\
\hline 1A-EP-5604 & 2 & 11 & 21 & 82 & . 1 & 25 & 12 & 416 & 3.43 & 12 & 2 & ND & 2 & 11 & 1 & 2 & 2 & 87 & . 22 & . 07 & \(\downarrow\) & 56 & . 78 & 85 & . 12 & 2 & 2.50 & . 01 & . 06 & 2 \\
\hline TA-2R-5605 & 6 & 144 & 18 & 102 & 1.5 & 86 & 25 & 997 & 5.28 & 27 & 2 & HD & 2 & i1 & 2 & 2 & 2 & 130 & 1.09 & . 08 & 12 & 110 & 1.78 & 203 & . 10 & 2 & 2.85 & . 02 & . 14 & 2 \\
\hline TA-2R-560 \({ }^{\circ}\) & 6 & 156 & 21 & 130 & 1.1 & 67 & 21 & 805 & 5. 22 & 26 & 2 & ND & 2 & 103 & 2 & 2 & 2 & 122 & 1.32 & . 07 & 10 & 126 & 1.18 & 295 & . 09 & 2 & 3.25 & . 02 & . 11 & 2 \\
\hline TA-2¢-5607 & 1 & 62 & 53 & 86 & . 6 & 37 & 11 & 376 & 3.51 & 11 & 2 & ND & 2 & 34 & 1 & 2 & 2 & 92 & . 53 & . 03 & 10 & 14 & 1.11 & 123 & .13 & 2 & 2.30 & . 020 & . 11 & 2 \\
\hline STO \(\mathrm{A}-1\) & 1 & 30 & 39 & 180 & . 3 & 35 & 13 & 1025 & 2.80 & 12 & 2 & ND & 2 & 36 & 1 & 2 & 2 & 58 & . 68 & . 10 & 9 & 71 & . 78 & 271 & . 09 & 1 & 2.05 & . 02 & . 21 & 2 \\
\hline
\end{tabular}

FFEE \(\mid=\)
SNMFLE I


1A-2R-560B
TA-2K-560
! \(\mathrm{A}-2 \mathrm{~K}-5610\) TA-2R-5bl 1A-2f-5612

TA-2 2 -5613
1A-2̈K-5 51
TA-2 \(\mathrm{A}-5615\)
1A-2f-5is 1A-28-5617
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5 & \(t 9\) & 13 & 75 & . 7 & 16 & 14 & 330 & 3.7\% & 11 & 2 & ND & 2 & 15 & 1 & 2 & 2 & 106 & . 90 & . 01 & 9 & 103 & 1.56 & 110 & . 14 & 4 & 2.28 & . 0 & . 16 & 2 \\
\hline 1 & 210 & 98 & 26 & 4.9 & 55 & 10 & 285 & 3.59 & 16 & 2 & HD & 2 & 89 & 2 & 2 & 2 & 68 & 2.05 & . 06 & 13 & :0 & . 31 & 230 & . 09 & 5 & 3.08 & . 0 & . 18 & : \\
\hline 1 & 276 & \(69^{\prime \prime}\) & 129 & 2.0 & 63 & 18 & 738 & 4.86 & 23 & 2 & HD & 2 & 62 & 3 & 2 & 2 & 110 & 1.36 & . 07 & 15 & 105 & 1.30 & 229 & . 11 & 5 & 3.17 & . 03 & . 17 & 2 \\
\hline i & 32 & 19 & 64 & . 1 & 21 & 9 & 153 & 2.77 & 8 & 2 & N0 & 2 & 26 & 1 & 2 & 2 & 92 & . 10 & . 03 & 6 & 19 & . 61 & 56 & . 15 & 3 & 1.35 & . 03 & . 13 & 2 \\
\hline 2 & 65 & 16 & 80 & .4 & 20 & 13 & 242 & 1.10 & 8 & 2 & 110 & 2 & 20 & , & 2 & 2 & Bó & . 19 & . 15 & ; & 14 & . 16 & 89 & . 13 & , & 3.70 & . 02 & . 06 & 2 \\
\hline 3 & 15 & 27 & 61 & . 3 & 21 & 11 & 286 & 3.33 & 11 & 2 & N0 & 2 & 22 & 1 & . & 2 & 91 & . 8 & .08 & ; & 51 & . 80 & it & . 13 & 7 & 1.73 & . 02 & . 08 & 2 \\
\hline 3 & 52 & 33 & 118 & 1 & 31 & 13 & 317 & 3.96 & 8 & 3 & N0 & 2 & 19 & 1 & 2 & 2 & 108 & . 25 & . 11 & 7 & 69 & . 87 & \(1: 5\) & . 13 & 1 & 2.55 & . 0 & .10 & 2 \\
\hline 3 & 21 & 24 & 63 & . 3 & 18 & 6 & 146 & \(2.7 \%\) & 7 & 2 & 40 & 2 & 21 & , & & 2 & 94 & . 36 & . 07 & 8 & 19 & . 65 & 83 & . 15 & 2 & 1.18 & . 0 & . 10 & ? \\
\hline 2 & 21 & 20 & 14 & . 1 & 16 & 5 & 130 & 2.10 & 7 & 2 & NO & 2 & 21 & 1 & 3 & 2 & 75 & . 21 & . 04 & 6 & 39 & . 19 & 6\% & . 11 & , & 1.28 & .0j & . 09 & 2 \\
\hline 2 & 30 & 25 & 64 & . 1 & 22 & . & 205 & 3.86 & 13 & & No & 2 & 20 & , & & & 121 & . 8 & . 07 & 8 & 81 & . 89 & 65 & . 11 & & 2.09 & . 02 & . 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Sm.fle I} & \multicolumn{10}{|c|}{S.H.D.C.} & \multicolumn{2}{|l|}{FFOLECT} & H & \multicolumn{4}{|l|}{A HODLA 97.17} & \multicolumn{2}{|l|}{File H} & \multicolumn{3}{|l|}{\(82-0627\)} & \multirow[b]{2}{*}{Mg} & \multirow[b]{2}{*}{Pi} & \multirow[b]{2}{*}{\(1:\)} & \multirow[b]{2}{*}{8} & \multirow[b]{2}{*}{nl} & \multicolumn{4}{|r|}{Fince} \\
\hline & no & Cu & ft & \(2{ }_{1}\) & A9 & Hi & Co & Mrs & fe & As & U & Au & th & Sr & \(\mathrm{Cd}^{\text {d }}\) & 51 & 11 & \% & Ci & f & Li & Cr & & & & & & 1 id & f. & k & nul \\
\hline & ppa & : & Eph & ppm & pp1 & ppa & ppa & pps & ppa & ppa & ppa & : & : & ppn & ppa & \% & ppa & \% & Pfe & : & & \% & pra & Pit \\
\hline 14-20-7058 & 8 & \(3:\) & 21 & 22 & . & 30 & ¢ & 48 & 3.72 & 1 & 2 & 110 & 2 & こ & 1 & 2 & ? & 44 & . 35 & . 10 & 1 & 61 & . 69 & 101 & .1: & ; & . 61 & .0i & . 5 & 2 & 5 \\
\hline 1A-20-8012 & : & 32 & 1 & 16 & . 3 & 20 & 11 & 518 & 3.42 & 1 & 2 & HD & 2 & 44 & 1 & 2 & 2 & 86 & 1.13 & . 15 & 6 & 52 & 1.68 & 59 & . 09 & j & 1.53 & . 88 & . 6 & : & 5 \\
\hline TA-20-8015 & ? & 81 & : & 52 & . 1 & 22 & 19 & 678 & 3.91 & 16 & 2 & 110 & 2 & 40 & 1 & 2 & 2 & 114 & . 95 & . 14 & & 65 & 2.77 & 65 & . 5 & : & 2.10 & . \({ }^{5}\) & 1.3i & 2 & 45 \\
\hline TA-20-8014 & 2 & 41 & 6 & 50 & -i & 22 & 2 & t10 & 4.1: & 10 & 2 & 110 & 2 & 11 & 1 & 2 & ? & 99 & . 95 & . 15 & 5 & 60 & 2.33 & 65 & . 12 & S & 1.77 & . 05 & 1.55 & , & 10 \\
\hline 1A-20-8015 & : & 38 & 5 & 52 & . 5 & 23 & 11 & 699 & \(3.7 \%\) & 13 & 2 & no & 2 - & 11 & 1 & 2 & 2 & 105 & 1.01 & . 15 & 5 & 61 & 2. 28 & 76 & . 11 & : & 1.95 & . 0 & i. 11 & 2 & 60 \\
\hline TA-20-8016 & 1 & 123 & 1 & 11 & . 5 & 21 & \(1:\) & 589 & 3.3 & 5 & 2 & ND & \(i^{i}\) & 39 & 1 & 4 & 2 & 98 & 1.05 & . 16 & 6 & 52 & 1.85 & :1 & . 11 & " & 1.80 & . 0 ? & 1.24 & 2 & 15 \\
\hline 1A-20-8017 & 2 & 56 & 1 & 35 & . 3 & 20 & \(1 E\) & 555 & 3.15 & 5 & 2 & HD & 2 & 38 & 1 & 2 & 2 & 90 & 1.05 & . 16 & 6 & 12 & 1.65 & \(6 i\) & .10 & J & 1.it & . 08 & 1.05 & 2 & 20 \\
\hline Th-20-8018 & 2 & 68 & 3 & 51 & . 3 & 23 & 18 & 612 & 4.18 & 1 & 2 & N0 & , & I1 & 1 & 2 & : & \(1: 0\) & . 9 & . 16 & 6 & 19 & 2.21 & 67 & . 11 & : & \(2.0 t\) & . 0 & 1.59 & 2 & 15 \\
\hline 1A-20-8019 & 1 & 67 & 5 & \({ }^{5}\) & .1 & 22 & 21 & -29 & 4.19 & 2 & 2 & HD & 2 & 28 & 1 & 2 & 2 & 105 & . 8 & . 15 & 1 & 11 & 2.17 & 76 & . 11 & 4 & 2.27 & . 05 & 1.51 & 2 & 10 \\
\hline 1A-20-8020 & 2 & 246 & 3 & 61 & . 5 & 22 & 28 & i?i & 4.62 & : & 2 & ND & 2 & 50 & 1 & 2 & \(:\) & 140 & 1.29 & . 15 & 3 & 36 & 2.1; & 9 & . 14 & 4 & 2.1; & . 11 & 1.67 & , & 10 \\
\hline 1A-20-8021 & 1 & 208 & 7 & \(i\) & 1 & 25 & 29 & 979 & 5.78 & \% & 2 & ND & 2 & 31 & 1 & 2 & 2 & 188 & 1.45 & . 11 & 1 & 42 & 2.82 & 228 & . 18 & & 2.75 & . 06 & 2.51 & 2 & S \\
\hline 1A-20-8022 & 1 & 224 & 6 & 66 & . 5 & 22 & 27 & 883 & 5.08 & 2 & 2 & ND & 2 & 56 & 1 & 2 & 2 & 138 & 1.30 & . 13 & 1 & 38 & 2.32 & 123 & . 16 & 1 & 2.56 & . 10 & 1.79 & . & 10 \\
\hline 1A-20-8073 & 5 & 144 & 1 & 28 & 1.2 & 11 & 15 & 455 & 4.11 & 44 & 2 & NO & 2 & 46 & 1 & 2 & 2 & 15 & 1.22 & . 15 & 5 & 23 & . 39 & 63 & . 01 & 8 & . A 5 & . 02 & . 16 & 2 & 150 \\
\hline 1A-20-8024 & 2 & 99 & 3 & 35 & 1.10 & 23 & 13 & 165 & 4.21 & 21 & 2 & ND & 2 & 98 & 1 & 2 & 2 & 53 & 3.63 & . 13 & 1 & 19 & 1.05 & 92 & . 01 & 2 & . 16 & . 05 & . 10 & 2 & 185 \\
\hline 1A-20-9010 & 1 & 10 & j & 14 & . 1 & 19 & 8 & 262 & 1.81 & 23 & 2 & NO & 2 & 21 & 1 & 2 & 2 & 13 & 1.05 & . 11 & 1 & 30 & . 62 & 10 & . 11 & 1 & . 81 & . 04 & . 06 & , & 5 \\
\hline 1A-20-901] & 51 & 355 & 34 & 108 & 1.0 & 32 & \(3 i\) & 1758 & 7.00 & 238 & 2 & ND & 2 & 30 & 1 & 2 & 2 & 118 & . 66 & . 16 & 9 & 111 & 1.70 & 515 & . \(0 ;\) & 1 & ¢¢ & . 01 & 1.01 & 2 & 2:0 \\
\hline 510 A-1 & 1 & 30 & 38 & 175 & . 3 & 35 & 13 & 1021 & 2.78 & 12 & : & ND & 2 & 34 & 1 & , & 2 & 58 & . 68 & . 10 & 9 & 76 & . 28 & 264 & . 09 & \(\downarrow\) & 2.0: & . 02 & . & 2 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMFLE & \[
\begin{aligned}
& \text { Ho } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cu} \\
& \mathrm{pp}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Fb} \\
& \mathrm{PDA}
\end{aligned}
\] & \[
\begin{aligned}
& \text { In } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& \text { OD }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ni} \\
& \mathrm{ppe}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Co } \\
& \text { ppe }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Kn} \\
& \text { ppi }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Fe} \\
\vdots
\end{gathered}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { PDI }
\end{aligned}
\] & \[
\underset{p p a}{\text { U }}
\] & \begin{tabular}{l}
Au \\
ppe
\end{tabular} & in & \[
\begin{aligned}
& \text { 5r } \\
& \text { ppo }
\end{aligned}
\] & co & \[
\begin{aligned}
& \text { Sb } \\
& \text { ppi }
\end{aligned}
\] & \[
\begin{aligned}
& p i \\
& p p a
\end{aligned}
\] & \[
\begin{gathered}
V \\
p p \&
\end{gathered}
\] & \[
\mathrm{C}_{\mathbf{2}}
\] & \[
\begin{aligned}
& p \\
& i
\end{aligned}
\] & \[
\begin{aligned}
& \text { ld } \\
& \text { pga }
\end{aligned}
\] & \[
\begin{aligned}
& \text { lr } \\
& p p z
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Mg} \\
2
\end{gathered}
\] & \[
\begin{aligned}
& 81 \\
& p p s
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& x
\end{aligned}
\] & \[
\underset{p p s}{p}
\] & \[
\underset{\chi}{\mathrm{fl}}
\] & \[
\underset{i}{\mathrm{Ka}}
\] & \[
\begin{aligned}
& i \\
& i
\end{aligned}
\] & \[
\begin{gathered}
k \\
p p a
\end{gathered}
\] \\
\hline tazi-5454 & J & 71 & \% & 97 & .9 & 11 & 11 & 397 & 3.0 & 11 & 2 & 2 & 2 & 34 & 1 & 2 & 3 & 104 & . 55 & . 05 & \(\delta\) & 54 & 1.66 & 107 & . 18 & 3 & 2.87 & . 0 & . 13 & : \\
\hline 1625-5455 & 2 & 25 & 45 & 90 & . 9 & 18 & 6 & 139 & 2.80 & & 2 & 2 & 2 & 17 & 1 & 2 & 2 & 80 & . 20 & . 09 & 5 & 50 & . 54 & 99 & . 16 & 2 & 1.15 & . 2 & . 06 & 2 \\
\hline 162F-5156 & 4 & 77 & 32 & 80 & . 9 & 26 & 7 & 145 & 2.62 & 9 & & 2 & 2 & 32 & 1 & 2 & 2 & 71 & . 52 & . 01 & 8 & sf & . 67 & 114 & .10 & 1 & 1.54 & . \({ }^{2}\) & . 11 & 2 \\
\hline TALR-5457 & 1 & 179 & 62 & 87 & 2.6 & 11 & 14 & 665 & 3.58 & 15 & 1 & 2 & 2 & 58. & 2 & 2 & 3 & 84 & 1.52 & . 09 & 10 & 75 & 1.24 & 145 & . 07 & 1 & 2.15 & . 02 & . 11 & 2 \\
\hline 1A2R-5458 & 5 & 130 & 66 & 154 & 1.5 & 18 & 16 & 622 & 4.86 & 18 & 2 & 2 & 2 & 51 & 2 & 2 & 3 & 105 & . 98 & . 05 & 7 & 88 & 1.25 & 209 & . 13 & 4 & 3.10 & . 02 & . 15 & 2 \\
\hline 1A28-5159 & 5 & 38 & 31 & 116 & . 6 & 21 & 10 & 217 & 3.57 & 14 & 2 & 2 & 2 & 36 & 1 & 2 & 2 & 108 & . 47 & . 04 & 6 & 01 & 1.03 & 81 & . 14 & 3 & 2.20 & . 01 & . 07 & 2 \\
\hline TA2k-St60 & 3 & 50 & 70 & 68 & . 4 & 35 & 9 & 252 & 3.37 & 14 & , & 2 & 2 & 23 & , & 2 & 3 & 99 & . 42 & . 09 & 7 & 87 & 1.29 & 76 & . 14 & 1 & 1.88 & . 02 & . 69 & 2 \\
\hline TA2R-5\$61 & 5 & 12 & 85 & 67 & .1 & 41 & - & 208 & 3.05 & 11 & & 2 & , & 18 & , & 2 & 3 & 88 & . 28 & . 07 & 5 & 96 & 1.32 & 69 & . 15 & 2 & 1.95 & . 02 & . 08 & 2 \\
\hline 1A2R-5462 & 2 & 18 & 49 & 50 & . 5 & 15 & 6 & 129 & 2.34 & 7 & 2 & 2 & 2 & 16 & 1 & & 2 & 75 & . 22 & . 07 & 1 & 39 & . 5 & 62 & . 14 & 1 & 1.24 & . 0 a & .05 & 2 \\
\hline 1A2F-5183 & 3 & 62 & 50 & 98 & . 6 & 30 & 17 & 288 & 4.91 & 16 & 2 & 2 & 2 & 47 & 2 & 2 & 2 & 123 & . 36 & . 12 & 6 & 69 & 1.31 & S0 & . 15 & 3 & 2.71 & . 01 & . 08 & 2 \\
\hline 122R-5464 & 8 & 215 & 17 & 136 & 2.3 & 60 & 16 & 117 & 5.01 & 25 & 5 & 2 & , & 35 & 2 & & 3 & 102 & . 48 & . 06 & 11 & 85 & . 93 & 315 & . 15 & 2 & 4.55 & .02 & .12 & 2 \\
\hline 1928-5465 & 2 & 20 & 16 & 52 & . 7 & 11 & 5 & 113 & 2.09 & 10 & & & 2 & 13 & 1 & & 2 & 69 & . 25 & . 01 & & J5 & . 58 & 58 & . 16 & 2 & 1.05 & . 02 & . 05 & 2 \\
\hline 14.7-5168 & 6 & 73 & 37 & 88 & . 3 & 11 & 20 & 459 & 4.51 & 17 & & 2 & 2 & 34 & 1 & 2 & 2 & 119 & . 16 & . 08 & 8 & 108 & 1.48 & 113 & . 14 & 2 & 2.62 & . 02 & . 10 & 2 \\
\hline Thizf-5467 & 7 & 93 & 19 & 102. & . 5 & 46 & 16 & 512 & 4.39 & 21. & 2 & 2 & & 38 & 2 & 3. & 2 & 116 & . 60 & . 06 & 9. & 113 & 1.63 & 146 & . 15 & 2 & 2.56 & . 02 & . 11 & 2 \\
\hline 1A2R-5468 & 5 & 65 & 18 & 105 & . 6 & 33 & 11 & 388 & 3.97 & 18 & 2 & 2 & 2 & 60 & 2 & 2 & 2 & 106 & . 87 & . 06 & 6 & 81 & 1.05 & 158 & . 12 & 3 & 2.32 & . 02 & . 09 & ? \\
\hline Thin-5469 & 3 & 51 & 60 & 101 & . 9 & 34 & 11 & 854 & 3.45 & 11 & 2 & 2 & 2 & 31 & 1 & 2 & 2 & 9 & . 58 & . 08 & 8 & 84 & 1.30 & 231 & .13 & 3 & 1.91 & . 02 & . 12 & 2 \\
\hline tack-5470 & 3 & 39 & 59 & 59 & . 9 & 26 & 8 & 160 & 2.75 & 9 & & 2 & 2 & 23 & 1 & 2 & 2 & 80 & . 35 & . 05 & 5 & 68 & . 81 & 8 & . 13 & 1 & 1.18 & . 02 & . 05 & 2 \\
\hline TA25-5471 & 3 & 68 & 62 & 92 & . 1 & 4 & 19 & 473 & 4.12 & 17 & 2 & 2 & & 33 & 2 & J & & 108 & . 53 & . 07 & 7 & 111 & 1.60 & 106 & . 15 & 3 & 2.57 & . \(0^{2}\) & . 10 & 2 \\
\hline  & 3 & 71 & 50 & 81 & . 3 & 38 & 11 & 268 & 4.08 & 15 & 2 & 2 & 2 & 28 & 1 & 2 & 2 & \(10 i\) & . 38 & . 09 & 6 & E日 & 1.37 & is & . 14 & 2 & 2. 52 & . 01 & . 08 & 2 \\
\hline .1428-5073 & 3 & 67 & 35 & 130 & . 5 & 35 & 17 & 312 & 3.96 & 12 & 2 & 2 & 2 & 28 & 1 & 2 & 2 & 94 & . 32 & .10 & 8 & i8 & 1.14 & 106 & . 14 & 1 & 2.12 & . 02 & . OB & 2 \\
\hline Tazk-5474 & & 53 & 14 & 108 & . 8 & 28 & 17 & 413 & 3.81 & 15 & 2 & 2 & 2 & 20 & 1 & 2 & 2 & 83 & . 27 & .11 & B & 64 & . \(\mathrm{EL}_{2}\) & 121 & . 11 & 1 & 3.00 & . 02 & . 08 & 2 \\
\hline Tâzh-5175 & 3 & 29 & 28 & 47 & . 3 & 15 & 6 & 153 & 2.93 & 10 & 2 & 2 & 2 & 28 & 1 & 2 & 2 & 99 & . 30 & . 05 & 7 & 14 & . 55 & 105 & . 15 & 3 & 1.37 & . 01 & . 07 & 2 \\
\hline 142R-5476 & 1 & 86 & 69 & 83 & . 4 & 39 & 15 & 506 & 3.76 & 18 & 2 & 2 & , & 38 & 1 & 2 & 3 & 98 & . 60 & . 07 & 10 & 80 & 1.47 & 116 & . 14 & J & 2.21 & . 02 & . 16 & 2 \\
\hline 1a2k-5177 & 5 & 93 & 45 & 110 & . 5 & 11 & 18 & 475 & 4.16 & 17 & 2 & 2 & 2 & 40 & 1 & 2 & , & 105 & . 50 & . 06 & 9 & 81 & 1.42 & 156 & . 12 & 3 & 2.72 & . 02 & . 11 & 2 \\
\hline Th2f-5478 & 2 & 22 & 18 & 50 & . 3 & 17 & - & 148 & 3.06 & 12 & 2 & 2 & - & 17 & 1 & , & 2 & 95 & . 21 & . 08 & 5 & 15 & . 63 & is & . 11 & 2 & 1. 3 î & . 0 & . 05 & 2 \\
\hline TAEP-5779 & 1 & 15 & 18 & 35 & .1 & 10 & 1 & 106 & 1.92 & 5 & 2 & 2 & 2 & 16 & 1 & 2 & 2 & 63 & & & & & & & & & & & & \\
\hline 1A2F-5160 & 2 & 15 & 16 & 34 & .4 & 11 & 1 & 167 & 1.87 & 9 & 2 & 2 & 2 & 20 & 1 & 2 & 2 & 71 & .20 & .03 & 6 & 31 & . 41 & 60 & . 12 & 2 & 1.15 & . 05 & . Ot & 2 \\
\hline 1A2R-5481 & 5 & 68 & 28 & 89 & 1.1 & 31 & 12 & 462 & 3.67 & 20 & 2 & 2 & 2 & :1 & 2 & 2 & 2 & 52 & 1.28 & . \(\mathrm{OS}_{6}\) & 8 & 64 & 1.03 & 155 & . 0 ? & 3 & 2.69 & . 0 & . 10 & 2 \\
\hline 1626-5482 & 2 & 26 & 20 & 45 & . 1 & 11 & 5 & 115 & 2.55 & 7 & 2 & : & & 21 & 1 & 2 & 2 & 82 & . 24 & . 05 & 6 & 39 & . 53 & :5 & . 12 & 4 & 1.51 & . 02 & . 08 & ? \\
\hline TAER-5633 & 2 & 28 & 22 & 47 & . 6 & 14 & 5 & 177 & 2.58 & 8 & 2 & 2 & & 15 & 1 & 2 & 2 & 73 & . 18 & . 05 & 5 & 10 & . 16 & 116 & .10 & ; & 1.66 & . 02 & . 07 & 2 \\
\hline TAIT-5484 & 3 & 43 & 53 & 91 & . 5 & 11 & 9 & 179 & 3.27 & 11 & 2 & & 2 & 23 & 1 & 2 & 2 & 9 & . 38 & . 04 & 7 & 13 & 1.02 & 84 & . 15 & F & 1.57 & . 02 & . 07 & 2 \\
\hline TG2R-5185 & 1 & 75 & 57 & 91 & . 5 & 40 & 13 & 819 & 3.10 & 10 & 2 & 2 & 2 & 38 & 2 & 2 & 3 & 89 & . 61 & . 06 & 9 & BS & 1.23 & :26 & . 12 & j & 2.30 & . 2 & . 13 & 2 \\
\hline TA25-5486 & 2 & 30 & 34 & 91 & . 6 & 25 & 9 & 221 & 2.92 & 7 & , & 2 & 2 & 31 & & 2 & 2 & 83 & . 50 & . 04 & 6 & 65 & . 91 & 99 & . 16 & 2 & 1.85 & . 0 & . 10 & 2 \\
\hline 1a2R-5187 & 1 & 156 & 65 & 92 & 1.6 & 50 & 15 & 905 & 3.92 & 16 & 2 & 2 & \(\stackrel{2}{2}\) & 68 & 3 & 2 & 3 & 78 & 1.34 & . 07 & 8 & 61 & 1.17 & 151 & . 10 & 5 & 2.65 & . 05 & . 16 & 2 \\
\hline 1A2̈R-5188 & 2 & 3; & \(\pm 2\) & 7 & . 1 & 19 & 8 & 265 & 3.15 & 11 & 2 & 2 & 2 & 23 & -1 & 2 & 2 & 90 & . 2 B & . 07 & \(\bigcirc\) & 51 & . \(5:\) & 113 & .12 & j & 1.56 & . 01 & . 07 & , \\
\hline IA2P-54BS & 1 & 127 & 54 & 123 & . 8 & 16 & 15 & 645 & 4.19 & 18 & 2 & 2 & 2 & 11 & 2 & 2 & 3 & 99 & . 62 & . 05 & 13 & 85 & 1.15 & 161 & . 11 & 3 & 2.53 & . 02 & & 2 \\
\hline TA2F-5190 & 3 & 56 & 50 & E8 & . 1 & 31 & 18 & 365 & 3.78 & 15 & 2 & 2 & 2 & 33 & 1 & 3 & \% & 104 & . 43 & . 06 & 8 & 34 & 1.21 & 1is & . 15 & 4 & 2.67 & . 02 & . 15 & 2 \\
\hline SID 6-1 & 1 & 28 & 38 & 177 & .1 & 32 & 11 & 894 & 2.65 & 15 & 2 & 2 & 2 & 3 j & 2 & 2 & 2 & 52 & . 60 & . 09 & & 69 & . 13 & 271 & . 06 & 5 & 1.95 & . 02 & . 20 & 2 \\
\hline
\end{tabular}


As \(\begin{array}{ccc}\mathrm{U} & \mathrm{AL} & \mathrm{IH} \\ \text { PPA } & \text { FPA } & \text { DPA }\end{array}\) cd
ppa Bi
ppa It id
ppa


 TA2 2 -S492
TA2S-5493 TA2R-5493

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & 65 & \% & 70 & .1 & 30 & 17 & 306 & 3.19 & 10 & 2 \\
\hline 1 & 8 & 19 & 35 & .2 & ; & 1 & 97 & 2.01 & 5 & 2 \\
\hline 1 & 105 & 18 & 98 & . 9 & 44 & 13 & 1089 & 4.11 & 16 & 2 \\
\hline 3 & 40 & 23 & 56 & . & 20 & 7 & 166 & 2.92 & 11 & 2 \\
\hline 1 & 9 & 12 & 31 & . 2 & 7 & j & 30 & 1.61 & J & 2 \\
\hline 2 & 36 & 30 & 59 & . 5 & 23 & 9 & 187 & 3.18 & 13 & 2 \\
\hline 1 & 72 & 14 & 102 & .1 & 10 & 13 & 326 & 1.16 & 26 & 2 \\
\hline 5 & 72 & 18 & 87 & . \({ }^{\text {d }}\) & 42 & 15 & 391 & 4.12 & 21 & 2 \\
\hline : & 31 & 11 & 50 & . 6 & 18 & ; & 190 & 2.65 & 16 & 2 \\
\hline 3 & 106 & 14 & 105 & . 5 & 49 & 16 & 570 & 1.57 & 26 & 2 \\
\hline 5 & 68 & 16 & 73 & .1 & 38 & 16 & 181 & 4.23 & 24 & 2 \\
\hline 1 & 68 & 16 & 71 & . 5 & 34 & 15 & 168 & 4.37 & 22 & 2 \\
\hline 3 & 11 & 10 & 18 & .1 & 10 & 4 & 115 & 2.18 & 13 & 2 \\
\hline 1 & 24 & 10 & 97 & . 5 & 17 & \% & 176 & 3.16 & 15 & 2 \\
\hline 2 & 10 & 11 & 72 & . 3 & 19 & 6 & 165 & 2.89 & 13 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


.1
.8
.5
.2
.2
\(\begin{array}{lll}6 & 245 & 3.1 \\ 1 & 155 & 2.7 \\ 6 & 353 & 2.7 \\ 1 & 104 & 2 \\ 6 & 297 & 3.12\end{array}\) 11
9
10
18 2
2
2
2
2 \(\begin{array}{rrr}19 & 993 & 4.20 \\ 7 & 114 & 3.38\end{array}\) \(\begin{array}{cc}26 & 2 \\ 22 & 2 \\ 30 & 2 \\ 22 & 2 \\ 7 & 2\end{array}\) 2
2
2
2
2
2
\[
\begin{aligned}
& 18 \\
& 15 \\
& 12 \\
& 11 \\
& 13
\end{aligned}
\]
2
2
2
2
2
2
\begin{tabular}{cc}
2 & 85 \\
2 & 81 \\
3 & 95 \\
2 & 65 \\
2 & 55 \\
2 & 89 \\
2 & 115 \\
2 & 117 \\
2 & 83 \\
2 & 112 \\
2 & 116 \\
2 & 119 \\
2 & 70 \\
2 & 36 \\
2 & 67 \\
2 & 81 \\
2 & 86 \\
2 & 86 \\
2 & 82 \\
2 & 72 \\
2 & 85 \\
2 & 82 \\
2 & 80 \\
2 & 93 \\
2 & 81 \\
2 & 58 \\
2 & 29 \\
2 & 62 \\
3 & 104 \\
2 & 63 \\
2 & 86 \\
2 & 53
\end{tabular} .15
.15
.75
.35
.14
.28
.74
.15
.25
1.03
.60
.10
.39
.15
.15
.10
.12
.16
.18
.08
.37
.24
.19
.15
.28
.18
.31



 \begin{tabular}{c}
144 \\
19 \\
189 \\
101 \\
35 \\
55 \\
193 \\
171 \\
108 \\
172 \\
123 \\
84 \\
65 \\
100 \\
65 \\
\\
89 \\
100 \\
100 \\
56 \\
75 \\
\hline
\end{tabular} .09
.07
.19
.11
.11
.12
.10
.10
.09
.10
.11
.13
.09
.08
.06
.10
.07
.06
.06
.09
.08
.08
.04
.02
.20
.14
\begin{tabular}{lll}
2 & 1.59 & .02 \\
2 & .95 & .01 \\
3 & 3.24 & .01 \\
3 & 1.90 & .01 \\
3 & .62 & .01 \\
3 & 1.54 & .01 \\
3 & .24 & .01 \\
3 & .25 & .01 \\
2 & 1.00 & .01 \\
3 & 2.27 & .02 \\
1 & 1.95 & .02 \\
1 & 2.01 & .01 \\
2 & .98 & .01 \\
3 & 1.75 & .01 \\
3 & 1.94 & .01 \\
1 & 1.28 & .01 \\
2 & 1.45 & .01 \\
3 & 1.56 & .01 \\
2 & 1.13 & .01 \\
3 & 1.35 & .01 \\
3 & 1.57 & .01 \\
3 & 1.59 & .01 \\
1 & 2.57 & .01 \\
3 & 1.49 & .01 \\
2 & 1.20 & .02 \\
2 & 1.29 & .02 \\
2 & 1.85 & .02 \\
3 & 1.12 & .01 \\
2 & 2.08 & .01 \\
5 & 1.55 & .02
\end{tabular} .06
.05
.06
.06
.14 -anNonn nNNNMN

FFGGE I =
Smpele I
 II. \(\square\)
Tha5-E50: 1ATh-s501 Thar-Esos TA?R-550b


1A2R-5508 TAZR - E50: TARK-SE10 Th2t--5511 TAZK-5512

Thise- 5513 TAZ大-5514 1428-Ests


Finge 11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SnMte： & \[
\begin{aligned}
& \text { 总 } \\
& \text { pFE }
\end{aligned}
\] & \({ }_{p o z}^{C u}\) & \[
\begin{aligned}
& ! \\
& \text { ppe }
\end{aligned}
\] & \[
\begin{aligned}
& \text { :r } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Aq} \\
& \mathrm{fEF}
\end{aligned}
\] & \[
\begin{aligned}
& 11 i \\
& p p a
\end{aligned}
\] & \[
\begin{aligned}
& \text { Co } \\
& \text { posa }
\end{aligned}
\] & \[
\begin{aligned}
& \text { man } \\
& \text { ppa }
\end{aligned}
\] & \[
\mathrm{F}
\] & \[
\begin{aligned}
& \text { is } \\
& \text { ppiz }
\end{aligned}
\] & ppa & nid
ans & it． ifa & \[
\begin{aligned}
& \mathrm{s}_{\mathrm{r}} \\
& \mathrm{FFA}
\end{aligned}
\] & \[
\begin{aligned}
& \text { co } \\
& \text { pps }
\end{aligned}
\] & St & \[
\begin{aligned}
& 8 i \\
& F^{2}
\end{aligned}
\] & \[
\underset{\text { ppa }}{\ddot{0}}
\] & \[
\stackrel{C_{i}}{:}
\] & \[
:
\] & \[
\begin{aligned}
& \text { it } \\
& \text { ppa }
\end{aligned}
\] &  & \[
\underline{q}
\] & \[
\begin{aligned}
& \mathrm{P}_{\mathrm{i}} \\
& \mathrm{FFi}
\end{aligned}
\] & \[
!
\] & \[
\underset{;=2}{\ell}
\] & ni & ＂： & \[
1:
\] & \[
8
\] & \[
\begin{aligned}
& \text { hul } \\
& \text { wint }
\end{aligned}
\] \\
\hline 1nino－8000 & 4 & ？ & ： & 20 & \(\cdots\) & ： & 5 & \(1: 0\) & 1.01 & 35 & － & ＊ & & \(\stackrel{\square}{\square}\) & 1 & ： & 2 & 29 & ： & ． C & ： & 3 & ． 60 & 10 & ． 0 ： & & ． 28 & ． \(0:\) & \(\because\) & & 250 \\
\hline taze－sen！ & 3 & \(5: 1\) & 41 & 119 & －． 1 & 4 & 2 & 8：9 & 5．\％ & 2 T & \(\varepsilon\) & \％ & ： & 158 & 4 & 2 & 2 & 122 & ：．is & ． 2 & ？ & 180 & 2.91 & 84 & ． 05 & 1 & 1.17 & ． 0 & 1.45 & & St \\
\hline 160－ETC： & こ & 175 & 27 & 109 & 1.1 & 3s & 9 & 1005 & 5.73 & \(1: 1\) & 5 & 2 & & 260 & 1 & 2 & 2 & 147 & S．5\％ & ． 10 & J & 12 & \(2 . .1\) & 111 & ． 09 & & 1.10 & ． 0 & 1．：i & & 230 \\
\hline 1A2 2 －900 & US & 189 & 39 & i4 & 1.4 & 4 & It & 330 & 8.06 & \({ }^{2} 61\) & ： & 2 & S & 180 & － & ： & ？ & 127 & 4.60 & ． 12 & j & 17i & ：． 6 & 67 & ． 09 & d & 1．c8 & ．0： & 1.3 & & \(1: 0\) \\
\hline 1h：0－8009 & si & 257 & 3 & 94 & 1．： & 51 & 26 & 859 & 6.64 & 262 & ¢ & 2 & ， & \(11 i\) & 3 & 3 & 2 & 17 & 3.65 & ． 12 & ： & 210 & 2.85 & 3 & ． 08 & ： & 1．12 & ． 01 & \(1.8:\) & & 20 \\
\hline 14：1）－8005 & 51 & 205 & ：5 & 67 & 1.0 & 5 & 22 & 812 & 5.84 & 182 & \(\checkmark\) & ： & \％ & 387 & ！ & 2 & 2 & 142 & 3． \(2=\) & ． 11 & 2 & 191 & 3.00 & 155 & ． 13 & S & 1.60 & ．0： & ¢¢¢ & 2 & 3： \\
\hline 16：0－8006 & 4 & 271 & 31 & 169 & 1．： & 39 & 29 & E22 & 5．90 & 200 & ； & 2 & ， & 289 & ： & 2 & 2 & 113 & 5．85 & ． 11 & 2 & 200 & 2.85 & 78 & ． 09 & ： & 1.29 & ． 01 & 1.64 & & 4 ts \\
\hline 1AEC－800？ & 50 & 279 & こ & 95 & 1.4 & 41 & 23 & \(85 ;\) & 8.20 & 990 & 6 & 2 & － & 311 & 1 & 2 & 2 & 144 & 5.17 & ．11 & 2 & 184 & 3．0？ & 87 & ． 11 & \[
\vdots
\] & 1.10 & ． 02 & \(1 .:\) & & 90 \\
\hline thio－E008 & 76 & \(3: 1\) & 4： & \(30:\) & 1．： & 45 & 29 & 1008 & l． 66 & 222 & \(\varepsilon\) & ： & ： & 2te & ． 1 & ： & ？ & 150 & 4.64 & ．12 & 2 & \(20:\) & 2.59 & 34 & ． 11 & 2 & 1．：0 & ． 01. & ：．t？ & & 440 \\
\hline 1A．0－8009 & to & 23 & if & \(1: 0\) & 1．： & 13 & 21 & 85. & 3.09 & 264 & ； & 2 & ： & 28： & 5 & ： & 2 & 120 & 5.4 & ． 12 & 3 & 20. & 2． 18 & ； & ． \(0 ¢\) & & 1.76 & ． 02 & 1.5 & \(=\) & 450 \\
\hline 1420－2010 & 53 & 214 & 35 & 10t & 1.2 & 46 & 2？ & 8：1 & 6.55 & 247 & 6 & 2 & 2 & 1：2 & 1 & ？ & 2 & 111 & 4.61 & ．î & ¢ & 2：1 & 2．50 & 66 & ． 10 & ； & 1．42 & ． 0 2 & ：．80 & ： & ：50 \\
\hline 14．20－8011 & 50 & 248 & 亿： & 84 & 1.7 & 46 & ？ & 970 & 6．26 & 300 & ： & 2 & 2 & 159 & 3 & 2 & 2 & 143 & 4． 18 & ． 12 & ： & 278 & 4.50 & 85 & ． 12 & 6 & 1．E？ & ． 02 & \(2 . .4\) & & ：ee \\
\hline lazk－0¢01 & 2 & E & 〕 & 6 & ． 1 & 3 & 1 & \(2: 4\) & ． 26 & \(\ell\) & 2 & 2 & 2 & 216 & 1 & 2 & 2 & 4 & S． 5 & ． 01 & 2 & 11 & ． 10 & 11 & ． 01 & ： & ． 05 & ． 01 & ． 0 E & 2 & 5 \\
\hline SIO A－1 & 1 & 29 & 39 & 170 & ． 1 & 35 & 12 & 940 & 2.66 & 11 & 2 & 2 & ？ & SS & 2 & 2 & 2 & 55 & ． 61 & ． 10 & ？ & ： 0 & ． 3 & \({ }^{2} 8{ }^{3}\) & ． 09 & \(b\) & 1．57 & ． 02 & ． 20 & ： & 5 \\
\hline
\end{tabular}


VANCOUVER, B.C.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T F -2¢-3470 & 5 & 589 & 30 & 88 & . & 62 & 18 & 1015 & 3.68 & 10 & ; & " & \% & 53 & 3 & 2 & 2 & ? 2 & 1.20 & . 01 & 57 & 4 & . 99 & \(16!\) & . 07 & 1 & 2.86 & . 01 & . 08 \\
\hline  & 3 & 25 & 19 & 69 & . 1 & 22 & © & 137 & 3.17 & 12 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 113 & . 30 & . 05 & 7 & 61 & . 67 & 82 & .13 & 2 & 1.35 & . 01 & . 01 \\
\hline 1 \(\mathrm{h}-2 \mathrm{~h}-3422\) & 3 & 15 & 17 & 39 & . 6 & 13 & 1 & 100 & 2.31 & \(t\) & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 91 & . 19 & . 02 & ; & 35 & . 12 & 88 & . 14 & 1 & . 95 & . 01 & . 02 \\
\hline Th-25--3it & 1 & 8 & 6 & 17 & . 1 & 1 & 2 & 59 & 1.08 & 3 & 5 & 2 & 2 & 7 & 1 & 2 & 2 & 40 & . 10 & . 02 & 5 & 12 & . 10 & 56 & . 08 & 2 & . 11 & . 01 & . 01 \\
\hline T \(\mathrm{A}-2 \mathrm{R}-3424\) & 3 & 19 & 20 & 84 & . 3 & J5 & 11 & 288 & 3.69 & 15 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 92 & . 29 & . 09 & 9 & 67 & 1.21 & 84 & . 11 & 3 & 2.09 & . 01 & . 07 \\
\hline TA-2R-3475 & 1 & 43 & 17 & 81 & . 2 & 31 & 15 & 382 & 4.28 & 7 & 5 & 2 & 2 & 12 & 2 & & 2 & 111 & . 26 & . 07 & 6 & 107 & 1.50 & 93 & . 18 & 3 & 1.98 & . 02 & . 09 \\
\hline T \(\mathrm{h}-2 \mathrm{f}\)-34id & 2 & 47 & 18 & 80 & . 2 & 27 & 12 & 182 & 3.60 & 6 & 5 & 2 & 2 & 12 & 2 & 2 & 2 & 107 & . 38 & . 08 & 5 & 52 & 1.33 & 101 & .17 & d & 1.63 & . 02 & . 13 \\
\hline  & 5 & 76 & 16 & 83 & . 1 & 25 & 13 & 353 & 4.62 & 5 & 5 & 2 & 2 & 10 & 2 & 2 & 2 & 111 & . 19 & .08 & 9 & 55 & 1.14 & 148 & . 12 & 3 & 2.11 & . 01 & . 10 \\
\hline T \(\mathrm{A}-2 \mathrm{f} \mathrm{f}\)-3778 & 18 & 251 & 28 & 143 & . 1 & 34 & 27 & 525 & 10.10 & 16 & 5 & 2 & J & ; & 1 & 2 & 2 & 169 & . 11 & . 17 & 13 & 32 & . 31 & 196 & . 05 & 1 & 1.67 & . 01 & . 02 \\
\hline 16-25-3679 & 1 & 58 & 21 & 69 & . 2 & 23 & 9 & 688 & 3.18 & 1 & 5 & 2 & 2 & 12 & 2 & 2 & 2 & 95 & . 23 & . 07 & 6 & 63 & . 66 & 175 & . 14 & 2 & 1.33 & . 01 & . 06 \\
\hline 1A-28-3480 & 5 & 136 & 42 & 142 & . 1 & 57 & 19 & 380 & 5.00 & 12 & 5 & 2 & & 10 & 3 & 2 & 2 & 147 & . 25 & . 11 & 6 & 127 & 2.46 & 109 & . 17 & J & 2.96 & . 01 & . 21 \\
\hline 1A-28-3161 & 5 & 11 & 23 & 84 & . 3 & 18 & 9 & 223 & 3.78 & 1 & 5 & 2 & 2 & 9 & 2 & 2 & 2 & 108 & . 16 & . 12 & 5 & 63 & . 67 & 181 & . 17 & 5 & 1.21 & . 02 & . 06 \\
\hline 1A-2f-3482 & 5 & 48 & 25 & 63 & . 5 & 29 & 10 & 193 & 3.15 & 17 & 5 & 2 & 2 & if & 2 & 2 & 2 & 94 & . 28 & . 05 & 9 & 64 & . 93 & 111 & . 09 & J & 1.62 & . 01 & . 07 \\
\hline [2-2R-318j & 5 & 85 & ss & 174 & .7 & S5 & 21 & 605 & 4.74 & 12 & & 2 & 2 & 11 & 3 & 2 & 2 & 111 & . 20 & . 10 & 8 & 120 & 1.67 & 103 & . 11 & 3 & 2.67 & . 01 & . 21 \\
\hline Th-2R-3184 & 1 & 49 & 34 & 102 & .1 & 27 & 15 & 655 & 5.06 & 11 & 5 & 2 & 2 & 8 & 2 & 2 & 2 & 132 & . 37 & . 05 & 6 & 66 & 1.70 & 107 & . 17 & 4 & 1.98 & . 01 & . 19 \\
\hline Th-2k-36ES & 1 & 44 & 43 & 72 & . 9 & 34 & 9 & 259. & 3.58 & 16 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 97 & . 22. & . 07 & 8 & 78 & 1.12 & 96 & . 12. & 1 & 1.88. & . 01 & . 06 , \\
\hline T \(\mathrm{A}-2 \mathrm{R}-\mathrm{3} 48 \mathrm{~s}\) & 11 & 109 & 212 & 154 & 2.4 & 68 & 19 & 569 & 1.44 & 16 & 5 & 2 & 2 & 28 & 1 & 2 & 1 & 104 & . 66 & . 05 & 10 & 97 & 1.09 & 157 & . 10 & J & 3.30 & . 01 & . 12 \\
\hline T \(\mathrm{A}-2 \mathrm{R}-3187\) & 5 & 908 & 110 & 155 & 6.1 & 143 & 19 & 1008 & 4.00 & 11 & 5 & 2 & 2 & 32 & 6 & 2 & 2 & 98 & . 82 & . 06 & 20 & 143 & 1.71 & 462 & . 11 & 5 & 2.87 & . 02 & . 18 \\
\hline TA-2¢-3488 & 8 & 151 & 50 & 69 & 2.4 & 45 & 9 & 361 & 2.74 & 15 & 9 & 2 & , & 53 & 1 & 2 & 2 & 55 & 1.91 & . 08 & 9 & 70 & . 34 & 191 & . 0.5 & 4 & 2.08 & . 02 & . 07 \\
\hline TA-2R-3189 & 8 & 145 & 17 & 28 & 4.5 & 21 & 1 & 299 & 1.37 & 3 & 6 & 2 & 2 & 57 & 2 & 2 & 2 & 32 & 1.41 & . 09 & 9 & 18 & . 27 & 111 & . 04 & J & . 98 & . 02 & . 03 \\
\hline 14-28-3490 & 2 & 18 & 60 & 55 & . 6 & 26 & 1 & 159 & 2.45 & 2 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 103 & . 20 & . 08 & 5 & 68 & . 76 & :70 & . 20 & 1 & 1.11 & . 02 & . 04 \\
\hline TA-2R-j491 & 7 & 71 & 181 & 87 & . 8 & 53 & 13 & 374 & 3.61 & 13 & 5 & 2 & 2 & 13 & 2 & 2 & 5 & 105 & . 36 & . 06 & 7 & 114 & 1.75 & 88 & . 15 & 5 & 2.03 & . 02 & . 12 \\
\hline TR-26-3492 & 3 & 27 & 114 & 52 & 1.6 & 24 & 5 & 193 & 2.81 & d & 5 & 2 & 2 & f & 1 & 2. & 8 & 103 & . 12 & . 07 & 5 & 66 & . 78 & 48 & .17 & 2 & 1.12 & . 01 & . 05 \\
\hline Pi-25-345 & 2 & 84 & 198 & 85 & 1.1 & 52 & 13 & 326 & 3.99 & 1 & 5 & 2 & 2 & 9 & 2 & 2 & 5 & 117 & . 23 & . 06 & 6 & 162 & 2.04 & 103 & . 23 & 1 & 2.28 & . 02 & . 13 \\
\hline TA-2R-3494 & 2 & 60 & 93 & 117 & 1.2 & 58 & 12 & 237 & 4.52 & 5 & 5 & 2 & , & 11 & 3 & 2 & 2 & 118 & . 26 & . 09 & 6 & 125 & 1.75 & 111 & . 18 & 2 & 2.57 & . 02 & . 10 \\
\hline 16-28-5495 & 5 & 53 & 167 & 98 & 1.0 & 46 & 9 & 253 & 3.17 & 7 & 5 & 2 & 2 & \(\varepsilon\) & 2 & 2 & 5 & 84 & . 18 & . 06 & 6 & 120 & 1.75 & 88 & . 18 & \(\pm\) & 1.92 & . 02 & . 13 \\
\hline TA-2¢-3496 & 6 & 29 & 110 & 45 & 2.6 & 14 & 3 & 91 & 2.15 & 2 & 5 & 2 & 2 & 10 & 1 & 2 & 5 & 92 & . 24 & . 03 & 6 & 10 & . 36 & 92 & . 17 & 2 & . 87 & . 01 & . 04 \\
\hline Th-2R-3+97 & 4 & 65 & 100 & 96 & 1.8 & 65 & 11 & 326 & 3.87 & 6 & 5 & 2 & 2 & 9 & 2 & 2 & 2 & 115 & . 26 & . 07 & 7 & 137 & 1.92 & 66 & . 17 & 5 & 2.05 & . 02 & . 23 \\
\hline Th-2h-3498 & 5 & 105 & 241 & 145 & 1.0 & 53 & 18 & 836 & 4.79 & 4 & 5 & 2 & 2 & 12 & 2 & 2 & 2 & 124 & . 34 & . 14 & 6 & 129 & 2.89 & 122 & . 18 & 1 & 2.10 & . 02 & 1.19 \\
\hline 1й-28-3199 & 3 & 38 & 18 & 80 & . 3 & 26 & 9 & 365 & 3.55 & 14 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 95 & . 27 & . 07 & 8 & 61 & . 96 & 113 & . 10 & 9 & 1.53 & . 01 & . 07 \\
\hline 1A-28-3500 & 6 & 61 & 31 & 118 & 1.1 & 36 & 9 & 195 & 4.27 & 10 & S & 2 & 2 & 9 & 2 & 2 & 2 & 110 & . 20 & . 05 & 7 & 86 & 1.08 & 82 & . 17 & 3 & 2.35 & . 01 & . 06 \\
\hline The-2R-3501 & 8 & 12 & 32 & ts & 1.1 & \({ }^{78}\) & 10 & 298 & 3.47 & 8 & 5 & 2 & 2 & . 25 & 2 & 2 & 2 & 97 & . 97 & . 04 & 8 & \(5!\) & 1.06 & 162 & . 11 & 5 & 2.01 & . 02 & . 08 \\
\hline Tk-2f-3502 & 6 & 119 & Sb & 73 & . 4 & 53 & \% & 3J! & 3.84 & 10 & 5 & 2 & 2 & -12 & 2 & 2 & 2 & 111 & . iA & . 08 & 5 & 139 & 2.11 & 96 & . 12 & , & 1.92 & . 02 & . 29 \\
\hline TA-2R-3503 & 9 & 16 & 84 & 86 & 1.7 & 38 & 8 & 252 & 3.30 & 7 & 5 & 2 & 2 & 19 & 2 & 2 & 2 & 98 & . 44 & . 05 & 6 & 84 & 1.15 & 167 & . 17 & J & 1.92 & . 02 & . 09 \\
\hline Th-2h-3508 & 7 & 21 & 88 & 46 & 1.8 & 16 & 4 & 87 & 2.11 & 4 & 5 & 2 & 2 & 15 & 1 & 2 & 3 & 72 & . \(\downarrow\) & . 03 & 6 & 50 & . 51 & 72 & . 14 & 4 & 1.16 & . 02 & . 05 \\
\hline Th-2R-3505 & 3 & 92 & 255 & 112 & . 4 & 71 & 14 & 344 & 4.09 & 10 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 109 & . 30 & . 09 & 7. & 161 & 2.28 & 61 & . 17 & 3 & 2.65 & . 02 & . 27 \\
\hline 16-2n-3506 & 12 & 71 & 245 & 68 & 1.5 & 34 & 7 & 195 & 3.28 & 7 & 5 & 2 & 2 & 20 & 2 & 2 & J & 89 & . 40 & . 04 & 10 & 85 & 1.20 & 101 & . 12 & J & 2.19 & . 02 & . 11 \\
\hline STO f-1 & 1 & 30 & 37 & 169 & . 2 & 32 & 11 & 910 & 2.64 & 10 & 5 & 2 & 2 & 34 & 2 & 2 & 2 & 54 & . 60 & . 09 & 9 & 67 & . 75 & 300 & . 09 & 6 & 2.01 & . 02 & . 20 \\
\hline
\end{tabular}

S．M．D．C．FROJECT \＃TAT HOOLÂ 7947 FILE \＃32－0475
FAGE \＃ 3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Th－2h－2507 & \(\varepsilon\) & 162 & 151 & 125 & 4.1 & 59 & 11 & 690 & 3.07 & 12 & & 2 & 2 & 38 & 3 & 2 & J & 86 & 1.14 & ． 06 & 11 & 96 & 1.34 & 145 & ． 10 & 1 & 2．85 & ． 02 & ． 11 & 2 \\
\hline Th－2¢－3508 & 8 & 225 & 216 & 109 & 6.7 & 81 & 10 & 388 & 4.10 & 16 & 5 & 2 & 2 & 47 & 3 & 2 & 5 & 90 & 1.10 & ． 07 & 13 & 87 & 1.07 & 213 & ． 09 & 1 & 3.08 & ． \(0 \hat{2}\) & ． 15 & 2 \\
\hline  & ¢ & 162 & 80 & 86 & 2.5 & 5 & 11 & 191 & 3．3J & 13 & 5 & 2 & 2 & 46 & 3 & 2 & 2 & B2 & 1.20 & ． 08 & 13 & 74 & 1.01 & 157 & ． 07 & J & 2．55 & ． 02 & ． 08 & 2 \\
\hline 1A－2f－3510 & 4 & 3 & 21 & 83 & 1.8 & 31 & 11 & 728 & 3.11 & 17 & 5 & 2 & 2 & 50 & 2 & 2 & 2 & 83 & 1.10 & ． 09 & 10 & 58 & ． 86 & 126 & ． 06 & 1 & 2.14 & ． 02 & ． 07 & 2 \\
\hline  & 1 & 60 & 50 & 165 & ． 9 & 36 & 11 & 395 & 4．25 & 24 & 5 & 2 & 2 & 35 & 3 & 2 & 2 & 106 & ． 81 & ． 05 & 10 & 62 & ． 生 & 214 & ． 07 & 3 & 2.81 & ． 02 & ． 09 & 2 \\
\hline 1A－26－3512 & 3 & 38 & 24 & 99 & ． 4 & 28 & 10 & 328 & 3.50 & 18 & J & 2 & 2 & 26 & 2 & 2 & 2 & 94 & ． 13 & ． 07 & 10 & 5 & ． 81 & 139 & ． 08 & 1 & 2．17 & ． 01 & ． 07 & 2 \\
\hline ［in－2n－2513 & 1 & 31 & 37 & 92 & ． 6 & 24 & 8 & 184 & 3.63 & 11 & 5 & 2 & 2 & 14 & 2 & 2 & 2 & 85 & ． 20 & ． 10 & 9 & 5 & ． 70 & 98 & ． 09 & 1 & 2.31 & ． 01 & ． 05 & 2 \\
\hline 1h－2\％－j514 & 5 & 112 & 98 & 109 & ． 3 & 51 & \(2{ }^{2}\) & 525 & 4．58 & 13 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 122 & ． 1 & ． 05 & 7 & 109 & 1.53 & 80 & ．17 & 3 & 2.31 & ． 02 & ． 09 & 2 \\
\hline Th－2R－3E15 & 3 & 57 & 13 & 105 & ． 1 & 38 & 13 & 291 & 4.61 & 9 & 5 & 2 & 2 & 14 & 2 & 2 & 2 & 118 & ． 19 & ． 10 & 6 & 101 & ． 94 & 69 & ． 17 & 2 & 2.82 & ． 01 & ． 03 & 2 \\
\hline T \(\mathrm{h}-2 \mathrm{~h}-\mathrm{j} 516\) & 5 & 127 & 33 & 134 & ． 2 & 47 & 19 & 268 & 4．48 & 19 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 100 & ． 24 & ． 09 & 6 & 88 & 1.20 & 88 & ． 16 & 3 & 3.04 & ． 01 & ． 0 & 2 \\
\hline Th－2f－3517 & 1 & 76 & 11 & 95 & ． 2 & 39 & 17 & 378 & 1．35 & 19 & 5 & 2 & 2 & 15 & 2 & 2 & 2. & 184 & ． 17 & ． 09 & 9 & 78 & 1.09 & 98 & .11 & 2 & 2.95 & ． 01 & ． 05 & 2 \\
\hline 15－2h－351日 & 2 & 46 & 19 & 70 & ． 2 & 17 & 9 & 584 & 3.06 & 11 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 74 & ． 13 & ． 11 & & 37 & ． 36 & 13 & ． 10 & 3 & 1.84 & ． 01 & ． 02 & 2 \\
\hline TA－2R－3519 & 2 & 37 & 21 & 62 & ． 1 & 24 & 10 & 185 & 3.25 & 9 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 87 & ． 16 & ． 09 & 7 & 65 & ． 63 & 70 & ． 11 & 2 & 2.65 & ． 01 & ． 03 & 2 \\
\hline 1 K －2k－3520 & 2 & 23 & 12 & 30 & ． 2 & 11 & 4 & 107 & 2.60 & ； & 5 & 2 & 2 & ， & 1 & 2 & 2 & 77 & ． 09 & ． 06 & 5 & 23 & ． 28 & 32 & ． 11 & 3 & 1.01 & ． 01 & ． 01 & ＋ \\
\hline 1 \(\mathrm{A}-2 \mathrm{R}-\mathrm{j} 521\) & 2 & 15 & 17 & 34 & .1 & 12 & 5 & 156 & 2.57 & 5 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 85 & ． 15 & ． 05 & 6 & 37 & ． 34 & 50 & ． 12 & 2 & 1.08 & ． 01 & ． 02 & 2 \\
\hline 7 h －2 f －3522 & 3 & 65 & 36 & 94 & ． 1 & 15 & 12 & 488 & 5.83 & 9 & 5 & 2 & 2 & 25 & 2 & 2 & 2 & 144 & ． 31 & ． 12 & \(b\) & 73 & 1.65 & 88 & ． 20 & 2 & 2.70 & ． 02 & ． 10 & 2 \\
\hline 1A－2k－3523 & 2 & 74 & 12 & 158 & 1.0 & 14 & 13 & 192 & 3.98 & 8 & 5 & 2 & 2 & 9 & 2 & 2 & 2. & 65 & ． 11 & ． 10 & ， & 31 & ． 33 & 217 & ． 09 & 2 & 2.38 & ． 02 & ． 03 & 2 \\
\hline 16－2f－3524 & 2 & 22 & 18 & 5 & ． 2 & 14 & 6 & 135 & 3.58 & 5 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 98 & ． 18 & ． 08 & 8 & 13 & ． 46 & 120 & ． 10 & 2 & 1.97 & ． 01 & ． 02 & 2 \\
\hline 1i－28－5525 & 2 & 34 & 19 & 77 & .1 & 32 & 10 & 212 & 3.56 & 6 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 103 & ． 24 & ． 05 & 6 & 82 & ． 94 & 71 & ． 12 & ， & 1.93 & ． 01 & ． 04 & 2 \\
\hline 1f－26－3528 & 1 & 34 & 18 & 95 & ． 1 & 18 & 17 & 1012 & 3.87 & 7 & 5 & 2 & 2 & \(2 t\) & 2 & 2 & 2 2： & 110 & ．à & ． 12 & 5 & 4 & ． 85 & 109 & ． 15 & j & 1.51 & ． 02 & ． 05 & ， \\
\hline TA－2R－3527 & 2 & 36 & 20 & 72 & ． 1 & 25 & 9 & 282 & 3.68 & 11 & 5 & & 2 & 16 & 2 & 2 & 2 & 102 & ． 21 & ． 11 & & 60 & ． 80 & 84 & ． 12 & 2 & 1.77 & ． 01 & ． 04 & 2 \\
\hline Th－2下－3528 & 3 & 13 & 32 & 36 & ． 3 & 11. & 9 & 265 & 3.82 & 12 & 5 & 2 & 2 & 17 & 2 & 2 & 2 & 108 & ． 29 & ． 11 & 6 & 98 & 1.16 & 87 & ． 14 & 4 & 2.18 & ． 02 & ． 06 & 2 \\
\hline T \(\mathrm{h}-\mathrm{in}\)－ JE 29 & 3 & 56 & 24 & 100 & .1 & 27 & 10 & 244 & 3.92 & 11 & 5 & 2 & 2 & J7 & 2 & 2 & 2 & 101 & ． 22 & ． 08 & 7 & 65 & ． 83 & 107 & ． 13 & 2 & 2.62 & ． 01 & ． 04 & 2 \\
\hline 1A－2R－3550 & 7 & 32 & 11 & 45 & ． 7 & 18 & 4 & 107 & 2.52 & 1 & 5 & 2 & 2 & 16 & 1 & 2 & 2 & 88 & ． 28 & ． 04 & 6 & 55 & ． 68 & 104 & ． 13 & 3 & 1.06 & ． 01 & ． 06 & ， \\
\hline 1n－2̂－3EJ！ & 3 & 62 & 46 & 89 & .9 & 39 & 10 & 320 & 3.57 & 11 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 91 & ． 35 & ． 05 & 10 & \(8:\) & 1.11 & 133 & ． 13 & 3 & 2.22 & ． 02 & ． 09 & 2 \\
\hline TA－2f－3532 & 36 & 325 & 91 & 103 & 8.5 & 71 & 16 & 1019 & 4.29 & 21 & 10 & 2 & & 82 & 5 & & 4 & 82 & 1.80 & ． 14 & 20 & 78 & ． 75 & 141 & ． 01 & 1 & 3.19 & ． 01 & ． 16 & 2 \\
\hline ［ \(\mathrm{i}-2 \mathrm{~T}-\mathrm{j5} 53\) & 1 & 53 & 90 & 98 & 1.6 & 43 & 9 & 234 & 3.86 & 7 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 103 & ． 29 & ． 09 & 7 & 98 & 1.39 & 88 & ． 16 & 3 & 2.42 & ． 02 & ． 09 & 2 \\
\hline Th－2R－3534 & ， & 42 & 27 & 98 & ． 5 & 31 & 9 & 197 & 3.63 & 9 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & \(8:\) & ． 21 & ． 08 & 9 & 66 & ． 90 & 90 & ． 13 & 2 & 2.51 & ． 01 & ． 08 & 2 \\
\hline Tr－ik－355s & 7 & 75 & 50 & 75 & 1.3 & 34 & 8 & 218 & 4.08 & 10 & & & \(\stackrel{1}{2}\) & 17 & 2 & 2 & 2 & 113 & ． 31 & ． 08 & 7 & 85 & 1.11 & 116 & ． 16 & 3 & 2.46 & ． 02 & ． 10 & 2 \\
\hline TA－2R－3536 & 7 & 68 & 76 & 132 & ． 8 & 35 & 10 & 201 & 4.29 & 8 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 109 & ． 22 & ． 11 & 7 & 84 & 1.14 & 97 & ． 17 & J & 2.56 & ． 02 & ． 08 & ， \\
\hline Tn－2R－3557 & 17 & 101 & 76 & 99 & 1.6 & 31 & 10 & 567 & 3.65 & 8 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 104 & ． 27 & ． 09 & 7 & 68 & 1.43 & 83 & ． 17 & 4 & 1.75 & ． 02 & ． 17 & 2 \\
\hline Th－2f－j538 & 10 & 453 & 369 & 134 & 1.7 & 30 & 25 & 1079 & 6.28 & 10 & 5 & 2 & 2 & ． 16 & 1 & 2 & 10 & 174 & ． 33 & ． 14 & 12 & 108 & 2.15 & 120 & ． 11 & 4 & i．： 17 & ． 03 & ． 57 & 2 \\
\hline 1n－2k－jes9 & 18 & ©58 & 72 & 101 & 1.2 & 25 & 19 & 1232 & 7．3日． & 16 & 5 & 2 & 2 & 21 & 4 & 1 & 5 & 108 & ． 14 & ． 21 & 16 & IS & 1.16 & 248 & ． 06 & 3 & 1．55 & ． 01 & ． 23 & 2 \\
\hline Th－2R－3540 & 38 & 112 & ： & 48 & ． 7 & 19 & 10 & 254 & 1.01 & 6 & 5 & 2 & 2 & 12 & 2 & 5 & j & 114 & .17 & ． 10 & 9 & 10 & ． 54 & 125 & ． 10 & 2 & ． 98 & ． 01 & ． 08 & 2 \\
\hline Th－2f－3541 & 46 & 239 & 105 & 70 & 1.0 & 36 & 20 & 144 & 2.04 & 13 & 5 & 2 & 2 & 9 & 3 & 7 & 2 & 199 & ． 15 & ． 10 & 8 & 131 & 2.12 & 100 & ． 11 & 4 & 2.10 & ． 05 & ． 17 & 2 \\
\hline T \(\mathrm{h}-2 \mathrm{~K}-3552\) & 6 & 40 & 24 & 90 & 1.0 & 29 & 10 & 238 & 3.97 & 10 & 5 & 2 & 2 & 19 & 2 & 2 & 2 & 2 & ． 30 & ． 14 & 8 & 69 & 1.08 & 171 & ． 12 & 4 & 2.05 & ． 01 & ． 08 & 2 \\
\hline 1n－2R－354j & 18 & 81 & 32 & 85 & 1.2 & 37 & 12 & 695 & 3.28 & 11 & 5 & 2 & 2 & 41 & 2 & 2 & 2 & E1 & ． 75 & ． 07 & 10 & 64 & ． 92 & 324 & ． 09 & 3 & 2.25 & ． 02 & ． 12 & 2 \\
\hline TA－2 F －354 & 11 & 109 & 33 & 97 & ． 5 & 45 & 15 & 175 & 3.98 & 14 & 5 & 2 & 2 & 38 & 2 & 2 & 2 & 97 & ． 65 & ． 18 & 9 & 90 & 1.67 & 110 & ． 12 & J & 2.17 & ． 01 & ． 20 & 2 \\
\hline STO A－1 & 1 & 30 & 36 & 174 & ． 3 & 35 & 11 & 958 & 2.70 & 11 & 5 & 2 & 2 & 35 & 2 & 2 & 2 & 55 & ． 60 & ． 10 & 9 & 68 & ． 76 & 306 & ． 09 & 5 & 2.04 & ． 02 & ． 19 & 2 \\
\hline
\end{tabular}

EnHfLE \(\begin{array}{llllllllllllllll}\mathrm{Ko} & \mathrm{Cu} & \mathrm{Pt} & \mathrm{in} & \mathrm{Ag} & \mathrm{Ki} & \mathrm{CO} & \mathrm{Mr} & \mathrm{Fe} & \text { as } & \mathrm{U} & \mathrm{Au} & \mathrm{Th} & \mathrm{Sr} & \mathrm{Cd} & \mathrm{St}\end{array}\)
 Th-2h-3E4 1 \(\mathrm{A}-2 \mathrm{~K}-3547\) \(14-2 \mathrm{~F}-3548\)
\(\mathrm{~T} A-2 \mathrm{~F}-3549\)TA-2R-3550\(14-2 R-3550\)
\(T h-2 R-3 S 51\)\(1 h-2 R-J \leq 54\)\(1 \mathrm{~T}-2 \mathrm{E}-355\)1h-2R-35Sb1h-2R-354Th-2R-3550\(1 \mathrm{~A}-2 \mathrm{R}-35 \mathrm{E} 1\)Th-2h-3562

Th-2 \(\mathrm{E}-1380\)
TR-2R-4381 TA-2R-4382 \(\mathrm{T} R-2 \mathrm{~F}-4 \mathrm{SEJ}\)
\(\mathrm{T} A-2 \mathrm{~F}-4 \geq 64\) Th-2 \(\mathrm{F}-4 \mathrm{j} \mathrm{E}_{5}^{5}\)

14-26-4386 STD \(\mathrm{n}-1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ko
ppe & ppa & Pt & \({ }_{\text {in }}^{\text {in }}\) & Ag
ppa & \(\mathrm{Ki}_{\text {pio }}\) & \({ }_{\text {co }}^{\text {pfi }}\) & \[
\begin{aligned}
& \mathrm{Mr} \\
& \mathrm{ppa}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Fe} \\
\vdots
\end{gathered}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { ppa }
\end{aligned}
\] & Ups & An & & & & Sta & \({ }_{\text {pi }}^{\text {pi }}\) & \(\stackrel{V}{\text { ppa }}\) & \[
\begin{aligned}
& \mathrm{C} \\
& \vdots
\end{aligned}
\] & \[
\begin{aligned}
& f \\
& q
\end{aligned}
\] & La & & \(\stackrel{\mathrm{Mg}}{\square}\) & & \[
\begin{array}{r}
i i \\
q
\end{array}
\] & \({ }_{\text {b }}^{\text {ppa }}\) & \[
\mathfrak{f l}
\] & \[
\begin{gathered}
\mathrm{N}_{2} \\
\vdots
\end{gathered}
\] & \[
\begin{aligned}
& \text { ! } \\
& \vdots
\end{aligned}
\] & \[
\underset{P D A}{N}
\] \\
\hline 28 & 303 & 26 & 91 & 1.2 & 65 & 11 & 512 & 4.29 & 13 & 5 & 2 & 2 & 41 & J & 2 & 2 & 101 & . 71 & . 06 & 11 & 91 & 1.97 & 158 & . 10 & 10 & 2.55 & . 02 & . 20 & 2 \\
\hline 54 & 332 & 30 & 124 & . 5 & 51 & 14 & 419 & 3.82 & 5 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 96 & . 18 & . 05 & 12 & 81 & 1.38 & 114 & . 13 & 8 & 2.19 & . 02 & . 16 & 2 \\
\hline 3 & 25 & 12 & 37 & . 9 & 10 & 3 & 64 & 2.10 & 6 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 62 & . 19 & . 04 & 6 & 30 & . 26 & 63 & . 08 & 5 & 1.37 & . 01 & . 04 & 2 \\
\hline 17 & 156 & 22 & 33 & . 8 & 27 & 12 & 198 & 4.00 & 7 & 5 & & 2 & 23 & 2 & 2 & 2 & 120 & . 19 & . 05 & 9 & 56 & 1.03 & 101 & . 14 & 8 & 2.01 & . 02 & . 07 & 2 \\
\hline 7 & 85 & 22 & 11 & . 5 & 19 & . 9 & 268 & 4.61 & 8 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 132 & . 12 & . 08 & 7 & 58 & 1.38 & 79 & . 20 & 7 & 1.82 & . 02 & . 14 & 2 \\
\hline 7 & 80 & 26 & 59 & . 6 & 34. & 14 & 571 & 3.60 & ) & 5 & 2 & 2 & 19 & 1 & 1 & 2 & 98 & . 11 & . 09 & 9 & 81 & 1.33 & 100 & . 15 & 9 & 1.74 & . 02 & . 14 & 2 \\
\hline 5 & 45 & 20 & 66 & . 4 & 25 & 11 & 252 & 4.40 & 7 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 125 & . 48 & . 11 & 8 & 68 & 1.32 & 71 & . 18 & 8 & 1.90 & . 02 & . 07 & 2 \\
\hline 28 & 179 & 55 & 61 & . 9 & 31 & 12 & 285 & 5.23 & 15 & 5 & 2 & 2 & 13 & 1 & 2 & 3 & 161 & . 25 & . 12 & 9 & 101 & 1.66 & 75 & . 16 & 13 & 2.13 & . 02 & . 10 & 2 \\
\hline 27 & 86 & ¢B & 56 & . 6 & 30 & 12 & 323 & 5.28 & 4 & 5 & 2 & 2 & 19 & 2 & 2 & 3 & 126 & . 29 & . 06 & 8 & 131 & 1.60 & 67 & . 20 & 13 & 1.91 & . 02 & . 19 & 2 \\
\hline 17 & 108 & 25 & 128 & . 2 & 47 & 16 & 340 & 5.62 & 7 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 146 & . 35 & . 04 & 8 & 114 & 2.21 & 55 & . 26 & 9 & 2.28 & . 02 & . 18 & 2 \\
\hline 13 & 55 & 18 & 61 & . 8 & 19 & 9 & 208 & 3.93 & 5 & 5 & 2 & 2 & 16 & 1 & 2 & 3 & 101 & . 32 & . 09 & 8 & 51 & . 96 & 60 & . 14 & 7 & 1.72 & . 02 & . 09 & 2 \\
\hline 6 & 26 & 26 & 50 & . 8 & 20 & 6 & 121 & 2.96 & 9 & 5 & 2 & 2 & 16 & 1 & 2 & 2 & 82 & . 25 & . 10 & 7 & 61 & . 72 & 98 & . 13 & 7 & 1.52 & . 02 & . 06 & 2 \\
\hline 1 & 38 & 4 & 35 & . 1 & 26 & 22 & 282 & 5.15 & 8 & 5 & 2 & 2 & 21 & , & 2 & 2. & 130 & . 70 & . 15 & 8 & 75 & 2.03 & 42 & . 17 & 10 & 2.16 & . 01 & . 28 & 2 \\
\hline 4 & 28 & 10 & 49 & . 4 & 18 & 11 & 271 & 3.91 & , & 5 & 2 & 2 & 18 & , & 2 & 2 & 103 & . 35 & . 11 & 7 & 53 & 1.10 & 86 & . 15 & 17 & 1.19 & . 02 & . 09 & 2 \\
\hline 7 & 58 & 18 & 81 & . 3 & 19 & 16 & 572 & 4.95 & : & 5 & 2 & 2 & 15 & 2 & 2 & 2 & 131 & . 34 & . 07 & & 70 & 1.25 & 68 & . 17 & 9 & 1.70 & . 02 & . 09 & 2 \\
\hline 9 & 88 & 23 & 105 & . 2 & 13 & 20 & 436 & 5.61 & 16 & 5 & 2 & 2 & 23 & 2 & 2 & 2 & 142 & . 57 & . 06 & 10 & 104 & 1.90 & 112 & . 17 & 10 & 2.53 & . 02 & . 12 & 2 \\
\hline 5 & 30 & 18 & 96 & . \({ }^{1}\) & 22 & 11 & 212 & 4.83 & 8 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 135 & . 29 & . 20 & 7 & 73 & 1.05 & 100 & . 16 & 9 & 1.89 & . 02 & . 06 & 2 \\
\hline 7 & 27 & 15 & 55 & . 4 & 11 & 9 & 141 & 3.19 & 4 & 5 & 2 & 2 & 8 & 1 & 2 & 2 & 100 & . 14 & . 01 & 7 & 67 & . 83 & 96 & . 14 & 6 & 1.12 & . 02 & . 06 & 2 \\
\hline 37 & 44 & 30 & E7 & . 7 & 32 & 11 & 243 & 4.73 & 7 & 5 & 2 & 2 & 20 & 2 & 3 & 2 & 133 & . 52 & . 05 & 8 & 74 & 1.38 & 152 & . 20 & 9 & 1.98 & . 02 & . 09 & 2 \\
\hline 25 & 58 & 35 & 73 & . 6 & 24 & 11 & 322 & 4.61 & 9 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 136 & . 35 & . 07 & 8 & 70 & 1.00 & 80 & . 17 & 9 & 1.5E & . 02 & . 07 & 2 \\
\hline 5 & 43 & 7 & \(t \in\) & . 3 & 27 & 10 & 189 & 3.74 & 18 & 5 & 2 & & 18 & , & & 2 & 103 & . 35 & . 06 & 10 & 57 & . 88 & 120 & . 10 & 7 & 1.81 & . 01 & . 06 & 2 \\
\hline 1 & 39 & 10 & 65 & . 1 & 30 & 13 & 176 & 4.32 & 16 & 5 & 2 & 2 & 14 & 1. & 2 & 2 & 114 & . 32 & . 10 & 9 & 64 & .83 & 91 & . 10 & 8 & 1.50 & . 01 & . 05 & 2 \\
\hline 8 & ©0 & 21 & 68 & . 6 & 35 & 11 & 253 & 4.47 & 11 & 5 & 2 & 2 & 10. & , & 2 & 2 & 119 & . 28 & . 11 & 9 & E3 & 1.21 & 95 & . 15 & 7 & 2.68 & . 01 & . 06 & 2 \\
\hline 15 & 58 & 17 & 30 & . 3 & 19 & 5 & 139 & 2.90 & 1 & 5 & 2 & 2 & 13 & 1. & 2 & 2 & 106 & . 29 & . 03 & f & 51 & . 95 & 109 & . 19 & 7 & 1.02 & . 02 & . 07 & 2 \\
\hline 8 & 35 & 11 & 35 & . 2 & 36 & 6 & 170 & 3.24 & 6 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 117 & . 28 & . 05 & 7 & 79 & 1.22 & 72 & . 21 & 7 & 1.12 & . 02 & . 06 & 2 \\
\hline 4 & \(3 i\) & 10 & 28 & . 1 & 24 & 6 & 160 & 2.79 & 2 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 98 & . 11 & . 07 & 5 & 59 & . 89 & 59 & . 20 & 5 & 1.10 & . 02 & . 05 & 2 \\
\hline 1 & 77 & 5 & S5 & . 2 & 28 & 11 & 319 & 5.25 & 3 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 156 & . 78 & . 13 & 6 & 57 & 1.64 & 110 & . 21 & 8 & 2.30 & . 02 & . 14 & 2 \\
\hline 5 & 87 & 6 & 58 & . 2 & 274 & 27 & 254 & 4.34 & 11 & 5 & 2 & 2 & 24 & 1 & 2 & 2 & 168 & . 57 & . 03 & 6 & 690 & 3.42 & 81 & . 21 & 8 & 2.52 & . 02 & . 18 & 2 \\
\hline 8 & 85 & 16 & 64 & . 2 & 33 & 10 & 237 & 4.37 & 17 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 121 & . 45 & . 08 & 11 & ó & 1.39 & 84 & . 13 & 9 & 2.07 & . 01 & . 11 & 2 \\
\hline J & 19 & 24 & 48 & . 3 & 49 & 9 & 269 & 2.38 & & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 75 & . 3 & . 06 & , & 108 & 1.07 & 117 & . 16 & 11 & 1.24 & . 03 & . 06 & 2 \\
\hline 7 & i5 & 32 & 01 & . 4 & 44 & 9 & 183 & 2.84 & 2 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 77 & . 30 & . 04 & 8 & 98 & 1.11 & 60 & . 17 & 5 & 1.54 & . 02 & . 09 & 2 \\
\hline 9 & 95 & 34 & 70 & . 4 & 65 & 16 & 315 & 3.95 & 13 & 5 & 2 & 2 & 24 & 1 & 2 & 2 & 97 & . 51 & . 10 & & 120 & 1.71 & 111 & . 15 & & 2.30 & . 02 & . 14 & 2 \\
\hline \(\varepsilon\) & ¿0 & 52 & 19 & .2 & 33 & 10 & 307 & 3.76 & 1 & 5 & 2 & & 20 & 1 & 2 & 2 & 107 & . 28 & . 08 & 7 & 84 & 1.16 & 104 & . 20 & 8 & 1.51 & . 02 & . 09 & 2 \\
\hline 13 & 1132 & 58 & 53 & 1.5 & 106 & 12 & 266 & 3.37 & 8 & 5 & 2 & & 58 & 2 & 4 & 2 & 82 & 1.02 & . 04 & 14 & 129 & 1.47 & 129 & . 12 & 9 & 1.87 & . 02 & . 0 & 2 \\
\hline 17 & \(12 i\) & 34 & 79 & . 7 & \(1: 2\) & 17 & 582 & 3. 62 & 8 & 5 & 2 & 2 & 40 & 3 & 2 & 2 & 89 & . 8 & . 09 & 12 & 105 & 1.32 & 103 & . 13 & 9 & 2.16 & . 02 & . 11 & 2 \\
\hline 14 & 893 & 22 & 95 & 3.4 & 104 & 11 & 427 & 2.94 & 8 & 5 & 2 & 2 & 85 & 1 & 2 & 2 & 54 & 1.59 & . 06 & 14 & 63 & . 78 & 152 & . 08 & 6 & 2.20 & . 02 & . 11 & 2 \\
\hline 1 & 30 & 24 & 168 & . 2 & 34 & 12 & 921 & 2.66 & 8 & 5 & & 2 & 31 & 2 & 2 & 2 & s5 & .tj & . 09 & 10 & 74 & . 76 & 288 & . 09 & 8 & 1.95 & . 02 & . 17 & 2 \\
\hline
\end{tabular}
f \(\mathrm{La} \quad \mathrm{Cr} \quad \mathrm{Mg}\) \(\mathrm{Bi}_{\mathrm{p}}\) \(\begin{array}{cc}\mathrm{I} & \mathrm{E} \\ \text { y } & \text { ppa }\end{array}\) Na

N
ppa

EAMfle 1
1n-25-4387



 Ti-2R-4393
 \(\mathrm{Th}-\mathrm{in}-1395\)
\(\mathrm{Th}-2 \mathrm{~F}-4796\) Th \(-2 \hbar-4397\)
\(\mathrm{~T}-2 \mathrm{~F}-4558\) \(1 \mathrm{~A}-2 \mathrm{~F}-1598\)
\(\mathrm{~T} \mathrm{H}-2 \mathrm{~F}-4599\)

\(T h-2 R-4402\)
\(T h-2 k-410 j\) \(1 \hat{h}-2 \mathrm{~K}-140 \mathrm{j}\)
 T \(\mathrm{A}-2 \mathrm{~F}\) - 1406

Th-2R-4407 Th-2R-4408 Th-26-5409 Th- \(2 \mathrm{CR} \mathrm{R}-4110\) \(\mathrm{t} \hat{n}-2 \hat{2}-4+11\)
T \(\mathrm{G}-2 \mathrm{~F}-4912\)
\(\mathrm{~T}-2 \mathrm{~F}-41 \mathrm{I} 3\)
 1 \(\mathrm{C}-2 \mathrm{FR}-1414\) \(\mathrm{Th}-2 \mathrm{~F}-4115\) T \(\mathrm{h}-2 \mathrm{~F}-541 \mathrm{~s}\)
 A \(-2 R-4418\)
6 \(\mathrm{in}-2 \mathrm{R}-4119\) Th-2h-4420

Th-2 \(\mathrm{h}-492 \mathrm{z}\) Thi-2R-Ai2j
STD A-1
                \(\begin{array}{llllll}\text { Ho } & \text { Cu } & \text { fi } & \text { in } & \text { gig } & \mathrm{Ki} \\ \text { ppa } & \text { fpa } & \text { pfa } & \text { fpa } & \text { ppa } & \text { pfa }\end{array}\)

> A\&
ppa ppl ppa ppa Bi
pps V
pfa \(\begin{array}{ll}\mathrm{Li} & \mathrm{Cr} \\ \text { ifo } & \mathrm{Pr}\end{array}\) \(C r\)
\(C P C\) \(19 \quad 8 i\) \(\begin{array}{cc}1 i & 8 \\ \% & p p a\end{array}\)
 \(\qquad\) \(n\)
pre \(\begin{array}{rrrrr}12 & 53 & .82 & 17 & .08 \\ 7 & 87 & 1.46 & 69 & .17 \\ 11 & 97 & 1.35 & 207 & .09 \\ 9 & 111 & 1.93 & 100 & .15 \\ 8 & 91 & 1.15 & 96 & .15\end{array}\) \(\begin{array}{lll}3 & 2.12 & .07 \\ 2 & 2.41 & 00 \\ 1 & 3.19 & .02 \\ 3 & 2.46 & 00 \\ 3 & 1.90 & .02\end{array}\) .09
.09
.22
.19
.16
\(\begin{array}{cc}3 & 1.92 \\ 2 & .0 \\ 2 & 2.12 \\ 3 & 3.39 \\ 3 & 2.36\end{array}\) \(\begin{array}{ll}.02 & .19 \\ 02 \\ 02 \\ 02 \\ 02 \\ 02 \\ .02 & .17 \\ .08\end{array}\)
\(\begin{array}{ll}1 & 2.65 \\ 2 & 2.75 \\ 1 & 2.22 . \\ 2 & 2.13 \\ 2 & 1.57\end{array}\) \(\begin{array}{ll}.02 & 15 \\ .02 & .57 \\ .02 \\ .02 \\ .02 & .37 \\ .07\end{array}\)\(\begin{array}{ll}13 & 2 \\ 37 & 2 \\ 10 & 2\end{array}\)

\(\begin{array}{cc}2 & 114 \\ 2 & 78 \\ 4 & 119 \\ 3 & 86\end{array}\) \(\begin{array}{rr}3 & 1.7 \\ 2 & 1.2 \\ 2 & 3.1 \\ 19 & 1.9\end{array}\) .08
.11
.10
1.12
.09
\begin{tabular}{|c|c|c|c|}
\hline 2 & is & . 11 & . 05 \\
\hline 2 & 103 & . 40 & . 07 \\
\hline 2 & 95 & . 83 & . 07 \\
\hline 2 & 103 & . 46 & . 10 \\
\hline 2 & 82 & . 34 & . 04 \\
\hline 2 & 92 & . 31 & . 07 \\
\hline 2 & TE & . 24 & . 02 \\
\hline 2 & 111 & . 27 & . 08 \\
\hline 2 & 102 & . 39 & . 04 \\
\hline 2 & 99 & 13 & . 03 \\
\hline 2 & 116 & . 60 & . 04 \\
\hline 2 & 79 & 1.15 & . 04 \\
\hline 2 & 98 & . 52. & . 03 \\
\hline 2 & 112 & . 43 & . 12 \\
\hline 2 & 81 & :37 & . 06 \\
\hline 2 & 118 & . 26 & . 08 \\
\hline 2 & 114 & . 42 & . 06 \\
\hline 2 & 78 & . 45 & . 03 \\
\hline 1 & 119 & . 89 & . 03 \\
\hline J & 86 & . 10 & . 12 \\
\hline
\end{tabular}
81
29
19.
9
185 1.38
.30
2.10
1.07
2.5 99
64
105
242
72
173
90
69
119
53

48
70
40
102
2272
2
2
2
2

G．M．D．C．FROJECT H TÂ HOOLÂ 4947 FILE \＃82－0475
fage
SAMFLE ：


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  \\
\hline \(\cdots \infty\) & いがぐい & ca & & こんぐいぐ & ジニンのッ & こここのか & ＊－3040 \\
\hline 北ご気 &  &  & ロッ゚゙気 &  & 「¢ッご心涊 & バッ゙ご「 &  \\
\hline 乐車㫛 &  &  & タッロップ &  & N－min &  &  \\
\hline 式ご㫛 &  &  & 䀛が界式べ &  & ごゅ「思㽞 &  &  \\
\hline ismid & cowisost & inisitaid & isincoi &  & E－icica & F－\％ & H？\({ }^{+\prime}\) \\
\hline  &  & Nさニがった & さががい &  &  &  &  \\
\hline 二ちゃ &  & －ルーブ & －すご场 &  &  & このすご & こ \\
\hline 30思こ &  & 式合鸟汿三 & 或式出参京 &  &  &  &  \\
\hline  &  & 会边気动第 &  &  &  &  &  \\
\hline －\％ & 或或ニが发 & － &  & Nいここか & 「ご行ごぐ & ざっここご & \(\because \infty\) \％ \\
\hline Crancor & enctancren & cachenerca & cactucam & O－cncram & crimen una & cacteacto & cncncacam \\
\hline arasos & Mransme & NMONAN & MNANN & P & Nandencos & Nowasamer & NOANNOM \\
\hline NaNN & Narsm－ & NHNANN & H & \(N\) & MONNOANO & NNNOHN & asaso．2nens \\
\hline Sinm & \(\because 8\) & 以号式出之 & NN心N & さぃがった。 & ごいこの思 &  & 动式式号： \\
\hline NasN & NNNN－ & N－NMN & AS & －NCOM＊ & CHONONSA & candent & －cansosns \\
\hline Nand & NNNNO & Nancran & NNHNNON & NNNNN & NNNNM & MONMN & nonesmars \\
\hline Nas & NNOSNCM & NNNNA & いN & c゙anが吅 & FNNN & NNNNON & \\
\hline べャワ &  & 흥が可ひ & 気ごこ思苼 &  & 「ご気がこ & ⿹弋工ござこ゚ &  \\
\hline sinctictin &  & 可気式家氙 &  & 등충 &  &  &  \\
\hline \(\div \stackrel{9}{\circ}\) & －90ㅇㅇㅇㅇ & －90909 & ¢isoso &  & 二iomino &  &  \\
\hline  &  & フcomen & \(\boldsymbol{\infty}\)－ 0 － & ぶごいた & い产 & ニッ®） & ごッom \\
\hline 둥 & ～ロニ罗ご &  & 二がっご灾 & 三豳から\％ &  & ご0088男 &  \\
\hline  & ¢ \％¢ \％ &  & Fis \({ }_{\text {cin }}^{\text {¢ }}\) &  &  &  &  \\
\hline ぶこ & 능드ㅇㅡㅡ덩웅 &  &  &  &  &  &  \\
\hline \(9 \%\) &  &  & －¢ ¢ ¢ &  & －－－ios & ジからか &  \\
\hline \(\cdots\) & NONNNN & NNONAN & mNCHNO & Nranona & NNNNN & NanNoN & NNONOM \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} & 号ご号云云 & －¢ian &  & NNNNH ○岕む出 & MrN：N： 은気紫等 &  \\
\hline 909 & 웅웅 & ¢09809 & 웅우융 & －80898 & ¢809\％ & Bispos & 穴亩亩品宫 \\
\hline \％is & 它安穴皿示 & －00ㅇㅇㅇㅇ & ¢0： & 二aicios &  & －¢ ¢＝ & 98989 \\
\hline
\end{tabular}
\(\begin{array}{llllll}\mathrm{Kc} & \mathrm{Cu} & \mathrm{Pt} & \text { in } & \text { Ag } & \mathrm{Mi}\end{array}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  \\
\hline －－ct & －＋－－－ & Namencan & －cancos－ & Mchermas &  & Contisacav &  \\
\hline 可気 &  &  & －パ： &  &  &  & 二必家皆＝ \\
\hline ぐロロ゚ &  &  &  &  &  & －6infin & すごへニこ \\
\hline 或め゙き & 兑こ心䍖気 &  &  &  &  &  &  \\
\hline is \(\operatorname{lic}_{\text {－}}\) & E＝inior & C．4．3．s－\％ & ーンこロー & こえこえこ & i－－－－ & －isi－iois & えが， \\
\hline どぐが &  & 二ヘニッ & い馬いいこ &  &  &  &  \\
\hline ここゅ &  & monこa & －T， & ぐご気のこ & ごこっこの &  & －risomo \\
\hline 号家品 &  &  & 起式可品莴 &  &  &  &  \\
\hline 唯宝它 &  &  &  &  &  &  &  \\
\hline が， & \(\therefore\)－conco &  & \(\because \infty\)－mm & －～N\％ & \(\rightarrow \infty 000\) & \(\cdots\)－ & ニニッらす \\
\hline encren & enconenenen & cneacneata & chencacach & cricucam & chencucaca & cncancacoch & camencncy \\
\hline NN＋3 & NasNan & HNMHNON & NNNNN & asNanNo & NNNNN & arnanowns & astanasats \\
\hline Hents & Nranano & annmand & N＋NNON & NCNNOM & NrコNAMN & nonnman & Narsmen \\
\hline ¢0べこ & ベごいここ & －ニロ安 & Hこ心乐可 &  & がったが気 & ご馬ご & 可気句面面 \\
\hline nonrs & WasanN & N－TNN & NNNCN & NNaNNO & ManNan & かNーNー & asanamas \\
\hline Hancos & Nomanome & NNNNM & NNNNO & MANHNN & NasNos & anasmran． & －rancran \\
\hline N．．． & 060ヶon & NNNNTA & WNMNN & のNNNN & NMONANO & anancme & NanNasas \\
\hline ¢5\％ & 훙꿍응 & ～8\％ & 三巨三戒可式 & 중훈 & 氝氝忒気思 &  &  \\
\hline 动交㤩 &  &  & 动祘家安 &  & 或安克亩示 &  &  \\
\hline －\％ & \(\dot{9} \div \dot{9} 5\) & － 0 － & 穴三亩宗安 &  & 우웅유응 &  & 당icic \\
\hline －－ & こーつのい & choramos & －0．00ver & －－－－¢00 & －ucheras & －overam & つてかっか \\
\hline 二家品 &  &  &  &  & 정너웅응 &  &  \\
\hline Ei &  &  &  & 罗或新品家 &  & 象 &  \\
\hline 参ご灾 & 今口吅ご車 &  &  &  & ご気気気 &  & コご気ごこ \\
\hline －is &  &  &  &  &  & 可句少示 & insisis \\
\hline encms & a－asascos & －anaman & NNNMN & のNunNo & nosanasen & HasNma－d & NNANMN \\
\hline 可込 &  &  & － &  & N Hint No 8动飛品思 &  &  \\
\hline  &  & 우웅에 & 水家品灾 & 웅ㅇㅇㅇㅇ &  & ¢iposio &  \\
\hline  & \(\therefore\) ¢ions & 웅ㅇㅇㅇ & 융ㅇㅇㅇ & 웅ㅇㅇㅇ & 部动副完 &  & 899\％ \\
\hline ancrs & N＋3NOHNO & anNanco & NNNHN & NNMNM & NNNMN & ＊NHNNON & NNONAN \\
\hline
\end{tabular}
S.M.D.C. FFOJECT \# Tín HOOLÁ 4947 FILE \# E=-047S

FAGGE \# 8
Sniffle 1

 \(\begin{array}{ll}\text { Sr } & \\ \text { ppl }\end{array}\) \(1 \begin{gathered}\text { St } \\ \text { PDC } \\ p\end{gathered}\) \begin{tabular}{c}
V \\
p F \\
\hline
\end{tabular} Ci
\(i\) \(\begin{array}{ll}\& & 1 \\ i & p\end{array}\) \({ }^{2} \mathrm{Cr}\)悲 Did \(\begin{array}{cccc}8 & \text { Al } & \mathrm{Ma}_{\mathrm{a}} & \vdots \\ \text { pas } & \vdots & \vdots & \vdots\end{array}\) h-2下-54:8
 T \(\mathrm{h}-2 \mathrm{~F} \mathrm{~K}-5 \mathrm{~s}+1 \mathrm{C}\)
 Th-2 \(\mathrm{h}-54 \mathrm{~h}_{\mathrm{h}} \mathrm{h}\)

Th-2R-EA4 Th-2R-5441 Th-2k-5445 Th-2h-5446 Ph-2R-54d

T \(\mathrm{K}-2 \mathrm{R}-5448\) Th-2R-5449 Th-2R-5450 T \(\mathrm{f}-2 \mathrm{R}-545 \mathrm{I}\) T \(\mathrm{A}-2 \mathrm{R}\) - 54 t 2
h 5 2R-5453
STD \(\mathrm{f}-1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 12 & 255 & 162 & 105 & 8.0 & \(\because\) & 17 & 554 & 1 \\
\hline 12 & 251 & 111 & 107 & 2. 3 & 70 & 16 & 690 & 4 \\
\hline 5 & 139 & 45 & 110 & 1.1 & 93 & 17 & 552 & \\
\hline 12 & 150 & 55 & 6 & 3.6 & 41 & 15 & 464 & \\
\hline 17 & 303 & 45 & 82 & 3.6 & 57 & 13 & 468 & 1 \\
\hline 15 & 235 & 50 & 101 & 1.8 & 64 & 14 & 504 & \\
\hline 14 & 52 & 28 & 45 & . \({ }^{5}\) & 30 & 7 & 155 & \\
\hline 10 & 113 & 31 & 8 & . 6 & 73 & 15 & 325 & \\
\hline 20 & 296 & 76 & 90 & 2.7 & 50 & 15 & 363 & \\
\hline 7 & 63 & 56 & \(t 5\) & . 6 & 24 & 10 & 252 & 2 \\
\hline 6 & 25 & 18 & 25 & . 9 & 8 & 3 & 92 & \\
\hline 10 & 71 & 58 & 76 & . 6 & 31 & 11 & 342 & \\
\hline 1 & 67 & 35 & 71 & . 5 & 28 & 15 & 558 & \\
\hline 5 & 39 & 26 & 22 & . 6 & J & J & 101 & 2 \\
\hline 7 & 161 & 33 & 76 & . 2 & 35 & 21 & 519 & 4 \\
\hline 5 & 15 & 27 & 51 & . 6 & 22 & , & 224 & 2 \\
\hline & 31 & 33 & 176 & . 3 & 35 & 13 & 965 & \\
\hline
\end{tabular} \(\begin{array}{ll}554 & 4.76 \\ 690 & 4.35 \\ 552 & 2.93 \\ 464 & 3.62 \\ 468 & 4.09 \\ 564 & 4.11 \\ 155 & 2.93 \\ 325 & 3.50 \\ 363 & 3.90 \\ 252 & 2.62 \\ 92 & 1.93 \\ 342 & 3.79 \\ 558 & 4.12 \\ 101 & 2.28 \\ 519 & 4.73 \\ 224 & 2.75 \\ 965 & 2.77\end{array}\)
18
20
14
16
23
18
13
13
17
10
6
10
9
6
18
13
9
\begin{tabular}{ll}
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2
\end{tabular}
\begin{tabular}{lllll}
2 & 47 & 3 & 2 & 3 \\
2 & 51 & 3 & 2 & 2 \\
2 & 33 & 2 & 2 & 2 \\
2 & 12 & 2 & 2 & 2 \\
2 & 18 & 3 & 2 & 2 \\
2 & 31 & 2 & 2 & 2 \\
2 & 27 & 2 & 2 & 2 \\
2 & 28 & 2 & 2 & 2 \\
2 & 11 & 3 & 2 & 2 \\
2 & 15 & 2 & 2 & 2 \\
2 & 10 & 1 & 2 & 2 \\
2 & 13 & 1 & 2 & 2 \\
2 & 12 & 2 & 2 & 2 \\
2 & 10 & 1 & 2 & 2 \\
2 & 19 & 2 & 2 & 2 \\
2 & 28 & 1 & 2 & 2 \\
2 & 32 & 2 & 2 & 2
\end{tabular}
\begin{tabular}{cccc}
3 & 105 & 8.09 & .07 \\
2 & 82 & 1.35 & .00 \\
2 & 96 & .80 & .04 \\
2 & 85 & 1.43 & .07 \\
2 & 88 & 1.34 & .04 \\
2 & 95 & .62 & .04 \\
2 & 95 & .64 & .04 \\
2 & 93 & .68 & .05 \\
2 & 94 & 1.04 & .06 \\
2 & 80 & .31 & .05 \\
2 & 70 & .17 & .05 \\
2 & 17 & .05 & .05 \\
2 & 117 &. .21 & .11 \\
2 & 106 & .35 & .08 \\
2 & 87 & .35 & .05 \\
2 & 119 & .54 & .09 \\
2 & 83 & .58 & .07 \\
2 & 57 & .66 & .10
\end{tabular}18
12
15
18
15
15
7
8
12
8
\(\begin{array}{lll}109 & 1.18 & 206 \\ 105 & 1.49 & 2 \\ 149 & 2.03\end{array}\) 206
223
185
197
260 .07
.07
.12
.09
.08 \(\begin{array}{rl}11 & 3 \\ 9 & 2 \\ 9 & 2 \\ 8 & 2 . \\ 11 & 2 . \\ 9 & 2 \\ 6 & 1 \\ 8 & 2 \\ 7 & 2\end{array}\) \(\begin{array}{lll}2.06 & .02 & .19 \\ 2.82 & .02 & .18 \\ 2.88 & .02 & .14 \\ 2.21 & .03 & .32 \\ 2.30 & .02 & .17 \\ 2.56 & .02 & .13 \\ 1.28 & .02 & .09 \\ 2.08 & .02 & .15 \\ 2.02 & .02 & .19 \\ 1.35 & .02 & .08 \\ & & \\ .69 & .01 & .04 \\ 1.60 & .02 & .10 \\ 1.63 & .02 & .23 \\ .69 & .01 & .06 \\ 2.04 & .01 & .23 \\ & & \end{array}\) \(i\)
\(i\)
2
2
2
\(i\)
2
2
2
2
2
2

2
2
2
\(i\)
2
2
2
2
2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & S.M. & D. C & & FROL & ECT & \# 1 & Tń Ho & OLf & 49 & & & LE & 182 & 047 & & & & & & & & & \multicolumn{3}{|r|}{FGGE \# 9} \\
\hline Enefle & \[
\begin{aligned}
& \text { no } \\
& \text { pfa }
\end{aligned}
\] & \[
\begin{aligned}
& C_{U} \\
& p p z
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pb } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& i \pi \\
& p ;
\end{aligned}
\] & \[
\begin{aligned}
& \text { fq } \\
& \text { ppag }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ki} \\
& p p a
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CE}_{\mathrm{E}} \\
& \text { ppat }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Kn} \\
& \mathrm{ppe}
\end{aligned}
\] & \[
\stackrel{f}{f}
\] & \[
\begin{aligned}
& \text { A5 } \\
& \text { ppa }
\end{aligned}
\] & \[
\stackrel{\text { U }}{\text { fer }}
\] & \begin{tabular}{l}
hu \\
pis
\end{tabular} & \[
\begin{aligned}
& \text { Th } \\
& \text { ppra }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{St} \\
& \mathrm{ppi}
\end{aligned}
\] & \[
\begin{aligned}
& \text { cd } \\
& \text { pJe }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 5t } \\
& \text { ppo }
\end{aligned}
\] & \[
\begin{aligned}
& 8 i \\
& \text { ppe }
\end{aligned}
\] & \[
\begin{gathered}
V \\
p p ı
\end{gathered}
\] & \[
\mathrm{Ca}
\] & \[
\mathrm{F}
\] & \[
\underset{\text { Pit }}{\mathrm{L}}
\] & \[
\begin{aligned}
& \mathrm{Cr} \\
& \text { DFG }
\end{aligned}
\] & \(\cdots\) & \[
\begin{aligned}
& 8: \\
& \text { ppa }
\end{aligned}
\] & \[
\mathrm{Ti}
\] & \({ }_{\text {pfi }}\) & \(!\) & His & ! & \(\xrightarrow{4}\) & aut & \\
\hline Tr-Ef-3i4 & 34 & : 30 & 53 & 136 & .1 & 50 & 12 & 185 & \(5.5 i\) & 18 & & & & & & & & & & & & & & & & & & & & & & \\
\hline Th-a-3id & 1 & 20 & \(1 t\) & 59 & . 4 & 30 & 9 & 308 & 3.00 & 15 & 2 & \(\frac{2}{2}\) & 2 & 11 & 3 & \(\frac{8}{2}\) & 3 & \({ }_{9}^{13}\) & .110 & . 13 & 9 & 98 & . 45 & 192 & . 09 & \(?\) & 1.38 & . 09 & . 05 & 2 & 5 & \\
\hline Tn-3F-324S & 4 & 2 e & 20 & 78 & . 2 & Js & 10 & 159 & 3.82 & 17 & 2 & 2 & 2 & 10 & & 2 & 2 & & & & 3 & , 4 & \({ }^{.73}\) & 7 & . 11 & 3 & 1.06 & . 05 & . 05 & 2 & 30 & \\
\hline 16-2¢-3543 & & 71 & 15 & 162 & 1.8 & 59 & 15 & 1799 & 3.91 & 34 & 4 & 2 & 2 & 63 & 2 & 2 & 3 &  & 1.15 & . 11 & 12 & 42 & . 81 & 718 & . 14 & 1 & 1.78 & . 01 & . 05 & 2 & 30 & \\
\hline Th-2k-3se: & 4 & 50 & 6 & 186 & 1.1 & 80 & 5 & 704 & 1.55 & 5 & 11 & 2 & 2 & 90 & 7 & \(\stackrel{2}{2}\) & 2 & 32 & 1.88
2.57 & . 08 & 12 & 19
18 & . 71 & \[
\begin{aligned}
& 224 \\
& 126
\end{aligned}
\] & . 06 & \(\stackrel{t}{5}\) & 3.02
1.46 & . 03 & . 09 & 2 & 5
5 & \\
\hline 1n-36-3407 & 5 & 76 & 14 & 210 & . 8 & 39 & 15 & 684 & 4.25 & 46 & 2 & 2 & 2 & 29 & 1 & 2 & & & & & & & & & & & & & & & & \\
\hline Tn-3E-3i0s & 3 & 67 & 13 & 127 & 1.2 & 27 & 11 & 340 & 3.81 & 28 & 2 & 2 & 2 & 39 & 3 & 2 & 2 & 103 & . 58 & . 05 & 16 & 45 & . 98 & 215
157 & . 04 & 4 & 1.07
3.00 & . 02 & . 06 & 2 & 5 & \\
\hline 1 \(\mathrm{h}-2 \mathrm{n}\)-3405 & 4 & 32 & 11 & 90 & . 3 & 20 & 6 & 180 & 3.65 & 19 & 2 & 2 & 2 & 20 & 2 & \(j\) & & 109 & . 31 & . 03 & 12 & 12 & . 30 & 169 & . 06 & 3 & 3.00 & . 02 & . 05 & 2 & 5 & \\
\hline Tr--R-3ito & J & 34 & 8 & 76 & . 3 & 17 & 6 & \(1: 18\) & 3.10 & 13 & 2 & 2 & 2 & 18 & 2 & 2 & 2 & 90 & . 22 & . 04 & 11 & 35 & .12 & 168 & . 07 & 3 & 2.125 & . 03 & . 05 & 2 & 5 & \\
\hline Th-? \(\mathrm{h}-\mathrm{j} 411\) & J & 23 & 12 & 99 & . 6 & 16 & 5 & 215 & 3.68 & 17 & 2 & 2 & 2 & 14 & 2 & 2 & 2 & 109 & . 20 & . 07 & 10 & J】 & . 45 & 138 & . 08 & j & 2.21
2.18 & . 03 & . 04 & 2 & 5 & \\
\hline Tn-2f-5iti & 2 & 27 & 16 & 118 & 4 & 18 & 10 & 311 & 3.93 & 19 & 2 & 2 & 2 & 25 & & 2 & 2 & & & & & & & & & & & & & & & \\
\hline  & 3 & 18 & 13 & 78 & .4 & 11 & 1 & 156 & 4.63 & 13 & 2 & 2 & 2 & 14 & 2 & 2 & 2 & 94
120 & . 15 & . 07 & 10
9 & 34
30 & . 46 & 173
134 & . 08 & 3 & 3.15
2.15 & . 02 & . 05 & 2 & 5 & \\
\hline 1n-2f-3t14 & 4 & 33 & 13 & 97 & . 1 & 21 & 7 & 191 & 4.91 & 25 & 2 & 2 & 2 & 14 & & 2 & 2 & 122 & .20 & . 06 & 11 & 14 & . 12 & 134
157
15 & . 11 & 3 & 2.13 & . 03 & . 03 & 2 & 5 & \\
\hline TA-2R-3145 & 2 & 19 & 11 & 59 & . 2 & 12 & 4 & 162 & 2.82 & 16 & 2 & 2 & 2 & 15 & 1 & 2 & 2 & 95 & . 21 & . 04 & 9 & 28 & . 36 & 15 & . 08 & 3 & 2.81 & . 02 & . 04 & 2 & 5 & \\
\hline Th-2E-3id & 4 & 53 & 15 & 141 & . 2 & 30 & 11 & 431 & 5.01 & 27 & \% & 2 & 2 & 16 & 3 & 2 & 2 & 115 & . 19 & . 09 & 13 & S5 & . 89 & 185 & . 04 & 4 & 1.63
3.23 & . 03 & .03 & 2 & 5 & \\
\hline Th--2h-3iti & 3 & 31 & 12 & 120 & \(\because\) & 21 & 8 & 278 & 4.16 & 13 & 2 & . & 2 & 15 & 2 & 2 & 2 & 103 & & & & & & & & & & & & & & \\
\hline Ti-2F-jil6 & ? & 19 & 16 & 147 & . 3 & 20 & 7 & 206 & 4.68 & 15 & 2 & 2 & 2 & 17 & 2 & 2 & 2 & 112 & . 19 & . 06 & it & 42 & . 45 & 145 & . 07 & 4 & 2.73
2.71 & .03 & . 06 & 2 & 5 & \\
\hline 1A-2 f -3419 & 3 & 31 & 17 & 200 & 1.0 & 23 & 12 & 791 & 3.93 & 15 & 2 & 2 & 2 & 45 & 3 & 2 & 2 & 85 & . 83 & . 07 & 13 & 35 & . 50 & 198 & . 05 & 5 & 2.71 & .05 & . 06 & 2 & 5 & \\
\hline  & 2 & 18 & 12 & 80 & . 1 & 11 & 4 & 247 & 2.66 & 8 & 2 & 2 & 2 & 14 & 1 & 2 & 2 & 79 & . 22 & . 06 & 8 & 25 & . 32 & 105 & . 08 & 1 & 1.150 & . 03 & . 08 & 2
2 & 5 & \\
\hline TA-ER-3t2 & 5 & 32 & 14 & 97 & . & 17 & 10 & 1357 & 4.89 & 19 & 2 & , & 2 & 20 & J & 2 & 2 & 108 & . 27 & . 08 & 9 & Jo & . 35 & 199 & . 07 & 1 & 1.60 & . 03 & . 04 & 2 & 5 & \\
\hline Pat-2R-3422 & 3 & 25 & 11 & 55 & .2 & 15 & 7 & 227 & 4.43 & 15 & & 2 & 2 & 7 & 2 & 2 & 2 & 111 & & & & & & & & & & & & & & \\
\hline 16-2¢-3tij & 5 & 51 & 13 & 156 & .2 & 38 & 13 & 350 & 4.64 & 36 & 2 & 2 & 2 & 20 & 3 & 2 & 2 & 118 & . 34 & .06
.08 & \({ }_{15}^{8}\) & 51 & 8.11 & 184 & .09
.04 & 1 & 1.85
3.06 & . 03 & . 05 & \(\stackrel{2}{2}\) & 10
5 & \\
\hline T \(k\)-2k-3i2 & 4 & 54 & 12 & 117 & . 2 & 31 & 11 & 285 & 5.21 & 25 & 2 & 2 & 2 & 14 & 3 & 2 & 2 & 119 & . 21 & . 09 & 11 & 51 & & & . 09 & 5 & 3.06 & . 01 & . 11 & \(\hat{i}\) & \({ }_{25}^{5}\) & \\
\hline T \(\mathrm{A}-2 \mathrm{~F}-\mathrm{j}+25\) & 3 & 29 & 15 & 130 & . 3 & 30 & 14 & 336 & 4.24 & 21 & 2 & 2 & 3 & 10 & 2 & 2 & 2 & 91 & . 15 & . 13 & 10 & 46 & . 59 & 169 & . 09 & 5 & 3.13 & . 02 & . 09 & 2
2 & 25
5 & \\
\hline Th-2f-3126 & 3 & 13 & 12 & 135 & . 3 & 46 & 14 & 514 & 4.17 & 22 & 2 & 2 & 2 & 22 & 2 & 2 & 2 & 92 & . \({ }^{5}\) & . 08 & 11 & 66 & . 97 & 187 & . 07 & 1 & 2.95 & . 02 & . 07 & 2 & 5 & \\
\hline Th-2k-3is\% & 1 & 57 & 8 & 144 & . 2 & 69 & 18 & 286 & 5.32 & 37 & 2 & 2 & 2 & 14 & j & 2 & 2 & 112 & . 17 & . 08 & 12 & & & & & & & & & & & \\
\hline Tr-2¢-3i28 & 4 & 38 & 15 & 120 & . 2 & 32 & 10 & 271 & 5.35 & 45 & 2 & 2 & 2 & 13 & 3 & 2 & 2 & 116 & .19 & . 25 & 11 & \({ }^{12}\) & 1.25 & 185 & . 06 & 5 & 3.19 & . 02 & . 08 & 2 & S0 & \\
\hline 16-2¢-349\% & 3 & 58 & 15 & 150 & 1.1 & 43 & 16 & 327 & 4.31 & 43 & 2 & 2 & 3 & 28 & 3 & 2 & 2 & 119 & . 19 & . 28 & 116 & 59
63 & . 80 & 181
197 & . 07 & 5 & 2.71 & . 02 & .10 & 2 & 5 & \\
\hline Pi-2F-3430 & 4 & 52 & 13 & 109 & . 1 & 35 & 12 & 257 & 5.24 & 58 & 2 & 2 & 2 & 14 & 2 & 2 & 2 & 124 & . 20 & . 11 & 15 & 63 & . 84 & 197
140
190 & . 08 & 6 & 3.72
3.13 & . 02 & .08
.07 & 2 & 80
35 & \\
\hline  & 5 & 70 & 15 & 135 & . 1 & 14 & 13 & 271 & 8.53 & 68 & . 2 & 2 & & 15 & J & 2 & 3 & 129 & . 18 & . 11 & 13 & 60
72 & . 89 & 146
170 & . 05 & 5 & 3.13
4.40 & . 02 & . 07 & 2 & 35
35 & \\
\hline STD \(\mathrm{A}-1\) & 1 & 30 & 36 & 175 & . 3 & 33 & 11 & 966 & 2.74 & 10 & 2 & 2 & 2 & 35 & 2 & 2 & 2 & 56 & . 61 & . 10 & 9 & 70 & & & & & & & & & & \\
\hline TA-28-433] & 11 & 76 & 13 & 79 & . 8 & 37 & 12 & 122 & 3.83 & 40 & 2 & 2 & 2 & 28 & 2 & 2 & 2 & 85 & . 46 & . 05 & 12 & 39 & . 34 & 311 & . 11 & \(\delta\) & 2.08 & . 02 & . 19 & 2 & 5 & \\
\hline Th-2f-43Je & 11 & 578 & 15 & 119 & 1.1 & 141 & 103 & 1089 & 4.47 & 24 & 3 & 2 & 2 & 4 & 3 & 2 & 3 & 85 & . 80 & . 05 & 30 & & . 86 & \({ }^{84}\) & . 11 & 1 & 2.91 & . 04 & . 03 & 2 & 5 & \\
\hline 1h-2¢-4Jj? & 12 & 178 & 15 & 134 & . 8 & 78 & 14 & 480 & 5.03 & 23 & 2 & 2 & 2 & 28* & 3 & 2 & J & & & & & 72 & . 89 & 168
209 & . 07 & 1 & 3.59 & . 03 & . 08 & \(?\) & 5 & \\
\hline 1n-28-4J40 & 7 & 5 & 18 & 211 & .3 & 43 & 12 & 416 & 4.32 & 18 & 2 & 2 & 3 & 28 & 3 & 2 & 2 & 103 & . 69 & . 05 & 21
15 & 72
5
5 & . 99 & 209
160 & . 06 & 5 & 3.69 & . 02 & . 12 & 2 & 5 & \\
\hline Th-2F-43+1 & 14 & 495 & 13 & 219 & .7 & 274 & 107 & 751 & 3.55 & 14 & 5 & 2 & 2 & 4 & d & 2 & & 85 & . 85 & & 59 & & & & & & & & & & & \\
\hline Th-28-T3i2 & 8 & 26 & 11 & 36 & . 5 & 23 & + & 173 & 4.54 & 15 & 2 & 2 & 2 & 13 & 2 & 2 & 2 & 104 & . 11 & . 11 & B & 91 & . 65 & 112 & . 016 & 5 & & . 03 & & & & \\
\hline | \(\mathrm{G}-2 \mathrm{E}-1348\) & 9 & 30 & 24 & 33 & . 5 & 33 & 8 & 158 & 3.68 & 10 & 2 & 2 & 2 & 26 & 2 & 2 & 2 & 100 & . 35 & . 07 & , & 79 & 1.16 & 78 & . 21 & j & 1.76
1.68 & . 04 & . 11 & ? & 5 & \\
\hline
\end{tabular}

S．M．D．C．FROJECT \＃TA HOOLA 4R4？FILE \＃8Z－OATS
FAGE \＃10
samfle I


Th－2 \(\mathrm{i}-4 \geq 44\)



 Th \(-28-4369\)
\(7 h-2 h-4350\)

 \(T h-2 h-4 J E 2\)
\(1 h-2 h-4 E 5\)
Th－2R－4 1754
 \(1 \pi-2 k-4 J E J\)
\(T h-2 R-4264\) \(T h-2 \AA-1365\)
\(T h-2 \kappa-4 \div 66\) Tn－2R－4；67 Th－2R－4：58


Th－2R－43j0 \(1 \mathrm{i}-2 \hat{2} \mathrm{~K}-4371\) T \(A-3 \hat{2} \hat{-1372}\) \begin{tabular}{rl}
5 \\
5 & \(-25-1373\) \\
\hline
\end{tabular} Th－ \(2 \mathrm{E}-4 \mathrm{aj} \%\)

Th F 2R－4375 1A－2R－43it \(\mathrm{Th}-2 \mathrm{FE}-4377\) TA－2R－5j4 1 \(\hat{n}-2 f_{n}^{-5 j i 5}\)

TK－28－5546 Th－2T \(5-5247\) Th－2 \(\mathrm{T}-5 \mathrm{5} 48\) TK－2 \(\mathrm{K}-5249\) Th－2h－EjSO
Th－2p－Ex5l TA－2R－ESE STD \(\mathrm{f}-1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline －rice & ＋ & N & \(=\) & ¢0 & － 0 － 2900 & 500－4 & ctecnas \\
\hline がが込 & ニこどざこ &  &  & 둥～＊ & 出この边 &  &  \\
\hline ぶすか & こごい。 & & \(\checkmark\)－ & ニッニッニ &  & 时台三岳こ &  \\
\hline ミこ & 伿荋品： & 或 & 回男知号家 &  &  &  &  \\
\hline in：－ & is & in \({ }_{\text {a }}\) & in \({ }^{\text {coic }}\) & ～Eincis & inais & \％osidic & ニンロー \\
\hline & No & － & べゅニ & ベらの & \％ & がったご回 &  \\
\hline & －Ansmen & & & － & －uncico & －TNoon & cn 2 \\
\hline 둥 &  & 気三尔㒸亩 &  &  & 國No家 & 等家 &  \\
\hline
\end{tabular}
\begin{tabular}{cc} 
ppa & ppi \\
2 & 54 \\
3 & 110 \\
2 & 107 \\
2 & 106 \\
2 & 71 \\
2 & 132 \\
3 & 101 \\
3 & 107 \\
1 & 84 \\
2 & 112 \\
2 & 94 \\
2 & 97 \\
2 & 62 \\
2 & 108 \\
3 & 89 \\
2 & 74 \\
2 & 95 \\
2 & 107 \\
3 & 91 \\
2 & 102 \\
2 & 75 \\
2 & 100 \\
2 & 67 \\
2 & 90 \\
2 & 95 \\
2 & 118 \\
2 & 133 \\
2 & 94 \\
1 & 124 \\
3 & 56 \\
2 & 93 \\
2 & 106 \\
2 & 112 \\
2 & 74 \\
2 & 80 \\
2 & 111 \\
2 & 108 \\
2 & 56 \\
2
\end{tabular} \(\begin{array}{lll}\mathrm{Cr} & \mathrm{Mg} & \mathrm{Ba} \\ \mathrm{Pr} 2 & \\ \mathrm{C}_{2}\end{array}\)



```niut
ipb
``` 5

S．M．D．C．FFRJECT \＃Tri HOOLA 4947 FILE \＃B2－0475
Fage \＃ 11
Binufie 1

\(\begin{array}{lllll}c & \text { Mr } & \mathrm{FE} & \text { As } & \mathrm{U} \\ \mathrm{pz} & \mathrm{ppa} & \mathrm{Z} & \mathrm{pps} & \mathrm{pf}\end{array}\)
nu
ppa
\(\begin{array}{ll}\text { Th } & \text { Sr } \\ \text { ppa } & \text { ppa }\end{array}\) \(\begin{array}{lll}\text { Cd } & \text { St } & \text { B } \\ \text { fpe } & \text { ppa } & \text { p }\end{array}\) V
\(p p a\) \(\stackrel{C}{C}\)
 \(\begin{array}{ll}\text { Le } & \mathrm{Cr} \\ \mathrm{ppa} & \end{array}\) Cring 82
ppa

\(\stackrel{n}{:}\)
n aut
ppa
peb
 \(16-2 R-535\}\)
\(16-2 h-5 j 54\) Th－2n－5jes

T \(\mathrm{A}-2 \mathrm{f}\)－5358
 Th－2h－5360 \(\operatorname{Tr}-2 \mathrm{~K}-5 \mathrm{Sol}\)

\section*{Th－2R－5jit} 16－2k－5384 \(16-2 R-53 t 5\)
\(i t-26-57 b t\) \(14-2 n-53 b 6\)
\(16-2 R-53 t 7\)

TA－2 F －5］ 58 Th－2R－SjE9 14－2f－5370 \(5 \mathrm{~B}-2 \mathrm{R}-5 \mathrm{y}\)

Th－2 \(\mathrm{T}-5375\)
\(1 \mathrm{~A}-2 \mathrm{~F}-5374\)
\(\mathrm{TA}-2 \mathrm{P}-5 \mathrm{~F} 7 \mathrm{j}\)


5h－2f－5356 Th－2k－E579 TA－2R－5380 Th－2R－5581

Th－278－5383 TA－2 \(\mathrm{T}-5384\) Th－2f－EJe \(1 \mathrm{~h}-2 \mathrm{R}-5 \mathrm{JE}\) Th－2R－ \(\mathrm{Ev} \times \mathrm{B}\)

Th－25－538日 14－2f－5：89
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline －act & －どー－－ & corcaso & こoceser & caccom & －ctencrat & いcte & Macters \\
\hline 幽呺： &  &  & 心出二゙心 & ご心が心号 & N以が䒺 & 耑が何号 & こがぐイ \\
\hline － &  & ふニごちこ & \(\infty\) のがこ &  &  &  & －ッニーか \\
\hline 守気灾 &  &  &  &  &  &  &  \\
\hline cicosis & －iṡこの & asiomers & －iswisi & －ino．is & isimisios & intisesiosis &  \\
\hline 禹芯家 &  &  & combut & 二－0\％\％ &  &  & いいごい而 \\
\hline －2．\(\sim_{0}\) & 7．7ヶニこ & －ヵらこの & － 0 － & かんがon &  &  &  \\
\hline 可品罟 &  &  &  & 甙运盛参过 &  &  & 玉涊ご気 \\
\hline  &  が気家空 &  &  & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
catcd th \\

\end{tabular} &  &  \\
\hline －ごか & このーローあ & ーッニ去示 &  & &  &  & かニッがか \\
\hline cancs & NHNMN & NNHNN & MANNON & NNHNN & Nancon & NNasNos & asocomesas \\
\hline NNM & NamNama & NNWNas & NanNond & －3NasNos & NNONTS & NNNONOS & nommens \\
\hline No．so．d & NNNHNO & ancana & NNNHN & OSNONO & ancono & ancosenta & manaras \\
\hline さここ & 方ががあ。 & がったざった。 &  & जめ心 & N゙っでった。 & ごこのむを & こごにびか \\
\hline Nown & －Canction & MNencrs & rsas－ases & N－以Nm & netnasm & wsanoms & Nennomas \\
\hline aswrs & NNONN & NNMNA & FOMNNON &  & Nr3NOSN & NNTSNON & NasNrsas \\
\hline MNON & NNNNN & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{cc}
2 & 97 \\
2 & 103 \\
2 & 91 \\
2 & 102 \\
2 & 111 \\
1 & 85 \\
2 & 108 \\
2 & 123 \\
2 & 11 \\
2 & 100 \\
2 & 114 \\
2 & 99 \\
2 & 85 \\
2 & 91 \\
2 & 115 \\
1 & 17 \\
2 & 13 \\
2 & 87 \\
2 & 94 \\
2 & 161 \\
2 & 111 \\
2 & 93 \\
2 & 125 \\
2 & 114 \\
2 & 114 \\
2 & 150 \\
2 & 104 \\
2 & 88 \\
2 & 134 \\
2 & 111 \\
2 & 125 \\
2 & 118 \\
2 & 107 \\
2 & 91 \\
2 & 105 \\
2 & 95 \\
2 & 58 \\
2
\end{tabular} .33
.24
.18
2.01
.34
.43
1.09
.29
.34
.28
.38
.34
.23
.71
.40
.63
.17
.79
.56
.22
.13
.20
.27
.37
.33
.32
 \(\begin{array}{r}12 \\ 13 \\ 11 \\ 13 \\ 12 \\ 13 \\ 22 \\ 9 \\ 13 \\ 12 \\ 12 \\ 12 \\ 9 \\ 9 \\ 10 \\ 9 \\ 10 \\ 10 \\ 7 \\ 11 \\ 15 \\ 14 \\ 6 \\ 11 \\ 7 \\ 13 \\ 13 \\ 10 \\ 12 \\ 12 \\ 12 \\ 10 \\ 12 \\ 11 \\ 12 \\ 18 \\ 13 \\ 14 \\ 11 \\ \hline\end{array}\)

 176
182
136
147
164
202
238
95
154
148
167
159
70
177
90

81
95
318
102
123
111
124
65
116
61 .07
.07
.09
.07
.09
\(\begin{array}{ll}5 & 2.29 \\ 6 & 3.12 \\ 5 & 2.68 \\ 5 & 3.01 \\ 4 & 1.90\end{array}\) \(\begin{array}{ll}.02 & .07 \\ .02 & .06 \\ .03 & .03 \\ .03 & .02 \\ .02 & .04\end{array}\)
2.92
3.97
2.22
3.38
3.68\(\begin{array}{ll}.02 & .08 \\ .05 & .08 \\ .03 & .04 \\ .02 & .09 \\ .02 & .07\end{array}\)
\begin{tabular}{ll}
2 & 5 \\
2 & 5 \\
2 & 5 \\
2 & 5 \\
2 & 5
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15-85-5550 & 4 & 16 & 2 & 91 & . 4 & 21 & 6 & 134 & 3.99 & 15 & 2 & 2 & 2 & 12 & : & 2 & 2 & 109 & . 18 & . 10 & 13 & 19 & . 50 & 110 & . 06 & 2 & 1.99 & . 02 & . 28 & 2 & \\
\hline \(1 \mathrm{n}-2 \mathrm{E}-\mathrm{E} 591\) & \(1 i\) & 2 S & 5 & ¢ & 1.4 & 41 & 7 & 171 & 2.45 & 11 & 2 & 2 & 2 & 17 & 1 & 2 & 2 & 7 & . 28 & . 06 & 14 & 4 & . 54 & 04 & . O & 3 & 2.20 & . 02 & . 08 & 2 & j \\
\hline 16-25-55¢ & 4 & 28 & 8 & 4 & . 3 & 15 & 8 & 150 & 2.99 & 14 & : & , & 2 & 16 & 1 & 2 & ? & 64 & . 28 & . 10 & 10 & 13 & . 55 & 109 & . 10 & 2 & 1.15 & . 03 & . 08 & 2 & \\
\hline Tn-2F-55s & 8 & J5 & 17 & 3 & . 3 & 24 & 7 & 102 & 2.76 & 9 & 2 & 2 & 2 & 12 & 1 & 2 & 2 & B9 & . 20 & . 06 & 7 & 66 & . 54 & 80 & . 15 & 2 & . 98 & . 03 & . 00 & 2 & 5 \\
\hline \(15-2 \mathrm{~F}-5354\) & 7 & J & 11 & 37 & . 5 & 29 & 9 & 272 & 2.14 & 5 & 2 & 2 & 2 & 16 & 1 & 2 & 2 & 35 & . 22 & . 05 & 9 & 52 & . 12 & 117 & . 15 & I & 1.16 & . 03 & . 07 & 2 & 10 \\
\hline 1m-2F-Eves & 7 & 15 & 26 & 25 & . 4 & 8 & 4 & 139 & 2.85 & 5 & 2 & 2 & 2 & 8. & 1 & 2 & & 89 & . 10 & . 06 & 8 & 35 & . 21 & 55 & . 15 & 了 & 1.12 & . 03 & . 03 & 2 & \\
\hline 1h-2h-5398 & ; & 38 & 18 & 35 & . 1 & 12 & 8 & \(28:\) & 1.36 & 6 & 2 & 2 & 2 & 19 & 1 & 2 & 2 & 104 & . 38 & . 11 & 9 & 35 & 1.15 & 92 & . 16 & 3 & 1.40 & . 05 & . 08 & 2 & \\
\hline Tn-2R-SES7 & 2 & 19 & 6 & 42 & . 2 & 20 & 6 & 123 & 3.07 & 9 & 2 & 2 & 2 & 14 & 1 & 2 & 2 & 92 & . 22 & . 0 ? & \(\varepsilon\) & 56 & . 74 & BE & . 17 & 2 & 1.71 & . 05 & . 06 & 2 & \({ }^{5}\) \\
\hline  & 1 & 22 & 10 & 41 & . & 20 & 1 & 114 & 2.3 b & 8 & 2 & 2 & 2 & 18 & 1 & 2 & 2 & 85 & . 27 & . 03 & 8 & 29 & . 30 & i6 & . 15 & 2 & 1.15 & . 04 & . 06 & ? &  \\
\hline Tn-EE-E:59 & 12 & 121 & 62 & 25 & . 2 & 14 & 8 & 156 & 3.12 & 2 & 2 & 2 & 2 & 16 & 1 & 2 & 3 & 87 & . 25 & .0\% & 10 & 40 & . 67 & 107 & . 17 & 2 & . 82 & . 05 & . 08 & 2 & 5 \\
\hline 1A-2 \(\mathrm{S}-5400\) & 21 & 699 & 102 & 841 & . 8 & 224 & 20 & 2540 & 1.19 & 7 & 2 & 2 & 2 & 45 & 10 & 2 & 5 & 37 & . 76 & . 05 & 14 & 46 & 1.38 & 234 & . 13 & 2 & 2.10 & . 05 & . 12 & 2 & \\
\hline Th-2R-5401 & 14 & 85 & 12 & 55 & . 3 & 12 & 10 & 358 & 3.32 & B & 2 & 2 & 2 & 14 & 1 & 2 & 2 & 101 & . 23 & . 07 & 6 & 26 & . 85 & 104 & . 20 & 2 & 1.01 & . 05 & . 10 & 2 & 5 \\
\hline T f -2 \(\mathrm{K}-5102\) & 3 & 24 & 30 & 30 & . 4 & 31 & 7 & 113 & 2.24 & 1 & 2 & 2 & 2 & 12 & 1 & 2 & 2 & 85 & . 29 & . 06 & 5 & 62 & . 98 & 63 & . 23 & 1 & 1.06 & . 05 & . 06 & 2 & 5 \\
\hline : h -2 R -5403 & 8 & 24 & 24 & S5 & . 2 & 21 & 7 & 1 l 3 & 3.21 & 6 & 2 & 2 & 2 & 14 & 1 & 2 & 2 & 100 & . 27 & . 07 & 9 & 55 & . 90 & 70 & . 18 & 3 & 1.19 & . 03 & . 08 & 2 & 5 \\
\hline Th-2r-5404 & 4 & 22 & 11 & 39 & . 2 & 37 & 11 & 191 & 2.85 & 1 & 2 & 2 & 2 & 17 & 1 & 2 & 2 & 82 & . 56 & . 07 & 5 & 115 & 1.33 & 84 & . 19 & 3 & 1.64 & . 05 & . 11 & 2 & 15 \\
\hline 1in-2f-5405 & \(1 t\) & 934 & 29 & 85 & 1.2 & 224 & 18 & 309 & 3.28 & 5 & 2 & 2 & 2 & 38 & ; & 2 & 2 & 88 & . 74 & . 03 & 12 & 264 & 1.74 & 113 & . 18 & 2 & 2.07 & . 04 & . 10 & 2 & 5 \\
\hline ST0 h-1 & 1 & 30 & 32 & 174 & . 3 & 34 & 12 & 907 & 2.62 & 10 & 2 & 2 & 2 & 30 & 2 & 2 & 2 & 54 & .62 & . 09 & 10 & 72 & . 8 & 276 & . 08 & 5 & 1.90 & . 02 & . 17 & 2 & 5 \\
\hline
\end{tabular}

ACME ANALYTICAL LABOFAATOFIES LTD. \(\quad 852\) E. HASTINGS, VANCOUVER B.C. FH: 253-3158
ICF GEDCHEMICAL ANALYSXS

 AUt AKALYSIS BY AA FROM 10 GRAM SAKFLE. SAMPLE TYPE - SOILS AND SILI
 Seleo-
S.M.D.C. FROJECT \# TA HOOLA 4947

FILE \(\quad 8 \geqslant-0454\) )
FAGE \#1
SAMPLE I

Mo
ppa
1A-2-R-3299 \(1 R-2-k-3299\)
\(14-2-k-3500\) T \(\mathrm{A}-2-\mathrm{k}-3300\) \(\mathrm{T} R-2-R-3501\)
\(\mathrm{IA}-2-R-3 j 02\) \([A-2-R-3 J 02\)
\([i-2-R-330]\)

TA \(2-2-R-3301\)
TA-2-R-S304
TA \(-2-k-3305\) \(1 A-2-R-3305\)
TA \(2-R-3 J 06\) \(1 A-2-R-3506\)
\(T A-2-R-3307\)

\(14-2-R-3309\)
\(14-2-R-3310\) \(14-2-R-3310\)
\(1 A-2-R-3311\) RR-2-R-3312 TA-2-R-JJI3

\section*{\(1 A-2-R-3 J 14\)
\(T A-2-R-3315\)}
[ \(\mathrm{A}-2\) - \(\mathrm{k}-3316\)
1A-2-R-3317
\(1 A-2-R-3 J 18\)
SIO A-1
\(1 R-2-R-3340\)
1A-2-k-334!
TA \(A-2-8-3313\)
TA-2-R-334o
TA-2-R-3347
\(\mathrm{TA}-2-R-3347\)
\(\mathrm{TA}-2-\mathrm{R}-3349\)
\(5 R-2-R-3350\)
1
TA-2-R-3J51
TA-2-R-4269
TA-2-R-1270
\(T A-2-R-4271\)
\(T A-2-R-1272\)
\(14-2-R-1272\)
\(14-2-k-1273\)
TA-2-R-1274
TA-2-R-\{275
FH: 253-3158

S.H.D.C. FROJECT \# TA HOOLA 4947 FILE \# 82-0454

FFGGE \# 2
5AMFLE
\(\begin{array}{llllll}\mathrm{Ho} & \mathrm{Cu} & \mathrm{fb} & \mathrm{la} & \mathrm{Aq} & \mathrm{Ki} \\ \mathrm{ppz} & \mathrm{ppz} & \mathrm{ppa} & \mathrm{pqI} & \mathrm{ppa} & \mathrm{pgz}\end{array}\)
TA-2-R-4276
\([\mathrm{R}-\mathrm{T}-\mathrm{R}-1277\)
TA \(\mathrm{C}-\mathrm{K}-\mathrm{K}-4278\)
1 \(\mathrm{A}-2-\mathrm{F}-1279\)
TA-2-R-1280
1A-2-R-4281
TA-2-R-12E2
TA-2 \({ }^{\prime} R-1283^{\prime}\)
\(1 \mathrm{~A}-2-\mathrm{k}-1284\)
T \(A-2-R-1285\) \([A-2-R-4287\) TA-2-k-1288 TA-2-k-4289 \(510 \mathrm{~A}-1\)
\(R-2-R-1309\)
\(R\)
\(14-2-R-1310\)
\(T A-2-R-4311\)
\([A-2-R-4] \mid 1\)
\([A-2-R-43!2\)
\([A-2-K-43!2\)
\(1 A-2-R-4313\)
\(T A-2-R-4314\)
\(1 A-2-R-4315\)
\([A-2-R-4 J 15\)
\(T K-2-R-\{316\)
\(1 A-2-R-\{316\)
\(T A-2-R-4317\) TA-2-R-4319
\(1 A-2-R-4320\) TA-2-R-1321 TA \(A\) - - - 3322 T \(\mathrm{A}-2 \mathrm{Z}-\mathrm{A}-1523\) 1n-2-k-4325

TA-2-8-1326
TA-2- \(k-\{527\)
1 \(\mathrm{H}-2-\mathrm{k}-1328\)
TA-2-R-4329
\(7 A-2-R-4330\)
\(T A-2-K-T J J 2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & 15 & 13 & 13 & . 5 & 50 & \(\theta\) & 110 & 3.11 & 12 & 5 & 2 & 2 & 19 & 1 & 3 & 2 \\
\hline 4 & 32 & 13 & 50 & . 4 & 10 & 12 & 306 & 4.76 & 12 & 5 & 2 & 2 & 23 & 1 & 2 & 2 \\
\hline 5 & 29 & 2 B & 112 & . 3 & 12 & 11 & 211 & 6.01 & 19 & 5 & 2 & , & 28 & 1 & 3 & 2 \\
\hline 5 & 16 & 12 & 69 & . 2 & 88 & 15 & 226 & 4.94 & 27 & 5 & 2 & 2 & 22 & 1 & 3 & 2. \\
\hline 5 & 48 & 12 & 61 & . 3 & 58 & 14 & 278 & 5.15 & 37 & 5 & 2 & 2 & 29 & 1 & 1 & 2 \\
\hline 1 & 22 & 14 & 101 & . 3 & 27 & 7 & 160 & 4.37 & 22 & 5 & 2 & 2 & 18 & 1 & 2 & 2 \\
\hline 3 & 13 & B & 17 & . 2 & 13 & 5 & 228 & 2.65 & 13 & 5 & 2 & 2 & 23 & 1 & 2 & 2 \\
\hline 8 & 109 & \(24^{\circ}\) & [1] & 1.9 & '15j & 16 & 1587 & 4.34 & 20 & 5 & 2 & 1 & 39 & 3 & 2 & 3 \\
\hline 5 & 81 & 22 & 149 & . 5 & 59 & 19 & 515 & 4.74 & 35 & 5 & 2 & 3 & 17 & 1 & 3 & 2 \\
\hline 2 & 23 & 14 & 89 & .4 & 24 & 8 & 286 & 3.15 & 15 & 5 & 2 & 2 & 18 & 1 & 2 & 2 \\
\hline 5 & 34 & 13 & 109 & . 4 & 31 & 10 & 206 & 4.38 & 29 & 5 & 2 & 2 & 26 & 1 & 2 & 2 \\
\hline 3 & 20 & 11 & 159 & . 3 & 18 & 7 & 224 & 3.34 & 19 & 5 & 2 & 2 & 26 & 1 & 2 & 2 \\
\hline 4 & 50 & 11 & 128 & . 1 & 36 & 13 & 313 & 4.63 & 29 & 5 & 2 & 2 & 24 & 1 & 3 & 2 \\
\hline 3 & 45 & 18 & 136 & 1.1 & 38 & 15 & 916 & 1.01 & 21 & 5 & 2 & 2 & 45 & 2. & 2 & 2 \\
\hline 1 & 30 & 10 & 184 & . 3 & 37 & 12 & 1010 & 2.99 & 9 & 5 & 2 & 2 & 35 & 1 & 2 & 3 \\
\hline 1 & 32 & 20 & 48 & . 6 & 51 & 7 & 146 & 2.82 & 1 & 5 & 2 & 2 & 16 & 1 & 2 & 2 \\
\hline 3 & 47 & 21 & 4 & . 1 & 12 & 8 & 175 & 3.21 & 8 & 5 & 2 & 2 & 31 & 1 & 2 & 2 \\
\hline 1 & 156 & 41 & 07 & . 1 & 95 & 20 & 198 & 6.79 & 19 & 5 & 2 & 2 & 16 & 1 & 2 & 2 \\
\hline 1 & 19 & 13 & 60 & . 3 & 109 & 13 & 309 & 4.90 & 12 & 5 & 2 & , & 25 & 1 & 2 & 2 \\
\hline 3 & 26 & 15 & 53 & . 3 & 30 & 7 & 207 & 2.91 & 9 & 5 & 2 & 2 & 20 & 1 & 2 & 3 \\
\hline 2 & 28 & 27 & 29 & . 1 & 12 & 5 & 159 & 3.35 & 7 & 5 & 2 & 2 & 19 & 1 & 2 & 2 \\
\hline 6 & 339 & 190 & 79 & . 5 & 80 & 12 & 422 & 6. 10 & 14 & 5 & 2 & 2 & 26 & 1 & 2 & 1 \\
\hline 4 & 73 & 25 & 18 & . 3 & 89 & 16 & 283 & 5.08 & 15 & 5 & 2 & 2 & 15 & 1 & 2 & 2 \\
\hline 6 & 67 & 18 & 31 & . 5 & 29 & 7 & 187 & 3.86 & 10 & 5 & 2 & 2 & 15 & 1 & 2 & 3 \\
\hline 6 & 489 & 15 & 54 & . 3 & 99 & 16 & 279 & 5.26 & 22 & 5 & 2 & 2 & 15 & 1 & 5 & 2 \\
\hline 1 & 103 & 19 & 55 & . 3 & 66 & 14 & 235 & 4.38 & 15 & 5 & 2 & 2 & 14 & 1 & 3 & 2 \\
\hline 3 & 39 & 19 & 70 & . 3 & 27 & 8 & 141 & 4.14 & 12 & 5 & 2 & 2 & 13 & , & 2 & 2 \\
\hline 1 & 80 & 18 & 59 & . 3 & 30 & 11 & 305 & 1.77 & 8 & 5 & 2 & 2 & 13 . & 1 & 2 & 2 \\
\hline - & 30 & 13 & 90 & . 2 & 46 & 13 & 883 & 5.12 & 17 & 5 & 2 & 2 & 45 & 1 & 2 & 2 \\
\hline 4 & 53 & 14 & 238 & . 5 & 52 & 17 & 310 & 5.09 & 36 & 5 & 2 & 2 & 19 & 1 & 3 & 2 \\
\hline 9 & 56 & 15 & 83 & . 2 & 13 & 17 & 283 & 5.06 & 36 & 5 & 2 & 2 & 21 & 1 & 3 & 2 \\
\hline 1 & 14 & 10 & 61 & . 2 & 19 & 6 & 235 & 3.30 & 9 & 5 & 2 & 2 & 16 & 1 & 2 & 2 \\
\hline 1 & 31 & 13 & 139 & . 1 & 29 & 10 & 356 & 1.44 & 19 & 5 & 2 & 2 & 19 & \(\cdot 1\) & 2 & 2 \\
\hline 1 & 25 & 14 & 91 & . 5 & 23 & 6 & 192 & 4.22 & 13 & 5 & 2 & 2 & 19 & 1 & 2 & 3 \\
\hline 3 & 18 & 9 & 71 & . 2 & 19 & 6 & 186 & 3.39 & 8 & 5 & 2 & 2 & 20 & 1 & 2 & 2 \\
\hline 5 & 13 & 17 & 132 & . 1 & 36 & 12 & 341 & 5.72 & 22 & 5 & 2 & 3 & 14 & 1 & 2 & 2 \\
\hline 1 & - 34 & \(\cdots 26\) & 112 & . 3 & 21 & 16 & 127 & 5.92 & 31 & 5 & 2 & 2 & 20 & 1 & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 87 & . 26 & . 06 & 1 & 71 & . 83 & 76 & . 15 & 5 & 1.53 & . 05 & . 09 & 2 & 5 \\
\hline 2 & 128 & . 38 & . 08 & 6 & 87 & 1.32 & 15 & . 21 & 7 & 1.88 & . 05 & . 11 & , & 5 \\
\hline 2 & 139 & . 36 & . 17 & 8 & 95 & 1.05 & 132 & . 18 & 8 & 2.19 & . 05 & . 14 & 2 & 20 \\
\hline 2. & .123 & . 41 & ..16 & 3 & 159.. & 1.13 & 62 & . 11 & & . 2, 55.. & --.05- & . 09 & 2 & 10 \\
\hline 2 & 141 & . 59 & . 08 & 9 & 113 & 1.63 & 70 & . 18 & 8 & 2.61 & . 05 & . 12 & 1 & 10 \\
\hline 2 & 111 & . 25 & . 15 & 10 & 53 & . 51 & 83 & . 10 & 6 & 1.95 & . 03 & . 09 & 2 & 35 \\
\hline 2 & 88 & . 35 & . 05 & 7 & 26. & . 21. & . 71. & . 10 & & : . 96 & \(\cdots: 01-\) & . \(05 \cdot\) & 2. & 25. \\
\hline 3 & 78 & 1.10 & . 05 & 17 & 55 & . 54 & 121 & . 13 & 8 & 4.26 & . 05 & . 09 & 2 & 10 \\
\hline 2 & 96 & . 21 & . 10 & 11 & 51 & . 56 & 118 & . 10 & 7 & 3.88 & . 03 & . 09 & 2 & 25 \\
\hline 2 & 98 & . 28 & . 06 & 11 & 42 & . 50 & 129 & . 07 & 6 & 1.96 & . 03 & . 10 & 2 & 10 \\
\hline 2 & 124 & . 50 & . 03 & 14 & 55 & .88 & 126 & . 05 & 7 & 2.67 & . 03 & . 09 & i & 10 \\
\hline 2 & 102 & . 12 & . 05 & 12 & 35 & . 11 & 168 & . 05 & 1 & 1.73 & . 03 & . 10 & & 5 \\
\hline 2 & 119 & . 39 & . 05 & 11 & 61 & 1.16 & 148 & . 05 & - & 2.74 & . 02 & . 12 & ? & 5 \\
\hline & 81 & . 71 & . 05 & 16 & 51 & . 68 & 188 & . 07 & 8 & 3.12 & . 03 & . 08 & 2 & 5 \\
\hline 3 & 60 & . 69 & . 10 & 10 & 71 & . 80 & 272 & . 09 & 8 & 2.06 & . 02 & . 19 & - & \\
\hline 2 & 109 & . 24 & . 03 & 6 & 150 & 1.26 & 58 & . 21 & 7 & 1.27 & .. 07 - & . 23 & - & 5 \\
\hline 2 & 103 & . 13 & . 01 & 5 & 88 & 1.23 & . 69 & . 31 & 7 & 1.11 & . 05 & . 13 & 2 & 5 \\
\hline 2 & 186 & . 48 & . 07 & 7 & 190 & 3.61 & 60 & . 28 & 7 & 3.14 & . 03 & 1.04 & 2 & 30 \\
\hline 2 & . 145 & . 33 & . 06 & 7 & 234 & 2.50 & 85 & . 21 & 9 & 2.15 & . 05 & . 22 & 8 & 5 \\
\hline 3 & 98 & . 35 & . 01 & 7 & 68 & . 61 & 90 & . 18 & 5 & 1.09 & . 05 & :11 & 2 & 15 \\
\hline 2 & 114 & . 12 & . 11 & 7 & 30 & . 51 & 91 & . 21 & 5 & . 93 & . 05 & . 09 & 2 & 15 \\
\hline 1 & 14 & . 68 & . 15 & 7 & 222 & 2.91 & 62 & . 26 & 10 & 3.10 & . 06 & . 19 & 2 & 5 \\
\hline 2 & 13 & . 33 & . 11 & 7 & 178 & 1.87 & 87 & . 23 & 1 & 3.06 & . 04 & . 10 & , & 5 \\
\hline 3 & 156 & . 23 & . 06 & 8 & 67 & . 96 & 88 & . 19 & 6 & 1.19 & . 01 & . 17 & 2 & 15 \\
\hline 2 & 175 & . 31 & . 07 & 9 & 184 & 2.17 & 76 & . 21 & 12 & 2.13 & . 04 & . 23 & 2 & 20 \\
\hline 2 & 168 & . 33 & . 07 & 7 & \(\mathrm{H}^{3}\) & 1.52 & 92 & . 23 & 1 & 2.11 & . 04 & . 11 & 2 & 20 \\
\hline 2 & 113 & . 25 & . 10 & 7 & 56 & . 60 & 75 & . 21 & 1 & 2.11 & . 01 & . 08 & 2 & 15 \\
\hline 2 & 161 & . 3 & . 07 & 7 & 71 & 1.19 & 84 & . 21 & A & 2.16 & . 04 & . 11 & 2 & 10 \\
\hline 2 & 179 & 1.26 & . 06 & 6 & 108 & 1.19 & 115 & . 28 & 8 & 2.13 & . 07 & . 20 & 2 & 20 \\
\hline 2 & 124 & . 32 & . 18 & 11 & 89 & 1.05 & 91 & . 13 & 1 & 2.61 & . 03 & . 10 & 2 & 20 \\
\hline 2 & 122 & . 29 & . 08 & 11 & 60 & . 75 & 88 & . 10 & 10 & \(2 . \mathrm{BI}\) & . 03 & . 08 & i & 25 \\
\hline 2 & 88 & . 21 & . 06 & , & 10 & . 38 & 66 & . 10 & & 1.59 & . 05 & . 08 & & 10 \\
\hline 2 & 111 & . 28 & . 09 & 11 & 39 & . 48 & 112 & . 11 & 1 & 1.68 & . 03 & . 08 & 2 & 10 \\
\hline J & 119 & . 26 & . 08 & 11 & 17 & .46 & 114 & . 08 & 7 & 1.85 & . 03 & . 10 & \% & 5 \\
\hline 2 & 116 & . 29 & . 05 & 12 & 36 & . 13 & 11! & . 09 & 6 & 1.73 & . 03 & . 09 & 2 & 5 \\
\hline 2 & 124 & . 20 & . 09 & 12 & 59 & . 81 & 144 & . 09 & 1 & 3.59 & . 02 & . 10 & 2 & 10 \\
\hline 3 & 119 & . 26 & . 11 & 10 & 32 & . 39 & 120 & . 13 & 9 & 2.07 & . 04 & . 07 & 2 & 30 \\
\hline
\end{tabular}
S.M.D.C. FROJECT \# TA HODLA 4947 FILE \| 日2-0454
fage he
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sixple 1 & \[
\begin{aligned}
& \text { no } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cu} \\
& \mathrm{PPR}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ib } \\
& \text { pps }
\end{aligned}
\] & \[
\begin{aligned}
& \ln \\
& p p ı
\end{aligned}
\] & \[
\begin{aligned}
& A g \\
& p p_{a}
\end{aligned}
\] & \[
\begin{aligned}
& N i \\
& p p ı
\end{aligned}
\] & \[
\begin{aligned}
& \text { Co } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Kn}_{\mathrm{n}} \\
& \mathrm{p} \mathrm{~m}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Fe} \\
\mathrm{I}
\end{gathered}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { ppi }
\end{aligned}
\] & \[
\underset{p p q}{U}
\] & \[
\begin{aligned}
& \text { Au } \\
& \text { ppe }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Th } \\
& \text { pps }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Sr} \\
& \mathrm{pq}
\end{aligned}
\] & \[
\begin{aligned}
& \text { cd } \\
& \text { ppe }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 5b } \\
& \text { ppi }
\end{aligned}
\] & \[
\begin{aligned}
& \text { bi } \\
& \text { pps }
\end{aligned}
\] & \[
\begin{gathered}
v^{\bullet} \\
\text { ppe }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{C}_{2} \\
\mathrm{~L}
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& Z
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{La} \\
& \mathrm{ppI}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Cr } \\
& \text { ppe }
\end{aligned}
\] & \[
\underset{\mathrm{I}}{\mathrm{Mg}}
\] & \[
\begin{aligned}
& 82 \\
& \text { ppe }
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{ii} \\
\mathrm{i}
\end{array}
\] & 8
pp & \[
\stackrel{A!}{x}
\] & \[
\underset{l}{H_{2}}
\] & \[
\begin{aligned}
& k \\
& \text { k }
\end{aligned}
\] & \[
\begin{gathered}
\mathbf{y} \\
\text { PpA. }
\end{gathered}
\] & \[
\begin{aligned}
& A u t \\
& . p p b
\end{aligned}
\] \\
\hline 1n-2-k-1333 & 9 & 12 & 37 & 167 & . 2 & 17 & 25 & 1875 & 6.18 & 78 & 1 & 2 & 2 & 16 & 2 & 5 & 2 & 103 & . 16 & . 10 & 12 & 52 & . 36 & 108 & . 01 & 7 & 1.86 & . 03 & . 13 & 2 & 35 \\
\hline 1 \(k\)-2-k-1331 & 3 & 22 & 15 & 160 & . 6 & 19 & 11 & 453 & 3.85 & 19 & 2 & 2 & 2 & 16 & 1 & 2 & 2 & 99 & . 22 & . 09 & 13 & 39 & . 55 & 200 & . 06 & 5 & 2.17 & . 03 & . 69 & 2 & 3 \\
\hline TA-2-k-4J35 & 3 & 45 & 22 & 188 & . 6 & 35 & 18 & 361 & 4.71 & 65 & 2 & 2 & 2 & 45 & 2 & 2 & 2 & 121 & . 75 & . 05 & 15 & 64 & . 91 & 225 & . 06 & 1 & 3.87 & . 03 & . 09 & & 5 \\
\hline [ \(2-2-8-1358\) & 1 & 20 & 12 & 86 & . 9 & 17 & 6 & 205 & 3.21 & 16 & 2 & 2 & 2 & 14 & 1 & 2 & ? & 100 & . 21 & . 05 & 10 & 32 & . 17 & 106 & . 06 & 1 & 1.63 & . 03 & . 07 & & 10 \\
\hline \(510 \mathrm{~A}-1\) & 1 & 30 & 43 & 178 & . 3 & 35 & 12 & 979 & 2.91 & 8 & 2 & 2 & 3 & 36 & 1 & 2 & 2 & 59 & . 67 & . 09 & 10 & 71 & . 80 & 284 & . 09 & 1 & 2.08 & . 02 & . 20 & 2 & - \\
\hline [ \(4-2-\mathrm{r}-1338\) & 1 & 54 & 16 & 88 & . 2 & 35 & 19 & 507 & 5.05 & 12 & 2 & 2 & 3 & 21 & 1 & 3 & 2 & 121 & . 27 & . 09 & 13 & 50 & . 69 & 181 & . 09 & 6 & 2.78 & . 02 & . 09 & 2 & 15 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-5309\) & 8 & 325 & 88 & 78 & . 5 & 93 & 13 & 315 & 5.10 & 14 & 3 & 2 & 2 & 19 & - 1 & 2 & 3 & 111 & . 53 & . 04 & 9 & 182 & 2.08 & 83 & . 27 & 1 & 2.83 & . 01 & . 25 & & 5 \\
\hline \(1 \mathrm{~A}-2-\mathrm{k}-5310\) & 1 & 19 & 38 & 95 & . 3 & 35 & 9 & 209 & 1.16 & 11 & 2 & 2 & 2 & 20 & 1 & 2 & 3 & 141 & . 17 & . 05 & 7 & 11 & 1.06 & 101 & . 26 & 1 & 1.90 & . 01 & . 15 & & 10 \\
\hline 1 1 -2-8-5311 & 1 & 13 & 28 & 55 & . 5 & 15 & 5 & 164 & 3.53 & 10 & 2 & 2 & 2 & 18 & 1 & 2 & 2 & 115 & . 63 & . 05 & 7 & 14 & . 69 & 59 & . 21 & 1 & 1.12 & . 03 & . 12 & 2 & 15 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-5312\) & 1 & 53 & 24 & 71 & . 3 & 10 & 10 & 194 & 3.94 & 9 & 2 & 2 & 2 & 20 & 1 & 2 & 2 & 122 & . 11 & . 05 & 9 & 86 & 1.09 & 81 & . 20 & 5 & 2.66 & . 05 & . 13 & & 10 \\
\hline [A-2-k-531] & 7 & 111 & 28 & 80 & . 2 & 41 & 15 & 271 & 4.12 & 12 & 2 & 2 & 2 & 21 & 1 & 2 & 2 & 130 & . 19 & . 04 & 10 & 85 & 1.15 & 97 & . 20 & 5 & 2.10 & . 01 & . 15 & 2 & 180 \\
\hline [A-2-8-5314 & 5 & 236 & 56 & 123 & . 1 & 92 & 18 & 374 & 5.68 & 10 & 2 & 2 & 2 & 17 & 1 & 2 & 3 & 111 & . 19 & . 11 & , & 189 & 2.39 & 78 & . 19 & 7 & 2.75 & . 01 & . 34 & 2 & 10 \\
\hline 1A-2-R-53! 5 & 11 & 263 & 35 & 213 & . 8 & 126 & 20 & 563 & 4.96 & 19 & 2 & 2 & 2 & 30 & 1 & 2 & 2 & 126 & . 66 & . 01 & 9 & 125 & 1.60 & 281 & . 15 & 5 & 3.61 & . 03 & . 18 & 2 & 15 \\
\hline 1 \(\mathrm{A}-2-8-5316\) & 8 & 100 & 27 & 68 & . 2 & 60 & 13 & 217 & 4.85 & 17 & 2 & 2 & 2 & 17 & 1 & 2 & 2 & 163 & . 33 & . 12 & 1 & 171 & 2.08 & 96 & . 20 & 6 & 2.36 & . 01 & . 11 & 2 & 10 \\
\hline 1A-2-R-5317 & 1 & 13 & 24 & 67 & . 1 & 55 & 13 & 303 & 3.30 & 6 & 2 & 2 & 2 & 22 & 1 & 2 & 2 & 98 & . 15 & . 04 & 8 & 118 & 1.32 & 91 & . 19 & 1 & 1.82 & . 05 & . 22 & 2 & 5 \\
\hline TA-2-r-5318 & 1 & 80 & 25 & 63 & . 1 & 18 & 15 & 362 & 4.19 & 16 & 2 & 2 & 2 & 17 & 1 & 2 & 2 & 111 & . 61 & . 06 & 8 & 100 & 1.59 & 02 & . 22 & 1 & 2.04 & . 05 & . 15 & 2 & 10 \\
\hline 1A-2-k-5319 & 1 & 11 & 13 & 17 & . 3 & 6 & 2 & 81 & 1.35 & 5 & 2 & 2 & 2 & 10 & 1 & 2 & 2 & 51 & . 19 & . 03 & 5 & 18 & . 15 & 59 & . 12 & 2 & . 15 & . 04 & . 06 & 2 & 5 \\
\hline 1A-2-8-5320 & 3 & 55 & 20 & 52 & . 3 & 29 & 8 & 169 & 3.18 & 9 & 2 & 2 & 2 & 11 & 1 & 2 & 2 & 114 & . 30 & . 07 & 1 & 66 & . 93 & 91 & . 18 & 5 & 1.51 & . 03 & . 12 & 2 & 15 \\
\hline 1 \(\mathrm{A}-2-\mathrm{k}-5321\) & 6 & 49 & 22 & 13 & . 5 & 19 & 10 & 182 & 3.72 & 6 & 2 & 2 & 2 & 13 & & 2 & 2 & 108 & . 26 & . 08 & , & 103 & 1.03 & 79 & . 20 & 1 & 2.16 & . 03 & . 10 & 2 & 10 \\
\hline TA-2-R-5322 & 3 & 19 & 13 & . 36 & . 1 & 23 & 6 & 137 & 2.93 & 5 & 2 & 2. & 2 & 11 & 1 & 2 & . 2 & 105 & . 24 & . 01 & 7 & 56 & . 82 & 11 & . 17 & 1 & 1.27 & . 05 & .13 & 2 & 10 \\
\hline TA-2-R-5323 & 2 & 22 & 17 & 31 & . 1 & 17 & 5 & 86 & 2.15 & 3 & 2 & 2 & 2 & 15 & 1 & 2 & 2 & 86 & . \(3!\) & . 03 & 7 & 16 & . 62 & 81 & . 23 & 1 & . 96 & . 01 & . 16 & 2 & 5 \\
\hline 1A-2-R-5324 & 14 & 840 & 26 & 110 & 2.2 & 107 & 17 & 1085 & 4.19 & 15 & 2 & 2 & 2 & 58 & 2 & 2 & 2 & 114 & 1.49 & . 06 & 13 & 96 & 1.25 & 285 & . 12 & 6 & 2.59 & . 04 & . 21 & 2 & 10 \\
\hline TA-2-R-5325 & 11 & 129 & 19 & 134 & . 1 & 141 & 23 & 857 & 4.83 & 11 & 2 & 2 & 2 & 18 & 1 & 2 & 2 & 131 & . 81 & . 05 & 8 & 155 & 2.22 & 99 & . 23 & 1 & 3.06 & . 04 & . 11 & 2 & 15 \\
\hline TA-2-R-5326 & ! 6 & 53 & 14 & 62 & . 1 & 22 & 11 & 619 & 5.27 & 20 & 2 & 2 & 2 & 33 & 1 & 2 & 2 & 126 & . 11 & . 12 & 1 & 13 & . 81 & 70 & . 19 & 6 & 2.08 & . 05 & . 10 & 1 & 45 \\
\hline 1A-2-k-5327 & 2 & 18 & 14 & 62 & . 2 & 63 & 13 & 400 & 3.57 & 24 & 2 & 2 & 2 & 25 & 1 & 2 & 2 & 101 & . 32 & . 07 & 8 & 114 & 1.09 & 87 & . 16 & 1 & 2.15 & . 01 & . 08 & 2 & 15 \\
\hline TA-2-8-5328 & 2 & 38 & 13 & 11 & . 2 & 36 & 13 & 341 & 4.93 & 61 & 2 & 2 & 2 & 54 & 1 & 2 & 2 & 138 & . 51 & . 06 & 6 & (14 & 1.20 & 56 & . 21 & 5 & 2.18 & . 01 & . 07 & 2 & 190 \\
\hline 1 \(\mathrm{A}-2-8\)-5329 & 6 & 55 & 17 & 17 & .1 & 15 & 18 & 273 & 5.32 & 39 & 2 & 2 & 3 & 24 & 1 & 2 & 2 & 118 & .10 & . 10 & 10 & \({ }^{6} 3\) & . 71 & 123 & . 11 & 8 & 3.52 & . 02 & . 08 & 2 & 30 \\
\hline Th-2-रi-5j30 & 3 & 15 & 17 & 54 & . 3 & 24 & 29 & 214 & 3.37 & 18 & 2 & 2 & 2 & 12 & 1 & 2 & 2 & 87 & . 16 & . 08 & 10 & 37 & . 38 & 127 & . 12 & 1 & 3.02 & . 04 & . 05 & 2 & 25 \\
\hline 1-2-2-R-5]j1 & 2 & 27 & 13 & 105 & . 1 & 24 & 15 & 509 & 4.10 & 35 & 2 & 2 & 2 & 18 & 1 & 2 & 2 & 105 & . 27 & . 06 & 9 & 37 & . 47 & 111 & . 11 & 1 & 2.22 & . 04 & . 07 & 2 & 20 \\
\hline \(1 \mathrm{i}-2-\mathrm{k}-5 \mathrm{j} 32\) & 3 & 29 & 19 & 115 & 1.5 & 31 & 11 & 743 & 4.90 & 66 & 2 & 9 & 3 & 15 & 1 & 1 & 2 & 118 & . 21 & . 10 & 13 & 53 & . 66 & 174 & . 08 & 5 & 2.70 & . 02 & . 09 & 2 & 1200 \\
\hline TA-2-8-5333 & 3 & 25 & 16 & 125 & . 2 & 25 & \(\theta\) & 210 & 4.27 & 20 & 2 & 2 & 2 & 12 & \(!\) & 3 & 2 & 113 & . 19 & . 10 & 13 & 51 & . 64 & 102 & . 07 & 5 & 2.28 & . 02 & . 07 & 2 & 10 \\
\hline i \(\mathrm{A}-2-\mathrm{i}-5334\) & 3 & 11 & 16 & 153 & . 4 & 39 & 11 & 331 & 4.60 & 31 & 2 & 2 & 2 & 25 & 1 & 2 & 2 & "107 & . 38 & . 07 & 13 & 56** & . 81 & 189 & . 06 & 5 & 2:76" & \(\because .02{ }^{-}\) & . 12 & 2 & 20 \\
\hline TA-2-R-5335 & 2 & 14 & 11 & 130 & . 3 & 18 & 9 & 379 & 3.12 & 13 & 2 & 2 & 2 & 20 & 1 & 2 & 2 & 91 & . 31 & . 06 & 10 & 36 & . 16 & 121 & . 01 & & 1.88 & . 03 & . 10 & 2 & 10 \\
\hline [5-2-R-5j36 & 3 & 21 & 18 & 116 & . 3 & 20 & 8 & 212 & 4.16 & 18 & 2 & 2 & 2 & 11 & 1 & 2 & 2 & 98 & . 19 & . 08 & 11 & 16 & . 63 & 112 & . 88 & 5 & 3.04 & . 03 & . 08 & 2 & 5 \\
\hline 1 \(\mathrm{h}-2-8-53 \mathrm{J7}\) & 1 & 58 & 19 & 191 & . 2 & 40 & 21 & 452 & 5.20 & 36 & 2 & 2 & 3 & 11 & 2 & 3 & 2 & 105 & . 69 & . 05 & 15 & 58 & . 95 & 188. & . 05 & 6. & 3.25 & . 02 & . 11 & & \\
\hline TA-2-2-R-533 & 3 & 22 & 12 & 112 & . 1 & 21 & 9 & 273 & 3.69 & 26 & 2 & 2 & 2 & 17 & 1 & 2 & 2 & 109 & . 26 & . 08 & 12 & 11 & . 59 & 139 & . 06 & 5 & 2.07 & . 03 & . 09 & 2 & 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TA-2-R-322S & 2J & 242 & 43 & 78 & 2.0 & 102 & 11 & 435 & 4.09 & 15 & 5 & 2 & 2 & 12 & 3 & 2 & 2 & 102 & . 67 & . 04 & 11 & 91 & 1.50 & 92 & . 15 & 3 & 2.28 & . 01 & . 19 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-3227\) & 11 & 105 & 12 & 61 & . 7 & 16 & 11 & 269 & 4.55 & 14 & 5 & 2 & 2 & 26 & 2 & 2 & 3 & 127 & . 19 & . 05 & 7 & 91 & 1.79 & 87 & . 22 & J & 1.99 & . 02 & . 17 & 2 \\
\hline Tin-2-R-3228 & 24 & 146 & 45 & 68 & 3.8 & 155 & 15 & 679 & 3.54 & 8 & 5 & 2 & 2 & 103 & 5 & 2 & 2 & 70 & 1.15 & . 07 & 10 & 135 & 1.18 & 138 & . 68 & 2 & 2.08 & . 02 & . 22 & 2 \\
\hline TA-2-5-5229 & 19 & 121 & 63 & 63 & . 6 & 33 & [11 & 298 & \(4.65{ }^{\circ}\) & 12 & 5 & 2 & 2 & 30 & 2 & 2 & 2 & 130 & . 43 & . 00 & 7 & 86 & 1.16 & 171 & . 19 & 1 & 1.82 & . 02 & . 17 & 2 \\
\hline TA-2-8-3230 & 58 & 181 & 39 & 65 & 3.4 & 86 & 16 & 2801 & 3.17 & 14 & 9 & 2 & 2 & 126 & 5 & 2 & 1 & 65 & 1.89 & . 11 & 23 & 56 & . 66 & 199 & . 04 & . 1 & 2.36 & . 02 & . 11 & 2 \\
\hline [ \(A-2-R-3\) 2 31 & 27 & 370 & 37 & 106 & 3.1 & 121 & 16 & 709 & 4.13 & 10 & 5 & 2 & 2 & 65 & 3 & 2 & 2 & 80 & 1.13 & .08 & 15 & 86 & 1.24 & 225 & . 08 & 3 & 3.11 & . 02 & . 25 & 2 \\
\hline 1A-2-R-3232 & 11 & 68 & 21 & 89 & . 3 & 38 & 12 & 315 & 4.05 & 17 & 5 & 2 & 2 & 29 & 2 & 2 & 2 & 98 & . 18 & . 09 & 12 & 67 & 1.29 & 125 & . 10 & 3 & 2.13 & . 01 & . 12 & 2 \\
\hline 1A-2-R-3233 & 24 & 161 & 38 & 70 & . 9 & 39 & 7 & 199 & 3.56 & 10 & 5 & 2 & 2 & 35 & 1 & 2 & 2 & 100 & . 56 & . 04 & \(d\) & 71 & 1.06 & 150 & . 15 & J & 1.84 & . 02 & . 14 & 2 \\
\hline 1A-2-fi-3234 & 70 & 307 & 19 & 75 & 3.2 & 81 & 19 & 118 & b. 04 & 11 & 5 & 2 & 2 & 12 & 2 & 2 & 2 & 118 & . 73 & . 05 & 1 & 212 & 3.07 & 144 & . 17 & 3 & 2.51 & . 02 & . 91 & 2 \\
\hline 1-2-2-R-3235 & 20 & 88 & 35 & 83 & . 7 & 56 & 10 & 254 & 4.29 & 11 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 113 & . 31 & . 05 & 10 & 133 & 1.64 & 88 & . 20 & J & 2.53 & . 02 & . 11 & 2 \\
\hline TA-2-R-3236 & 47 & 189 & 45 & 112 & 1.5 & 70 & 17 & 417 & 3.92 & 12 & 5 & 2 & 2 & 19 & & 2 & & 95 & . 63 & . 05 & 9 & 107 & 1.56 & 222 & . 11 & 3 & 2.26 & . 02 & . 27 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-3237\) & 56 & 111 & 53 & 16 & 1.1 & 36 & 7 & 238 & 3.60 & 6 & 5 & 2 & 2 & 52 & 1 & 3 & 5 & 143 & . 47 & . 03 & 1 & 98 & 1.72 & 102 & . 15 & 2 & 1.85 & . 02 & . 30 & 2 \\
\hline 1A-2-R-3238 & 7 & 89 & 26 & 91 & . 7 & 58 & 13 & 211 & 3.72 & 12 & J & 2 & 2 & 19 & 1 & 2 & 2 & 121 & . 38 & . 04 & 8 & 108 & 1.67 & 119 & . 21 & 5 & 2.22 & . 02 & . 25 & 2 \\
\hline 14-2-R-3239 & 10 & 389 & 49 & 160 & 2.1 & 80 & 14 & 682 & 3.97 & 13 & 5 & 2 & 2 & 43 & 3 & 2. & 2 & 98 & . 90 & . 05 & 15 & 102. & 1.11 & 338 & . 13 & 3 & 2.92 & . 02. & . 15 & 2 \\
\hline 1k-2-8-3210 & 10 & 406 & - 63 & 105 & 5.6 & 71 & 12 & 239 & 3.56 & 9 & 5 & 2 & 2 & 37 & 2 & 2 & 2 & 92 & . 73 & . 04 & 17 & 100 & 1.02 & 330 & . 13 & 3 & 2.79 & . 02 & . 13 & 2 \\
\hline TA-2-R-5241 & 15 & 307 & 78 & 98 & 1.8 & 59 & 12 & 362 & 3.37 & 10 & 5 & 2 & 2 & 45 & 2 & 2 & J & 85 & . 93 & . 06 & 10 & 82 & . 90 & 249 & . 08 & 2 & 2.61 & . 02 & . 16 & 2 \\
\hline 1A-2-R-3242 & 13 & 181 & 176 & 123 & . 1 & 33 & 18 & 573 & 5.35 & 6 & 5 & 2 & 2 & 12 & 2 & 2 & 2 & 121 & . 25 & . 09 & 8 & 117 & 3.08 & 125 & . 22 & 3 & 2.69 & . 03 & . 91 & 2 \\
\hline TA-2-f-324] & 7 & 70 & . 57 & 103 & . 5 & 50 & 12 & 226 & 4.32 & 9 & 5 & 2 & 2 & 11 & , & 2 & 2 & 114 & . 22 & . 03 & & 125 & 1.53 & 93 & . 19 & 2 & 2.19 & . 02 & . 12 & 2 \\
\hline Thi-2-8-324 & 1 & 69 & 63 & 118 & . 6 & b0 & 13 & 330 & 4.00 & b & 5 & 2 & 2 & 14 & 2 & J & 2 & 118 & . 31 & . 08 & 8 & 148 & 2.18 & 88 & . 11 & 3 & 2.13 & . 03 & . 24 & 2 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-3245\) & 3 & 52 & 54 & 86 & 1.0 & 41 & 11 & 488 & 3.12 & 1 & 5 & 2 & 2 & 18 & , & 2 & 2 & 103 & . 50 & .10 & 7 & 111 & 1.63 & 112 & . 16 & 2 & 1.72 & . 02 & . 18 & 2 \\
\hline TA-2-R-3246 & 11 & 99 & 18 & 176 & 1.5 & 56 & 15 & 310 & 3.99 & 11 & 5 & 2 & 2 & 24 & 2 & 2 & \(2 *\) & 113 & . 53 & . 03 & 8 & 1 & 1.50 & 218 & . 20 & 3 & 2.78 & . 02 & . 17 & 2 \\
\hline IAR-2-R-3247 & 3 & 65 & 78 & 116 & 1.3 & 55 & 13 & 267 & 4.20 & - & 5 & 2 & 2 & 12 & 2 & 1 & 2 & 126 & . 26 & . 06 & , & 115 & 1.59 & 101 & . 20 & J & 2.33 & . 02 & . 09 & 2 \\
\hline 1A-2-R-3218 & 73 & 94 & 860 & 184 & 6.0 & 257 & 19 & 812 & 4.88 & 1 & 5 & 2 & 2 & 19 & 2 & 5 & 91 & 130 & . 52 & . 08 & & 615 & 4.22 & 15 & . 20 & 2 & 3.01 & . 03 & 1.05 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-3249\) & 6 & 90 & 131 & 139 & 2.7 & 61 & 15 & 351 & 4.30 & 8 & 5 & 2 & 2 & . 21 & 2 & 3 & 4. & -122 & . 52 & . 04 & , & 130 & 1.74 & 162 & . 18 & 2 & 2.68 & . 02 & . 12 & 2 \\
\hline IR-2-R-3250 & 6 & 215 & 143 & 131 & 5.8 & 89 & 18 & 608 & 4.32 & 10 & 5 & 2 & 2 & \(3!\) & 5 & 2 & 3 & 109 & . 79 & . 05 & 11 & 147 & 1.69 & 332 & . 15 & 1 & 2.98 & . 02 & . 28 & 2 \\
\hline T A -2-8-3251 & 1 & 81 & 134 & 114 & 1.4 & 69 & 15 & 379 & 4.97 & 11 & 5 & 2 & 2 & 14 & 2 & 5 & 10 & 111 & . 36 & . 08 & 7 & 155 & 2.54 & 107 & . 24 & 5 & 2.16 & . 01 & . 19 & 2 \\
\hline 1A-2-R-3252 & 3 & 33 & 68 & 88 & 1.7 & 31 & 9 & 215 & 3.41 & 1 & 5 & 2 & 3 & 17 & 2 & 2 & 2. & 95 & . 29 & . 06 & 11. & 13 & . 96 & 92 & . 15 & 3 & 1.99 & . 01 & . 09 & 2 \\
\hline 1 \(\mathrm{A}-2\)-R-3253 & \(\delta\) & 86 & 16 & 127 & 1.8 & 54 & 18 & 705 & 4.03 & 16 & 5 & 2 & 5 & 39 & , & 2 & 2 & 110 & . 95 & . 06 & 13 & 91 & 1.56 & 178 & . 14 & 3 & 2.50 & . 02 & . 26 & 2 \\
\hline 1A-2-R-3254 & 30 & 114 & 155 & 130 & 5.0 & 67 & 14 & 7308 & 2.94 & 1 & 5 & 2 & 5 & 13 & 12 & 7 & 9 & 65 & 1.00 & . 05 & 11 & 57 & . 88 & 115 & . 09 & 3 & 2.19 & . 03 & . 10 & 2 \\
\hline 5 \(\mathrm{A}-2-\mathrm{R}-3255\) & . & 97 & 145 & 102 & 2.3 & 58 & 18 & 596 & 4.39 & 18 & 5 & 2 & 3 & 38 & , & 2 & 3 & 110 & . 96 & . 04 & 11 & 114 & 1.72 & 203 & . 13 & 5 & 2.53 & . 02 & . 18 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-3256\) & 5 & 158 & 219 & 106 & . 0 & 58 & 27 & 702 & 5.87 & 10 & 5 & 2 & 2 & 15 & , & 2 & 3 & 163 & . 26 & . 11 & 7 & 145 & 2.83 & 138 & . 11 & 2 & 2.25 & . 03 & . 8 8 & 2 \\
\hline 1A-2-R-3257 & 8 & 11 & 144 & 130 & 5.2 & 10 & 13 & 637 & 3.28 & 5 & 5 & 2 & 2 & 31 & 3 & 2 & 3 & 89 & . 95 & . 03 & 9 & 65 & . 97 & 257 & . 12 & 1 & 2.34 & . 02 & . 09 & 2 \\
\hline Th-2-R-3258 & 6 & 64 & 50 & 75 & . 1 & 39 & 13 & 303 & 3.76 & 14 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 111 & . 40 & . 04 & 1 & 83 & 1.35 & 92 & . 11 & 9 & 1.90 & . 02 & . 11 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-3259\) & 6 & 134 & 72 & 103 & 1.3 & 57 & 17 & 494 & 4.48 & 23 & 5 & 2 & 2 & \(34^{-}\) & 2 & 2 & 2 & 117 & . 76 & . 05 & 10 & 100 & 1.44 & 181 & . 11 & 2 & 2.63 & . 01 & . 16 & 2 \\
\hline 1A-2-8-5260 & 9 & 129 & 82 & 117 & . 4 & 56 & 20 & 483 & 4.87 & 23 & 5 & 2 & 1 & 17 & 2 & 2 & 2 & 111 & . 25 & . 04 & 15 & 96 & 1.26 & 132 & . 11 & 3 & 2.83 & . 01 & . 20 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-326\) ! & 5 & 33 & 31 & 81 & . 8 & 29 & 8 & 272 & 3.79 & 18 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 110 & . 26 & . 01 & 9 & 71 & . 79 & 日日 & . 15 & 2 & 1.62 & . 01 & . 07 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-3262\) & 3 & 38 & 27 & 56 & .7 & 31 & 9 & 234 & 3.51 & & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 116 & . 40 & . 09 & 6 & 75 & . 99 & 124. & . 11 & 2 & 1.36 & . 02 & . 10 & 2 \\
\hline TA-2-R-3263 & 2 & 20 & 17 & 77 & .4 & B & 8 & 232 & 2.56 & 2 & 5 & 2 & 2 & 7 & 1 & 2 & 2 & 86 & . 09 & . 05 & 6 & 20 & . 24 & 70 & . 11 & 2 & . 19 & . 02 & . 04 & 2 \\
\hline SID A-1 & 1 & 30 & 11 & 175 & . 3 & 3 & 12 & 959 & 2.71 & 11 & 5 & 2 & 3 & 31 & 2 & 2 & 2 & 56 & . 62 & . 10 & 9 & 69 & . 75 & 285 & . 09 & 5 & 1.92 & . 02 & . 19 & 2 \\
\hline
\end{tabular}

SARPLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tin-2-2-3264 & 2 & 16 & 19 & 83 & . 2 & 25 & 10 & 211 & 3.83 & 5 & 5 & 2 & 2 & 13 & 1, & 2 & 2 & 137 & . 22 & . 07 & 7 & 55 & . 11 & 122 & .13 & 2 & 1.13 & . 01 & . 08 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{F}-\mathrm{j}\) 265 & 2 & 101 & 29 & 118 & .1 & 98 & 21 & 637 & 5.52 & 11 & 5 & 2 & 2 & 14 & 2 & 3 & 2 & 119 & . 40 & . 10 & 1 & 145 & 2.94 & 96 & . 23 & 2 & 2.70 & . 02 & . 72 & 2 \\
\hline 1A-2-k-3266 & 2 & 109 & 28 & 123 & .1 & 12 & 21 & 590 & 5.87 & 11 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 155 & . 55 & . 13 & 6 & 63 & 2.07 & 120 & . 20 & 2 & 2.05 & . 02 & . 19 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-\mathrm{3} 207\) & 10 & 59 & 12 & 246 & . 2 & 27 & 14 & 517 & 4.52 & 11 & 5. & 2 & 3 & 12 & 2 & J & 2 & 136 & . 19 & . 07 & 9 & 51 & 1.01 & 181 & . 12 & 5 & 1.79 & . 02 & . 07 & 2 \\
\hline 1 \(\mathrm{A}-2 \mathrm{R} \mathrm{R}-326 \mathrm{~s}\) & 3 & 105 & 30 & 97 & . 1 & 19 & 20 & 644 & 4.67 & 22 & 5 . & 2 & 3 & 25 & 2 & 2 & 2 & 104 & . 15 & . 08 & 15 & 80 & 1.13 & 113 & . 12 & 3 & 2.01 & . 02 & . 18 & 2 \\
\hline 1N-2-R-3259 & 8 & 91. & 34 & 132 & . 6 & 12 & 12 & 253 & 4.81 & 20 & 5 & 2 & 3 & 26 & 2 & 2 & 2 & 121 & . 72 & . 03 & 11 & 75 & . 95 & 196 & . 10 & 2 & 2.79 & . 01 & . 11 & 2 \\
\hline 1 T -2-8-8-3270 & 1 & 122 & 50 & 112 & . 4 & 60 & 18 & 532 & 4.46 & 18 & 5 & 2 & 3 & 35 & 2 & 2 & 2 & 98 & 1.05 & . 04 & 13 & 107 & 1.10 & 167 & . 11 & 3 & 2.78 & . 02 & . 10 & 2 \\
\hline 1n-2-n-3271 & 1 & 108 & 42 & 125 & . 7 & 78 & 23 & 127 & 4.67 & 17 & 5 & 2 & 3 & 31 & 2 & 2 & 2 & 107 & . 71 & . 05 & 11 & 125 & 1.50 & 159 & . 13 & 1 & J. 16 & . 02 & . 09 & 2 \\
\hline (A-2-R-3272 & 3 & 146 & 40 & 174 & 2.3 & 68 & 19 & 17 & 4.15 & IJ & 5 & 2 & J & 16 & 3 & 2 & 2 & 9 & 1.21 & . 06 & 12 & 9 & 1.30 & 194 & . 12 & \(\pm\) & 3.12 & . 02 & . 10 & 2 \\
\hline 1A-2-R-3273 & 36 & 638 & 59 & 87 & 5.0 & 200 & 21 & 104 & 6.12 & 31 & 5 & 2 & 2 & 104 & 10 & 2 & 2 & 131 & 1.54 & . 14 & 2 B & 87 & . 04 & 184 & . 05 & 3 & 2.67 & . 02 & . 15 & 2 \\
\hline TA-2-8-3274 & 17 & 105 & 13 & 81 & . 8 & 53 & 13 & 355 & 3.87 & 11 & 5 & 2 & 2 & 30 & 2 & 2 & 2 & 99 & . 50 & . 05 & 9 & 97 & 1.06 & 90 & . 11 & 3 & 1.75 & . 02 & . 11 & 2 \\
\hline 1A-2-R-3275 & 24 & 475 & 49 & 103 & 2.3 & 154 & 17 & 930 & 5.03 & 28 & 6 & 2 & 2 & 104 & 4 & 2 & 3. & 96 & 1.46 & . 08 & 25 & 82 & . 81 & 212 & . 06 & 3 & 3.03 & . 02 & . 18 & 2 \\
\hline [ \(\mathrm{K}-2-\mathrm{k}-3278\) & 13 & 195 & 25 & 11 & 2.8 & 128 & 8 & 214 & 3.74 & 20 & 5 & 2 & 2 & 11 & 3 & 3 & 2 & 91 & . 56 & . 03 & 10 & 52 & . 18 & 106 & . 10 & 3 & 1.81 & . 02 & . 10 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-3277\) & 13 & 13 & 68 & 64 & . 6 & 53 & 14 & 369 & 4.54 & 9 & 5 & 2 & 2 & 24 & 2 & 2 & 2 & 129 & . 31 & . 05 & 6 & 13 & 2.02 & 106 & . 21 & 3 & 1.91 & . 02 & . 13 & 2 \\
\hline 1A-2-8-3278 & \(\theta\) & 34 & 13 & 55 & . 9 & 12 & 10 & 271 & 3.21 & 7 & 5 & 2 & 2 & 28 & 2 & 2 & 2 & 96 & . 13 & . 05 & 5 & 9 & 1.25 & 109 & . 21 & 3 & 1.36 & . 02 & . 09 & 2 \\
\hline Ti-2-R-3179 & 38 & 175 & 60 & 61 & 1.3 & 151 & 11 & 261 & 4.53 & 10 & 5 & 2 & 2 & 61 & & 2 & - 2 & 110 & 1.19 & . 04 & 6 & 180 & 1.82 & 71 & . 19 & 2 & 2.00 & . 02 & . 17 & 2 \\
\hline 1i-2-k-3280 & 29 & 117 & 70 & 70 & . 7 & 90 & 14 & 362 & 5.15 & 15 & 5 & , & , & 31 & 2 & 2 & 2 & 128 & . 71 & . 06 & 6 & 199 & 2.11 & 65 & . 20 & 1 & 2.24 & . 02 & . 16 & 2 \\
\hline T R -2-R-3281 & 33 & 124 & 64 & 13 & 1.6 & 95 & 10 & 195 & 4.83 & 16 & 5 & 2 & 2 & J3 & 2 & 2 & 2 & 121 & . 61 & . 03 & 1 & 114 & 1.12 & 53 & . 23 & 2 & 2.08 & . 02 & . 10 & 2 \\
\hline TA-2-R-3292 & 31 & 222 & 101 & 89 & . 5 & 95 & 24 & 518 & 5.10 & 14 & 5 & 2 & 2 & 34 & 2 & 2 & 2 & 123 & . 65 & . 01 & 8 & 170 & 2.38 & 96 & . 20 & 3 & 2.06 & . 02 & . 53 & 2 \\
\hline 7 \(\mathrm{A}-2-8-3283\) & 29 & 114 & 95 & 70 & 2.2 & 81 & 15 & 270 & 4.32 & 11 & 5 & 2 & 2 & 55 & , & 2 & 2 & 105 & 1.08 & . 03 & 7 & 135 & 1.11 & 61 & . 22 & 6 & 2.25 & . 02 & . 11 & 2 \\
\hline 14-2-R-3284 & 23 & 197 & 59. & 76 & 3.8 & 222 & 17 & 384 & 3.02 & 5 & 5 & 2 & 2 & 111 & & 2 & 2 & 46 & 1.99 & . 06 & 1 & 151 & 1.85 & 88 & . 10 & 2 & 2.54 & . 02 & . 14 & 2 \\
\hline IA 2 -2-R-3285 & 24 & 281 & 266 & 104 & 4.2 & 94 & 20 & 612 & 3.35 & 7 & 5 & 2 & , & 99 & 3 & 3 & 5 & 64 & 1.85 & . 07 & 9 & 113 & 1.16 & 99 & . 10 & 5 & 2.21 & . 02 & . 23 & 2 \\
\hline 1i-2-R-328 \({ }^{\text {a }}\) & 118 & 220 & 85 & 59 & . 5 & 58 & 20 & 335 & 9.05 & 41 & 5 & 2 & 2 & 29 & 3 & 3 & 1 & 110 & . 22 & . 07 & 10 & 112 & 1.01 & 582 & . 11 & 1 & 1.18 & . 02 & . 21 & 2 \\
\hline 1A-2-f-3297 & 34 & 132 & 28 & 105 & 2.1 & 126 & 11 & 179 & 4.64 & 25 & 5 & 2 & 2 & 32 & J & 2 & 2 & 104 & . 59 & . 03 & 10 & 70 & . 74 & 102 & . 13 & 3 & 2.12 & . 02 & . 12 & 2 \\
\hline 1in-2- \(\mathrm{F}-328 \mathrm{~s}\) & 11 & 41 & 27 & 80 & . 8 & 62 & 11 & 274 & 4.18 & 12 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 121 & . 26 & . 06 & - & 111 & 1.68 & 58 & . 23 & 1 & 1.85 & . 02 & . 07 & 2 \\
\hline TA-2-R-3299 & 7 & 162 & 28 & 82 & . 4 & 100 & 29 & 175 & 5.78 & 29 & 5 & 2 & 2 & 12 & 2 & & 2 & 159 & . 33 & . 08 & \(8{ }^{\circ}\) & 157 & 2.58 & 60 & . 16 & J & 1.85 & . 01 & . 20 & 2 \\
\hline 1h-2-8-3290 & 5 & 11 & 22 & 69 & . 1 & 36 & 11 & 223 & 3.89 & 13 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 126 & . 31 & . 07 & \$ & 80 & . 93 & 81 & . 13 & 2 & 1.33 & . 02 & . 07 & , \\
\hline 19-2-8-3291 & 1 & 38 & 21 & 87 & . 6 & 35 & 13 & 154 & 4.38 & 23 & 5 & 2 & 2 & 25 & 2 & 2 & 2 & 96 & . 62 & . 08 & 9 & 15 & . 53 & 135 & . 09 & & 2.81 & . 02 & . 04 & 2 \\
\hline 1 \(\mathrm{n}-2-\mathrm{k}-3292\) & 3 & 23 & 17 & 91 & . 5 & 109 & 14 & 216 & 4.06 & 29 & 5 & 2 & 2 & 11 & & 2 & 2 & 114 & . 20 & . 07 & 7 & 280 & 1.16 & 86 & . 08 & 3 & 2.68 & . 01 & . 09 & 2 \\
\hline [ H -2-A-3293 & 3 & 61 & 49 & 215 & . 5 & 4 & 16 & 333 & 4.67 & 26 & 5 & 2 & 2 & 23 & 2 & 2 & 2 & 108 & . 36 & . 09 & 11 & 86 & . 98 & 176 & . 05 & 1 & 3.21 & . 01 & . 09 & 2 \\
\hline 1A-2-R-3294 & 2 & 84 & 21 & 112 & 1.5 & 33 & 12 & 295 & 3.51 & 25 & 5 & 2 & 2 & 3 & 2 & 2 & 2 & 81 & . 69 & . 05 & 17 & 35 & . 48 & 129 & . 08 & J & 2.15 & . 02 & . 05 & 2 \\
\hline TA-2-R-3295 & 8 & 105 & 14 & 93 & . 3 & 10 & 25 & 630 & 8.97 & 27 & 5 & 2 & & 22 & 2 & 2 & 2 & 163 & . 14 & . 08 & 11 & 62 & 1.93 & 76 & . 11 & 1 & 2.18 & . 01 & . 12 & 2 \\
\hline TA-2-R-3296 & 1 & 83 & 14 & 130 & 2.4 & 30 & 12 & 236 & 4.17 & 28 & 5 & 2 & 2 & 19 & 3 & 2 & 2 & 93 & . 79 & . 06 & 11 & 16 & . 72 & 62 & . 10 & 3 & 2.35 & . 01 & . 03 & 2 \\
\hline 1 \(\mathrm{H}-2 \mathrm{R}-\mathrm{R}-3297\) & 2 & 16 & 14 & 122 & . 4 & 31 & 11 & 336 & 3.68 & 22 & 5 & 2 & 2 & 25 & & 2 & 2 & 91 & . 39 & . 05 & 10 & 52 & . 91 & 136 & . 05 & 3 & 2.20 & . 01 & . 05 & 2 \\
\hline 14-2-4-3298 & 3 & 41 & . 15 & 118 & .. 1 & 25 & \(\cdots 11\) & 278 & J.86 & 21 & 5 & 2 & 2 & 26 & 2 & 2 & 2 & 91 & . 38 & . 08 & 9 & 13 & . 64 & 152 & . 04 & 2 & 2.17 & . 01 & . 01 & 2 \\
\hline TA-2-R-3319 & 1 & 65 & 37 & 72 & .1 & 33 & 9 & 260 & 3.93 & 14 & 5 & 2 & 2 & 9 & , & 2 & & 110 & . 34 & . 11 & 7 & 73 & 1.55 & 66 & . 11 & 2 & 1.96 & . 02 & . 11 & 2 \\
\hline 1A-2-R-3320 & 7 & bs & 33 & 89 & . 7 & 35 & 15 & 315 & 3.87 & 19 & 5 & 2 & 3 & 28 & 2 & & 2 & 94 & . 51 & . 04 & 10 & 61 & 1.05 & 186 & . 09 & 8 & 2.19 & . 01 & . 08 & 2 \\
\hline SIV \(\mathrm{A}-1\) & 1 & 30 & 41 & 181 & . 3 & 35 & 12 & 964 & 2.73 & 9 & 5 & 2 & 3 & 36 & 2 & 2 & 2 & 56 & . 63 & . 10 & 9 & 70 & . 75 & 284 & . 09 & 5 & 1.91 & . 02 & . 19 & 2 \\
\hline
\end{tabular}

S．M．D．C．PKOJECT \＃TA HOOLA 4947 FILE \＃82－0454
FAGE \＃ 6
SAKFLE I


1A－2－ \(\mathrm{k}-3 \mathrm{~J} 22\) ［ \(14-2\)－ \(\mathrm{R}-3323\)

 \(\mathrm{T} A-2-\mathrm{R}-\mathrm{J} 327\)

TA－2－R－3328 1 \(\mathrm{A}-2\)－ \(\mathrm{R}-\mathrm{-j329}\) 1A－2－R－33J0 I \(4-2-R-3331\) T \(\mathrm{n}-2-\mathrm{R}-\mathrm{z} 332\)
TA－2－R－3333
 TA \(-2-R-3 J 35\) TA－2－R－5jJ 1A－2－R－3337 \(14-2-R-3338\)
 Th－2－R－3354 \(T A-2-R-3355\)
\(T A-2 R-S 55 b\)

1A－2－R－3357 TA－2－R－3558 \(14-2-R-3359\)
\(t A-2-8-3360\) t \(4-2-8-3350\)

TA－2－R－33b2 \(1 A-2-R-3383\) 1A－2－R－3364 \(\left[\begin{array}{ll}4 & -2-R-5] 65 \\ \hline\end{array}\right.\)

1 \(\mathrm{A}-2\)－R－3367 TA－2－R－3J8B Th \(\mathrm{f}-2-\mathrm{F}-\mathrm{J} 359\) \(1 \mathrm{~A}-2-\mathrm{A}-3370\) \(1 A-2-R-3370\)
IA－2－R－3371

TA－2－R－3372
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline － & \(\cdots \mathrm{m}\) & －UNNN & が可可 & － & －いこー & －ローが & － \\
\hline ニッ゙ & 出づ号むこ & こちご㤩 & 「気が気 &  &  &  &  \\
\hline W & ごらさここ & ニニご & あぶ台芯す。 & \(\approx \approx\) & むあこご &  & ご心ご心 \\
\hline \＃ &  &  & 或ごから & ご大ご忒 & 呂忒の三ご & ヵここぃむ &  \\
\hline is： & ここご河 &  & 絽的：－ & が，－ & NoNins & Eincomo & い的気云か。 \\
\hline 出 &  & め～Nこの &  & 总が岳 &  & 9 &  \\
\hline & ここからこ &  &  & いかこここ & がッニニ & のあぁこぃ & いごい \\
\hline 웅 &  & いらすご心 & 式贰或㞻氙 &  &  & ずらす吕亏 & N三宗容客 \\
\hline No & ب &  &  &  &  &  &  \\
\hline & こかこぶ & 二心 & ぶこべかこ & ッローエの & \(0 \sim \infty\) & 二〇onsm & ごついご \\
\hline ust &  & uncruencor & enerenenen & crencricuen & uncoumen & encouconer & enencosench \\
\hline \(N\) & NNNNO & NanNon & NNNNN & NONNO & NanNons & NonNon & NNNNON \\
\hline
\end{tabular}
NN NNNNN NNNNN WCNNN NNNNN NNNON NNONN NNNNN

 10
91
76
23
86
80
71
108
102
98
93
52
96
91 .36
.11
.99
.55
.50 .09
.05
.06
.06
.10 6
9
15
6
7 91
93
103
53
90 76
179
242
64
53 \(\begin{array}{ll}3 & 1 \\ 3 & 2 . \\ 5 & 2 \\ 1 & 1 \\ 5 & 1\end{array}\) 1.89
2.85
2.76
1.36
1.83 \(\begin{array}{ll}.02 & .08 \\ .01 & .10 \\ .03 & .15 \\ .01 & .12 \\ .01 & .18\end{array}\) .10
.15
.12
.18 \(\begin{array}{ll}.36 & .04 \\ .88 & .04 \\ .31 & .03 \\ .69 & .04 \\ .70 & .04\end{array}\) \(\begin{array}{ccccc}5 & 53 & .57 & 88 & .15 \\ 8 & 38 & .89 & 343 & .12 \\ 6 & 15 & .56 & 178 & .12 \\ 7 & 112 & 1.75 & 219 & .17 \\ 11 & 88 & 1.21 & 284 & .12\end{array}\)\(\begin{array}{llll}4 & .98 & .01 & .07 \\ 3 & 1.95 & .02 & . \\ 5 & 1.18 & .01 & . \\ 3 & 2.36 & .02 & . \\ 7 & 2.84 & .02 & .\end{array}\)\(\begin{array}{rrrrr}8 & 67 & 1.15 & 111 & .12 \\ 9 & 69 & 1.19 & 127 & .13 \\ 12 & -12 & .57 & 299 & .05 \\ 10 & 255 & 2.59 & 210 & .15\end{array}\)\(\begin{array}{cccc}5 & 1.96 & .01 & .11 \\ 1 & 2.13 & .02 & .13 \\ 1 & 1.83 & \cdots .02 & .10 \\ 13 & 2.51 & .02 & .54 \\ 5 & 2.50 & .02 & .17\end{array}\)\(\begin{array}{cc}281 & 2.64 \\ 86 & .91 \\ 84 & 1.14\end{array}\) \(61^{\circ}\)
91
14 -.17
.12
.19
.15
.16
\(\begin{array}{ll}3 & 2.5 \\ 1 & 3.2 \\ 1 & 1 . \\ 1 & 1 \\ 2 & 1 .\end{array}\) .02
.02
.02
.01 -19.
.07
.07
.11
.07
\[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\]
S.M.D.C. FROJECT " TA HODLA 4947 FILE \# BZ-0454
sample 1

-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 16 & 75 & 26 & 67 & . 8 & 21 & 11 & 317 & 3.22 \\
\hline 24 & 19 & 4 & 17 & . 9 & 16 & 7 & 131 & 1.73 \\
\hline B & 58 & 22 & 12 & . 1 & 11 & 1 & (6) & 3.84 \\
\hline 14 & 70 & 38 & 26 & . 4 & 11 & 5 & 170 & 3.92 \\
\hline 14 & 95 & 297 & 231 & 2.5 & 11 & & 216 & 3. 39 \\
\hline 1 & 38 & 25 & 70 & . 8 & 24 & 10 & 181 & 3.94 \\
\hline 11 & 217 & 138 & 12 & . 5 & 18 & 16 & 426 & 4.87 \\
\hline 23 & 306 & 171 & 104 & . 2 & \(b 1\) & 21 & 612 & 5.41 \\
\hline 3 & 16 & 26 & 10 & 1.2 & 11 & 1 & 109 & 2.58 \\
\hline 6 & 233 & 63 & 99 & .1 & 36 & 14 & 455 & 1.31 \\
\hline 5 & 69 & 46 & 51 & . 6 & 16 & 9 & 211 & 3.61 \\
\hline 4 & 52 & 19 & 116 & . 1 & 41 & 14 & 295 & 4.25 \\
\hline 3 & 54 & 19 & 74 & . 5 & 34 & 12 & 267 & 3.13 \\
\hline 2 & 29 & 26 & 76 & . 6 & 25 & 7 & 163 & 2.93 \\
\hline 5 & 67 & 31 & 40 & . 1 & 25 & - & 229 & 3.46 \\
\hline 3 & 37 & 30 & 10 & . 5 & 13 & 5 & 263 & 2.72 \\
\hline 3 & 31. & 48 & 33 & . 5 & 15 & 6 & 213 & 2.88 \\
\hline 1 & 33 & 20 & 58 & . 1 & 31 & 1 & 235 & 3.36 \\
\hline 6 & 104 & 23 & 85 & . 6 & 46 & 10 & 213 & 3.97 \\
\hline 4 & 52 & 22 & 102 & . 9 & 34 & 8 & 177 & 3.17 \\
\hline 7 & 96 & 26 & 85 & . 1 & 81 & 15 & 298 & 4.08 \\
\hline 11 & 53 & 36 & 158 & . 8 & 66 & 14 & 255 & 1.13 \\
\hline & 67 & 67 & 102 & 1,0 & 65 & 15 & 433 & 4.33 \\
\hline 10 & 184 & 31 & 165 & 3.1 & 112 & 13 & 5b1 & 3.61 \\
\hline 9 & 1274 & 29 & 136 & 3.8 & 145 & 12 & 543 & 3.17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & 1629 & 3.56 & 2 & 5 & 2 & 2 & 22 & 1 & 2 & 1 & 2 & . 18 \\
\hline 8 & 275 & 3.51 & 1 & 5 & 2 & 2 & 15 : & 1 & 2 & 2 & 88 & . 29 \\
\hline 3 & 125 & 2.25 & 5 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 13 & . 18 \\
\hline 9 & 185 & 3.58 & 7 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 114 & . 36 \\
\hline 3 & 141 & 1.08 & 2 & 5 & 2 & 2 & 25 & 1 & , & 2 & 30 & . 63 \\
\hline 5. & 158 & 1.75 & 1 & 5 & 2 & 2 & 13 & 1 & 2 & 2. & 41 & 1.00 \\
\hline 11 & 552 & 2.90 & 7 & 5 & 2 & 2 & 56 & J & 2 & 2 & 68 & 1.37 \\
\hline 8 & 155 & 2.51 & 8 & 5 & 2 & 2 & 52. & 2 & 2 & 2 & 65 & 1.26 \\
\hline 9 & 320 & 3.78 & 16 & 5 & 2 & 2 & 25 & 1 & 2 & 3 & 88 & . 16 \\
\hline B & 194 & 4.17 & 5 & 5 & 2 & 2 & 9 & 1 & 2 & 1 & 105 & . 21 \\
\hline 8 & 183 & 3.87 & 6 & 5 & 2 & 2 & 10 & 1. & 2 & 2 & 93 & . 13 \\
\hline 5 & 180 & 3.54 & 7 & 5 & 2 & 2 & 15 & 1 & 2 & 1 & 93 & . 24 \\
\hline 12 & 975 & 2.69 & 5 & 5 & 2 & 2 & 33 & 2 & 2 & 2 & 5 & . 62 \\
\hline
\end{tabular} 훙ㅇㅇ우영ㅇㅇㅇㅎㅇㅇㅇㅇㅇㅇㅇㅇ
 \begin{tabular}{lr}
1 & .01 \\
2 & 1.11 \\
1 & .11 \\
6 & 1.17 \\
1 & .11 \\
& \\
7 & .26 \\
7 & .67 \\
9 & .63 \\
5 &. .75 \\
& \\
\hline & .78 \\
1 & .78 \\
8 & .72
\end{tabular}


\begin{tabular}{ll}
2 \\
5 & 1 \\
3 \\
3 \\
2 \\
3 \\
1 \\
1 \\
3 \\
1 \\
3 & \\
3 \\
8
\end{tabular} .02
1.95
.91
1.59
.65
1.20
1.75
1.53
2.21
1.33
1.75
1.21
1.81 .01
.01
.01
.02
.03
.03
.02
.02
.02
.02
.01
.01
.02 .01
.10
.11
.13
.03
.07
.12
.11
.16
.08
.06
.07
.19

jahfle 1 1 1 -2-R-1256 \(1 \mathrm{~K}-2-\mathrm{R}-125 \mathrm{~F}\) 1A-2-R-1:59 Th \(\mathrm{H}-\mathrm{i}-\mathrm{R}-1259\) \(1 R-2-R-1260\) \(1 A-2-B-4261\) \(1 R-2-R-1262\) \(12-2+R-263\) IA-2-R-4265
TA-2-R-1266 TA-2-R-1967 \(1 A-2-R-1268\)
\(1 A-2-R-1290\) \(1 A-2-R-1290\)
\(A-Z-R-4291\)
\(14-2-8-4292\) \(\mathrm{T} A-2-\mathrm{R}-4293\)
\(\mathrm{~T} A-2-8-1294\) \(1 A-2-8-1294\)
\(T h-2-8-1295\) \(14-2-R-4295\)
\(T A-2-R-1296\)
\(1 A-2-R-1297\)
\(1 A-2-R-1298\) \(1 A-2-R-1298\)
\(1 A-2-R-1299\)
 Thi-2-R-\{301

1A-2-8-4307 TA-2-R-1J08 \(1-2-K-K-5231\)
\(H\) 1A-2-R-5292 1A-2-R-5293
1A-2-R-5?94 SID A-1
\(\begin{array}{llllllll}\text { Ko } & \text { Cu } & \text { Fb } & \text { ln } & \text { Ag } & \text { Hi } & \text { Co } & \mathrm{Kn} \\ \text { ppa } & \text { ppe } & \text { ppi } & \text { pp: } & \text { ppa } & \text { ppz } & \text { ppi } & \text { ppa }\end{array}\)

\(\begin{array}{ccc}b i & y & C z \\ p p z & p p a & 1\end{array}\)
\(p\)
\(x\) \(\begin{array}{ll}\text { la } & \text { Cr } \\ \text { ppa } & \text { ppa }\end{array}\) Mg
\(\mathbf{1}\) By Ii
1 .15
.15
.16
.09
.15

S.M.D.C. FFOJECT \# TA HOOLA 4947 FILE \# 日2-04S4
shape: i" JA-2-k-5295 1a-2-R-5290 TA-2-A-5297 TA-2-R-5298 T \(\mathrm{A}-2-\mathrm{R}-529 \mathrm{~s}\) TA-2-8-5300 TA-2-R-5301 1A-2-R-530? TA-2-R-5303

1A-2-k-5306 1 \(A-2-R-5307\) 1n-2-n-5j08 SID A-1 Th-2-R-5305

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 57 & 14 & 82 & .1 & 34 & 11 & 272 & 4.07 & 18 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 90 & . 18 & . 08 & 9 & 56 & . 93 & 12 & . 06 & 1 & 2.36 & . 01 & . 05 & 2 \\
\hline 12 & 16 & 21 & 79 & . 7 & 30 & 10 & 515 & 4.09 & f & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 115 & . 31 & . 08 & 1 & \({ }^{3}\) & . 92 & 97 & . 13 & 1 & 1.39 & . 01 & . 69 & 2 \\
\hline 2 & 11 & 8 & 36 & . 6 & 10 & 1 & 110 & 1.13 & 5 & 5 & 2 & 2 & 11 & 1 & \(i\) & 2 & 15 & . 17 & . 01 & 1 & 22 & . 19 & 126 & . 05 & 2 & . 58 & . 01 & . 06 & 2 \\
\hline 9 & 25 & 24 & 53 & . 1 & 20 & 1 & 116 & 3.20 & 4 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 100 & . 21 & . 07 & 6 & 51 & . 75 & 134 & . 14 & 5 & 1.01 & . 02 & . 10 & 2 \\
\hline 17 & 31 & 65 & 70 & 1.0 & 25 & 6 & 141 & 2.86 & 7 & 5 & 2 & 2 & 10 & 1 & 3 & 1 & 85 & . 12 & . 05 & I & 53 & . 51 & 53 & . 90 & 3 & 1.16 & . 01 & . 05 & 2 \\
\hline 6 & 40 & 42 & 73 & 1.3 & 24 & 6 & 187 & 3.15 & 10 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 81 & . 18 & . 05 & 1 & 51 & . 70 & 84 & . 08 & 3 & 1.50 & . 01 & . 06 & 2 \\
\hline 37 & 319 & 38 & 304 & 1.9 & 310 & 18 & 1717 & 3.46 & 1 & 5 & 2 & 2 & 38 & 9 & 2 & 3 & 15 & . 78 & . 05 & 9 & 103 & 1.07 & 117 & . 09 & 6 & \(2.09{ }^{\text {: }}\) & . 02 & .10 \({ }^{\circ}\) & 2 \\
\hline 11 & 28 & 28 & 38 & . 4 & 18 & 4 & 129 & 3.31 & 10 & 5 & 2 & 2 & 9 & 1 & 2 & 2 & 120 & . 11 & . 08 & 8 & 16 & . 12 & 14 & . 09 & 1 & 1.27 & . 01 & . 06 & 2 \\
\hline 8 & 32 & \(3!\) & 61 & . 5 & 21 & 5 & 131 & 2.11 & 8 & 5 & 2 & 2 & 15 & 2 & 2 & 2 & 80 & . 18 & . 04 & 9 & 15 & . 66 & 89 & . 09 & 2 & 1.25 & . 01 & . 09 & 2 \\
\hline 5 & 36 & 18 & 88 & . 5 & 75 & 11 & 274 & 3.57 & 5 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 日9 & . 26 & . 05 & 1 & 119 & 1.74 & 65 & . 13 & 1 & 2.00 & . 02 & . 08 & 2 \\
\hline 7 & 31 & 24 & 59 & . 3 & 25 & 7 & 169 & 3.00 & 13 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 85 & . 13 & . 05 & 9 & 19 & . 86 & 79 & . 08 & 10 & 1.11 & . 01 & . 09 & 2 \\
\hline 1 & 105 & 117 & 75 & . 9 & 34 & 13 & 218 & 3.83 & 5 & 5 & 2 & 2 & 10 & , & 2 & J & 94 & . 31 & . 07 & 1 & 70 & 1.13 & 13 & . 11 & , & 2.03 & . 01 & . 09 & 2 \\
\hline 1 & 34 & 24 & 66 & . 2 & 29 & 10 & 173 & 3.12 & 12 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 88 & . 22 & . 10 & 8 & 51 & . 81 & 76 & . 10 & 1 & 1.65 & . 01 & . 06 & 2 \\
\hline 1 & 29 & 38 & 171 & . 3 & 36 & 12 & 994 & 2.71 & 8 & 5 & 2 & 2 & 34 & 2 & 2 & 2 & 55 & . 63 & . 10 & 9 & 72 & . 73 & 267 & . 08 & 6 & 1.84 & . 02 & . 19 & 2 \\
\hline 13 & 27 & 16 & 81 & . 5 & 21 & 7 & 216 & 2.53 & 9 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 65 & . 14 & . 05 & 8 & 38 & . 59 & 11 & . 01 & 3 & 1.23 & . 01 & . 08 & 2 \\
\hline
\end{tabular}

ACME ANALYTICAL LAEOFATOFIES LTD，\(\quad 852\) E．HASTINGS，VANCOUVER E．C．FH：253－315日
ICF GEOCHEMICAL ANALYSIS



RECEIVE


Selco s．m．d．c．project tta hoola 4947 File＂sz－043b

PAGE \＃ 1


TA－2－8－5130 1A－2－8－5131 IA－2－R－5132

1A－2－R－5134 \(1 A-2-R-5131\)
\(1 A-2-R-5135\) \(T A-2-R-5135\)
\(T A-2-R-5136\) \(\mathrm{TA}-2-R-5136\)
\(\mathrm{~A} A-2-R-5137\) 1A－2 \(-\mathrm{R}-5 \mid 38\)
\(1 A-2-R-5139\)
\(1 A-2-8-5140\) \(14-2-8-5140\) \(1 A-2-R-5141\)
\(5 A-2-R-5142\) \(|A-2-R-5| 43\)

TA－2－R－SIA4 TA－2－R－5145 TA－2－R－5146 1A－2－R－5147 TA－2－R－514日

TA－2－R－5139 TA－2－R－5150 TA－2－R－5151 1A－2－R－5152 TA－2－R－5153

TA－2 2 R－5154 TA－2－R－5155 TA－2－R－515S TA－2－8－5157 IA－2－R－5158
1A－2－R－5159
TA－2－R－5160
TA－2－R－5161
\(1 \mathrm{~A}-2-\mathrm{R}-5162\)
TA－2－R－5164
510 A－1

\begin{tabular}{cccccccc}
47 & 80 & 5 & 2 & 2 & 16 & 3 & 11 \\
21 & 37 & 5 & 2 & 2 & 11 & 2 & 3 \\
64 & 25 & 5 & 2 & 2 & 8 & 1 & 2 \\
37 & 55 & 5 & 2 & 2 & 12 & 2 & 2 \\
11 & 16 & 5 & 2 & 2 & 20 & 2 & 3
\end{tabular} \(\begin{array}{lll}3 & 28 & 36 \\ 3 & 33 & 10 \\ 1 & 20 & 20 \\ 3 & 39 & 20 \\ 2 & 68 & 22 \\ 2 & 86 & 13 \\ 2 & 15 & 12 \\ 1 & 18 & 11 . \\ 3 & 90 & 19 \\ 3 & 22 & 12\end{array}\) 100
138
88
160
143
69
59
57
81
120
 \(\begin{array}{cc}10 \\ 1 \\ 8 \\ 11 \\ & 1 \\ & 1 \\ 17 & 20 \\ 17 & \end{array}\) \(\begin{array}{rrr}10 & 309 & 1 . \\ 1 & 91 & 2 . \\ 8 & 169 & 5 . \\ 11 & 280 & 5.11\end{array}\) \(\begin{array}{ll} & 1.17 \\ 1.21 \\ 2.64 \\ 5.37 \\ 580 \\ & 5.11\end{array}\) 5
-5
\(\cdots\)
5
5 \(\begin{array}{ll}264 & 4.67 \\ 211 & 3.23 \\ 156 & 3.04 \\ 423 & 1.97 \\ 268 & 2.90\end{array}\)
\(\qquad\) 30
13
37
15
59 \(\begin{array}{ll}13 & 186 \\ 14 & 114 \\ 15 & 340 \\ 24 & 115 \\ 34 & 126\end{array}\) \(\begin{array}{cccc}14 & 170 & 1.19 & 52 \\ 6 & 189 & 3.01 & 25 \\ 25 & 354 & 5.06 & 11 \\ 9 & 157 & 5.36 & 38 \\ 19 & 316 & 5.14 & 31\end{array}\)
\[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\]
\begin{tabular}{lll}
\(\mathbf{2}\) & 13 & \(\mathbf{2}\) \\
\(\mathbf{2}\) & 15 & 1 \\
\(\mathbf{2}\) & 12 & 1 \\
\(\mathbf{2}\) & 16 & 2 \\
\(\mathbf{2}\) & 13 & 2
\end{tabular}
\begin{tabular}{cr}
2 & 95 \\
2 & 89 \\
2 & 85 \\
2 & 66 \\
2 & 126 \\
2 & 110 \\
3 & 116 \\
2 & 129 \\
2 & 106 \\
2 & 93 \\
2 & 162 \\
2 & 84 \\
2 & 60 \\
2 & 76 \\
2 & 95 \\
2 & 108 \\
2 & 96 \\
2 & 86 \\
3 & 127 \\
2 & 110 \\
2 & 163 \\
2 & 95 \\
2 & 93 \\
3 & 97 \\
2 & 143 \\
2 & 113 \\
2 & 150 \\
2 & 89 \\
3 & 150 \\
2 & 121 \\
2 & 100 \\
2 & 85 \\
2 & 118 \\
2 & 69 \\
3 & 85 \\
2 & 121 \\
2 & 52 \\
\hline
\end{tabular} \begin{tabular}{l}
.12 \\
.91 \\
.13 \\
.11 \\
.30 \\
.19 \\
.64 \\
.15 \\
.12 \\
.18 \\
.13 \\
.11 \\
.09 \\
.10 \\
.17 \\
.15 \\
.16 \\
.14 \\
.22 \\
.19 \\
.36 \\
.13 \\
.15 \\
.15 \\
.26 \\
.18 \\
.15 \\
.10 \\
.19 \\
.21 \\
.08 \\
.13 \\
.37 \\
.53 \\
.16 \\
.15 \\
.60 \\
\hline
\end{tabular}

NommN NNMーN NーMMー
122211 13
\begin{tabular}{|c|c|}
\hline & 122 \\
\hline 8 & 181 \\
\hline 3 & 91 \\
\hline 3 & 11 \\
\hline 2 & 208 \\
\hline 1 & 80 \\
\hline 2 & 312 \\
\hline 3 & 14 \\
\hline 1 & 53 \\
\hline 2 & 28 \\
\hline 2 & 193 \\
\hline 1 & 51 \\
\hline 3 & 36 \\
\hline 3 & 47 \\
\hline
\end{tabular} \begin{tabular}{rrr}
2.11 & 73 \\
1.26 & 136 \\
.63 & 57 \\
.51 & 73 \\
1.99 & 71 \\
& .53 & 52 \\
3.22 & 100 \\
1.19 & 98 \\
3 & .50 & 82 \\
\hline .14 & 160 \\
3 & .30 & 80 \\
51 & .58 & 74 \\
\hline 7 & .26 & 66 \\
7 & .51 & 121 \\
\hline & 1.12 & 108
\end{tabular} .05
.07
.05
.05
.05
.11
.13
.07
.05
.03
.07
.06
.0
.03
.0
 \(\begin{array}{rrrrrr}3 & 2.55 & .02 & .06 & 2 & 50 \\ 1 & 3.15 & .02 & .05 & 2 & 30 \\ 3 & 1.22 & .03 & .07 & 2 & 15 \\ 3 & 1.35 & .04 & .06 & 2 & 5 \\ 1 & 2.63 & .02 & .09 & 2 & 15\end{array}\)
\begin{tabular}{rrrrrr}
1 & 2.33 & .03 & .05 & 2 & 10 \\
3 & 2.55 & .02 & .21 & 2 & 5 \\
5 & 2.18 & .02 & .12 & 2 & 10 \\
1 & 1.66 & .03 & .06 & 2 & 75 \\
2 & 1.11 & .02 & .01 & 2 & 65
\end{tabular}
\begin{tabular}{rr}
1 & 87 \\
6 & 17 \\
1 & 19 \\
3 & 120 \\
1 & .37
\end{tabular}
\begin{tabular}{llll}
3 & 71 & .88 & 78 \\
3 & 11 & .11 & 18 \\
5 & 76 & .67 & 92
\end{tabular}
\begin{tabular}{llllll}
5 & .92 & .03 & .07 & 2 & 55 \\
1 & 1.93 & .02 & .05 & 2 & 40 \\
3 & 1.38 & .03 & .01 & 2 & 10 \\
1 & 2.19 & .02 & .07 & 2 & 95 \\
5 & 2.80 & .02 & .09 & 2 & 10
\end{tabular}
\(51.95 \quad .02\)
\begin{tabular}{lll}
3 & 1.31 & .03 \\
3 & 1.21 & .03 \\
1 & 2.50 & .02 \\
2 & 1.24 & .03
\end{tabular}
.05
.07
-.06
.05
.05
\begin{tabular}{lllll}
3 & 1.67 & .03 & .06 & 2 \\
3 & 1.35 & .03 & .04 & 2 \\
6 & 3.57 & .02 & .07 & 2
\end{tabular}
\[
\begin{array}{lr}
2 & 15 \\
2 & 5 \\
2 & 5 \\
4 & 5 \\
2 & 5 \\
2 & 15 \\
2 & 25 \\
2 & 15 \\
2 & 160 \\
2 & 10
\end{array}
\]
\[
\begin{array}{llllll}
2 & 100 & .67 & 75 & . \\
2 & 132 & 1.14 & 63 & .
\end{array}
\]
\[
\begin{array}{rrrrrr}
1 & 1.12 & .03 & .05 & 2 & 15 \\
3 & 2.10 & .02 & .06 & 2 & 70 \\
3 & 1.26 & .02 & .05 & 2 & 210 \\
1 & 2.15 & .02 & .06 & 2 & 20 \\
1 & 1.92 & .03 & .09 & 2 & 30 \\
3 & 1.13 & .03 & .05 & 2 & 1370 \\
2 & .91 & .03 & .05 & 2 & 30 \\
1 & 2.85 & .02 & .06 & 2 & 15 \\
1 & 2.12 & .02 & .05 & 2 & 5 \\
2 & .88 & .03 & .03 & 2 & 5 \\
3 & 2.73 & .02 & .09 & 2 & 30 \\
1 & 100 & 00 & 10 & 3 & 5
\end{array}
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1A-2-R-5165 & 1 & 79 & 15 & 98 & 1.3 & 60 & 16 & 501. & 3.41 & 21 & 5 & 2 & 2 & 36 & 2 & 2 & 2 & 89 & . 51 & . 03 & 5 & 167 & 1.11 & 11 & . 13 & 1 & 2.16 & \(\cdots\) & & & 21. \\
\hline 12-2-R-51e6 & 2 & 62 & 17 & 110 & 1.0 & 63 & 19 & 258 & 5.28 & 78 & 5 & 2 & 2 & 20 & 2 & 4 & 2 & 130 & . 26 & . 06 & 2 & 171 & 1.31 & 88 & . 06 & 5 & 2.16 & . 02 & . 04 & 2 & 15 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-5167\) & 1 & 23 & 13 & 106 & . 4 & 67 & 12 & 111 & 2.94 & 7 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 79 & . 40 & . 05 & 2 & 199 & 1.40 & 97 & . 13 & 1 & 1.76 & . 02 & . 08 & 2 & 5 \\
\hline 1 \(\mathrm{f}-2-2 \mathrm{E}\)-516日 & 1 & 18 & 13 & 47 & .1 & 29 & 8 & 248 & 3.81 & 26 & 5 & 2 & 2 & 15 & 1 & 3 & 2 & 127 & . 27 & . 08 & 2 & 116. & . 64 & 98 & . 16 & 7 & 1.12 & . 03 & . 06 & 2 & 5 \\
\hline TA-2-R-5169 & 1 & 18 & 13 & 16 & . 3 & 127 & 18 & 319 & 3. 11 & 34 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 108 & . 24 & . 08 & 2 & 102 & 1.79 & 33 & . 13 & 3 & 1.64 & . 03 & . 04 & 2 & 5 \\
\hline 1A-2-R-5170 & 1 & 16 & 11 & 85 & . 7 & 12 & 10 & 212 & 4.01 & 15 & 5 & 2 & 2 & 14 & 2 & 2 & 2 & 125 & . 22 & . 16 & 2 & 149 & .73 & 41 & . 14 & 3 & 1.26 & . 03 & . 06 & 2 & 5 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-5171\) & 1 & 35 & 13 & 65 & . 6 & 88 & 16 & 224 & 4.32 & 24 & 5 & 2 & 2 & 11 & 2 & 2 & 2 & 112 & . 18 & . 12 & 2 & 298 & 1.56 & 35 & . 13 & 1 & 2.15 & . 02 & . 05 & 2 & 230 \\
\hline [ \(A\)-2-R-5172 & 1 & 51 & 20 & 111 & 1.3 & 122 & 15 & 1080 & 3.24 & 23 & 5 & 2 & 3 & 26 & 2 & 1 & 3 & 73 & . 41 & . 08 & 9 & 212 & 1.01 & 97 & . 13 & 1 & 3.52 & . 03 & . 05 & 2 & 5 \\
\hline IA-2-R-5173 & 2 & 21 & 10 & 119 & 1.1 & 67 & 13 & 187 & 4.74 & 18 & 5 & 2 & 2 & 19 & 2 & 2 & 2 & 129 & . 28 & . 05 & 2 & 210 & . 91 & 71 & . 11 & 1 & 1.73 & . 02 & . 05 & 2 & 20 \\
\hline 1A-2-ti-5174 & 26 & 30 & 12 & 140 & 1.0 & 92 & 13 & 213 & 6.94 & 84 & 5 & 2 & 2 & 19 & 3 & 2 & 2 & 229 & . 25 & . 09 & 2 & 336 & 1.04 & 19 & . 15 & 6 & 1.38 & . 02 & . 08 & 2 & 65 \\
\hline TA-2-R-5i75 & 1 & 13 & 12 & 73 & . 5 & 33 & 8 & 192 & 3.24 & 10 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 100 & . 15 & . 09 & 2 & 128 & . 63 & 67 & . 16 & 3 & 1.17 & . 03 & . 05 & 2 & 10 \\
\hline 1A-2-R-5176 & & 15 & 17 & 93 & . 3 & 210 & 31 & 568 & 5.55 & 52 & 5 & 2 & 2 & 14. & 2 & 3 & 3 & 111 & . 25 & . 08 & 2 & 667 & 3.13 & 39 & . 12 & 6 & 2.99 & . 02 & . 06 & 2 & 5 \\
\hline [ \(A-2\)-R-5177 & 1 & 43 & 15 & 191 & . 7 & 4 & 21 & 592 & 4.08 & 28 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 104 & . 32 & . 06 & 2 & 131 & 1.18 & 11 & . 12 & 5 & 2.15 & . 02 & . 06 & 2 & 10 \\
\hline 1A-2-R-517日 & 2 & 27 & 12 & 52 & .4 & 23 & 7 & 106 & 4.39 & 26 & 5 & 2 & 2 & 13 & , & 2 & 2 & 181 & . 18 & . 05 & 2 & 90 & . 80 & 39 & . 12 & 5 & 1.14 & . 02 & . 05 & 2 & 15 \\
\hline 1A-2-R-5178 & 2 & 83 & 21 & 113 & 1.7 & 63 & 13 & 309 & 3.88 & 39 & 5 & 2 & 2 & 19 & 3 & 2 & 3 & 90 & . 75 & . 05 & 7 & 135 & 1.09 & 112 & . 08 & 9 & 2.93 & . 02 & . 06 & 2 & 15 \\
\hline TA-2-R-5180 & 1 & 24 & 13 & 67 & . 5 & 229 & 27 & 501 & 4.10 & 8 & 5 & 2 & 2 & 21 & 2 & 2 & 3 & 108 & . 38 & . 05 & 2 & 697 & 3.65 & 89 & . 14 & 1 & 2.75 & . 02 & . 06 & 2 & 5 \\
\hline TA-2-8-51BI & 1 & 33 & 16 & 100 & .4 & 39 & 13 & 314 & 3.98 & 29 & 5 & 2 & , & 13 & 2 & 2 & 2 & 110 & . 20 & . 10 & , & 150 & 1.14 & 68 & . 10 & 1 & 1.33 & . 03 & . 06 & 2 & 50 \\
\hline  & 1 & 29 & 16 & 131 & . 6 & 57 & 17 & 369 & 1.51 & 23 & 5 & 2 & 2 & 10 & 2 & 2 & 2 & 119 & . 13 & . 07 & 2 & 210 & 1.70 & 14 & . 14 & 1 & 2.29 & . 03 & . 07 & 2 & 5 \\
\hline  & 1 & 25 & 16 & 148 & . 8 & 12 & 16 & 339 & 4.39 & 24 & 5 & 2 & 2 & 13 & 2 & 3 & 2 & 106 & . 19 & . 11 & 2 & 188 & 1.55 & 65 & . 12 & 1 & 2.21 & . 02 & . 07 & 2 & 25 \\
\hline TA-2-R-5188 & 1 & 55 & 13 & 119 & . 6 & 55 & 19 & 652 & 3.87. & 17 & 5 & 2 & 2 & 20 & 2 & 2 & 2 & 91 & . 29 & . 19 & 2 & 213 & 1.59 & 148 & . 09 & 1 & 2.05 & . 03 & . 08 & 2 & 15 \\
\hline 1A-2-8-5185 & 1 & 19 & .. 14 & 73 & . 3 & 62 & 15 & 112 & 3.00 & B & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 69 & . 19 & . 11 & 2 & 173 & 1.12 & 114 & . 13 & 9 & 1.14 & . 04 & . 05 & 2 & 5 \\
\hline 1A-2-R-5186 & 2 & 20 & 15 & 72 & . 4 & 16 & 11 & 211 & 4.05 & 23 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 113 & . 20 & . 05 & 2 & 152 & . 88 & 13 & . 11 & , & 1.17 & . 02 & . 05 & 2 & 5 \\
\hline TA-2-R-5187 & 1 & 75 & 16 & 93 & 1.1 & 54 & 14 & 315 & 3.89 & 27. & 5 & 2 & 2 & 28 & 2 & 2 & 2 & 88 & . 46 & . 06 & 8 & 166 & 1.10 & 75 & . 12 & 1 & 2.66 & . 02 & . 06 & 2 & 5 \\
\hline 1A-2-R-5188 & 1 & 64 & 19 & 71 & 1.5 & 65 & 18 & 937 & 3.51 & \(21^{\circ}\) & 5 & 2 & 2 & 36 & 2 & 2 & 2 & 85 & . 64 & . 07 & 1 & 190 & 1.11 & 97 & . 08 & 4 & 2.32 & . 02 & . 05 & 2 & 10 \\
\hline 1A-2-R-5189 & 1 & 36 & 19 & 74 & .4 & 196 & 27 & 296 & 5.11 & 30 & 5 & 2 & 2 & 7 & 2 & 2 & 3 & 136 & . 13 & . 06 & 2 & 816 & 3.50 & 12 & . 11 & \(b\) & 3.51 & . 02 & . 10 & 2 & 5 \\
\hline TA-2-8-5190 & 1 & 32 & 12 & 12 & .4 & 165 & 23 & 452 & 4.62 & 39 & 5 & 2 & 2 & 10 & 1 & 3 & 3 & 123 & . 19 & . 09 & 2 & 196 & 2.57 & 49 & . 12 & 1 & 2.39 & . 02 & . 67 & 2 & 10 \\
\hline TA-2-R-5191 & 1 & 19 & 13 & 65 & . 5 & 70 & 12 & 187 & 3.53 & 23 & 5 & 2 & 2 & 15 & & 2 & 2 & 104 & .23 & . 13 & 2 & 253 & 1.38 & 61 & . 11 & 6 & 1.59 & . 02 & . 06 & 2 & 20 \\
\hline TA-2-R-3095 & 3 & 24 & 14 & 99 & . 6 & 29 & 9 & 143 & 4.14 & 30 & 5 & 2 & 2 & 15 & 2 & 2 & 2 & 96 & . 18 & . 07 & 1 & 78 & . 72 & 75 & . 07 & 6 & 2.82 & . 02 & . 06 & 2 & 15 \\
\hline TA-2-R-3096 & 3 & 32 & 14 & 95 & .1 & 24 & 7 & 13 J & 3.15 & \(3!\) & 5 & 2 & 2 & 11 & , & 2 & 2 & 89 & . 12 & . 05 & 1 & 6 & . 60 & 89 & . 06 & 1 & 1.98 & . 03 & . 06 & 2 & 10 \\
\hline 5A-2-8-3097 & 3 & 21 & 19 & 109 & . 8 & 11 & 10 & 1077 & 3.19 & 11 & 5 & 2 & 2 & 71 & 2 & 2 & 2 & 57 & . 97 & . 06 & 1 & 84 & . 79 & 139 & . 06 & 5 & 2.21 & . 02 & . 08 & 2 & 5 \\
\hline TA-2-R-3098 & 2 & 28 & 12 & 82 & . 8 & 4 & 12 & 164 & 3.99 & 14 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 110 & . 23 & . 03 & 1 & 127 & . 85 & 68 & . 09 & J & 2.10 & . 02 & . 06 & 2 & 30 \\
\hline 1A-2-R-3099 & 1 & 38 & 15 & 76 & 1.8 & 35. & 9 & 233 & 3.02 & 21 & 5 & 2 & 2 & . 60 & 2 & 2 & 2 & 16 & . 97 & . 05 & 6 & 98 & . 50 & 79 & . 09 & 3 & 2.06 & . 03 & . 05 & 2 & 5 \\
\hline |A-2-R-3100 & 1 & 39 & 16 & 97 & .1 & 92 & 19 & 252 & 1.91 & 35 & 5 & 2 & 2 & 22 & 2 & 2 & 2 & 131 & . 32 & . 08 & 2 & 265 & 2.13 & 56 & . 10 & 1 & 2.17 & . 02 & . 01 & 2 & 30 \\
\hline | \(A-2-R-3101\) & 1 & 28 & 14 & 151 & . 6 & 81 & 20 & 298 & 4.84 & 27 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 141 & . 22 & . 08 & & 245 & 1.90 & 79 & . 14 & 10 & 2.17 & . 02 & . 12 & 2 & 5 \\
\hline T \(A\)-2-R-3102 & 1 & 21 & 16 & 127 & . 5 & 80 & 23 & 578 & 4.08 & 15 & 5 & 2 & , & 17 & 2 & 2 & 2 & 98 & . 28 & . 09 & 2 & 271 & 2.19 & 91 & . 12 & 3 & 2.52 & . 02 & . 12 & 2 & 5 \\
\hline std A-1 & 1 & 27 & 38 & 163 & . 5 & 32 & 11 & 940 & 2.50 & 12 & 5 & 2 & 2 & 32 & 2 & 2 & 2 & 52 & . 60 & . 09 & 6 & 68 & . 72 & 252 & . 08 & 6 & 1.87 & . 02 & . 19 & 2 & 5 \\
\hline
\end{tabular}

PA－2－R－3103 TA－2－R－3104 TA－2－R－J105 TA－2－R \(\mathrm{E}-\mathrm{JiC6}\)TA－2－R－310TA－2－R－S108
\(\mathrm{TA}-2-\mathrm{R}-3109\)\(14-2-R-3109\)
\(1 A-2-R-310\)
\(1 A-2-R-3110\)
\(1 A-2-k-3111\)
\(\left\lvert\, \begin{aligned} & |A-2-k-3| 1 \mid \\ & |A-2-R-J| 12\end{aligned}\right.\)

TA-2-8-J114
TA-2-R-3115
\(18-2-R-3116\)
TA-2-R-3118
TA-2-R-3118
iA-2-R-3119
TA-2-R-3120
\(1 A-2-R-3121\)
\(1 A-2-R-3122\)
\begin{tabular}{c}
{\([A-2-R-3123\)} \\
\(1 A-2-8-3124\) \\
\hline
\end{tabular}
IA-2-R-3124
1A-2-8-3125
STD \(A-1\)
S \(A-2-R-3126\)

TA－2－R－3127 TA－2－R－3128 TA－2－R－J129 IA－2－R－3130 1A－2－R－3132 1A－2－R－3133 TA－2－R－3134 \(A-2-8-3135\)

1A－2R－3137 TA－2－R－JiJB
ppi p
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 13 & 19 & 84 & ． 1 & 17 & 8 & 194 & 3.08 & 15 & 5 \\
\hline 1 & 18 & 18 & 126 & ． 8 & 21 & 12 & 498 & 3.18 & 19 & 5 \\
\hline 1 & 47 & 28 & 185 & 1.1 & 36 & 16 & 398 & 5.19 & 59 & 5 \\
\hline 19 & 151 & 30 & 337 & 2.5 & 83 & 26 & 452 & 11.17 & 109 & 5 \\
\hline 8 & 43 & 40 & 250 & 3.3 & 27 & 15 & 572 & 4.19 & 15 & 5 \\
\hline 1 & 18 & 31 & 242 & ． 9 & 4 & 14 & 251 & 5.93 & 14 & 5 \\
\hline 1 & 14 & 20 & 68 & ． 1 & 13 & 11 & \(55 b\) & 3.17 & 21 & 5 \\
\hline 13 & 94 & 35 & 199 & ． 8 & 59 & 13 & 210 & 5.36 & 114 & 5 \\
\hline 7 & 104 & 29 & 270 & 1.1 & 78 & 24 & 199 & 6.02 & 88 & 5 \\
\hline 2 & 18 & 13 & 53 & ． 4 & 38 & 9 & 150 & 3.82 & 16 & 5 \\
\hline d & 20 & 16 & 79 & ． 6 & 26 & 8 & 127 & 4.18 & 26 & 5 \\
\hline 3 & 28 & 19 & 125 & ． 5 & 55 & 13 & 164 & 4.61 & 33 & 5 \\
\hline 3 & \(3 J\) & 11 & 93 & ． 6 & 25 & 13 & 634 & 3.92 & 53 & 5 \\
\hline 1 & 14 & 13 & 12 & ． 6 & 9 & 8 & 396 & 2.55 & 72 & 5 \\
\hline 4 & 84 & 15 & 138 & ． 4 & 50 & 19 & 385 & 4.54 & 112 & 5 \\
\hline 3 & 20 & 16 & 233 & ． 6 & 21 & 13 & 289 & 4.00 & 96 & 5 \\
\hline 2 & 1 & 14 & 70 & ． 7 & 12 & 5 & 91 & 4.22 & 83 & 5 \\
\hline 1 & 24 & 16 & 12 & ． 3 & 19 & & 148 & 3.33 & 11 & 5 \\
\hline 2 & 22 & 11 & 68 & ． 5 & 23 & 9 & 245 & 3.91 & 19 & 5 \\
\hline 1 & 37 & 10 & 53 & ． 6 & 43 & 15 & 181 & 4.71 & 10 & 5 \\
\hline 1 & 25 & 13 & 62 & ． 3 & 53 & 13 & 264 & 1．86 & 12 & 5 \\
\hline 1 & 58 & 21 & 191 & .7 & 34 & 12 & 489 & 5.09 & 86 & 5 \\
\hline 11 & 102 & 355 & 351 & 3.1 & 39 & 19 & 369 & 5.18 & 70 & 5 \\
\hline 1 & 28 & 10 & 167 & ． 4 & －．33 & 11 & 962 & 2.51 & 10 & 5 \\
\hline 3 & 12 & 36 & 411 & 1.6 & 25 & 20 & 607 & 6.11 & 68 & 5 \\
\hline 7 & 39 & 31 & 250 & ． 5 & 14 & 15 & 699 & 5.04 & 68 & 5 \\
\hline 5 & 93 & 4. & 266 & ． 9 & 57 & 19 & 1093 & 4.81 & 80 & 5 \\
\hline 5 & 35 & 26 & 159 & 1.5 & 34 & 11 & 297 & 4.61 & 12 & 5 \\
\hline 2 & 42 & 26 & 168 & 1.0 & 86 & 20 & 291 & 4.92 & 39 & 5 \\
\hline 3 & 14 & 18 & 113 & ． 6 & 53 & 17 & 330 & 4.76 & 42 & 5 \\
\hline 1 & 100 & 24 & 120 & 1.0 & 106 & 28 & 274 & 5.19 & 37 & 5 \\
\hline 3 & 58 & 23 & 116 & 1.0 & 64 & 17 & 173 & 4.08 & 26 & 5 \\
\hline 1 & 18 & 12 & 105 & ． 5 & 39 & 10 & 204 & 3.53 & 18 & 5 \\
\hline 1 & 50 & 14 & 102 & ． 1 & 152 & 31 & 472 & 3.16 & 40 & 5 \\
\hline 1 & 37 & 13 & 104 & ． 6 & 55 & 14 & 230 & 4.40 & 29 & 5 \\
\hline 2 & 31 & 39 & 107 & ． 5 & 52 & 11 & 230 & 4.41 & 22 & 5 \\
\hline & J & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 11 & 1 & 2 & 2 & 87 & ． 14 & ． 09 & 5 & \(5!\) & ． 37 & 58 & ． 09 & 5 & 1.37 & ． 04 & ． 05 & 2 & 25 \\
\hline ＇ 2 & 14 & 2 & 2 & 2 & 85 & ． 18 & ． 09 & 1 & 11 & ． 50 & 71 & ． 09 & 5 & 1.10 & ． 04 & ． 06 & 2 & 10 \\
\hline 2 & 12 & 3 & 2 & 2 & 110 & ． 12 & ． 09 & 1 & 68 & ． 79 & 69 & ． 09 & 6 & 2.05 & ． 02 & ． 68 & 2 & 20 \\
\hline 2 & 19 & 5 & 11 & 2 & 98 & ． 15 & ． 23 & 2 & 19 & ． 26 & 110 & ． 04 & 0 & 1.55 & ． 03 & ． 05 & 2 & 100 \\
\hline 2 & 11 & 3 & 5 & 2 & 76 & ． 10 & ． 16 & 1 & 35 & ． 29 & 105 & ． 08 & \(\triangleleft\) & 2.16 & ． 03 & ． 06 & 2 & 30 \\
\hline 2 & 15 & 3 & 5 & 3 & 160 & ． 13 & ． 09 & 3 & 117 & 1.18 & 108 & ． 11 & 7 & 2.71 & ． 02 & ． 07 & 2 & 10 \\
\hline 2 & 16 & 1 & 2 & 2 & 99 & ． 16 & ． 09 & 7 & 158 & ． 76 & 81 & ． 09 & 1 & 1.10 & ． 03 & ． 07 & 2 & 5 \\
\hline 2 & 11 & 2 & 1 & 2 & 47 & ． 09 & ． 09 & 5 & 12 & ． 52 & 164 & ． 01 & & 1.80 & ． 02 & ． 15 & 2 & 90 \\
\hline 2 & 16 & 3 & 2 & 3 & 17 & ． 13 & ． 08 & 1 & 89 & 1.09 & 136 & ． 02 & & 2.59 & ． 02 & ． 11 & 2 & 65 \\
\hline 2 & 14 & 1 & 2 & 2 & 122 & ． 19 & ． 06 & 3 & 98 & ． 79 & 69 & ． 16 & 5 & 1.57 & ． 04 & ． 07 & 2 & 5 \\
\hline 2 & 11 & 2 & 2 & 2 & 117 & ． 14 & ． 08 & 3 & 65 & ． 50 & 80 & ． 12 & 5 & 1.90 & ． 03 & ． 04 & 2 & 15 \\
\hline 2 & 11 & 2 & 3 & 3 & 116 & ． 13 & ． 07 & 1 & 117 & ． 11 & 73 & ． 12 & 5 & 2.54 & ． 03 & ． 05 & 2 & 10 \\
\hline 2 & 15 & 2 & 2 & 2 & 109 & ． 19 & ． 10 & 1 & 54 & ． 62 & 95 & ． 08 & 5 & 1.70 & ． 03 & ． 06 & 2 & 10 \\
\hline 2 & 9 & 1 & 2 & 2 & 68 & ． 11 & ． 14 & 3 & 27 & ． 11 & 61 & ． 08 & 6 & 2.16 & ． 04 & ． 03 & 2 & 15 \\
\hline 2 & 15 & 2 & 2 & 2 & 116 & ． 19 & ． 10 & 3 & 89 & 1.06 & 65 & ． 07 & 6 & 2.28 & ． 02 & ． 05 & 3 & 10 \\
\hline 2 & 12 & 3 & 2 & 2 & 120 & ． 11 & ． 09 & 5 & 16 & ． 31 & 58 & ． 10 & 5 & 2.10 & ． 04 & ． 05 & 2 & 5 \\
\hline 2 & 11 & 2 & 2 & 2 & 87 & ． 16 & ． 10 & & 39 & ． 21 & 53 & ． 10 & 5 & 3.53 & ． 03 & ． 03 & ， & 5 \\
\hline 2 & 17 & 1 & 2 & 2 & \({ }^{88}\) & ． 29 & ． 08 & 1 & 48 & ． 56 & 64 & ． 08 & 5 & 1.34 & ． 03 & ． 07 & 2 & 5 \\
\hline 2 & 12 & 2 & 2 & 2 & 108 & ． 16 & ． 11 & 1 & 61 & ． 69 & 61 & ． 10 & 5 & 1.75 & ． 03 & ． 05 & 3 & 5 \\
\hline 2 & 6 & 2 & 2 & 2 & 116 & ． 01 & ． 09 & 4 & 105 & ． 81 & 79 & ． 08 & 7 & 2.01 & ． 01 & ． 02 & 2 & 5 \\
\hline & & & & & ＂＇ & ． & & & & & & & & & & & & \\
\hline 2 & 11 & 2 & 2 & 2 & 111 & ． 19 & ． 14 & 3 & 152 & 1.28 & 88 & ． 15 & 14 & 1.93 & ． 06 & ． 09 & 2 & 15 \\
\hline 2 & 15 & 2 & 2 & 2 & 78 & ． 15 & ． 10 & 5 & 16 & ． 50 & 160 & ． 02 & 7 & 1.97 & ． 03 & ． 11 & 2 & 15 \\
\hline 2 & 17 & 1 & 25 & 2 & 85 & ． 20 & ． 09 & 4 & 54 & ． 15 & 115 & ． 04 & 7 & 3.16 & ． 03 & ． 07 & 3 & 75 \\
\hline 2 & 32 & 2 & 2. & 2 & 53 & ． 61 & ． 09 & 1 & \(69^{\circ}\) & ． 75 & 256 & ． 08 & & 1.41 & ． 027 & ． 19 & \(2{ }^{\text {² }}\) & 5 \\
\hline 2 & 36 & 5 & 2 & 3 & 60 & ． 21 & ． 24 & 5 & 31 & ． 34 & 161 & ． 04 & 8 & 2.29 & ． 03 & ． 13 & 2 & 15 \\
\hline 2 & 31 & 3 & 2 & 3 & 87 & ． 51 & ． 05 & 4 & ． 86 & ． 78 & 128 & ． 04 & 6 & 1.95 & ． 02 & ． 09 & 2 & 20 \\
\hline 2 & 50 & 1 & 2 & 2 & 78 & 1.05 & ． 08 & 5 & 79 & ． 99 & 129 & ． 03 & 8 & 1.78 & ． 02 & ． 11 & 2 & 15 \\
\hline 2 & 25 & 2 & 1 & 2 & 104 & ． 30 & ． 06 & 5 & 81 & ． 65 & 150 & ． 07 & 10 & 1.85 & ． 04 & ． 08 & 2 & 100 \\
\hline 2 & 16 & 2 & 2 & 2 & 123 & ． 19 & ． 06 & 3 & 220 & 1.50 & 87 & ． 09 & 6 & 2.69 & ． 02 & ． 08 & 2 & 15 \\
\hline 2 & 24 & 2 & 2 & 2 & 120 & ． 33 & ． 03 & 3 & 159 & 1.32 & 81 & ． 09 & b & 2.64 & ． 03 & ． 05 & 2 & 15 \\
\hline 2 & 19 & 3 & 2 & 3 & 136 & ． 27 & ． 01 & 8 & 250 & 2.11 & 97 & ． 10 & 7 & 3.33 & ． 02 & ． 11 & 2 & 30 \\
\hline 2 & 17. & 2 & 2 & 2 & 130 & ． 32 & ． 05 & 3 & 163 & 1.51 & 81 & ． 07 & 6 & 2.46 & ． 02 & ． 01 & 2 & 130 \\
\hline 2 & 11 & 2 & 2 & 2 & 110 & ． 17 & ． 10 & 3 & 129 & ．98 & 53 & ． 11 & 5 & 1.38 & \(\cdots: 04\) & ． 06 ＊ & 2 & 5. \\
\hline 2 & 9 & 2 & 2 & 3 & 134 & ． 15 & ． 12 & 2 & 574 & 2.88 & 52 & ． 01 & 6 & 2.95 & ． 02 & ． 01 & 2 & 5 \\
\hline 2 & 13 & 2 & 2 & 2 & 121 & ． 17 & ． 07 & 3 & 153 & 1.26 & 61 & ． 10 & 8 & 2.24 & ． 03 & ． 07 & 2 & 15 \\
\hline 2 & 14 & 2 & 2 & 2 & 96 & ． 18 & ． 10 & 4 & 104 & ． 69 & 71 & ． 01 & 5 & 1.76 & ． 03 & ． 06 & 2 & 25 \\
\hline 2 & 14 & 2 & 2 & 2 & 93 & ． 12 & ． 09 & － 5 & 112 & 1.05 & 91 & ． 06 & 6 & 2.12 & ． 02 & ． 07 & 2 & 10 \\
\hline
\end{tabular}
S.H.D.C. FROJECT \# TA HDOLA 4947 FILE 4 日2-0436

FAGE H 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SMMFLE & \[
\begin{aligned}
& \text { no } \\
& \text { ppa }
\end{aligned}
\] & Cu pp: & Fb ppia & \[
\begin{aligned}
& \ln \\
& p \mathrm{pm}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Aq} \\
& \mathrm{ppq}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ni} \\
& \mathrm{pp}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Co }^{2} \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& K_{n} \\
& p p{ }_{n}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Fe} \\
\mathbf{i}
\end{gathered}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { ppiz }
\end{aligned}
\] & U & \[
\begin{aligned}
& \text { Au } \\
& \text { ppı }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Th } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Sr} \\
& \mathrm{ppa}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cd} \\
& \mathrm{ppA}
\end{aligned}
\] & \[
\begin{aligned}
& \text { sb } \\
& \text { pp: }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 日i } \\
& \text { ppi }
\end{aligned}
\] & V
ppa & \[
\begin{gathered}
\mathrm{C} \\
2
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& i
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cr} \\
& \mathrm{ppma}
\end{aligned}
\] & \[
-M_{i}
\] & 82
Ppa & \[
\begin{array}{r}
\mathrm{Ii} \\
2
\end{array}
\] & \[
\begin{gathered}
B \\
p p a
\end{gathered}
\] & \[
\begin{gathered}
A 1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{H}_{2} \\
2
\end{gathered}
\] & \[
\begin{aligned}
& k \\
& i
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Rut } \\
& \text { ppb }
\end{aligned}
\] \\
\hline  & 1 & 13 & 13 & 120 & . 6 & 24 & 10 & 312 & 3.30 & 14 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 76 & . 10 & :13 & 3 & 91 & . 18 & 80 & . 10 & 3 & 2.09 & . 05 & . 04 & 2 & 5 \\
\hline JA-2-k-3140 & 1 & 60 & 25 & 128 & 1.5 & 87 & 17 & 323 & 4.00 & 27 & 5 & 2 & 2 & 61 & 2 & 2 & 2 & 103 & . 94 & . 05 & 5 & 221 & 1.57 & 228 & . 08 & 5 & 2.10 & . 03 & . 08 & 2 & 5 \\
\hline 1 \(\mathrm{A}-2 \mathrm{R} \mathrm{R}-3141\) & 1 & 36 & 14 & 92 & . 3 & 90 & 16 & 289 & 4.79 & 35 & 5 & 2 & 2 & 15 & 2 & 2 & 2 & 123 & . 18 & . 04 & 3 & 300 & 1.73 & 89 & . 12 & 5 & 2.11 & . 02 & . 07 & 2 & 5 \\
\hline 1A-2-R-3142 & 3 & 60 & 21 & 241 & . 8 & 68 & 11. & 233 & 5.56 & 12 & 5 & 2 & 2 & 8 & 2 & 2 & 2 & 115 & . 07 & . 88 & 5 & 124 & . 83 & 110 & . 02 & 8 & 2.87 & . 02 & . 06 & 2 & 30 \\
\hline \(\mathrm{IA}-2-\mathrm{R}-3143\) & 2 & 30 & \(!7\) & 197 & . 5 & 65 & 16 & 264 & 4.85 & 31 & 5 & 2 & 2 & 14 & 2 & 2 & 3 & 116 & . 16 & . 11 & 3 & 206 & 1.17 & 100 & . 10 & 5 & 2.51 & . 03 & . 07 & 2 & 10 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-3144\) & 1 & 32 & 29 & 192 & . 3 & 25 & 13 & 325 & 4.00 & 14 & 5 & 2 & 2 & 16 & 2 & 2 & 3 & 92 & . 23 & . 24 & 3 & 128 & . \(\mathrm{BO}^{\text {O}}\) & 104 & . 09 & 5 & 2.33 & . 02 & . 05 & 2 & 10 \\
\hline 1 \(\mathrm{h}-2-\mathrm{k}-3145\) & 7 & 42 & 20 & 82 & 1.0 & 28 & 10 & 206 & 3.59 & 19 & 5 & 2 & 2 & 23 & 2 & 2 & 2 & 97 & . 29 & . 01 & 1 & 162 & . 91 & 88 & . 11 & 1 & 1.67 & . 03 & . 01 & 2 & 30 \\
\hline TA-2-R-3146 & 1 & 26 & 18 & 110 & .4 & 47 & 15 & 255 & 5.62 & 17 & 5 & 2 & 2 & 24 & 2 & 2 & 2 & 157 & . 36 & . 04 & 2 & 2:3 & 1.86 & 95 & . 20 & 5 & 2.04 & . 02 & . 09 & 2 & 5 \\
\hline 1A-2-R-3147 & 2 & 128 & 25 & 136 & 1.8 & 11 & 13 & 379 & 3.60 & 30 & 5 & 2 & 2 & 58 & 3 & 2 & 2 & 81 & 1.35 & . 05 & 5 & 161 & . 99 & 124 & . 06 & 5 & 2.38 & . 03 & . 05 & 2 & 15 \\
\hline |A-2-R-3148 & 1 & 125 & 26 & 128 & 1.1 & 79 & 23 & 692 & 4.73 & 16 & 5 & 2 & 2 & 45 & 3 & 2 & 3 & 115 & 1.00 & . 04 & 1 & 298 & 2.34 & 161 & . 12 & 7 & 3.19 & . 02 & . 09 & 2 & 20 \\
\hline 1A-2-R-3149 & 1 & 27 & 23 & 107 & . 9 & 12 & 12 & 293 & 3.00 & , & 5 & 2 & 2 & 25 & 2 & 2 & 2 & 65 & . 52 & . 08 & 3 & 162 & . 81 & 91 & . 12 & 1 & 2.01 & . 04 & . 06 & & 5 \\
\hline TA-2-k-3150 & 1 & 30 & 24 & 112 & . 8 & 57 & 22 & 551 & 4.68 & 13 & 5 & 2 & 2 & 11 & 2 & 2 & . 2 & 115 & . 21 & . 11 & 2 & 294 & 1.75 & 188 & . 13 & 5 & 2.35 & . 02 & . 08 & 2 & 570 \\
\hline \(\left\lvert\, \begin{aligned} & \text { A } \\ & \text { - } 2-R-3|5| ~\end{aligned}\right.\) & 1 & 32 & 36 & 154 & . 7 & 80 & 27 & 394 & 6.29 & 25 & 5 & 2 & 2 & 14 & 3 & 2 & 3 & 164 & . 23 & . 13 & 2 & 362 & 2.65 & 128 & . 12 & 6 & 2.73 & . 02 & . 09 & 2 & 245 \\
\hline 1A-2-8+3152 & 1 & 18 & 18 & 99 & . 5 & 20 & 12 & 645 & 3.64 & 10 & 5 & 2 & 2 & 12 & 2 & 2 & 2 & 93 & . 15 & . 11 & 3 & 89 & . 60 & 93 & . 10 & 1 & 1.40 & . 04 & . 06 & 2 & 5 \\
\hline IA-2-k-3153 & 1 & 24 & 14 & 91 & . 5 & 44 & 17 & \(11: 2\) & 4.13 & 21 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 104 & . 52 & . 11 & 2 & 224 & 1.88 & 105 & . 13 & 5 & 1.90 & . 02 & . 13 & , & 5 \\
\hline 1A-2-8-3154 & , & 11 & 16 & 159 & . 5 & 59 & 25 & \({ }^{898}\) & 6.08 & 36 & 5 & 2 & 2 & 27 & 3 & 2 & 3 & 178 & . 11 & . 11 & 2 & 334 & 2.82 & 81 & . 10 & \({ }^{6}\) & 2.81 & . 02 & . 09 & 2 & 10. \\
\hline 1A-2-R-3155 & 1 & 33 & 24 & 105 & . 1 & 37 & 16 & 304. & 4.71 & 38 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 132 & . 22 & . 05 & 3 & 158 & 1.39 & 87 & . 11 & \({ }_{6}\) & 1.96 & . 03 & . 08 & 2 & 10 \\
\hline 1 6 -2-8-3156 & 1 & 36 & 11 & 51 & . 9 & 15 & 6 & 315 & 2.34 & 12 & 5 & 2 & 2 & 105 & 1 & 2 & 2 & 50 & 1.66 & . 05 & 6 & 13 & . 36 & 73 & . 06 & 1 & 1.97 & . 02 & . 01 & 2 & 5 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-3157\) & 1 & 28 & 23 & 142 & . 5 & 33 & 16 & 782 & 1.20 & 16 & 5 & 2 & 2 & 20 & , & 2 & 2 & 94 & . 28 & . 12 & J & 153 & . 97 & 7! & . 11 & 5 & 1.91 & . 03 & . 06 & 2 & 25 \\
\hline ( \(\mathrm{A}-2\)-8-3158 & 1 & 54 & 17 & 175 & 1.6 & 62 & 21 & 310 & 4.25 & 20 & 5 & 2 & 2 & 15 & 2 & 2 & 2 & 89 & . 23 & . 06 & 5 & 244 & 1.53 & 55 & . 13 & 5 & 2.92 & . 03 & . 09 & , & 10 \\
\hline TA-2-R-3159 & 1 & 87 & 14 & 103 & . 7 & 121 & 26 & 619 & 4.45 & 14 & 5 & 2 & 2 & 16. & 3 & 2 & 3 & 91 & 1.05 & . 05 & 2 & 406 & 3. 32 & 42 & . 08 & 5 & 2.91 & . 02 & . 10 & 2 & 5 \\
\hline \(1 A-2-R-3160\) & 1 & 80 & 18 & 127 & . 8 & 13 & 26 & 501 & 4.80 & 23 & 5 & 2 & 2 & 21 & 2 & 2 & 3 & 107 & . 29 & . 08 & 2 & 259 & 1.98 & 80 & . 13 & 5 & 2.92 & . 03 & . 10 & 2 & 155 \\
\hline IA-2-R-3161 & 1 & 129 & 20 & 112 & 1.0 & 69 & 27 & 903 & 4.75 & 38 & 5 & 2 & 2 & 43 & 3 & 2 & 2 & 103 & . 81 & . 05 & 1 & 226 & 1.87 & 92 & . 09 & 5 & 2.93 & . 02 & . 11 & 2 & 55 \\
\hline TA-2-R-3162 & 2 & 11 & 21 & 123 & .1 & 35 & 11 & 296 & 4.13 & 30 & 5 & 2 & 2 & 28 & 2 & 2 & 2 & 118 & . 17 & . 04 & 5 & 108 & . 97 & 99 & . 10 & 1 & 2.08 & . 02 & . 08 & 2 & 15 \\
\hline 1A-2-R-316] & 2 & 63 & 19 & 76 & . 8 & 50 & 16 & 299 & 4.17 & 34 & 5 & , & 2 & 64 & 3 & 3 & 2 & 90 & 1.31 & . 04 & 5 & 165 & 1.22 & 70 & . 09 & 5 & 2.89 & . 02 & . 05 & 2 & 15 \\
\hline TA-2-R-3164 & 2 & 58 & 16 & 98 & 1.6 & 43 & 15 & 375 & 3.81 & 36 & 5 & 2 & 2 & 13 & & 2 & 2 & B6 & . 83 & . 05 & 5 & 118 & 1.18 & 89 & . 07 & 6 & 2.50 & . 02 & . 06 & 2 & 50 \\
\hline 1A-2-R-3165 & 3 & 18 & 12 & 54 & . 1 & 21 & d & 107 & 3.32 & 13 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 102 & . 20 & . 02 & 3 & 108 & . 64 & 48 & . 15 & 5 & 1.14 & . 01 & . 05 & 2 & 5 \\
\hline 1A-2-R-3186 & 1 & 20 & 12 & 53 & . 2 & 113 & 17 & 235 & 4.19 & 12 & 5 & 2 & 2 & 10 & 2 & 2 & 2 & 105 & . 20 & . 07 & 2 & 194 & 2.16 & 68 & . 15 & 5 & 2.35 & . 02 & . 01 & 2 & 5 \\
\hline [A-2-8-1113 & 1 & 22 & 15 & 71 & . 7 & 174 & 21 & 353 & 4.33 & 11 & 5 & 2 & 2 & 14 & 2 & 2 & 2 & 103 & . 30 & . 10 & & 512 & 2.82 & 136 & . 13 & 5 & 2.67 & . 03 & . 07 & 2 & 5 \\
\hline | 4 -2-R-\{1] 4 & 1 & 29 & 16 & 53 & . 3 & 271 & 26 & 330 & 4.20 & 12 & 5 & 2 & 2 & 59 & , & 2 & 2 & 76 & 1.05 & . 03 & 2 & 657 & 3.73 & 163 & . 10 & 5 & 3.56 & . 02 & . 65 & 2 & 5 \\
\hline \(|A-2-R-1| 15\) & 1 & 19 & 10 & 51 & .1 & 34 & 7 & 123 & 3.25 & 27 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 91 & . 13 & . 06 & 3 & 119 & . 59 & 58 & . 08 & 1 & 1.09 & . 03 & . 05 & 2 & 10 \\
\hline TA-2-8-1116 & 1 & 63 & 30 & 169 & . 4 & 36. & 11 & 213 & 5.15 & 25 & 5 & 2 & 2 & 11 & 2 & & 2 & 92 & . 19 & . 09 & 3 & B0 & . 91 & 68 & . 03 & 1 & 2.19 & . 02 & . 07 & 2 & 30 \\
\hline |A-2-R-1117 & 2 & 22 & 12 & 136 & .4 & 13 & 16 & 259 & 4.21 & 16 & 5 & 2 & 2 & 28 & 2 & 2 & 2 & 119 & . 45 & . 02 & 2 & 195 & 1.92 & 67 & . 12 & 1 & 2.10 & . 03 & . 13 & 2 & \\
\hline TA-2-R-1118 & 9 & 56 & 19 & 170 & .1 & 67 & 20 & 371 & 5.36 & 70 & 5 & 2 & 2 & 11 & 2 & & 3 & 82 & . 11 & . 60 & 5 & 128 & 1.04 & 82 & . 02 & 7 & 2.28 & . 02 & . 09 & 2 & 5 \\
\hline ( \(\mathrm{A}-2-\mathrm{R}-1117\) & 6 & 33 & 24 & 114 & . 7 & 31 & 12 & 258 & 4.74 & 55 & 5 & 2 & 2 & 20 & 2 & 2 & 2 & 103 & . 22 & . 10 & 3 & 80 & . 63 & 70 & . 05 & 6 & 2.20 & . 03 & . 08 & 2 & 105 \\
\hline 1A-2-8-4120 & 2 & 74 & 20 & 201 & 1.5 & 54 & 14 & 1458 & 3.42 & 28 & 5 & 2 & 2 & 15 & 5 & 3 & 3 & 73 & . 62 & . 09 & 9 & 118 & . 67 & 82 & . 11 & 5 & 3.10 & . 04 & . 05 & 2 & 25 \\
\hline STO A-1 & 1 & 28 & 39 & 165 & . 4 & 32 & 11 & 951 & 2.53 & 12 & 5 & 2 & 2 & 32 & 2 & 2 & 2 & 52 & . 61 & . 09 & 7 & 67 & . 12 & 255 & . 08 & 7 & 1.90 & . 02 & 19 & 2 & 5 \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \(14-7-5-4121\)
\(14-\overline{-}-8-1122\) \\
\hline TA-2-8-4123 \\
\hline \\
\hline TA-2-R- 112 \\
\hline TA-2-R-4126 \\
\hline 1 \(\mathrm{A}-2-\mathrm{F}-1127\) \\
\hline T \(A-2-8-112\) \\
\hline A-2-R-\{12 \\
\hline \\
\hline TA-2-R-\{131 \\
\hline TA P ? \(-\mathrm{R}-1132\) \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-4133\) \\
\hline \(\mathrm{Jf}-2-\mathrm{R}-1134\) \\
\hline -2 \\
\hline
\end{tabular}

SiD A-1
1A-2-R-1136
\(1 \mathrm{~A}-2-\mathrm{R}-1137\)
1 \(A-2-8-13138\) 1A-2-R-1139
\(1 A-2-R-1140\)
\(1 A-2-D-111\) \(1 A-2-P-1111\) \(1 A-2-R-1111\)
\(T A-2-R-1112\) TA-2-R-1113 TA-2-R-1141 \(1 A-2-R-1115\)
\(1 A-2-R-1146\) \(1 A-2-R-1146\)
\(1 A-2-R-1147\) \(|A-2-R-1| 19\) 1A-2-R-1119

1A-2-P-4150
TA-2- \(k-1151\) \(1 h-2-6-1152\) \(1 A-2-6-1153\)
\(1 \mathrm{k}-2-\mathrm{R}-1155\)
TA-2-R-1156
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 6 & 11 & 82 & 324 & 1.4 & 40 & 13 & 332 & 5.79 & 111 & 5 & 2 & 2 & . 14 & 2 & 2 & 2 & 100 & . 15 & . 14 & 1 & 66 & . 68 & 104 & . 01 & 5 & 2.16 & . 02 & . 12 & 2 & \\
\hline 4 & 31 & 25 & 97 & . 8 & 21 & 9 & 708 & 4.04 & 43 & 6 & 2 & 2 & 19 & 1 & 1 & 2 & 117 & . 14 & . 11 & 1 & 50 & . 52 & 111 & . 07 & J & 1.19 & . 04 & .10 & 2 & \\
\hline 5 & 92 & 39 & 188 & 4.1 & 22 & 5 & 122 & 2.72 & 19 & 5 & 2 & 2 & 37 & 3 & 8 & 2 & 59 & .50) & . 05 & 1 & 90 & . 18 & 83 & . 03 & 3 & 1.86 & . 01 & . 06 & 2 & \\
\hline 5 & 26 & 32 & 129 & . 7 & 19 & 1 & 144 & 4.13 & 45 & 6 & 2 & 2 & 20 & 2 & 2 & 2 & 116 & . 17 & . 03 & 3 & 61 & . 18 & 112 & . 09 & 1 & 2.07 & . 01 & . 08 & 2 & \\
\hline 7 & bl & 31 & 232 & . 8 & 31 & 11 & 192 & 5.36 & 7 & 5 & 2 & 2 & 33 & 2 & 2 & 2 & 103 & . 32 & . 05 & 4 & 19 & . 52 & 187 & . 02 & 1 & 2.36 & . 03 & .12 & 2 & \\
\hline 7 & ? 1 & 20 & 101 & . 8 & 17 & 8 & 402 & 4.48 & \(n\) & 5 & 2 & 2 & 17 & 1 & 14 & 2 & 68 & . 14 & . 11 & 3 & 26 & . 21 & 81 & . 05 & 5 & 1.50 & . 05 & . 08 & 2 & \\
\hline 3 & 11 & 16 & 168 & . 2 & 32 & 16 & 376 & 5.38 & 34 & 5 & 2 & 2 & 25 & 2 & 2 & 2 & 157 & . 11 & . 01 & 2 & 70 & 1.19 & 101 & . 18 & 1 & 2.51 & . 01 & . 69 & 2 & \\
\hline 3 & 12 & 21 & 138 & 1.3 & 25 & 8 & 165 & 3.63 & 30 & 5 & 2 & 2 & 23 & 2 & 2 & 2 & 92 & . 28 & . 04 & 6 & 19 & . 11 & 130 & . 06 & 4 & 2.55 & . 01 & .08 & 2. & \\
\hline 1 & 36 & 12 & 53 & . 1 & 39 & 11 & 251 & 3.26 & 11 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 106 & . 43 & . 06 & 7 & 90 & . 89 & 102 & . 12 & 3 & 1.92 & . 06 & . 09 & 2 & \\
\hline 4 & 40 & 14 & 57 & . 3 & 47 & 18 & 356 & 4.24 & 15 & 5 & 2 & 2 & 16 & 1 & 3 & 2 & 188 & . 21 & .08 & 2 & 96 & 1.62 & 110 & . 16 & 5 & 1.94 & . 04 & . 08 & 2 & \\
\hline 3 & 26 & 11 & 50 & . 2 & 33 & 10 & 252 & 3.70 & 21 & 5 & 2 & \(z\) & 15 & 1 & 2 & 2 & 112 & . 16 & . 11 & 3 & 81 & . 14 & 90 & . 12 & 3 & 2.08 & . 08 & . 06 & 2 & \\
\hline 5 & 64 & 32 & 286 & . 3 & 53 & 19 & 119 & 5.41 & 87 & 5 & 2 & 2 & 16 & 2 & 6 & 2 & 171 & . 20 & . 08 & 3 & 118 & 1.22 & 14 & . 12 & 1 & 2.30 & . 04 & . 07 & 2 & \\
\hline 2 & 25 & 19 & 246 & . 3 & 28 & 16 & 510 & 4.63 & 185 & 5 & 2 & 2 & 17 & 3 & 3 & 2 & 148 & . 22 & . 15 & 1 & 59 & . 60 & 75 & . 12 & 1 & 2.62 & . 03 & . 06 & 2 & 20 \\
\hline 6 & 31 & 17 & 211 & . 3 & 38 & 13 & 296 & 5.31 & 73 & 5 & 2 & 2 & 24 & J & 2 & & 183 & . 20 & . 11 & 2 & 75 & . 11 & 73 & . 14 & 1 & 1.78 & . 05 & . 08 & 2 & 10 \\
\hline 2 & 37 & 17 & 158 & .1 & 74 & 22 & 773 & 4.38 & 58 & 5 & 2 & 2 & 18. & 2 & 3 & 3 & 121 & . 19 & . 08 & 2 & 254 & 1.56 & 124 & . 10 & 5 & 2.57 & . 04 & . 09 & 2 & 15 \\
\hline 1 & 32 & 42 & 183 & . 3 & 35 & 13 & 1015 & 2.73 & 14 & 5 & 2 & 3 & 36 & 2 & 2 & 2 & 59 & . 61 & . 10 & 6 & 14 & . 81 & 284 & . 09 & 6 & 2.11 & . 02 & . 22 & 2 & \\
\hline 1 & 49 & 33 & 162 & 1.9 & 51 & 17 & 393 & 5.32 & 17 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 133 & . 21 & . 08 & 3 & 157 & 1.45 & 20 & . 09 & 5 & 2.51 & . 03 & . 11 & 2 & 105 \\
\hline 3 & 122 & 42 & 162 & . 2 & 77 & 26 & 514 & 6.07 & 111 & 5 & 2 & 2 & 22 & 2 & 2 & 2 & 140 & . 38 & . 09 & 2 & 238 & 2.54 & 71 & . 07 & 6 & 3. 10 & . 02 & . 16 & 2 & 30 \\
\hline 6 & 95 & \(2 i\) & 163 & . 1 & 68 & 23 & 521 & 6.34 & 88 & 5 & 2 & 3 & 18 & 2 & 2 & 2 & 153 & . 20 & . 11 & 3 & 210 & 2.32 & 86 & . 07 & 6 & 3.19 & . 02 & .15 & 2 & 20 \\
\hline 1 & 157 & 56 & 446 & . 2 & 108 & 52 & 1330 & 10.65 & 210 & 7 & 2 & 3 & 19 & 1 & 2 & 3 & 191 & . 22 & . 11 & 2 & 319 & 3.12 & 70 & . 02 & 3 & 3.70 & . 01 & . 06 & 2 & 65 \\
\hline 2 & 31 & 33 & 260 & .7 & 11 & 23 & 507 & 4.13 & 37 & 5 & 2 & 2 & 28 & 3 & 2 & 2 & 115 & . 32 & . 05 & 2 & 190 & 1.43 & 113 & . 12 & 1 & 2.26 & . 03 & . 05 & 2 & 30 \\
\hline 1 & 15 & 18 & 101 & . 5 & 12 & , & 285 & 2.61 & 30 & 5 & 2 & 2 & 16 & 3 & & 2 & 71 & . 15 & . 09 & 2 & 26 & . 20 & 11 & . 08 & 3 & . 84 & . 07 & . 08 & 2 & 10 \\
\hline 2 & 37 & 19 & 191 & . 3 & 27 & 15 & 373 & 4.48 & 46 & 5 & 2 & 2 & 15 & 2 & 2 & 2 & 85 & . 18 & . 18 & 4 & 72 & . 75 & 102 & . 01 & 1 & 2.11 & . 01 & . 16 & 2 & 15 \\
\hline 2 & 18 & 21 & 122. & . 1. & 28 & 13. & 44 & 5.48 & 16 & 5 & 2 & 2 & 24 & 2 & 2 & 2 & 156 & . 37 & . 14 & 2 & 84 & 1.12 & 92 & . 10 & 1 & 2.67 & . 03 & . 08 & & 50 \\
\hline 3 & 59 & 29 & 218 & . 4 & 4 & 17 & 349 & 5.25 & 58 & 5 & - 2 & 2 & 21 & 2 & 2 & 2 & 138 & . 25 & . 08 & 1 & 96 & 1.35 & 118 & . 10 & 6 & 3.02 & . 03 & . 09 & 2 & 20 \\
\hline 1 & 15 & 11 & 62 & . 3 & 13 & 6 & 253 & 2.36 & 20 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 75 & . 12 & . 05 & 3 & 33 & . 25 & 44 & . 08 & 2 & 1.09 & . 06 & . 06. & 2 & \\
\hline 5 & 24 & 20 & 92 & .1 & 15 & 6 & 123 & 1.05 & 19 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 137 & . 20 & . 03 & , & 17. & . 36 & 81 & . 09 & 3 & 1.84 & . 01 & . 01 & 2 & 20 \\
\hline 2 & 55 & 19 & 154 & . 2 & 40 & 15 & 510 & 5.35 & 56 & 5 & 2 & 2 & 31 & 2 & 3 & 2 & 149 & . 36 & . 15 & 2 & ils & 1.34 & 154 & . 09 & 5 & 2.66 & . 03 & . 09 & 2 & \\
\hline 2 & 24 & 20 & 76 & . 2 & 16 & 12 & 813 & 3.95 & 51 & 5 & 2 & 2 & 21 & 2 & 3 & 2 & 110 & . 29 & . 12 & 2 & 3 & . 33 & 131 & . 07 & 4 & 1.25 & . 05 & . 07 & 2 & \\
\hline 1 & 37 & 13 & 79 & . 5 & 28 & 10 & 219 & 3.68 & 23 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 102 & . 19 & . 07 & 5 & 66 & . 11 & 102 & . 08 & 1 & 2.10 & . 03 & . 07 & & \\
\hline 2 & 24 & 16 & 86 & .4 & 23 & 9. & 182 & 3.62 & 20 & 5 & & 2 & 17 & , & 2 & 2 & 98 & . 16 & . 03 & 5 & 57 & . 10 & 128 & . 69 & 1 & 2.18 & . 03 & . 06 & 2 & \\
\hline 1 & 34 & 13 & 92 & . 4 & 38 & \(13^{\circ}\) & 23 & 4.39 & 25 & 5 & & 2 & 21. & 1 & 2 & 2 & 120 & . 31 & . 11 & 3 & 92 & 1.04 & 84 & . 11 & 5 & 2.13 & . 03 & . 08 & 2 & 30 \\
\hline 6 & 192 & 22 & 87 & 1.1 & 85 & 17 & 1400 & 4.07 & \$ 6 & 5 & 2 & 3 & 38. & 3 & 5 & 3 & 89 & . 80 & . 07 & 10 & 100 & 1.01 & 106 & . 12 & 1 & 3.58 & . 04 & . 08 & 2 & 20 \\
\hline 1 & 15 & 10 & 31 & . 3 & 17 & 5 & 117 & 2.65 & 13 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 102 & . 14 & . 05 & 3 & 51 & . 31 & 55 & . 11 & 5 & 1.11 & . 05 & . 06 & 2 & \\
\hline 2 & 11. & 13. & 30 & . 2 & 21 & & 133 & 3.47 & 25 & 5 & 2 & 2 & 17 & , & 2 & 2 & 122 & . 20 & . 07 & 2 & 64 & -. 12 & 19 & . 13 & 5 & 1.19 & . 03 & -. 05 & 2 ... & \\
\hline 2 & 35 & 18 & 372 & .1 & 10 & 18 & 455 & 3.96 & 45 & 5 & 2 & 2 & 31 & 1 & 2 & 2 & 98 & . 59 & . 06 & 3 & 52 & . 63 & 64 & . 15 & 5 & 2.07 & . 04 & . 06 & 2 & \\
\hline 3 & 35 & 13 & 129 & 3 & 25 & 9 & 219 & 4.63 & 50 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 142 & . 22 & & 2 & & & & & & & & & & \\
\hline
\end{tabular}
S.H.B.C. FROJECT \# TA HUOLA 4947 FILE 4 E2-0436

PAGE \# 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Samfle : & ho ppa & Cu
ppt & Pb
ppa & in pps & Ag ppa & Mi ppe & \(\mathrm{Co}_{\text {ppi }}\) & Kn
ppe & \[
\begin{gathered}
\mathrm{Fe} \\
\mathrm{Z}
\end{gathered}
\] & Hंs pps & U & Au pp: & in ppe & \[
\begin{aligned}
& \text { Sr } \\
& \text { pp』 }
\end{aligned}
\] & C6 & \begin{tabular}{l}
5b \\
ppe
\end{tabular} & \[
\begin{aligned}
& \text { Bi } \\
& \text { ppi }
\end{aligned}
\] & \(\stackrel{V}{\text { ppa }}\) & \[
\begin{gathered}
\mathbf{C}_{1} \\
\mathbf{1}
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& z
\end{aligned}
\] & la ppI & Cr ppa & \[
\underset{\substack{\mathrm{K} \\ \underset{i}{2} \\ \hline}}{ }
\] & 6a ppo & \[
\begin{array}{r}
\mathrm{Ii} \\
\mathrm{i}
\end{array}
\] & \[
\underset{\mathrm{ppm}}{\mathrm{~B}}
\] & & \[
\begin{gathered}
\mathrm{H}_{2} \\
I
\end{gathered}
\] & & & Auf ppb \\
\hline 1 \(k\)-2-k-4157 & 2 & 17 & 13 & 291 & . 3 & 33 & 10 & 509 & 2.96 & 19 & 5 & 2 & 2 & 17 & 3 & 2 & 2 & 17 & . 35 & . 10 & 1 & 26 & . 14 & 51 & . 13 & 1 & 1.77 & . 05 & . 05 & 2 & 5 \\
\hline  & 5 & 104 & 18 & 900 & . 5 & 353 & 52 & 1601 & 4.21 & 28 & 5 & 2 & 3 & 32 & 8 & 3 & 2 & 94 & . 59 & . 05 & 8 & 196 & 1.46 & 17 & . 15 & 5 & 2.94 & . 01 & . 07 & 2 & 5 \\
\hline 1A-2-k-1159 & 7 & 124 & 199 & 935 & . 1 & 148 & 27 & 828 & 7.98 & 53 & 8 & 2 & 3 & 99 & 4 & 2 & 1 & 169 & . 22 & . 11 & 2 & 375 & 2.55 & 356 & . 12 & b & 3.14 & . 02 & . 09 & 2. & 20 \\
\hline \(510 \mathrm{~A}-1\) & 1 & 31 & 42 & 183 & . 3 & . 35 & 13 & 1017. & 2.70 & 12 & 5 & 2 & 3 & 35 & 2 & 2 & 2 & 58 & . 64 & . 10 & 6 & 12 & . 80 & 278 & . 69 & 1 & 2.06 & . 02 & . \(22^{\circ}\) & \(2 \times\) & 5 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-1160\) & 3 & 25 & 17 & 100 & .6 & 40 & 14 & \(3: 8\) & 3.51 & 29 & 5 & 2 & 2 & 51 & 2 & 2 & 2 & 105 & . 84 & . 04 & 1 & 121 & . 83 & 87 & . 14 & 5 & 2.33 & . 03 & . 07 & 2 & 5 \\
\hline i \(\mathrm{A}-\mathrm{?}\) - Q - \(116!\) & 1 & 54 & 19 & 93 & .1 & 102 & 24 & 483 & 4.71 & 53 & 5 & & 2 & 28 & 2 & 3 & 2 & 131 & . 37 & . 10 & 3 & 265 & 1.71 & 130 & . 11 & 8 & 2.51 & . 03 & . 07 & 2 & 20 \\
\hline Th่-2-R-1162 & 1 & 35 & 16 & 84 & . 5 & 88 & 22 & 613 & 4.10 & 36 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 133 & . 27 & . 10 & 2 & 335 & 1.85 & 82 & . 14 & \(b\) & 2.14 & . 04 & . 08 & 2 & 5 \\
\hline [ \(A\)-2-8-11 \({ }^{\text {a }}\) ] & 1 & 68 & 16 & 138 & . 1 & 237 & 10 & 687 & 6.23 & 116 & 5 & 2 & & 24 & 2 & 3 & 3 & 187 & . 31 & . 10 & 2 & 782 & 3.94 & 88 & . 10 & 6 & 4.30 & . 02 & . 09 & 2 & 5 \\
\hline T \(\mathrm{C}-\mathrm{P}-\mathrm{R}-1169\) & 2 & 14 & 11 & 50 & . \({ }^{\text {d }}\) & 19 & 5 & 136 & 2.59 & 26 & 5 & 2 & & 17 & 1 & 2 & 2 & 84 & . 21 & . 08 & 3 & 63 & . 34 & 53 & . 09 & 1 & 1.09 & . 05 & . 06 & 2 & 5 \\
\hline | \(\mathrm{A}-2-\mathrm{R}-1165\) & 1 & 38 & 17 & 93 & . 6 & 14 & 15 & 209 & 4.99 & 52 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 150 & . 23 & .12 & 2 & 260 & 1.79 & 67 & . 12 & 5 & 2.22 & . 03 & . 08 & 2 & 5 \\
\hline 1k-2-R-5166 & 14 & 30 & 18 & 125 & . 5 & 13 & 7 & 126 & 4.06 & 14 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 153 & . 09 & . 06 & 5 & 80 & . 52 & 121 & . 02 & 5 & 1.98 & . 03 & . 11 & 2 & 25 \\
\hline  & 7 & 36 & 17 & 145 & . 6 & 42 & 11 & 205 & 4.42 & 73 & 5 & 2 & 2 & 22 & 2 & 2 & 2 & 103 & . 22 & .14 & 1 & 91 & . 11 & 132 & . 03 & 7 & 1.85 & . 03 & . 12 & 2 & 5 \\
\hline |A-2-k-1168 & 5 & 28 & 23 & 113 & . 8 & 41 & 11 & 185 & 4.15 & 66 & 5 & 2 & 2 & 24 & 2 & 2 & 2 & 104 & . 26 & . 08 & 3 & 100 & . 59 & 126 & . 04 & 7 & 2.52 & \(\cdots\) & . 06. & \(2-\) & 5 \\
\hline 1A-2-2-1169 & 6 & 46 & 22 & 118 & . 7 & 13 & 12 & 117 & 4.37 & 66 & 5 & 2 & 2 & 26 & 2 & 3 & 2 & 106 & . 34 & . 05 & 1 & 103 & . 74 & 107 & . 03 & 6 & 2.83 & . 02 & . 07 & 2 & 15 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-1170\) & 1 & 45 & 24 & 124 & . 7 & 69 & 16 & 251 & 5.11 & 88 & 5 & 2 & 2 & 16 & 1 & 2 & 2 & 160 & . 16 & . 12 & 3 & 209 & 1.21 & 69 & . 05 & 6 & 1.94 & . 04 & . 07 & 2 & 5 \\
\hline | \(k\)-2-R-1 171 & 1 & 37 & 9 & 65 & . 1 & 36 & 23 & 572 & 6. 38 & 29 & 5 & & 2 & 41 & 2 & 2 & 2 & 196 & . 82 & . 07 & 3 & 138 & 2.36 & 70 & . 19 & 5 & 2.82 & . 03 & . 08 & 2 & 5 \\
\hline 1A-2-R-1172 & 1 & 64 & 21 & 88 & . 1 & 151 & 25 & 314 & 6.52 & 82 & 11 & & & 13 & 2 & 3 & 2 & 195 & . 13 & . 09 & 2 & 140 & 3.15 & 38 & . 05 & 5 & 3.11 & . 02 & . 04 & 2 & 5 \\
\hline 1 \(\mathrm{A}-2-\mathrm{k}-117 \mathrm{~J}\) & 2 & 32 & 16 & 91 & . 6 & 58 & 17 & 369 & 4.77 & 56 & 5 & 2 & & 24 & 1 & 2 & 2 & 140 & . 25 & . 09 & 2 & 193 & 1.14 & 109 & . 07 & 5 & 1.76 & . 04 & . 07 & 2 & 5 \\
\hline | \(\mathrm{A}-2-\mathrm{k}-1.14\) & 1 & 25 & 14 & 71 & . 1 & 33 & 12 & 351 & 1.14 & 29 & 5 &  & 2 & 11 & 1 & 2 & 2 & 134 & . 19 & . 08 & 2 & 129 & 1.61 & 79 & . 18 & d & 1.60 & . 05 & . 08 & 2 & 15 \\
\hline 1A-2-R-1175 & 1 & 86 & 18 & \(B 1\) & . 1 & 121 & 27 & 552 & 5.62 & 50 & 5 & 2. & 2 & 19 & 2 & 3 & 2 & 175 & . 33 & . 07 & 2 & 101 & 3.35 & 95 & . 18 & 5 & 3.10 & . 03 & . 16 & 2 & 5 \\
\hline 1A-2-R-1176 & 2 & 83 & 11 & 72 & . 3 & 18 & 13 & 323 & 5.33 & 19 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 117 & . 16 & . 16 & 3 & 138 & 1.05 & 71 & . 07 & 6 & 1.70 & . 04 & . 09 & 2 & 25 \\
\hline 1A-2-R-1177 & 1 & 67 & 19 & 185 & . 3 & 52 & 15 & 261 & 6.88 & 61 & 5 & 7 & 2 & 19 & 2 & 2 & 2 & 134 & . 18 & . 06 & , & 129 & . 184 & 116 & . 09 & 6 & 2.57 & . 03 & . 07 & 2 & 15 \\
\hline 1A-2-R-1178 & 9 & 36 & 20 & 112 & . 2 & 35 & 9 & 213 & 5.15 & 54 & 5 & 2 & 2 & 31 & 2 & 2 & 2 & 120 & . 31 & . 01 & 5 & 86 & . 17 & 96 & . 09 & 5 & 1.55 & . 03 & . 08 & 2 & 25 \\
\hline t \(\mathrm{A}-2 \mathrm{R} \mathrm{R}-1179\) & 1 & 52 & 16 & 109 & . 3 & 16 & 20 & 311 & 5.50 & 12 & 5 & 2 & 2 & 17. & 2 & 2 & 2 & 145 & . 18 & . 09 & 2 & 237 & 2.08 & 80 & . 13 & 7 & 2.96 & . 04 & . 11 & 2 & 5 \\
\hline Th-2-R-1180 & 1 & 57 & 16 & 82 & . 1 & 124 & 26 & 484 & 5.18 & 37 & 5 & 2 & 2 & 22 & 2 & 2 & 3 & 157 & . 10 & . 08 & 2 & 374 & 2.98 & 75 & . 14 & 5 & 2.92 & . 03 & . 14 & 2 & 5 \\
\hline 1A-2-R-1181 & 1 & 37 & 14 & bt & . 1 & 160 & 26 & 329 & 4.84 & 24 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 112 & . 35 & . 12 & 2 & 535 & 3.09 & 53 & . 18 & 6 & 2.14 & . 03 & . 08 & 2 & 5 \\
\hline TA-2-8-1182 & 1 & 34 & 17 & 111 & . 3 & 62 & 17 & 193 & 3.15 & 31 & 5 & 2 & 2 & 11 & & 1 & 2 & 109 & . 15 & . 05 & 3 & 114 & . 98 & 58 & . 15 & 1 & 2.39 & . 06 & . 08 & 2 & 5 \\
\hline 1 \(R\)-2-R-1183 & 1 & 23 & 18 & 92 & . 5 & 82 & 18 & 252 & 4.56 & 54 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 127 & . 23 & . 12 & 2 & 248 & 1.13 & 69 & . 12 & 10 & 2.29 & . 03 & . 06 & 2 & 5 \\
\hline TA-2-8-1184 & 1 & 131 & 18 & 89 & 1.2 & 259 & 29 & 711 & 5.23 & 60 & 5 & 2 & 2 & 70 & 3 & 1 & 2 & 129 & 1.31 & . 09 & 5 & 662 & 3.02 & 88 & . 08 & 5 & 3.21 & . 02 & . 12 & 2 & 15 \\
\hline 'A-2-R-1185 & 1 & 30 & 29 & 84 & . 8 & 13 & 16 & 380 & 4.16 & 48 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 122 & . 23 & .10 & 2 & 217 & . 91 & 100 & . 10 & 1 & 1.24 & . 03 & . 08 & 2 & 5 \\
\hline TA-2-R-1186 & 2 & 17 & 42 & 105 & . 2 & 26 & 7 & 163 & 3.16 & 33 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 98 & . 20 & . 08 & 5 & 91 & . 56 & 63 & . 10 & 1 & 1.45 & . 01 & . 08 & 2 & 5 \\
\hline \(1 \mathrm{~A}-2-\mathrm{R}-1187\) & 2 & 27 & 22 & 180 & . 1 & 39 & 18 & 529 & 3.97 & 32 & 5 & 2 & 3 & 12 & 2 & 2 & 2 & 97 & . 66 & . 07 & 1 & 126 & 1.03 & 106 & . 14 & 1 & 2.75 & . 04 & . 07 & 2 & 5 \\
\hline
\end{tabular}

SAKPLE 1

\(1 A-2-R-3167\)
\(1 A-2-R-3168\)
\(1 A-2 R-3169\)
1A－2－A－3169
SID A－1
TA－2－R－3170
TA－2－R－3171 \(1 A-2-A-3172\)
\(1 A-2-B-3173\) TA－2－R－3173 \(1 K-2-R-3174\)
\(S N-2-R-3175\)

5 \(\mathrm{A}-2-2-8-3176\) \(1 A-2-R-3177\)
\(1 A-2-R-317 日 ~\) \(\mathrm{T} A-2-8-317 \mathrm{~B}\)
\(1 A-2-\mathrm{B}-3179\) \(1 A-2-R-3179\)
\(T A-2-R-3180\)
\(1 A-2-R-3181\)
\(1 A-2-R-3182\) \begin{tabular}{c}
\(1 A-2-R-3182\) \\
\(H A-2-R-31 B 3\) \\
\hline
\end{tabular}
 1A－2－R－3185
\(\begin{array}{llllll}H 0 & C u & p b & \text { ln } & \text { aqq } & \mathrm{Ki} \\ \text { ppa } & \text { ppt } & \text { ppa }\end{array}\)


52
\begin{tabular}{lll}
16 & 1 & 2 \\
3 & 3 & 3 \\
23 & 2 & 2 \\
36 & 2 & 2 \\
21 & 2 & 2 \\
65 & 1 & 2 \\
23 & 1 & 2 \\
41 & 2 & 2 \\
48 & 2 & 2 \\
50 & 2 & 2 \\
38 & 1 & 2 \\
43 & 2 & 2 \\
10 & 2 & 2 \\
20 & 2 & 2 \\
14 & 1 & 2
\end{tabular}
\(8 \mathrm{i}: \quad \mathrm{V}\)
ppi \(\begin{array}{ll}{[2} & p \\ 2 & 2\end{array}\) 12
\(p p a\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 3 & 99 & 1.35 & 123 & ． 19 & 5 & 1.69 & ． 03 & ． 18 \\
\hline 1 & 93 & 1.63 & 238 & ． 13 & 5 & 2.68 & ． 04 & ． 30 \\
\hline 2 & 95 & 1.37 & 205 & ． 21 & 5 & 1.95 & ． 04 & ． 21 \\
\hline 6 & 13 & ． 80 & 283 & ． 09 & 7 & 2.08 & ． 02 & ． 22 \\
\hline 3 & 140 & 1.95 & 113 & ． 24 & 日 & 2.35 & ． 04 & ． 20 \\
\hline 5 & 13 & ． 18 & 261 & ． 06 & 5 & ． 92 & ． 01 & ． 06 \\
\hline 3 & 22 & ． 21 & 119 & .10 & 7 & ． 81 & ． 08 & ． 08 \\
\hline 7 & 67 & 1.11 & 173 & ． 11 & 6 & 2.27 & ． 04 & ． 28 \\
\hline 5 & 114 & 1.87 & 128 & ． 12 & 1 & 2.19 & ． 04 & ． 51 \\
\hline 7 & 81 & 1.35 & 190 & ． 11 & \(\dagger\) & 3.10 & ． 04 & ． 19 \\
\hline 5 & 83 & 1.20 & 153 & ． 10 & 1 & 2.78 & ． 01 & ． 14 \\
\hline 0 & 51 & ． 70 & 105 & ． 01 & 8 & 2.07 & ． 03 & ． 10 \\
\hline 3 & 183 & 2.13 & 113 & ． 11 & 1 & 2.70 & ． 03 & ． 11 \\
\hline 1 & 61 & 1.23 & 155 & ． 19 & 1 & 2.01 & ． 02 & ． 14 \\
\hline 3 & 90 & ． 86 & 86 & ． 11 & 3 & 1.88 & ． 03 & ． 07 \\
\hline 2 & 15 & ． 16 & 50 & ． 22 & 6 & 1.16 & ． 05 & ． 10 \\
\hline 2 & 28 & ．23 & 12 & ． 12 & 1 & 1.54 & ． 05 & ． 04 \\
\hline 2 & 29 & ． 26 & 11 & ． 12 & 7 & 1.95 & ． 01 & ． 05 \\
\hline 4 & 67 & ． 81 & 12 & ．13 & 5 & 2.91 & ． 03 & ． 08 \\
\hline 3 & 34 & ． 29 & 51 & ． 11 & 5 & 1.82 & .04 & ． 05 \\
\hline 5 & 65 & ． 81 & 92 & ． 12 & 5 & 2.95 & ． 03 & ． 07 \\
\hline 5 & 82 & 1.50 & 83 & ．13 & 5 & 2.52 & ． 01 & ． 10 \\
\hline 2 & 175 & 2.30 & 75 & ． 24 & 6 & 3.37 & ． 03 & ． 16 \\
\hline 5 & 79 & ． 87 & 209 & ． 11 & 5 & 3.03 & ． 03 & ． 19 \\
\hline 6 & 81 & 1.03 & 276 & ． 12 & 7 & 3.15 & ． 02 & ． 14 \\
\hline 5 & 68 & 1.07 & 83 & ． 14 & 1 & 1.81 & ． 04 & ． 13 \\
\hline 1 & 93 & 1.20 & 161 & ． 13 & 12 & 3.25 & ． 03 & ． 15 \\
\hline 6 & 19 & ． 51 & 89 & ． 11 & \(J\) & 1.37 & ． 03 & ． 10 \\
\hline 5 & 96 & 1.69 & 106 & ． 13 & 8 & J． 17 & ． 03 & ． 11 \\
\hline 5 & 88 & 1.11 & 81 & ． 19 & 5 & 1.81 & ． 04 & ． 14 \\
\hline \(\theta\) & 98 & 1.61 & 112 & ． 14 & 4 & 2.11 & ． 03 & ． 23 \\
\hline 4 & 109 & 1.28 & 185 & ． 16 & 6 & 3.06 & ． 03 & ． 15 \\
\hline 日 & 55 & ． 67 & 160 & ． 08 & 1 & 1.72 & ． 04 & ． 16 \\
\hline 7 & 69 & ． 91 & 102 & ． 15 & 5 & 2.13 & ． 04 & ． 13 \\
\hline 6 & 83 & 1.36 & 337 & ． 13 & 1 & 2.24 & ． 04 & ． 24 \\
\hline 1 & 81 & ． 89 & 98 & ． 16 & 5. & 2.67 & ． 04 & ． 08 \\
\hline 5 & ． 72 & 2.64 & 104 & ． 15 & 8 & 2.18 & ． 03 & ． 50 \\
\hline 6 & ＂ 71 & 1.36 & 152 & ． 15 & 1 & 2.18 & ． 03 & ． 15 \\
\hline
\end{tabular}

S．M．D．C．FFODEET \＃TA HODLA 4947 FILE \＃BZ－0．436
SKKPLE

Thi－2－R－3204 1 \(\mathrm{A}-2-\mathrm{R}-\mathrm{j} 205\) \begin{tabular}{c}
\(1 A-2-8-320 B\) \\
\(T A-2-R-3207\) \\
\hline
\end{tabular} \(1-2-2-R-5207\)

\(A B-2-B-320 B\)
\(14-2-R-3207\)
\(1 R-2-R-3210\) \(1 A-2-R-3210\)
\(A-Z-R-3211\) \(\mathrm{H} A-2-8-3211\)
\(\mathrm{~A} A-2-\mathrm{R}-3212\)
\(\mathrm{H}-2 \mathrm{C}\) \(1 A-2-R-3212\)
\(I A-2-R-321 J\) \(1 A-2-R-3214\)
\(7 A-2-R-3215\) \(7 A-2-R-3215\)
\(T A-2-R-3216\)
\(1 A-2-R-3217\) \([\mathrm{CA}-2-\mathrm{R}-\mathrm{J} 211\)
\(\mathrm{TA}-2-\mathrm{A}-321 \mathrm{~B}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  \\
\hline & & & & どがいい & いえが気 & ヘニッす。 & －0．0． \\
\hline 능 &  &  &  & （ 三sos &  & ら边すごへ &  \\
\hline 二 へ &  & 号芯三ご & むむがっさ &  &  & 出へこ以边 &  \\
\hline 荌总 &  & ヵ゙ロ & 䍐ごが灾 &  &  & 二号面宮： &  \\
\hline \(\cdots \infty\) & inーンis &  &  & ごouc－ & －＝nicis & －inininis & －isoins \\
\hline い &  & い二馬い & 二心出式忥 & いさあここ0 & かえへご気 &  &  \\
\hline ＝ & ースベ & \(=\) & ごのすご & \(\sim\) & ぐすへいご可 & 二ッがい & 二万oumus \\
\hline 은 &  & 术島式氙忈 &  &  &  & 忥式気氛氙 & 氙欨家事氙 \\
\hline N゙い & \begin{tabular}{l}
N～世N \\

\end{tabular} &  &  &  & いーN －Non & 品む品む曻 &  \\
\hline \(=\infty\) & ごッニこ & \(0 \sim \infty\) &  & あこのこへ & い゙すこのこ &  & ここのご， \\
\hline \(\cdots\) & unenumus & arusumen & wevenconer & unumum & vicumen &  & unucruen \\
\hline \(\sim \mathrm{N}\) & NNNNN & NNNNN & NNNNT & NNNNN & NNNNT & NNNNN & nNanN \\
\hline
\end{tabular}
\begin{tabular}{ll}
2 & 35 \\
2 & 20 \\
2 & 19 \\
2 & 22 \\
2 & 20 \\
2 & 55 \\
3 & 56 \\
2 & 31 \\
2 & 18 \\
2 & 33 \\
2 & 29 \\
2 & 73 \\
2 & 23 \\
2 & 13 \\
2 & 11 \\
2 & 104 \\
2 & 21 \\
2 & 33 \\
2 & 39 \\
2 & 21 \\
2 & 26 \\
2 & 23 \\
2 & 31 \\
2 & 35 \\
2 & 11 \\
2 & 32 \\
2 & 18 \\
2 & 19 \\
2 & 38 \\
2 & 12 \\
2 & 20 \\
2 & 19 \\
2 & 32 \\
2 & 25 \\
2 & 21 \\
2 & 29 \\
2 & 36 \\
2
\end{tabular}
\begin{tabular}{ll} 
& 6 \\
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 3 \\
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 3 \\
2 & 2 \\
2 & 2 \\
2 & 2 \\
3 & 3 \\
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2
\end{tabular}
\(\begin{array}{ccc}6 & 115 & .28 \\ 2 & 98 & .28 \\ 2 & 92 & .26 \\ 2 & 98 & .35 \\ 2 & 92 & .25 \\ 2 & 107 & .69 \\ 3 & 111 & .71 \\ 2 & 155 & .51 \\ 2 & 115 & .21 \\ 2 & 95 & .18 \\ 3 & 115 & .34 \\ 2 & 10 & .96 \\ 2 & 98 & .23 \\ 2 & 96 & .23 \\ 3 & 18 & .18 \\ 2 & 11 & 1.40\end{array}\) \(\begin{array}{ll}28 & .20 \\ 8 & .09 \\ 5 & .05 \\ 5 & .07 \\ 5 & .05\end{array}\) \(\begin{array}{llll}l a & C r & \mathrm{Kg}_{\mathrm{g}} & \mathrm{Ba} \\ \mathrm{ppa} & \mathrm{ppa} & \mathrm{L} & \mathrm{ppz}\end{array}\) Ii \(\begin{array}{cc}\mathrm{Al} & \mathrm{K} \\ 2\end{array}\) \(1:\)
\(i\)\(\underset{\text { pp：}}{n}\)

14－2－R－3219 1A－2－R－3220 A－2－8－3221 \(1-2-8-8-3222\) TA－2－R－3223
\begin{tabular}{ll} 
& 1 \\
2 & 2 \\
2 & 3 \\
2 & 1 \\
2 & 2
\end{tabular}

S．M．D．C．FRGJECT \＃TA HOOLA 4947 FILE \＃日2－04．36
ShKPLE I
\(\begin{array}{lllllll}\mathrm{Mo} & \mathrm{Cu} & \mathrm{Pb} & \mathrm{In} & \mathrm{Ag} & \mathrm{Ni}\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1A－2－8－520b & 3 & 36 & 23 & 59 & ． 2 & 23 & 10 & 274 & 3.30 & 11 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 104 & ． 28 & ． 03 & 1 & 54 & ． 66 & 65 & ． 15 & 2 & 1.93 & ． 03 & ． 08 & 2 \\
\hline TA－2－R－5207 & 2 & 82 & 38 & 116 & .1 & 30 & 14 & 421 & 4.13 & 13 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 106 & ． 21 & ． 09 & 1 & 55 & ． 11 & 123 & ． 15 & 3 & 3.00 & ． 02 & ． 09 & 2 \\
\hline IA C －\(-\mathrm{R}-5208\) & 3 & 10 & 25 & 86 & ． 2 & 22 & 9 & 205 & 3.52 & 14 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 115 & ． 11 & ． 04 & 5 & 58 & ． 64 & 85 & ． 15 & 3 & 1.89 & ． 03 & ． 09 & 2 \\
\hline T \(\mathrm{A}-2-8-5209\) & 2 & 11 & 23 & 111 & ． 1 & 81 & 12 & 206 & 3.90 & 10 & 5 & 2 & 2 & 72 & 1 & － 2 & 2 & 103 & ． 27 & ． 08 & 2 & 87 & ． 81 & 124 & ． 11 & 1 & 2.01 & ． 03 & ． 10 & 2 \\
\hline 1A－2－R－5210 & 4 & 87 & 21 & 155 & ． 1 & 27 & 15 & 496 & 4.12 & 14 & 5 & 2 & 2 & 64 & 1 & 2 & 2 & 116 & ． 31 & .12 & 5 & 53 & 1.28 & 119 & ． 15 & 3 & 3.00 & ． 02 & ．13 & 2 \\
\hline 1A－2－R－521］ & 2 & 19 & 23 & 70 & ． 2 & 18 & \(\theta\) & 212 & 3.23 & 12 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 87 & ． 15 & ． 07 & 3 & 43 & ． 15 & 33 & ． 11 & 2 & 2.20 & ． 03 & ． 01 & 2 \\
\hline IA－2－8－5212 & 1 & 81 & 40 & 120 & ． 3 & 16 & 9 & 405 & 4.91 & 13 & 5 & 2 & 2 & 80 & 1 & 2 & 2 & 105 & ． 19 & ． 17 & 3 & 11 & ． 53 & 169 & ． 15 & 2 & 2.19 & ． 02 & ． 06 & 2 \\
\hline TA－2－R－5213 & 1 & 26 & 30 & 52 & ． 2 & 29 & 10 & 325 & 4.05 & 11 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 112 & ． 32 & ． 08 & 3 & 98 & ． 95 & 104 & ． 18 & 2 & 1.72 & ． 03 & ． 08 & 2 \\
\hline 7A－2－R－5214 & 26 & 181 & 㫙 & 102 & 1.9 & 18 & 17 & 872 & 4.11 & 20 & 5 & 2 & 2 & 39 & 3 & 2 & 2 & 99 & ． 62 & ． 07 & 12 & 78 & ． 69 & 169 & ． 09 & 1 & 2.81 & ． 02 & ． 13 & 2 \\
\hline IA－2－k－5215 & 1 & 64 & 4 & 112 & ． 6 & 41 & 11 & 592 & 3.85 & 22 & 5 & 2 & 2 & 25 & 2 & 2 & 2 & 104 & ． 18 & ． 11 & 6 & 89 & 1.19 & 153 & ． 11 & 1 & 2.25 & ． 02 & ． 15 & 2 \\
\hline TA－2－a－5216 & 7 & 76 & 48 & 65 & ． 8 & 24 & 11 & 321 & 4.19 & 14 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 123 & ． 50 & ． 13 & 2 & 99 & 1.50 & 119 & ． 11 & 1 & 1.82 & ． 03 & ． 17 & 2 \\
\hline IA－2－R－5217 & 16 & 191 & 76 & 65 & 2.0 & 35 & 12 & 878 & 3.13 & 7 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 81 & ． 39 & ． 06 & 9 & 53 & ． 11 & 338 & ． 13 & 5 & 1.60 & ． 04 & ． 15 & 2 \\
\hline 1A－2－R－5218 & 17 & 162 & 51 & 71 & ． 6 & 58 & 15 & 546 & 4.05 & 19 & 5 & 2 & 2 & 31 & 2 & 1 & 2 & 114 & ． 67 & ． 04 & 8 & 109 & 2.03 & 176 & ．！ 1 & J & 2.33 & ． 04 & ． 35 & 2 \\
\hline TA－2－R－5219 & 10 & 18 & 63 & 63 & ． 7 & 39 & 9 & 212 & 3.67 & 20 & 5 & 2 & 2 & 23 & 2 & 3 & 3 & 114 & ． 31 & ． 05 & 1 & 96 & 1.61 & 96 & ． 17 & 4 & 1.88 & ． 03 & ． 17 & 2 \\
\hline IA－2－R－5220 & 1 & 29 & 31 & 41 & ． 1 & 18 & 5 & 163 & 2.06 & 6 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 15 & ． 25 & ． 05 & 3 & 17 & ． 67 & 84 & ． 11 & 2 & 1.00 & ． 04 & ． 10 & 2 \\
\hline TA－2－R－522I & 1 & 61 & 39 & 81 & 1.3 & 13 & 8 & 200 & 4.16 & 7 & 5 & & 2 & 13 & 2 & 2 & 2 & 134 & ． 17 & ． 13 & 2 & 16 & 1.12 & 126 & ． 16 & 6 & 1.52 & ． 04 & ． 15 & 2 \\
\hline TA－2－R－5222 & 19 & 109 & 11 & 62 & 2.1 & 31 & 11 & 333 & 3.00 & 14 & 5 & 2 & 2 & 46 & 1 & 2 & 2 & 80 & ． 95 & ． 05 & 1 & 59 & ． 70 & 185 & ． 09 & 1 & 1.99 & ． 03 & ． 12 & 2 \\
\hline 1A－2－R－5223 & 10 & 80 & 19 & 80 & ． 9 & 23 & 7 & 158 & 3.10 & 11 & 5 & 2 & 2 & 22 & 1 & 3 & 2 & 106 & ． 39 & ． 08. & 3 & 65 & ． 95 & 120 & ． 17 & 6 & 1.55 & ． 03 & ． 11 & 2 \\
\hline 1A－2－R－522 & 6 & 69 & 32 & 132 & 1.2 & 37 & 14 & 303 & 3.91 & 22 & 5 & 2 & 2 & 31 & 2 & 3 & 2 & 98 & ． 72 & ． 14 & 3 & BO & 1.40 & 151 & ． 11 & 1 & 2.18 & ． 02 & ． 19 & 2 \\
\hline 1A－2－8－5225 & 32 & 37 & 29 & 62 & ． 8 & 19 & 1 & 139 & 3.02 & 8 & 5 & 2 & 2 & 35 & 1 & 2 & 2 & 107 & ． 42 & ． 03 & 3 & 55 & ． 93 & 58 & ． 13 & 3 & 1.82 & ． 03 & ． 11 & 2 \\
\hline IA－2－R－522b & 11 & 18 & 29 & 55 & ． 8 & 39 & J & 209 & 3.33 & 18 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 113 & ． 13 & ． 05 & 1 & 102 & 1.31 & 91 & ． 16 & 3 & 1.57 & ． 03 & ． 13 & 2 \\
\hline 1 \(14-2\)－R－5227 & 15 & 154 & 11 & 128 & ． 9 & 81 & 16 & 898 & 4.13 & 23 & 5 & 2 & 2 & 38 & 2 & 1 & 3 & 107 & ． 57 & ． 05 & 6 & 92 & 1.13 & 180 & .13 & 1 & 2.96 & ． 03 & ． 20 & 2 \\
\hline 1A－2－R－5228 & 31 & 210 & 27 & 97 & ． 1 & 53 & 17 & 1332 & 4.10 & 24 & 5 & 2 & & 28 & J & 3 & 3 & 106 & ． 43 & ． 05 & 7 & 86 & 1．36 & 151 & ． 10 & 6 & 2.74 & ． 03 & ． 19 & 2 \\
\hline TA－2－8－5229 & 22 & 257 & 36 & 110 & ． 1.6 & 82 & 16 & 621 & 4.30 & 22 & 5 & 2 & 2 & 63 & 2 & 2 & 2 & 91 & ． 90 & ． 05 & B & B0 & 1.17 & 157 & ． 11 & 7 & 2.73 & ． 02 & ． 18 & 2 \\
\hline 1A－2－R－5230 & 14 & 117 & 36 & 51 & ． 7 & 43 & 19 & 421 & 5.19 & 20 & 5 & 2 & 2 & 31 & 2 & 2 & \(2 \cdot\) & 127 & ． 64 & ． 04 & 1. & 106 & 2.10 & 76 & ． 20 & 2 & 2.16 & ． 03 & ． 24 & 2 \\
\hline 1 \(\mathrm{A}-2-8-5231\) & 10 & 71 & 26 & 58 & ． 8 & 23 & 1 & 276 & 3.45 & 8 & S & 2 & & 39 & 1 & 2 & 2 & 109 & ． 83 & ． 01 & 3 & 58 & 1.28 & 100 & ． 20 & 3 & 1.63 & ． 04 & ． 21 & 2 \\
\hline 1A－2－R－5232 & 5 & 79 & 18 & 103 & ． 7 & 30 & ． 11 & 325 & 5.11 & 17 & 5 & 2 & 2 & 22 & 2 & 2 & 3 & 146 & ． 18 & ． 09 & 3 & 82 & 1.69 & 100 & ． 23 & 1 & 2.16 & ． 03 & ． 17 & 2 \\
\hline 1ヶ－2－R－5233 & 6 & \({ }^{63}\) & 32 & 62 & ． 8 & 23 & 11 & 363 & 5.03 & 19 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 136 & ． 19 & ． 09 & 2 & 59 & 1．67 & 93 & ． 19 & 3 & 2.11 & ． 03 & ． 17 & 2 \\
\hline IA C －－R－5234 & 7 & 90 & 36 & 63 & ． 6 & 17 & 14 & 394 & 4.84 & ， & 5 & 2 & 2 & 23 & 2 & 2. & 3 & 140 & ． 49 & ． 10 &  & 51 & 1.32 & 153 & ． 22 & 5 & 1.56 & ． 03 & ． 29 & 2 \\
\hline TA－2－R－5235 & 10 & 14 & 31 & 65 & ． 4 & 23 & 6 & 165 & 3.99 & 18 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 114 & ． 36 & ． 06 & 1 & 70 & 1.01 & 15 & ． 15 & 3 & 2.01 & ． 03 & ． 10 & ， \\
\hline Th－2－R－5236 & 5 & 22 & 16 & 38 & － 1 & 14 & 10 & 225 & 4.25 & 6 & 5 & 2 & 2 & 27 & 1 & 2 & 2 & 132 & ． 51 & ． 06 & 2 & 13 & 1.28 & 50 & ． 21 & 5 & 1.56 & ． 03 & ． 17 & 2 \\
\hline ［A－2－8－523］ & 2 & 21 & 12 & 33 & ． 2 & 11 & 1 & 201 & 3.12 & 12 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 113 & ． 34 & ． 188 & 2 & 11 & ．86 & 61 & ． 18 & 2 & 1.31 & ． 04 & ． 11 & 2 \\
\hline TA－2－A－5238 & 4 & 66 & 16 & 45 & ． 7 & 21 & 12 & 293 & 3.69 & 13 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 107 & ． 50 & ． 07 & & 54 & 1.09 & 102 & ． 17 & 5 & 1.84 & ． 04 & ． 13 & 2 \\
\hline 1A－2－R－5239 & 2 & 19 & 16 & 71 & ． 1 & 15 & 11 & 321 & 4.31 & 13 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 119 & ． 40 & ． 11 & 2 & 16 & 1.03 & 11 & ． 20 & 1 & 1.92 & ． 04 & ． 12 & 2 \\
\hline T \(A\)－2－R－5240 & 5 & 55 & 17 & 78 & ． 1 & 21 & 13 & 371 & 5.13 & 26 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 110 & ． 49 & ． 16 & 1 & 68 & 1.17 & 140 & ． 16 & 3 & 2.06 & ． 03 & ． 16 & 2 \\
\hline TA－2－8－524］ & 7 & 33 & 21 & 59 & ． 3 & 22 & 9 & 234 & 3.99 & 13 & 5 & 2. & ， & 19 & 1 & 2 & 2 & 121 & ． 30 & ． 08 & 3 & 4 & ． 96 & 88 & ． 19 & 2 & 1.50 & ． 03 & ． 10 & 2 \\
\hline SIO A－1 & I & 30 & 11 & 178 & ． 3 & 31 & 12 & 1017 & 2.78 & 13 & 5 & 2 & J & 36 & 2 & 2 & 2 & S日 & ． 64 & ． 10 & 6 & 75 & ． 62 & 286 & ． 09 & 5 & 2.13 & ． 02 & ． 22 & 2 \\
\hline
\end{tabular}
S.M.D.C. PFOJECT \# TA HOOLA 4947 FILE \# 82-0436

SAMPLE I
- 212 \(18-2-R-5243\)
\(1 A-2-B-524\) \(1 A-2-R-5241\) \(1 A-2-R-5215\)
\(18-2-8-5247\) \(18-2-R-5247\)
\(7 R-2-R-524 日\) \(1 A-2-R-5248\)
\(T A-2-R-5249\) \(1 A-2-R-5219\)
1 SIO \(A-1\) 1 STO A-1
TA-2-A-5250

1A-2-R-5251 \(\mathrm{T} A-2-\mathrm{R}-\mathrm{S} 25 \mathrm{I}\)
\(\mathrm{T} A-2-\mathrm{R}-5252\) \begin{tabular}{ll}
\(1 A-2-R-5253\) \\
\hline
\end{tabular}


1A-2-R-5258 TA-2-R-5257 TR-2-R-5258 1A-2- \(\mathrm{f}-5259\) \(1 A-2-R-526\)
\(1 A-2-526\) \(1 A-2-R-5261\)
\(1 A-2-R-5262\) \(1 A-2-R-52 b 3\) TA-2-R-5264 1 \(A-2-R-5265\)
[A-2-R-5266 \([A-2-R-52 b]\) TA-2-R-5268 1A-2-R-5269 - \(-2 .!\)

Th-2-R-5271 \(1 \mathrm{~A}-2-8-5272\) A \(A-2-R-5273\) \(1 A-2-R-5274\)

TA-2-R-5276 1A-2-R-5277 TA-2-R-5278

Ko
ppa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8 & 18 & 31 & 54 & . 7 & 31 & 4 & 125 & 2.19 & 8 & 5 & 2 & 2 & 19 & 1 \\
\hline 1 & 15 & 16 & 54 & . 4 & 16 & 5 & 135 & 2.75 & 13 & 5 & 2 & 2 & 18 & 1 \\
\hline 10 & 90 & 24 & 118 & . 9 & 82 & 17 & 2017 & 4.10 & 24 & 5 & 2 & 3 & 34 & 2 \\
\hline 7 & 30 & 32 & 39 & .1 & 19 & 7 & 279 & 2.61 & 7 & 5 & 2 & 2 & 13 & 1 \\
\hline 6 & 22 & 19 & 13 & . 4 & 49 & 1 & 297 & 2.20 & 6 & 5 & 2 & 2 & 16 & 1 \\
\hline 7 & 37 & 45 & 54 & . 6 & 30 & 7 & 176 & 3.39 & 8 & 5 & 2 & 2 & 16 & 1 \\
\hline 4 & 27 & 12 & 31 & . 5 & 21 & 5 & 203 & 2.16 & 3 & 5 & 2 & 2 & 25 & 1 \\
\hline 11 & 11 & 40 & 102 & . 4 & 62 & 11 & 218 & 3.65 & 14 & 5 & 2. & 2 & 49 & 2 \\
\hline 1 & 29 & 11 & 167 & . 3 & 33 & 11 & 951 & 2.72 & 12 & 5 & 2 & 2 & 33. & 1 \\
\hline 1 & 15 & 24 & 26 & . 4 & 10 & 3 & 71 & 1.64 & 5 & 5 & 2 & 2 & 13 & 1 \\
\hline 9 & 32 & 22 & 68 & . 1 & 24 & 1 & 211 & 3.39 & 14 & 5 & 2 & 2 & 20 & 1 \\
\hline 13 & 100 & 36 & 87 & . 6 & 56 & 20 & 460 & 4.06 & 17 & 5 & 2 & 2 & 10 & 1 \\
\hline 6 & 52 & 31 & 51 & . 7 & 33 & 7 & 208 & 3.14 & 12 & 5 & 2 & 2 & 19 & 1 \\
\hline 17 & 104 & 59 & 51 & . 3 & 25 & d & 221 & 4.47 & 30 & 5 & 2 & 2 & 28 & 1 \\
\hline 27 & 98 & 30 & 48 & . 6 & 80 & 17 & 655 & 4.51 & 11 & 5 & 2 & 2 & 22 & 1 \\
\hline 9 & 61 & 29 & 40 & . 5 & 53 & 1 & 265 & 3.30 & 日 & 5 & 2 & 2 & 23 & 1 \\
\hline 11 & 24 & 21 & 31 & . 5 & 31 & 1 & 111 & 2.19 & 1 & 5 & 2 & 2 & 11 & 1 \\
\hline 6 & 27 & 28 & 40 & . 1 & 48 & 6 & 219 & 2.83 & 5 & 5 & 2 & 2 & 13 & 1 \\
\hline 15 & 92 & 28 & 46 & 1.1 & 49 & 6 & 117 & 2.13 & 1 & 5 & 2 & 2 & 28 & 1 \\
\hline 24 & 108 & 30 & 79 & . 3 & 61 & 15 & 732 & 3.85 & 15 & 5 & 2 & 2 & 31 & 1 \\
\hline 3 & 85 & 61 & 71 & . 4 & 32 & 10 & 302 & 3.91 & 11 & 5 & 2 & 2 & 12 & 1 \\
\hline 1 & 38 & 31 & 70 & . 7 & 46 & 9 & 224 & 3.86 & 13 & 5 & 2 & 2 & 16 & 1 \\
\hline 6 & 110 & 21 & 79 & . 7 & 13 & 10 & 384 & 3.90 & 15 & 5 & 2 & 2 & 29 & 1 \\
\hline 1 & 65 & 22 & 62 & . 5 & 31 & 9 & 117 & 2.98 & 14 & 5 & 2 & 2 & 30 & 1 \\
\hline 3 & 57 & 23 & 81 & . 4 & 33 & 13 & 411 & 3.19 & 10 & 5 & 2 & 2 & 28 & 1 \\
\hline 4 & 11 & 31 & 80 & . 6 & 39 & 11 & 160 & 3.51 & 14 & , & 2 & 2 & 29 & 1 \\
\hline 5 & 90 & 24 & 66 & . 8 & 39 & 12 & 472 & 3.63 & 14 & 5 & 2 & 2 & \(30^{\circ}\) & 1 \\
\hline 3 & 45 & 34 & 87 & 2.0 & 30 & 10 & 429 & 3.13 & 15 & 5 & 2 & 2 & 88 & 1 \\
\hline 3 & 52 & 22 & 78 & . 5 & 30 & 8 & 259 & 3.22 & 13 & 5 & 2 & 2 & 16 & 1 \\
\hline 3 & 32 & . \({ }^{22}\). & 61 & . 6 & 24 & 7 & 242 & 3.18 & 14 & 5 & 2 & , & 23 & 1 \\
\hline 214 & 103 & 328 & 88 & 1.4 & 59 & 13 & 393 & 4.06 & 10 & 5 & 2 & 2 & 23 & 1 \\
\hline 25 & 71 & 161 & 90 & 3.7 & 74 & 5 & 161 & 3.12 & 20 & J & 2 & 2 & 23 & \(!\) \\
\hline 6 & 27 & 103 & 18 & 1.0 & 22 & 7 & 127 & 3.61 & 11 & 5 & 2 & 2 & 12 & 1 \\
\hline 9 & 11 & 41 & 10 & . 7 & 21 & 9 & 266 & 3.13 & 11 & 5 & 2 & 2 & 19 & 2 \\
\hline 20 & 106 & 51 & 95 & 1.0 & 30 & 11 & 610 & 3.51 & 11 & 5 & 2 & 2 & 23 & 2 \\
\hline 8 & 120 & 99 & 88 & . 8 & 47 & 19 & 562 & 4.10 & 12 & 5 & 2 & 2 & 17 & 1 \\
\hline 17 & 71 & 54 & 128 & . 6 & 70 & 19 & 490 & 4.18 & 16 & 5 & 2 & 2 & . 21 & 1 \\
\hline 23 & 89 & 52 & 82 & 1.1 & 62 & 16 & 383 & 4.06 & 7 & 5 & 2 & 2 & 30 & \\
\hline
\end{tabular}
2
2
5
2
3
2
2
2
2
2
2
2
2
2
2
\begin{tabular}{cc}
2, & 86 \\
2 & 79 \\
2 & 120 \\
2 & 76 \\
2 & 65 \\
2 & 89 \\
2 & 72 \\
2 & 92 \\
2 & 54 \\
2 & 58 \\
2 & 94 \\
2 & 94 \\
2 & 103 \\
2 & 164 \\
2 & 124
\end{tabular}
\begin{tabular}{l}
.31 \\
.25 \\
.52 \\
.23 \\
.33 \\
\\
\hline .26 \\
. .61 \\
\hline .91 \\
\hline 58 \\
\hline .63
\end{tabular}
.05
.06
.07
.08
.05
.10
.05
.05
.10
.03
ppq
1
1
8
1
3
3
3
1
7
5
\(\begin{array}{rrrr}1 & 75 & .61 & 8 \\ 38 & .19 & 10 \\ 169 & 1.69 & 185 \\ 56 & .79 & 85 \\ 148 & 1.66 & 79 \\ & 90 & 1.06 & 100 \\ 36 & .88 & 5 \\ 3 & 128 & 1.69 & 91 \\ 7 & .80 & 273 \\ & 28 & .30 & 58\end{array}\)
\(\begin{array}{cccc}5 & 62 & .83 & 148 \\ 7 & 96 & 1.63 & 101 \\ 6 & 90 & 1.26 & 71 \\ 3 & 109 & 2.19 & 141 \\ 2 & 185 & 2.56 & 61\end{array}\) .13
.13
.20
.20
.27
\[
\begin{array}{rrrrrrrrrrrrrrr}
2 & 2 & 97 & .32 & .05 & 3 & 121 & 2.00 & 66 & .26 & 1 & 2.07 & .08 & .20 & 2 \\
3 & 2 & 93 & .23 & .03 & 3 & 90 & 1.02 & 71 & .24 & 2 & 1.35 & .04 & .21 & 2 \\
2 & 2 & 83 & .29 & .06 & 3 & 139 & 1.14 & .67 & .19 & 1 & 1.91 & .04 & .12 & 2 \\
2 & 2 & 68 & .40 & .05 & 5 & 89 & .88 & 71 & .16 & .4 & 1.19 & .01 & .17 & 2 \\
2 & 2 & 101 & .52 & .04 & 8 & 120 & 1.09 & 95 & .11 & 1 & 2.31 & .02 & .11 & 2 \\
2 & 2 & 115 & & & .28 & .09 & 1 & 88 & 1.86 & 78 & .14 & 6 & 1.95 & .03 \\
3 & 2 & 120 & .36 & .01 & 1 & 127 & 1.60 & 81 & .21 & 7 & 1.90 & .03 & .13 & 2 \\
2 & 2 & 100 & .48 & .04 & 9 & 78 & 1.04 & 169 & .11 & 1 & 2.53 & .03 & .17 & 2 \\
2 & 2 & 82 & .56 & .05 & 8 & 63 & 1.06 & 122 & .10 & 7 & 2.11 & .02 & .13 & 2 \\
3 & 2 & 91 & .51 & .05 & 8 . & 69 & 1.20 & 131 & .12 & 5 & 2.22 & .02 & .13 & 2
\end{array}
\]
\[
\begin{array}{rrrrrrrrrrrrr}
.3 & 95 & .57 & .04 & 8 & .74 & 1.31 & 134 & .13 & .3 & 2.11 & .03 & .17 \\
.2 & 94 & .54 & .04 & 9 & 71 & 1.21 & 114 & .11 & 3 & 2.12 & .02 & .18 \\
2 & 87 & .69 & .03 & 7 & 62 & .76 & 164 & .10 & 5 & 2.31 & .04 & .13 \\
2 & 82 & .28 & .05 & 8 & 68 & 1.11 & 72 & .10 & 3 & 2.21 & .01 & .13 \\
2 & 90 & .42 & .11 & 8 & . .59 & \ldots .93 & .115 & .11 & . .4 & .1 .23 & -02 & .12
\end{array}
\]
\[
\begin{array}{rrrrrrrrrrrrrr}
2 & 6 & 89 & .36 & .08 & 2 & 169 & 1.76 & 125 & .21 & 2 & 1.67 & .04 & .31 \\
2 & 6 & 110 & .16 & .04 & 3 & 80 & 1.05 & 10 & .26 & 7 & 1.30 & .04 & .17 \\
2 & 2 & 91 & .19 & .18 & 2 & 63 & .60 & 17 & .16 & 3 & 2.12 & .03 & .08 \\
2 & 2 & 93 & .32 & .07 & 1 & 61 & .81 & 109 & .15 & 3 & 1.26 & .03 & .13 \\
2 & 2 & 97 & .14 & .08 & 1 & 68 & 1.10 & 146 & .18 & 7 & 1.73 & .03 & .25 \\
2 & 1 & 126 & .43 & .07 & 2 & 126 & 2.66 & 61 & .26 & 4 & & & \\
2 & 3 & 112 & .47 & .07 & 2 & 183 & 2.24 & 105 & .21 & 3 & 2.67 & .04 & .03 \\
2 & 2 & 98 & .62 & .04 & 1 & 100 & 1.53 & 90 & .21 & 3 & 2.33 & .03 & .15
\end{array}
\]
\[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\]

S．M．D．C．FROJECT \＃TA HOOLA 49.47 FILE \＃82－0436
SAMPLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1R－2－R－5279 & 38 & 122 & 33 & 135 & ． 5 & 99 & 18 & 354 & 4.48 & 18 & 5 & 2 & 2 & 30 & 3 & 2 & 2 & 91 & ． 53 & ． 05 & 5 & 117 & 1.61 & 84 & ． 12 & 3 & 2.61 & ． 02 & ． 21 & 2 \\
\hline 1A－2－R－5280 & 27 & 69 & 24 & 64 & 1.1 & 81 & 7 & 203 & 4.11 & 15 & 5 & 2 & 2 & 10 & 2 & 1 & 2 & 100 & ． 46 & ． 03 & 3 & 165 & 1.72 & 52 & ． 20 & 3 & 1.74 & ． 03 & ．13 & 2 \\
\hline 1A－2－R－52日I & ； & 39 & 17 & 67 & ． 3 & 31 & 11 & 260 & 4.19 & 19 & 5 & 2 & 2 & 16 & 1 & 2 & 2 & 114 & ． 35 & ． 09 & 2 & 85 & ． 98 & 63 & ． 14 & 1 & 1.11 & ． 04 & ． 11 & 2 \\
\hline 1A－2－R－5282 & \(b\) & 49 & 25 & 71 & ． 1 & 34 & 16 & 656 & 4.14 & 19 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 116 & ． 38 & ． 09 & 3 & 76 & 1.05 & 113 & ． 08 & 3 & 1.39 & ． 02 & ． 08 & 2 \\
\hline 1A－2－8－52日J & 6 & 25 & 15 & 11 & ． 3 & 33 & 8 & 171 & 3.32 & 12 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 108 & ． 31 & ． 06 & 2 & 66 & ． 97 & 66 & ． 16 & 2 & 1.17 & ． 03 & ． 10 & 2 \\
\hline 1A－2－R－5284 & 2 & 15 & 10 & 53 & ． 3 & 12 & 1 & 107 & 2.51 & 10 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 70 & ． 26 & ． 06 & 4 & 28 & ． 39 & 62 & ． 06 & 3 & 1.07 & ． 02 & ． 06 & 2 \\
\hline 1A－2－R－5285 & J & 31 & 12 & 93 & ． 3 & 27 & 12 & 273 & 3.74 & 25 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 79 & ． 21 & ． 08 & 6 & 46 & ． 88 & 114 & ． 04 & 1 & 2.30 & ． 01 & ． 07 & 2 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-528 \mathrm{~B}\) & 2 & 11 & 6 & 38 & ． 3 & ， & 3 & 82 & 2.08 & 9 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 69 & ． 23 & ． 04 & 1 & 19 & ． 23 & 74 & ． 06 & 2 & ． 03 & ． 03 & ． 07 & 2 \\
\hline 1A－2－R－5287 & 3 & 25 & ． 13 & 98 & ． 2 & 27 & 8 & 182 & 3.59. & 26. & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 90 & ． 21 & ． 06 & 5 & 13. & ． 69 & 108 & ． 04 & 3 & 2.01 & ． 01 & ． 07 & 2 \\
\hline \(1 \mathrm{~A}-2-\mathrm{R}-5288\) & 2 & 28 & 9 & 86 & ． 6 & 11 & J & 168 & 3.55 & 25 & 5 & 2 & 2 & 19 & 1 & ． 2 & 2 & 79 & ． 52 & ． 07 & 2 & 17 & ． 31 & 114 & ． 10 & 3 & 1.51 & ． 02 & ． 06 & 2 \\
\hline 1A－2－R－5289 & 2 & 21 & 14 & 68 & ． 6 & 15 & 5 & 138 & 2.61 & 15 & 5 & & 2 & 17 & 1 & 2 & 2 & 58 & ． 31 & ． 06 & 5 & 26 & ． 35 & 106 & ． 04 & 2 & 1.71 & ． 02 & ． 09 & 2 \\
\hline 1A－2－R－5290 & 2 & 22 & 14 & 96 & ． 1 & 18 & 6 & 120 & 3.30 & 17 & 5 & 2 & 2 & 12 & 1 & 3 & 2 & 64 & ． 19 & ． 08 & 6 & 39 & ． 52 & 125 & ． 04 & 11 & 2.11 & ． 02 & ． 06 & 2 \\
\hline TA－2－R－4188 & 5 & 68 & 36 & 102 & ． 1 & 62 & 18 & 707 & 3.75 & 14 & 5 & 2 & 2 & 31 & 1 & 4 & 2 & 91 & ． 83 & ． 06 & 3 & 134 & 2.93 & 108 & ． 12 & 3 & 2.72 & ． 02 & ． 31 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-4189\) & 3 & 56 & 34 & 69 & ． 6 & 18 & 10 & 273 & 3.57 & 13 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 93 & ． 11 & ． 06 & 1 & 105 & 1.78 & 84 & ． 12 & 1 & 2.31 & ． 02 & ． 15 & 2 \\
\hline 1A－2－R－1／90 & 3 & 57 & 18 & 83 & 1.0 & 34 & 13 & 555 & 2.93 & 7 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 75 & ． 31 & ． 06 & 5 & 70 & 1.15 & 98 & ． 09 & 1 & 2.10 & ． 03 & ． 11 & 2 \\
\hline TA－2－R－519］ & 7 & 62 & 81 & 74 & 1.6 & 25 & 10 & 389 & 2.11 & 8 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 41 & ． 30 & ． 06 & 5 & 52 & ． 74 & 83 & ． 09 & 3 & 1.51 & ． 03 & ． 08 & 2 \\
\hline 1A－2－R－4192 & 2 & 18 & 21 & 38 & ． 2 & 16 & 6 & 323 & 2.64 & 8 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 78 & ． 14 & ． 07 & 3 & 11 & ． 11 & 6 & ． 09 & 2 & 1.36 & ． 03 & ． 07 & 2 \\
\hline ［ \(\mathrm{A}-2-\mathrm{R}-4193\) & 3 & 30 & 87 & 65 & ． 1 & 10 & 10 & 312 & 5.25 & 9 & 5 & 2 & 2 & 106 & 1 & 2 & 2 & 101 & ． 18 & ． 14 & 2 & 25 & ． 70 & 174 & ． 12 & 1 & 2.24. & ． 02 & ． 10 & 2 \\
\hline TA－2－R－1194 & 2 & 58 & 27 & 86 & ． 1 & 30 & 11 & 231 & 1．33 & 12 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 104 & ． 17 & ． 12 & 3 & 62 & 1.03 & 68 & ． 12 & 1 & 2.25 & ． 02 & ． 09 & 2 \\
\hline 1A－2－8－4195 & 1 & 82 & 36 & 87 & ． 4 & 11 & 17 & 826 & 4.07 & 17 & 6 & 2 & 2 & 17 & 1 & 2 & 2 & 95 & ． 63 & ． 06 & 6 & 80 & 1.48 & 116 & ． 09 & 5 & 2.64 & ． 02 & ． 11 & 2 \\
\hline 1A－2－R－1196 & 3 & 74 & 33 & 115 & 2.3 & 41 & 11 & 546 & 3.67 & 17 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 75 & ． 65 & ． 06 & 8 & 61 & ． 78 & 151 & ． 09 & 1 & 3.06 & ． 02 & ． 10 & 2 \\
\hline 1A－2－R－4197 & 6 & 50 & 23 & 63 & ． 1 & 30 & 10 & 216 & 3.29 & 16 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 88 & ． 14 & ． 04 & 5 & 62 & ． 91 & 92 & ． 08 & 3 & 1.94 & ． 02 & ． 10 & 2 \\
\hline 1A－2－R－4198 & 2 & 15 & 18 & 46 & ． 7 & 12 & 5 & 113 & 2.22 & \(\gamma\) & 5 & 2 & 2 & 25 & 1 & － 2 & 2 & 60 & ． 58 & ． 04 & 3 & 25 & ． 32 & 67 & ． 10 & 2 & 1.69 & ． 03 & ． 06 & 2 \\
\hline TA－2－R－4199 & 2 & 36 & 27 & 100 & ． 4 & 18 & 10 & 385. & 3.14 & 1 & 5 & 2 & 2 & 18 & ； & ． 2 & 2 & 70 & ． 29 & ． 13 & 4 & 15 & ． 69 & 115 & ． 08 & 3 & 1.89 & ． 02 & ． 07 & 2 \\
\hline 1A－2－8－1200 & 1 & 34 & 19 & 89 & ． 1 & 12 & 12 & 431 & 3.97 & 1 & 5 & 2 & 2 & 25 & 1 & 2 & 2 & 83 & ． 25 & ． 11 & 2. & 27 & ． 82 & 73 & ． 05 & 3 & 1.86 & ． 01 & ． 06 & 2 \\
\hline \(1 \mathrm{~A}-2-\mathrm{R}-1201\) & 3 & 26 & 24 & 119 & ． 3 & 16 & 9 & 195 & 4．56 & 11 & 5 & 2 & 2 & 11 & 1 & 2 & 3 & 95 & ． 17 & ． 10 & 2 & 11 & ． 61 & 6 & ． 12 & 1 & 2.31 & ． 02 & ． 07 & 2 \\
\hline TA－2－R－4202 & 3 & 84 & 35 & 59 & ． 5 & 38 & 15 & 344 & 1.00 & 13 & 5 & 2 & 2 & 32 & 1 & 2 & 2 & 103 & ． 71 & ． 02 & 6 & 95 & 1.60 & 78 & ． 13 & 3 & 2.11 & ． 02 & ． 13 & 2 \\
\hline TA－2－R－420］ & 3 & 43 & 48 & 105 & ． 3 & 36 & 11 & 227 & 3.63 & 14 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 86 & ． 33 & ． 11 & 1 & 78 & 1.20 & 11 & ． 08 & 3 & 2.16 & ． 02 & ． 11 & 2 \\
\hline T \(\mathrm{A}-2-\mathrm{K}-1204\) & 3 & 14. & 16 & 132 & ． 2 & 35 & 12 & 225 & 4.15 & 17 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 98 & ． 36 & ． 13 & 3 & － 71 & 1.18 & 89 & ． 11 & 1 & 2.55 & ． 02 & ． 08 & 2 \\
\hline iA－2－R－1206 & 3 & 12 & 65 & 65 & ． 7 & 37 & 10 & 285 & 3.18 & 15 & 5 & 2 & 2 & 22 & 1 & 3 & 2 & 91 & ． 59 & ． 08 & 5 & 83 & 1.35 & 92 & ． 10 & 3 & 1.94 & ． 02 & ． 13 & 2 \\
\hline TA－2－R－4207 & 3 & 61 & 78 & 181 & ． 5 & 52 & 14 & 30日 & 4.00 & 15 & 5 & 2 & 2 & ＇16 & 1 & 2 & 3 & 97 & ． 36 & ． 13 & 3 & 107 & 1.86 & 71 & ． 13 & 1 & 2.35 & ． 02 & ． 13 & 2 \\
\hline \(1 A-2-R-4208\) & 5 & 112 & 91 & 90 & ． 9 & 53 & 15 & 399 & 4.18 & 17 & 5 & 2 & 2 & 28 & 1 & 2 & J & 105 & ． 74 & ． 09 & 5 & 110 & 2.12 & 113 & ． 12 & 1 & 2.35 & ． 02 & ． 25 & 2 \\
\hline ［A－2－R－2209 & \({ }^{6}\) & 125 & 61 & 124 & 1.3 & 62 & 15 & 288 & 3.61 & 14 & 5 & 2 & 2 & 32 & 1 & 2 & 2 & 80 & ． 63 & ． 04 & 3 & 94 & 1.65 & 145 & ． 12 & 3 & 2.19 & ． 02 & ． 22 & \\
\hline IA－2－R－42！0 & 8 & 235 & 90 & 128 & 2.0 & 72 & 16 & 583 & 5.13 & 21 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 103 & ． 86 & ． 05 & 8 & 115 & 1.60 & 215 & ．08 & 5 & 3.12 & ． 02 & ． 21 & 2 \\
\hline TA－2－R－421］ & 16 & 191 & 54 & 92 & 1.6 & 53 & 15 & 895 & 4.20 & 21 & 5 & 2 & 2 & 37 & 2 & 2 & 2 & 86 & ． 78 & ． 04 & 9 & 81 & 1.22 & 172 & ． 08 & 4 & 2.18 & ． 02 & ． 21 & \\
\hline Sio A－1 & 1 & 29 & 42 & 168 & ． 3 & 33 & 12 & 958 & 2.76 & 14 & 5 & 2. & 2 & 33 & 1 & 2 & 2 & 54 & ． 65 & ． 10 & 7 & 7 & ． 80 & 288 & ． 09 & 6 & 2.07 & ． 02 & ． 23 & 2 \\
\hline
\end{tabular}

SARPLE 1


\section*{\(\begin{array}{rr}10 & 3 \\ 8 & 2 \\ 8 \\ 9 & 2 \\ 11\end{array}\)}
\[
\begin{array}{lll}
326 & 3.47 & 12 \\
233 & 3.63 & 12 \\
221 & 3.82 & 17 \\
208 & 3.92 & 10 \\
303 & 3.12 & 14
\end{array}
\]
\[
\begin{array}{rrr}
30 & 6 & 14 \\
27 & 5 & 13 \\
426 & 17 & 30 \\
25 & 5 & 9 \\
41 & 18 & 6
\end{array}
\]
\[
\begin{array}{rr}
1.5 & 30 \\
.7 & 21 \\
.7 & 128 \\
.6 & 26 \\
.5 & 61 \\
1.0 & 48 \\
.9 & 38 \\
.9 & 30 \\
2.8 & 6 \\
5.0 & 266
\end{array}
\]
\[
\begin{aligned}
& 16 \\
& 18
\end{aligned}
\]
\[
\begin{array}{ccc}
142 & 2.91 & 7 \\
131 & 1.88 & 6 \\
300 & 3.67 & 9 \\
96 & 2.71 & 8 \\
958 & 3.86 & 13 \\
133 & 1.56 & 11 \\
264 & 3.63 & 12 \\
233 & 3.22 & 6 \\
1997 & 3.84 & 22
\end{array}
\]
\[
18 \quad 12
\]
がひた
\begin{tabular}{lllllll}
8 & 128 & 19 & 121 & 1.1 & 51 & 10
\end{tabular}

\section*{Pp：}
\begin{tabular}{ll}
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2 \\
5 & 2
\end{tabular}
\begin{tabular}{lll}
2 & 25 & 1 \\
2 & 25 & 1 \\
2 & 25 & 1 \\
2 & 15 & 1 \\
2 & 31 & 2 \\
2 & 32 & 2 \\
2 & 16 & 1 \\
2 & 10 & \\
2 & 30 &
\end{tabular}
\begin{tabular}{rrrrrr}
2 & 2 & 71 & .18 & .04 & 6 \\
2 & 2 & 94 & .47 & .06 & 5 \\
2 & 2 & 105 & .34 & .10 & 5 \\
3 & 5 & 100 & .50 & .05 & 5 \\
2 & 2 & 87 & .29 & .07 & 5 \\
2 & 2 & 88 & .61 & .05 & 7 \\
2 & 2 & 91 & .57 & .05 & 9 \\
2 & 2 & 103 & .11 & .07 & 5 \\
2 & 2 & 70 & .21 & .05 & 3 \\
3 & 3 & 71 & .87 & .06 & 10 \\
2 & 2 & 95 & .10 & .03 & 1
\end{tabular}
\[
\begin{array}{rrrrrrrrrr}
16 & 108 & 37 & 120 & .8 & 43 & 14 & 556 & 3.94 & 14 \\
9 & 119 & 37 & 107 & .7 & 19 & 16 & 635 & 1.20 & 19 \\
7 & 101 & 37 & 95 & .4 & 34 & 11 & 234 & 3.92 & 17 \\
3 & 85 & 25 & 34 & .7 & 11 & 6 & 114 & 2.52 & 6 \\
14 & 990 & 107 & 109 & 5.6 & 93 & 11 & 731 & 3.24 & 13
\end{array}
\]
\[
\begin{array}{ccc}
9 & 53 & 16 \\
3 & 55 & 27 \\
3 & 57 & 21 \\
6 & 29 & 23 \\
12 & 108 & 25 \\
56 & 203 & 15 \\
19 & 71 & 36 \\
13 & 79 & 33 \\
40 & 365 & 36 \\
22 & 716 & 83 \\
21 & 538 & 84 \\
27 & 334 & 52 \\
9 & 135 & 11 \\
19 & 331 & 54 \\
15 & 133 & 26 \\
34 & 29 & 14 \\
7 & 29 & 22 \\
32 & 97 & 29 \\
31 & 91 & 31 \\
11 & 42 & 26 \\
11 & 51 & . .26 \\
10 & 18 & 17 \\
11 & 30 & 24 \\
1 & 28 & 12 \\
3 & 38 & 14 \\
2 & 18 & 10 \\
1 & 30 & 42
\end{array}
\]
\[
\begin{array}{r}
70 \\
45 \\
59 \\
39 \\
72 \\
65 \\
65 \\
63 \\
56 \\
61 \\
79 \\
69 \\
121 \\
73 \\
72 \\
67 \\
106 \\
\hline 35 \\
39 \\
107 \\
57 \\
60 \\
75 \\
72
\end{array}
\]
\[
\begin{array}{lll}
19 & 634 & 1.19 \\
12 & 274 & 1.52 \\
21 & 335 & 1.96 \\
15 & 167 & 4.18
\end{array}
\]
uneneren
\[
\begin{array}{ll}
68 & 1.17 \\
78 & 1.17 \\
70 & 1.37 \\
71 & 1.28 \\
68 & 1.35
\end{array}
\]
\[
\begin{array}{ccc}
7 & 149 & .1 \\
7 & 88 & .1 \\
7 & 91 & .1 \\
8 & 91 & .1 \\
5 & 65 & .1
\end{array}
\]
\[
\begin{aligned}
& .10 \\
& .11 \\
& .11 \\
& .12 \\
& .11
\end{aligned}
\]
\[
\begin{array}{ll}
5 & 2.18 \\
3 & 1.90 \\
5 & 1.87 \\
1 & 1.78 \\
3 & 1.75
\end{array}
\]
\[
\begin{aligned}
& .03 \\
& .02 \\
& .02 \\
& .02 \\
& .02
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 95 & ． 10 & ． 03 & 1 & 76 & ． 95 & 220 & ． 18 & 2 & 1.54 & ． 03 & ． 12 \\
\hline 2 & 58 & ． 27 & ． 03 & 8 & 63 & ． 89 & 98 & ． 11 & 3 & 1.15 & ． 02 & ． 11 \\
\hline 2 & 87 & 1.01 & ． 03 & 3 & 192 & 3.16 & B5 & ． 20 & 2 & 2.55 & ． 02 & ． 17 \\
\hline 2 & 87 & ． 32 & ． 02 & 3 & 63 & ． 78 & 86 & ． 14 & 4 & 1.20 & ． 03 & ． 08 \\
\hline 2 & 101 & ． 16 & ． 04 & 5 & 117 & 2.00 & 106 & ． 16 & 5 & 2.23 & ． 02 & ． 25 \\
\hline 2 & 103 & ． 15 & ． 04 & 6 & 92 & 1.59 & 158 & ． 13 & 5 & 2.29 & ． 02 & ． 21 \\
\hline 2 & 102 & ． 42 & ． 10 & 1 & 78 & 1.63 & 113 & ． 13 & 3 & 1.80 & ． 02 & ． 18 \\
\hline 2. & 9 & ． 51 & ． 09 & 3 & 79 & 1.17 & 129 & ． 12 & 8 & 1.45 & ． 03 & ． 15 \\
\hline 2 & 65 & 1.68 & ． 13 & 11 & 69 & ． 91 & 211 & ． 03 & 1 & 2.58 & ． 02 & ． 17 \\
\hline 2 & 78 & ． 73 & ． 05 & 6 & 86 & 1.27 & 125 & ． 11 & 1 & 2.39 & ． 03 & ． 25 \\
\hline 3 & 84 & ． 90 & ． 05 & 7 & 112 & 1.74 & 136 & ． 10 & 1 & 2.69 & ． 02 & ． 24 \\
\hline 42 & 86 & ． 51 & ． 05 & 9 & 75 & ． 87 & 130 & ． 11 & 1 & 2.29 & ． 02 & ． 15 \\
\hline 2 & 112 & ． 29 & ． 05 & 2 & 134 & 2.56 & 48 & ． 19 & 6 & 2.68 & ． 02 & ． 25 \\
\hline 2 & 91 & ． 55 & ． 04 & 7 & 121 & 1.36 & 58 & ． 18 & 5 & 2.08 & ． 02 & ． 11 \\
\hline 2 & 62 & 1.31 & ． 05 & 3. & 97 & 1.35 & 93 & ． 13 & 7 & 2.12 & ． 03 & ． 13 \\
\hline 2 & 89 & ． 46 & ． 05 & 1 & 85 & ． 73 & 102 & ． 17 & 1 & 1.19 & ． 02 & ． 10 \\
\hline 2 & 88 & ． 32 & ． 02 & 3 & 62 & ． 11 & 85 & ． 15 & 3 & 1.19 & ． 02 & ． 07 \\
\hline 2 & 61 & ． 49 & ． 04 & 5 & 62 & ． \(\mathrm{Bb}_{6}\) & 98 & ． 13 & 3 & 2.11 & ． 02 & ． 10 \\
\hline 2 & 11 & ． 61 & ． 01 & 6 & 82 & 1.22 & 88 & ． 11 & 3 & 2.01 & ． 02 & ． 11 \\
\hline 2 & 111 & ． 21 & ． 15 & 1 & 113 & 1.29 & 176 & ． 13 & 3 & 1.13 & ． 02 & ． 19 \\
\hline 2 & 103 & ． 19 & ． 10 & 5 & 84 & 1.18 & 108 & ． 10 & 1 & 2.08 & ． 02 & ． 14 \\
\hline 2 & 11 & ． 11 & ． 06 & 6 & 31 & ． 36 & 91 & ． 08 & 3 & 2.04 & ． 03 & ． 06 \\
\hline 2 & 123 & ． 13 & ． 11 & 3 & 204 & 1.06 & 158 & ． 12 & 5 & 1.21 & ． 03 & ． 11 \\
\hline 2 & 84 & ． 20 & ． 05 & 1 & 12 & ． 50 & 60 & ． 10 & 3 & 1.20 & ． 03 & ． 07 \\
\hline 2 & 104 & ． 18 & ． 08 & 5 & 70 & 1.05 & 74 & ． 10 & 1 & 2.18 & ． 02 & ． 09 \\
\hline 2 & 82 & ． 22 & ． 08 & 5 & 30 & ． 15 & 82 & ． 07 & 3 & 1.32 & ． 02 & ． 07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TA-2-R-1249 & 2 & 51 & 10 & 104 & . 1 & 34 & 11 & 390 & 3.88 & 29 & 5 & 2 & 2 & 17 & 1 & 1 & 2 & 83 & . 26 & . 10 & 9 & 58 & 1.09 & 78 & . 07 & 1 & 2.29 & . 01 & . 09 & 2 & - \\
\hline 1A-2-R-1250 & 1 & 11 & 9 & 50 & . 1 & 21 & 8 & 190 & 2.96 & 12 & 5 & 2 & 2 & 32 & 1 & 3 & 2 & - 86 & . 16 & . 10 & 2 & 45 & 1.53 & 86 & . 13 & 5 & 1.73 & . 01 & . 27 & 2 & - \\
\hline 1 \(A-2-8-1251\) & 3 & 31 & 22 & 36 & . 6 & 15 & 5 & 118 & 2.93 & 1 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 81 & . 21 & . 08 & 3 & 12 & . 62 & 55 & . 14 & 2 & 1.27 & . 02 & . 08 & 2 & - \\
\hline 1A-2-R-1252 & 5 & 31 & 23 & 100 & 1.3 & 26 & \(\square\) & 208 & 4.03 & 6 & 5 & 2 & 2 & 14 & 1 & 3 & 2 & 109 & . 31 & . 10 & 3 & 17 & 1.14 & 11 & . 19 & 1 & 2.16 & . 02 & . 10 & 2 & - \\
\hline TA-2-0-9001 & 2 & 86 & 15 & 65 & . 3 & 70 & 28 & 1232 & 5.98 & 84 & 9 & 2 & 2 & 282 & 1 & 2 & 1 & 113 & 8.19 & . 18 & 2 & 321 & 2.91 & 53 & . 01 & 3 & 2.56 & . 02 & . 01 & 2 & 5 \\
\hline 1A-2-0-9002 & 3 & 12 & 3 & 26 & . 2 & 26 & 12 & 139 & 3.78 & 27 & 5 & 2 & 2 & 64 & 1 & 2 & 2 & 66 & 2.45 & . 11 & 3 & 25 & . 17 & 118 & . 01 & 3 & . 27 & . 08 & .13 & 2 & 5 \\
\hline TA-2-0-9003 & 1 & 50 & 3 & 8 & . 2 & 24 & 8 & 135 & 2.59 & 12 & 5 & 2 & 2 & 85 & 1 & 2 & 2 & 91 & 2.08 & . 08 & 1 & 28 & . 82 & 398 & . 01 & 1 & . 27 & . 08 & . 13 & 2. & 5 \\
\hline 1A-2-0-9004 & 3 & 73 & 3 & 11 & . 5 & 26 & 12 & 161 & 3.78 & 10 & 5 & 2 & 2 & 100 & 1 & 2 & 2 & 56 & 2.84 & . 10 & 3 & 27 & 1.10 & 109 & . 01 & 3 & . 17 & . 06 & . 10 & 2 & 50 \\
\hline 1A-2-0-9005 & 1 & 121 & 62 & 156 & 2.2 & 13 & 5 & 526 & 2.76 & 21 & 5 & 2 & 2 & 174 & 2 & 50 & 2 & 181 & 12.50 & . 06 & 2 & 21 & 5.08 & 104 & . 01 & 2 & . 09 & . 01 & . 07 & 2 & 110 \\
\hline 1A-2-0-8006 & 1 & 53 & 9 & 58 & . 1 & 20 & 16 & 565 & 4.74 & 12 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 131 & 1.81 & . 12 & 1 & 18 & 3.35 & 88 & . 15 & 5 & 3.09 & . 06 & . 06 & 2 & 5 \\
\hline 1A-2-0-9007 & 1 & 76 & 11 & 71 & . 2 & 273 & 31 & 967 & 4.54 & 300 & 10 & 2 & 2 & 133 & , & 2 & 3 & 73 & 6.80 & . 09 & 2 & 515 & 5.60 & 72 & . 01 & 6 & 2.00 & . 01 & . 16 & 2 & 5 \\
\hline 1A-2-0-9008 & 1 & 3 & 12 & 58 & 2.8 & 5 & 1 & 1376 & 1.06 & 2 & 23 & 2 & 2 & 1381 & 1 & 2 & 1 & 10 & 26.26 & . 01 & 7 & 9 & 1.73 & 705 & . 01 & 3 & . 06 & . 01 & . 01 & 2 & 215 \\
\hline SID A-1 & 1 & 29 & 12 & 170 & . 3 & 33 & 11 & 970 & 2.76 & 13 & 5 & 2 & 2 & 31 & 2 & 2 & 2 & 55 & . 66 & . 11 & 7. & 76 & . 81 & 273 & . 09 & 6 & 2.09 & . 02 & . 23 & 2 & - \\
\hline
\end{tabular}

\section*{ACME ANALYTICAL LABORATORIES LTD. \(\quad 852\) E. HASTINGS, VANCQUVER B.C. PH:253-3158}


hut Amalysis by an fron 10 bran sahple. SAhple IYpe - Solls

\[
\text { SeleO- S.M.D.C. FFOJECT \# TA HOOLA } 4947 \text { FILE \# '日2-0407 }
\]

SAMPLE I

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1A-2-8-3000 & 5 & 43 & 17 & 172 & . 5 & 62 & 20 & 547 & 4.44 & 41 & 5 & 2 & 2. & 25 & 1 & 2 & 2 & 107 & . 37 & . 24 & 7 & 164 & 1.35 & 118 & . 06 & 13 & 2.51 & . 02 & . 11 & 2 \\
\hline TA-2-R-3001 & 3 & 48 & 19 & 111 & . 7 & 260 & 42 & 613 & 6.04 & 60 & 5 & 2 & 2 & 13 & 1 & 2 & 3 & 164 & . 24 & . 07 & 6 & 686 & 3.91 & 60 & . 11 & 17 & 3.83 & . 01 & . 68 & 2 \\
\hline 1A-2-R-3002 & J & 21 & 13 & 108 & . 6 & 69 & 19 & 251 & 4.02 & 27 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 91 & . 14 & . 10 & 5 & 218 & 1.11 & 99 & . 11 & 11 & 2.54 & . 03 & . 06 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-3003\) & 3 & 22 & 14 & 117 & .4 & 110 & 21 & 358 & 4.85 & 13 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 107 & . 19 & . 16 & 5 & 356 & 1.87 & 171 & . 14 & 12 & 2.69 & . 03 & . 12 & 2 \\
\hline TA-2-R-3004 & 2 & 33 & 11 & 17 & . 6 & 172 & 27 & 557 & 4.08 & 1 & 5 & 2 & 2 & 16 & \(!\) & 2 & 2. & 98 & . 21 & . 07. & 6 & 519 & 2.82 & IJb & . 15 & 13 & 2.55 & . 03 & . 07 & 2 \\
\hline 1A-2-8-3005 & 3 & 63 & 20 & 113 & . 8 & 101 & 29 & 627 & 5.31 & 24 & 5 & 2 & 2 & 28 & 1 & 3 & 2 & 141 & . 45 & .06. & 8 & 339 & 2.22 & 99 & . 15 & 16 & 3.16 & . 02 & . 10 & 2 \\
\hline 1A-2-R-3006 & 5 & 213 & 20 & 199 & 1.3 & 14 & 35 & 2692 & 6.00 & 31 & 5 & 2 & 2 & 67 & 3 & 3 & 3 & 147 & 1.11 & .09 & 8 & 371 & 2.84 & 123 & . 12 & 14 & 3.11 & . 02 & . 10 & 2 \\
\hline 1A-2-8-3007 & 4 & 14 & 48 & 184 & 2.0 & 80 & 25 & 1379 & 5.02 & 29 & 5 & 2 & 2 & 20 & 1 & 5 & 2 & 129 & . 35 & . 10 & 5 & 232 & 1.67 & 120 & . 14 & 13 & 2.31 & . 03 & . 07 & 2 \\
\hline 1A-2-8-3008 & 5 & 63 & 24 & 160 & . 4 & 55 & 22 & 565 & 5.32 & 33 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 130 & . 21 & . 08 & 5 & 207 & 1.53 & 97 & . 15 & 11 & 2.58 & . 02 & . 07 & 2 \\
\hline 1A-2-R-3008 & 1 & 38 & 21 & 171 & . 6 & 26 & 29 & 858 & 5.15 & 18 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 121 & . 22 & . 21 & 5 & 90 & . 86 & 80 & . 14 & 13 & 2.35 & . 03 & . 16 & 2 \\
\hline 1A-2-R-3010 & 4 & 58 & 27 & 111 & . 6 & 48 & 23 & 312 & 5.51 & 12 & 5 & 2 & 2 & 18 & \(!\) & 2 & 2 & 133 & . 22 & . 11 & 6 & 160 & 1.41 & 84 & . 11 & 17 & 2.52 & . 02 & . 07 & 2 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-301 \mathrm{t}\) & 1 & 37 & 21 & 222 & 1.1 & 39 & 21 & 434 & 5.23 & 29 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 131 & . 23 & . 12 & 5 & 155 & 1.20 & 68 & . 13 & 12 & 2.00 & . 03 & . 08 & 2 \\
\hline [A-2-R-3012 & 1 & 29 & 19 & 193 & 1.0 & 34 & 19 & . 120 & 5.29 & 51 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 111 & . 22 & . 17 & 6 & 138 & . 90 & в0 & . 12 & 15 & 1.89 & . 04 & . 01 & 2 \\
\hline 1A-2-R-3013 & 1 & 89 & 27 & 152 & 2.0 & 53 & 26 & 1229 & 5.25 & 26 & 5 & 2 & 3 & 33 & 5 & 2 & 2 & 121 & . 50 & . 09 & - 10 & 125 & 1.08 & 113 & . 16 & 22 & J.91 & . 01 & . 11 & 2 \\
\hline 1a-2-8 3014 & 3 & 43 & 27 & 172 & . 7 & 21 & 14 & 278 & 4.58 & 8 & 5 & 2 & 2 & 36 & 1 & 2 & 2 & 84 & . 45 & . 29 & - & 97 & . 57 & 96 & . 16 & 11 & 4.91 & . 02 & . 05 & 2 \\
\hline 1A-2-8-3015 & 3 & 26 & 22 & 119 & . 4 & 28 & 13 & 246 & 3.97 & 13 & & 2 & 2 & 24 & 1 & 2 & 2 & 116 & . 29 & . 11 & 7 & 114 & . 82 & 91 & . 12 & 9 & 1.60 & . 03 & . 01 & 2 \\
\hline 1A-2-R-3016 & 5 & 47 & 43 & 362 & . 7 & 81 & 2 F & 445 & 6.92 & 38 & 5 & 2 & 2 & 18 & 1 & 1 & 2 & 151 & . 26 & . 10 & 5 & 311 & 1.99 & 60 & . 13 & 15 & 2.59 & . 02 & . 06 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-3017\) & 7 & 180 & 3 & 286 & 1.5 & 86 & 33 & 2185 & 5.64 & 27 & 5 & 2 & 2 & 82 & 1 & 2 & 3 & 112 & 1.40 & . 09 & 9 & 226 & 1.99 & 231 & . 07 & 17 & 3.29 & . 02 & . 09 & 2 \\
\hline [A-2-R-J018 & 3 & 12 & 26 & 132 & . 6 & 46 & 16 & 250 & 4.67 & 14 & 5 & 2 & 2 & 18. & 1 & 2 & 2 & 123 & . 29 & . 08 & 5 & 189 & 1.32 & 59 & . 15 & 10 & 2.02 & . 03 & . 06 & 2 \\
\hline 1A-2-R-3019 & 5 & 97 & \(\cdots 17\) & 110 & . 7 & 69 & 32 & 509 & 6.89 & 29 & 5 & 2 & 2 & 21 & 2 & 2 & 2 & 141 & . 31 & . 13 & 6 & 226 & 1.75 & 70 & . 14 & 19 & 2.89 & . 02 & . 01 & 2 \\
\hline 1A-2-R-3020 & 5 & 100 & 25 & 169 & . 4 & 86 & 30 & 566 & 5.90 & 34 & 5 & & 2 & 24 & 1 & 1 & 2 & 140 & . 47 & . 08 & 7 & 291 & 2.59 & 81 & . 12 & 15 & 2.75 & . 02 & . 15 & 2 \\
\hline 1 \(\mathrm{H}-2-8-3021\) & 2 & 21 & 22 & 127 & . 7 & 21 & 13 & 332 & 3.51 & 11 & 5 & & 2 & 16 & 1 & 2 & 2 & 88 & . 19 & . 11 & 5 & 130 & . 13 & 60 & . 13 & - & 1.53 & . 04 & . 07 & 2 \\
\hline 1A-2-i-3022 & 1 & 55 & 21 & 161 & . 3 & \(\delta 1\) & 23 & 685 & 4.86 & 27 & 5 & 2 & 2 & 21 & , & 2 & 2 & 132 & . 31 & . 10 & 5 & 221 & 1.70 & 86 & . 13 & 15 & 2.01 & . 03 & . 10 & 2 \\
\hline 1A-2-R-3023 & 3 & 25 & 12 & 130 & . 5 & 29 & 16 & 405 & 3.67 & 15 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 102 & . 31 & . 09 & 6 & 97 & . 80 & 11 & . 12 & 12 & 1.94 & . 03 & . 06 & 2 \\
\hline TA-2-R-3024 & 1 & 52 & 21 & 111 & . 5 & 68 & 26 & 514 & 5.73 & 39 & 5 & 2 & 2 & 26 & 1 & 2 & 2 & 146 & . 40 & . 15 & 5 & 252 & 1.90 & 102 & . 13 & 39 & 2.13 & . 03 & . 11 & 2 \\
\hline TA-2-R-3025 & 1 & 39 & 14 & 93 & . 6 & 11 & 14 & 218 & 4.21 & 25 & 5 & 2 & 2 & 15 & I & 2 & 2 & 118 & . 22 & . 06 & 7 & 119 & 1.21 & 56 & . 13 & 11 & 2.04 & . 02 & . 06 & 2 \\
\hline [ \(A-2-8-3026\) & 1 & 25 & 13 & 58 & . 1 & 11 & 9 & 142 & 3.30 & 12 & 5 & 2 & 2 & 15 & 1 & 2 & & 100 & . 18 & . 03 & 8 & 123 & . 81 & 34 & . 12 & 12 & 1.71 & . 02 & . 05 & 2 \\
\hline 1A-2-8-3027 & 2 & 37 & 12 & 57 & . 5 & 168 & 21 & 222 & 4.31 & 3 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 119 & . 53 & . 03 & 6 & 118 & 2.22 & 140 & . 16 & 10 & 2.70 & . 02 & . 06 & 2 \\
\hline 1A-2-R-3028 & 2 & 12 & 11 & 4 & 1.6 & 66 & 11 & 140 & 2.95 & 10 & 5 & 2 & 2 & 53 & 1 & 2 & 2 & 84 & 1.10 & . 04 & 6 & 244 & 1.13 & 107 & . 10 & 1 & 2.11 & . 03 & . 06 & 2 \\
\hline 1A-2-R-3029 & 3 & 20 & 13 & 7 & . 7 & 81 & 17 & 151 & 4.20 & , & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 102 & . 19 & . 08 & 1 & 254 & . 99 & 60 & . 16 & 16 & 2.70 & . 03 & . 05 & 2 \\
\hline TA-2-R-3030. & 3 & 36 & 19 & 105 & . 4 & 106 & 26 & 454 & 5.28 & 24 & 5 & 2 & 2 & 16 & 1 & 2 & 2 & 146 & . 29 & . 10 & 5 & 296 & 1.91 & 93 & . 16 & 13 & 2.52 & . 02 & . 09 & 2 \\
\hline IA-2-R-3031 & 3 & 12 & 21 & 19 & . 7 & 167 & 30 & 459 & 4.14 & 36 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 125 & . 36 & . 08 & 5 & 306 & 1.90 & 68 & . 14 & 12 & 2.13 & . 02 & . 08 & 2 \\
\hline 1A-2-R-3032 & 4 & 71 & 39 & 181 & . 6 & 61 & 20 & 311 & 6.14 & 35 & 5 & 2 & 2 & 18 & 1 & 3 & 2 & 162 & . 23 & . 13 & 6 & 225 & 1.96 & 61 & . 12 & 13 & 2.49 & . 02 & . 07 & 2 \\
\hline [ \(\mathrm{A}-2 \mathrm{~L}-\mathrm{R}-\mathrm{3033}\) & 3 & 51 & 27 & 149 & . 1 & 51 & 21 & 532 & 5.17 & 12 & 5 & 2 & 2 & 15 & 1 & 3 & 2 & 138 & . 25 & . 09 & 6 & 231 & 1.74 & 3 & . 14 & 13 & 2.17 & . 02 & . 08 & 2 \\
\hline 1A-2-R-3034 & 4 & 36 & 20 & 123 & . 6 & 36 & 15 & 351 & 4.95 & 4 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 127 & . 3 & . 10 & d & 186 & 1.22 & 86 & . 14 & 12 & 1.86 & . 03 & . 07 & 2 \\
\hline TA-2-R-3035 & 11 & 131. & 38 & 351 & . 6 & 17 & 23 & 538 & 6.25 & 57 & 5 & 2 & 2 & 16 & 2 & 3 & 2 & 146 & . 21 & . 10 & d & 228 & 1.87 & 90 & . 10 & 14 & 2.33 & . 02 & . 11 & 2 \\
\hline 1A-2-R-3036 & 1 & 30 & J6 & 213 & 1.2 & 41 & 18 & 583 & 4.43 & 17 & 5 & 2 & 2 & 26 & 1 & 2 & 2 & 107 & . 45 & . 13 & 6 & 158 & 1.11 & 117 & . 12 & 11 & 2.17 & . 03 & . 07 & 2 \\
\hline
\end{tabular}
\[
\text { S.M.D.C. FROJECT \# TA HOOLA } 4947 \text { FILE \# BZ-0407 }
\]

SAMPLE I

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1A-2-8-3037 & 1 & 30 & 26 & 188 & . 9 & 19 & 20 & 559 & 5.05 & 16 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 112 & . 18 & . 24 & 6 & 202 & 1.31 & 129 & . 12 & 15 & 2.63 & .03 & . 05 & 2 & 5 \\
\hline 1A-2-R-3038 & 3 & 28 & 22 & 114 & . 5 & 85 & 21 & 323 & 5.05 & 32. & 5 & 2 & 2 & 9 & 1 & 2 & 2 & 142 & .12 & . 09 & 5 & 281 & 1.66 & 65 & . 15 & 13 & 2.36 & . 02 & . 08 & 2 & 5 \\
\hline 1A-2-R-3039 & 3 & 61 & 18 & 83 & . 2 & 188 & 34 & 173 & 6.29 & 107 & 5 & 2 & 2 & 9 & 1 & 2 & 3 & 174 & .15 & . 09 & 5 & 551 & 2.92 & 72 & . 15 & 16 & 2.90 & . 02 & . 09 & 2 & 5 \\
\hline 1A-2-R-3040 & 2 & 17 & 8 & 54 & . 2 & 27 & 11 & 220 & 3.31 & 1 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 96 & . 25 & . 11 & 5 & 89 & . 83 & 55 & . 14 & 9 & 1.16 & . 05 & . 09 & 2 & 5 \\
\hline 1A-2-R-3041 & 2 & 27 & 11 & 62 & . 3 & 113 & 20 & 259 & 4.39 & 9 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 120 & . 23 & . 08 & 1 & 352 & 2.12 & 40 & . 17 & 10 & 2.11 & . 02 & .06 & 2 & 10 \\
\hline TA-2-R-4000 & 2 & 46 & 20 & 88 & . 7 & 28 & 12 & 233 & 3.29 & 1 & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 86 & . 21 & . 05 & 6 & 82 & . 53 & 97 & . 12 & 9 & 2.13 & . 04 & . 05 & 2 & 5 \\
\hline 1A-2-R-4001 & 3 & 68 & 41 & 456 & . 6 & 53 & 20 & 312 & 4.93 & 25 & 5 & 2 & 2 & 18 & , & 2 & 3 & 126 & . 26 & . 11 & 7 & 167 & 1.68 & 79 & . 10 & 13 & 2.90 & . 02 & . 07 & 2 & 30 \\
\hline 1A-2-R-4002 & 3 & 340 & 21 & 97 & . 7 & 76 & 46 & 752 & 7.46 & 13 & 5 & 2 & 2 & 53 & 1 & 2 & 2 & 210 & . 47 & . 09 & 5 & 370 & 4.93 & 61 & . 22 & 17 & 3.78 & . 01 & . 55 & 2 & 10 \\
\hline TA-2-R-4003 & 5 & 69 & 16 & 158 & 1.4 & 33 & 16 & 383 & 4.26 & 16 & 5 & 2 & 2 & 72 & 1 & 2 & 2 & 115 & 1.29 & . 05 & 8 & 114 & . 89 & 85 & . 12 & 11 & 2.50 & . 03 & . 06 & 2 & 5 \\
\hline 1A-2-8-4004 & 1 & 86 & 30 & 235 & . 5 & 82 & 32 & 147 & 5.63 & 24 & 5 & 2 & 2 & 30 & 2 & 2 & 2 & 162 & . 52 & . 05 & 6 & 307 & 2.72 & 113 & . 15 & 13 & 3.39 & . 02 & . 11 & 2 & 5 \\
\hline TA-2-R-4005 & 2 & 21 & 14 & 94 & . 6 & 25 & 13 & 333 & 3.52 & 7 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 90 & . 24 & .13 & 1 & 125 & . 73 & 74 & . 13 & 9 & 1.21 & . 01 & . 07 & 2 & 5 \\
\hline TA-2-R-4006 & 5 & 11 & 31 & 227 & . 9 & 13 & 21 & 108 & 5.39 & 31 & 5 & 2 & 2 & 16 & 2 & 2 & 2 & 132 & . 20 & . 15 & 7 & 119 & . 98 & 68 & . 11 & 13 & 2.35 & . 03 & . 08 & 2 & 30 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-4007\) & 3 & 13 & 29 & 204 & 1.0 & \(5!\) & 25 & 1162 & 4.67 & 18 & 5 & 2 & 2 & 30 & 1 & 2 & 3 & 113 & . 60 & . 13 & 7 & 236 & 1.11 & 125 & . 11 & 12 & 2.16 & . 02 & . 09 & 2 & 65 \\
\hline 1A-2-R-400日 & 7 & 62 & 143 & 239 & 1.0 & 66 & 27 & 164 & 6.03 & 35 & 5 & 2 & 2 & 13 & 1 & 1 & 2 & 162 & . 16 & . 10 & 7 & 300 & 2.04 & 98 & . 12 & 13 & 2.51 & . 02 & . 08 & 2 & 30 \\
\hline 1 \(R\)-2-R-4009 & 1 & 36 & 54 & 186 & . 6 & 54 & 30 & 1123 & b. 16 & 20 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 157 & . 14 & . 08 & 6 & 247 & 1.12 & 180 & . 10 & 11 & 1.84 & . 02 & . 05 & 2 & 5 \\
\hline 1A-2-R-4010 & 1 & 51 & 18 & 131 & . 3 & 33 & 16 & 373 & 5.06 & 26 & 5 & 2 & 2 & 15 & 1 & 1 & 2 & 121 & . 19 & . 11 & 7 & 101 & 1.09 & 93 & . 10 & 13 & 2.75 & . 02 & . 06 & 2 & 5 \\
\hline 1 \(A-2-8-4011\) & 3 & 31 & 15 & \(1!3\) & .4 & 35 & 16 & 348 & 4.58 & 13 & 5 & 2 & 2 & 19 & 1 & , & 2 & 109 & . 27 & . 09 & 6 & 150 & 1.07 & 113 & . 10 & 12 & 2.25 & . 02 & . 05 & 2 & 5 \\
\hline TA-2-R-1012 & 3 & 32 & 15 & 102 & .1 & 25 & 12 & 271 & 3.70 & 13 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 99 & . 20 & . 07 & 7 & 66 & . 64 & 91 & . 10 & 9 & 2.14 & . 03 & . 06 & 2 & 5 \\
\hline TA-2-R-1013 & 3 & 33 & 13 & 86 & .1 & 30 & 13 & 241 & 4.16 & 16 & 5 & 2 & 3 & 24 & 1 & 2 & 2 & 105 & . 21 & . 06 & 9 & 65 & . 92 & BJ & . 12 & 10 & 2.80 & . 02 & . 07 & 2 & 5 \\
\hline 1A-2-R-4014 & 5 & 13 & 16. & 17 & . 4 & 33 & 16 & 245. & 1.35 & 24 & 5 & 2 & 2 & 63 & 1 & 3 & 2 & 108 & . 82 & . 03 & 13 & 71 & . 89 & 148 & . 10 & 11 & 3.05 & . 02 & . 06 & 2 & 5 \\
\hline IA-2-R-4015 & 3 & 58 & 29 & 103 & . 3 & 56 & 20 & 391 & 5.39 & 14 & 5 & 2 & 2 & 26 & 1 & 1 & 2 & 149 & . 38 & . 07 & 8 & 197 & 1.93 & 113 & . 11 & 13 & 2.75 & . 01 & . 08 & 2 & 5 \\
\hline 1A-2-R-1016 & 1 & 127 & 21 & 111 & . 3 & \(5 i\) & 21 & 138 & 5.34 & 19 & 5 & 2 & 2 & 23 & 1 & 3 & 2 & 142 & . 33 & . 08 & 8 & 200 & 2.01 & 103 & . 11 & 12 & 2.51 & . 02 & . 08 & 2 & 5 \\
\hline 1A-2-R-1017 & 2 & 15 & 14 & 66 & . 3 & 13 & 7 & 186 & 3.27 & 1 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 96 & .16 & . 10 & 5 & 54 & . 39 & 55 & . 13 & 9 & 1.26 & . 05 & . 05 & 2 & 5 \\
\hline TA-2-R-4018 & 1 & 47 & 23 & 148 & . 5 & 58 & 22 & 301 & 5.16 & 12 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 139 & . 21 & . 01 & 6 & 224 & 1.64 & 127 & . 12 & 11 & 2.31 & . 02 & . 07 & 2 & 5 \\
\hline 1A-2-R-1019 & 6 & 60 & 62 & 208 & . 8 & 68 & 30 & 749 & 6.02 & 34 & 5 & 2 & 2 & 13 & 2 & 2 & 2 & 158 & . 17 & . 09 & 7 & 298 & 1.99 & 132 & . 12 & 17 & 2.53 & . 02 & . 09 & 2 & 15 \\
\hline TA-2-R-4020 & 3 & 62 & 24 & 175 & . 4 & 77 & 28 & 758 & 5.22 & 20 & 5 & 2 & 2 & 17 & , & 2 & 2 & 126 & . 30 & . 19 & 6 & 299 & 2.23 & 111 & . 12 & 11 & 2.53 & . 02 & . 07 & 2 & 50 \\
\hline TA-2-R-1021 & 5 & 69 & 25 & 170 & . 5 & 86 & 32 & 517 & 5.67 & 27 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 140 & . 23 & . 09 & 6 & 286 & 2.50 & 80 & . 12 & 13 & 2.82 & . 01 & . 08 & 2 & 5 \\
\hline TA-2-R-1022 & 8 & 18 & 17 & 107 & . 4 & 78 & 20 & 215 & 6.31 & 40 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & "163 & . 09 & : 12 & 6 & 232 & 1.17 & 50 & . 10 & 14 & 1:86 & .0S & . 05 & 2 & 5 \\
\hline TA-2-R-1023 & 6 & 13 & 15 & 114 & . 2 & 164 & 26 & 366 & 5.55 & 60 & 5 & 2 & 2 & 11 & 1 & 2 & 2 & 143 & .12 & . 09 & 6 & 434 & 2.60 & 63 & . 08 & 13 & 2.75 & . 01 & . 05 & 2 & 5 \\
\hline TA-2-k-4024 & 2 & 17 & 9 & 62 & . 5 & 11 & 6 & 127 & 2.34 & 10 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 57 & . 25 & . 07 & 6 & 12 & . 21 & 52 & . 07 & 7 & 2.18 & . 04 & . 05 & 2 & 15 \\
\hline TA-2-R-4025. & 4 & 35 & 15 & \(\cdots 2\) & & 46 & 10 & 171 & 4.28 & 22 & 5 & 2 & 2 & 20 & 1 & 2. & 2 & 105 & . 23 & . 05 & 8 & \(97^{\circ}\) & . 83 & 118 & .12 & & \(2.13^{\circ}\) & . 03 & . \(05^{\circ}\). & \(2 *\) & 5 \\
\hline 1A-2-R-4026 & 3 & 30 & 14 & 100 & 1.7 & 18. & 8 & 204 & 3.07 & 17 & 5 & 2 & 2 & 30 & 1 & 2 & 2 & 71 & . 71 & . 06 & 8 & 35 & . 46 & 100 & . 11 & 11 & 2.69 & . 01 & . 05 & 2 & 5 \\
\hline 1A-2-R-4027 & 4 & 28 & 16 & 84 & . 1 & 22 & 7 & 257 & 4.12 & 17. & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 121 & . 17 & . 11 & 9 & 66 & . 19 & 98 & . 10 & 11 & 2.20 & . 03 & . 05 & 2 & 5 \\
\hline TA-2-R-4029 & 3 & 25 & 13 & is & . 3 & 32 & 11 & 362 & 3.54 & 12 & 5 & 2 & 2 & 27 & 1 & 2 & 2 & 96 & . 39 & . 10 & 1 & 76 & . 94 & 86 & . 10 & 10 & 2.21 & . 02 & . 08 & 2 & 5 \\
\hline 1 \(A-2-R-4030\) & 1 & 58 & 12 & 107 & . 3 & 46 & 16 & 265 & 5.25 & 15 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 151 & . 20 & . 10 & 6 & 105 & 1.29 & 86 & . 12 & 14 & 2.51 & . 02 & . 06 & 2 & 5 \\
\hline \(|A-2-R-103|\) & 3 & 19 & 12 & 90 & . 6 & 25 & 9 & 159 & 4.24 & 7 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 111 & . 17 & . 05 & 5 & 139 & . 13 & 72 & . 16 & 12 & 1.88 & . 01 & . 05 & 2 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAAPLE 1 & no & Cut & Pb
ppa & In
\(p \rho ⿻\) & \[
\begin{aligned}
& A g \\
& \mathrm{Pp}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{xi}_{1} \\
& \mathrm{pgi}
\end{aligned}
\] & \[
\begin{aligned}
& \text { to } \\
& \text { ppı }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Mn} \\
& \mathrm{ppt}
\end{aligned}
\] & \[
\mathrm{fe}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { pps }
\end{aligned}
\] & ¢ \({ }_{\text {¢ }}\) & \[
\begin{aligned}
& \mathrm{Au} \\
& \mathrm{ppa}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Th } \\
& \text { ppa }
\end{aligned}
\] & Spra & \[
\begin{aligned}
& \text { Cd } \\
& \text { ppI }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 5b } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \text { pi } \\
& \text { ppi }
\end{aligned}
\] & V & \[
\mathbf{C a}_{\mathbf{1}}
\] & \[
q
\] & \[
\begin{aligned}
& \text { La } \\
& \text { ppa }
\end{aligned}
\] & \[
\mathrm{Cr}
\]
pps & \[
\underset{Z}{\mathrm{Kg}}
\] & \[
\begin{aligned}
& B_{2} \\
& p P_{1}
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{I} \\
\mathrm{I}
\end{array}
\] & \({ }_{\text {p }}^{\text {P }}\) & \[
\begin{gathered}
A! \\
1
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{M} \\
\mathrm{I}
\end{gathered}
\] & \[
\begin{aligned}
& k \\
& 1
\end{aligned}
\] & \[
\underset{\text { ppa }}{\substack{\text { N }}}
\] & \[
\begin{aligned}
& \text { âul } \\
& \text { ppb }
\end{aligned}
\] \\
\hline  & 1 & 18 & 20 & 92 & 1.1 & 12 & 5 & 104 & 4.17 & 24 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 121 & ． 34 & ． 09 & 5 & 10 & ． 30 & 76 & ． 14 & 11 & 1.70 & ． 03 & ． 04 & 2 & 25 \\
\hline iA－2－i－4934 & 3 & 26 & 24 & 265 & 1.0 & 51 & 20 & 311 & 4.23 & 21 & 5 & 2 & 2 & 10 & & 1 & 2 & 107 & ． 13 & .10 & 5 & 182 & 1.31 & 73 & ． 11 & 11 & 3.19 & ． 02 & ． 06 & ， & 5 \\
\hline 1A－2－8－1035 & 1 & 16 & 15 & 53 & ． 7 & 10 & 6 & 170 & 4.12 & 10 & 5 & 2 & 2 & 16 & 1 & 2 & 2 & 116 & ． 17 & ． 10 & 1 & 56 & ． 25 & 58 & ． 17 & 11 & 1.85 & ． 04 & ． 04 & 2 & 5 \\
\hline 1A－2－k－4036 & 9 & 89 & 31 & 229 & 2.1 & 37 & 26 & 1414 & 4.68 & 52 & 5 & 2 & 2 & 72 & 5 & 2 & 2 & 80 & ． 91 & ． 10 & 10 & 57 & ． 16 & 104 & ． 05 & 11 & 2.67 & ． 02 & ． 01 & 2 & 65 \\
\hline ［ \(\mathrm{A}-2-\mathrm{R}-1037\) & 1 & 21 & 18 & 191 & ． 5 & 19 & 14 & 422 & 3.60 & 35 & 5 & 2 & 2 & 18 & 2 & 2 & 2 & 12 & ． 21 & ． 21 & 6 & 55 & ． 50 & 118 & ． 04 & 9 & 2.20 & ． 02 & ． 06 & 2 & 20 \\
\hline ［A－2－8－40］ & 3 & 32 & 25 & 122 & ． 7 & 14 & 14 & 217 & 3.68 & 20 & 5 & 2 & 2 & 17 & 1 & 3 & 2 & 95 & ． 20 & ． 07 & 5 & 111 & 1.21 & 67 & ． 08 & 日 & 1.87 & ． 03 & ． 01 & 2 & 45 \\
\hline 1A－2－8－1039 & J & 23 & 14 & 189 & ． 4 & 35 & 20 & 149 & 4.38 & 21 & 5 & 2 & 2 & 19 & 1 & ， & 2 & 108 & ． 27 & ． 20 & 5 & 137 & 1.29 & 78 & ． 09 & 10 & 2.32 & ． 02 & ． 07 & 2 & 20 \\
\hline （ \(\mathrm{A}-2-\mathrm{R}-\mathrm{iOSO}\) & 10 & 21 & 24 & 102 & ． 6 & 21 & 10 & 237 & 4.07 & 43 & 5 & 2 & 2 & 10 & 1 & 2 & 2 & 95 & ． 11 & ． 10 & 6 & 86 & ． 45 & 65 & ． 01 & 10 & 1.42 & ． 03 & ． 05 & 2 & 20 \\
\hline T \(\mathrm{A}-2-\mathrm{R}-1041\) & 3 & 24 & 13 & 124 & ． 5 & 33 & 18 & 41 & 4.19 & 9 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 113 & ． 22 & ． 11 & 4 & 151 & 1.29 & 13 & ． 13 & 11 & 1.81 & ． 02 & ． 09 & & 25 \\
\hline ［ \(\mathrm{A}-2 \mathrm{R} \mathrm{R}\)－ 1042 & 3 & 4 & 13 & ．98． & ． 2 & 94 & 27. & 416 & 5.00 & 1 & 5 & 2 & 2 & 35 & 1 & 2 & 2 & 112 & ． 53 & ． 04 & 5 & 307 & 2.60 & 63 & ． 16 & 10 & 2.83 & ． 01 & ． 06 & ， & 15 \\
\hline TA－2－8－4043 & 2 & 11 & 1 & 26 & ． 2 & d & 5 & 184 & 1.94 & 3 & 5 & 2 & 7 & 10 & 1 & 2 & 2 & 64 & ． 11 & ． 03 & 5 & 27 & ． 15 & 56 & ． 10 & 5 & ． 63 & ． 04 & ． 04 & 2 & 5 \\
\hline 1A－2－8－6044 & 7 & 60 & 11 & 138 & ． 6 & 62 & 13 & 223 & 5.11 & 19 & 5 & 2 & 2 & 17 & 1 & 1 & & 121 & ． 21 & ． 06 & 7 & 125 & 1.13 & B0 & ． 12 & 12 & 2.28 & ． 02 & ． 05 & 2 & 160 \\
\hline I \(\mathrm{A}-2-\mathrm{R}-1045\) & b & 89 & 40 & 176 & ． 6 & 7 7 & 28 & 405 & 5.78 & 11 & 5 & & 2 & 19 & 1 & 1 & 3 & 171 & ． 32 & ． 09 & 1 & 315 & 2.18 & 61 & ． 18 & 11 & 2.67 & ． 02 & ． 07 & 2 & 15 \\
\hline 1A－2－8－4016 & 3 & 16 & 10 & 62 & ． 1 & 15 & 6 & 124 & 3.06 & 7 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 85 & ． 21 & ． 07 & 8 & 4 & ． 50 & 67 & ． 09 & 11 & 1.54 & ． 02 & ． 05 & 2 & 5 \\
\hline 1 \(\mathrm{A}-2-\mathrm{B}-4047\) & 6 & 32 & 11 & 135 & ． 2 & 30 & 18 & 1114 & 3.64 & 9 & 5 & 2 & 2 & 34 & 1 & 3 & 3 & 96 & ． 18 & ． 03 & 10 & 11 & ． 98 & 127 & ． 09 & 9 & 2.13 & ． 02 & ． 07 & 2 & 5 \\
\hline 1A－2－k－104 & 1 & 63 & 12 & 96 & ． 7 & 22 & 11 & 232 & 3.15 & 15 & 5 & 2 & 2 & 63 & 2 & 2 & 2 & 70 & 1.14 & ． 05 & 10 & 45 & ． 53 & 150 & ． 88 & 8 & 2.37 & ． 02 & ． 05 & 2 & 5 \\
\hline 1A－2－8－4019 & 1 & 21 & 11 & 70 & ． 5 & 16 & 1 & 200 & 3.69 & ， & 5 & 2 & 2 & 20 & 1 & 2 & 2 & 105 & ． 25 & ． 06 & ， & 45 & ． 52 & 110 & ． 09 & 9 & 1.92 & ． 02 & ． 05 & 2 & 5 \\
\hline 1A－2－A－4050 & 5 & 35 & 9 & 70 & ． 3 & 19 & 19 & 383 & 4.82 & 2 & 5 & & 2 & 15 & 1 & 4 & 2 & 176 & ． 27 & ． 05 & 5 & 82 & 2．3］ & 86 & ． 16 & 11 & 2.19 & ． 03 & ． 19 & 2 & 5 \\
\hline 1A－2－R－4051 & 4 & 26 & 31 & 135 & 1.5 & 30 & 14 & 408 & 4.02 & 20 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 108 & ． 24 & ． 12 & 5 & \(1!9\) & ． 97 & 119 & ． 08 & 9 & 1.68 & ． 02 & ． 07 & 2 & 5 \\
\hline 1 \(\mathrm{A}-2-\mathrm{R}-5000\) & 1 & 62 & 11 & 260 & ． 4 & 55 & 28 & 539 & 1.14 & 56 & 5 & 2 & 2 & 18 & 1 & 3 & 2 & 188 & ． 32 & ． 09 & 5 & 305 & 2.35 & 17 & ． 18 & 15 & 2.93 & ． 01 & ． 15 & 2 & 50 \\
\hline 1A－2－R－5001 & 5 & 65 & 19 & 198 & ． 4 & 36 & 29 & 460 & 6.21 & 26 & 5 & 2 & 2 & 25 & 1 & 2 & 3 & 157 & ． 37 & ． 05 & 5 & 249 & 2.20 & 62 & ． 15 & 14 & 2.87 & ． 02 & ． 08 & 2 & 35 \\
\hline 1A－2－R－5002 & 3 & 39 & 16 & 245 & ． 8 & 11 & 26 & 401 & 5.29 & 25 & 5 & 2 & 2 & 18 & 1 & 2 & 3 & 135 & ． 28 & ． 08 & 1 & 265 & 1.89 & 85 & ． 15 & 12 & 2.87 & ． 02 & ． 08 & 2 & 25 \\
\hline 1A－2－R－5003 & 3 & 62 & 16 & 128 & ． 5 & 114 & 30 & 378 & 4.98 & 24 & 5 & 2 & 2 & 13 & 1 & 3 & 2 & 118 & ． 19 & ． 06 & 5 & 313 & 2.17 & 85 & ． 11 & 15 & 3.04 & ． 01 & ． 08 & 2 & 40 \\
\hline ［ \(\mathrm{A}-2 \mathrm{-R}\)－5004 & 2 & 28 & 15 & 107 & ． 3 & 53 & 19 & 260 & 4.02 & 18 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 107 & ． 26 & ． 08 & 5 & 171 & 1.09 & 75 & ． 12 & 9 & 1.96 & ． 02 & ． 05 & 2 & 5 \\
\hline TA－2－R－5005 & 1 & 68 & 16 & 128 & ． 2 & 63 & 20 & 318 & 5.50 & 80 & 5 & & 2 & 20 & 1 & ， & 2 & 125 & ． 29 & ． 06 & 6 & 157 & 1.13 & 88 & ． 09 & 12 & 2.23 & ． 02 & ． 06 & 2 & 10 \\
\hline TA－2－R－5006 & 1 & 57 & 14 & 142 & ． 1 & 166 & 33 & 397 & 6.49 & 21 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 162 & ． 30 & ．19 & 6 & 302 & 2.51 & 71 & ． 10 & 14 & J． 00 & ． 01 & ． 07 & 2 & 30 \\
\hline 12－2－k－5007 & 2 & 29 & 11 & 123 & ． 2 & 97 & 25 & 日97 & 5.24 & 11 & 5 & 2 & 2 & 12 & 1 & 2 & 3 & 127 & ． 17 & ． 23 & 5 & 291 & 1.85 & 94 & ． 15 & 12 & 2.31 & ． 02 & ． 09 & 2 & 5 \\
\hline 1A－2－R－500 & 2 & 33 & 10 & 67 & ． 1 & 182 & 30 & 307 & 5.03 & 24 & 5 & 2 & 2 & 9 & 1 & 2 & 2 & 152 & ． 22 & ． 05 & 4 & 595 & 2.83 & 38 & ． 16 & 11 & 2.70 & ． 02 & ． 06 & 2 & 5 \\
\hline 1A－2－R－5009 & 13 & 21 & 37 & 132 & 1.1 & 100 & 20 & 363 & 4.32 & 28 & 5 & 2 & 2 & 9 & 1 & 2 & 2 & 109 & ． 12 & ． 13 & 5 & 370 & 1.35 & 65 & ． 12 & 10 & 2.24 & ． 03 & ． 06 & 2 & 30 \\
\hline 1A－2－R－5010 & 2 & 22 & 17 & 134 & ． 8 & 28 & 21 & 360 & 4.12 & 12 & 5 & 2 & 2 & 17 & ， & 2 & 2 & 95 & ． 19 & ． 17 & 5 & 110 & ． 67 & 12 & ． 13 & 9 & 2.53 & ． 02 & ． 07 & 2 & 10 \\
\hline TA－2－R－56｜I & 2 & 26 & 17 & 157 & ． 8 & 31 & 16 & 256 & 4.24 & 13 & 5 & 2 & 2 & 14 & 1 & 2 & 2 & 95 & ． 18 & ． 14 & 5 & 104 & ． 87 & 68 & ． 11 & 9 & 2.13 & ． 02 & ． 26 & 2 & 15 \\
\hline If－2－R－5012 & 3 & 28 & 15 & 162 & ． 3 & 59 & 25 & 342 & 4．87 & 18 & 5 & 2 & 2 & 21. & 1 & 2 & 2 & 129 & ． 33 & ． 07 & 5 & 210 & 1.79 & 63 & ． 14 & 10 & 2.12 & ． 02 & ． 08 & 2 & 5 \\
\hline 5A－2－R－5013 & 1 & 102 & 21 & 324 & 1.2 & 81 & 30 & 1382 & 4.89 & 25 & 5 & 2 & 2 & 68 & 3 & 2 & 2 & 102 & ． 98 & ． 06 & 9 & 230 & 1.88 & 155 & ． 08 & 11 & 3.03 & ． 02 & ． 08 & 2 & 5 \\
\hline 1 \(\mathrm{f}-2-\mathrm{f}-5014\) & 4 & 65 & 20 & 268 & ． 5 & 69 & 28 & 711 & 5.12 & 31 & 5 & 2 & 2 & 26 & 1 & 2 & 2 & 111 & ． 37 & ． 14 & 6 & 181 & 1.15 & 111 & ． 11 & 11 & 2.64 & ． 02 & ． 07 & 2 & 5 \\
\hline T \(\mathrm{A}-2-\mathrm{R}\)－ 5015 & 1 & 45 & 18 & 113 & .1 & 89 & 24 & 407 & 5.64 & 34 & 5 & 2 & 2 & 24 & 1 & 2 & 2 & 138 & ． 32 & ． 10 & 5 & 271 & 2.08 & 109 & ． 13 & 11 & 2.16 & ． 02 & ． 07 & 2 & 5 \\
\hline T \(\mathrm{A}-2-\mathrm{R}\)－5016 & 1 & 29 & 19 & 152 & ． 5 & 59 & 18 & 102 & 5.35 & 31 & 5 & 2 & 2 & 19 & 1 & 3 & 2 & 129 & ． 28 & ． 11 & 1 & 211 & 1.43 & 75 & ． 14 & 12 & 2.00 & ． 02 & ． 06 & 2 & 5 \\
\hline ［A－2－R－5017． & 3 & 33 & 14 & 158 & ． 2 & 66 & 23 & 601 & 4.62 & 24 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 120 & ． 36 & ． 11 & 5 & 199 & 1.19 & 69 & ． 12 & 12 & 2.68 & ． 02 & ．07 & 2 & 5 \\
\hline
\end{tabular}
. TA-2-R-5018 . :A-2-R-50!9 1A-2-A-5020 TA-2-R-502! TA-2-R-5022 : \(\mathrm{A}-2-\mathrm{R}-5023\) TA-2-R-5024 :A-2-R-5025 TA-2-R-5026 TA-2-R-5028
TA-2-R-5029
 \(1 A-2-R-5030\)
\(Z A-2-R-5031\) :A-2-R-5031 \(T A-2-R-5033\)
\(T A-2-R-5034\)
\(T A-2-R-5035\)
\(T A-2 R-R-5036\) TA-2-R-5036 : \(A-2-R-5037\)

TA-2-i-5038 TA-2-R-5039 TA-2-R-5040 : \(A-2-R-5041\)
\(T A-2-B-5012\)
:A-2-R-5043 TA-2-R-5044 T \(\mathrm{A}-2\)-R-5045 TA-2- \(R\)-5048 : \(\mathrm{A}-2\) - R -5055

1A-2-R-5056 : \(A-2-R-5057\) TA-2-R-5058 :A-2-R-5059 TA-2-R-5060
\(1 A-2-R-5061\)
\(1 A-2-P-5062\)
\(\begin{array}{lllllllllll}3 & 13 & 13 & 72 & . & 6 & 97 & 22 & 362 & 1.26 & 32\end{array}\) \(\begin{array}{ll}15 * & 18 \\ 5 & 109 \\ 7 & 186\end{array}\) \(\begin{array}{rrrrr}.9 & 164 & 27 & 9192 & 5.10 \\ .5 & 72 & 19 & 601 & 4.32 \\ .1 & 82 & 26 & 597 & 4.75 \\ .3 & 93 & 27 & 515 & 5.14\end{array}\) 21
19
10
53 \(\begin{array}{lllllllll}1 & 24 & 13 & 96 & .2 & 37 & 11 & 231 & 3.57 \\ 27 & 16 & 83 & .2 & 50 & 13 & 207 & 1.36 \\ 18 & 18 & 127 & .5 & 45 & 18 & 585 & 1.57 \\ & 63 & 19 & 205 & .1 & 67 & 28 & 372 & 6.37\end{array}\) 18
23
33
19
38
\(\qquad\) 161 \(\begin{array}{lll}15 & 154 & \\ 15 & 154\end{array}\) \(\begin{array}{ll}.3 & 90 \\ .7 & 45\end{array}\) \(\begin{array}{lll}27 & 356 & 5.19 \\ 22 & 236 & 4.00 \\ 33 & 625 & 5.91 \\ 11 & 202 & 3.43\end{array}\) \(\begin{array}{ll}2 & 17 \\ 3 & 11\end{array}\) 188
114 \(\begin{array}{lllll}.5 & 71 & 35 & 625 & 2.91 \\ .5 & 21 & 11 & 202 & 3.43 \\ .3 & 56 & 24 & 402 & 4.96\end{array}\) 25
25
46
19
76
\begin{tabular}{rr}
2 & 87 \\
10 & 35 \\
3 & 20 \\
3 & 24 \\
3 & 27
\end{tabular} 19
39
25
22
18 139
141
210
256
112 1.5
1.0
.6
.4
.4 \(\begin{array}{cccc}52 & 30 & 1061 & 3.94 \\ 26 & 13 & 384 & 4.30 \\ 32 & 17 & 246 & 1.54 \\ 58 & 20 & 350 & 3.47 \\ 43 & 16 & 805 & 4.17\end{array}\)

\begin{tabular}{ll}
1 & 18 \\
2 & 21 \\
3 & 21 \\
6 & 31
\end{tabular} \(\begin{array}{rr}19 & 138 \\ 50 & 239 \\ 23 & 119 \\ 14 & 86 \\ 30 & 257\end{array}\) .8
.8
.8
2.5 36
60
38
23
60 13
24
16
11
22 \(\begin{array}{ll}226 & 8.6 \\ 192 & 5.3 \\ 542 & 8.1 \\ 168 & 3.71 \\ & 309 \\ 5.35\end{array}\) \(\begin{array}{ll}.41 & 33 \\ 39 & 10 \\ .13 & 15 \\ .15 & 15\end{array}\)
\(\begin{array}{llll}39 & 19 & 122 & .7\end{array}\)
\[
\begin{aligned}
& 30 \\
& 43 \\
& 10
\end{aligned}
\]
\[
11 \quad 215 \quad 1.02
\] \(\begin{array}{ll}1 & 13 \\ 3 & 24 \\ j & 75\end{array}\)
\[
\begin{array}{lll} 
\\
6 & 450 & 3.02 \\
2 & 349 & \pm .12
\end{array}
\]
\[
\begin{array}{lll}
16 & 450 & 3.92 \\
12 & 369 & 3.12
\end{array}
\]
\[
\begin{array}{cc}
183 & 1.1 \\
15 & .6
\end{array}
\]
\[
\begin{array}{lll}
14 & 318 & 3.11 \\
14 & 605 & 1.58 \\
1 & 107 & 9.0
\end{array}
\]
\[
\begin{aligned}
& 30 \\
& 3
\end{aligned}
\]
\[
\begin{array}{ccccccccc}
3 & 34 & 27 & 179 & .1 & 45 & 22 & 572 & 1.96 \\
3 & 36 & 30 & 141 & .6 & 31 & 14 & 243 & 1.46 \\
3 & 22 & 35 & 228 & .5 & 43 & 20 & 395 & 5.12 \\
2 & 17 & 21 & 151 & .8 & 24 & 15 & 824 & 3.89 \\
3 & 14 & 17 & 99 & .6 & 16 & 8 & 248 & 3.12
\end{array}
\]
\[
\begin{array}{llllllllll}
3 & 39 & 17 & 165 & .6 & 64 & 29 & 613 & 5.70 & 10 \\
1 & 57 & 23 & 169 & .2 & 75 & 29 & 536 & 5.93 & 28
\end{array}
\]
\(\begin{array}{ll}5 & 2 \\ 5 & 2 \\ 5 & 2 \\ 5 & 2 \\ 5 & 2\end{array}\)
\begin{tabular}{rr}
2 & 16 \\
2 & 8 \\
2 & 15 \\
2 & 14 \\
2 & 18
\end{tabular}
2
2
2
3
2
\(\begin{array}{lll}5 & 248 & 1.7 \\ 1 & 143 & 2.8 \\ 1 & 246 & 1.37\end{array}\) \(\begin{array}{rrr}1.71 & .59 \\ 2.84 & 61 & \\ 1.37 & 100 & \\ 1.60 & 107 & . \\ 1.89 & 72 & .\end{array}\) .11
.15
.12
.13
.13 \(\begin{array}{rr}8 & \therefore .06 \\ 12 & 2.87 \\ 9 & 1.98 \\ 11 & 2.57 \\ 11 & 2.34\end{array}\) .02
.01
.02
.02
.02 .01
.06
.09
.07
\(.0 ?\) 2
2
2
2
2 2
\(\vdots\)
\(\vdots\)
\(\vdots\)
5
5
\begin{tabular}{ll}
5 & 2 \\
5 & 2
\end{tabular}
\(\begin{array}{llll}147 & 1.01 & 80 & .11 \\ 179 & 1.27 & 16 & .14 \\ 158 & 1.09 & 72 & .12 \\ 265 & 2.23 & 92 & .15 \\ 233 & 1.99 & 91 & .14\end{array}\) \(\begin{array}{cccc}8 & 1.61 & .03 & .08 \\ 10 & 1.79 & .02 & .08 \\ 10 & 1.72 & .03 & .06 \\ 13 & 2.87 & .02 & .09 \\ 11 & 3.25 & .02 & .00\end{array}\) \(1!\)
2
2
2
2
\(5 \quad 2\)
1 . 32\(\begin{array}{ll}.30 & .12 \\ .21 & .11 \\ .30 & .05 \\ .15 & .09\end{array}\)
2982.32\(\begin{array}{cc}91 & .11 \\ 62 & .10 \\ 70 & .14 \\ 51 & .10\end{array}\)
\(\begin{array}{rr}11 & 2.76 \\ 0 & 2.81\end{array}\) \(\begin{array}{ll}.01 & .10 \\ .02 & .0 \\ .04 & .09 \\ .02 & \end{array}\) \(\begin{array}{rr}11 & 2.54 \\ 8 & 1.54 \\ 10 & 3.25\end{array}\)1095
5
58
\(i 5\)
\(y\)
ancon
MON 1.30
1.43
3.65
2.51
1.85 ..... 5
16
35
5
5
> \(\begin{array}{ll}.25 & .07 \\ .21 & .10 \\ .24 & .20 \\ .22 & .15 \\ .27 & .08\end{array}\)
\(\begin{array}{ll}2 & 111 \\ 2 & 110 \\ 2 & 114 \\ 3 & 119 \\ 2 & 152\end{array}\)

\begin{tabular}{rllllll}
1 & 2 & 2 & 109 & .29 & .04 & 5 \\
1 & 3 & 2 & 123 & .13 & .05 & 1 \\
1 & 2 & 2 & .130 & .64 & .05 & 5 \\
1 & 2 & 2 & 151 & .51 & .09 & 1
\end{tabular}b \(233 \quad 1.99\)
\(\begin{array}{llll}5 & 2 & 2 & 14 \\ 5 & 2 & 2 & 14 \\ 5 & 2 & 2 & 19 \\ & 2 & 2 & 23\end{array}\) \(\begin{array}{r}2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \hline\end{array}\) \(\begin{array}{ll}2 & 140 \\ 2 & 161 \\ 2 & 121 \\ 2 & 117 \\ 3 & 121\end{array}\) \(\begin{array}{ll}.23 & .06 \\ .16 & .11 \\ .17 & .07 \\ .22 & .08 \\ .32 & .03\end{array}\)\(\begin{array}{cr}5 & 154 \\ 5 & 245 \\ 5 & 176 \\ 5 & \\ 9 & 90 \\ 9 & 204\end{array}\)\(\begin{array}{cc}15 & .95 \\ 76 & 1.27 \\ 90 & .83 \\ 204 & 1.24\end{array}\)\(\begin{array}{cc}51 & .15 \\ 59 & .11 \\ 78 & .12 \\ 119 & .11 \\ 78 & .16\end{array}\)\(\begin{array}{rr}9 & 1.51 \\ 10 & 2.52 \\ 9 & 1.70 \\ 8 & 1.15 \\ 11 & 3.67\end{array}\).03
.02
.02
.03.05
.07
.05
.0726
15
5
5
5
\(\begin{array}{ll}2 & 2 \\ 3 & 2\end{array}\) \begin{tabular}{r}
2 \\
2 \\
\hdashline 2 \\
2 \\
2
\end{tabular}
.05
.08
.08
.10
.04
\(\begin{array}{ll}6 \\ 8 \\ 5 & 15 \\ 9 & \end{array}\) .17
.74
.04 .09
.10
.09
.14
.06
\(\begin{array}{ll}9 & 2.69 \\ 8 & 2.40 \\ 7 & 2.55 \\ 10 & 1.80\end{array}\) .02
.02
.02
.04
.0210
\(65!\)
535
\(\begin{array}{ll}2 & 125 \\ 2 & 119 \\ 2 & 125 \\ 2 & 108 \\ 2 & 92\end{array}\) 22
.15
.23
.17
.08\(\begin{array}{ll}5 & 1 \\ 5 & 1 \\ 6 & 1 \\ 5 & 1 \\ 5 & \end{array}\)
1.22
1.08
1.25
102
51
92
105
79 \(\begin{array}{rr}10 & 2.11 \\ 10 & 2.25\end{array}\)\(10 \quad 2.25\)\begin{tabular}{lll}
9 & 1.25 & \(.0 i\) \\
7 & 1.04 & .05 \\
\hline
\end{tabular}.04
.07
.06
.04
\(10 \quad 2.1\)
\(10 \quad 2.1\) \(\begin{array}{lll}5 & 2 & 2 \\ 5 & 2 & 2 \\ 5 & 2 & 2\end{array}\)
\(\begin{array}{ll}2 & 134 \\ 3 & 15!\end{array}\)
\(\begin{array}{ll}5 & 2 \\ 5 & 2\end{array}\) \(\begin{array}{ll}2 & 2 \\ 2 & 22\end{array}\)
1\(\begin{array}{ll}.34 & .12 \\ .29 & .09\end{array}\)13012.60\(\begin{array}{llll}11 & 2.51 & .02 & .11 \\ 11 & 2.91 & 02 & 10\end{array}\)\(\underset{25}{5}\)

\(\begin{array}{lll}\mathrm{Cr} & \mathrm{Kq} & \mathrm{Bz} \\ \mathrm{ppq} & \mathrm{I} & \mathrm{ppa}\end{array}\) \(1 i\) Al Ha \(X\)

TA-2-R-3042 \(1 \mathrm{ta}-2 \mathrm{~F}-\mathrm{F}-304 \mathrm{~T}\) \(1 A-2-R-3015\)
\(1 A-2-R-3041\) \(1 A-2-R-3041\)
\(T A-2-R-3045\) \(T A-2-R-3015\)
\(1 A-2-R-3046\)
\([A-2-R-3047\)
\(1 A-2-R-301 \theta\)
\(1 A-2-R-3049\)
\(T A-2-R-3050\)
\(T A-2-R-3051\)

TA-2-R-3052 \(1 A-2-R-3053\)
\(T A-2-R-3054\) \(1 A-2-R-3054\)
\(5 R-2-8-3055\) \(\mathrm{TR}-2-\mathrm{R}-3055\)
\(\mathrm{TA}-2-\mathrm{R}-3056\)

1A-2-R-3057 TA-2- \(\mathrm{A}-3058\) TA-2-R-3059 \(1 \mathrm{~A}-2-\mathrm{R}-3060\) 1A-2-A-3061

IA-2-R-3072 \(1 \mathrm{~A}-2-8-3073\) 1A-2-R-3074 TA-2-R-3075
\(1 A-2-R-3076\)
\(\mathrm{TA}-2-8-3077\)
\(\mathrm{TA}-2-\mathrm{R}-3078\)
PPI PPA PDA PDA PDE 1 ppI
\begin{tabular}{cccccccccc}
1 & .71 & -133 & 149 & 2.6 & 58 & 16 & 271 & 3.78 & 16. \\
1 & 154 & 73 & 106 & 1.9 & 38 & 10 & 14 & 2.19 & 6 \\
7 & 163 & 131 & 146 & 6.1 & 86 & 19 & 713 & 4.22 & 22 \\
5 & 46 & 69 & 64 & .6 & 30 & 13 & 258 & 3.84 & 6 \\
6 & 59 & 61 & 06 & 1 & 13 & 18 & 362 & 1.01 & 13
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5 & 2 & 2 & 36 & . 1 & 2 & 3 & 95 & . 93 & . 03 & 6 & - 102 & 1.13 & 100 & . 16 & 10 & 2.78 & . \(0:\) & . 08 & 2 \\
\hline 5 & 2. & 2 & 62 & 2 & 2 & , & 48 & 1.82 & . 01 & 8 & 52 & . 84 & 119 & . 06 & \({ }^{1}\) & 2.00 & . 03 & . 10 & 2 \\
\hline 5 & 2 & 2 & 39 & 2 & 6 & 5 & 100 & . 86 & . 05 & 1 & - 101 & 1.51 & 182 & . 15 & 10 & 3.11 & . 02 & . 16 & \\
\hline 5 & 2 & 2 & 18 & 1 & 3 & 3 & 110 & . 38 & . 04 & 5 & 97 & 1.31 & 50 & . 18 & 10 & 1.79 & . 02 & . 09 & 2 \\
\hline 5 & 2 & 2 & 31 & 1 & 3 & J & 105 & . 86 & . 04 & 7 & 91 & 1.51 & 107 & . 14 & 34 & 2.10 & . 02 & . 10 & 2 \\
\hline 5 & 2 & 2 & J8 & 1 & ? & 2 & 99 & 1.21 & . 04 & 15 & 65 & . 71 & 105 & . 12 & 15 & 2.21 & . 02 & . 06 & 2 \\
\hline 5 & 2 & 2 & 18 & 1 & 3 & 2 & 90 & . 43 & . 05 & 1 & 64 & . 80 & 72 & . 12 & 1 & 1.76 & . 01 & . 06 & 2 \\
\hline 5 & 2 & 2 & 25 & 1 & 2 & 2 & 69 & . 62 & . 04 & 10 & 57 & . 51 & 75 & . 15 & 7 & 2.16 & . 02 & . 05 & 2 \\
\hline 5 & 2 & 2 & 27 & ! & 2 & 2 & 96 & . 53 & . 05 & 9 & 93 & 1.33 & 95 & . 14 & 30 & 1.91 & . 02 & . 14 & 2 \\
\hline 5 & 2 & 2 & 25 & 1 & 2 & 3 & 105 & . 19 & . 09 & 1 & 62 & 1.31 & 81 & . 15 & 26 & 1.97 & . 12 & . 11 & 2 \\
\hline 5 & 2 & 2 & 13 & 1 & 2 & 3 & 95 & 1.04 & . 03 & 8 & 89 & 1.32 & 176 & . 14 & 25 & 2,81 & . 02 & . 12 & 2 \\
\hline 5 & 2 & 3. & 39 & 1 & 2 & 1 & 109 & . 11 & . 03 & 10 & 109 & 1.15 & 159 & . 13 & 25 & 3.16 & . 02 & . 18 & 2 \\
\hline 5 & 2 & 2 & 19 & 1 & 2 & 3 & 111 & . 28 & .10 & 8 & 83 & 1.06 & 10 & . 13 & 10 & 2.49 & . 01 & . 07 & 2 \\
\hline 5 & 2 & 2 & 36 & 1 & 2 & , & 19 & 1.15 & . 04 & 6 & 39 & . 40 & 74 & . 01 & 28 & 1.38 & . 03 & . 05 & 2 \\
\hline 5 & 2 & 2 & 17 & 2 & 2 & 2 & 104 & 1.21 & . 03 & 9 & 81 & 1.01 & 96 & . 11 & 9 & 2.81 & . 51 & . 10 & 2 \\
\hline 5 & 2 & 2 & 31 & 1 & 1 & 2 & 117 & . 31 & . 08 & 7 & 72 & 1.11 & 108 & . 12 & 35 & 2.53 & . 02 & . 08 & 2 \\
\hline 5 & 2 & 2 & 32 & 1 & J & 2 & [3] & . 34 & . 09 & 9 & 91 & 1.59 & 101 & . 12 & 29 & 2.96 & . 01 & . 69 & 2 \\
\hline 5 & 2 & 2 & 15 & 1 & 2 & 2 & . 66 & . 18 & . 05 & 5 & 31 & . 39 & 66 & . 10 & 1 & 1.28 & . 01 & . 05 & 2 \\
\hline 1 & 2 & 5 & 53 & 1 & 2 & 3 & 69 & . 11 & . 06 & 36 & 53 & .63 & 280 & . 17 & 11 & 5.86 & . 02 & . 08 & 2 \\
\hline 5 & 2 & 2 & 28 & 1 & 2 & 2 & 119 & . 21 & . 08 & 5 & 51 & . 78 & 100 & . 11 & 25 & 1.97 & . 01 & . 05 & 2 \\
\hline 5 & 2 & 2 & 16 & 1 & 2 & 2 * & 108 & . 16 & . 09 & 7 & 14 & .15 & 63 & . 13 & 21 & 2.35 & . 01 & . 01 & 2 \\
\hline 5 & 2 & 2 & 34 & 1 & 2 & 2 & 97 & . 30 & . 15 & 1 & 58 & 1.06 & 111 & . 12 & 30 & 2.50 & . 01 & . 01 & 2 \\
\hline 5 & 2 & 2 & 31 & 1 & 2 & 2 & 105 & . 65 & . 01 & 9 & 13 & . 96 & 193 & . 12 & 9 & 2.65 & . 0 & . 08 & 2 \\
\hline 5 & 2 & 2 & 29 & 1 & 2 & 2 & 104 & . 37 & . 08 & & 50 & . 88 & 78 & . 12 & 8 & 1.90 & . 01 & . 06 & 2 \\
\hline 5 & 2 & 2 & \(35^{\circ}\) & 1 & 2 & 2 & 102 & . 57 & . 06 & 9 & 61 & . 99 & 136 & .11 & 26 & 2.12 & . 02 & . 08 & 2 \\
\hline 5 & 2 & 2 & 30 & 1 & 3 & 2. & 79 & . 36 & . 04 & 12 & 12 & . 60 & 116 & . 09 & 5 & 1.19 & . 01 & . 06 & 2 \\
\hline 5 & 2 & 2 & 28 & , & 2 & 2 & 35 & . 15 & . 05 & 10. & 53 & . 89 & 157 & . 11 & 28 & 1.96 & . 02 & . 07 & 2 \\
\hline 5 & 2 & 2 & 41 & 1 & 4 & 't & 103 & . 69 & . 05 & 11 & 14 & 1.23 & 154 & . 11 & 11 & 2.37 & . 02 & . 11 & 2 \\
\hline 5 & 2. & 2 & 78 & 2 & 3 & 2 & 99 & 1.17 & . 09 & 21 & 78 & . 91 & 238 & . 05 & 11 & 3.34 & . 0 ? & . 21 & 2 \\
\hline 5 & 2 & 2 & . 29 & 1 & 2 & 2 & 14 & . 29 & . 02 & 6 & 32 & . 16 & 81 & . 14 & 1 & 1.41 & . 02 & . 04 & 2 \\
\hline 5 & 2 & 2 & 12 & 1 & 2 & 2 & 58 & . 09 & . 08 & 4 & 16 & . 15 & 56 & . 10 & & 1.13 & . 01 & . 03 & 2 \\
\hline 5 & 2 & 3 & 38 & 2 & 2 & 2 & 75 & . 76 & . 05 & 17 & 61 & . 6 & 138 & . 13 & 9 & 3.85 & . 03 & . 07 & ? \\
\hline 5 & 2 & 2 & . 21 & 1 & 2 & 2 & 50 & . 15 & . 26 & 5 & 21 & . 25 & 112 & . 11 & & 2.39 & . 02 & . 05 & 2 \\
\hline 5 & 2 & 2 & 33 & 1 & 3 & 2 & 97 & . 32 & . 13 & 8 & 51 & . 91 & 101 & . 10 & 17 & 2.11 & . 01 & . 06 & 2 \\
\hline 5 & 2 & 2 & 25 & 1 & 2 & 2 & 95 & . 35 & . 11 & 5 & 58 & 1.04 & 14 & . 12 & 1 & 1.16 & . 01 & . 08 & 2 \\
\hline 5 & 2 & 2 & 17 & 1 & 2 & 2 & 11 & . 21 & . 19 & 5 & 40 & . 17 & 90 & . 13 & 12 & 3.31 & . 02 & . 06 & 2 \\
\hline & 2 & 2 & 20 & 1 & 2 & 2 & 115 & 26 & 16 & 6 & 69 & 87 & 102 & 11 & & 2. 22 & & & \\
\hline
\end{tabular}

S．M．D．C．FROJECT \＃TA HOOLA 4947 FILE \＃日2－0407
Fage \｜c
SAMPLE \(\ddagger\)
\(\begin{array}{llllll}\mathrm{Ko} & \mathrm{Cu} & \mathrm{Pb} & \mathrm{ln} & \mathrm{Ag} & \mathrm{Mi} \\ \mathrm{ppq} & \mathrm{ppa} & \mathrm{Ppa} & \mathrm{ppa} & \mathrm{ppa} & \mathrm{ppt}\end{array}\)
\(\begin{array}{cc}\mathrm{Mn} & \mathrm{Fe} \\ \mathrm{plan} \\ \mathrm{ppa}\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLE 7 & \[
\begin{aligned}
& \text { Ko } \\
& \text { pọ }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Cu} \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \text { fb } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ln } \\
& \text { ppa }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{ppa}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ni } \\
& \text { ppt }
\end{aligned}
\] & \({ }^{\circ} 0\) ppa & \begin{tabular}{l}
mn \\
ppa
\end{tabular} & \[
\begin{gathered}
\mathrm{Fe} \\
1
\end{gathered}
\] & As pos & \[
\underset{p p i}{0}
\] & Au
ppı & Ih ppa & Sr ppı & & Sb & & \[
\mathrm{v}
\] & \[
\begin{gathered}
C_{2} \\
i
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& Z
\end{aligned}
\] & La & Cr & \[
\mathrm{Hg}
\] & \[
82
\] & \[
\mathfrak{i i}
\] & P1 & \[
\mathrm{Al}_{\mathrm{g}}
\] & \[
\mathrm{K}_{2}
\] & \(\underline{1}\) & * \\
\hline 1A－2－9－3079 & 3 & 37 & 17 & 161 & ． 3 & 18 & 11 & 825 & 2.19 & 6 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 69 & ． 13 & ． 03 & 6 & 35 & & & & & & & & \\
\hline Th－2－R－3080 & 12 & 190 & 12 & 106 & 1.8 & 19 & 15 & 921 & 4.69 & 22 & 5 & 2 & 3 & ． 51 & 1 & 2 & 2 & 164 & 1.16 & ． 09 & 14 & 89 & 1.05 & 207 & ． 07 & 12 & 1.67
3.15 & ． 01 & ． 06 & 2 \\
\hline 1A－2－R－30日I & 10 & 86 & 27 & 113 & ． 3 & 18 & 16 & 353 & 4.13 & 19 & 5 & 2 & 3 & 14 & 1 & 2 & 2 & 113 & ． 66 & ． 06 & 9 & 日 & 1.37 & 186 & ． 11 & 11 & 2.80 & ． 01 & ． 12 & 2 \\
\hline 1A－2－R－3082 & 29 & 137 & 26 & 93 & .1 & 51 & 12 & 2533 & 5.03 & 47 & 5 & 2 & 1 & 57 & 1 & 5 & 3 & 112 & ． 78 & ． 05 & 13 & 107 & 1.31 & 241 & ． 08 & 13 & 3.36 & ． 01 & ． 18 & 2 \\
\hline 1n－2－8－3083 & 8 & 75 & 30 & 112 & ． 1 & 13 & 17 & 692 & 4.00 & 14 & 5 & 2 & 3 & J6 & 1 & 2 & 2 & 107 & ． 55 & ． 04 & 10 & 99 & 1.60 & 126 & ． 11 & 10 & 2.65 & ． 02 & ． 12 & 2 \\
\hline 1A－2－R－3084 & 1 & 51 & 22 & 7 & ． 1 & 26 & 9 & 224 & 3.30 & 12 & 5 & 2 & 2 & 36 & ！ & 2 & 2 & 100 & ． 12 & ． 05 & 11 & 62 & 1.11 & 118 & ． 11 & 9 & 1.91 & ． 01 & ． 10 & \\
\hline 1A－2－R－3085 & 3 & 32 & 20 & 4 & ． 1 & 19 & 6 & 207 & 2.52 & ， & 5 & ， & & 30 & 1 & 2 & 2 & 71 & ． 31 & ． 04 & 8 & 50 & ． 14 & 102 & ． 10 & 8 & 1.19 & ． 01 & ． 08 & 2
2 \\
\hline 1A－2－8－3086 & 1 & 75 & 26 & 15 & ． 1 & 32 & 17 & 542 & 3.62 & 14 & 5 & ， & 2 & 38 & 1 & 2 & 2 & 95 & ． 10 & ． 01 & 15 & 70 & 1.16 & 127 & ． 09 & 11 & 2.15 & ． 01 & ． 10 & 2 \\
\hline 1A－2－R－3087 & 2 & 29 & 18 & 25 & ． 3 & 9 & 5 & 80 & 1.73 & 4 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 56 & ． 21 & ． 03 & 5 & 24 & ． 24 & 98 & ． 89 & 5 & 1.02 & ． 01 & ． 85 & 2 \\
\hline IA－2－R－3088 & 1 & 81 & 32 & 76 & ． 1 & 31 & 13 & 395 & 3.61 & 6 & 5 & 2 & 2. & 31 & 1 & 2 & 2 & 102 & ． 55 & ． 05 & 1 & 71 & 1.08 & 121 & ． 10 & 10 & 2.67 & ． 01 & ． 08 & 2 \\
\hline 1A－2－R－3089 & － 1 & 12 & 32 & 77 & .1 & 22 & 11 & 316 & 3.60 & 11 & 5 & 2 & J & 20 & 1 & 2 & 2 & 99 & ． 20 & ． 09 & 6 & 60 & ． 79 & 11 & ． 12 & 11 & 2.38 & ． 01 & ． 08 & 2 \\
\hline 1A－2－R－3090 & 1 & 11 & 33 & 72 & ． 1 & 22 & 11 & 295 & 3.81 & 13 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 100 & ． 19 & ． 09 & 7 & 59 & ． 71 & 68 & ． 11 & 2 & 2.12 & ． 01 & ． 06 & 2 \\
\hline 1A－2－R－3091 & 1 & 84 & 31 & 13 & ． 1 & 33 & 16 & 620 & 3.90 & 19 & 5 & 2 & 3 & 16 & 1 & 2 & 2 & 103 & ． 57 & ． 05 & 13 & 65 & 1.30 & 91 & ． 12 & 13 & 2.16 & ． 01 & ． 11 & 2 \\
\hline 1A－2－8－3092 & 5 & 4 & 66 & 76 & ． 1 & 30 & 10 & 222 & 4.96 & 13 & 5 & 2 & 2 & 17 & 1 & 2 & j & 143 & ． 16 & ． 09 & 6 & 76 & ． 89 & 53 & ． 17 & 10 & 2.35 & ． 01 & ． 06 & 2 \\
\hline TA－2－R－3093 & 4 & 21 & 60 & 65 & ． 3 & 17 & 10 & 111 & 3.20 & 9 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 99 & ． 26 & ． 05 & 7 & 47 & .16 & 88 & ． 11 & 15 & 1.31 & ． 01 & ． 06 & 2 \\
\hline TA－2－R－3094 & 3 & 51 & 92 & 102 & ． 9 & 33 & 11 & 292 & 2.87 & 10 & 5 & & 2 & 24 & 1 & 3 & 2 & 79 & ． 53 & ． 03 & 6 & 61 & ． 75 & 104 & ． 11 & 10 & 1.83 & ． 01 & ． 09 & 2 \\
\hline TA－2－R－4052 & 1 & 88 & 15 & 50 & ． 1 & 12 & 36 & 111 & 6.02 & 2 & 5 & ， & 2 & 11 & 1 & 2 & 2 & 162 & ． 15 & ． 01 & 4 & 312 & 3．88 & 53 & ． 11 & 11 & 3.86 & ． 01 & ． 08 & 2 \\
\hline 1A－2－R－4053 & 2 & 130 & 122 & 55 & 4.6 & 30 & 11 & 246 & 2．83 & 2 & 5 & & 3 & 30 & 1 & 2 & 2 & 58 & ． 82 & ． 05 & 13 & 64 & ． 59 & 82 & ． 13 & 8 & 3.59 & ． 01 & ． 05 & 2 \\
\hline TA－2－R－4054 & 1 & 32 & 50 & 63 & ． 1 & 32 & 10 & 201 & 4.34 & 2 & 5 & 2 & 2 & 15 & 1 & 2 & 2. & 131 & ． 19 & ． 04 & & 90 & 1.17 & 67 & ． 18 & － & 2.14 & ． 01 & ． 07 & 2 \\
\hline TA－2－R－4055 & 2 & 35 & 51 & 79 & ． 6 & 36 & 10 & 217 & 2.89 & 7 & 5 & 2 & 3 & 13 & 1 & 2 & ． & 76 & ． 22 & .10 & 7 & 96 & 1.07 & 54 & ． 12 & B & 2.43 & ． 01 & ． 07 & 2 \\
\hline TA－2－R－1057 & 10 & 235 & 139 & 170 & 1.9 & 80 & 23 & 1573 & 6.32 & 27 & 5 & 2 & 1 & 11 & 1 & 2 & 5 & 138 & ． 69 & ． 08 & 14 & 144 & 1.71 & 289 & ． 08 & 13 & 1.11 & ． 02 & ． 29 & \\
\hline 1A－2－8－4058 & 8 & 61 & 23 & 90 & ． 3 & 25 & 9 & 476 & 2.85 & 11 & 3 & 2 & 4 & 37 & 1 & 2 & 2 & 79 & ． 61 & ． 04 & 12 & 56 & ． 97 & 128 & ． 09 & 9 & 1.96 & ． 01 & ． 10 & 2 \\
\hline TA－2－R－3059 & 8 & 109 & 24 & 94 & 1.2 & 31 & 12 & 297 & 3.11 & 14 & 5 & 2 & 3 & 38 & 1 & 2 & 2 & 93 & ． 55 & ． 04 & & 55 & ． 90 & 136 & ． 12 & 10 & 2.53 & ． 01 & ． 09 & 2 \\
\hline 1A－2－R－1060 & 8 & 63 & 19 & 87 & ． 8 & 23 & 10 & 185 & 3.45 & 12 & 5 & 2 & 2 & 27 & 1 & 2 & 2 & 104 & ． 45 & ． 04 & 6 & 50 & ． 75 & 105 & ． 12 & 8 & 1.95 & ． 01 & ． 07 & 2 \\
\hline 1A－2－R－4061 & 6 & 110 & 23 & 81 & ． 3 & 36 & 15 & 382 & 3.83 & 14 & 5 & 2 & 2 & 39 & 1 & 3 & 2 & 107 & ． 95 & ． 04 & 8 & 71 & 1.43 & 97 & ． 12 & 8 & 2.26 & ． 01 & ． 09 & 2 \\
\hline 1A－2－R－4062 & 6 & 97 & 28 & 82 & ． 1 & 42 & 13 & 349 & 4.13 & 17 & 5 & 2 & 3 & \(\because 11\) & 1 & 2 & 2 & 113 & ． 78 & ．05 & 10 & 87 & 1.45 & 118 & ． 11 & 9 & 2.53 & ． 01 & & \\
\hline ［A－2－R－1063 & 8 & 76 & 29 & 81 & ． & 35 & 13 & 341 & 3.60 & 16 & 5 & 2 & 2 & 38 & 1 & 2 & 2 & 104 & ． 57 & ． 05 & \(9^{\circ}\) & 75 & 1.29 & 106 & ． 11 & 11 & 2.26 & ． 01 & ． 10 & 2 \\
\hline 1A－2－R－4064 & 3 & 47 & 21 & 81 & ． 3 & 25 & 10 & 198 & 3.08 & 10 & 5 & 2 & 2 & 32 & 1 & 2 & 2 & 89 & ． 15 & ． 04 & 8 & 53 & ． 89 & 84 & ． 11 & 6 & 1.91 & ． 01 & ． 01 & 2 \\
\hline 1A－2－R－4055 & 1 & 19 & 32 & 105 & ． 4 & 29 & 11 & 210 & J． 72 & 14 & 5 & 2 & 2 & 23 & 1 & J & 2 & 98 & ． 31 & ． 09 & 1 & 69 & ． 98 & 95 & .12 & 11 & 2.08 ． & ． 01 & ． 09 & 2 \\
\hline 1A－2－R－4066 & 7 & 205 & 81 & 121 & 1.6 & 62 & 20 & 808 & 5.26 & 22 & 5 & 2 & 3 & 46 & ， & 3 & 4 & 124 & ． 84 & ． 05 & 14 & 115 & 1.50 & 190 & ． 10 & 14 & 3.26 & ． 02 & ． 19 & 2 \\
\hline 1A－2－R－4067 & 4 & 49 & 81 & 81 & 1.0 & 27 & 8 & 151 & 3.12 & 11 & 5 & 2 & 3 & 23 & ， & 2 & 2 & 86 & ． 39 & ． 06 & 7 & 66 & ． 84 & 88 & ．13 & 10 & 1.86 & ． 02 & ． 09 & \\
\hline 1A－2－R－4068 & 5 & 58 & 11 & 109 & ． 4 & 54 & 13 & 285 & 4．31 & 12 & 5 & 2 & 2 & 25 & ， & 3 & 2 & 119 & ． 14 & ． 15 & 7 & 120 & 1.74 & 106 & ． 13 & P & 2.29 & ． 01 & ． 11 & 2 \\
\hline iA－2－R－4069 & 6 & 98 & 92 & 98 & ． 6 & 53 & 15 & 498 & 1.13 & 17 & 5 & 2 & 2 & 33 & 1 & 3 & 2 & 117 & ． 59 & ． 08 & 9 & 122 & 1.90 & 89 & ． 13 & 10 & 2.53 & ． 01 & ． 11 & 2 \\
\hline 1A－2－R－4070 & 7 & 117 & 80 & 78 & 1.6 & 46 & 14 & 306 & 4.22 & 16 & 5 & 2 & 3 & 42 & 1 & 2 & 2 & 110 & ． 90 & ． 04 & 6 & 109 & 1.17 & 162 & ． 11 & 26 & 2.11 & ． 02 & ． 11 & 2 \\
\hline ［ \(\mathrm{A}-2-\mathrm{A}-1071\) & 6 & 17 & 108 & 86 & ． 3 & 56 & 17 & 402 & 4.02 & 13 & 5 & 2 & \(\because 2\) & 29 & 1 & 3 & 3 & 117 & .65 & ． 07 & 8 & 116 & 1.83 & 81 & ． 13 & 8 & 2.29 & ． 01 & ． 11 & 2 \\
\hline TA－2－R－4072 & 5 & 110 & 109 & 131 & 3.3 & 51 & 14 & 526 & 3.44 & 8 & 5 & 2 & 2 & 69 & 1 & J & 2 & 93 & 1.71 & ． 01 & 7 & 96 & 1.11 & 124 & ． 09 & 9 & & ． 02 & & \\
\hline 1A－2－R－40］3 & 6 & 105 & 93 & 87 & 1.5 & 54 & 18 & 347 & 4.36 & 15 & 5 & 2 & 3 & 37 & 1 & 2 & 2 & 118 & ． 80 & ． 03 & 9 & 112 & 1.59 & 101 & ． 14 & 9 & 2.70 & ． 01 & ． 13 & 2 \\
\hline
\end{tabular}

S．M．D．C．FFBOJECT H TA HODLA 4947 FILE \＃g2－0̈407

SAMPLE I
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  \\
\hline －いか & かいが & WCNOM & －－W＊N & いいいい & \(\omega\) & wunow－ & M－NNO \\
\hline ¢넌․ &  & じゅらすべ & 二あが边 & むかった &  & いずすこへ & ご㐫むがった \\
\hline ～N氙 &  &  &  &  &  & あ＝9N0 &  \\
\hline ～デ & ごすごった & 훆̇心 &  & 边馬思べった。 &  &  & 「ご可ご宁 \\
\hline －i－i & －\％ioioi & からいご & シーシンシ & －－－－ & 吅以二家 & シージ・ & cincis \\
\hline 二늒 & ふニニが守 & いすべす。 & Nちよさ～ & ～ぢす。ち &  & \(\underset{\sim}{\sim}\) &  \\
\hline \(0=5\) & こえニニ & 二ス心Nー & ッニべす & ここムご &  &  & \(\cdots=\infty \times\) \\
\hline 界台号 &  &  & ～6． &  & 寺氙馬きす &  &  \\
\hline  & H N゙ひ～～O & \begin{tabular}{l}
－N～N \\

\end{tabular} &  &  &  &  &  \\
\hline N－N & ニー゙ニこぁ & ごかへの & のーム゙いつ & ゅ๐こニN & ニペニニ & －馬こここ & ※゙ニニ～ \\
\hline encres & uneruencor & anerumen & unumuen & unenumen & encoumen & unerenoun & orenerenen \\
\hline NNN & NNNNON & NNNNN & NONNN & \(N\) & NNNNN & NNNNN & NNNNN \\
\hline NNO & NNNNCM & CNNTM & \(\sim\) & neunner & いNいいい & Nummon & WnNom \\
\hline こべ & Nロボ心 & ぶがいた & N～WN～ & N以心式 &  & N～ちNN & ¢ \\
\hline －－－ & ーーーーー & ーーーーー & ーーーー－ & ーーツーー & －ーNNN & ーーーーー & ーーーーー \\
\hline NNOL & NNNNT & NNNMN & NNN－N & N－Wいい & NNNMN & NonNomi & NNNNM \\
\hline Nov & NNHNN & WNN心寺 & のおN心N & NNNNN． & NNNTNM & NNNNN & NNNNN \\
\hline ゅジロ &  &  & ごずすべ心 &  &  &  &  \\
\hline \(\vdots i\) & 出きえら方 & －べらす。 &  & ジうごす &  &  &  \\
\hline 88 & － &  &  &  & 40\％ 00 & －8\％ & \＃－ios \\
\hline － & －000000 & \(\cdots \times\) &  & ーンのロこ & の－らす。 & \(\sim\) &  \\
\hline 幺可気 & 思が罗䍐 &  & のパジ島 &  &  & 䒺安このご &  \\
\hline \[
\dot{\sim}
\] &  & 家家灾気示 & 灾亩忈示 & ¢ ¢ ¢ ¢ ¢ & －亏末二is & 罗忥家 & 등） \\
\hline 능ㅇㅇ &  & ざがったら & ※ごったが品 &  & ふからずす &  &  \\
\hline  & シえご元 & ごらいこ & シこうご示 & シこ̇ジ &  & 二心ご & ＂－io \\
\hline \(\cdots \infty\) & 0 & －－－－い & ～Noñor & Nownor & － & N－ & \(\sim \sim \sim \sim\) \\
\hline  & FNO &  &  &  & Nin &  & N: \\
\hline \(\bigcirc\) & 穴灾灾定 & \(\bigcirc 0000\) &  & 二iosois &  & 号9000 & －9000 \\
\hline －\％家安 &  & 灾弟家 & －¢－¢ & 훙ㅎㅎ &  & －i玉ここ &  \\
\hline NNN & NNNNO & NNNNN & NONON． & NNNNN & NNNNON & NNNNN & NNNNN \\
\hline
\end{tabular}

S．M．D．C．FFIOJECT＂TA HOOLA 4947 FILE \＃82－0407
FAGE \＃ 6
SAMPLE I


TA－2－R－5047
TA－2－R－5048 \(1 A-2-A-5048\)
\(1 A-2-A-5049\) 1A－2－R－5049 \(1 A-2-R-5050\)
\(T A-2-R-505 t\)
 \(1 A-2-8-5053\)
\(1 A-2-A-5063\) \(1 A-2-R-5083\)
\(1 A-2-R-5064\)
\(1 A-2-R-5065\)

A－2－R－5066 R－2－R－5067 A－2－R－5068 A－2－R－5069 \(\boldsymbol{R} \boldsymbol{A}-2-\mathrm{B}-5070\) TA－2－R－5071 \begin{tabular}{c}
\(1 A-2-R-5071\) \\
\(1 A-2-A-5072\) \\
\hline
\end{tabular} TA－2－R－5073 \(\mathrm{T} A-2-\mathrm{R}-507 \mathrm{c}\)
A
\(\mathrm{A}-2-\mathrm{R}-5074\) \(1 A-2-R-5075\)

TA－2－R－5076 Th－2－R－5077 A－2－R－5078 TA－2－R－5080

TA－2－R－5091 TA－2－R－50日2 \(A-2-8-5063\) \(1 A-2-R-508:\)
\(A-2-R-50 B 5\)

TA－2－R－5086 TA－2－R－5087 \(1 A-2-R-5088\)
\(1 A-2-R-5089\) \(1 R-2-R-5089\)
\(1 R-2-R-5090\)

TA－2－R－5091
\(1 A-2-R-5092\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & 50 & 25 & 69 & ． 3 & 27 & 9 & 253 & 2.63 & 8 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 74 & & ． 04 & 8 & 62 & ． 93 & 111 & ． 08 & 4 & 1.69 & ． 01 & ． 09 & 2 \\
\hline 6 & 62 & 61 & 91 & ． 2 & 39 & 13 & 223 & 4.91 & 15 & 5 & 2 & 2 & 15 & 1 & 3 & 1 & 133 & ． 18 & ． 09 & 6 & 101 & 1.34 & 71 & ． 15 & 5 & 2.82 & ． 01 & ． 09 & 2 \\
\hline 6 & 69 & \(3 J\) & 67 & ． 3 & 28 & 10 & 221 & 3.07 & 10 & 5 & 2 & 2 & 33 & 1 & 2 & 2 & 94 & ． 46 & ． 04 & 8 & 71 & 1.05 & 97 & ． 09 & 3 & 1.85 & ． 01 & ． 08 & 2 \\
\hline 5 & 11 & 39 & 163 & ． 1 & 12 & 16 & 256 & 4.14 & 16. & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 119 & ． 24 & ． 20 & 6 & 109. & 1.19 & 62 & ． 12 & B & 2.32 & ． 01 & ． 10 & 2 \\
\hline 3 & 34 & 34 & 85 & ． 6 & 29 & 10 & 207 & 3.46 & 16 & 5 & 2 & 3 & 21 & 1 & 2 & 2 & 81 & ． 32 & ． 13 & 6 & 71 & 1.06 & 86 & ． 10 & 21 & 1.76 & ． 01 & ． 08 & 2 \\
\hline 6 & 124 & 72 & 103 & 2.2 & 61 & 14 & 623 & 3.99 & 12 & 6 & 2 & 2 & 50 & 1 & \(2{ }^{\circ}\) & J & 97 & 1.33 & ． 07 & 8 & 112 & 1.74 & 172 & ． 09 & 27 & 2.74 & ． 02 & ． 23 & 2 \\
\hline 3 & 82 & 89 & 137 & .1 & 16 & 16 & 409 & 3.11 & 13. & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 91 & ． 59 & ． 04 & 10 & 101 & 1.13 & 107 & ． 10 & 5 & 2.32 & ． 01 & ． 13 & 2 \\
\hline 1 & 109 & 昍 & 88 & ． 6 & 41 & 19 & 735 & 3.98 & 19 & 5 & 2 & 3 & 40 & 1 & 2 & 2 & 104 & ． 96 & ． 01 & 10 & 100 & 1.71 & 113 & ． 11 & 14 & 2.39 & ． 02 & ． 22 & 2 \\
\hline 3 & 81 & 61 & 75 & ． 1 & 49 & 19 & 566 & 4.15 & 14 & 5 & 2 & 3 & 35 & ！ & 2 & 2 & 109 & ． 82 & ． 03 & 8 & 121 & 1.92 & 137 & ． 13 & 11 & 2.55 & ． 01 & ． 19 & 2 \\
\hline 3 & 63 & 50 & 92 & ． 1 & 44 & 14 & 305 & 3.76 & 15 & 5 & 2 & 2 & 26 & 1 & 3 & 2 & 107 & ． 15 & ． 06 & 1 & 102 & 1.59 & 72 & ． 11 & 6 & 2.22 & ． 01 & ． 12 & 2 \\
\hline 2 & 15 & 24 & 72 & ． 1 & 18 & 9 & 182 & 2.19 & 1 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 73 & ． 28 & ． 11 & 5 & 15 & ． 59 & 66 & ． 09 & 3 & 1.39 & ． 01 & ． 09 & 2 \\
\hline 2 & 13 & 21 & 83 & ． 2 & 21 & 12 & 358 & 3.02 & 11 & 5. & 2 & 2 & 33 & 1 & 2 & 2 & 71 & ． 39 & ． 14 & 7 & 58 & .81 & 236 & ． 09 & 10 & 1.13 & ． 01 & ． 10 & 2 \\
\hline J & 55 & 29 & 84 & .1 & 35 & 12 & 373 & 3.55 & 15 & 5 & 2 & 2 & 34 & 1 & 2 & 2 & 101 & ． 17 & ． 07 & 8 & 88 & 1.52 & 81 & ． 11 & 1 & 2.09 & ． 01 & ． 10 & 2 \\
\hline 2 & 20 & 27 & 73 & ． 1 & 19 & 8 & 422 & 3.01 & 8 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 86 & ． 30 & ． 16 & 6 & 46 & ． 67 & 103 & ． 09 & 5 & 1.56 & ． 01 & ． 13 & 2 \\
\hline 3 & 19 & 30 & 87 & ． 1 & 28 & 11 & 311 & 3.15 & 15 & 5 & 2 & 3 & 19 & 1 & 1 & 2 & 91 & ． 32 & ． 12 & 7 & 68 & ． 96 & 70 & ． 08 & 5 & 2.60 & ． 01 & ． 07 & 2 \\
\hline 2 & 22 & 21 & 58 & ． 2 & 15 & 7 & 502 & 2.10 & 6 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 74 & ． 20 & ． 08 & 6 & 40 & ． 45 & 68 & ． 07 & 1 & 1.38 & ． 01 & ． 01 & 2 \\
\hline 3 & 23 & 34 & 54 & ． 1 & 15 & 5 & 132 & 3.75 & 17 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 106 & ． 18 & ． 17 & 6 & 56 & ． 51 & 58 & ． 11 & 5 & 1.75 & ． 01 & ． 68 & 2 \\
\hline 2 & 22 & 15 & 14 & ． 1 & 14 & 5 & 168 & 2.26 & 10 & 5 & 2 & 2 & 18 & 1 & 2 & & 72 & ． 22 & ． 04 & b & 42 & ． 56 & 91 & ． 07 & 23 & 1.22 & ． 01 & ． 06 & 2 \\
\hline 3 & 15 & 23 & 80 & ． 2 & 21 & 10 & 283 & 3.18 & 14 & 6 & 2 & 2 & 19 & 1 & 2 & 2 & 89 & ． 28 & ． 08 & 1 & 65 & 1.05 & 83 & ． 10 & 1 & 2.10 & ． 01 & ． 10 & 2 \\
\hline 3 & 34 & 17 & 13 & ． 2 & 20 & 6 & 175 & 2.83 & 12 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 93 & ． 21 & ． 06 & 6 & ． 54 & ． 19 & 80 & ． 09 & 25 & 1.35 & ． 02 & ． 08 & 2 \\
\hline 1 & 57 & 53 & 79 & ． 3 & 62 & 12 & 329 & 3.86 & 12 & 5 & 2 & 2 & 20 & 1 & 2 & 3 & 116 & ． 50 & ． 10 & 6 & 111 & 2.13 & 76 & ． 14 & 6 & 2.11 & ． 02 & ． 14 & 2 \\
\hline 2 & 35 & 22 & 54 & ． 8 & 19 & 6 & 191 & 2.15 & 8 & 5 & 2 & 2 & 19 & 1 & 3 & 2. & 68 & ． 25 & ． 03 & 6 & 49 & ． 81 & 11 & ． 08 & 3 & 1.18 & ． 02 & ． 09 & 2 \\
\hline 3 & 66 & 24 & 80 & ． 4 & 31 & 11 & 595 & 3.18 & 12 & 5 & 2 & J & 24 & 1 & J & 2 & 85 & ． 36 & ． 06 & 12 & 12 & 1.15 & 101 & ． 07 & 6 & 2.17 & ． 01 & ． 13 & 2 \\
\hline 3 & 29 & 17 & 56 & ． 6 & 17 & 7 & 249 & 2.67 & 10 & 5 & 2 & 2 & 19 & 1 & 2 & 2 & 71 & ． 26 & ． 09 & 7 & 18 & ． 58 & 81 & ． 07 & 1 & 1.57 & ． 01 & ． \(08{ }^{\circ}\) & 2 \\
\hline 2 & 15 & 15 & 23 & ． 6 & 8 & 3 & 53 & 1.95 & 1 & 5 & 2 & 2 & 9 & 1 & 2 & 2 & 61 & ． 11 & ． 03 & 5 & 28 & ． 26 & 63 & ． 08 & 4 & 1.20 & ． 01 & ． 06 & 2 \\
\hline 6 & 90 & 93 & 90 & ． 7 & 39 & 11 & 329 & \(3.26{ }^{\circ}\) & 15 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 87 & ． 11 & ． 05 & 10. & 91 & 1.32 & 139 & ． 08 & 23 & 2.24 & ． 02 & ． 15 & 2 \\
\hline 5 & 102 & 日3 & 96 & 2.0 & 17 & 14 & 369 & 3.96 & 18 & 5 & 2 & 3 & 32 & 1 & 2 & 1 & 98 & ． 72 & ． 06 & \(0^{\circ}\) & 87 & ． 99 & 158 & ． 10 & 7 & 2.61 & ． 01 & ． 14 & 2 \\
\hline 5 & 84 & 84 & 82 & ． 3 & 17 & 16 & 419 & 3.82 & 18 & 5 & 2 & 3 & 24 & 1 & 2 & 1 & 102 & ． 12 & ． 03 & 9 & 104 & 1.63 & 36 & ． 11 & 5 & 2.26 & ． 01 & ． 11 & 2 \\
\hline 3 & 31 & 69 & 94 & ． 2 & 36 & 13 & 339 & 3.99 & 15 & 5 & 2 & 2 & 16 & 1 & 2 & 3 & 95 & ． 34 & ． 17 & 6 & 89 & 1.07 & 78 & ． 10 & 11 & 2.76 & ． 01 & ． 10 & 2 \\
\hline 3 & 64 & 50 & 64 & .4 & 29 & 10 & 293 & 3.09 & 9 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 81 & ． 19 & ． 05 & 6 & 64 & ． 85 & 88 & ． 08 & 4 & 2.15 & ． 02 & ． 11 & 2 \\
\hline 2 & 19 & 19 & 51 & ． 2 & 26 & 9 & 290 & 2.32 & 5 & 5 & 2 & 2 & 18 & 1 & & 2 & 70 & ． 29 & ． 05 & 7 & 59 & ． 86 & 75 & ． 10 & 17 & 1.24 & ． 01 & ． 13 & 2 \\
\hline 2 & 20 & 31 & 52 & ． 3 & 20 & 9 & 334 & 2.21 & 1 & J & 2 & 2 & 16 & 1 & 2 & 2 & 71 & ． 30 & ． 08 & 6 & 53 & ． 71 & 89 & .10 & 1 & 1.12 & ． 01 & ． 08 & 2 \\
\hline 2 & 15 & 34 & 85 & ． 8 & 19 & ， & 142 & 3.22 & 9 & ， & 2 & 2 & 19 & ， & 2 & 2 & 87 & ． 30 & ． 13 & 6 & 51 & ． 58 & 65 & ． 11 & 1 & 1.74 & ． 01 & ． 09 & 2 \\
\hline 3 & 45 & 25 & 128 & ． 3 & 27 & 12 & 179 & 3.28 & 11 & 5 & 2 & 2 & 38 & 1 & 3 & 2 & 86 & ． 53 & ． 07 & 8 & 58 & ． 80 & 155 & .10 & 5 & 2.07 & ． 01 & ． 10 & 2 \\
\hline 1 & 109 & 56 & 100 & ． 5 & 13 & 16 & 554 & 3.92 & 16 & 5 & 2. & 2 & 28 & 1 & 1 & 3 & 100 & ． 39 & ． 06 & 14 & 89 & 1.31 & 141 & ． 07 & 5 & 2.59 & ． 01 & ． 15 & 2 \\
\hline 3 & 59 & 26 & 76 & ． 3 & 29 & 11 & 134 & 3.15 & 13 & 5 & 2 & 2 & 30 & 1 & 2 & 2 & 89 & ． 14 & ． 06 & 11 & 67 & 1.12 & 124 & ． 07 & 15 & 2.01 & ． 01 & ． 11 & 2 \\
\hline 3 & 11. & 20 & 83 & ． 2 & 27 & 8 & 232 & 2.80 & 8 & 5 & 2 & 2 & ． 24 & 1 & 2 & 2 & 89 & ． 37 & ． 06 & 7 & 63 & ． 97 & 79 & ． 10 & 6 & 1.59 & ． 02 & ． 11 & 2 \\
\hline
\end{tabular}
S.N.D.C. FFOJECT \# TA HOOLA 4947 FILEE \# 82-6407
… . . .. - FAGE \#.......

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1A-2-8-5093 & 8 & 114 & 33 & 108 & . 8 & 49 & 14 & 1038 & 4.50 & 21 & 5 & 2 & 2 & 39 & 1 & 2 & 2 & \(1: 4\) & . 17 & . 05 & 11 & 81 & 1.04 & 173 & . 09 & 15 & 3.36 & . 02 & . 12 & 2 \\
\hline 1A-2-f-5094 & 1 & 26 & 22 & 95 & . 4 & 19 & 10 & 167 & 3.55 & 7 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 100 & . 31 & . 10 & 6 & 19 & . 69 & 79 & . 12 & 10 & 2.20 & . 01 & . 04 & 2 \\
\hline 1A-2-8-5075 & 1 & 20 & 18 & 91 & . 4 & 17 & 9 & 358 & 3.18 & 2 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 105 & . 17 & . 10 & 5 & 45 & . 65 & 94 & . 14 & 13 & 1.36 & . 01 & . 05 & 2 \\
\hline 1A-2-R-5096 & 6 & 23 & 31 & 88 & . 5 & 15 & 7 & 195 & 5.07 & 13 & 5 & 2 & 2. & 13 & 1 & 2 & 2 & 180 & . 18 & . 17 & 6 & 53 & . 87 & 61 & . 19 & \(1)\) & 2.20 & . 01 & . 01 & 2 \\
\hline 1A-2-R-5097 & 1 & 15 & 20 & 14 & . 3 & 18 & 11 & 250 & 4.30 & 5 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 115 & . 16 & . \(21{ }^{\text {- }}\) & 5 & 47 & : 64 & 67 & . 15 & 12 & 2.03 & . 01 & . 04 & 2 \\
\hline 1A-2-8-5098 & 8 & 101 & 23 & 80 & . 1 & 33 & 10 & 298 & 3.14 & 10 & 5 & 2 & 2 & 31 & 1 & 2 & 2 & 81 & . 14 & . 05 & 8 & 47 & . 73 & 124 & . 10 & 9 & 2.31 & . 01 & . 07 & 2 \\
\hline IA-2-R-5099 & 3 & 31 & 14 & 33 & . 5 & 23 & 9 & 207 & 2.19 & 2 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 91 & . 36 & . 01 & 5 & 51 & . 98 & 10 & . 13 & 12 & 1.78 & . 01 & . 05 & 2 \\
\hline 1A-2-A-5100 & 5 & 175 & 128 & 76 & 1.6 & 50 & 17 & 499 & 3.11 & 15 & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 100 & 1.12 & . 04 & 11 & 92 & 1.32 & 131 & . 10 & 11 & 2.31 & . 02 & . 12 & 2 \\
\hline IA-2-510] & 5 & 60 & 120 & 146 & . 6 & 46 & 11 & 342 & 3.78 & 10 & 5 & 2 & 2 & 22 & 1 & 2 & 2 & 112 & . 37 & . 06 & - & 100 & 1.46 & 115 & . 12 & 13 & 2.35 & . 01 & . 09 & 2 \\
\hline 1A-2-5102 & 5 & 60 & 105 & 69 & . 4 & 29 & 24 & 428 & 5.87 & 6 & 5 & 2 & 5 & 68 & 1 & 2 & 3 & 198 & . 12 & . 22 & 8 & 62 & 1.83 & 114 & . 18 & 18 & 2.33 & . 01 & . 15 & 2 \\
\hline TA-2-R-5103 & 3 & 12 & 55 & 58 & . 5 & 20 & 6 & 118 & 2.86 & 2 & 5 & 2 & 2 & 13 & 1 & 2 & 2 & 98 & . 21 & . 05 & 6 & 52 & . 19 & 98 & . 13 & 10 & 1.50 & . 01 & . 04 & 2 \\
\hline TA \(-2-R-5104\) & 5 & 160 & 68 & 96 & . 6 & 10 & 13 & 552 & 3.65 & 7 & 5. & 2 & 2 & 20 & 1 & 3 & 2 & 100 & . 42 & . 06 & 6 & 79 & . 89 & 108 & . 09 & 10 & 2.23 & . 01 & . 08 & 2 \\
\hline TA-2-R-5105 & 3 & 71 & 78 & 96 & . 6 & 55 & 15 & 679 & 3.86 & 6 & 5 & 2 & 2 & 26 & 1 & 2 & 2 & 112 & . 58 & . 05 & 8 & 119 & 1.99 & 117 & . 15 & IJ & 2.53 & . 02 & . 33 & 2 \\
\hline 1A-2-R-5106 & 5 & 71 & 79 & 126 & . 8 & 53 & 16 & 344 & 3.67 & 13 & 5 & 2 & 2 & 24 & 1 & J & 2 & 109 & . 15 & . 03 & 8 & 98 & 1.45 & 107 & . 13 & 14 & 2.31 & . 01 & . 08 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-5107\) & 5 & 14 & 78 & 46 & 1.5 & 32 & 11 & 189 & 3.17 & , & 5 & 2 & 2 & 30 & 1 & 2 & 2 & 103 & . 63 & . 02 & 8 & 70 & . 71 & 91 & . 12 & 12 & 1.70 & . 01 & . 09 & 2 \\
\hline TA-2-R-5108 & 6 & 152 & 128 & 109 & 1.6 & 71 & 20 & 1041 & 4.27 & 16 & 5 & 2 & 2 & 10 & 2 & 3 & 2 & 102 & . 99 & . 03 & 9 & 119 & 1.61 & 167 & . 12 & 14 & 2.88 & . 02 & . 12 & 2 \\
\hline 1A-2-8-5109 & 5 & 119 & 88 & 107 & 3.0 & 59 & 17 & 471 & 3.78 & 13 & 5 & 2 & 2 & 37 & 2 & 2 & 2 & 94 & . 90 & . 03 & 13 & 90 & 1.11 & 130 & . 13 & 13 & 2.85 & . 02 & . 10 & 2 \\
\hline 1A-2-n-5110 & 8 & 109 & 160 & 126 & 3.7 & 81 & 18 & 971 & 5.95 & 30 & 5 & 2 & 2 & 14 & 2 & 2 & 2 & 132 & 1.21 & . 06 & 18. & 137 & 1.17 & 196 & . 06 & 20 & 4.01 & . 01 & . 25 & 2 \\
\hline 1A-2-8-511] & 5 & 141 & 101 & 97 & 1.6 & 54 & 16 & 814 & 3.81 & 15 & 5 & 2 & 2 & 36 & 1 & 2 & 2 & 103 & . 76 & . 04 & 10 & 101 & 1.65 & 100 & . 12 & 12 & 2.31 & . 02 & . 15 & 2 \\
\hline 1a-2-f-5112 & 4 & 26 & 52 & 65 & . 1 & 17 & \(b\) & 211 & 2.16 & 4. & 5 & 2 & 2 & 18 & 1 & 2 & 2 & 15 & . 3 J & . 03 & 1 & 10 & . 45 & 98 & . 10 & 9 & . 97 & . 01 & . 05 & 2 \\
\hline 1A-2-R-5113 & 3 & 55 & 86 & 80 & . 7 & 29 & 10 & 290 & 2.51 & 6 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 17 & . 39 & . 03 & 6 & 53 & . 69 & 83 & . 09 & 9 & 1.18 & . 01 & . 07 & 2 \\
\hline 1A-2-A-5114 & 3 & 41 & 12 & 43 & . 1 & 20 & 8 & 135 & 2.92 & 5 & 5 & & 2 & 19 & 1 & 2 & 2 & 90 & . 21 & . 08 & 6 & 50 & . 58 & 54 & . 10 & 10 & 1.70 & . 01 & . 04 & 2 \\
\hline 1A-2-8-5115 & 5 & 36 & 70 & 65 & . 4 & 23 & 11 & 272 & 3.15 & 2 & 5 & 2 & 2 & 16 & & 2 & 2 & 93 & . 20 & . 08 & 6 & 65 & . 83 & 47 & . 11 & 10 & 1.70 & . 01 & . 07 & 2 \\
\hline 1A-2-R-5116 & 7 & 84 & 81 & 88 & . 6 & 46 & 17 & 190 & 3.65 & 13 & 5 & 2 & 2 & 28 & 1 & 2 & 2 & 91 & . 67 & . 04 & 8 & 81 & 1.02 & 143 & . 12 & 12 & 2.72 & . 01 & . 11 & 2 \\
\hline \(1 \mathrm{~A}-2-\mathrm{R}-5117\) & 1 & 121 & 120 & 151 & 1.0 & 64 & 19 & 1364 & 3.92 & 9 & 5 & 2 & 2 & 32 & 2 & 2 & J & 31 & . 90 & . 05 & 10 & 93 & 1.28 & 158 & . 12 & 14 & 2.82 & . 02 & . 10 & 2 \\
\hline TA-2-R-5118 & 4 & 46 & 85 & 112 & . 4 & 47 & 13 & 278 & 3.56 & 11 & 5 & 2 & 2 & 23 & 1 & 2 & 2 & 102 & . 50 & . 05 & 6. & 105 & 1.30 & 87 & . 14 & 12 & 2.10 & . 01 & . 12 & 2 \\
\hline 1A-2-R-5119 & 1 & 98 & 64 & 80 & . 4 & 44 & 17 & 634 & 3.51 & 16 & 5 & 2 & 2 & 24 & 1 & 2 & 2 & 98 & . 55 & . 07 & \(10^{\circ}\) & 82 & 1.49 & 81 & . 11 & 11 & 1.83 & . 01 & . 18 & 2 \\
\hline 1A-2-R-5120 & 1 & 65 & 66 & 150 & . 5 & 58 & 16 & 321 & 4.18 & 12 & 5 & 2 & 2 & 21 & 1 & 2 & 2 & 114 & . 14 & . 14 & I & 117 & 1.81 & 11 & . 14 & 15 & 2.53 & . 02 & . 14 & 2 \\
\hline [ \(\mathrm{A}-2-\mathrm{R}-5121\) & 2 & 31 & 62 & 73 & . 3 & 35 & 10 & 270 & 2.19 & 3 & 5 & 2 & 2 & 17 & 1 & 2 & 2 & 79 & . 30 & . 06 & 6 & 72 & 1.05 & 93 & . 12 & 8 & 1.44 & . 01 & . 09 & 2 \\
\hline TA-2-8-5122 & 1 & 56 & 69 & 70 & . 5 & 43 & 13 & 292 & 3.08 & 14 & 5 & 2 & 2 & 19 & 1 & 2 & 1 & 94 & . 50 & . 07 & b & 81 & 1.12 & 65 & . 12 & 10 & 1.81 & . 01 & . 15 & 2 \\
\hline 1A-2-R-5123 & 5 & 34 & 55 & \$3 & . 9 & 29 & \(\cdot 1\) & 154 & 3.05 & 5 & 5 & 2 & 2 & 12 & 1 & 2 & 2 & 115 & . 25 & . 02 & 5 & 72 & . 95 & 4 & . 16 & 9 & 1.56 & . 02 & . 04 & 2 \\
\hline TA-2-R-5124 & & 19 & 95 & 124 & . 8 & 56 & 14 & 250 & 4.04 & 9 & 5 & 2 & 2 & 15 & 1 & 2 & 3 & 98 & . 35 & . 08 & 8 & 111 & 1.50 & 82 & . 15 & 12 & 3.03 & . 01 & . 06 & 2 \\
\hline 1 \(\mathrm{A}-2 \mathrm{~F}-\mathrm{F}-5125\) & 5 & 50 & 64 & 114 & . 5 & -53 & 13 & 504 & 4.14 & 10 & 5 & 2 & 2 & 15 & 1 & 2 & 2 & 114 & . 31 & . 10 & 8 & 110 & 1.71 & 85 & . 15 & 13 & 2.12 & . 01 & . 14 & 2 \\
\hline IA-2-8-5126 & 3 & 17 & 73 & 70 & . 8 & 33 & 10 & 508 & 2.36 & 5 & 5 & 2 & 2 & 31 & 1 & 2 & 2 & 11 & . 60 & . 06 & 8 & 87 & .83 & 135 & . 09 & 7 & 1.6J & . 01 & . 08 & 2 \\
\hline 1A-2-R-512] & B & 171 & 72 & 94 & 1.9 & 55 & 15 & 719 & 3.81 & 17 & 5 & 2 & 2 & 37 & 2 & 2 & 2 & 94 & 1.05 & . 08 & 13 & 89 & 1.32 & 128 & . 07 & 15 & 2.58 & . 02 & . 11 & 2 \\
\hline IA-2-R-512 & 9 & 305 & 61. & 84 & . 1.7 & 75. & . 15 & 573 & 4.11 & 26 & . 5 & 2. & 2 & 37 & 1 & 2 & 2 & 94 & . 96 & . 05 & 13 & 81 & 1.06 & 131 & . 08 & 13 & 2.11 & . 01 & . 12 & 2 \\
\hline
\end{tabular}

\section*{ACME ANALYTICAL LABORATORIES LTD.}


852 East Hastings St., Vancouver, B.C. V6A 1R6
File: \(\qquad\)
Date:
oct. 23, 1984

CCT 24924

VindCuven, B.C.

TERMS: net twó weeks 2\% PER MONTH CHARGED ON OVEROUE ACCOUNTS.


\section*{ACME ANALYTICAL LABORATORIES LTD.}

PHONE: 253-3158

File:



\section*{APPENDIX 5}

CERTIFICATE OF ANALYSIS - 1985 SOIL GEOCHEMISTRY

IHIS LEACH IS PARTIAL FOR MR．FE．CA．P．CR，KG．BA．H．B．AL．MA．X．X．SI．IR．CE．SK．Y．MB AND TA．AU DETECIIDN LJKII BY ICF IS 3 PPK．
SAKFLE TYPE：SOILS－80 KESK RUH awalysis by fataa fron 10 bran sakple．
 SELCO－A DIVISION OF BP FROJECT－562－10141 FILE \＃85－2754
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & \[
\begin{gathered}
M_{0} \\
P P M
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{Cu} \\
P P M
\end{array}
\] & \[
\begin{gathered}
P b \\
P P M
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{In}_{\mathrm{n}} \\
& P P K
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Ag}_{\mathrm{Ag}}
\end{gathered}
\] & \[
\underset{\text { Mi }}{\substack{\mathrm{Pi}}}
\] & \[
\begin{gathered}
\text { Co } \\
\text { PPK }
\end{gathered}
\] & \[
\mathrm{Kn}_{\mathrm{PPM}}
\] & \[
\begin{aligned}
& \text { fe } \\
& \vdots
\end{aligned}
\] & \[
\begin{aligned}
& \text { As } \\
& \text { PPK }
\end{aligned}
\] & \[
\underset{\text { PPR }}{U}
\] & \[
\begin{aligned}
& \text { AU } \\
& \text { PPM }
\end{aligned}
\] & \[
\begin{gathered}
\text { Th } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Sr} \\
\text { PPK }
\end{gathered}
\] & \[
{ }_{P P K}^{C d}
\] & \[
\begin{gathered}
\text { sb } \\
\text { PPM }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bi } \\
\text { PFY }
\end{gathered}
\] & \[
\underset{\text { PPH }}{V}
\] & \[
\begin{gathered}
\mathrm{C} \\
\mathbf{z}
\end{gathered}
\] & \[
\begin{aligned}
& p \\
& z
\end{aligned}
\] & \[
\begin{aligned}
& \text { LA } \\
& P P K
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Cr}_{\text {P }}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Kg} \\
2
\end{gathered}
\] & \[
\begin{array}{r}
B_{2} \\
\text { PPM }
\end{array}
\] & \[
\underset{x}{i i}
\] & PPM & \[
\underset{1}{\mathrm{Al}}
\] & \[
\begin{gathered}
x_{2} \\
1
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& z
\end{aligned}
\] & & \[
\begin{gathered}
\text { Aust } \\
\text { PPB }
\end{gathered}
\] \\
\hline 50.65562931001 & 3 & 95 & 10 & 90 & ． 2 & 32 & 18 & 414 & 5.71 & 16 & 5 & ND & 2 & 20 & 1 & 2 & 2 & 79 & ． 18 & ． 10 & 6 & 87 & 1.40 & 58 & ． 08 & 2 & 2.67 & ． 01 & ． 02 & 1 & 17 \\
\hline 5065562931002 & 2 & 75 & & 121 & ． 8 & 11 & 21 & 532 & 6．36 & 10 & 5 & ND & 2 & 24 & 1 & 2 & 4 & 102 & ． 22 & ． 21 & 5 & 25 & ． 82 & 61 & ． 12 & 2 & 2.03 & ． 01 & ． 04 & 1 & 30 \\
\hline 5065562931003 & 2 & 53 & 13 & 96 & ． 4 & 14 & 16 & 378 & 5.64 & 26 & 5 & \(N 0\) & 2 & 19 & 1 & 2 & 2 & 89 & ． 21 & ． 31 & 6 & 45 & ． 56 & 48 & ． 11 & 3 & 1.45 & ． 01 & ． 04 & 1 & 175 \\
\hline 5085562931004 & 2 & 360 & 18 & 122 & ． 3 & 22 & 37 & 1759 & 6.30 & 18 & 5 & ND & 2 & 11 & 1 & 2 & 3 & BJ & ． 69 & ． 16 & 11 & 62 & 1.74 & 62 & ． 01 & 2 & 2.72 & ． 01 & ． 02 & 1 & 115 \\
\hline 5085562931005 & 2 & 52 & 14 & 147 & ． 2 & 30 & 18 & 761 & 5.04 & 13 & 5 & \(N \mathrm{~N}\) & 2 & 16 & 1 & 2 & 2 & 66 & ． 15 & ． 13 & 8 & 76 & ． 98 & 100 & ． 08 & 2 & 2.61 & ． 01 & ． 03 & 1 & 20 \\
\hline 5085562931006 & 3 & 49 & 18 & 92 & ． 5 & 15 & 14 & 342 & 6.02 & 11 & 5 & \(N \square\) & 2 & 17 & 1 & 2 & 2 & 126 & ． 12 & ． 06 & 5 & 64 & ． 71 & 76 & ． 12 & 2 & 2.16 & ． 01 & ． 03 & 1 & 60 \\
\hline 5085562931007 & 3 & 145 & 16 & 74 & ． 7 & 24 & 19 & 424 & 6． 10 & 12 & 5 & ND & ； & 11 & 1 & 2 & 2 & 69 & ． 13 & ． 21 & 5 & 68 & ． 81 & 55 & ． 10 & 2 & 2.86 & ． 01 & ． 02 & 1 & 27 \\
\hline 5085562931008 & 3 & 12 & 13 & 116 & ． 5 & 13 & 11 & 394 & 4.56 & 9 & 5 & ND & 2 & 14 & 1 & 2 & 3 & 81 & ． 11 & ． 14 & 3 & 43 & ． 11 & 48 & .13 & 2 & 2.24 & ． 01 & ． 02 & 1 & 9 \\
\hline 5085562931009 & 2 & 66 & 27 & 234 & ． 6 & 18 & 17 & 408 & 4.73 & 12 & 5 & HD & 3 & 15 & 1 & 2. & 2 & 61 & ． 14 & ． 19 & 4 & 47 & ． 70 & 71 & ． 10 & 2 & 3.69 & ． 01 & ． 03 & 1 & 21 \\
\hline 5085562931010 & 2 & 65 & 9 & 91 & ． 3 & 34 & 16 & 141 & 5.09 & 15 & 5 & no & 2 & 21 & 1 & ， & 2 & 87 & ． 31 & ． 34 & 10 & 115 & 1.00 & 55 & ． 11 & 2 & 2.01 & ． 01 & ． 03 & 1 & 9 \\
\hline 5 Tb C & 21 & ． 61 & 38 & 133 & 7.0 & 69 & 28 & 1157 & 3．86 & 39 & 17 & 8 & 37 & 51 & 16. & 16 & 20 & 57 & ． 15 & ． 14 & 37 & 54 & ． 89 & 177 & ． 07 & 37 & 1.71 & ． 06 & ． 10 & 13 & － \\
\hline 5085562931011 & 2 & 64 & 14 & 85 & ． 2 & 20 & 18 & 448 & 5.32 & 8 & 5 & ND & 1 & 19 & 1 & 2 & 2 & 99 & ． 15 & ． 17 & 3 & 79 & ． 85 & 52 & ． 15 & 2 & 1.60 & ． 01 & ． 02 & 1 & \(32^{\circ}\) \\
\hline 5095562931012 & 5. & 86 & 5 & 203 & ． 6 & 66 & 23 & 667 & 5.13 & 39 & 5 & KD & 3 & 33 & 2 & 2 & 2 & 93 & ． 19 & ． 08 & 8 & 118 & 1.15 & 98 & ． 11 & 2 & 1.99 & ． 01 & ． 06 & 1 & 20 \\
\hline 5085562931013 & \(3 \times\) & 74 & 14 & 182 & 1.0 & 32 & 20 & 575 & 6.20 & 18 & 5 & KD & 2 & 22 & 1 & 2 & 4 & 161 & ． 30 & ． 12 & 6 & 62 & 1.56 & 85 & ． 21 & 2 & 3.65 & ． 01 & ． 06 & 1 & 8 \\
\hline 5085562931014 & 5 & 61 & 19 & 164 & ． 5 & 54 & 19 & 185 & 5.21 & 37 & 5 & kD & 1 & 21 & 1 & 2 & 2 & 119 & ． 27 & ． 07 & 8 & 101 & 1.22 & 137 & ． 09 & 1 & 2.66 & ． 01 & ． 05 & 1 & 10 \\
\hline 5085562931015 & 6 & 100 & 24 & 163 & 1.0 & 13 & 17 & 1426 & 7.26 & 9 & 5 & ND & 3 & 12 & 1 & 2 & 2 & 58 & ． 10 & ． 26 & 15 & 22 & ． 16 & 272 & ． 09 & 2 & 2.29 & ． 01 & ． 04 & 1 & 7 \\
\hline 5085562931016 & 3 & 81 & 21 & 193 & 1.8 & 24 & 13 & 320 & 4.85 & 13 & 5 & MD & 2 & 14 & 1 & 2 & 2 & 70 & ． 17 & ． 16 & 6 & 78 & ． 41 & 100 & ． 13 & 2 & 3.84 & ． 01 & ． 04 & 1 & 12 \\
\hline 5085502931017 & 3 & 84 & 13 & 120 & ． 8 & 14 & 13 & 376 & 1.50 & 12 & 5 & No & 2 & 18 & 1 & 2 & 2 & 50 & ． 10 & ． 23 & 6 & 33 & ． 28 & 231 & ． 04 & 2 & 2.81 & ． 01 & ． 04 & 1 & 135 \\
\hline 5085562931018 & 1 & 75 & 15 & 214 & ． 7 & 37 & 20 & 1168 & 5.59 & 20 & 5 & nd & 1 & 32 & 1 & 2 & 2 & 89 & ． 39 & ． 28 & 5 & 74 & ． 95 & 201 & ． 09 & 2 & 2.17 & ． 01 & ． 07 & 1 & 22 \\
\hline 5085562931019 & 5 & 101 & 18 & 193 & ． 8 & 19 & 21 & 533 & 5.93 & 38 & 5 & K0 & 2 & 36 & 1 & 2 & 2 & 101 & ． 45 & ． 14 & 9 & 98 & 1.28 & 213 & ． 07 & 2 & 2.83 & ． 01 & ． 06 & 1 & 23 \\
\hline 5085562931020 & 1 & 63 & 9 & 192 & ． 5 & 51 & 19 & 131 & 5.03 & 19 & 5 & no & 1 & 24 & 1 & 2 & 2 & 82 & ． 24 & ． 13 & 8 & 116 & 1.32 & 152 & ． 10 & 4 & 2.93 & ． 01 & ． 05 & 1 & 30 \\
\hline 5085562931021 & 3 & 104 & 18 & 168 & ． 5 & 15 & 18 & 928 & 5.26 & 24 & 5 & \(N 8\) & 2 & 18 & 1 & & & 45 & ． 22 & ． 14 & 19 & 25 & ． 39 & 97 & ． 03 & 2 & 2.07 & ． 01 & ． 05 & 1 & 11 \\
\hline 5085562 931022 & 3 & 56 & 16 & 126 & ． 3 & 35 & 13 & 507 & 4.22 & 21 & 5 & N0 & 2 & 21 & 1 & 2 & 2 & 91 & ． 24 & ． 10 & & 76 & 1.01 & 124 & ． 06 & 5 & 2.14 & ． 01 & ． 03 & 1 & 9 \\
\hline 5085562931023 & 1 & 79 & 20 & 154 & ． 4 & 60 & \(20^{\circ}\) & 391 & 5.09 & 28 & J & N0 & 3 & 25 & 1 & 2 & 2 & 117 & ． 24 & ． 04 & 4 & 136 & 1.39 & 136 & ． 12 & 2 & 2.82 & ． 01 & ． 04 & 1 & 11 \\
\hline 5085562931024 & 1 & 76 & 17 & 218 & ． 6 & 50 & 23 & 646 & 6.33 & 35 & 5 & No & 1 & 26. & 1 & 2 & 2 & 121 & ． 32 & ． 19 & 5 & 120 & 1.35 & 108 & ． 12 & 2 & 2.93 & ． 01 & ． 04 & 1 & 23 \\
\hline 5085562931025 & 3 & 29 & 13 & 317 & ． 6 & 31 & 16 & 719 & 5.41 & 20 & 5 & N0 & 2 & 20 & 2 & 2 & 2 & 81 & ． 28 & ． 33 & 3 & 71 & ． 68 & 95 & ． 10 & 5 & 2.05 & ． 01 & ． 05 & 1 & 17 \\
\hline 5085552 931026 & 5 & 50 & 21 & 216 & ． 4 & 44 & 21 & 754 & 6.17 & 33 & 5 & N0 & 1 & 19 & 1 & ， & 5 & 117 & ． 18 & ． 10 & 6 & 99 & ． 82 & 99 & ． 10 & 2 & 2.24 & ． 01 & ． 03 & 1 & 10 \\
\hline 5085562931027 & 7 & 63 & 12 & 206 & ． 6 & 62 & 21 & 317 & 6.12 & 29 & 5 & H0 & 2 & 16 & 1 & 2 & 2 & 126 & ． 16 & ． 08 & 4 & 104 & 1.01 & 63 & ． 14 & 3 & 2.31 & ． 01 & ． 05 & 1 & 6 \\
\hline 5085562931028 & 6 & 55 & 17 & 184 & ． 2 & 55 & 16 & 349 & b． 08 & 32 & 5 & No & & 18 & 1 & 2 & & 137 & ． 17 & ． 20 & 6 & 105 & 1.18 & 76 & ． 14 & 3 & 1.89 & ． 01 & ． 05 & 1 & 7 \\
\hline 5085562 931029 & 5 & 47 & 13 & 152 & ． 8 & 67 & 17 & 378 & 4.62 & 31 & & NO & 1 & 22 & 1 & 2 & 2. & 103 & ． 26 & ． 13 & 2 & 153 & 1.27 & 96 & ． 10 & 6 & 2.07 & ． 01 & ． 05 & ， & 11 \\
\hline 5085552931030 & 5 & 37 & 15 & 173 & ． 3 & 39 & 14 & 284 & 5.50 & 31 & 5 & no & 1 & 20 & 1 & 2 & 2 & 117 & ． 25 & ． 23 & 1 & 97 & ． 92 & 76 & ． 12 & 3 & 1.66 & ． 01 & ． 04 & 1 & 1 \\
\hline HE 5085562 931024 & 4 & 72 & 12 & 211 & ． 5 & 51 & 22 & 637 & 6.18 & 35 & 5 & HD & 1 & 24 & 1 & & 4 & 117 & ． 32 & ． 19 & 2 & 115 & 1.31 & 105 & ． 11 & 2 & 2.84 & ． 01 & ． 04 & ， & 16 \\
\hline 5085562931031 & 3 & 11 & 3 & 120 & 1.0 & 19 & 14 & 574 & 3.29 & 15 & 5 & ND & 1 & 11 & 1 & 1 & 2 & 55 & ． 14 & ． 32 & 2 & 46 & ． 28 & 51 & ． 13 & 3 & 4.33 & ． 02 & ． 02 & 1 & 3 \\
\hline 5085562931032 & & 79 & 11 & 245 & ． 3 & 97 & 26 & 362 & 6.29 & 36 & 6 & ND & 1 & 13 & 1 & 2 & & 122 & ． 19 & ． 17 & 2 & 204 & 2.01 & 64 & ． 12 & 2 & 2.74 & ． 01 & ． 06 & ， & 12 \\
\hline 5e85562 931033 & 6 & 105 & 11 & 169 & .4 & 87 & 26 & 456 & 6.30 & 42 & 5 & N0 & 1 & 23 & 1 & 2 & 2 & 117 & ． 29 & ．16， & 3 & 165 & 1.60 & 74 & .10 & 2 & 2.40 & ． 01 & ． 04 & 1 & 70 \\
\hline 5085562931034 & 1 & 79 & 13 & 196 & ． 7 & 19 & 21 & 507 & 4.69 & 24 & 5 & ND & ， & 19 & 1 & 2 & 2 & 82 & ． 23 & ． 11 & 6 & 114 & 1.11 & 126 & ． 12 & 2 & 3.24 & ． 01 & ． 04 & 1 & 23 \\
\hline 5085562931035 & 4 & 32 & 13 & 190 & ． 9 & 21 & 17 & 582 & 4.72 & 20 & 5 & H0 & 1 & 17 & 2 & 2 & 2 & 88 & ． 15 & ． 12 & & 78 & ． 66 & 85 & ． 11 & 2 & 2.38 & ． 01 & ． 04 & 1 & 6 \\
\hline 5085562 931036 & 3 & 80 & 15 & 151 & ． 5 & 56 & 20 & 464 & 4.73 & 29 & 7 & N0 & 1 & 27 & 1 & 2 & 2 & 90 & ． 32 & ． 17 & 日 & 126 & 1.33 & 93 & ． 09 & 4 & 2.61 & ． 01 & ． 06 & 1 & 5 \\
\hline SID［／FA－Al & 21 & 61 & 11 & 135 & 7.0 & 70 & 28 & 1188 & 3.93 & 38 & 17 & 7 & 38 & 53 & 16 & 16 & 21 & 59 & ． 48 & ． 14 & 38 & 58 & ． 87 & 181 & ． 09 & 40 & 1.72 & ． 06 & ． 11 & 12 & 19 \\
\hline
\end{tabular}

SAMFLEL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5085562931037 & 1 & 40 & 9 & 155 & . 6 & 37 & 13 & 321 & 3.78 & 23 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 67 & . 24 & . 14 & 7 & B4 & . 71 & 92 & . 08 & 2 & 2.60 & . 01 & . 05 & 1 & 12 \\
\hline 5065562931038 & 5 & 62 & 19 & 140 & . 9 & 38 & 13 & 273 & 3.78 & 19 & 5 & no & 1 & 16 & 1 & 2 & 1 & 78 & . 17 & . 10 & 7 & 80 & . 62 & 96 & . 08 & 2 & 2.16 & . 01 & . 01 & 1 & 3 \\
\hline 5085562931039 & 5 & 82 & 16 & 157 & . 3 & 55 & 24 & 973 & 5.35 & 39 & 5 & ND. & 2 & 40 & 1 & 1 & 2 & 100 & . 58 & . 15 & 15 & 125 & 1.45 & 142 & . 08 & 5 & 2.01 & . 01 & . 06 & 1 & 32 \\
\hline 5085562931040 & 2 & 15 & 23 & 97 & .1 & 17 & 8 & 202 & 2.66 & 9 & 5 & ND & 2 & 19 & 1 & 2 & J & 65 & . 20 & . 10 & 1 & 12 & . 30 & 70 & . 09 & 2 & 1.46 & . 01 & . 03 & 1 & 42 \\
\hline 5885562931041 & 1 & 74 & 15 & 121 & . 7 & 45 & 16 & 437 & 4.51 & 23 & 5 & ND & 2 & 25 & 1 & 2 & 2 & 96 & . 32 & . 06 & 8 & 100 & 1.16 & 76 & . 09 & 2 & 2.05 & . 01 & . 05 & 1 & 16 \\
\hline 5085562 911042 & 1 & 43 & 8 & 155 & . 3 & 36 & 17 & 670 & 5.12 & 26 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 91 & . 17 & . 21 & 5 & 97 & . 91 & 88 & . 08 & 2 & 1.84 & . 01 & . 03 & 1 & 6 \\
\hline 508̇562 931043 & 3 & 24 & 7 & 63 & . 2 & 18 & 8 & 250 & 3.02 & 7 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 66 & . 14 & . 07 & 8 & 49 & . 52 & 114 & . 07 & 2 & 1.38 & . 01 & . 03 & 1 & 8 \\
\hline 5095562931044 & 3 & 30 & 10 & 90 & . 2 & 21 & 8 & 265 & 3.44 & 12 & 5 & ND & & 15 & 1 & 2 & 2 & 71 & . 13 & . 16 & 8 & 55 & . 52 & 71 & . 09 & 2 & 1.29 & . 01 & . 03 & 1 & 13 \\
\hline 5085562931045 & 1 & 23 & 23 & 181 & . B \(^{\text {d }}\) & 20 & 9 & 195 & 4.18 & 15 & 5 & HD & 1 & 17 & 1 & 2 & 2 & 101 & . 19 & . 12 & 10 & 54 & . 33 & 90 & . 09 & 2 & 1.64 & . 01 & . 02 & 1 & 2 \\
\hline 5085562931046 & 1 & 61 & 15 & 199 & . 6 & 41 & 18 & 797 & 4.81 & 17 & 5 & M \({ }^{\text {d }}\) & 1 & 29 & 1 & 2 & 2 & 91 & . 38 & .13 & 11 & 71 & . 67 & 198 & . 10 & 2 & 2.43 & . 01 & . 05 & 1 & 7 \\
\hline 5085562931047 & 2 & 20 & 1 & 51 & . 5 & 13 & 6 & 219 & 2.46 & 2 & 5 & N8 & 1 & 6 & 1 & 2 & 2 & 38 & . 08 & . 06 & 5 & 23 & . 16 & 125 & . 05 & 2 & 1.10 & . 01 & . 02 & 1 & 1 \\
\hline 5055562931048 & 5 & 70 & 18 & 126 & . 1 & 13 & 18 & 629 & 4.30 & 27 & 5 & N0 & , & 24 & 1 & 2 & 2 & 86 & . 30 & . 12 & 10 & 88 & 1.19 & 57 & . 08 & 3 & 1.68 & . 01 & . 04 & 1 & 13 \\
\hline 5085562931049 & 1 & 67 & 15 & 180 & . 3 & 57 & 20 & 541 & 5.23 & 22 & 5 & HD & 1 & 43 & 1 & 2 & 3 & 108 & . 56 & . 07 & 13 & 155 & 1.37 & 120 & . 10 & 5 & 2.58 & . 01 & . 05 & 1 & 14 \\
\hline 5085562931050 & 4 & 39 & 8 & 129 & . 3 & 35 & 12 & 262 & 4.57 & 19 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 92 & . 19 & . 13 & 10 & 82 & . 83 & 93 & . 09 & 2 & 1.87 & . 01 & . 03 & 1 & 46 \\
\hline 5085562931051 & 1 & 63 & 14 & 112 & . 1 & 40 & 18 & 789 & 3.95 & 20 & 5 & ND & 1 & 35 & 1 & 2 & 2 & 80 & . 15 & . 11 & 9 & 79 & . 84 & 109 & .08 & 2 & 1.92 & . 01 & . 04 & 1 & 33 \\
\hline 5085562931052 & 2 & 24 & 9 & 97 & . 2 & 13 & 10 & 411 & 4.96 & 22 & 5 & ND & 2 & 15 & 1 & 2 & 2 & 85 & . 20 & . 11 & \(\theta\) & 40 & . 65 & 60 & . 04 & 2 & 2.17 & . 01 & . 05 & 1 & 12 \\
\hline 5085562931053 & 3 & 47 & 8 & 129 & . 1 & 11 & 19 & 537 & 5.12 & 20 & 5 & No & 2 & 17 & 1 & 2 & 2 & 102 & . 17 & . 14 & 8 & 110 & . 99 & 92 & . 10 & 2 & 2.45 & . 01 & . 03 & 1 & 1 \\
\hline 510 C & 21 & 58 & 39 & 135 & 7.0 & 69 & 30 & 1219 & 3.96 & 39 & 19 & , & 37 & 52 & 17 & 16 & 22 & 55 & . 46 & . 15 & 40 & 56 & . 86 & 169 & . 07 & 38 & 1.65 & . 08 & . 10 & 14 & - \\
\hline 5085562931054 & 3 & 22 & 16 & 109 & .1 & 24 & 11 & 313 & 4.60 & 9 & 5 & H0 & 2 & 18 & 1 & 2 & 2 & 17 & . 25 & . 08 & 7 & 56 & . 51 & 122 & . 14 & 2 & 2.25 & . 01 & . 06 & 1 & J \\
\hline 5085562931055 & 3 & 130 & 21 & 128 & . 4 & 35 & 23 & 661 & 5.20 & 14 & 5 & HD & 3 & 17 & ! & 2 & J & 88 & . 28 & . 11 & 7 & 60 & . 75 & 157 & . 11 & 2 & 3.10 & . 01 & . 06 & 1 & 24 \\
\hline 5085562931056 & 3 & 28 & 17 & 116 & . 5 & 21 & 10 & 815 & 3.72 & 12 & 5 & ND & 1 & 28 & 1 & 2 & 2 & 81 & . 35 & . 14 & 1 & 56 & . 49 & 139 & . 09 & 2 & 1.17 & . 01 & . 06 & 1 & 43 \\
\hline 5085962931057 & 1 & 171 & 7 & 160 & 1.1 & 45 & 23 & 1123 & 4.42 & 25 & 5 & ND & 1 & 44 & 1 & 2 & 2 & 71 & . 71 & . 10 & 11 & 93 & . 99 & 150 & . 07 & 2 & 2.21 & . 01 & . 04 & 1 & 50 \\
\hline 5085562931058 & 4 & 62 & \(B\) & 159 & . 1 & 33 & 18 & 464 & 4.84 & 19 & 5 & NO & 2 & 13 & 1 & 2 & 2 & 81 & . 14 & . 12 & 8 & 79 & . 75 & 79 & . 09 & 2 & 2.33 & . 01 & . 03 & 1 & 11 \\
\hline 5085562931059 & 4 & 58 & 14 & 232 & . 7 & 36 & 18 & 463 & 4.83 & 21 & 5 & HD & 1 & 30 & 1 & 2 & 2 & 88 & . 37 & .13' & 12 & 72 & . 67 & 190 & . 09 & 3 & 2.72 & . 01 & . 04 & 1 & 1 \\
\hline 5085562931060 & 4 & 72 & 11 & 111 & . 5 & 40 & 18 & 507 & 4.29 & 23 & 5 & NO & 2 & 38 & 1 & 2 & 2 & 87 & . 54 & . 06 & 10 & 91 & 1.17 & 158 & . 08 & 2 & 1.99 & . 01 & . 04 & 1 & 19 \\
\hline 5085562931061 & 5 & 43 & 16 & 153 & . 5 & 38 & 15 & 284 & 4.45 & 26 & 5 & ND & 1 & 13 & 1 & 2 & 2 & 8b & . 13 & . 08 & 7 & 68 & . 76 & 116 & . 09 & 3 & 1.98 & . 01 & . 04 & 1 & 11 \\
\hline 5085562931062 & 1 & 51 & 8 & 150 & 1.0 & 34 & 16 & 291 & 4.27 & 20 & 5 & ND & 1 & 31 & 1 & 2 & 2 & 81 & . 50 & . 06 & 8 & 80 & . 77 & 107 & . 08 & 2 & 2.65 & . 01 & . \(02{ }^{\circ}\) & 1 & 39 \\
\hline 5065562931063 & 3 & 26 & 13 & 45 & . 3 & 23 & 11 & 253 & 3.75 & 13 & 5 & N0 & 1 & 21 & 1 & 2 & 2 & 70 & . 27 & . 13 & 6 & 57 & . 58 & 87 & . 09 & 2 & 2.22 & . 01 & . 03 & 1 & 36 \\
\hline 5005562931054 & 5 & 36 & 13 & 102 & .4 & 28 & 11 & 324 & 5.16 & 20 & 5 & HD & 1 & 25 & 1 & 2 & 3 & 104 & . 33 & . 11 & 5 & 72 & . 71 & 101 & . 12 & 2 & 1.65 & . 61 & . 05 & & \\
\hline 5085562931065 & 4 & 94 & 15 & 127 & . 2 & 43 & 25 & 542 & 5.41 & 28 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 98 & . 26 & . 11 & 7 & 85 & 1.08 & 76 & . 10 & 2 & 2.53 & . 01 & . 05 & 1 & 24 \\
\hline 5085562931086 & 3 & 76 & 9 & 169 & . 2 & 38 & 21 & 462 & 6.04 & 25 & 5 & nd & 2 & 29 & 1 & 2 & 2 & 103 & . 42 & . 18 & 6 & 78 & 1.17 & 96 & . 10 & 2 & 2.62 & . 01 & . 05 & 1 & 1 \\
\hline 5085562931067 & 3 & 38 & 8 & 118 & . 2 & 23 & 14 & 331 & 4.00 & 18 & 5 & H0 & 1 & 22 & 1 & 2 & 2 & 63 & . 26 & . 22 & 5 & 17 & . 64 & 84 & . 12 & 3 & 3.54 & . 01 & . 04 & 1 & 2 \\
\hline 5095562931068 & 3 & 27 & 10 & 88 & . 3 & 18 & 9 & 227 & 4.25 & 9 & 5 & H0 & 1 & 16 & 1 & 2 & 2 & a6 & . 17 & . 15 & 1 & 51 & . 41 & 89 & . 12 & 2 & 2.08 & . 01 & . 03 & 1 & 50 \\
\hline 5085562931069 & 5 & 140 & 32 & 228 & . 9 & 92 & 33 & 644 & 6.54 & 53 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 117 & . 31 & . 10 & 9 & 242 & 2.23 & t9 & .13 & 2 & 2.52 & . 01 & . 06 & 1 & 85 \\
\hline 5085562 931070 & 3 & 86 & 10 & 178 & . 5 & 59 & 23 & 458 & 4.2日 & 22 & 5 & N0 & 2 & 16 & 1 & 2 & 3 & 71 & . 21 & . 10 & 6 & 181 & 1.18 & 45 & . 14 & 3 & 3.19 & . 01 & .04 & 1 & 65 \\
\hline 5085562931071 & 3 & 24 & 8 & 130 & 4 & 62 & 17 & & 3.77 & 10 & 5 & H0 & 1 & 17 & 1 & 2 & 1 & 69 & . 19 & . 24 & 2 & 181 & . 76 & 64 & . 14 & 2 & 2.23 & . 01 & . 05 & 1 & 1 \\
\hline 5085562931072 & 3 & 102 & 8 & 252 & . 7 & 136 & 30 & 398 & 4.99 & 18 & 5 & \(N \mathrm{~N}\) & 2 & 19 & 1 & 2 & 2 & 95 & . 23 & . 10 & 1 & 279 & 2.10 & 101 & . 16 & 2 & 2.58 & . 01 & . 08 & 1 & 19 \\
\hline RE 508556? 931055 & 3 & 26 & \(b\) & 110 & . 3 & 19 & 9 & 781 & 3.56 & 10 & 5 & N0 & 1 & 27 & 1 & 2 & 2 & 71 & . 33 & . 13 & 6 & 55 & . 17 & 133 & . 09 & 2 & 1.39 & . 01 & . 06 & 1 & 36 \\
\hline \(550 \mathrm{C} / \mathrm{FA}-\mathrm{AU}\) & 20 & 58 & 40 & 138 & 7.1 & 67 & 29 & 1198 & 3.95 & 38 & 19 & 1 & 37 & 53 & 16 & 15 & 22 & 57 & . 48 & . 15 & 38 & 57 & . 88 & 178 & . 08 & 39 & 1.72 & . 06 & . 11 & 12 & 48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5085562931075 & 3 & 95 & 9 & 182 & 1.2 & 88 & 24 & 548 & 4.79 & 16 & 5 & KD & 2 & 37 & 1 & 2 & 2 & 99 & . 34 & . 08 & 11 & 215 & 1.24 & 107 & . 20 & 6 & 2.88 & . 01 & . 06 & 1 & 6 \\
\hline 5065562931074 & 6 & 14 & 13 & 97 & . 6 & 56 & 12 & 160 & 1.88 & 10 & 5 & NO & 2 & 29 & 1 & 2 & 2 & 94 & . 32 & . 05 & 2 & 206 & . 81 & 45 & . 19 & 6 & 1.96 & . 01 & . 01 & 1 & 1 \\
\hline 5085562931075 & 3 & 120 & 14 & 75 & . 5 & 106 & 25 & 366 & 5.85 & 20 & 5 & N0 & 1 & 18 & 1 & 2 & 2 & 117 & . 22 & . 18 & 2 & 304 & 1.91 & 29 & . 17 & 6 & 2.07 & . 01 & . 05 & 1 & 10 \\
\hline 5085562931076 & 3 & 49 & 13 & 53 & . 5 & 33 & 13 & 165 & 3.13 & 14 & 5 & N0. & 1 & 23 & 1 & 2 & 2 & 65 & . 37 & . 01 & 11 & 85 & . 33 & 36 & . 12 & 3 & 1.28 & . 02 & . 02 & 1 & 1 \\
\hline 5085562931077 & 3 & 12 & 15 & 124 & . 1 & 155 & 25 & 359 & 5.84 & 15 & 8 & ND & 1 & 13 & 1 & 3 & 2 & 120 & . 23 & . 13 & 5 & 513 & 2.26 & 13 & . 21 & 3 & 2.24 & . 01 & . 05 & 1 & 5 \\
\hline ST0 \(¢\) & 20 & 60 & 39 & 133 & 7.1 & 67 & 29 & 1161 & 3.86 & 38 & 20 & 8 & 38 & 51 & 16 & 15 & 20 & 59 & . 16 & . 15 & 38 & 58 & . 85 & 176 & . 07 & 39 & 1.67 & . 06 & . 11 & 13 & - \\
\hline 5085562931078 & 3 & 57 & 9 & 115 & . 5 & 59 & 22 & 292 & 4.91 & 20 & 5 & ND & 1 & 31 & 1 & 2 & 3 & 114 & . 32 & . 04 & 7 & 236 & 1.38 & \(5!\) & . 18 & 2 & 2.15 & . 01 & . 01 & 1 & 10 \\
\hline 5085562931079 & 2 & 19 & 21 & 173 & . 6 & 56 & 21 & 436 & 5.15 & 20 & 5 & ND & 1 & 51 & 1 & 2 & 2 & 120 & . 68 & . 09 & 5 & 226 & 1.26 & 98 & . 18 & 6 & 1.84 & . 01 & . 06 & 1 & 14 \\
\hline 5085562931080 & 4 & 78 & 13 & 107 & . 7 & 43 & 17 & 356 & 5.57 & 17 & 6 & ND & 1 & 13 & 1 & 3 & 2 & 138 & . 20 & . 18 & 6 & 176 & . 84 & 33 & . 12 & 6 & 1.24 & . 01 & . 06 & 1 & 日 \\
\hline 5085562931001 & J & 22 & 30 & 140 & . 7 & 34 & 11 & 225 & 4.65 & 11 & 5 & ND & 1 & 20 & 1 & 2 & 2 & 107 & . 26 & .08 & 1 & 153 & . 63 & 42 & . 18 & 5 & 1.37 & . 01 & . 06 & 1 & 1 \\
\hline 5085562 931082 & 2 & 14 & 19 & 75 & . 2 & 21 & B & 314 & 2.50 & 9 & 5 & ND & 1 & 11 & 1 & 2 & 2 & 54 & . 16 & . 08 & 2 & 85 & . 25 & 25 & . 11 & 2 & . 90 & . 01 & . 03 & 1 & 38 \\
\hline 5085562931083 & 2 & 76 & 15 & 182 & . 1 & 90 & 29 & 538 & 5.06 & 21 & 5 & ND & 1 & 22 & 1 & 2 & 2 & 99 & . 30 & . 15 & 8 & 246 & 1.60 & 103 & . 18 & 6 & 2.92 & . 01 & . 08 & 1 & 21 \\
\hline 5085562 931084 & 2 & 34 & 16 & 116 & . 7 & 45 & 16 & 321 & 3.71 & 15 & 5 & NB & 1 & 23 & 1 & 2 & 2 & 87 & . 31 & . 08 & 6 & 134 & . 97 & 72 & . 14 & 6 & 1.75 & . 01 & . 08 & 1 & 14 \\
\hline 5685562931085 & 1 & 280 & 26 & 130 & 1.7 & 104 & 31 & 1516 & 6.00 & 38 & 5 & ND & 2 & 39 & 1 & 3 & 2 & 117 & . 14 & . 13 & 22 & 187 & 1.16 & 172 & . 14 & 1 & 3.64 & . 02 & . 09 & 1 & 9 \\
\hline 5085562931086 & 1 & 25 & 13 & 141 & . 7 & 28 & 11 & 265 & 4.59 & 8 & 5 & ND & 2 & 21 & 1 & 2 & 2 & 79 & . 25 & . 68 & & 116 & . 50 & 71 & . 17 & 3 & 2.17 & . 01 & . 05 & 1 & 2 \\
\hline 5085562931087 & 1 & 29 & 14 & 168 & . 3 & 59 & 24 & 372 & 5.01 & 13 & 5 & No & 1 & 31 & 1 & 1 & 2 & 90 & . 22 & . 19 & 8 & 191 & 1.20 & 76 & . 19 & 8 & 2.54 & . 01 & . 05 & 1 & 9 \\
\hline 5085562931088 & 2 & 181 & 23 & 138 & . 4 & 116 & 45 & 675 & 7.64 & 39 & 6 & NO & 2 & 18 & 1 & 5 & 2 & 147 & . 29 & . 16 & 6 & 122 & 3.30 & 78 & . 19 & 6 & 3.02 & . 01 & . 09 & , & 31 \\
\hline 5065562931089 & 3 & 73 & 14 & 132 & . 6 & 153 & 37 & 732 & 6.11 & 24 & 5 & ND & 2 & 31 & 1 & 2 & 2 & 149 & . 13 & . 10 & 11 & 173 & 3.00 & 57 & . 21 & 8 & 2.37 & . 01 & . 11 & 1 & 7 \\
\hline 5085562931090 & 3 & 30 & 15 & 120 & . 5 & 40 & 19 & 694 & 4.28 & 18 & 5 & N0 & 1 & 28 & 1 & 2 & 3 & 89 & . 34 & . 22 & 6 & 134 & . 71 & 60 & . 13 & 4 & 1.79 & . 01 & . 05 & 1 & 105 \\
\hline 5085562931091 & 3 & 271 & 21 & 373 & 2.4 & 135 & 34 & 1112 & 4.90 & 30 & 5 & ND & 1 & 55 & 2 & 2 & 2 & 93 & . 83 & . 09 & 17 & 220 & 1.69 & 110 & . 15 & 7 & 3.07 & . 02 & . 06 & 1 & 21 \\
\hline 5085562931092 & 4 & 75 & 21 & 124 & . 5 & 73 & 23 & 580 & 4.89 & 24 & 5 & ND & 1 & 47 & 1 & 2 & 2 & 96 & . 70 & . 10 & 13 & 235 & 1.63 & 59 & . 12 & 7 & 1.83 & . 01 & . 05 & 1 & 115 \\
\hline 5085562931093 & 1 & 60 & 14 & 100 & . 3 & 66 & 20 & 506 & 4.36 & 20 & 5 & ND & 1 & 41 & 1 & 2 & 5 & 92 & . 62 & . 09 & 12 & 167 & 1.52 & 57 & . 12 & 1 & 1.70 & . 01 & . 04 & 1 & 30 \\
\hline RE 5085562 931087 & 2 & 29 & 8 & 167 & . 3 & 60 & 24 & 370 & 5.05 & 12 & 5 & N0 & 2 & 30 & 1 & 2 & 3 & 90 & . 22 & . 19 & 1 & 193 & 1.20 & 74 & . 19 & 5 & 2.50 & . 01 & . 05 & 1 & 1 \\
\hline 5085562931094 & 4 & 35 & 18 & 85 & . 1 & 91 & 18 & 222 & 4.14 & 19 & 5 & N0 & 1 & 27 & 1 & 2 & 3 & 88 & . 34 & . 05 & 9 & 211 & 1.06 & 71 & . 15 & 1 & 2.06 & . 01 & . 04 & 1 & 20 \\
\hline 5085562931095 & 2 & 19 & 13 & 127 & . 7 & 97 & 20 & 277 & 4.03 & 11 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 88 & . 22 & . 08 & 8 & 215 & 1.14 & 134 & . 18 & 6 & 2.37 & . 01 & . 04 & 1 & 10 \\
\hline 5095562931096 & 2 & 88 & 10 & 77 & . 1 & 371 & 37 & 798 & 5.02 & 14 & 11 & WD & 1 & 38 & 1 & 2 & 2 & 94 & . 51 & . 11 & 11 & 739 & 4.66 & 304 & . 18 & 2 & 2.86 & . 01 & . 17 & 1 & 6 \\
\hline 5085562931097 & 5 & 31 & 9 & 72 & . 1 & 46 & 14 & 345 & 5.33 & 12 & 5 & ND & 1 & 14 & 1 & 2 & 1 & 106 & . 21 & . 32 & 5 & 180 & . 76 & 35 & . 19 & 6 & 1.17 & . 01 & . 03 & 1 & 7 \\
\hline 5685562931098 & 6 & 91 & 13 & 87 & . 9 & 79 & 18 & 240 & 4.95 & 13 & 5 & ND & 1 & 30 & 1 & 2 & 2 & 89 & . 36 & . 05 & 8 & 152 & . 86 & 96 & . 17 & 2 & 3.04 & . 01 & . 03 & 1 & B \\
\hline 5085562931099 & 2 & 37 & 3 & 127 & .4 & 298 & 31 & 418 & 6.10 & 15 & 10 & No & 1 & 23. & 1 & 2 & 2 & 112 & . 51 & . 26 & 10 & 613 & 3.95 & 58 & . 19 & 6 & 3.01 & . 02 & . 13 & 1 & 2 \\
\hline 5085562931100 & 1 & 34 & 8 & 108 & . 1 & 289 & 35 & 401 & 5.23 & 9 & 5 & ND & 1 & 9 & 1 & 2 & 2 & 91 & . 20 & . 16 & 8 & 551. & 3.08 & 71 & . 22 & 2 & 3.31 & . 01 & . 07 & 1 & 1 \\
\hline 5085562931101 & 1 & 33 & 11 & 139 & . 5 & 56 & 26 & 520 & 4.34 & 12 & 5 & ND & 1 & 18 & 1 & 2 & 2 & 81 & . 23 & . 18 & 9 & 181 & . 84 & 57 & . 14 & 4 & 2.72 & . 01 & . 04 & 1 & 7 \\
\hline 5085562931102 & 3 & 72 & 16 & 245 & . 8 & 70 & 27 & 806 & 4.89 & 30 & 5 & ND & 1 & 42 & 1 & 4 & 2 & 78 & . 59 & . 11 & 12 & 150 & 1.08 & 86 & . 14 & J & 2.38 & . 01 & . 04 & 1 & 14 \\
\hline 5085562931103 & 2 & 35 & 17 & 136 & . 5 & 43 & 18 & 623 & 4.83 & 14 & 5 & ND & 2 & 14 & 1 & 3 & 2 & 102 & . 18 & . 19 & 7 & 165 & 1.11 & 52 & . 15 & 3 & 1.97 & . 01 & . 07 & 1 & 2 \\
\hline 5085562931104 & 1 & 92 & 22 & 262 & . 6 & 95 & 29 & 520 & 6.16 & 29 & 5 & ND & 3 & 17 & 1 & 2 & 2 & 130 & . 20 & . 09 & 10 & 252 & 1.71 & 68 & . 19 & 5 & 3.01 & . 01 & . 06 & 1 & 12 \\
\hline 5085562931105 & 1 & 72 & 26 & 271 & . 4 & 83 & 26 & 394 & 7.16 & 29 & 5 & KD & 2 & 29 & 1 & 2 & 2 & 149 & . 39 & :22 & 9 & 280 & 1.84 & 76 & . 23 & 2 & 2.48 & . 01 & . 09 & 1 & 375 \\
\hline 5085562931106 & 5 & 68 & 16 & 142 & . 2 & 83 & 30 & 360 & 7.28 & 66 & 5 & ND & 1 & 15 & 1 & 3 & 2 & 167 & . 26 & . 08 & 7 & 387 & 2.20 & 11 & . 24 & 5 & 2.79 & . 01 & . 11 & 1 & 1 \\
\hline 5085562931107 & 2 & 174 & 10 & 180 & . 4 & 167 & 36 & 531. & 6.06 & 31 & 5 & KD & 1 & 33 & 1 & 2 & 2 & 114 & . 46 & . 12 & 7 & 356 & 2.27 & 95 & . 17 & 7 & 3.26 & . 01 & . 08 & 1 & 25 \\
\hline 5085562931108 & 3 & 66 & 14 & 113 & . 1 & 84 & 29 & 476 & 5.00 & 26 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 123 & . 33 & . 15 & 6 & 293 & 1.71 & 45 & . 18 & 8 & 2.15 & . 01 & . 07 & 1 & 50 \\
\hline STD C/FA-SIL & 21 & 59 & 10 & 138 & 7.0 & 70 & 30 & 1197 & 3.95 & 10 & 16 & 8 & 38 & 54 & 16 & 15 & 21 & \(6!\) & . 18 & . 15 & 39 & 58 & . 88 & 181 & . 08 & 38 & 1.71 & . 06 & . 11 & 11 & 51 \\
\hline
\end{tabular}

SAKFLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5085562931109 & 5 & 171 & 205 & 1066 & 3.3 & 101 & 48 & 1512 & 7.51 & 72 & 5 & K0 & 3 & 21 & 1 & 2 & 2 & 121 & . 28 & . 11 & 10 & 158 & 1.13 & 64 & . 15 & \({ }^{6}\) & 2.96 & . 01 & . 06 & 1 & 250 \\
\hline 5085562931110 & 1 & 59 & 12 & 176 & . 6 & 158 & 37 & 117 & 1.34 & 25 & 16 & kD. & 2 & 38 & 1 & 2 & 2 & 163 & . 41 & . 07 & 2 & 558 & 4.3日 & 60 & . 23 & 11 & 3.40 & . 01 & . 08 & 1 & 3 \\
\hline 5085562931111 & 2 & 69 & 22 & 229 & . 8 & 46 & 22 & 1543 & 5.13 & 21 & 5 & HD & 2 & 20 & 1 & 2 & 2 & 115 & . 24 & . 26 & 5 & 71 & 1.05 & 91 & . 14 & 8 & 3.21 & . 01 & . 01 & 1 & 55 \\
\hline 5085562931112 & 2 & 62 & 10 & 117 & . 8 & 80 & 35 & 142 & 7.16 & 19 & 11 & HD & 2 & 30 & 1 & 2 & 6 & 173 & . 31 & . 09 & 2 & 312 & 2.60 & 7 & . 25 & 5 & 3.05 & . 01 & . 13 & 1 & 4 \\
\hline 5095562931113 & 2 & 65 & 17 & 139 & . 9 & 36 & 15 & 487 & 5.13 & 25 & 5 & K0 & 4 & 14 & 1 & 2 & 2 & 109 & . 13 & . 23 & 8 & 85 & . 80 & 69 & . 18 & 6 & 3.31 & . 01 & . 05 & 1 & 14 \\
\hline 5085562 931114 & 2 & 86 & 28 & 357 & . 9 & 148 & 52 & 1420 & 7.92 & 64 & 5 & no & 2 & 20 & 1 & 2 & 3 & 122 & . 47 & . 22 & 2 & 212 & 1.71 & 59 & . 15 & \(\dagger\) & 3.01 & . 01 & . 05 & 1 & 9 \\
\hline 5085562931115 & 4 & 79 & 36 & 255 & . 9 & 55 & 26 & 490 & 5.93 & 47 & 5 & ND & 3 & 20 & 1 & 5 & 2 & 103 & .21 & . 12 & 1 & 76 & . 89 & 102 & . 14 & 1 & 3.15 & . 01 & . 05 & 1 & 26 \\
\hline 5085562931116 & 2 & 30 & 13 & 168 & . 5 & 22 & 14 & 340 & 5.25 & 20 & 5 & N0 & 2 & 18 & 1 & 6 & 2 & 114 & . 20 & . 13 & 6 & 45 & . 55 & 95 & . 13 & 7 & 2.33 & . 01 & . 06 & 1 & 40 \\
\hline 5095562931117 & 1 & 51 & 18 & 163 & . 7 & 50 & 18 & 542 & 4.91 & 21 & 5 & KD & 2 & 30 & 1 & 2 & 2 & 113 & . 49 & . 08 & 10 & 64 & . 70 & 109 & . 13 & 12 & 2.62 & . 02 & . 06 & 1 & 2 \\
\hline 5085562931118 & 2 & 20 & 10 & 212 & 1.6 & 11 & 10 & 503 & 4.56 & 10 & 5 & ND & 2 & 10 & 2 & 2 & 2 & 95 & . 08 & . 20 & 3 & 25 & . 22 & 80 & . 18 & 6 & 2.34 & . 02 & . 03 & 1 & 1 \\
\hline 5085562931119 & 1 & 38 & 9 & 159 & 1.2 & 27 & 11 & 282 & 4.92 & 19 & 5 & KD & 3 & 25 & 1 & 3 & 2 & 120 & . 19 & . 10 & 6 & 60 & . 72 & 120 & . 13 & 10 & 3.01 & . 01 & . 04 & 1 & 7 \\
\hline 5005562931120 & 3 & 57 & 13 & 197 & . 7 & 33 & 17 & 559 & 5.72 & 29 & 5 & k0 & 2 & 20 & 1 & 2 & 2 & 107 & . 16 & . 15 & 5 & 45 & . 76 & 111 & .08 & 10 & 2.12 & . 01 & . 04 & 1 & \\
\hline 5085562931121 & 3 & 52 & 19 & 181 & . 3 & 35 & 14 & 433 & 5.61 & 14 & 5 & KD & 3 & 17 & 1 & 4 & 2 & 125 & . 19 & . 16 & 4 & 58 & . 92 & 73 & . 16 & 9 & 2.33 & . 01 & . 05 & 1 & 16 \\
\hline 5085562931122 & 1 & 33 & 13 & 143 & . 7 & 20 & 10 & 375 & 5.05 & 21 & 5 & K0 & 3 & 14 & 1 & 2 & 2 & 99 & . 14 & . 19 & 1 & 45 & . 52 & 86 & . 16 & 10 & 3.60 & . 01 & . 04 & 1 & 22 \\
\hline 5085562931123 & 1 & 34 & 12 & 200 & . 5 & 35 & 18 & 846 & 4.97 & 22 & 5 & KD & 2 & 23 & 1 & 2 & 2 & 91 & . 23 & . 19 & 2 & 58 & . 64 & 86 & . 15 & 13 & 3.86 & . 01 & . 01 & 1 & 9 \\
\hline 5085562931124 & 1 & 22 & 10 & 103 & . 3 & 16 & 7 & 293 & 3.82 & 11 & 5 & kD & 3 & 11 & 1 & 5 & 2 & 82 & . 11 & . 19 & 4 & 38 & . 40 & 65 & . 16 & 9 & 2.40 & . 02 & . 03 & 1 & 2 \\
\hline 5085562931125 & 3 & 22 & 13 & 110 & . 5 & 73 & 29 & 668 & 7.20 & 121 & 5 & N0 & 2 & 33 & 2 & 6 & 2 & 102 & . 28 & . 10 & 5 & 113 & . 36 & 59 & . 08 & 10 & 1.61 & . 02 & . 03 & 1 & 55 \\
\hline 5085562931126 & 3 & 42 & 179 & 249 & . 5 & 111 & 34 & 1100 & 6.00 & 23 & 5 & R0 & 1 & 26 & 1 & 2 & 11 & 128 & . 37 & . 09 & 1 & 342 & 2.05 & 79 & . 21 & 11 & 1.90 & . 01 & . 07 & 1 & 35 \\
\hline 5085562931127 & 1 & 90 & 22 & 159 & . 7 & 51 & 23 & 486 & 5.20 & 36 & 5 & K0 & 1 & 33 & 1 & 2 & 2 & 125 & . 30 & . 06 & 1 & 80 & 1.45 & 108 & . 15 & 8 & 3.09 & . 01 & . 05 & 1 & \\
\hline 5085562 931128 & 1 & 34 & 27 & 258 & 1.1 & 26 & 13 & 288 & 6.39 & 69 & 5 & ND & 3 & 16 & 2 & 2 & 2 & 109 & . 18 & . 22 & 4 & 47 & . 53 & 71 & . 15 & 9 & 2.55 & . 01 & . 05 & 1 & \\
\hline RE 5085562931124 & 1 & 23 & 12 & 108 & . 2 & 18 & 8 & 310 & 4.06 & 13 & 5 & KD & 3 & 11 & 1 & 1 & 2 & 88 & . 12 & . 21 & 1 & 38 & . 43 & 70 & . 17 & 10 & 2.55 & . 01 & . 03 & 1 & \\
\hline 5085562 931129 & 2 & 48 & 16 & 322 & . 1 & 30 & 16 & 736 & 4.45 & 22 & 5 & \(n \mathrm{~N}\) & 2 & 24 & 2 & 2 & 2 & 112 & . 28 & . 10 & 8 & 52 & . 83 & 87 & . 15 & 8 & 2.28 & . 01 & . 07 & 1 & \\
\hline 5085562931130 & 3 & 28 & 17 & 295 & . 5 & 29 & 17 & 603 & 4.23 & 26 & 5 & K0 & 2 & 23 & 2 & 2 & 2 & 103 & . 31 & . 06 & 9 & 60 & . 61 & 7 & . 15 & 9 & 1.73 & . 02 & . 04 & 1 & \\
\hline 5085562931131 & 1 & 18 & 10 & 96 & 1.0 & 21 & 10 & 292 & 4.03 & 13 & 5 & ND & 3 & 23 & 1 & 2 & 2 & 100 & . 24 & . 15 & 8 & 52 & . 51 & 62 & . 15 & 8 & 1.56 & . 01 & . 04 & 1 & \\
\hline 5085562931132 & 2 & 32 & 7 & 163 & . 6 & 36 & 15 & 839 & 3.92 & 18 & 5 & ND & 2 & 46 & 1 & 2 & 2 & 84 & . 69 & . 09 & 12 & 55 & . 85 & 148 & . 14 & 13 & 2.10 & . 01 & . 05 & 1 & \\
\hline STD C & 21 & 61 & 39 & 137 & 7.1 & 67 & 29 & 1199 & 3.98 & 38 & 17 & 8 & 42 & 56 & 17 & 15 & 22 & 61 & . 17 & . 15 & 41 & 58 & . 89 & 186 & . 08 & 40 & 1.74 & . 06 & . 12 & 13 & \\
\hline 5085562931133 & 2 & 96 & 2 & 148 & 1.0 & 13 & 16 & 700 & 3.86 & 16 & 5 & KD & & 57 & 1 & 2 & 2 & 80 & . 79 & . 06 & 13 & 59 & . 89 & 132 & . 14 & 6 & 2.55 & . 02 & . 06 & 1 & \\
\hline 5095562 931134 & 4 & 66 & 9 & 147 & . 5 & 57 & 17 & 380 & 4.92 & 24 & 5 & HD & 2 & 23 & 1 & 2 & , & 111 & . 23 & . 18 & 11 & 96 & 1.14 & 84 & . 14 & 6 & 2.00 & . 01 & . 04 & 1 & 7 \\
\hline 5095562931135 & 4 & 50 & 43 & 318 & 1.7 & 71 & 23 & 552 & 6.10 & 41 & 5 & HD & 2 & 11 & 1 & 2 & 2 & 135 & . 13 & . 15 & 11 & 252 & 1.85 & 99 & . 14 & 6 & 2.14 & . 01 & . 06 & 1 & 105 \\
\hline 5085562931136 & 2 & 56 & 11 & 306 & . 5 & 54 & 26 & 2472 & 6.09 & 28 & 5 & HD & 2 & 26 & 2 & 2 & 2 & 104 & . 41 & . 15 & 14 & 130 & . B & 164 & . 13 & 7 & 2.10 & . 02 & . 05 & 1 & 47 \\
\hline 5085562931137 & 5 & 103 & 19 & 201 & 2.1 & 12 & 15 & 253 & 4.90 & 28 & 5 & No & 1 & 94 & 4 & 2 & 2 & 91 & 1.48 & . 07 & 14 & 132 & . 68 & 86 & . 11 & 10 & 2.08 & . 02 & . 05 & 1 & 23 \\
\hline 5085562931138 & 19 & 210 & 48 & 491 & . 7 & 114 & 30 & 707 & 8.00 & 73 & 5 & ND & 2 & 20 & 2 & 2 & 5 & 151 & . 26 & . 10 & 14 & 256 & 2.42 & 78 & . 12 & 13 & 2.40 & . 01 & . 10 & 1 & 150 \\
\hline 5085562931139 & 3 & 103 & 14 & 155 & . 4 & 95 & 29 & 544 & 6.51 & 35 & 5 & No & & 21 & 1 & 2 & 3 & 111 & . 27 & . 14 & 12 & 288 & 2.59 & 42 & . 19 & 5 & 2.65 & . 01 & . 09 & 1 & 90 \\
\hline 5085562931140 & 2 & 58 & 26 & 168 & . 7 & 83 & 27 & 712 & 5.70 & 20 & 5 & N8 & 2 & 16 & 1 & 2 & 5 & 126 & . 26 & . 15 & 12 & 316 & 1.95 & 103 & . 19 & 7 & 2.17 & . 01 & . 08 & 1 & 150 \\
\hline 5085562 93134 & 2 & 45 & 41 & 215 & . 7 & 72 & 24 & 474 & 6.02 & 22 & 5 & N0 & 2 & 25 & 1 & 2 & 2 & 130 & . 40 & . 20 & 10 & 304 & 2.01 & 93 & . 15 & 10 & 2.54 & . 01 & . 13 & 1 & 13 \\
\hline 5085562931142 & 1 & 30 & 13 & 146 & . 8 & 52 & 19 & 360 & 5.10 & 17 & 5 & ND & 2 & 25 & 1 & 2 & 2 & 111 & . 28 & . 16 & 14 & 85 & 1.02 & 104 & . 14 & 7 & 3.00 & . 01 & . 07 & 1 & 8 \\
\hline 5085562931143 & 9 & 128 & 19 & 199 & 1.6 & 137 & 61 & 1454 & 13.22 & 63 & 6 & N0 & 1 & 33 & 3 & 3 & 2 & 144 & . 21 & . 30 & 26 & 229 & 2.24 & 87 & . 15 & 15 & 2.92 & . 01 & . 04 & 1 & 120 \\
\hline 5685562931144 & 1 & 24 & 9 & 186 & . 4 & 21 & 14 & 519 & 4.43 & 13 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 82 & . 25 & . 29 & 12 & 46 & . 51 & 86 & . 11 & 7 & 2.21 & . 01 & . 05 & 1 & \\
\hline SID C/FA-All & & & & 135 & 7.1 & 67 & 28 & & 3.93 & 40 & 17 & 8 & 40 & 55 & 17 & 15 & 20 & 60 & & & 39 & 57 & . 88 & 188 & . 08 & 39 & 1.71 & . 07 & 12 & 12 & \\
\hline
\end{tabular}


5085562931145 5085562931146 5085562931147 5085562931148 5085562931149 5085562931150 5085562931151 STD C
5085562931152 5085562 931153

5095562931154 5085562931155 5685562931156 5085562931157 5085562931158

5085562931159 5085562931160 5085562931161 5085562931162 5085562931163

\section*{85562931164} 5085562931165
5695562931166
5095562931167
5085562931168
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5085562931145 & 6 & 92 & 23 & 170 & . 6 & 79 & 26 & 602 & 6.89 & 40 & 5 & k0 & 1 & 38 & 1 & 2 & 6 & 134 & . 62 & . 09 & 16 & 93 & . 87 & 148 & . 10 & 2 & 3.55 & . 01 & . 09 & 1 & 3 \\
\hline 5085562931146 & 3 & 55 & 16 & 199 & . 5 & 53 & 21 & 689 & 4.93 & 14 & 5 & no & 1 & 32 & 1 & 2 & 2 & 100 & . 16 & . 11 & 13 & 76 & 1.05 & 81 & . 09 & 2 & 2.33 & . 01 & . 07 & 1 & 4 \\
\hline 5085562931447 & 3 & 14 & 11 & 159 & . 8 & 50 & 20 & 270 & 1.96 & 9 & 5 & KD . & 1 & 27 & 1 & 2 & 3 & 75 & . 32 & . 27 & 7 & 65 & . 62 & 54 & . 13 & 2. & 3.24 & . 01 & . 04 & 1 & 5 \\
\hline 5085562 931148 & 3 & 81 & 6 & 165 & 1.2 & 57 & 18 & 922 & 1.81 & 19 & 5 & N0 & 1 & 41 & 1 & 2 & 2 & 91 & . 70 & . 08 & 19 & 76 & 1.16 & 123 & . 10 & 2 & 2.72 & . 01 & . 08 & 1 & 8 \\
\hline 5085562931149 & 3 & 47 & 17 & 187 & . 5 & 66 & 21 & 106 & 5.15 & 19 & 5 & N0 & 3 & 21 & 1 & 2 & 2 & 106 & . 31 & . 09 & 14 & 84 & 1.36 & 92 & . 13 & 5 & 2.67 & . 01 & . 05 & 1 & 1 \\
\hline 5085562931150 & 1 & 51 & 13 & 138 & . 5 & 163 & 24 & 163 & 5.18 & 18 & 5 & No & 1 & 19 & 1 & 2 & 2 & 101 & . 33 & . 14 & 10 & 180 & 2.54 & 53 & . 11 & 2 & 2.81 & . 01 & . 07 & 1 & 55 \\
\hline 5085562931151 & 6 & 38 & 9 & 123 & . 8 & 36 & 15 & 290 & 5.71 & 22 & 5 & N0 & 2 & 26 & 1 & 2 & 2 & 114 & . 32 & . 06 & 13 & 65 & . 71 & 76 & . 13 & 2 & 2.64 & . 01 & . 05 & 1 & 22 \\
\hline Sto C & 20 & 59 & 38 & 135 & 7.1 & 71 & 29 & 1188 & 3.96 & 37 & 17 & 8 & 39 & 53 & 17 & 15 & 20 & 59 & . 48 & . 15 & 40 & 59 & . 87 & 173 & . 07 & 37 & 1.72 & 06 & . 11 & 13 & - \\
\hline 5085562931152 & 2 & 51 & 11 & 256 & . 5 & 52 & 16 & 491 & 4.96 & 20 & 5 & ND & 1 & 25 & 1 & 2 & 2 & 99 & . 31 & . 14 & 6 & 62 & . 76 & 106 & . 09 & 3 & 2.42 & . 01 & . 08 & 1 & 4 \\
\hline 5085562 931153 & 2 & 31 & 18 & 216 & . 4 & 43 & 19 & 412 & 5.40 & 17 & 5 & ND & 1 & 23 & 1 & 1 & 2 & 101 & . 28 & . 32 & 15 & 57 & .72 & 110 & . 11 & 13 & 2.80 & . 01 & . 08 & 1 & 3 \\
\hline 5065562931154 & 2 & 54 & 13 & 171 & . 4 & 49 & 19 & 419 & 5.69 & 23 & 5 & ND & 2 & 27 & 1 & 2 & 2 & 113 & . 36 & . 12 & 14 & 72 & 1.11 & 80 & . 12 & 5 & 2.17 & . 01 & . 05 & 1 & 8 \\
\hline 5085562931155 & 4 & 32 & 19 & 288 & . 5 & 19 & 21 & 119 & 6.14 & 18 & 5 & HD & 1 & 25 & 1 & 2 & 2 & 116 & . 35 & . 32 & 8 & 84 & . 89 & 70 & . 13 & 7 & 2.12 & . 01 & . 06 & 1 & 2 \\
\hline 5695562931156 & 4 & 35 & 6 & 187 & . 4 & 72 & 21 & 452 & 5.60 & 14 & 5 & N0 & 1 & 24 & 1 & 2 & 2 & 106 & . 31 & . 20 & 8 & 126 & 1.32 & 67 & . 12 & 2 & 2.48 & . 01 & . 06 & 1 & 1 \\
\hline 5085562931157 & 3 & 19 & 13 & 88 & . 2 & 29 & 11 & 265 & 3.73 & 8 & 5 & KD & 1 & 18 & 1 & 2 & 4 & 81 & . 23 & . 15 & 6 & 54 & . 53 & 39 & . 10 & 2 & 1.60 & . 01 & . 04 & 1 & 3 \\
\hline 5085562931158 & \(b\) & 171 & 18 & 212 & 2.0 & 93 & 31 & 2068 & 5.88 & 26 & 5 & ND & 1 & 57 & 1 & 2 & 4 & 100 & 1.17 & . 11 & 19 & 112 & 1.14 & 133 & . 11 & 7 & 3.25 & . 02 & . 08 & 1 & 17 \\
\hline 5085562931159 & 5 & 37 & 11 & 138 & . 3 & 46 & 18 & 420 & 1.91 & 18 & 5 & ND & 3 & 21 & 1 & 2 & 2 & 103 & . 33 & . 06 & \(\bigcirc\) & 71 & 1.03 & 66 & . 12 & 4 & 2.12 & . 01 & . 05 & 1 & 6 \\
\hline 5085562931160 & 6 & 216 & 23 & 196 & 2.0 & 126 & 27 & 1509 & 7.05 & 44 & 5 & \(N 0\) & 3 & 59 & 1 & 4 & 3 & 111 & . 86 & . 10 & 20 & 123 & 1.10 & 203 & . 09 & 2 & 4.27 & . 02 & . 12 & 1 & 16 \\
\hline 5085562931161 & 5 & 67 & 13 & 201 & . 8 & 37 & 18 & 351 & 7.20 & 17 & 5 & Ni & 2 & 24 & 1 & 2 & 4 & 130 & . 25 & . 23 & 3 & 62 & . 75 & 68 & . 14 & 1 & 2.17 & . 01 & . 05 & 1 & 3 \\
\hline 5085562951162 & 2 & 23 & 12 & 131 & . 8 & 26 & 13 & 281 & 4.10 & 9 & 5 & Hi & 2 & 19 & 1 & 2 & 3 & 70 & . 24 & . 28 & 7 & 39 & . 48 & 12 & . 10 & 7 & 2.06 & . 01 & . 04 & 1 & 1 \\
\hline 5085562931163 & 5 & 73 & 8 & 162 & . 3 & 158 & 36 & 582 & 6.85 & 30 & 5 & \% & 1 & 21 & 1 & 3 & 2 & 145 & . 45 & . 08 & 9 & 258 & 2.99 & 43 & . 23 & 6 & 2.91 & . 01 & . 11 & 1 & 1 \\
\hline 5085562 931164 & 1 & 24 & 10 & 220 & . 5 & 63 & 18 & 303 & 5.10 & 13 & 5 & No & 2 & 18 & 1 & 2 & 2 & 104 & . 19 & . 27 & \(?\) & 135 & 1.05 & 75 & . 16 & 1 & 2.98 & . 01 & . 04 & 1 & 2 \\
\hline 5085562931165 & 5 & 72 & 12 & 133 & . 2 & 138 & 28 & 655 & 6.43 & 24 & 5 & KD & 1 & 26 & 1 & 3 & 2 & 143 & . 27 & . 17 & ? & 305 & 2.18 & 81 & . 21 & 9 & 2.34 & . 01 & . 07 & 1 & 1 \\
\hline 5695562931166 & 4 & 45 & 9 & 203 & . 1 & 155 & 26 & 357 & 5.91 & 11 & 5 & HD & 1 & 13 & 1 & 2 & 2 & 140 & . 22 & . 26 & 5 & 333 & 2.61 & 69 & . 22 & 6 & 3.14 & . 01 & . 68 & 1 & 2 \\
\hline 5095562931167 & 4 & 19 & 10 & 99 & . 5 & 48 & 11 & 210 & 4.15 & 8 & 5 & KD & 1 & 14 & 1 & 2 & 2 & 98 & . 22 & . 19 & 4 & 117 & . 81 & 65 & . 17 & 5 & 1.41 & . 01 & . 04 & 1 & 1 \\
\hline 5085562931168 & 4 & 34 & 10 & 109 & . 5 & 101 & 20 & 299 & 5.02 & 11 & 5 & \% \({ }^{\text {d }}\) & 2 & 15 & 1 & 2 & 2 & 92 & . 25 & . 28 & 3 & 189 & 1.46 & 49 & . 17 & 5 & 2.66 & . 01 & . 07 & 1 & 2 \\
\hline 5085562931169 & 1 & 43 & 5 & 67 & . 7 & 251 & 32 & 315 & 4.34 & 18 & 5 & 8 y & 1 & 13 & 1 & 2 & 2 & 80 & . 28 & . 08 & 5 & 385 & 2.66 & 51 & . 20 & 3 & 3.40 & . 01 & . 08 & 1 & 7 \\
\hline 5085562 931170 & 5 & 101 & 11 & 125 & . 5 & 256 & 33 & . 528 & 5.68 & 19 & 5 & ND & 1 & 25 & 1 & 2 & 2 & 122 & . 36 & . 10 & 5 & 355 & 3.81 & 93 & . 18 & 3 & 2.91 & . 01 & . 33 & 1 & 26 \\
\hline 5085562931171 & 3 & 26 & 13 & 152 & . 6 & 39 & 14 & 288 & 4.69 & 9 & 5 & N0 & 1 & 17 & 1 & 2 & 2 & 90 & . 21 & . 37 & 2 & 76 & . 73 & 69 & . 11 & 6 & 2.29 & . 01 & . 04 & 1 & 2 \\
\hline 5085562931172 & 5 & 68 & 11 & 311 & 1.9 & 84 & 29 & 617 & 5.19 & 13 & 5 & NO & 2 & \(3 i\) & 1 & 2 & 2 & 84 & . 59 & . 23 & 8 & 117 & 1.24 & 88 & . 16 & 6 & 2.95 & . 01 & . 01 & 1 & 1 \\
\hline 5085562931173 & 6 & 59 & 7 & 81 & . 1 & 194 & 26 & 588 & 5.45 & 19 & 5 & HD & 1 & 17 & 1 & 3 & 2 & 134 & .32 & . 12 & 5 & 314 & 3.27 & 33 & . 19 & 4 & 2.65 & . 01 & . 18 & 1 & 160 \\
\hline 5085562931174 & 10 & 97 & 9 & 58 & . 3 & 193 & 30 & 484 & 6.60 & 31 & 5 & N0 & 1 & 18 & 1 & 3 & 2 & 160 & . 32 & . 17 & 2 & 324 & 3.81 & 49 & . 21 & 2 & 2.65 & . 01 & .17 & 1 & 1 \\
\hline 5085562931175 & 3 & 27 & 4 & 140 & .4 & 63 & 18 & 292 & 5.16 & 11 & 5 & ND & 2 & 22 & 1 & 2 & 2 & 104 & . 29 & . 23 & 5 & 119 & 1.13 & 60 & . 15 & 6 & 2.61 & . 01 & . 06 & 1 & 3 \\
\hline 5085562931176 & 5 & 40 & 7 & 69 & . 3 & 95 & 17 & 420 & 5.36 & 18 & 5 & N0 & 2 & 28 & 1 & 3 & 2 & 114 & . 38 & . 12 & 3 & 180 & 1.92 & 70 & . 29 & 2 & 2.05 & . 02 & 0 & 1 & 1 \\
\hline 5085562931177 & 7 & 62 & 11 & 90 & . 4 & 157 & 26 & 408 & 5.60 & 22 & 5 & NO & 1 & 19 & 1 & 3 & 2 & 126 & . 33 & . 16 & 6 & 234 & 2.53 & 52 & . 17 & 3 & 2.51 & . 01 & . 11 & 1 & 32 \\
\hline 5085562931178 & 4 & 38 & 15 & 120 & . 8 & 97 & 21 & 349 & 5.27 & 12 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 106 & . 27 & . 25 & 2 & 168 & 1.16 & 51 & . 16 & 2 & 2.37 & . 01 & . 06 & 1 & 3 \\
\hline 5095562931179 & 5 & 27 & 11 & 97 & . 3 & 94 & 16 & 406 & 4.56 & 9 & 5 & ND & 1 & 12 & 1 & J & 2 & 109 & . 24 & . 11 & 3 & 187 & 1.66 & 34 & . 21 & 7 & 1.83 & . 02 & . 01 & 1 & 2 \\
\hline 5085562931180 & 4 & 59 & 14 & 158 & . 5 & 48 & [B & 465 & 5.2日 & 26 & 5 & KD & 2 & 38 & 1 & 2 & 2 & 114 & . 42 & . 12 & 10 & 93 & 1.32 & 68 & . 14 & 5 & 2.38 & . 01 & . 07 & 1 & 1 \\
\hline KE 5085562 931169 & 3 & 44 & 5 & 67 & . 5 & 248 & 32 & 344 & 4.31 & 17 & 5 & ND & 1 & 14 & 1 & 2 & 2 & 80 & . 21 & . 68 & 2 & 380 & 2.66 & 52 & . 20 & 2 & 3.46 & . 01 & . 08 & 1 & 1 \\
\hline SID C/FA-AU & 20 & 58 & 39 & 135 & 6.9 & 68 & 29 & 1170 & 3.95 & 39 & 18 & 8 & 37 & 52 & 16 & 15 & 21 & 59 & . 18 & . 15 & 38 & 57 & . 88 & 177 & . 08 & 36 & 1.72 & . 06 & .12 & 12 & 50 \\
\hline
\end{tabular}
(19562 93172
5685562931180
KE S085562 93
\(\begin{array}{rrrrrrrrr}\text { FPM } & \text { PPK } & \text { FPM } & \text { PPM } & \text { PPM } & \text { PPM } & \text { PPK } & \text { PPN } & \text { I } \\ 6 & 92 & 23 & 170 & .6 & 79 & 26 & 602 & 6.89\end{array}\)

\section*{}

FAGE \(L\)
C:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & 3 & 5 & 110 & : & 36 & 1 & j & 2 & 115 & . 64 & . 13 & 16 & 165 & 1.54 & 151 & . 16 & & 2.51 & . 02 & . 09 & 1 & 11 \\
\hline \(i\) & 15 & 2 & \(1{ }^{\text {did }}\) & 1.9 & 11. & 26 & \(80 ¢\) & 5.14 & 23 & 5 & N0 & \(\vdots\) & 47 & 1 & i & 2 & 104 & . 65 & . 07 & 14 & 108 & 1.55 & \(1: 0\) & . 14 & & 2.55 & . 02 & . 11 & ! & 9 \\
\hline 5 & 104 & 15 & 185 & . 5 & ¢ 0 & -6 & 1645 & 4.95 & -6 & 5 & N0 & i & 4 & ! & \(\stackrel{1}{2}\) & \(\stackrel{4}{2}\) & 135 & . 3 & . 14 & 11 & 91 & 1.17 & 6 & . 17 & 2 & 2.17 & . 01 & . 08 & 1 & 15 \\
\hline \(t\) & 57 & 16 & 108 & . 5 & iS & 17 & 512 & 5.60 & 19 & 5 & H & \(!\) & 3 & 1 & : & : & 150 & \(\stackrel{3}{9}\) & . 15 & 10 & 9 & 1.00 & 68 & . 16 & & 2.89 & . 01 & . 07 & 1 & : \\
\hline - & 6i & 16 & 219 & . 6 & 61 & 25 & 551 & 5.74 & 14 & 5 & \(N 0\) & \(:\) & 26 & 1 & \(\stackrel{4}{5}\) & 5 & 108 & \# & .10 & 12 & 5 & . 85 & il & . 15 & \(\vdots\) & 2.06 & . 01 & . 05 & 1 & 1 \\
\hline : & \(3!\) & 15 & 189 & . 6 & 30 & 14 & 301 & 4.85 & 16 & 5 & N0 & : & 21 & 1 & \(\checkmark\) & - & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & Hid & 1 & 3 & : & : & 2 & 50 & . 33 & . 09 & 11 & \(\because 7\) & . 5 & 46 & . 10 & & 2.75 & . 02 & . 04 & 1 & i \\
\hline 1 & 140 & 10 & 175 & 1.9 & 6f & 24 & 38 & 2..1 & \(1 i\) & 5 & NO & 2 & 18 & 1 & 2 & ? & 121 & . 23 & . 16 & 9 & 5 & . 3 & 35 & . 20 & 2 & 1.14 & . 02 & . 05 & 1 & 1 \\
\hline 1 & 30 & 14 & 153 & . 6 & 2 & 11 & 24 & S.1i & 17 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 109 & . 26 & . 12 & \% & 144 & 1.89 & 14 & . 17 & E & 2.35 & . 01 & . 08 & 1 & 12 \\
\hline 4 & 101 & 15 & 12 c & . 2 & 65 & 19 & 441 & 4.98 & 17 & 5 & ND & \(!\) & - & 1 & 2 & 2 & 70 & . 46 & . 05 & 9 & 110 & 1.06 & 86 & . A & 1 & 2.72 & . 02 & . 05 & 1 & 3 \\
\hline \(\varepsilon\) & 79 & 15 & 119 & 1.0 & 104 & 21 & 501 & 4.46 & 10 & 5 & 110 & 2 & \(\stackrel{3}{36}\) & 1 & : & 2 & 101 & . 50 & . 06 & 11 & 137 & 1.35 & 80 & . 18 & j & 2.46 & . 02 & . 05 & 1 & 8 \\
\hline 4 & 140 & 16 & 170 & 2.1 & 81 & 19 & 108 & 4.35 & 22 & 5 & N0 & 2 & 3 & 1 & 2 & 2 & 101 & & & & & & & & & & & & & \\
\hline & & & & & & & & 4.62 & 10 & J & HO & 3 & 35 & 1 & 2 & 2 & 107 & . 62 & . 08 & 9 & 100 & 1.19 & 80 & . 19 & 2 & 2.16 & . 02 & . 00 & 1 & 9 \\
\hline ¢ & 114 & 11 & 123 & . 9 & S & 20 & 926 & 1.62 & 10 & \% & & & & , & & - & 15 & . \({ }^{5}\) & . 0 & 10 & i6 & . 98 & 82 & . 19 & 2 & 1.81 & . 02 & . 05 & 1 & 19 \\
\hline こ & \$8 & 18 & 222 & . 2 & 31 & 15 & 286 & 1.36 & 15 & 5 & ND & \(\stackrel{\square}{5}\) & 26 & 1 & 2 & \(\stackrel{4}{2}\) & 104 & \({ }^{5} 5\) & . 01 & 9 & 70 & 1.27 & 96 & . 15 & 2 & 2.34 & . 02 & . 04 & 1 & 10 \\
\hline 2 & 79 & 15 & 114 & . 5 & 41 & 17 & 50.0 & 4.29 & 18 & 5 & \(1{ }^{\text {d }}\) & : & 4 & 1 & 2 & \(\stackrel{2}{2}\) & 104 & - 36 & & 15 & 75 & 1.48 & 28 & . 16 & 6 & 2.35 & . 02 & . 05 & 1 & 15 \\
\hline 1 & 154 & 17 & 124 & 1.4 & 56 & 22 & 620 & 4.30 & 14 & 5 & ND & 2 & 46 & 1 & : & \(\stackrel{2}{2}\) & 115 & . 56 & . 08 & 15 & 130 & 1.16 & 91 & . 17 & ¢ & 2.50 & . 02 & . 05 & 1 & 6 \\
\hline 5 & 119 & 31 & 206 & 1.6 & 70 & 25 & 679 & 4.95 & 39 & 5 & ND & 2 & 11 & 1 & ، & 2 & 15 & .st & . 07 & Iv & 150 & 1.16 & & & & & & & & \\
\hline & & & & & & & St & 5.45 & 37 & 5 & HD & 2 & 13 & 1 & 2 & 2 & 133 & . 15 & . 21 & 10 & 62 & . 34 & 111 & .10 & 2 & 2.12 & . 01 & . 05 & 1 & 80 \\
\hline 5 & 55 & 11 & 15 & . 8 & 4 & 1. & Jil & S. 4 & & & & 2 & 19 & 1 & 2 & 2 & 31 & . 25 & . 15 & 11 & 37 & . 69 & 104 & . 08 & 2 & 2.45 & . 01 & . 04 & 1 & 22 \\
\hline 1 & 40 & 11 & 141 & . 6 & 25 & 12 & 340 & 4.07 & 15 & 5 & Hid & \(\stackrel{2}{2}\) & 19 & 1 & \(\stackrel{3}{3}\) & 4 & 85 & . 32 & . 21 & 8 & 2 & . 3 & 74 & .15 & J & 1.62 & . 02 & . 04 & 1 & fi \\
\hline J & 22 & 11 & 198 & . 6 & 17 & 10 & 244 & 4.35 & 19 & 5 & H0 & \(\stackrel{ }{ }\) & 21 & & & 2 & 56 & . 16 & . 31 & 7 & 24 & . 14 & 97 & . 11 & J & 3.81 & . 02 & . 03 & 1 & 9 \\
\hline 1 & 27 & 10 & 256 & . 8 & 14 & 10 & 45 & 4.00 & 17 & 5 & 110 & 1 & \(!6\) & 4 & 2 & 2 & 56 & . 65 & . 06 & 15 & 66 & . 34 & 104 & . 12 & : & 2.65 & . 01 & . 04 & 1 & 18 \\
\hline : & 91 & 45 & 85 & . 7 & 3 & 26 & 507 & 4.86 & 24 & 5 & ND & 1 & 45 & 1 & 2 & \(\stackrel{2}{2}\) & 91 & .65 & & 13 & dod & & & & & & & & & \\
\hline & & & & & & & & & & & & 2 & 25 & & 2 & 6 & 67 & . 29 & . 09 & 11 & 4 & . 70 & 120 & . 15 & 2 & 2.12 & . 01 & . 05 & 1 & 27 \\
\hline ; & 14 & 15 & 199 & . 4 & 15 & 15 & 518 & 4.79 & 11 & 5 & 10 & ! & 45 & & 4 & 2 & . 58 & . 55 & . 50 & 11 & 24 & . 31 & \(1: 6\) & . 09 & j & 2.31 & . 02 & . 08 & 1 & \% \\
\hline 1 & 42 & 13 & 206 & .7 & 21 & 28 & 245 & - 5.10 & 15 & 5 & N0 & \(\stackrel{1}{2}\) & 20 & i & ? & 2 & 108 & . 19 & . 19 & 1 & 32 & . 40 & S0 & . 09 & 2 & 1.75 & . 01 & . 01 & 1 & 290 \\
\hline 2 & 45 & 14 & 150 & . 8 & 22 & 15 & 306 & 5.04 & 3 L & 5 & N0 & 2 & 4 & & \(\stackrel{\square}{\square}\) & 2 & 6 & . l ( & .19 & 16 & \% & . 55 & 130 & . 11 & \(\checkmark\) & 3.46 & .02 & . 05 & 1 & -9 \\
\hline 4 & 52 & 19 & 204 & 1.8 & 40 & 15 & 634 & 4.02 & 20 & 5 & H0 & 1 & 4 & & & 4 & 96 & & & 15 & 55 & . 32 & 180 & . 09 & 1 & 4.87 & . 01 & . 07 & 1 & 31 \\
\hline 4 & 97 & 20 & \(23 i\) & 2.0 & E5 & 20 & 1is & 5.45 & 27 & 5 & ND & 2 & 46 & 1 & 2. & 2 & 96 & .69 & di & 15 & J & & & & & & & & & \\
\hline & & & & & & & & & & & & 2 & 2 & 1 & 2 & 2 & 67 & . 31 & . 16 & \% & 3 & . 3 & so & . 10 & 2 & 4.01 & . 01 & . 03 & 1 & 37 \\
\hline \(\Sigma\) & 34 & 14 & 159 & . 6 & 15 & 10 & 216 & t.ts & 15 & J & \% & & & & & & 105 & . 15 & . 07 & 12 & 54 & . 74 & 179 & . 12 & . & 3.24 & . 01 & . 05 & 1 & 135 \\
\hline 1 & 57 & 10 & 124 & . 1 & 54 & 17 & 349 & 5.85 & 85 & 5 & N0 & \(\stackrel{\sim}{\sim}\) & 16 & & 5 & a & 57 & . 46 & & 39 & 60 & . 26 & 164 & . 07 & Js & 1.30 & . 08 & . 10 & 15 & - \\
\hline : 0 & 60 & 11 & 154 & 7.0 & 70 & 29 & 1181 & 3.91 & 36 & 18 & \({ }^{\text {a }}\) & 8 & 20 & 16 & 15 & 4 & 80 & .79 & . 16 & J & 35 & . 5 & 125 & . 15 & & j.ju & . 01 & . 05 & 1 & 31 \\
\hline j & 45 & 15 & 174 & . 4 & 49 & 18 & 311 & 4.90 & 39 & 5 & H0 & 5 & 24 & 1 & 2 & 5 & 80 & 4 & - & 11 & -s & . 50 & 61 & . 18 & 5 & 4.65 & . 01 & . 05 & 1 & 125 \\
\hline 5 & 110 & 14 & 132 & . 4 & 45 & 29 & 576 & 8.28 & 86 & 5 & \(1 i 0\) & 5 & 24 & . 1 & 2 & J & 84 & . 06 & . 3 & 11 & J & & & & & & & & & \\
\hline & & & & & & & & & & & & 3 & 97 & 1 & 2 & 3 & 9 & .75 & .10 & 14 & 76 & 1.16 & 107 & .12 & 1 & 2.01 & . 01 & . 06 & 1 & 13 \\
\hline i & 108 & 87 & 98 & \({ }^{4}\) & : 3 & 22 & 55. & 4.20 & 17
15 & 5 & N0 & 4 & 46 & 1 & ? & 5 & 90 & . 85 & . 07 & 16 & 75 & 1.08 & 70 & . 12 & 2 & 1.94 & . 02 & . 07 & , & 26 \\
\hline 14 & 105 & 40 & 131 & . 5 & 77 & 20 & 122 & 4.56 & 15 & 5 & H0 & 4 & 46 & & 2 & 6 & 92 & . 66 & . 06 & 10 & 69 & . 96 & 102 & . 12 & : & 2.85 & . 01 & . 05 & 1 & 50 \\
\hline 9 & 65 & 44 & \(8{ }^{\text {c }}\) & . 6 & 48 & 23 & 524 & 5.07 & 27 & 5 & 110 & 4 & 4 & & 2 & 2 & 95 & . 20 & . 09 & 10 & 77 & . 99 & 64 & . 12 & 2 & 2.13 & . 01 & . 05 & 1 & 17 \\
\hline 4 & in & 17 & 115 & . 5 & 36 & 16 & 426 & 4.75 & 12 & \(\stackrel{5}{5}\) & HD & : & 2 & 1 & \(\stackrel{2}{2}\) & : & 110 & . 14 & . 16 & 9 & 56 & . 56 & 68 & . 15 & 5 & 1.45 & . 01 & . 05 & 1 & 7 \\
\hline : & 29 & 15 & 90 & .2 & 14 & 11 & 252 & 4.75 & 6 & 5 & HO & 2 & 19 & 1 & 2 & \(\checkmark\) & 1.0 & . 14 & . 16 & & & & & & & & & & & \\
\hline & & & & & & 11 & 3 & 4.23 & 6 & 5 & H0 & 2 & 18 & 1 & 2 & 2 & 78 & . 12 & . 27 & 8 & 56 & . 34 & If & . 15 & 2 & 1.26 & . 01 & . 04 & 1 & 28 \\
\hline : & & 12 & 150 & 1.1 & 3 & 16 & 35 & ¢. 66 & 10 & 5 & NO & 1 & 40 & 1 & 2 & 2 & 116 & . 16 & . 30 & 9 & 89 & 1.17 & 140 & . 13 & 2 & 2.69 & . 01 & . 05 & 1 & 17 \\
\hline 4 & \(\therefore 1\) & 16 & 102 & . & 27 & 12 & 229 & 4.34 & ; & 5 & HD & 1 & 24 & 1 & 2 & 2 & 104 & . 26 & . 08 & 5 & 77 & . 36 & \% & . 16 & 2 & 1.75 & . 01 & . 04 & 1 & 5 \\
\hline 20 & 55 & 40 & 151 & 7.1 & 70 & 29 & 1176 & 3.95 & 38 & 19 & ¢ & 3 & 5 & 17 & 15 & 21 & 59 & . 46 & . 15 & \(3 i\) & 61 & . 86 & 176 & . 08 & 40 & \(1 . / 1\) & . 00 & . 11 & 1 & 8 \\
\hline
\end{tabular}
\[
\text { SELCO-A DIVISION OF BP FFOJECT - SSE-10141 FILE \# } \mathbf{~} 5-2754
\]
fage :
3krfict
sogexi: ishia
5085562 s.1718
50gsedi 9j1219
5005562 \(931: 20\) soessiz guiail

508556" 931 2 2̃
soesseza ¢iliz .506s56: 931:24 - \$0


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 508f5iz 932001 & 2 & 35 & 19 & 156 & . 7 & 17. & 14 & 895 & J. 13 & i & 5 & ND & 1 & 13 & 1 & 2 & 2 & 55 & . 14 & . 11 & 5 & 80 & . 11 & 5 & . 08 & 2 & 1.54 & . 01 & . 02 & 1 & 12 \\
\hline 5085562 932002 & 2 & 32 & 22 & 102 & . 4 & 9 & 9 & 151 & 1.06 & 5 & 5 & KD & 1 & 16 & 1 & 3 & 2 & 76 & . 12 & . 07 & 5 & 41 & . 12 & 58 & . 1 & 7 & 2.ij & . 01 & . 01 & 1 & 11 \\
\hline S0855E2 9:200J & 2 & 74 & 13 & 126 & .4 & 22 & 20. & 404 & 5,6t & 15 & 5 & ND & 1. & 26 & 1 & 2 & 2 & 91 & . 25 & . 16 & f & 57 & 1.03 & 88 & . 09 & 1 & 3.50 & . 01 & . 05 & 1 & 375 \\
\hline RE 5085562 93126i & 2 & 550 & 11 & 35 & . 3 & 79 & 11 & 2576 & 2.80 & 5 & 5 & HD & 1 & 36 & 1 & 2 & 2 & 46 & . 95 & . 04 & 10 & 49 & . 51 & 158 & . 16 & 4 & .2.ij & . 04 & . 03 & 1 & 1 \\
\hline 5085562 ¢52004 & : & 12 & if & 36 & . 1 & i & f & 213 & 2.73 & : & 5 & 110 & 1 & 11 & 1 & 2 & 2 & 48 & . 08 & . 08 & 1 & 30 & . 30 & 35 & . 04 & 6 & . \({ }^{2}\) & . 01 & . 02 & 2 & 12 \\
\hline 508556\% 932005 & - & 31 & 2 & 59 & . 1 & 9 & 16. & 340 & 5.11 & ; & 5 & ND & 1 & 10 & , & 2 & 2 & 51 & . 09 & . 41 & 8 & 23 & . 59 & 50 & . 05 & j & 1. 129 & . 01 & . 02 & 1 & ; \\
\hline 5085562 532006 & 3 & 128 & 15 & 72 & . 1 & 26 & 26 & 126 & 7.07 & 8 & 5 & ND & 1 & 13 & 1 & 2 & 2 & 74 & . 14 & . 18 & 8 & 72 & 1.08 & 51 & . 05 & 2 & 2.02 & . 01 & . 01 & , & 38 \\
\hline 5085562 957007 & 2 & 16 & 14 & 85 & . 5 & 11 & 19 & 790 & 4.87 & 6 & 5 & N0 & 2 & 16 & 1 & 2 & 2 & 63 & . 21 & . 26 & 3 & 25 & . 25 & 88 & . 10 & 2 & 2.19 & . 02 & . 02 & 1 & 10 \\
\hline SOBESS 932008 & 2 & 95 & 18 & 53 & . 4 & 15 & 16 & 309 & 4.25. & 8 & 5 & NO & 2 & 15 & 1 & 2 & 2 & 72 & . 13 & . 15 & 5 & Js & . 15 & 51 & . 10 & 1 & 1.65 & . 01 & . 02 & 1 & , \\
\hline 5085562 932009 & 8 & 46 & . & 82 & .4 & 25 & 19 & 514 & 5.41 & 7 & 5 & N0 & 1 & 21 & 1 & 2 & 2 & 102 & . 21 & . 13 & J & 65 & 1.05 & 80 & . 10 & 2 & 2.25 & . 01 & . 03 & 1 & 31 \\
\hline 50855i2 932010 & : & 50 & 12 & 65 & . 1 & 18 & 12 & 254 & 3.56 & 6. & 5 & No & 1 & 19 & 1 & 2 & 2 & 74 & . 22 & . 08 & 5 & 52 & . 54 & 45 & . 13 & 2 & 1.37 & . 01 & . 05 & 1 & 55 \\
\hline 5085562 97i011 & 1 & 20 & 7 & 44 & . 5 & ; & 10 & 351 & 2.65 & J & & ND & 1 & 18 & 1 & 2 & 2 & 72 & . 17 & . 09 & 5 & Il & . 3 & 11 & . 12 & . & . 66 & . 01 & . 02 & 2 & 3 \\
\hline STO C/Fi-nll & 15. & 55 & 35 & 131 & 2.1 & 69 & 30 & 1190 & 3.95 & 39 & 17 & 8 & 37 & 53 & 16 & 15 & 21. & 60. & . 18 & . 5 & 38 & 59 & . 86 & 189 & . 06 & 40 & 1.71 & . 06 & . 11 & 12 & 49 \\
\hline
\end{tabular}

「AGE 9.
Sinflet

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5085562952012 & 2 & 24 & 13 & 7 & ． 1 & 38 & 11 & 479 & 3.87 & 10 & 5 & No & 1 & 11 & 1 & 2 & 2 & 83 & ． 11 & ． 16 & 3 & 158 & ． 75 & 50 & ． 15 & 3 & 1.54 & ． 01 & ． 03 & 1 & 8 \\
\hline 5085562932013 & 3 & 25 & 11 & 97 & ． 2 & 33 & 14 & 483 & 3.70 & 7 & 5 & ND & 1 & 34 & 1 & 2 & 3 & 91 & ． 10 & ． 08 & 1 & 186 & ． 81 & 59 & ． 17 & 2 & ． 96 & ． 01 & ． 07 & 1 & 1 \\
\hline 5065562932014 & 2 & 30 & 6 & 45 & ． 2 & 15 & 9 & 178 & J． 15 & 5 & 5 & ND & 1 & 15 & 1 & 2 & 3 & 72 & ． 14 & ． 09 & 5 & 76 & ． 15 & 31 & ． 13 & 2 & 1.25 & ． 01 & ． 02 & 1 & 17 \\
\hline 5085562932015 & 2 & 46 & 5 & 32 & ． 1 & 4 & 14 & 350 & 4．23 & 2 & 5 & ND & 1 & 9 & 1 & 2 & 2 & 48 & ． 06 & ． 13 & 5 & 8 & ． 26 & 12 & ． 03 & 2 & ． 日2 & ． 01 & ． 02 & 1 & 1 \\
\hline 5085562932016 & 4 & 22 & 18 & 137 & ． 3 & 37 & 14 & 428 & 4.23 & 13 & 5 & ND & 1 & 25 & 1 & 2 & 5 & 107 & ． 38 & ． 08 & 4 & 168 & ． 90 & 78 & ． 11 & 5 & 1.21 & ． 01 & ． 05 & 1 & 7 \\
\hline 5095562932017 & 5 & 53 & 17 & 94 & ． 4 & 13 & 14 & 339 & 4.69 & 16 & 5 & nd & 1 & 42 & 1 & 2 & 1 & 111 & ． 53 & ． 05 & 5 & 176 & ． 86 & 63 & ． 15 & 2 & 1.46 & ． 01 & ． 04 & 1 & 15 \\
\hline 5065562932018 & 5 & 67 & 17 & 216 & ． 8 & 82 & 28 & 513 & 6.37 & 48 & 5 & ND & 1 & 22 & 1 & ， & 2 & 130 & ． 30 & ． 22 & 5 & 27 & 2.22 & 123 & ． 18 & 2 & 2.71 & ． 01 & ． 11 & 1 & 80 \\
\hline 5085562932019 & 3 & 32 & 19 & 91 & ． 3 & 21 & 16 & 148 & 5.52 & 10 & 5 & ND & 2 & 21 & 1 & 2 & 5 & 108 & ． 18 & ． 11 & 5 & 83 & ． 67 & 71 & ． 12 & 8 & 1.54 & ． 01 & ． 03 & 1 & 4 \\
\hline 5＇685562 932020 & 6 & 76 & 14 & 144 & ． 3 & 55 & 16 & 318 & 4.38 & 31 & 5 & KD & 1 & 15 & 1 & & 7 & 94 & ． 22 & ． 11 & 8 & 92 & ． 97 & 75 & ． 08 & 4 & 1.79 & ． 01 & ． 04 & 2 & 60 \\
\hline 5085562932021 & 5 & 30 & 13 & 310 & ． 2 & 24 & 16 & 1797 & 5.26 & 38 & 5 & HD & 1 & 33 & 1 & 2 & 2 & 102 & ． 25 & ． 31 & 1 & 37 & ． 57 & 242 & ． 08 & 2 & 1.94 & ． 01 & ． 03 & 1 & 12 \\
\hline 5085562932022 & 10 & 148 & 12 & 138 & ． 3 & 66 & 26 & 484 & 6.33 & 13 & 5 & MD & 1 & 24 & 1 & 2 & 6 & 99 & ． 27 & ． 11 & 6 & 105 & 1.35 & 85 & ． 08 & 2 & 1.84 & ． 01 & ． 05 & 1 & 22 \\
\hline 5065562932023 & 5 & 55 & 14 & 196 & ． 2 & 19 & 19 & 429 & 5.89 & 22 & 5 & ND & 1 & 20 & 1 & 2 & 4 & 139 & ． 23 & ． 33 & 8 & 97 & 1.19 & 80 & ． 16 & 6 & 2.39 & ． 01 & ． 06 & 1 & 6 \\
\hline 5085562932021 & 1 & 21 & 14 & 145 & ． 4 & 24 & 12 & 304 & 4．38 & 16 & 5 & ND & 1 & 13 & 1 & ， & 2 & 86 & ． 12 & ． 24 & 6 & 57 & ． 50 & 64 & ． 11 & 7 & 2.04 & ． 01 & ． 03 & 1 & 7 \\
\hline 5085562932025 & 6 & 49 & 16 & 70 & ． 4 & 26 & 11 & 206 & 4.18 & 12 & 5 & N0 & 1 & 28 & 1 & 2 & 5 & 89 & ． 21 & ． 08 & 7 & 69 & ． 18 & 51 & ． 15 & 2 & 1.76 & ． 01 & ． 03 & 1 & 1 \\
\hline 5085562932026 & 9 & 100 & 12 & 161 & ． 3 & 75 & 26 & 440 & 5.83 & 31 & 5 & ND & 1 & 38 & 1 & 2 & 5 & 122 & ． 17 & ． 01 & 7 & 155 & 1.52 & 112 & ． 12 & 2 & 2.32 & ． 01 & ． 04 & 1 & 175 \\
\hline STD C & 21 & 59 & 11 & 136 & 6.9 & 66 & 29 & 1204 & 3.99 & 38 & 17 & 8 & 36 & 50 & 17 & 15 & 22 & 60 & ． 48 & ． 15 & 38 & 59 & ． 88 & 175 & ． 08 & 38 & 1.70 & ． 08 & ． 10 & 12 & － \\
\hline AE 5085562 932038 & 3 & 17 & 16 & 77 & ． 3 & 1 & 8 & 290 & 3.97 & 4 & 5 & ND & 1 & 12 & 1 & 2 & 2 & 12 & ． 16 & ． 12 & 11 & 9 & ． 11 & 83 & ． 08 & 1 & 1.60 & ． 01 & ． 03 & 1 & 5 \\
\hline 5085562932027 & 6 & 69 & 17 & 248 & ． 2 & 56 & 25 & 365 & 5.65 & 33 & 5 & ND & 1 & 43 & 1 & 2 & 2 & 112 & ． 71 & ． 06 & 7 & 103 & 1.26 & 136 & ． 10 & 9 & 2.11 & ． 01 & ． 04 & 1 & 11 \\
\hline 5085562 932028 & 8 & 32 & 21 & 204 & ． 2 & 36 & 13 & 237 & 5．23 & 30 & 5 & ND & 1 & 14 & 1 & 2 & ， & 121 & ． 13 & ． 13 & 8 & 76 & ． 52 & 92 & ． 08 & 3 & 1.50 & ． 01 & ． 03 & 1 & 80 \\
\hline 5085562 932029 & 8 & 12 & 18 & 168 & ． 3 & 38 & 14 & 369 & 4.65 & 28 & 5 & No & 1 & 18 & 1 & 2 & 2 & 109 & ． 26 & ． 10 & 7 & 87 & ． 88 & 106 & ． 09 & 2 & 1.96 & ． 01 & ． 05 & 1 & \(\theta\) \\
\hline 5085562932030 & 5 & 24 & 10 & 180 & ． 3 & 18 & 13 & 360 & 5.50 & 16 & 5 & KD & 1 & 27 & 1 & 2 & 5 & 135 & ． 17 & ． 25 & 7 & 39 & ． 49 & 74 & ． 14 & 5 & 1.31 & ． 01 & ． 03 & 1 & 10 \\
\hline 5085562932031 & 3 & 30 & 14 & 173 & ． 4 & 15 & 11 & 482 & 4.24 & 13 & 5 & ND & 1 & 13 & 1 & 2 & 2 & 72 & ． 15 & ． 16 & 6 & 30 & ． 50 & 75 & ． 68 & 6 & 1.69 & ． 01 & ． 13 & 1 & 27 \\
\hline 5085562 932032 & 5 & 41 & 10 & 101 & ． 3 & 24 & 11 & 211 & 4.14 & 23 & 5 & ND & 1 & 14 & 1 & ， & 2 & 91 & ． 13 & ． 16 & 5 & 63 & ． 58 & 73 & ． 08 & 2 & 1.16 & ． 01 & ． 03 & 1 & 1 \\
\hline 5085562 932033 & 1 & 38 & 12 & 144 & ． 7 & 15 & 11 & 1077 & 4.25 & 10 & 5 & ND & 1 & 14 & ， & 2 & 2 & 87 & ． 17 & ． 10 & 5 & 45 & ． 39 & 101 & ． 09 & 2 & 1.50 & ． 01 & ． 03 & 1 & 2 \\
\hline 5685562932034 & 3 & 55 & 11 & 91 & ． 3 & 1 & 13 & 301 & 4.54 & 13 & 5 & NB & 1 & 14 & 1 & 2 & 2 & 28 & ． 22 & ． 14 & 15 & 7 & ． 12 & 131 & ． 03 & 5 & ．73 & ． 01 & ． 05 & 1 & 13 \\
\hline 5085562932035 & 2 & 108 & 7 & 71 & ． 2 & 5 & 21 & 182 & 6.77 & 6 & 5 & No & 1 & 7 & 1 & 2 & 2 & 32 & ． 06 & ． 22 & 13 & 14 & .13 & 82 & ． 02 & 2 & ． 97 & ． 01 & ． 03 & 1 & 85 \\
\hline 5065562 932036 & 6 & 101 & 13 & 150 & ． 1 & 41 & 19 & 929 & 4.46 & 29 & 5 & no & 1 & 32 & 1 & 2 & 2 & 79 & ． 38 & ． 14 & 7 & 71 & ． 94 & 159 & ． 08 & 2 & 1.64 & ． 01 & ． 09 & 1 & 31 \\
\hline 5085562932037 & 1 & 121 & 15 & 180 & ． 6 & 37 & 18 & 360 & 5.46 & 17 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 88 & ． 22 & ． 13 & 10 & 81 & ． 75 & 171 & ． 08 & 2 & 2.34 & ． 01 & ． 04 & 1 & 24 \\
\hline 5085562932038 & 2 & 19 & 14 & 76 & .4 & 5 & \(7{ }^{\text { }}\) & 283 & 3.89 & 2 & 5 & ND & 1 & 12 & ， & 2 & 2 & 43 & ． 15 & ． 12 & 12 & 9 & ． 11 & 81 & ． 08 & 2 & 1.60 & ． 02 & ． 03 & 1 & 5 \\
\hline 5085562932039 & 4 & 31 & 17 & 130 & ． 6 & 15 & 16 & 6217 & 3.61 & 8 & 5 & ND & 1 & 16. & 1 & 2 & 2 & 59 & ． 22 & ． 18 & 8 & 35 & ． 30 & 236 & ． 01 & 2 & 1.19 & ． 01 & ． 05 & ， & 26 \\
\hline 5085562932040 & 5 & 35 & 15 & 136 & ． 6 & 29 & 13 & 365 & 4.78 & 25 & 5 & N0 & 1 & 15 & 1 & 2 & 2 & 104 & ． 19 & ． 12 & 6 & 11 & ． 57 & 114 & ． 10 & 8 & 1.57 & ． 01 & ． 04 & 2 & 230 \\
\hline 5685502932041 & 2 & 19 & 14 & 111 & ．\(J\) & 12 & 10 & 1786 & 2.79 & 5 & 5 & N0 & 1 & 20 & 1 & 2 & 2 & 56 & ． 30 & ． 13 & 3 & 29 & ． 32 & 122 & ． 07 & & ． 97 & ． 01 & ． 05 & \(!\) & b \\
\hline 5085562932042 & 6 & 147 & 11 & 159 & ． 5 & 60 & 32 & 628 & 5.92 & 38 & 5 & ND & 2 & 37 & 1 & 2 & 2 & 105 & ． 36 & ． 11 & 7 & 121 & 1.46 & 90 & ． 13 & 6 & 2.04 & ． 01 & ． 09 & 1 & 17 \\
\hline 5065562 932043 & 3 & 30 & 12 & 98 & ． 2 & 32 & 12 & 375 & 4.04 & 15 & 6 & NS & 1 & 22 & & 2 & 2 & 103 & ． 27 & ． 13 & 5 & 100 & ． 78 & 88 & ． 12 & 2 & 1.52 & ． 01 & ． 05 & 1 & 23 \\
\hline 5085562932044 & 5 & 24 & 11 & 120 & ． 7 & 24 & 13 & 232 & 3.98 & 15 & 5 & N0 & 3 & 14 & 1 & 2 & 2 & 65 & ． 15 & ． 20 & 5 & 62 & ． 34 & 13 & ． 15 & 5 & 3.87 & ． 02 & ． 02 & 1 & 11 \\
\hline 5085562932045 & 7 & 107 & 26 & 245 & ． 4 & 88 & 30 & 611 & 6.92 & 15 & 5 & H0 & 2 & 23 & 1 & 2 & 2 & 132 & ． 25 & ． 20 & 7 & 173 & 1.71 & 59 & ． 16 & 2 & 3.25 & ． 01 & ． 08 & 1 & 14 \\
\hline 5085562932046 & 4 & 43 & 17 & 128 & ． 5 & 43 & 14 & 313 & 4.46 & 28 & 5 & HD & 2 & 17 & 1 & 2 & 3 & 100 & ． 23 & ． 11 & 8 & 99 & 1.12 & 65 & ． 09 & 2 & 1.88 & ． 01 & ． 05 & 3 & 16 \\
\hline 5085562932048 & 5 & 127 & 5 & 85 & 1.6 & 45 & 13 & & 3.15 & 17 & 5 & N0 & 1 & 161 & 3 & 2 & 2 & 53 & 1.72 & ． 18 & 9 & 67 & ． 10 & 161 & ． 05 & 2 & 2.06 & ． 02 & ． 03 & 1 & 7 \\
\hline STD C／FA－AU & 20 & 61 & 39 & 137 & 7.0 & 69 & 30 & 1184 & 3.96 & 39 & 17 & 8 & 38 & 51 & 16 & 15 & 20 & 60 & ． 48 & ． 15 & 39 & 59 & ． 88 & 185 & ． 08 & 38 & 1.71 & ． 06 & ． 10 & 12 & 52 \\
\hline
\end{tabular}

FAEE 10
SHMPLEI

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5085562932049 & 3 & 25 & 15 & 152 & . 7 & 21 & 12 & 219 & 3.62 & 11 & 5 & ND & 1 & 20 & 1 & 2 & 2 & 74 & . 25 & . 08 & 1 & 55 & . 42 & 53 & . 13 & 9 & 1.78 & . 02 & . 03 & 1 & 10 \\
\hline 5085562932050 & 1 & 119 & 32 & 505 & 1.1 & 61 & 25 & 5062 & 4.86 & 30 & 5 & ND & 2 & 55 & 3 & 2 & 2 & 81 & . 81 & . 21 & 8 & 101 & . 92 & 294 & . 11 & 9 & 3.19 & . 02 & . 06 & 1 & 4 \\
\hline 5085562932051 & 2 & 27 & 14 & 111 & . 8 & 18 & 10 & 333 & 3.75 & 15 & 5 & ND & 1 & 13 & 1 & 2 & 2 & 79 & . 15 & . 18 & 2 & 53 & . 39 & 11 & . 08 & 7 & 2.07 & . 01 & . 03 & 1 & 1 \\
\hline 5065562932052 & 5 & 74 & 11 & 150 & . 6 & 66 & 21 & 739 & 5.57 & 27 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 136 & . 33 & . 12 & 5 & 168 & 1.11 & 117 & . 11 & 5 & 1.85 & . 01 & . 05 & 1 & 4 \\
\hline 5085562932053 & 3 & 33 & 11 & 100 & . 3 & 39 & 14 & 815 & 3.68 & 15 & 5 & ND & 1 & 20 & 1 & 2 & 2 & 90 & . 21 & . 12 & 5 & 110 & . 96 & 119 & . 10 & 2 & 1.53 & . 01 & . 04 & 1 & 20 \\
\hline 5085562932054 & 2 & 29 & 14 & 162 & . 5 & 47 & 14 & 291 & 4.28 & 18 & 5 & no & 1 & 11 & 1 & 2 & 2 & 108 & . 18 & . 18 & 5 & 111 & 1.13 & 65 & . 17 & 6 & 2.00 & . 01 & . 01 & 1 & 1 \\
\hline 5695562932055 & 2 & 38 & 28 & 164 & . 6 & 71 & 19 & 313 & 4.26 & 29 & 5 & N0 & 1 & 12 & 1 & 2 & 2 & 86 & . 13 & . 11 & 6 & 189 & 1.10 & 59 & . 09 & 6 & 2.23 & . 01 & . 03 & 1 & 30 \\
\hline 3085562932056 & 2 & 51 & 9 & 86 & . 5 & 56 & 13 & 386 & 3.72 & 21 & 5 & ND & 2 & 16 & 1 & 2 & 2 & 93 & . 23 & . 12 & 6 & 172 & 1.31 & 36 & . 10 & 3 & 1.54 & . 01 & . 04 & 1 & 33 \\
\hline 5085562932057 & 2 & 84 & 22 & 121 & 1.1 & 48 & 16 & 896 & 3.55 & 19 & 5 & ND & 1 & 14 & 2 & 2 & 2 & 82 & . 65 & . 08 & 7 & 83 & . 82 & 113 & . 08 & 5 & 1.94 & . 01 & . 03 & 1 & 10 \\
\hline 5085562932058 & 1 & 11 & 16 & 157 & . 5 & 54 & 18 & 305 & 5.24 & 24 & 5 & \(N\) & 2 & 20 & 1 & 2 & 3 & 126 & . 25 & . 16 & 2 & 168 & 1.28 & 74 & . 13 & 8 & 1.74 & . 01 & . 05 & 1 & 8 \\
\hline 5085562932059 & 16 & 120 & 196 & 397 & . 5 & 67 & 31 & 912 & 6.81 & 61 & 5 & No & 3 & 20 & 1 & 2 & 1 & 159 & . 21 & . 11 & 11 & 166 & 1.88 & 106 & . 12 & 3 & 3.31 & . 01 & . 07 & 1 & 25 \\
\hline 5085562932060 & 1 & 61 & 26 & 245 & . 6 & 42 & 19 & 938 & 5.53 & 19 & 5 & No & 2 & 15 & 1 & 2 & 2 & 101 & . 18 & .18 & 6 & 135 & 1.08 & 119 & . 09 & 6 & 2.09 & . 01 & . 05 & 1 & 105 \\
\hline 5085562932061 & 2 & 36 & 10 & 128 & .4 & 22 & 11 & 1551 & 2.84 & 11 & 5 & ND & 1 & 16 & 1 & 2 & 2 & 63 & . 18 & . 08 & 4 & 50 & . 42 & 117 & . 07 & 9 & 1.25 & . 01 & . 03 & 1 & 33 \\
\hline 5085562932062 & 1 & 19 & 24 & 78 & . 4 & 8 & 5 & 341 & 2.59 & 5 & 5 & ND & 1 & 13 & 1 & 3 & 2 & 62 & . 12 & . 08 & 5 & 24 & . 18 & 50 & . 07 & 2 & . 85 & . 01 & . 03 & 1 & 5 \\
\hline 5085562932063 & 2 & 57 & 17 & 109 & . 6 & 32 & 13 & 519 & 3.16 & 18 & 5 & ND & 2 & 14 & 1 & 3 & 2 & 77 & . 11 & . 11 & 7 & 75 & . 73 & 94 & . 07 & 5 & 1.75 & . 01 & . 05 & 1 & 18 \\
\hline 5085562932064 & 1 & 20 & 8 & 39 & .4 & 7 & 4 & 290 & 1.15 & 2 & 5 & ND & 1. & 9 & 1 & 2 & 2 & 31 & . 08 & . 05 & 5 & 17 & . 09 & 105 & . 05 & 1 & . 14 & . 01 & . 03 & 1 & 50 \\
\hline 5885562932065 & 2 & 30 & 23 & 70 & . 6 & 13 & 6 & 166 & 3.05 & 6 & 5 & No & , & 22 & 1 & 2 & 2 & 72 & . 20 & . 07 & 7 & 32 & . 30 & 112 & . 08 & 3 & 1.13 & . 01 & . 03 & 1 & 1 \\
\hline 5085562932066 & 3 & 13 & 8 & 79 & . 2 & 28 & 11 & 288 & 3.26 & 12 & 5 & ND & 1 & 17 & 1 & 3 & 1 & 74 & . 23 & . 07 & 7 & 70 & . 80 & 103 & . 08 & 6 & 1.54 & . 01 & . 03 & 1 & 31 \\
\hline S0085562 932067 & 11 & 64 & 53 & 54 & .1 & 18 & 52 & 1120 & 11.25 & 101 & 5 & ND & 3 & 9 & 1 & & 2 & 28 & . 07 & . 26 & 14 & 14 & . 40 & 12 & . 01 & 7 & 1.17 & . 01 & .03 & 1 & 19 \\
\hline 5085562932068 & 2 & 25 & 16 & 80 & .1 & 15 & 9 & 659 & 2.88 & 6 & 5 & ND & 2 & 15 & 1 & 2 & 3 & 69 & . 25 & . 10 & 5 & 33 & . 36 & 121 & . 08 & 3 & 1.17 & . 01 & . 05 & 1 & 9 \\
\hline 5085562932069 & 3 & 115 & 21 & 136 & . 2 & 17 & 22 & 431 & 4.68 & 25 & 5 & ND & 3 & 17 & 1 & ; 2 & 3 & 92 & . 19 & . 17 & 10 & 92 & 1.15 & 110 & . 10 & 1 & 3.12 & . 01 & . 06 & 1 & 35 \\
\hline 5085562932070 & 1 & 68 & 20 & 79 & . 2 & 7 & 10 & 639 & 3.18 & 3 & 5 & ND & 2 & 8 & 1 & 2 & & 63 & . 08 & . 34 & 5 & 16 & . 20 & 81 & . 11 & 6 & 2.01 & . 01 & . 03 & 1 & 5 \\
\hline 5065562932071 & 1 & 50 & 23 & 123 & . 3 & 28 & 14 & 816 & 4.75 & 12 & 5 & ND & 1 & 21 & 1 & , & 2 & 101 & . 36 & . 10 & 6 & 64 & . 66 & 151 & . 08 & 8 & 1.93 & . 01 & . 04 & 1 & 1. \\
\hline 5085562932072 & 2 & 50 & 13 & 112 & . 4 & 35 & 14 & 421 & 4.06 & 14 & 5 & N0 & 1 & 16 & 1 & 2 & 2 & 92 & . 15 & . 08 & 5 & 75 & . 80 & 98 & . 09 & 2 & 2.18 & . 01 & . 04 & 1 & 10 \\
\hline fe 5065562932061 & 1 & 38 & 16 & 125 & . 4 & 20 & 11 & 1480 & 2.79 & 13 & 5 & ND & 2 & 15 & 1 & 3 & 2 & 63 & . 17 & . 08 & 5 & 50 & . 42 & 119 & . 07 & 3 & 1.27 & . 01 & . 03 & 1 & 19 \\
\hline 5085562932073 & 1 & 13 & 19 & 115 & . 1 & 28. & 11 & 275 & 3.63 & 16 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 81 & . 15 & . 07 & 9 & 64 & . 69 & 86 & . 09 & 2 & 2.19 & . 01 & . 05 & 1 & 12 \\
\hline 5085562932074 & 1 & 31 & 7 & 83 & . 3 & 19 & ? & 670 & 2.60 & 13 & 5 & ND & 1 & 21 & 1 & & 2 & 63 & . 21 & . 08 & 7 & 48 & . 56 & 141 & . 07 & 6 & 1.23 & . 01 & . 03 & 1 & 6 \\
\hline 5085562 932075 & 2 & 24 & 7 & 90 & . 3 & 17 & 6. & 221 & 2.81 & 9 & 5 & ND & 1 & 30 & 1 & 2 & 2 & 83 & . 42 & . 05 & 5 & 46 & . 43 & 99 & . 08 & 2 & 1.23 & . 01 & . 02 & 1 & 5 \\
\hline 5085562932076 & 2 & 26 & 15 & 128 & . 3 & 13 & 8 & 382 & 4.50 & 16 & 5 & ND & 2 & 14. & 1 & 1 & 4 & 88 & . 14 & . 20 & 3 & 12 & . 42 & 79 & .13 & 5 & 2.37 & . 01 & . 03 & 1 & 2 \\
\hline 5085562.932077 & 2 & 29 & 12 & 100 & . 5 & 25 & 9 & 351 & 3.03 & 11 & 5 & ND & 1 & \(24^{\circ}\) & 1 & 2 & 2 & 76 & . 36 & . 07 & 6 & 56 & . 55 & 97 & . 08 & 2 & 1.40 & . 01 & . 04 & 2 & 6 \\
\hline 5085562932078 & 3 & 29 & 10 & 87 & 1 & 23 & 10 & 307 & 3.35 & 17 & 5 & ND & & 18 & 1 & & & 90 & . 16 & . 13 & 6 & 64 & . 59 & 94 & . 08 & 2 & 1.42 & . 01 & . 03 & 1 & 2 \\
\hline 5085562932079 & 5 & 58 & 14 & 115 & . 4 & 35 & 13 & 406 & 4.25 & 21 & 5 & ND & 1 & 22 & 1 & 2 & 7 & 99 & . 30 & . 14 & 5 & 98 & . 92 & 106 & . 08 & 5 & 1.70 & . 01 & . 05 & 1 & 5 \\
\hline 5085562932080 & 3 & 35 & 11 & 118 & . 6 & 28 & 12 & 300 & 3.32 & 10 & 5 & KD & 1 & 21 & 1 & & 5 & 73 & . 25 & . 20 & 5 & 63 & . 65 & 94 & . 08 & 5 & 1.70 & . 01 & . 05 & 1 & 1 \\
\hline 5085562932081 & 5 & 35 & 24 & 161 & . 9 & 52 & 15 & 462 & 4.47 & 16 & 5 & KD & , & 17 & 1 & 2 & 15 & 109 & . 21 & . 15 & 3 & 182 & 1.08 & 105 & . 13 & 4 & 1.15 & . 01 & . 04 & 1 & 8 \\
\hline 5085562932082 & 5 & 52 & 11 & 199 & . 5 & 73 & 20 & 522 & 5.03 & 14 & 5 & ND & 1 & 17 & 1 & 2 & 11 & 101 & . 24 & . 24 & 3 & 204 & 1.69 & 77 & . 12 & 5 & 2.34 & . 01 & . 04 & 1 & 9 \\
\hline 5085562932083 & 4 & 53 & 17 & 141 & .1 & 83 & 22 & 796 & 5.83 & 15 & 5 & KD & 2 & 25 & 1 & 2 & 5 & 124 & . 34 & . 21 & 5 & 270 & 2.23 & 110 & . 11 & 2 & 2.51 & . 01 & . 06 & 1 & 6 \\
\hline 5085562932084 & & 38 & 9 & 100 & . 3 & 45 & 13 & 375. & 3.82 & 8 & 5 & KD & 1 & 18 & 1 & 2 & 6 & 81 & . 25 & . 21 & 1 & 162 & 1.16 & 95 & . 12 & 5 & 1.80 & . 01 & . 04 & 1 & 1 \\
\hline STO C & 21 & 60 & 41 & 136 & 6.9 & 67 & 30 & 1205 & 3.90 & 38 & 18 & 8 & 37 & 19 & 16 & 16 & 21 & 58 & . 45 & . 15 & 38 & 58 & . 85 & 179 & . 07 & 38 & 1.68 & . 06 & . 10 & 13 & - \\
\hline STD C/FA-AU & 20 & 61 & 39 & 135 & 7.1 & 67 & 29 & 1206 & 3.91 & 38 & 19 & 8 & 37 & 50 & 16 & 15 & 22 & 61 & . 48 & . 15 & 10 & 60 & . 88 & 186 & . 08 & 40 & 1.71 & . 06 & . 11 & 12 & 52 \\
\hline
\end{tabular}

SAXFLEI


5AMFLEI

5095562932121 5005562 932122 5095562932123 5085562932124 5085562932125

5085562932126 5085562932127 SID C
5085562932129
5685562932129
5085562932130 5085562932131 5085562932132
5085562932133 5085562932133
5085562932134
5085562932135
5085562932136
5085562932137
5065562932138
5065562932139
 \(\begin{array}{rrrrrrrrrr}3 & 26 & 16 & 114 & .4 & 38 & 14 & 378 & 4.16 & 9 \\ 13 & 140 & 31 & 470 & 2.6 & 53 & 26 & 756 & 11.63 & 95 \\ 6 & 94 & 22 & 891 & .7 & 71 & 26 & 730 & 6.45 & 47 \\ 3 & 24 & 13 & 195 & .3 & 20 & 14 & 1061 & 3.72 & 32 \\ 3 & 12 & 13 & 107 & .3 & 16 & 8 & 476 & 3.58 & 12\end{array}\) \(\begin{array}{rr}9 & 5 \\ 95 & 5 \\ 47 & 5 \\ 32 & 5 \\ 12 & 5\end{array}\) \(\begin{array}{ccc}\text { KD } & 2 & 22 \\ 1 & 5 & 17 \\ \text { KD } & 2 & 39 \\ \text { ND } & 3 & 11 \\ \text { HO } & 3 & 14\end{array}\) \(\begin{array}{ll}12 & 1 \\ 9 & 2 \\ 1 & 1 \\ 1 & 1\end{array}\)
3
1
2
2
2
2
2
3
19
2
6

2
2
2
2
2
2
2
2
2
2
2
\[
\begin{array}{rrrr}
3 & 83 & .33 & .13 \\
& 145 & .17 & .30 \\
2 & 115 & .68 & .10 \\
2 & 89 & .11 & .07 \\
2 & 102 & .19 & .09
\end{array}
\]
\begin{tabular}{rr}
1 & 178 \\
3 & 14 \\
10 & 69 \\
1 & 27 \\
5 & 29 \\
2 & 37 \\
3 & 67 \\
37 & 55 \\
1 & 38 \\
6 & 63 \\
1 & 15 \\
11 & 59 \\
7 & 36 \\
11 & 73 \\
5 & 70 \\
18 & 17 \\
1 & 63 \\
6 & 57 \\
5 & 35 \\
7 & 80
\end{tabular}
\[
\begin{array}{lr}
8 & .89 \\
1 & .70 \\
9 & 1.19 \\
7 & .45 \\
9 & .34 \\
7 & .14 \\
7 & 1.23 \\
5 & .87 \\
8 & .43 \\
3 & 1.10
\end{array}
\]
\[
\begin{array}{r}
59 \\
69 \\
128 \\
82 \\
74 \\
79 \\
79 \\
115 \\
173 \\
51 \\
120
\end{array}
\]
\[
\begin{aligned}
& .15 \\
& .16 \\
& .12 \\
& .11 \\
& .12 \\
& .12 \\
& .13 \\
& .07 \\
& .12 \\
& .13
\end{aligned}
\]
\begin{tabular}{rrrrrr}
3 & 1.34 & .01 & .12 & 1 & 12 \\
1 & 3.13 & .01 & .04 & 1 & 2150 \\
7 & 3.73 & .01 & .07 & 1 & 52 \\
3 & 1.50 & .01 & .03 & 1 & 8 \\
6 & 1.15 & .01 & .03 & 1 & 11 \\
5 & 2.27 & .01 & .03 & 1 & 6 \\
5 & 3.13 & .01 & .05 & 1 & 17 \\
30 & 1.63 & .06 & .10 & 13 & - \\
7 & 1.70 & .01 & .03 & 1 & 18 \\
2 & 3.95 & .01 & .06 & 1 & 9
\end{tabular}

5085562932140 5085562932141 5085562932142
5095562
932143 5085562932144

\section*{5085562932145} 5095562932146 RE 5085552 932134 5085562932148

5085562932149 5085562932150 5085562932151 5095562932152 5085562932153

5085562932154
5085562932155
STD C/FA-AU

SARPLEI

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5685562932157 & 5 & 92 & 11 & 134 & 1.4 & 36 & 17 & 876 & 4.17 & 18 & 5 & ND & 1 & 55 & 2 & 2 & 2 & 86 & 1.07 & . 11 & 9 & 63 & . 72 & 139 & . 09 & 8 & 2.81 & . 01 & . 05 & 1 & 11 \\
\hline 5085562932158 & 6 & 50 & 59 & 248 & . 8 & 60 & 23 & 852 & 5.18 & 26 & 5 & kD & 1 & 12 & 1 & 2 & 5 & 112 & . 19 & . 14 & 5 & 246 & 1.36 & 97 & . 12 & 7 & 2.21 & . 01 & . 05 & 1 & 38 \\
\hline 5085562932159 & 15 & 88 & 121 & 344 & . 1 & 89 & 16 & 3111 & 8.52 & 33 & 5 & N0 & 1 & 18 & 3 & 2 & 2 & 145 & . 32 & . 20 & 4 & 251 & 1.30 & 240 & . 01 & 10 & 1.56 & . 01 & . 04 & 1 & 160 \\
\hline 5025562932160 & 6 & 58 & 68 & 350 & . 9 & 63 & 28 & 1561 & 6.36 & 23 & 5 & \(N\) & 1 & 18 & 2 & 3 & 2 & 132 & . 23 & . 21 & 1 & 209 & 1.32 & 166 & . 13 & 7 & 1.87 & . 01 & . 05 & 1 & 34 \\
\hline 5085562932161 & 1 & JJ & 42 & 225 & 1.1 & 48 & 19 & 871 & 4.75 & 23 & 5 & ND & 1 & 15 & 3 & 2 & 2 & 108 & . 17 & . 15 & 3 & 186 & 1.17 & 172 & . 12 & 5 & 1.51 & . 02 & . 04 & 1 & 16 \\
\hline 5085562952162 & 18 & 62 & 186 & 337 & 3.0 & 29 & 11 & 665 & 5.20 & 30 & 5 & ND & 1 & 22 & 3 & 1 & 2 & '101 & . 10 & . 16 & 5 & 110 & . 17 & 88 & . 11 & 6 & 1.01 & . 02 & . 04 & 1 & 395 \\
\hline 5065562932163 & 12 & 69 & 106 & 240 & 1.3 & 53 & 25 & 1262 & 6.60 & 22 & 5 & ND & 1 & 16 & 2 & 2 & 2 & 130 & . 18 & . 13 & 1 & 194 & . 71 & 116 & . 10 & 5 & 1.05 & . 01 & . 05 & 1 & 37 \\
\hline 510 C & 20 & 57 & 10 & 135 & 6.9 & 68 & 29 & 1163 & 3.88 & 37 & 18 & 8 & 34 & 51 & 17 & 16 & 20 & 57 & . 48 & . 11 & 36 & 58 & . 86 & 170 & . 08 & 39 & 1.69 & . 06 & . 11 & 13 & - \\
\hline 5065562932164 & 6 & 14 & 43 & 212 & 2.5 & 54 & 18 & 806 & 5.39 & 25 & 5 & KD & 1 & 18 & 2 & 2 & 2 & 124 & . 26 & . 17 & 4 & 208 & 1.33 & 96 & . 12 & 9 & 1.42 & . 01 & . 05 & 1 & 33 \\
\hline 506556? 932165 & 3 & 30 & 33 & 125 & . 7 & 53 & 17 & 691 & 4.75 & 12 & 5 & kD & 1 & 15 & 1 & 2 & 2 & 117 & . 22 & . 15 & 5 & 229 & 1.23 & 100 & . 17 & 7 & 1.24 & . 02 & . 05 & 1 & 2 \\
\hline 5085562952166 & 3 & 36 & 29 & 158 & 1.1 & 52 & 17 & 405 & 5.08 & 21 & 5 & ND & , & 11 & 1 & 2 & 2 & 115 & . 15 & . 15 & 1 & 227 & 1.29 & 56 & . 17 & 1 & 1.62 & . 01 & . 05 & 1 & 14 \\
\hline 5085562932167 & 7 & 14 & 50 & 221 & 1.7 & 47 & 17 & 1118 & 5.01 & 39 & 5 & ND & 1 & 22 & 2 & , & 2 & 113 & . 32 & . 16 & 2 & 149 & 1.00 & 111 & . 12 & 8 & 1.54 & . 01 & . 06 & 1 & 65 \\
\hline 5085562932168 & 6 & 26 & 22 & 183 & . 7 & 29 & 14 & 357 & 4.28 & 31 & 5 & N1 & 1 & 18 & 1 & 2 & 2 & 101 & . 19 & . 19 & 1 & 101 & . 62 & 53 & . 12 & 3 & 1.11 & . 01 & . 04 & 1 & 7 \\
\hline 5065562932169 & 14 & 30 & 30 & 129 & . 4 & 24 & 9 & 229 & 4.14 & 28 & 5 & ND & 1 & 41 & 1 & 3 & 2 & 74 & . 56 & . 08 & 6 & 58 & . 51 & 86 & . 05 & 8 & 1.33 & . 01 & . 05 & 1 & 65 \\
\hline 5055562932170 & 3 & 29 & 30 & 170 & . 1 & 42 & 17 & 460 & 4.58 & 28 & 5 & No & 1 & 19 & 1 & 2 & 2 & 110 & . 24 & . 15 & 1 & 125 & . 98 & 52 & . 14 & 5 & 1.74 & . 02 & . 03 & 1 & 1. \\
\hline 5085562 932171 & 1 & 27 & 61 & 192 & . 8 & 31 & 16 & 564 & 5.41 & 16 & 5 & No & 2 & 18 & 2 & 2 & 2 & 118 & . 19 & . 10 & 2 & 122 & . 72 & 61 & . 16 & 2 & 1.20 & . 02 & . 01 & 1 & \(B\) \\
\hline 5085562932172 & 5 & 36 & 29 & 132 & . 2 & 34 & 12 & 231 & 4.53 & 19 & 5 & ND & 1 & 17 & 1 & 2 & 2 & 139 & . 18 & . 05 & 6 & 110 & . 81 & 15 & . 13 & 1 & 1.24 & . 01 & . 04 & 1 & 20 \\
\hline 5085562932173 & 4 & 352 & 15 & 181 & 3.4 & 52 & 19 & 1422 & 2.36 & 13 & 5 & ND & 1 & 108 & 5 & 2 & 2 & 40 & 2.36 & . 24 & 10 & 117 & . 38 & 119 & . 06 & 6 & 2.14 & . 02 & . 03 & 1 & 8 \\
\hline 5065562932174 & 3 & 58 & 16 & 167 & . 2 & 74 & 27 & 1537 & 5.58 & 12 & 5 & N0 & 1 & 21 & 1 & 2 & 2 & 133 & . 39 & . 18 & 6 & 262 & 2.68 & 65 & . 11 & 4 & 2.05 & . 02 & . 09 & 1 & 9 \\
\hline 5085562932175 & 3 & 25 & 32 & 132 & . 9 & 25 & 10 & 955 & 3.68 & 13 & 5 & ND & 1 & 27 & 1 & 2 & 3 & 96 & . 38 & . 15 & 2 & 85 & . 61 & 92 & . 11 & 5 & . 91 & . 01 & . 05 & 1 & 6 \\
\hline 5065562 932176 & 3 & 67 & 32 & 252 & 1.3 & 69 & 24 & 809 & 5.16 & 21 & 5 & ND & 1 & 16 & 1 & 2 & 1 & 119 & . 23 & . 18 & 2 & 212 & 1.70 & 78 & . 14 & 7 & 2.00 & . 01 & . 06 & 1 & 8 \\
\hline 5085562932177 & 2 & 11 & 5 & 61 & . 1 & 12 & 5 & 263 & 2.10 & 3 & 5 & ND & 1 & 14 & 1 & 2 & 2 & 61 & . 19 & . 10 & 5 & 23 & . 15 & 49 & . 12 & 1 & . 63 & . 02 & . 04 & 1 & 2 \\
\hline 5685562932178 & 2 & 22 & 8 & 81 & . 2 & 18 & 8 & 1582 & 2.35 & 6 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 57 & . 34 & . 10 & 5 & 31 & . 32 & 66 & . 08 & 5 & . 80 & . 01 & . 05 & 1 & 3 \\
\hline 5085562932179 & 1 & 61 & 3 & 161 & . 3 & 51 & 19 & 658 & 4.93 & 17 & 5 & ND & 1 & 34 & 1 & 3 & 2 & 112 & . 51 & . 08 & 8 & 86 & 1.22 & 82 & . 12 & 1 & 2.51 & . 01 & . 09 & 1 & 9 \\
\hline 5085562932180 & 6 & 39 & 11 & 98 & . 3 & 12 & 12 & 545 & 4.89 & 5 & 5 & ND & 1 & 19 & 1 & 2 & 2 & 66 & . 21 & . 18 & 2 & 24 & .16 & 57 & . 17 & 6 & . 81 & . 01 & . 04 & 1 & 4 \\
\hline RE 5085562 932171 & 1 & 27 & 67 & 193 & . 9 & 31 & 17 & 574 & 5.13 & 18 & 5 & N0 & 1 & 18 & 2 & 2 & 2 & 119 & . 20 & . 10 & 2 & 120 & . 72 & 63 & . 16 & 6 & 1.21 & . 02 & . 04 & 1 & 6 \\
\hline 5085562932181 & 6 & 52 & 9 & 106 & . 2 & 35 & 21 & 743 & 5.00 & 5 & 5 & NO & 1 & 18 & 1 & 2 & 2 & 71 & . 18 & . 18 & 3 & 31 & . 27 & 53 & . 18 & J & 1.85 & . 02 & . 03 & 1 & 8 \\
\hline 5085562932182 & 1 & 31 & 10 & 114 & . 4 & 51 & 13 & 421 & 3.25 & 6 & 5 & ND & 1 & 16 & 1 & 2 & 2 & 81 & . 20 & . 08 & 1 & 107 & . 92 & 53 & . 14 & 1 & 1.12 & . 02 & . 03 & 1 & 5 \\
\hline 5085562932183 & 3 & 42 & 12 & 163 & .1 & 65 & 21 & 590 & 4.88 & 18 & 5 & ND & 1 & 24 & 1 & 2 & 2 & 98 & . 30 & . 14 & 6 & 107 & . 98 & 98 & . 11 & 7 & 2.78 & . 01 & . 06 & 1 & 19 \\
\hline 5085562 932184 & 2 & 34 & 8 & 177 & . 5 & 35 & 18 & 509 & 4.02 & 13 & 5 & \(N 0\) & 2 & 19 & 1 & 2 & 2 & 74 & . 26 & . 20 & 9 & 55 & . 61 & 104 & . 12 & 7 & 3.26 & . 01 & . 06 & 1 & 1 \\
\hline 5085562932185 & 1 & 57 & 9 & 129 & . 1 & 42 & 18 & 600 & 5.07 & 21 & 5 & N0 & 1 & 24 & 1 & 2 & 2 & 107 & . 26 & . 10 & 10 & 76 & 1.10 & 78 & . 10 & 6 & 2.19 & . 01 & . 06 & 1 & 2 \\
\hline 5085562932186 & 2 & 18 & 10 & 98 & . 3 & 18 & 7 & 243 & 3.31 & 10 & 5 & ND & 1 & 21 & 1 & 2 & 2 & 83 & . 33 & . 14 & 6 & 37 & . 43 & 72 & . 10 & 5 & 1.20 & . 01 & . 05 & 1 & 1 \\
\hline 5065562932187 & 3 & 84 & 18 & 130 & . 1 & 48 & 22 & 712 & 5.10 & 21 & 5 & ND & 2 & 37 & 1 & 2 & 2 & 106 & . 39 & . 11 & 10 & 71 & 1.51 & 103 & . 13 & 6 & 2.67 & . 01 & . 07 & 1 & 8 \\
\hline 5085562 932186 & 7 & 25 & 13 & 93 & .1 & 60 & 14 & 1224 & 3.92 & 6 & 5 & ND & 1 & 18 & 1 & 2 & 2 & 99 & . 27 & . 07 & 5 & 128 & 1.10 & 64 & . 17 & 2 & 1.50 & . 01 & . 04 & 1 & 9 \\
\hline 5085562932189 & J & 88 & 7 & 120 & . 1 & 52 & 20 & 472 & 5.11 & 25 & 5 & NO & 2 & 31 & 1 & 2 & 2 & 109 & . 31 & . 09 & 10 & 84 & 1.14 & 117 & . 12 & 8 & 2.99 & . 01 & . 06 & 1 & 7 \\
\hline 5085562932190 & 3 & 66 & 日 & 116 & . 1 & 87 & 21 & 522 & 4.96 & 17 & 5 & ND & 1 & 24 & 1 & 2 & 2 & 109 & . 28 & . 10 & 8 & 151 & 1.75 & 80 & . 11 & 11 & 2.62 & . 01 & . 06 & 1 & 4 \\
\hline 5065562932191 & 2 & 27 & 9 & 144 & . 3 & 29 & 10 & 590 & 3.79 & \(\theta\) & 5 & ND & 1 & 26 & 1 & 2 & 2 & 86 & . 48 & . 15 & 6 & 54 & . 61 & 100 & . 10 & 6 & 1.65 & . 01 & . 08 & 1 & 1 \\
\hline 5085562932192 & 1 & 54 & 15 & 155 & . 3 & 71 & 27 & 643 & 6.03 & 15 & 5 & NO & 2 & 22 & 1 & 2 & 3 & 132 & . 30 & . 09 & 7 & 115 & 1.31 & 122 & . 14 & 12 & 3.11 & . 01 & . 07 & 1 & 2 \\
\hline STD C/FA-AU & 20 & 60 & 41 & 136 & 7.2 & 71 & 29 & 1204 & 3.94 & 38 & 19 & \(\theta\) & 36 & 53 & 16 & 15 & 20 & 57 & . 18 & . 15 & 37 & 58 & . 81 & 178 & . 08 & 40 & 1.71 & . 06 & . 11 & 12 & 48 \\
\hline
\end{tabular}

SAMPLEI
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  \\
\hline & & － & つのいいへ & \(\sim\) & N & cos & \\
\hline ¢ & ぜひ & \(\pm \pm\) & 辿式边 & むこ & ¢ \％\％¢ \％¢ N & ン灾かっ &  \\
\hline \(ニ\)－ & N & \(\infty\) & ジロッーニ & \(\cdots\) & このご & \(=\) & \(\bigcirc\) \\
\hline 或吅茄云 &  & 或灾 &  & 戸こ ご心 & ぶごごご &  &  \\
\hline  & \(\cdots \sin 2 \cdot\) & in \(\square_{0}^{\circ} \dot{\sim}\) & － & －00： & i \(-2 \boldsymbol{i}\) &  & －iosinicis \\
\hline こここ &  & 式式号む氙 &  & \(=\) & 岁きが心边 & むのここ &  \\
\hline & & & ごちのペ & & & ※ & ※N゙いたN \\
\hline &  &  & NさN & ～0～ &  & 品忒 &  \\
\hline Mon &  & nen & \begin{tabular}{l}
 \\

\end{tabular} &  &  &  &  \\
\hline & N & \(\Xi\) & － & N & \(=\) & コ～N゙心m & ○あびった \\
\hline & & & & &  & eramencon &  \\
\hline & 종증 & 즌 & & 즈́ & 증증증 증 장 & 증 즈음중중 &  \\
\hline & & & ーーーーシ & N－－－ & NNが， & －NーNー & －NーーN \\
\hline  & ごッらす & ？ & \(=\boxed{\infty}\) & ご， & \(=\) &  & \(\approx \sim \sim \sim N\) \\
\hline & & & －ーNーニ & －－－－－ & ーーーーー & & \\
\hline & &  & c & N & NNNNN & NNNNN & いNNN \\
\hline \(\cdots\) & & & \(\sim\) & \(\cdots\) & NNN & NNM & NNNNが \\
\hline 앙 & ふミごらい & \(\sim\) & ※゙心ざき & ごった可い &  &  & ¢ \\
\hline & ジi & ¢ \(\dot{\sim}\) & －¢ ¢ ¢ ¢ & 㐫灾ごか & 苗 & 或言灾 & ¢ \\
\hline  & ごらえら & ごこうこう & －¢ & 忒三家： & －¢ ¢－ & ごらこう & 三ご灾品 \\
\hline & & & \(\rightarrow-\cos\) & Notuma & がご & いがくい & \\
\hline &  & &  & ば心が边 & 느が心忒 &  &  \\
\hline  &  &  & 它安安安 &  &  &  & \％ \\
\hline & 上゚ & ござ & こ゚ジムニシ & ロニ思ご & がごニが &  & \(\bigcirc\) 式 0 こ \\
\hline  & ジ心シ & 二ioni & \(\dot{\sim} \dot{=} \dot{\sim} \dot{0} \dot{0}\) &  & \(\div \dot{8} \dot{\square} \dot{-9}\) & －\％－\％ &  \\
\hline & \(\omega\) & かいひのい & conomoct & いNNご & una－u & \(=\) & \\
\hline \(\pm\) &  &  & －\(\overline{\text { ¢ }}\) &  & O~N: &  & ¢三－～～～ \\
\hline \％으우 & 이웅̇ㅁ & 으으응 & \％is \(0^{\circ}\) & \(\dot{3} \dot{0} 90\) & \(\bigcirc 0000\) &  & 응ㅇㅇㅇ \\
\hline  & 엉ㅇㅇㅎㅇ &  & ¢0\％ & 붕ㅇㅇㅇ & 은ㅇㅇㅇ & 웅ㅇㅇㅇㅇ &  \\
\hline & & & － & \(\cdots\) & －－ & \(\omega\) & \\
\hline  &  & \(\sim\) & & & & \％ & っこ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SAMPLEI & Mo & Cu & Pb & 1 n & Ag & Ni & Co & \(\mathrm{Kn}_{n}\) & Fe & As & \(U\) & Au & Th & \(5 r\) & cd & \(5{ }^{5}\) & 8 i & \(v\) & Ca & P & L4 & Cr & Hg & 82 & Ii & - & Al & Na & \(k\) & Y & Aut \\
\hline & PPM & PPM & PPM & PPM & PPM & PFK & PFM & PPM & 2 & PPM & PPK & PPM & PPM & PPM & PPK & PPM & PFM & PPK & 1 & 1 & PPK & PPM & , & PPM & 2 & PPK & 1 & 8 & 1 & PPM & P9B \\
\hline 5085562 932229 & 4 & 31 & 2 & 111 & . 1 & 22 & 7 & 185 & 3.51 & 11 & 5 & ND & 2 & 19 & 1 & 2 & 2 & 83 & . 31 & . 05 & 8 & 34 & . 56 & 87 & . 10 & 2 & 1.75 & . 01 & . 01 & 1 & 3 \\
\hline 5085562 932230 & 5 & 11 & 24 & 137 & . 1 & 23 & 12 & 555 & 3.84 & 35 & 5 & N & 1 & 32 & 1 & 2 & 2 & 78 & . 56 & . 08 & 1 & 32 & . 80 & 79 & . 10 & 7 & 1.56 & . 02 & . 05 & 1 & 1 \\
\hline 5085562 932231 & 1 & 19 & 5 & 127 & . 5 & 17 & 6 & 173 & 3.43 & \(B\) & 5 & ND & 1 & 16 & 1 & 2 & 2 & 92 & . 20 & . 08 & 1 & 27 & . 30 & 75 & . 11 & 5 & 1.31 & . 02 & . 04 & 1 & 1 \\
\hline 5065562 932232 & 3 & 27 & 8 & 106 & . 2 & 20 & 11 & 417 & 4.24 & 48 & 5 & N0 & 1 & 19 & 1 & 2 & 2 & 112 & . 28 & . 09 & 6 & 39 & . 75 & 120 & . 10 & 4 & 1.79 & . 01 & . 05 & 1 & 4 \\
\hline 5085562932233 & 1 & 22 & 7 & 139 & . 1 & 22 & 12 & 1331 & 3.67 & 10 & 5 & NO & 1 & 22 & 1 & 2 & 2 & 108 & . 27 & . 05 & 10 & 30 & . 62 & 253 & . 09 & 9 & 1.76 & . 01 & . 04 & 1 & 2 \\
\hline 5065562 932234 & 3 & 19 & 3 & 112 & .1 & 20 & 7 & 275 & 3.26 & 1 & 5 & N0 & 1 & 27 & 1 & 2 & 2 & 47 & . 42 & . 01 & 10 & 36 & . 54 & 119 & . 08 & 3 & 1.82 & . 01 & . 05 & 1 & 1 \\
\hline 9655582932335 & 5 & 50 & 5 & 146 & . 3 & 10 & 11 & 400 & 4.31 & 19 & 5 & ND & 1 & 31 & 1 & 2 & 2 & 93 & . 19 & . 14 & 12 & 56 & . 91 & 164 & . 05 & 8 & 2.12 & . 01 & . 01 & 1 & 55 \\
\hline 5085562932236 & 1 & 27 & 9 & 116 & . 2 & 24 & 9 & 363 & 3.64 & 10 & 5 & N & 1 & 12 & 1 & 2 & 2 & 91 & . 17 & . 10 & 11 & 11 & . 60 & 96 & . 07 & 5 & 1.97 & . 01 & . 05 & 1 & 1 \\
\hline 5085562932237 & 1 & 71 & 1 & 101 & . 8 & 52 & 28 & 1612 & 4.99 & 205 & 5 & ND & 1 & 19 & 1 & 2 & 2 & 16 & . 28 & . 17 & 8 & 31 & . 36 & 73 & . 12 & 9 & 1.97 & . 01 & . 03 & 1 & 0 \\
\hline 5085562932238 & 1 & 45 & 10 & 103 & . 1 & 36 & 14 & 518 & 4.97 & 70 & 5 & ND & 2 & 13 & 1 & 2 & 2 & 103 & . 24 & . 19 & 7 & 19 & . 63 & 82 & . 13 & 7 & 2.23 & . 01 & . 05 & 1 & 14 \\
\hline 5085562932239 & 5 & 85 & 10 & 141 & . 4 & 54 & 18 & 459 & 4.69 & 35 & 5 & ND & 1 & 15 & 1 & 3 & 2 & 92 & . 16 & . 27 & 11 & 49 & . 70 & 132 & . 13 & 9 & 4.09 & . 01 & . 07 & 1 & 11 \\
\hline 5085562932240 & 7 & 99 & 25 & 117 & . 3 & 57 & 24 & 996 & 4.86 & 20 & 5 & N0 & 3 & 42 & 1 & 2 & 2 & 109 & . 72 & . 14 & 16 & 82 & 1.45 & 104 & . 16 & 2 & 2.05 & . 02 & . 11 & 1 & 14 \\
\hline 50.5562932241 & 5 & 59 & 22 & 147 & .4 & 39 & 19 & 492 & 5.14 & 12 & 5 & NO & 3 & 22 & 1 & 2 & 2 & 122 & . 24 & . 16 & 12 & 83 & . 87 & 93 & . 15 & 7 & 2.67 & . 01 & . 06 & 1 & 10 \\
\hline 5685502932242 & 5 & 73 & 18 & 125 & . 1 & 34 & 18 & 671 & 4.75 & 10 & 5 & N0 & 2 & 56 & 1 & 2 & 1 & 102 & . 37 & . 20 & 8 & 62 & 1.11 & 81 & . 16 & 3 & 2.33 & . 02 & . 07 & 1 & 8 \\
\hline 5i85562 932243 & 6 & 43 & 5 & 106 & . 3 & 20 & 14 & 573 & 4.76 & 1 & 5 & ND & 2 & 37 & 1 & 2 & 2 & 103 & . 25 & . 16 & 6 & 54 & . 87 & 85 & . 14 & 2 & 1.57 & . 02 & . 06 & 1 & 12 \\
\hline 5085562932244 & 4 & 48 & 18 & 107 & . 3 & 33 & 12 & 308 & 4.08 & 11 & 5 & no & 2 & 48 & 1 & 2 & 2 & 98 & . 19 & . 12 & 8 & 67 & . 67 & 90 & . 11 & 1 & 2.37 & . 01 & . 05 & 1 & 18 \\
\hline 5085562932245 & 4 & 33 & 16 & 105 & . 3 & 23 & 10 & 117 & 3.98 & 7 & 5 & ND & 2 & 29 & 1 & 2 & 2 & 89 & . 26 & . 14 & 7 & 57 & . 59 & 87 & . 14 & 2 & 2.12 & . 01 & . 04 & 1 & 1 \\
\hline 5085562 932246 & 6 & 63 & 19 & 134 & . 2 & 10 & 15 & 386 & 5.08 & 12 & 5 & ND & 2 & 30 & 1 & 2 & 2 & 121 & . 29 & . 15 & 10 & 90 & 1.17 & 76 & . 17 & 5 & 2.57 & . 01 & :06 & 1 & 1 \\
\hline 5085562932247 & 6 & 28 & 18 & 102 & . 3 & 29 & 11 & 230 & 4.19 & 10 & 5 & ND & 1 & 23 & 1 & 2 & 3 & .118 & . 28 & . 08 & 6 & 79 & . 72 & 101 & . 17 & , & 1.57 & . 01 & . 04 & 1 & 2 \\
\hline 5085562932248 & 5 & 43 & 17 & 131 & .4 & 37 & 14 & 292 & 4.98 & 13 & 5 & ND & 1 & 29 & 1 & 2 & 2 & 119 & . 45 & . 17 & 9 & 104 & 1.11 & 78 & . 15 & 3 & 2.03 & . 02 & . 07 & 1 & 22 \\
\hline 5085552932249 & 7 & 124 & 24 & 118 & . 3 & 69 & 29 & 986 & 6.07 & 25 & 5 & ND & 2 & 39 & , & 2 & 2 & 133 & . 62 & . 16 & 11 & 120 & 1.91 & 115 & . 16 & 5 & 2.19 & . 02 & . 11 & 1 & 10 \\
\hline 5085562932250 & 4 & 28 & 12 & 72 & . 5 & 22 & 9 & 187 & 3.14 & 7 & 5 & ND & 1 & 28 & 1 & 2 & 2 & 82 & . 26 & . 10 & , & 49 & . 50 & 80 & . 12 & 4 & 1.31 & . 01 & . 05 & 1 & 3 \\
\hline 5085562932251 & 16 & 158 & 15 & 161 & . 7 & 19 & 23 & 916 & 4.64 & 3 & 5 & ND & 3 & 23 & 1 & & 2 & 89 & . 32 & . 09 & 8 & 81 & 1.05 & 89 & . 16 & 1 & 2.65 & . 02 & . 05 & , & 5 \\
\hline 5085562932252 & 14 & 84 & 22 & 83 & . 6 & 10 & 12 & 237 & 5.94 & 12 & 5 & ND & 1 & 10 & 1 & 2 & 2 & 89 & . 09 & . 11 & 8 & 30 & . 23 & 91 & . 09 & 10 & 1.46 & . 01 & . 05 & 1 & \({ }^{80}\) \\
\hline 5085562932253 & 6 & 79 & 11 & 111 & . 3 & 40 & 18 & 470 & 4.71 & 13 & 5 & no & 2 & 28 & 1 & 2 & 2 & 105 & . 23 & . 11 & 8 & 72 & 1.06 & 92 & . 15 & 4 & 2.38 & . 01 & . 05 & 1 & 14 \\
\hline 5085562932254 & 5 & 60 & 19 & 109 & .1 & 37 & 16 & 389 & 4.53 & 11 & 5 & \(N 8\) & 3 & 28 & 1 & 3 & 2 & 107 & . 23 & . 16 & 12 & 71 & . 92 & 76 & . 16 & 6 & 2.61 & . 01 & . 08 & 1 & 6 \\
\hline 5085562932255 & 3 & 35 & 17 & 115 & .4 & 26 & 13 & 290 & 3.54 & & 5 & K0 & 2 & 15 & 1 & ? & 2 & 85 & . 16 & . 18 & 9 & 58 & . 11 & 61 & . 15 & 5 & 2.80 & . 02 & . 05 & 1 & 3 \\
\hline 508556? 932256 & 3 & 30 & 10 & 61 & . 2 & 21 & 8 & 189 & 3.30 & 2 & 5 & ND & 1 & 17 & 1 & & & 88 & . 11 & . 09 & 5 & 101 & . 38 & 43 & . 12 & 2 & . 60 & . 01 & . 03 & 1 & 1 \\
\hline 5085562 932257 & 1 & 18 & 15 & 65 & .4 & 16 & 6 & 195 & 2.19 & 5 & 5 & KD & 1 & 22 & 1 & 3 & 2 & 76 & . 30 & . 08 & 6 & 10 & . 30 & 85 & . 11 & 2 & . 12 & . 01 & . 03 & & 1 \\
\hline 5085562935001 & 3 & 49 & 9 & 132 & . 5 & 66 & 22 & 565 & 4.30 & 11 & 5 & ND & 1 & 22 & 1 & \(?\) & 3 & 86 & . 32 & . 15 & 7 & 191 & 1.24 & 69 & . 15 & 3 & 2.10 & . 02 & . 06 & 1 & 2 \\
\hline 5085562 933002 & 2 & 18 & 1 & 92 & . 1 & 79 & 17 & 419 & 3.74 & 5 & 5 & ND & 1 & 25 & 1 & 2 & 2 & 85 & . 40 & . 09 & 3 & 287 & 1.75 & 43 & . 17 & 2 & 1.42 & . 02 & . 05 & 1 & 1 \\
\hline 515 C & 20 & 59 & 39 & 135 & 7.4 & 71 & 29 & 1162 & 3.85 & 38 & 19 & 8 & 36 & 49 & 16 & 16 & 22 & 59 & . 48 & . 15 & 38 & 59 & . 86 & 170 & . 08 & 39 & 1.71 & . 06 & . 10 & 13 & - \\
\hline 5085562933003 & 3 & 207 & 17 & 160 & 2.1 & 263 & 43 & 1095 & 5.91 & 27 & 5 & KD & 1 & 51 & 2 & 2 & 2 & 113 & . 73 & . 07 & 15 & 377 & 2.35 & 52 & . 16 & 3 & 2.90 & . 01 & . 05 & 1 & 16 \\
\hline 5685562933004 & & 43 & 18 & 512 & . 6 & 65 & 21 & 734 & 5.10 & 15 & 5 & MD & 2 & 16 & 2 & 2 & 2 & 105 & . 28 & . 10 & , & 180 & 1.40 & 70 & . 18 & 2 & 2.39 & . 01 & . 04 & 1 & 15 \\
\hline RE 5085562932255 & 3 & 35 & 16 & 110 & . 2 & 25 & 12 & 279 & 3.38 & 6 & 5 & ND & 3 & 15 & 1 & 2 & 2 & 81 & . 16 & . 17 & 7 & 51 & . 39 & 60 & .14 & 6 & 2.69 & . 02 & . 05 & 1 & 1 \\
\hline 5085562933005 & 4 & 36 & 24 & 291 & . 5 & 74 & 28 & & 5.86 & 15 & 5 & ND & 1 & 16 & 1 & 2 & 3 & 123 & . 24 & . 10 & 5 & 229 & 1.86 & 65 & . 18 & 4 & 2.59 & . 01 & . 05 & 1 & 3 \\
\hline 50́Ẽ556? 93300e & 3 & 57 & 14 & 335 & 1.1 & 57 & 19 & 647 & 4.88 & 33 & 5 & N0 & 2 & 25 & 2 & 3 & 2 & 96 & . 33 & . 24 & 11 & 12 & . 82 & 104 & . 16 & 5 & 3.61 & . 02 & . 05 & 1 & 7 \\
\hline S0ES562 933007 & 3 & 18 & 23 & 121 & . 3 & 21 & 9 & 199 & 3.65 & B & 5 & \(N 0\) & 1 & 14 & 1 & 3 & 2 & 98 & . 18 & . 11 & 6 & 43 & . 42 & 70 & . 15 & 2 & 1.27 & . 01 & . 13 & 1 & 9 \\
\hline SIIV U/FA-AJ & 20 & 59 & 39 & 138 & 7.5 & 74 & 30 & 1198 & 3.92 & 38 & 19 & 8 & 37 & 49 & 16 & 15 & 20 & 60 & . 48 & . 15 & 39 & 61 & . 88 & 177 & . 08 & 40 & 1.71 & . 06 & . 10 & 12 & 52 \\
\hline
\end{tabular}

5AMELEI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5685562933000 & 5 & 207 & 13 & 505 & 3.3 & 72 & 20 & 3590 & 3.34 & 15 & 5 & N0 & 1 & 75 & 6 & 1 & 2 & 52 & 1.55 & . 12 & 23 & 58 & . 41 & 日8 & . 12 & 2 & 2.85 & . 02 & . 04 & 1 & 3 \\
\hline 5095562933009 & 4 & 92 & 19 & 246 & 1.2 & 271 & 13 & 579 & 7.28 & 211 & 5 & no & 2 & 24 & 2 & 7 & 5 & 130 & . 25 & . 10 & 13 & 169 & . 97 & 124 & . 06 & 1 & 3.15 & . 01 & . 07 & 1 & 2 \\
\hline 5085562933010 & 5 & 78 & 21 & 254 & . 5 & JB & 19 & 475 & 5.67 & 33 & 5 & N0 & 2 & 20 & 1 & 3 & 3 & 121 & . 20 & . 08 & 13 & 60 & 1.11 & 131 & . 08 & 6 & 2.66 & . 01 & . 04 & 1 & 17 \\
\hline 5695562933011 & 3 & 42 & 11 & 120 & . 6 & 28 & 12 & 301 & 3.55 & 14 & 5 & No & 2 & 14 & 1 & 3 & 2 & 87 & .13 & . 08 & 8 & 18 & . 65 & 93 & . 09 & 2 & 2.06 & . 01 & . 03 & 1 & 11 \\
\hline 5085562933012 & 2 & 11 & 22 & 83 & . 4 & 7 & 6 & 193 & 2.58 & 11 & 5 & ND & 1 & 8 & 1 & 1 & 3 & 83 & . 10 & . 06 & 3 & 19 & . 41 & 52 & . 08 & 1 & 1.18 & . 01 & . 02 & 1 & 2 \\
\hline 5085562933013 & 6 & 60 & 25 & 399 & 1.3 & 29 & 13 & 314 & 6.00 & 49 & 5 & No & \(?\) & 16 & 3 & 2 & 2 & 127 & . 13 & . 24 & 12 & 4 & . 57 & 82 & . 12 & 6 & 1.57 & . 01 & . 04 & 1 & 26 \\
\hline 5085562933014 & 1 & 57 & 16 & 163 & . 8 & 26 & 15 & 594 & 3.99 & 21 & 5 & ND & 3 & 17 & , & 2 & 2 & 101 & . 19 & . 09 & 11 & 18 & . 55 & 82 & . 13 & 3 & 2.10 & . 02 & . 04 & 1 & 3 \\
\hline 5085562933015 & 2 & 26 & 31 & 178 & . 1 & 23 & 13 & 682 & 3.90 & 17 & 5 & ND & 2 & 16 & 1 & 2 & - 2 & 96 & . 22 & . 09 & 10 & 47 & . 52 & 86 & . 11 & 3 & 2.12 & . 02 & . 01 & 1 & 1 \\
\hline 5085562933016 & 3 & 73 & 28 & 233 & 1.0 & 12 & 20 & 553 & 4.73 & 22 & 5 & ND & 3 & 21 & 1 & 2 & 2 & 101 & . 30 & . 11 & 14 & 60 & . 88 & 117 & . 16 & 1 & 3.19 & . 02 & . 05 & 1 & 45 \\
\hline 5085562933017 & 3 & 98 & 24 & 221 & . 8 & 72 & 26 & 625 & 5.26 & 29 & 5 & N0 & 3 & 21 & 1 & 2 & 2 & 112 & . 24 & . 12 & 10 & 96 & 1.23 & 104 & . 15 & 2 & 3.27 & . 01 & . 05 & 1 & 16 \\
\hline 5085562933018 & 3 & 95 & 23 & 143 & . 8 & 81 & 30 & 498 & 6.18 & 29 & 5 & N0 & 3 & 17 & 1 & 1 & 2 & 130 & . 19 & . 12 & 12 & 205 & 1.73 & 92 & . 20 & 2 & 3.25 & . 01 & . 07 & 1 & 11 \\
\hline 5085562933019 & 3 & 91 & 8 & 165 & . 1 & 150 & 46 & 972 & 7.67 & 59 & 5 & no & 2 & 32 & 1 & 2 & 2 & 179 & . 37 & . 11 & 8 & 518 & 3.91 & 70 & . 23 & 1 & 3.36 & . 01 & . 12 & 1 & 6 \\
\hline 5085562933020 & 2 & 29 & 15 & 262 & . 6 & 19 & 18 & 576 & 3.76 & 10 & 5 & ND & 1 & 15 & 1 & 2 & 2 & 71 & . 24 & . 12 & 7 & 128 & . 75 & 65 & . 15 & 2 & 2.01 & . 02 & . 05 & 1 & 1 \\
\hline 5085562933021 & 2 & 52 & 14 & 160 & . 2 & 142 & 30 & 223 & 6.2B & 8 & 5 & ND & 1 & 18 & 1 & 2 & 2 & 136 & . 34 & . 20 & 7 & 618 & 3.80 & 45 & . 14 & 1 & 2.67 & . 01 & . 10 & 1 & 2 \\
\hline 5085562933022 & 2 & 63 & 11 & 221 & . 6 & 140 & 34 & 753 & 6.23 & 23 & 5 & \(N D\) & 2 & 26 & 1 & 2 & 2 & 121 & . 45 & . 16 & 10 & 172 & 3.33 & 62 & . 16 & 2 & 3.05 & . 01 & . 13 & 1 & 1 \\
\hline 5085562933023 & 4 & 24 & 15 & 112 & . 7 & 53 & 10 & 218 & 4.53 & 16 & 5 & no & 2 & 17 & 1 & 2 & 2 & 114 & . 20 & . 10 & 9 & 125 & 1.00 & 61 & . 14 & J & 1.61 & . 01 & . 03 & 1 & 10 \\
\hline 5035562933024 & 2 & 18 & 7 & 123 & . 5 & 51 & 13 & 697 & 3.11 & 13 & 5 & KD & 2 & 18 & 1 & 2 & 3 & 81 & . 24 & . 13 & 6 & 162 & . Q \(^{\text {2 }}\) & 56 & . 13 & 3 & 1.36 & . 02 & . 04 & 1 & 3 \\
\hline 5085562933025 & 2 & 43 & 12 & 158 & . 3 & 111 & 22 & 184 & 4.75 & 22 & 5 & ND & 1 & 14 & 1 & 3 & 2 & 107 & . 27 & . 16 & 9 & 312 & 2.05 & 45 & . 14 & 3 & 2.04 & . 02 & . 06 & , & 7 \\
\hline 5085562933026 & 2 & 17 & 20 & 97 & . 2 & 18 & 8 & 305 & 4.13 & 15 & 5 & N0 & 1 & 13 & 1 & 2 & 5 & 110 & . 17 & . 16 & 4 & 83 & . 61 & 55 & . 17 & 2 & 1.13 & . 02 & . 05 & 1 & 2 \\
\hline 5085562933027 & 3 & 22 & 20 & 144 & . 4 & 37 & 9 & 325 & 4.35 & 21 & 5 & ND & 2 & 26 & 1 & 2 & 6 & 114 & . 26 & . 10 & \(B\) & 106 & . 69 & 66 & . 15 & 2 & 1.27 & . 02 & :01 & 1 & 3 \\
\hline 5085562933028 & 5 & 50 & 18 & 182 & . 6 & 50 & 20 & 719 & 6.03 & 33 & 5 & KD & 2 & 24 & 1 & & 2 & 129 & . 27 & . 11 & 9 & 125 & 1.13 & 91 & . 10 & 2 & 1.87 & . 01 & . 05 & 1 & 6 \\
\hline 5085562933029 & 4 & 16 & 25 & 216 & . 1 & 117 & 27 & 879 & 5.70 & 33 & 5 & ND & 1 & 22 & , & 3 & 2 & 120 & . 26 & . 08 & 10 & 288 & 1.67 & 67 & . 12 & 4 & 2.35 & . 01 & . 06 & 1 & 16 \\
\hline 5085562 933030 & 6 & 21 & 25 & 93 & . 5 & 13 & 6 & 288 & 3.36 & 27 & 5 & N0 & 1 & 11 & 1 & , & 2 & 74 & . 09 & . 10 & 7 & 40 & . 31 & 75 & . 10 & 2 & . 81 & . 02 & . 04 & 1 & 18 \\
\hline 5095562933031 & 6 & 16 & 28 & 95 & . 6 & 23 & 6 & 215 & 3.27 & 23 & 5 & ND & 1 & 10 & 1 & 1 & 2 & 92 & . 11 & . 05 & 6 & 55 & . 22 & 71 & . 09 & 6 & . 51 & . 02 & . 03 & 1 & 9 \\
\hline 5085562933032 & 6 & 62 & 25 & 139 & 1.0 & 77 & 23 & 717 & 5.93 & 73 & 5 & N0 & 2 & 33 & 3 & , & 3 & 102 & . 58 & . 10 & 12 & 149 & 1.21 & 113 & . 09 & 2 & 2.37 & . 01 & . 04 & 1 & 21 \\
\hline KE 5085562933023 & 3 & 24 & 17 & 113 & . 6 & 54 & 11 & 218 & 4.53 & 18 & 5 & no & 2 & 17 & 1 & 2 & 1 & 113 & . 20 & . 10 & 8 & 127 & 1.00 & 61 & . 14 & 2 & 1.63 & . 01 & . 04 & 1 & 8 \\
\hline 5085562 933033 & 9 & 39 & 26 & 202 & . 4 & 33 & 12 & 653 & 4.14 & 40 & 7 & ND & 1 & 32 & 2 & 5 & , & 85 & . 19 & . 09 & 7 & 65 & . 62 & 88 & . 06 & 2 & 1.25 & . 01 & . 06 & 1 & 22 \\
\hline 5085562935034 & 6 & 30 & 38 & 135 & . 2 & 18 & 7 & 202 & 4.24 & 33 & 5 & No & 1 & 16 & 1 & 3 & 2 & 88 & . 20 & . 11 & 10 & 35 & . 30 & 73 & . 05 & 2 & 1.38 & . 01 & . 03 & , & 8 \\
\hline SID C & 21 & 61 & 10 & 131 & 7.5 & 69 & 31 & 1207 & 3.92 & 37 & 19 & 8 & 35 & 48 & 17 & 16 & 21 & 59 & . 48 & . 15 & 10 & 59 & . 88 & 178 & . 08 & 38 & 1.66 & . 06 & . 11 & 13 & - \\
\hline 5085562933035 & \(b\) & 95 & 45 & 282 & . 5 & 30 & 20 & 692 & 7.87 & 133 & 5 & ND & 1 & 15 & 1 & 3 & 2 & 62 & . 17 & . 25 & 11 & 36 & 1.10 & 100 & . 01 & 3 & 2.14 & . 01 & . 06 & 1 & 80 \\
\hline 5085562933036 & 2 & 16 & 12 & 69 & . 3 & 14 & 7 & 300 & 2.18 & 8 & 5 & ND & 1 & 10 & 1 & 2 & 2 & 62 & . 15 & . 07 & 6 & 33 & . 17 & 75 & . 08 & 5 & . 59 & . 01 & . 03 & 1 & 3 \\
\hline 5085562933037 & 2 & 14 & 14 & 82 & . 7 & 13 & 6 & 188 & 3.10 & & 5 & ND & 2 & 8 & 1 & 2 & 2 & 72 & . 11 & . 14 & 7 & 36 & . 14 & 51 & . 14 & 2 & 1.11 & . 02 & . 02 & 1 & 1 \\
\hline 50E5562 933038 & 1 & 28 & 20 & 154 & . 5 & 16 & 7 & 204 & 3.93 & 26 & 5 & ND & 1 & 10 & 1 & 2 & 2 & 72 & . 10 & . 14 & 7 & 35 & . 24 & 86 & . 04 & 2 & 1.56 & . 01 & . 03 & 1 & 7 \\
\hline 5085562933039 & 5 & 11 & 24 & 82 & . 4 & 17 & 5 & 123 & 2.46 & 21 & 5 & HO & 1 & 10 & 1 & 5 & 2 & 56 & . 10 & . 07 & 7 & 29 & . 12 & 47 & . 0 日 & 2 & . 12 & . 01 & . 02 & 1 & 8 \\
\hline 5085562933040 & 4 & 37 & 19 & 119 & . 6 & 39 & 13 & 328 & 4.74 & 12 & 5 & ND & 2 & 34 & 1 & 2 & 3 & 102 & . 24 & . 26 & g & 70 & . 92 & 86 & . 17 & 5 & 1.82 & . 01 & . 08 & 1 & 3 \\
\hline 5085562933041 & 3 & '39 & 7 & 125 & . 3 & \(3!\) & 12 & 708 & 3.90 & 13 & 5 & ND & 1 & 36 & \(1 \cdot\) & 3 & 1 & 96 & . 33 & . 19 & \(\theta\) & 53 & 1.06 & 102 & . 14 & 4 & 1.30 & . 02 & . 09 & 1 & 2 \\
\hline 5085562933042 & 6 & 11 & 7 & 120 & . 2 & 40 & 9 & 311 & 3.91 & 3 & 5 & ND & 2 & 24 & 1 & 2 & 2 & 168 & . 30 & . 10 & 5 & 89 & 2.25 & 86 & . 19 & 5 & 1.75 & . 02 & . 13 & 1 & 1 \\
\hline 5085562933043 & 3 & 37 & 7 & 231 & . 6 & 25 & 18 & 436 & 5.17 & 9 & 5 & ND & 1 & 20 & 1 & 2 & 2 & 115 & . 36 & . 26 & 9 & 58 & 1.32 & 185 & . 19 & 2 & 2.37 & . 01 & . 12 & 1 & 2 \\
\hline 5 CO C/FA-AU & 20 & 60 & 38 & 137 & 7.4 & 68 & 31 & 1234 & 3.92 & 39 & 20 & 8 & 35 & 50 & 16 & 15 & 22 & 59 & . 48 & .15 & 39 & 58 & . 88 & 187 & . 08 & 39 & 1.71 & . 07 & . 11 & 11 & 51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5095562 933041 & 7 & 76 & 11 & 101 & 2.0 & 52 & 11 & 591 & 2.86 & 3 & 5 & N0 & 1 & 30 & 1 & 2 & 1 & 68 & . 58 & . 08 & 10 & 108 & . 80 & 119 & . 17 & 3 & 1.95 & . 02 & . 05 & 1 & 6 \\
\hline 5085562 933015 & 7 & 75 & 11 & 128 & . 3 & 69 & 28 & 473 & 8.11 & 19 & 5 & kD & 1 & 16 & 1 & 2 & 2. & 129 & . 29 & . 16 & d & 181 & 1.99 & 81 & . 19 & 5 & 2.18 & . 02 & . 10 & 1 & 8 \\
\hline 5085562 933016 & 7 & 25 & 14 & 87 & . 3 & 21 & 9 & 179 & 4.00 & 176 & 5 & M & 1 & 17 & 1 & 2 & & 107 & . 23 & . 09 & 5 & 72 & . 51 & 75 & . 14 & 2 & 1.08 & . 01 & . 04 & 1 & 2 \\
\hline 5085582933047 & 11 & 59 & 5 & 158 & . 5 & 40 & 15 & 451 & 4.10 & 16 & 5 & "no & 1 & 25 & 1 & 2 & 2 & 96 & . 40 & . 08 & 11 & 79 & 1.19 & 69 & . 11 & 4 & 1.91 & . 01 & . 05 & 1 & 7 \\
\hline 5085562933018 & 20 & 61 & 15 & 252 & . 8 & 46 & 19 & 356 & 6.15 & 17 & 5 & no & 1 & 18 & 2 & 28 & 1 & 106 & . 25 & . 30 & 6 & 80 & . 50 & 108 & . 11 & 5 & 2.43 & . 01 & . 01 & 1 & 3 \\
\hline 5085562933049 & 10 & 176 & 15 & 124 & 3.7 & 31 & 21 & 369 & 4.11 & 10 & 5 & N0 & 1 & 34 & 1 & 2 & 2 & 88 & . 81 & . 07 & 17 & 85 & . 68 & 79 & . 18 & J & 1.68 & . 02 & . 06 & 1 & 3 \\
\hline 5085562 935050 & 9 & 31 & 11 & 111 & . 7 & 16 & 8 & 203 & 3.59 & 7 & 5 & K & 1 & 11 & 1 & 2 & 2 & 97 & . 12 & . 16 & 5 & 33 & . 28 & 72 & .13 & 2 & 1.36 & . 02 & . 03 & 1 & 10 \\
\hline 5085562 933051 & 14 & 80 & 25 & 350 & 1.8 & 35 & 15 & 301 & 5.02 & 16 & 5 & NO & 1 & 16 & J & 14 & . 3 & 106 & . 21 & . 16 & 6 & 67 & . 56 & 106 & . 13 & 5 & 1.68 & . 01 & . 04 & 1 & 9 \\
\hline 5085582935052 & 11 & 66 & 17 & 306 & . 6 & 68 & 23 & 419 & 5.82 & 24 & 5 & K0 & 1 & 15 & 1 & 3 & 2 & 117 & . 22 & . 19 & 6 & 148 & 1.53 & 81 & . 15 & 2 & 2.21 & . 01 & . 06 & 1 & 13 \\
\hline 5085562933053 & 11 & 96 & 16 & 235 & . 4 & 68 & 23 & 108 & 5.74 & 21 & 5 & ND & 1 & 14 & 1 & 3 & 2 & 123 & . 21 & . 16 & 8 & 161 & 1.36 & 81 & . 15 & J & 2.46 & . 01 & . 06 & 1 & 6 \\
\hline 5085562933054 & 15 & 215 & 12 & 266 & . 1 & 53 & 23 & 741 & 6.65 & 26 & 9 & No & 3 & 35 & 1 & 2 & 2 & 134 & . 36 & .11 & 19 & 86 & 3.08 & 190 & . 16 & 2 & 2.73 & . 01 & . 10 & 1 & 17 \\
\hline 5085582933055 & 6 & 30 & 17 & 102 & . 5 & 15 & 13 & 454 & 1.39 & 12 & 5 & N0 & 1 & 7 & 1 & 2 & 2 & 70 & . 08 & . 26 & 6 & 39 & . 21 & 67 & . 11 & 3 & 3.05 & . 01 & . 03 & 1 & 1 \\
\hline Stid C & 21 & 59 & 37 & 138 & 7.5 & 67 & 29 & 1210 & 3.84 & 10 & 19 & 8 & 35 & 49 & 16 & 15 & 20. & 59 & . 46 & . 15 & 39 & 61 & . 85 & 177 & . 08 & 39 & 1.69 & . 06 & . 11 & 12 & \\
\hline 5085562933056 & 11 & 86 & 27 & 100 & . 5 & 18 & 12 & 244 & 4.59 & 14 & 5 & NO & , & - II & 1 & 13 & 2 & 89 & . 12 & . 14 & ; & 40 & . 29 & 76 & . 10 & 5 & 1.29 & . 02 & . 03 & 1 & J \\
\hline \$095562 933057 & 4 & 19 & 1 & 146 & . 2 & 22 & 8 & 241 & 3.36 & 25 & 5 & ND & 1 & 18 & 1 & 2 & 2 & 89 & . 28 & . 06 & 6 & 4 & . 47 & 86 & . 08 & 6 & 1.32 & . 01 & . 04 & 1 & 5 \\
\hline 5085562935058 & 5 & 20 & 16 & 137 & . 4 & 20 & 10 & 230 & 4.14 & 26 & 5 & ND & 1 & 25 & 1 & 2 & 2 & 98 & . 16 & . 05 & 5 & 13 & . 40 & 98 & . 15 & 5 & 2.19 & . 02 & . 08 & 1 & 5 \\
\hline 5085562933058 & 2 & 4 & 17 & 151 & . 6 & 29 & 13 & 377 & 3.34 & 15 & 5 & \(k D\) & 1 & 47 & 1 & 2 & 2 & 69 & . 93 & . 05 & 11 & 35 & . 48 & 85 & . 11 & 5 & 2.17 & . 02 & . 04 & 1 & 10 \\
\hline 5085562933060 & 21 & 49 & 2 & 61 & 2.3 & 85 & 15 & 1927 & 1.51 & 3 & 5 & ND & 2 & 116 & 1 & 2 & 2 & 34 & 4.34 & . 19 & 7 & 12 & . 14 & 77 & . 03 & 5 & . 84 & . 01 & . 02 & 1 & 1 \\
\hline 50855 2933061 & 4 & 45 & 14 & 131 & 1.4 & 33 & 10 & 356 & 3.50 & 12 & 5 & ND & 1 & 27 & 1 & 2 & 2 & 79 & . 55 & . 07 & 8 & 45 & . 62 & 83 & . 09 & 6 & 1.86 & . 01 & . 07 & 1 & 1 \\
\hline 5085562933062 & 20 & B0 & 62 & 160 & 1.8 & 27 & 13 & 363 & 5.32 & 15 & 5 & ND & 1 & 16 & 1 & 2 & 2 & 101 & . 18 & . 20 & 8 & 4 & . 47 & 124 & . 12 & 5 & 1.07 & . 01 & . 06 & 1 & 7 \\
\hline 5085562 933063 & 7 & 70 & 72 & 124 & 1.8 & 28 & 13 & 593 & 4.38 & , & 5 & KD & 1 & 14 & 1 & 2 & 2 & 129 & . 23 & . 26 & 9 & 52 & . 65 & 123 & . 15 & 2 & 1.50 & . 01 & . 06 & 1 & 1 \\
\hline 5085562933084 & \% & 48 & 20 & 61 & . 5 & 40 & 12 & 279 & 4.61 & 19 & 5 & MD & 1 & 20 & 1 & 2 & 2 & 124 & . 31 & . 11 & 1 & 105 & 1.49 & Js & . 19 & 2 & 1.14 & . 02 & . 10 & 1 & 21 \\
\hline RE S08S5i2 933056 & 11 & 86 & 26 & 104 & . 5 & 19 & 13 & 218 & 4.78 & 16 & 5 & ND & 1 & 11 & 1 & 15 & 2 & 92 & . 13 & . 15 & 8 & 42 & . 30 & 76 & . 10 & 2 & 1.31 & . 01 & . 03 & 1 & 7 \\
\hline 5085562933055 & 4 & 18 & 16 & 82 & . 5 & 15 & 6 & 182 & 2.94 & 8 & 5 & N0 & 1 & 12 & 1 & 2 & 2 & 76 & . 15 & . 09 & 8 & 26 & . 29 & 59 & . 13 & 2 & 1.08 & . 02 & . 04 & 1 & , \\
\hline 5095562 933066 & 3 & 37 & 14 & 105 & . 3 & 38 & 13 & 327 & 4.29 & 33 & 5 & No & 2 & 17 & 1 & 2 & 2 & 108 & . 20 & . 07 & 12 & 58 & , 78 & 114 & . 07 & 2 & 2.31 & . 01 & . 05 & 1 & 15 \\
\hline 5085562935067 & 5 & 82 & 21 & 189 & . 9 & 63 & 30 & 487 & 5.50 & 58 & 5 & K0 & 3 & 17 & 1 & 1 & 2 & 109 & . 20 & . 15 & 13 & 57 & . 74 & 124 & . 11 & 5 & 3.20 & . 01 & . 08 & 1 & 47 \\
\hline 5085562933088 & 9 & 138 & 10 & 180 & . 3 & 97 & 29 & 499 & 6.65 & 61 & 5 & ND & 3 & 20 & 1 & 4 & 4 & 135 & . 20 & . 13 & 11 & 90 & 1.16 & 198 & . 11 & 1 & 3.78 & . 01 & . 07 & 1 & \(3!\) \\
\hline 5085562933069 & 10 & 58 & 22 & 114 & . 8 & 36 & 15 & 333 & 4.95 & 19 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 122 & . 35 & . 08 & 9 & 69 & . 94 & 91 & . 15 & 2 & 1.83 & . 02 & . 08 & 1 & 3 \\
\hline 5085562933070 & 27 & 130 & 54 & 108 & . 9 & 25 & 22 & 270 & 6.31 & 6 & 5 & \(N 0\) & 2 & . 19 & 1 & 2 & 2 & 122 & . 27 & . 19 & 6 & 58 & . 58 & 101 & . 16 & 3 & 1.82 & . 01 & . 03 & 1 & \\
\hline 5085562935071 & 10 & 113 & 11 & 94 & . 6 & 48 & 18 & 382 & 4.16 & 12 & 5 & No & 1 & 35 & 1 & 2 & 2 & 99 & . 84 & . 06 & ; & 71 & . 89 & 100 & . 14 & 2 & 1.96 & . 01 & . 05 & 1 & 5 \\
\hline 5085562933072 & 4 & 18 & 14 & 49 & . 5 & 13 & 5 & 115 & 2.25 & 4 & 5 & \(N \mathrm{~N}\) & 1 & 19 & 1 & 2 & 2 & 70 & . 17 & . 06 & 7 & 32 & . 21 & 58 & . 14 & 2 & . 88 & . 02 & . 04 & 1 & 2 \\
\hline 5085562935073 & 9 & 104 & 13 & 139 & . 3 & 37 & 22 & 536 & 6.95 & 12 & 5 & HD & 1 & 32 & 1 & 2 & 2 & 186 & . 31 & . 17 & 6 & 127 & 1.94 & 80 & . 23 & J & 2.13 & . 01 & . 11 & 1 & 1 \\
\hline 5085562933074 & 7 & 65 & 14 & 131 & . 7 & 16 & 17 & 472 & 5. 35 & 20 & 5 & KD & 1 & 22 & 1 & 2 & 5 & 124 & . 23 & . 07 & 8 & 90 & 1.53 & 76 & . 19 & 2 & 2.25 & . 01 & . 09 & 1 & 17 \\
\hline 5085562933075 & 7 & 11 & 19 & 95 & . 6 & 21 & 10 & 240 & 4.40 & 14 & 5 & HD & 1 & 15 & 1 & 2 & 2 & 87 & . 16 & . 17 & 6 & 55 & . 51 & 63 & . 15 & 2 & 2.90 & . 01 & . 01 & 1. & 2 \\
\hline 5085562 933076 & 9 & 52 & 11 & 80 & . 3 & 23 & 12 & 302 & 4.81 & 13 & 5 & ND & 1 & 26 & 1 & 2 & 2 & 122. & . 22 & . 12 & 5 & 57 & . 65 & 45 & . 15 & 7 & 1.25 & . 01 & . 05 & 1 & 1 \\
\hline 5085552933077 & 9 & 31 & 15 & 57 & . 3 & 15 & 10 & 200 & 4.87 & 7 & 5 & No & , & 16 & 1 & 2 & 2 & 120 & . 21 & . 10 & 5 & 45 & . 44 & 30 & . 21 & J & 1.01 & . 02 & . 04 & 1 & 5 \\
\hline 5085562933078 & 17 & 50 & 15 & 115 & . 6 & 26 & 13 & 226 & 5.57 & 11 & 5 & ND & 1 & 33 & 1 & 2 & 2 & 131 & . 71 & . 10 & 5 & 65 & . 59 & 83 & . 24 & 3 & 1.94 & . 02 & . 04 & 1 & 3 \\
\hline 5085562933079 & 18 & 1131 & 21 & 128 & 1.3 & 102 & 23 & 2191 & 4.52 & 9 & 7 & ND & 1 & 47 & 2 & 2 & 3 & 83 & 1.12 & . 13 & 15 & 105 & 1.21 & 131 & . 16 & 2 & 3.13 & . 03 & . 08 & 1 & \(\delta\) \\
\hline STD C/FA-AU & 21 & 58 & 39 & 137 & 7.4 & 69 & 30 & 1197 & 3.98 & 38 & 17 & 8 & 33 & 47 & 16 & 15 & 22 & 57 & . 47 & . 15 & 38 & 59 & . 87 & 177 & . 08 & 39 & 1.71 & . 88 & . 11 & 11 & 18 \\
\hline
\end{tabular}

\section*{SELCO-A DIVISION OF BP FROJECT - 562-10141 FILE \# 85-2754}

FAGE 18

SARPLEI

5085562935080
5085562933081 5085562933082 5085562933083


\section*{AUIVIE AIVALYTILAL LABUTIAIUHIES LID.}

852 Ei tastings St., Vancouver, B.C. V6A 1R6
\(\square\)


TERMS: NET TWO WEEKS 2\% PER MONTH CHARGED ON OVERDUE ACCOUNTS.


\section*{APPENDIX 6}

CERTIFICATE OF ANALYSIS - 1985 TRENCH LITHOGEOCHEMISTRY

 －SARFLE TYFE：KOCK CHIFS AUII ANALYSIS BY FA＋AG FKOM 10 GKAM SAKFLE．

SELCO－EF REDSOJE USTROUNER，L．C．
 SELCO－A DIVISION OF BP FFRJECT－562－10141 FILE \＃35－2764
\(\square\) \(P\)
\(:\)
12
.12
.12
.14
.15 \begin{tabular}{cc}
Cr & Kg \\
FFH & P \\
\hline
\end{tabular}
\[
13
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 55 & 7 & 79 & ． 1 & 25 \\
\hline io & 59 & 10 & 128 & 2.2 & 30 \\
\hline 1 & 53 & 10 & 81 & ． 1 & 23 \\
\hline 2 & 3 & 18 & 91 & ． 1 & 21 \\
\hline 2 & 66 & 12 & 75 & ． 1 & 31 \\
\hline 4 & 90 & 7 & 90 & ． 5 & 587 \\
\hline j & 107 & 16 & 250 & ． 5 & 130 \\
\hline 15 & 82 & 58 & 166 & ． 6 & 121 \\
\hline 5 & 110 & 15 & 125 & ． 4 & 41 \\
\hline j & 54 & 11 & 154 & ． 1 & 187 \\
\hline J & 82 & 8 & 17 & ． 1 & 23 \\
\hline 2 & 53 & 18 & 62 & ．\({ }^{\text {d }}\) & 219 \\
\hline 3 & 60 & 24 & 127 & ． 5 & 275 \\
\hline 4 & 108 & 51 & 260 & ． 5 & 66 \\
\hline 38 & 42 & 451 & 760 & 1.5 & 205 \\
\hline 6 & 101 & 30 & 120 & ． 6 & 19 \\
\hline 3 & 94 & 15 & 71 & ． & \(12 i\) \\
\hline 5 & 109 & 42 & 87 & 1.2 & 111 \\
\hline 1 & 103 & 31 & 256 & ． 1 & \(10 i\) \\
\hline 4 & 155 & 12 & 65 & ． 4 & \(1 \hat{2}\) \\
\hline － & 108 & 14 & 202 & ． 6 & 131 \\
\hline j & 81 & 13 & 58 & ． 4 & 2 2 0 \\
\hline 4 & 97 & 11 & 55 & ． 2 & 165 \\
\hline 5 & 90 & 56 & 68 & 1.2 & 164 \\
\hline \(j\) & 5 & 30 & 60 & 1.4 & 64 \\
\hline j & 4 & 24 & 70 & ． 8 & 54 \\
\hline 2 & 235 & 15 & 302 & 6.5 & 106 \\
\hline 2 & 106 & 8 & 96 & ． 6 & 155 \\
\hline 2 & 130 & 16 & 97 & ． 4 & 120 \\
\hline 9 & 118 & \(1: 7\) & 654 & ． 6 & 31 \\
\hline 9 & 69 & 15 & 134 & ． 1 & 24 \\
\hline 14 & 72 & 15 & 201 & \(\therefore\) & 37 \\
\hline ； & 107 & 6 & ¢9 & . & 46 \\
\hline 8 & 91 & 17 & 169 & ．\({ }^{\text {d }}\) & 51 \\
\hline 2 & 58 & 7 & 150 & ． & 102 \\
\hline j & 2 & 12 & 126 & ． 5 & 21 \\
\hline 2 & 48 & 15 & \(5 t\) & ． 4 & 24 \\
\hline 2 & 78 & 17 & S6 & ． & 28 \\
\hline 19 & 58 & 40 & 13 & 3.2 & 68 \\
\hline
\end{tabular}

\begin{tabular}{ll}
30 & 5 \\
38 & 18 \\
35 & 5 \\
11 & 5 \\
35 & 5
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline い증등증 & 픙증등증졈 & 증증종듬종 & 등증증즘증 & 듬증즈응증 & 증증증즞ㅈㅇ & 종증증ㅈㅇ종 & 종종종공 \\
\hline ancos & N & ーーーーー & N－－－＋as & ＂rancmay & N & M以＋Mn＂ & －ぶ \\
\hline  &  &  &  &  & 去可面㲵三 &  &  \\
\hline & ， & 항 & & ーくーーー & \(\cdots\) & － & ーーーニー \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{array}{cc}
112 & 3 . \\
54 & .
\end{array}
\]} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 54 \\
& 95
\end{aligned}
\]} \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
95 \\
100
\end{gathered}
\]} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{104} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{17
45}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 25
12
47 & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{7}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
377
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\[
2011 .
\]} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{rl}
9 & 8 \\
22 \\
10 \\
10 \\
16 & 8 . \\
15 & 6 .
\end{array}
\]} \\
\hline \multicolumn{2}{|l|}{\[
108
\]} \\
\hline \multicolumn{2}{|l|}{\[
167 .
\]} \\
\hline \multicolumn{2}{|l|}{\[
15 \mathrm{~b} .
\]} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{18} \\
\hline \multicolumn{2}{|r|}{156} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{11
8
8}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{10} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12
25
21}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{11} \\
\hline \multicolumn{2}{|l|}{， 10} \\
\hline \multicolumn{2}{|r|}{121.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
19 & 1 \\
16 & 3
\end{array}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{－\(i\)} \\
\hline \multicolumn{2}{|l|}{\[
483
\]} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
14
\]}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{22}} \\
\hline 17 & \\
\hline
\end{tabular}

\[
\begin{array}{rlll}
6 & 2.34 & .02 & .06 \\
38 & 1.67 & .05 & .08 \\
2 & 1.99 & .02 & .06 \\
5 & 2.57 & .02 & .07 \\
1 & 1.78 & .02 & .07
\end{array}
\]

\section*{SELCO－A DIVISION OF BP FFROJECT－ESE－10141 FILE \＃35－2764}

FAGE＝
jhaflet

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 318esta 9：2090 & 1 & \(6:\) & \(t\) & \(10:\) & .4 & 74 & 25 & 126 & 5.5 & 14 & 5 & ND & 1 & 266 & 1 & 2 & 2 & 37 & 6.01 & ． 19 & 1 & 5 & 2．3s & E2 & ． 01 & 4 & ． 57 & ． 02 & ． 07 & 1 & 21 \\
\hline & 818556こ 930091 & \(=\) & 95 & 10 & 165 & ． 5 & 76 & 24 & 1108 & 4.85 & 15 & S & NO & j & 151 & 2 & 2 & 2 & 14 & 4．83 & ． 19 & 6 & 109 & 2．E5 & 44 & ． 01 & こ & ． 85 & ． 01 & ． 07 & 1 & 18 \\
\hline & 3185562 920092 & ： & 5 & 16 & 90 & ．： & 19 & 6 & 967 & 2.24 & 2 & 5 & 110 & 5 & 135 & 1 & 2 & 2 & 6 & 5.09 & ． 08 & 7 & 9 & 1.54 & 102 & ． 01 & ： & ． 16 & ． 01 & ． 06 & 1 & 7 \\
\hline & 818555：97093 & 2 & 36 & ； & 57 & ． & 15 & 1 & 701 & 1.67 & ： & \(\stackrel{5}{5}\) & ． NO & － & 115 & 1 & ： & 2 & b & 2.75 & ． 04 & 6 & 8 & 1.05 & 96 & ． 01 & ： & ． 18 & ． 01 & ． 06 & 1 & ＊ \\
\hline & 3185962932054 & 4 & 12 & 24 & 136 & ． 5 & 18 & 6 & 178 & 2.39 & ； & 5 & No & 4 & 190 & 2 & 2 & 2 & 10 & 3.79 & ． 05 & 7 & 5 & 1.37 & 155 & ． 01 & 2 & ． 17 & ． 01 & ． 08 & 1 & 7 \\
\hline & 8185Sbe 9xioss & 24 & 82 & 37 & 301 & ． & 35 & ； & 396 & 1.76 & 10 & 5 & ND & 3 & 104 & j & J & 2 & 12 & 2．62 & ． 11 & d & 6 & ． 89 & 97 & ． 01 & 2 & ． 15 & ． 01 & ． 09 & 1 & ： \\
\hline & 31855t：93209\％ & ， & 30 & 5 & 120 & .4 & 15 & － & bto & 1.95 & 1 & 5 & ND & 2 & 108 & 1 & 2 & 2 & 4 & 2.58 & ． 02 & 5 & 1 & ． 95 & 94 & ． 01 & ： & ． 20 & ． 01 & ． 08 & 1 & 5 \\
\hline & －．8185ESA 9JE093 & 7 & 30 & 13 & 117 & 1.1 & 14 & 15 & 657 & 2．5s & 30 & 5 & ND & 1 & \(\because\) & 1 & 7 & 3 & 8 & 2.43 & ． 06 & 5 & 8 & ． 39 & 75 & ． 01 & J & ． 45 & ． 01 & ． 09 & 1 & 16 \\
\hline & －tassaz 9320¢8 & 6 & \(E\) & 60 & 279 & ． 5 & 45 & 12 & 576 & 2.29 & 64 & 5 & HD & 1 & 52 & S & 1 & 2 & 6 & 1.60 & ． 05 & 1 & 10 & ． 53 & 100 & ． 01 & 2 & ． 26 & ． 01 & ． 08 & 1 & 26 \\
\hline & 816555：932099 & ： & 10 & \(8:\) & 325 & ．7 & 44 & 7 & 63 & 1.85 & 12 & 5 & H0 & 2 & 112 & j & 2 & 2 & 11 & 2．5： & ． 17 & 5 & ： & ． 96 & 210 & ． 01 & ： & ． 21 & ． 01 & ． 08 & 1 & 28 \\
\hline & 8185562932100 & 1 & 5 & 14 & 117 & ． 1 & 29 & 1 & 885 & 1.43 & 11 & 5 & ND & 5 & 370 & － 1 & 2 & 2 & 17 & 12，34 & 1.15 & 8 & 11 & 4.29 & 865 & ． 01. & 2 & ． 17 & ． 01 & ．06， & 1 & 8 \\
\hline & 8185562952101 & 3 & 13 & 33 & 119 & ． 3 & 25 & ： & 736 & 1．33 & 7 & 5 & No & 4 & 288 & 1 & 2 & 2 & 12 & 11.39 & ． 36 & 6 & 10 & 4．57 & 92 & ． 01 & 2 & .14 & ． 01 & ． 04 & 1 & 3 \\
\hline & 3185562 932102 & 4 & 49 & 42 & 156 & ． 6 & 36 & 6 & 195 & 1.78 & 10 & 5 & ND & j & 148 & 1 & 2 & 2 & 13 & 3.57 & ． 04 & 6 & 15 & 1．72 & 76 & ． 01 & 2 & ． 32 & ． 01 & ． 05 & ， & 11 \\
\hline & 818556：935105 & 亏 & 35 & 5 & 125 & ． 6 & 34 & 5 & 559 & 1.80 & 16 & 5 & ND & 4 & 203 & 1 & 2 & 2 & 13 & 6．37 & 1.11 & 12 & 19 & 1.82 & 316 & ． 01 & 2 & ． 43 & ． 01 & ． 08 & 1 & 6 \\
\hline & alessez 9jalot & \(\checkmark\) & 12 & 25 & 12\％ & ． 5 & 10 & 5 & 501 & 1.72 & 7 & 5 & ND & 3 & 94 & 1 & 2 & 2 & 19 & 3.13 & ． 09 & 6 & 30 & 1.97 & 89 & ． 01 & 2 & ． 85 & ． 01 & ． 05 & 1 & 2 \\
\hline & 8185585950105 & 5 & 83 & 10 & 145 & ． 9 & 91 & 18 & 1251 & 2.16 & 5 & 5 & H0 & 5 & 272 & 1 & & 2 & 29 & 9.61 & ． 14 & 7 & 38 & 4.03 & 85 & ． 01 & 4 & ． 96 & ． 01 & ． 08 & 1 & 16 \\
\hline & 31855iz 932106 & \(=\) & 111 & 8 & 109 & ． 5 & 153 & 27 & 1106 & 4.78 & 1 & 5 & no & J & 226 & 1 & 2 & 2 & 71 & 5.75 & ． 16 & 6 & 258 & 1.60 & 36 & ． 01 & 2 & 2.19 & ． 01 & ． 09 & 1 & 13 \\
\hline H2 2 & 818556：95：10\％ & 4 & 118 & 9 & 120 & ． 3 & 314 & 31 & 1121 & 4.84 & \％ & 5 & H0 & 1 & 122 & 1 & ： & 2 & 66 & 5.15 & ． 24 & 8 & 319 & 4.84 & 59 & ． 01 & 2 & 1.96 & ． 01 & ． 07 & 1 & 4 \\
\hline & 3165502932108 & 1 & 112 & 8 & 154 & .4 & 435 & 44 & 1287 & 5.69 & 3 & 5 & MD & 3 & 167 & 1 & 2 & 2 & 132 & 4.90 & ． 15 & 10 & 754 & 7.12 & 86 & ． 01 & 2 & 3.40 & ． 01 & ． 05 & 1 & 1 \\
\hline & 61855d2 93N109 & 5 & 100 & 199 & 323 & 1.4 & 56 & 10 & 460 & 1.97 & 15 & 5 & W & 2 & 54 & 10 & 9 & 2 & 14 & 1.15 & ． 03 & 5 & 41 & ． 35 & 35 & ． 01 & 2 & ． 12 & ． 02 & ． 03 & 1 & 41 \\
\hline 12 & 3185562932110 & 8 & 91 & 162 & 469 & 1.4 & 31 & 10 & 136 & 2.14 & 15 & 5 & ND & 2 & 47 & 6 & 9 & ： & 14 & 1.20 & ． 04 & 1 & 4 & ． 77 & 85 & ． 01 & ＊ & ． 46 & ． 01 & ． 08 & ， & 65 \\
\hline &  & 4 & \(11:\) & 21 & 184 & 1.2 & 4 & ¢ & 565 & 1.85 & 12 & 5 & HD & 2 & 56 & E & 8 & 2 & 9 & 1.53 & ． 03 & 8 & 13 & ． 37 & 66 & ． 01 & E & ． & ． 01 & ． 05 & 1 & 40 \\
\hline & aleseta paall2 & 5 & 107 & 201 & 42 & 1.5 & 75 & 16 & 640 & 2.84 & 45 & 5 & ND & 2 & 84 & 5 & 4 & 2 & 14 & 2.35 & ． 06 & \(\stackrel{5}{*}\) & 10 & 1.39 & 79 & ． 01 & 2 & ． 1 & ． 01 & ． 07 & 1 & 51 \\
\hline & 818556：9u゙115 & 2 & 35 & 50 & 30： & ． 6 & 27 & 6 & 607 & 1.81 & 9 & 5 & ND & 2 & 85 & 3 & 9 & 2 & 5 & 2.17 & ． 04 & ＊ & b & 1.05 & 66 & ． 01 & 2 & ． 16 & ． 01 & ． 05 & 1 & 36 \\
\hline & STO C & 20 & 81 & 40 & 137 & 3.1 & 19 & V1 & 1215 & 3.96 & 32 & 18 & 9 & 36 & \(5!\) & 16 & 18 & 21 & 56 & ． 45 & ． 15 & 36 & 56 & ． 87 & 176 & ． 06 & 36 & \(1.0 i\) & ． 06 & ． 05 & 13 & － \\
\hline & 8185562 93：114 & \(j\) & 3 & 102 & 151 & 1.2 & 22 & d & 348 & 2.03 & 24 & 5 & HD & 1 & 35 & 1 & 8 & 3 & 6 & ． 85 & ． 04 & 3 & 7 & ． 94 & 4 & ． 01 & 2 & ． 25 & ． 01 & ． 06 & 1 & 25 \\
\hline & 61855t2 952115 & 6 & 95 & 129 & 825 & 1.1 & 39 & 9 & 991 & 2.14 & 22 & 5 & H0 & 8 & 90 & 9 & 2 & 4 & 16 & 7.15 & ． 04 & 6 & 17 & 1.97 & 66 & ． 01 & 3 & ． 6 & ． 01 & ． 07 & 1 & 40 \\
\hline & 818550\％932116 & － & 88 & 32 & 3.5 & ． 3 & 61 & ¢ & 534 & 2.71 & 17 & 5 & ND & 2 & 37 & 3 & 2 & ， & 43 & 1.27 & ． 04 & \(\delta\) & 63 & 2.42 & 51 & ． 01 & \％ & 1.70 & ． 02 & ． 04 & 1 & 14 \\
\hline & 318552953117 & l & 5 & 31 & 14í & ． 5 & 57 & 7 & 491 & 1.98 & 25 & 5 & H0 & 2 & 24 & 2 & 2 & 2 & 26 & ． 72 & ． 03 & 6 & 35 & ． 88 & 56 & ． 01 & ， & ． 37 & ． 01 & ． 05 & 1 & 21 \\
\hline & 8185562 93：116 & 4 & 80 & 81 & 195 & ． 5 & 155 & 17 & 365 & j． 60 & 42 & 5 & No & 3 & 322 & 2 & 2 & 2 & 55 & 3.14 & ． 10 & 1 & 196 & 2.97 & 4 & ． 01 & ： & 1．55 & ． 01 & ． 08 & 1 & 31 \\
\hline & 3185562952119 & 5 & 5 & 75 & 115 & ． 5 & 15 & 5 & 409 & 1.12 & 26 & 5 & HD & ， & 15 & 1 & 6 & ＂ & 16 & ． 96 & ． 02 & 5 & 23 & ． 65 & 26 & ． 01 & 2 & ． 25 & ． 01 & ． 01 & 1 & 85 \\
\hline & RE 818556：9 ¢ 109 & 5 & 79 & 202 & ：20 & 1.4 & 57 & 11 & 497 & 1.99 & 15 & 5 & ND & ． & 52 & 10 & 8 & 5 & 15 & 1.45 & ． 03 & 5 & 45 & ． 83 & 39 & ． 01 & ： & ． 40 & ． 02 & ． 03 & 1 & － 6 \\
\hline & 3185562 ¢53120 & 9 & 120 & d4 & 216 & ． 5 & 9 & 10 & 350 & 2.08 & 19 & 5 & HD & 2 & 52 & 2 & j & 2 & J5 & 1.01 & ． 26 & 8 & 68 & ． 80 & 82 & ． 01 & 2 & ． 5 & ．0： & ． 06 & ， & 16 \\
\hline & 8165562 9321ล1 & 5 & 135 & 165 & 993 & 1.5 & 54 & 11 & 467 & 2.05 & 13 & 5 & HD & 2 & 45 & 11 & j & J & 26 & 1．â2 & ． 03 & 6 & 35 & 1.06 & 28 & ． 01 & ： & ． 57 & ． 02 & ． 03 & 1 & 38 \\
\hline & 2185cta 932122 & \(t\) & 38 & 16 & 102 & ． 7 & 56 & 11 & 621 & 2.19 & 10 & 5 & ND & 3 & 214 & 1 & 18 & 2 & 39 & 6.24 & ． 24 & 6 & 90 & 2.29 & 1.1 & ． 01 & 2 & ． 34 & ． 01 & ． 04 & ， & 25 \\
\hline & 8165562 95123 & J & 79 & 57 & 80 & 1.0 & 48 & 8 & 56i & 2.17 & 12 & 5 & ND & \(=\) & 117 & 1 & 17 & 2 & 27 & 3.17 & ． 04 & 1 & 37 & 1.24 & sit & ． 01 & 2 & ． 57 & ． 02 & ． 02 & 1 & 7 \\
\hline & 3185562932124 & ： & 141 & 20 & 95 & 1.2 & 135 & J5 & 989 & 6.25 & 20 & 5 & N0 & 3 & 165 & 1 & 2 & 2 & 106 & 6.51 & ． 14 & 6 & 256 & 4.56 & 39 & ． 01 & 5 & 2.70 & ． 01 & ． 07 & 1 & 21 \\
\hline & 818556：9J＿Lis & 6 & 10. & 59 & 106 & ． 7 & 12.5 & 21 & 576 & 3.71 & 19 & 5 & HD & 3 & 140 & 1 & 2 & 2 & 67 & 4.20 & ． 09 & 5 & \({ }^{2179}\) & 3.11 & 51 & ． 01 & ： & 1.77 & ． 01 & ． 05 & 1 & 1 \\
\hline & STD CiFn－ñ0 & 20 & 60 & 36 & 135 & 7.0 & 6 & 30 & 1214 & 3.99 & 40 & 19 & 6 & \(\because 1\) & 50 & It & 15 & 21 & 59 & ． 48 & ． 15 & 39 & 58 & ． 8 ¢̂ & 108 & ． 06 & 40 & 1.72 & ． 06 & ． 10 & 12 & 50 \\
\hline
\end{tabular}
\(\qquad\) \(\stackrel{t}{i}\)
 RE 816556：932145 8165562 9j2lia

STD C
8185562 93：151 81855t2 932132 118558へ 93215

3185562 932134
8185562933135
6185562932136
\(01052-93017\) 81855bi 93：107

81855529935159
3185562 9 92140
8185582932141
ate5562 932142
2195562932112
8185552
932143
B1055t2 920144
B185562 9：2145
3185562 \｛3itit


818556：9321
8125St2 932150
818556î 932151
31855ic 952152 8185562 93ล15

31855：2 93215i
1165562 930155
31855í2 932150
818556：93215：
21655：2 932158

9185562 93n15
3testi．qualeo



\section*{\(\begin{array}{ccc}15 & 184 \\ 10 & 327 \\ 21 & 764 \\ 31 & 1545\end{array}\)} \(\begin{array}{cc}.8 \\ 1.4 \\ .6 & \\ .8 & 1 \\ .1 & \end{array}\)
\begin{tabular}{ll}
8 & 121 \\
5 & 115 \\
4 & 150
\end{tabular}
－ 168
20 \(\begin{array}{cc}166 \\ 59 \\ 1 & 182 \\ 6 & 134 \\ 8 & 185\end{array}\) 20
39
10
20
18 \(\begin{array}{cc}63 & 1.2 \\ 132 & 6.9 \\ 73 & .7 \\ 64 & 1.1 \\ 72 & .7\end{array}\) 82
70
159
136
154
\begin{tabular}{llll}
19 & 683 & 3.70 & 65 \\
26 & 164 & 3.91 & 38 \\
33 & 804 & 5.90 & 29 \\
34 & 821 & 5.89 & 11 \\
& 33 & 807 & 5.72 \\
\hline 11
\end{tabular} 34
20
37
10
20
5
5
5
5
5
\begin{tabular}{ll}
5 & ND \\
5 & ND \\
5 & MO \\
5 & NO \\
5 & KO
\end{tabular}

48
55
68
411
195
\(!\)
3
1
\(!\)
1
\begin{tabular}{ccccccccc}
1 & 155 & 19 & 58 & .8 & 119 & 34 & 834 & 5.83 \\
5 & 172 & 17 & 108 & .6 & 155 & 36 & 811 & 5.94 \\
3 & 172 & 26 & 93 & .5 & 174 & 35 & 1181 & 6.22 \\
4 & 145 & 14 & 148 & .5 & 172 & 39 & 1800 & 7.04 \\
1 & 91 & 5 & 17 & 1 & 15 & 8 & 666 & 2.50
\end{tabular}
\begin{tabular}{rr}
5 \\
9 & 5 \\
17 & 5
\end{tabular}
\begin{tabular}{cc}
20 & 5 \\
36 & 5 \\
1 & 5 \\
9 & 5 \\
5 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ND & 2 & 135 & 1 \\
\hline \(i\) & 36 & 50 & 17 \\
\hline N0 & \％ & 99 & 1 \\
\hline NO & 2 & 152 & 1 \\
\hline N0 & j & 185 & 1 \\
\hline ND & 2 & 162 & 1 \\
\hline KD & 1 & 118 & 1 \\
\hline ND & 2 & 119 & 1 \\
\hline ND & 1 & ： & 1 \\
\hline ND & 4 & 79 & 1 \\
\hline
\end{tabular}
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
\[
\begin{array}{ccc}
0 & .82 & .14 \\
1 & .96 & .04 \\
2 & 1.75 & .10 \\
3 & 9.40 & .16 \\
3 & 4.31 & 1.08
\end{array}
\]

14
 \(\begin{array}{cc}71 & 1.63 \\ 20 & .62 \\ 90 & 2.34 \\ 399 & 4.04\end{array}\)
－ 14
46.01 .01
.01
.01
.14
.01 \(\begin{array}{lr}5 & 1.18 \\ 2 & .31 \\ 1 & 1.31 \\ 2 & 2.50 \\ i & 1.37\end{array}\) .05
.02
.05
.0 \(\begin{array}{ll}5 & .11 \\ 2 & .01 \\ 5 & .06 \\ 1 & .85 \\ 5 & 10\end{array}\)
\[
16 \quad 003
\]
\[
\text { bs } 2.11
\]
\[
\begin{array}{r}
85 \\
175 \\
59 \\
45
\end{array}
\]
\[
\begin{aligned}
& .01 \\
& .07 \\
& .01 \\
& .01 \\
& .01
\end{aligned}
\]
\(\begin{array}{rl}2 & 1.15 \\ 35 & 1.75 \\ 6 & 2.62 \\ 1 & 1.86\end{array}\) .02
.06
.01
.01
.01 .11
.09
.10
.15
.10

1 ii

ShAFLEI

8185562932162 8185562932163 8185562932164 8185562932165 8185562932165
8185562932166

8985562932167 8185562932168 9185562932169 RE B185562 932180 8185562932170

8185562932171 8185562932172 8185562932173 8185562932174 8185562932175

\section*{8185562932176}

8185562932177
8185562932178
8185562932179 8185562932180

8185562932181 8185562932182 8185562932183
8185562932184

8185562932186
8185562932187 STO C
8185562932188 8185562932189

6185562932190
8185562932191
8185562932192
8185562932193
8185562932193
8185562932194
8185562932195
9185562932196
8185562932197
STL C/FA-AU

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & 104 & 37 & 39 & 1.0 & 191 & 29 & 128J & 3.66 & 37 & 5 & ND & 2 & 298 & 1 & 2 & 2 & & 10.27 & . 11 & 5 & 398 & 1.43 & 36 & . 69 & 2 & . 67 & . 01 & . 48 & 1 & 50 \\
\hline 3 & 51 & 7 & 42 & . 6 & 114 & 23 & 744 & 4.01 & 14 & 5 & N0 & 1 & 193 & 1 & 3 & 2 & 106 & 7.10 & . 15 & 1 & 240 & 2.02 & 17 & . 14 & 5 & 1.14 & . 02 & . 71 & 1 & 15 \\
\hline 19 & 87 & 296 & 223 & 2.0 & 141 & 23 & 913 & 4.15 & 48 & 5 & N0 & 2 & 390 & 8 & 2 & 3 & 88 & 9.72 & . 13 & 2 & 161 & 1.03 & 30 & . 11 & 2 & . 50 & . 02 & . 41 & 1 & 10 \\
\hline 1 & 47 & 69 & 30 & 1.1 & 178 & 22 & 887 & 3.54 & 25 & 5 & KD & 2 & 605 & 1 & 2 & 2 & 70 & 13.06 & . 10 & 3 & 250 & . 90 & 24 & .08 & 6 & . 35 & . 01 & . 36 & 1 & 25 \\
\hline 5 & 18 & 42 & 25 & . 8 & 171 & 23 & 1050 & 3.53 & 11 & 5 & KD & 2 & 336 & 1 & 2 & 2 & 65 & 14.31 & . 11 & 2 & 286 & 1.12 & 18 & . 08 & 2 & . 54 & . 01 & . 45 & 1 & 20 \\
\hline 2 & 72 & 11 & 55 & . 5 & 187 & 32 & 1128 & 1.66 & 9 & 5 & ND & J & 186 & 1 & 1 & 2 & 136 & 9.16 & . 14 & 1 & 457 & 2.98 & 141 & . 16 & 2 & 1.69 & . 01 & . 74 & 1 & 20 \\
\hline 3 & 79 & 8 & 113 & . 6 & 265 & 34 & 955 & 5.81 & 3 & 5 & ND & 1 & 135 & 1 & 3 & 2 & 170 & 5.62 & . 16 & 5 & 587 & 4.77 & 58 & . 14 & 1 & 2.67 & . 01 & . 45 & 1 & 20 \\
\hline 4 & 148 & 18 & 74 & . 7 & 256 & 38 & 1297 & 4.56 & 9 & 5 & \% & 1 & 130 & 1 & 2 & 2 & 138 & 4.05 & . 14 & 6 & 547 & 1.12 & 225 & . 02 & 2 & 2.30 & . 01 & . 06 & 1 & 5 \\
\hline 39 & 298 & 30 & 64 & 1.2 & 201 & 50 & 1085 & 7.20 & 16 & 5 & no & 1 & 113 & 1 & 5 & 2 & 128 & 1.60 & . 16 & 5 & 509 & 4.01 & 103 & . 01 & 2 & 2.34 & . 01 & . 34 & 1 & 40 \\
\hline 1 & 107 & 20 & 118 & . 5 & 201 & 34 & 1361 & 5.15 & 1 & 5 & Na & 2 & 184 & 1 & 1 & 2 & 133 & 7.07 & . 13 & 3 & 506 & 5.44 & 58 & . 07 & 2 & 3.13 & . 01 & . 38 & 1 & 10 \\
\hline 10 & 79 & 30 & 109 & . 8 & 176 & 29 & 1849 & 4.12 & 28 & 5 & KD & 1 & 110 & 1 & 2 & 2 & 119 & 5.82 & . 11 & 3 & 371 & 2.06 & 24 & . 02 & 6 & . 96 & . 01 & . 08 & 1 & 75 \\
\hline 5 & 114 & 35 & 165 & . 6 & 279 & 36 & 1249 & 5.33 & 30 & 5 & N0 & 2 & 157 & 2 & 6 & & 155 & 7.16 & . 14 & 1 & 590 & 5.34 & 67 & . 05 & 2 & 3.01 & . 01 & . 12 & 1 & 5 \\
\hline 3 & 69 & 24 & 82 & . 8 & 284 & 36 & 1013 & 5.14 & 19 & 5 & N0 & 1 & 128 & 1 & 2 & 2 & 143 & 5.23 & . 13 & 3 & 722 & 4.33 & 88 & . 09 & 2 & 2.39 & . 01 & . 31 & 1 & 15 \\
\hline 3 & 71 & 16 & 67 & . 9 & 255 & 34 & 1081 & 5.08 & 9 & 5 & N0 & 2 & 137 & 1 & 4 & & 135 & 7.10 & . 13 & 5 & 598 & 3.99 & 76 & . 13 & 3 & 2.27 & . 01 & . 26 & 1 & 10 \\
\hline 3 & 60 & 9 & 48 & . 6 & 188 & 27 & 1028 & 4.03 & 12 & 5 & W0 & 3 & 208 & 1 & 4 & 2 & 109 & 11.25 & . 11 & 7 & 505 & 3.00 & 50 & . 11 & 2 & 1.69 & . 01 & . 21 & 1 & 10 \\
\hline 2 & 88 & \(B\) & 62 & . 2 & 19 & 24 & 630 & 4.12 & 2 & 5 & no & 1 & 121 & 1 & 2 & 2 & 90 & 1.29 & . 17 & 5 & 189 & 2.09 & 97 & . 15 & 6 & 1.60 & . 02 & . 21 & 1 & 5 \\
\hline 1 & 38 & 13 & 186 & . 2 & 47 & 21 & 1233 & 5.12 & 2 & 5 & ND & 1 & 133 & \(!\) & 3 & 2 & 164 & 4.98 & . 18 & 3 & 205 & 3.32 & 73 & . 20 & 2 & 2.24 & . 01 & . 88 & 1 & 5 \\
\hline 3 & 129 & 9 & 104 & . 2 & 77 & 34 & 1217 & 6.23 & 2 & 5 & NB & 2 & 242 & 1 & 3 & & 150 & 5.71 & . 11 & 2 & 291 & 4.57 & 105 & . 12 & 2 & 2.68 & . 01 & . 73 & 1 & 5 \\
\hline 27 & 2041 & 59 & 87 & 2.9 & 159 & 98 & 759 & 15.34 & 15 & 5 & N & 1 & 161 & 1 & 2 & 2 & 182 & 2.97 & . 11 & 11 & 511 & 3.74 & 22 & . 08 & 2 & 1.97 & . 01 & . 46 & 1 & 410 \\
\hline 39 & 295 & 33 & 64 & 1.1 & 213 & 49 & 1089 & 7.24 & 13 & 5 & ND & 1 & 113 & 1 & 2 & 2 & 128 & 1.66 & . 16 & 3 & 511 & 4.08 & 101 & . 01 & 2 & 2.32 & . 01 & . 33 & 1 & 45 \\
\hline 102 & 4619 & 79 & 8日 & 23.3 & 68 & 55 & 454 & 35.55 & 11 & , & 1 & 3 & 73 & 1 & 2 & 14 & 268 & . 31 & . 24 & 1 & 276 & 1.13 & 114 & . 06 & 2 & 1.34 & . 01 & . 23 & , & 1800 \\
\hline 21 & 171 & 37 & 42 & 1.1 & 44 & 23 & 839 & 4.40 & 5 & 5 & ko & 1 & 104 & 1 & 2 & , & 99 & 1.32 & . 08 & 2 & 145 & 1.56 & 214 & . 05 & 19 & . 84 & . 62 & . 32 & 1 & 310 \\
\hline 6 & 238 & 9 & 67 & 1.1 & 67 & 38 & 1265 & 6.70 & 2 & 5 & N0 & 2 & 217 & 1 & 2 & 2 & 154 & 6.05 & . 13 & 6 & 292 & 4.50 & 44 & . 13 & 2 & 2.78 & . 01 & . 64 & 1 & 80 \\
\hline 3 & 100 & 4 & 14 & . 2 & 74 & 31 & 1192 & 6.75 & 2 & 5 & N & 2 & 212 & 1 & 4 & 2 & 169 & 6.72 & . 14 & 1 & 322 & 5.25 & 346 & . 17 & 2 & 3.28 & . 01 & . 98 & 1 & 5 \\
\hline 25 & 185 & 91 & 345 & 1.8 & 123 & 42 & 2113 & 9.31 & 83 & 5 & KD & 1 & 132 & 2 & 5 & 2 & 78 & 2.82 & . 20 & 5 & 206 & 2.89 & 16 & . 01 & 2 & 1.30 & . 01 & . 13 & 1 & 105 \\
\hline 5 & 111 & 19 & 265 & . 3 & 104 & 32 & 1602 & 6.17 & 13 & 5 & No & 1 & 96 & 1 & 1 & 2 & 155 & 3.21 & . 21 & 6 & 294 & 4.88 & 87 & . 01 & 4 & 2.84 & . 01 & . 07 & 1 & 15 \\
\hline 3 & 75 & 7 & 98 & . 5 & 78 & 28 & 1259 & 6.41 & 6 & 5 & No & 1 & 70 & 1 & 2 & 2 & 182 & 1.99 & . 22 & 8 & 323 & 3.71 & 178 & . 09 & 5 & 1.95 & . 01 & . 38 & 1 & 10 \\
\hline 21 & 60 & 41 & 137 & 7.2 & 69 & 29 & 1169 & 3.91 & 38 & 20 & 7 & 38 & . 52 & 16 & 15 & 21 & 58 & . 47 & . 15 & 38 & 58 & . 86 & 176 & . 07 & 38 & 1.69 & . 06 & . 10 & 12 & - \\
\hline 3 & 117 & 2 & 109 & . 4 & 89 & 34 & 1312 & 6.39 & 3 & 5 & N0 & 1 & 96 & 1 & 3 & 2 & 181 & 2.56 & . 22 & , & 328 & 4.26 & 205 & . 09 & & 2.21 & . 01 & . 40 & 1 & 10 \\
\hline 3 & 299 & 5 & 141 & . 6 & 107 & 39 & 1247 & 6.56 & 2 & 5 & N & 1 & 40 & 1 & 2 & 2 & 189 & . 98 & . 23 & 8 & 331 & 4.62 & 99 & . 05 & 5 & 2.70 & . 01 & . 19 & 1 & 15 \\
\hline 3 & 177 & 2 & 105 & . 4 & 77 & 33 & 1424 & 6.58 & 2 & 8 & KD & 1 & 49 & 1 & 3 & 2 & 174 & 1.30 & .23 & 4 & 297 & 5.20 & 179 & . 10 & 2 & 2.89 & . 01 & . 25 & 1 & 10 \\
\hline 2 & 177 & 3 & 69 & . 4 & 61 & 29 & 1019 & 5.93 & 2 & 5 & No & 1 & 48 & 1 & 2 & 2 & 157 & 1.17 & . 21 & 1 & 293 & 3.48 & 80 & . 11 & 5 & 1.87 & . 01 & . 26 & 1 & 10 \\
\hline 2 & 128 & 4 & 69 & . 3 & 66 & 26 & 1017 & 6.11 & 2 & 5 & ND & 1 & 48 & 1 & 2 & 2 & 161 & 1.59 & . 23 & 6 & 295 & 3.36 & 39 & .10 & 2 & 1.80 & . 01 & . 26 & ! & 5 \\
\hline 1 & 135 & 4 & 65 & . 3 & 57 & 26 & 1024 & 5.51 & 3 & 5 & ND & 1 & 49 & 1 & 2 & 2 & 140 & 1.60 & . 20 & 4 & 278 & 3.09 & 41 & . 10 & 1 & 1.65 & . 01 & . 24 & , & 5 \\
\hline 2 & 228 & 9 & 73 & .6 & 63 & 30 & 1150 & 6.16 & 2 & 5 & 10 & 1 & 51 & 1 & 3 & 2 & 154 & 1.81 & . 23 & 13 & 299 & 3.37 & 58 & . 11 & 3 & 1.84 & . 02 & . 23 & 1 & 5 \\
\hline 3 & 189 & 9 & 102 & . 7 & 72 & 37 & 1224 & 6. 19 & 3 & 5 & ND & 2 & 27 & 1 & 3 & 2 & 159 & . 84 & . 24 & 5 & 272 & 4.61 & 61 & . 10 & 2 & 2.55 & . 01 & . 19 & 1 & 10 \\
\hline 2 & 182 & 3 & 81 & . 5 & 13 & 32 & 1421 & 5.67 & 3 & 5 & ND & 1 & 24 & 1 & 3 & 2 & 137 & . 69 & . 20 & 7 & 311 & 3.88 & 56 & . 10 & 2 & 2.18 & . 01 & . 17 & 1 & 5 \\
\hline 3 & 184 & 2 & 96 & . 3 & 80 & 34 & 1222 & 5.96 & 2 & 6 & ND & 1 & 18 & 1 & 2 & 2 & 142 & . 54 & . 20 & 2 & 293 & 4.96 & 31 & . 10 & 2 & 2.69 & . 01 & . 19 & 1 & 5 \\
\hline 20 & 60 & 40 & 139 & 7.4 & 70 & 29 & 1192 & 3.94 & 38 & 17 & \(\theta\) & 37 & 53 & 16 & 15 & 21 & 60 & . 48 & . 15 & 38 & 60 & . 88 & j85 & . \(0 B\) & 40 & 1.72 & . 06 & . 11 & 12 & 50 \\
\hline
\end{tabular}


日18556：932199
 81655ta 93n201 3185st2 932202

818555：9Jニ̃0： ． \(318556298: 204\)
 318552 g2． 200
8185582 93220： 3185562932208 81ES5b2̂ gui209 31855：2 532illo 818555：930．11

8165562 932ins 3125562952214 8185582932215 3185562932216 8185562932217

31EE5E2 9J2218 8165562935219 B1855：2 9 9i220 SID C 21855t2 9\％2nil

8185562933622 31855 E 2932 Zaj 8185552935254 3185562952225

81655 62932027
3185502 982nic
日185562 93añ

8185556930501
31e5se2 93inju


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 111 & 15 & 77 & ． 1 & 78 & 31 & 1216 & 5．80 & 2 & 5 & HD & 1 & 56 & 1 & 2 & 2 & \(15 t\) & 1.51 & ． 21 & 1 & 352 & 1.02 & 75 & ． 09 & 2 & 2.20 & ． 02 & ． 37 & 1 & \\
\hline 2 & 25： & 2 & 102 & \(\therefore\) & \％ 6 & 31 & 1161 & 5．78 & J & 5 & 80 & 1 & 50 & 1 & 2 & － & 148 & 1.35 & ． 2 & 8 & 340 & 3．78 & 291 & ． 11 & 1 & 2.04 & ． 02 & \(\cdots\) & ！ & \\
\hline 2 & 256 & 12 & 107 & ． 4 & 8 & 36 & 1290 & 6．05 & 11 & 5 & ．． HO & 1 & 29 & 1 & 2 & 2 & 162 & ． 78 & ． 31 & 6 & 3̇5 & 4．66 & 43 & ． 10 & 2 & 2．J & ． 01 & ． 14 & 1 & 10 \\
\hline 2 & 144 & 45 & 107 & ． 5 & 92 & 39 & 1168 & 8．\({ }^{\text {c }}\) 8 & 62 & 5 & HD & 2 & 40 & 1 & 2 & ： & 154 & ． 95 & ． 22 & 8 & 355 & 4.53 & 154 & ． 11 & 2 & 2.60 & ． 01 & ． 5 & 1 & \％ \\
\hline 2 & 132 & 6 & 82 & ． 1 & at & 30 & 1026 & 5.32 & 2 & 5 & HD & 1 & 60 & 1 & 2 & 2 & 125 & 1.65 & ． 20. & ； & 330 & 3．37 & is & ． 10 & 2 & 1.83 & ． 02 & ． 24 & 1 & 2 \\
\hline 2 & 250 & 17 & 126 & ． 9 & 92 & 48 & 1415 & b． 16 & 4 & 5 & ND & ： & \(\pm\) & 1 & ： & ： & 152 & ． 29 & ． 21 & & 319 & 5.31 & ss & ． 15 & ： & 3．06 & ． 01 & ． 26 & 1 & f \\
\hline 2 & 230 & 15 & 112 & ． 3 & 9 & 41 & 1217 & 5.39 & 4 & 5 & ND & 1 & 26 & 1 & 2 & 2 & 130 & ． 86 & ． 22 & \(i\) & 306 & 4．28 & 69 & ． 5 & ： & 2．53 & ． 03 & ． 28 & 1 & 16 \\
\hline 1 & 115 & 8 & 126 & ． 8 & 124 & 26 & 1692 & 6.39 & 13 & 5 & ND & 1 & si & 1 & ： & 2 & 245 & 1.85 & ． 23 & 11 & 241 & 3.86 & 29 & ． 04 & ： & 3.59 & ． 05 & ． 03 & 1 & 12 \\
\hline 1 & 151 & 11 & 105 & ． 7 & 71 & 24 & 1832 & 6.38 & 25 & 5 & 10 & 1 & 61 & 1 & 2 & 2 & 177 & 2.10 & ． 18 & 11 & 14 & 3.17 & 2 & ． 07 & ＝ & 2． 18 & ． 05 & ． 04 & 1 & 13 \\
\hline 5 & 97 & 17 & 85 & ． 5 & 31 & 19 & 1460 & 4.99 & 26 & 5 & H0 & 1 & \＄ & 1 & 2 & 2 & 1\＃ & 1.31 & ． 19 & 9 & 25 & 1.96 & 3 & ． 10 & － & 2．3i & ． 03 & ． 05 & 1 & 11 \\
\hline j & 5 & 6 & 90 & － & 31 & 18 & 1411 & 5.24 & 29 & 5 & no & 1 & 63 & 1 & 2 & 2 & 185 & 1.52 & ． 22 & 9 & 23 & 1.93 & 39 & ． 05 & 2 & 2.15 & ． 05 & ． 07 & 1 & 15 \\
\hline 1 & 84 & 11 & 89 & ． 1 & 23 & 18 & 1333 & 4.86 & 55 & 5 & N0 & 1 & 7 & 1 & i & 2 & 172 & 2.01 & ． 23 & 10 & 18 & 1．92 & 30 & ． 08 & 4 & 2．：1 & ． 05 & ． 07 & 1 & \\
\hline ： & 71 & 15 & 86 & .2 & 27 & 12 & 1350 & 4.88 & 21 & 5 & ND & 2 & 78 & 1 & 2 & 2 & 154 & 1.91 & ． 23 & & 24 & 1．86 & 41 & ．00̊ & 2 & 2.22 & ． 05 & ． 06 & 1 & 11 \\
\hline 2 & 50 & 30 & 116 & ． 5 & 125 & 21 & 1449 & 5.31 & 34 & 5 & HD & ， & 154 & 1 & & 2 & 166 & 2.55 & ． 18 & ： & 176 & 3.19 & －5 & ． 02 & ： & 2.87 & ．02 & ． 05 & 1 & \\
\hline 1 & 115 & 12 & 99 & ． 4 & 120 & 22 & 1078 & 5.06 & 25 & 5 & HD & 1 & 84 & 1 & 2 & 2 & 16. & 2.16 & ． 19 & 5 & 208 & 3． \(3^{2}\) ． & 81 & ． 10 & 3 & 2.88 & ．C） & ．05 & 1 & \\
\hline 3 & 142 & 10 & 104 & ． & 34 & 24 & 1338 & 4.18 & 30 & 5 & \(N 1\) & 2 & 288 & 1 & J & \(\hat{1}\) & 191 & 3.78 & ． 18 & & 209 & 4.16 & 55 & ． 01 & ： & 2.83 & ． 02 & ． 05 & 1 & \\
\hline 7 & 109 & 15 & 105 & ． 7 & 87 & 25 & 1298 & 5.79 & 36 & 5 & 110 & 2 & 229 & 1 & 2 & 2 & 181 & 3.05 & ． 16 & 2 & 181 & 3.71 & 25 & ． 02 & 1 & 2.30 & ． 02 & ． 02 & 1 & 105 \\
\hline 5 & 84 & 18 & 165 & ． & 49 & 25 & 1407 & 8.75 & 13 & 5 & N0 & 1 & 96 & 1 & 2 & 2 & 223 & 1.37 & ． 18 & J & 125 & 4.99 & 12 & ． 11 & & 3.04 & ． 05 & ． 04 & 1 & 18 \\
\hline 4 & 55 & 24 & 12 a & ． 2 & 48 & 25 & 1452 & 6.62 & 12 & 5 & ND & 1 & 87 & 1 & ： & 2 & 224 & 1，80 & ． 16 & \(i\) & 126 & 5.07 & 34 & ． 05 & 2 & j．18 & ． 05 & ． 05 & & 11 \\
\hline 4 & 80 & は & 120 & ． 1 & 4 & 24 & 1668 & 8.86 & 6 & 5 & H0 & 1 & 104 & 1 & 2 & & 215 & 3.36 & ． 17 & 3 & 126 & 4．\({ }^{\text {d }}\) & 58 & ． 18 & ： & J．05 & ． 05 & ． 04 & ， & \\
\hline 3 & 97 & 7 & 107 & ． 1 & 41 & 23 & 1303 & 5．8J & 2 & 5 & MD & 2 & 109 & 1 & 2 & & 204 & 2.86 & ． 17 & 5 & 121 & 3.97 & 68 & ． 18 & ： & 3.05 & ． 07 & ．02： & 1 & \\
\hline 2 & 115 & 10 & 69 & ． 1 & 101 & 38 & 725 & 4.80 & 13 & 5 & HD & 1 & 51 & 1 & ： & 2 & 104 & 1.38 & ． 19 & 5 & 385 & 3.17 & 58 & ． 17 & 2 & 2.04 & ． 05 & ． 20 & 1 & 18 \\
\hline 2 & 115 & 2 & 68 & ． 1 & 100 & 32 & 844 & 4.62 & 4 & 5 & HI & 2 & 67 & 1 & 5 & 2 & 97 & 2.00 & ． 17 & 1 & 352 & 3.74 & 2 & ． 17 & 2 & 2．12 & ． 03 & ． 21 & 1 & \\
\hline 30 & 61 & 39 & 139 & 7.1 & 88 & 31 & 1163 & 3.85 & 11 & 19 & 8 & －5 & 53 & 18 & 16 & 22 & 80 & ． 47 & ． 16 & 33 & 60 & ． 56 & 172 & ． 07 & 3 & 1.69 & ． 06 & ． 10 & 15 & \\
\hline 3 & 123 & 3 & 31 & ． 1 & 107 & 35 & 1146 & 5.122 & 2 & 5 & H0 & ， & 127 & 1 & 2 & ， & 117 & 3.02 & ． 17 & 5 & 411 & 4.41 & 75 & ． 15 & 2 & 2.61 & ． 02 & ． 24 & 1 & \\
\hline J & 101 & ？ & 78 & ． 1 & 94 & 31 & 1135 & 5．4i & 8 & & ND & ， & 209 & 1 & 2 & 2 & 135 & 4.18 & ． 16 & 5 & － 369 & 5.08 & 30 & ．15 & j & 2.96 & ． 01 & ． 11 & ； & \\
\hline 5 & 119 & 9 & 99 & ． 2 & 130 & 41 & 1157 & 6.89 & 19 & 5 & H0 & \％ & 181 & 1 & 3 & 2 & 172 & 3.62 & ． 18 & 5 & 162 & 6． 41 & 91 & ． 11 & 2 & 3.79 & ． 01 & ． 26 & 1 & \\
\hline 20 & 94 & 17 & \(11:\) & ． 5 & 120 & 39 & 1102 & 6．69 & 52 & 5 & no & 3 & 258 & 1 & J & \(\stackrel{2}{2}\) & 23J & 5．38 & ． 17 & 9 & 393 & 5．08 & 26 & ． 04 & ； & 3.19 & ． 01 & ． 16 & 1 & 48 \\
\hline 4 & 89 & 8 & 130 & ． 4 & 52 & 16 & 869 & 4．75 & 22 & 5 & WD & 1 & 115 & 1 & & 3 & 1：4 & 2.00 & ． 15 & 2 & 99 & 1.77 & 11 & ． 01 & 2 & 1.11 & ． 05 & ． 07 & 1 & 29 \\
\hline 10 & 38 & 30 & 202 & 1.6 & 5 & 29 & 896 & 6.05 & 108 & 5 & Ho & 1 & 176 & 2 & 2 & 2 & 59 & 2.78 & ． 15 & ， & 40 & ． 65 & 35 & ． 01 & こ & ． 55 & ． 06 & ． 09 & 1 & 105 \\
\hline 5 & 59 & 20 & 121 & ． 2 & 44 & 25 & 1412 & 2． 45 & 10 & ¢ & no & 1 & 83 & 1 & ： & 6 & 215 & 1．7\％ & ． 18 & 5 & 125 & 4.35 & \(3 i\) & ． 05 & 5 & 3.03 & ． 05 & ． 05 & 1 & 12 \\
\hline 9 & 124 & 11 & 61 & 1.0 & 56 & 20 & 567 & 4.11 & 55 & 5 & W0 & ： & 145 & 1 & 2 & j & 119 & 3．67 & ． 17 & J & 41 & 1.05 & 46 & ． 03 & 3 & ． 20 & ． 08 & ． 09 & J & 180 \\
\hline 37 & 118 & 18 & 167 & 1.9 & 64 & 18 & 661 & 4.70 & 68 & 5 & 16 & 1 & 131 & 2 & ： & 2 & 145 & 1.55 & ． 17 & 1 & 42 & 1.10 & 4 & ． 04 & 5 & ． 60 & ． 09 & ． 16 & 1 & 275 \\
\hline 16 & 105 & 15 & 288 & 2.4 & 85 & 16 & 579 & 4.58 & 95 & 5 & N0 & ， & 175 & 1 & 4 & 2 & 108 & 1．52 & ． 14 & こ & 33 & ． 5 & 28 & ． 01 & ： & ． 20 & ． 05 & ．i0 & 1 & SE5 \\
\hline 8 & 110 & 10 & 266 & ． 1 & 58 & 12 & 535 & 3.97 & 41 & 5 & 10 & 1 & 211 & 1 & 2 & 4 & IE & 2.80 & ． 13 & 17 & 41 & 1.16 & 3 & ． 01 & 2 & ． 5 & ． 12 & ． 3 & 1 & 75 \\
\hline ； & 150 & 17 & 265 & 1.0 & 90 & 57 & 764 & 5． 67 & 8 & 5 & HO & 1 & 180 & 2 & 2 & － & 126 & 2.40 & ． 18 & 2 & 68 & 1.10 & 41 & ． 02 & ： & ． 7 & ． 05 & ． 1 & 1 & 105 \\
\hline 5 & 87 & 10 & 31 & ． & 67 & 20 & 840 & 5．12 & 3 & 5 & H0 & 1 & 124 & 1 & ， & 2 & 124 & 1.52 & ． 15 & ： & \(12 i\) & 2．30 & 40 & ． 01 & ． & 1．15 & ． 05 & ． 01 & 1 & 90 \\
\hline 5 & \(1: 6\) & \(1:\) & 26 & ． & ？ & E & 1056 & 5．7\％ & 6 & 5 & HD & 1 & 174 & 1 & 2 & ． & 162 & 3． 40 & ．17 & 1 & 10 & 2.79 & 30 & ． 01 & \(=\) & 1.61 & ． 02 & ． 05 & 1 & 31 \\
\hline 2 & do & 3 E & \(15 i\) & 7.1 & 65 & 29 & 117 & 5.94 & 38 & 17 & \(\varepsilon\) & 5 & 5 & 1i & 15 & 19 & 59 & ． 47 & ． 15 & 35 & 60 & ． 06 & 15 & ． 06 & 40 & 1．85 & ． \(0 i\) & ． 10 & 12 & 48 \\
\hline
\end{tabular}

SELCO - A DIVISION OF BP FFOITECT - 562-10141 FILE \# ES-2764
FAGE 6

545915
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8185562932234 & 3 & 75 & 1 & 93 & . 2 & 59 & 21 & 884 & 5.16 & 33 & 5 & ND & 2 & 111 & 1 & 2 & 2 & 156 & 2.54 & .15 & 2 & 124 & 2.66 & 47 & . 01 & 3 & 1.89 & . 03 & . 04 & 1 & 28 \\
\hline 8185562932235 & 5 & 177 & 10 & 74 & 5.4 & 60 & 20 & 550 & 5.13 & 23 & 5 & ND & 1 & 114 & 1 & 1 & 2 & 164 & 1.67 & . 12 & 2 & 131 & 1.81 & 33 & . 01 & 2 & 1.06 & . 04 & . 05 & 1 & 95 \\
\hline 8185562932236 & 16 & 128 & 14 & 31 & 6.5 & 41 & 13 & 559 & 3.83 & 42 & 5 & ND & 1 & 78 & 1 & 3 & 3 & 85 & 1.60 & . 15 & 2 & 36 & . 66 & 41 & . 01 & 2 & . 28 & . 06 & . 07 & 2 & 155 \\
\hline 8185562932237 & 9 & 120 & 6 & 31 & 2.1 & 50 & 16 & 622 & 1.33 & 24 & 5 & ND & 1 & 101 & 1 & J & 2 & 123 & 1.68 & . 17 & 2 & d) & . 82 & 48 & . 02 & 2 & . 38 & . 06 & . 06 & 1 & 80 \\
\hline 8185562932238 & 1 & 136 & 14 & 52 & . 6 & 47 & 18 & 585 & 5.08 & 29 & 5 & ND & 1 & 100 & 1 & 2 & 2 & 152 & 1.98 & .16 & 2 & 66 & 1.33 & 36 & . 01 & 2 & . 71 & . 04 & . 07 & 1 & 21 \\
\hline 8185562932239 & 1 & 130 & 9 & 83 & 1.0 & 69 & 27 & 949 & 6.44 & 62 & 5 & Nid & 1 & 140 & 1 & 2 & 2 & 118 & 1.33 & . 11 & 2 & 98 & . 99 & 33 & . 01 & 2 & . 70 & . 04 & . 05 & 1 & 140 \\
\hline 8185562 932240 & 1 & 63 & 6 & 1070 & . 5 & 117 & 25 & 1204 & 6.00 & 46 & 5 & N0 & 3 & 464 & 15 & 5 & 2 & 118 & 4.39 & . 11 & 2 & 143 & 2.65 & 32 & . 01 & J & 1.03 & . 02 & . 05 & 1 & 120 \\
\hline STD C & 21 & 58 & 39 & 129 & 7.3 & 65 & 28 & 1115 & 3.90 & 39 & 19 & 8 & 36 & 50 & 16 & 15 & 21 & 56 & . 45 & . 14 & 37 & 56 & . 85 & 175 & . 01 & 38 & 1.67 & . 06 & . 10 & 14 & - \\
\hline 8165562932241 & 8 & 151 & 1 & 128 & . 6 & 88 & 19 & 736 & 4.87 & 21 & 5 & M0 & 2 & 54 & 1 & 2 & 2 & 337 & . 55 & . 14 & , & 85 & . 71 & 43 & . 02 & 2 & . 72 & . 07 & . 06 & 1 & 205 \\
\hline 8185562932242 & 3 & 48 & 6 & 98 & . 1 & 70 & 15 & 690 & 3.68 & 8 & 5 & ND & 3 & 150 & 1 & 2 & 2 & 118 & 4.94 & . 11 & 3 & 139 & 3.12 & 32 & . 15 & 2 & 1.91 & . 02 & . 11 & 1 & 1 \\
\hline 8165562932243 & 3 & 54 & 10 & 71 & 1 & 213 & 28 & 816 & 4.59 & 19 & 5 & ND & 3 & 150 & 1 & 2 & 2 & 148 & 4.70 & . 12 & 5 & 432 & 4.12 & 38 & . 13 & 2 & 2.63 & . 01 & . 08 & 1 & 1 \\
\hline 8185562932244 & 1 & 67 & 7 & 80 & . 1 & 117 & 19 & 830 & 4.70 & 19 & 5 & *D & 2 & 113 & 1 & 4 & 2 & 140 & 3.60 & . 11 & 5 & 211 & 3.13 & 15 & . 15 & 3 & 2.28 & . 02 & . 06 & 1 & 2 \\
\hline 8185562932245 & 3 & 126 & 13 & 112 & .4 & 64 & 26 & 976 & 6.28 & 11 & 5 & ND & 2 & 108 & 1 & 2 & 2 & 176 & 2.89 & . 17 & 7 & 128 & 2.25 & 58 & . 15 & 2 & 2.01 & . 03 & . 06 & 1 & 7 \\
\hline B165562 932246 & 4 & 74 & 2 & 83 & . 2 & 32 & 15 & 875 & 4.21 & 4 & 5 & ND & 3 & 103 & 1 & 2 & 2 & 184 & 4.55 & . 13 & 5 & 56 & 1.27 & 45 & . 18 & 2 & 1.20 & . 04 & . 06 & 1 & 1 \\
\hline B185562 932247 & 3 & 75 & 1 & 74 & . 3 & 155 & 26 & 857 & 4.91 & 12 & 5 & ND & 3 & 176 & 1 & 2 & 2 & 123 & 5.92 & . 12 & 1 & 279 & 4.55 & 32 & . 15 & J & 2.68 & . 02 & . 13 & 1 & 26 \\
\hline 8185562932218 & 2 & 67 & 8 & 59 & .1 & 170 & 27 & 1098 & 4.15 & 17 & S & ND & & 286 & 1 & , & 2 & 113 & 10.30 & . 13 & 1 & 133 & 4.05 & 32 & . 13 & 2 & 2.41 & . 01 & . 24 & 1 & 2 \\
\hline 8185562932249 & 5 & 71 & 5 & 45 & . 1 & 44 & 18 & 392 & 3.43 & 8 & 5 & ND & 1 & 34 & 1 & 2 & 2 & 90 & . 71 & . 18 & 2 & 109 & 1.88 & 37 & . 14 & 2 & 1.28 & . 03 & . 25 & 1 & 7 \\
\hline 8185562932250 & 4 & 205 & 7 & 52 & . 4 & 35 & 25 & 376 & 3.45 & 19 & & ND & 1 & 32 & 1 & 2 & 2 & BJ & . 83 & . 19 & 2 & 56 & 1.78 & 47 & . 12 & 3 & 1.19 & . 03 & . 29 & 1 & 21 \\
\hline 8185562932251 & 6 & 86 & 5 & 72 & . 5 & 77 & 27 & 192 & 4.74 & 10 & 5 & ND & 1 & 28 & 1 & 2 & 2 & 100 & . 73 & . 19 & 2 & 140 & 2.65 & 47 & . 15 & & 1.61 & . 03 & . 46 & 1 & 13 \\
\hline 8185562932252 & 5 & 55 & 1 & 66 & . 2 & 83 & 21 & 445 & 3.25 & 7 & 5 & ND & 1 & 29 & 1 & 2 & 2 & 69 & . 76 & . 17 & 2 & 121 & 2.16 & 16 & . 18 & 2 & 1.14 & . 04 & . 34 & 1 & 9 \\
\hline 8185562932253 & 3 & 122 & 3 & 65 & . 1 & 101 & 23 & 499 & 2.98 & 6 & 5 & ND & 1 & 28 & 1 & 2 & 2 & 73 & . 81 & . 18 & 2 & 150 & 2.51 & 42 & . 19 & 5 & 1.60 & . 04 & . 19 & 1 & 1 \\
\hline 8185562932254 & 4 & 117 & 2 & 47 & .1 & 86 & 19 & 532 & 2.73 & 4 & 5 & ND & 1 & 37 & 1 & 2 & 3 & 69 & . 99 & . 19 & 4 & 131 & 1.87 & 36 & . 16 & 3 & 1.25 & . 04 & . 30 & 2 & 7 \\
\hline 8185562932255 & 1 & -60 & 2 & 52 & . 2 & 61 & 14 & 446 & 2.72 & 6 & 5 & NO & 1 & 31 & 1 & 2 & 2 & 75 & 1.02 & . \(18^{\circ}\) & 2 & 117 & 1.93 & \(2 b\) & . 15 & 5 & 1.22 & . 04 & . 28 & 1 & , \\
\hline 8165562932256 & 3 & 138 & 6 & 68 & .1 & 39 & 18 & 558 & 2.95 & 7 & 5 & ND & 1 & 31 & 1 & 2 & 2 & 97 & 1.01 & . 19 & 2 & 65 & 1.98 & 24 & . 13 & 3 & 1.25 & . 04 & . 23 & 1 & 4 \\
\hline 8185562932257 & 3 & 76 & 4 & 56 & . 1 & 53 & 16 & 516 & 2.81 & 7 & 5 & N0 & 1 & 37 & 1 & 2 & 2 & 81 & 1.44 & . 19 & 2 & 79 & 1.90 & 29 & . 14 & 8 & 1.27 & . 04 & . 34 & 1 & 2 \\
\hline 8185562932258 & 4 & 84 & 2 & 18 & .1 & 75 & 17 & 474 & 2.23 & 5 & 5 & N0 & 1 & 32 & 1 & 2 & 2 & 59 & 1.10 & . 18 & 2 & 122 & 1.64 & 24 & . 15 & 6 & 1.19 & . 03 & . 17 & 4 & 1 \\
\hline 8185562932259 & 5 & 74 & 2 & 76 & . 1 & 83 & 11 & 675 & 2.86 & 6 & 5 & N0 & 1 & 24 & 1 & 2 & 2 & 81 & . 44 & . 18 & 2 & 119 & 2.26 & 33 & . 15 & 5 & 1.39 & . 04 & . 33 & 1 & 1 \\
\hline 8185562932260 & 1 & 46 & 7 & 54 & .1 & 70 & 11 & 503 & 2.22 & 1 & 5 & ND & 1 & 33 & 1 & 2 & 3 & 64 & 1.36 & . 17 & 2 & 118 & 1.74 & 35 & . 15 & 1 & 1.13 & . 04 & . 31 & 1 & 1 \\
\hline 8155562932261 & 6 & 83 & 7 & 45 & . 1 & 129 & 24 & 569 & 3.43 & 7 & 5 & ND & 1 & 24 & & 2 & 2 & 83 & . 61 & . 15 & 3 & 194 & 2.89 & 69 & . 14 & 5 & 1.18 & . 03 & . 84 & 1 & 3 \\
\hline RE 8185562 932251 & 5 & 87 & 5 & 73 & . 3 & 72 & 26 & 497 & 4.76 & 13 & 5 & ND & 1 & 32 & 1 & 3 & 2 & 104 & . 76 & . 18 & 2 & 142 & 2.64 & 52 & . 17 & 2 & 1.65 & . 03 & . 48 & 1. & 11 \\
\hline 8185562932262 & 5 & 141 & 2 & 47 & . 1 & 136 & 31 & 581 & 3.74 & 10 & 5 & N0 & 1 & 25 & 1 & 2 & 2 & 97 & . 97 & . 16 & 4 & 223 & 3.00 & 83 & . 17 & 8 & 1.90 & . 04 & . 89 & 1 & 1 \\
\hline 8185562932263 & 3 & 112 & 3 & 37 & .1 & 136 & 27 & 551 & 3.28 & 7 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 88 & . 82 & . 16 & 2 & 195 & 2.85 & 58 & . 16 & 3 & 1.77 & . 01 & . 82 & 1 & 5 \\
\hline 8185562932264 & 5 & 103 & 2 & 38 & . 1 & 120 & 25 & 528 & 3.66 & 8 & 5 & ND & 1 & 22 & 1 & 2 & 2 & 98 & . 67 & . 17 & 3 & 191 & 2.82 & 74 & . 18 & 1 & 1.85 & . 04 & . 80 & 1 & 6 \\
\hline 8185562932265 & 2 & 104 & 2 & 40 & .1 & 128 & 24 & 640 & 3.70 & 8 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 100 & . 82 & . 16 & 1 & 195 & 3.08 & 60 & . 17 & 1 & 1.97 & . 04 & . 93 & 1 & 4 \\
\hline 8165562932266 & 4 & 85 & 9 & 56 & .1 & 148 & 26 & 879 & 4.19 & 7 & 5 & ND & 1 & 14 & 1 & 4 & 2 & 123 & . 59 & . 16 & 5 & 243 & 3.39 & 60 & . 15 & 1 & 2.09 & . 04 & . 93 & 1 & 3 \\
\hline 8185562932267 & 5 & 94 & 7 & 49 & . 1 & 148 & 25 & 780 & 4.17 & 12 & 5 & ND & 1 & 16 & 1 & 2 & 2 & 98 & . 82 & . 16 & 3 & 217 & 2.62 & 32 & . 15 & 2 & 1.59 & . 04 & . 61 & 1 & 6 \\
\hline 8165562932268 & 18 & 142 & 18 & 71 & . 6 & 98 & 25 & 768 & 5.62 & 26 & 5 & N0 & 1 & 16 & 1 & 3 & 2 & 106 & . 65 & . 16 & 1 & 169 & 2.15 & 38 & . 12 & 2 & 1.32 & . 03 & . 50 & 2 & 13 \\
\hline 8165562932269 & 26 & 112 & 55 & 75 & . 7 & 100 & 23 & 521 & 4.32 & 19 & 5 & ND & 1 & 12 & 1 & 4 & 3 & 91 & . 17 & . 15 & 3 & 150 & 1.17 & 40 & . 14 & 2 & . 95 & . 03 & . 31 & & 12 \\
\hline STL C/FA-AU & 22 & 60 & 40 & 133 & 7.2 & 65 & 28 & 114 & 3.93 & 39 & 15 & 7 & 35 & 50 & 16 & 14 & 22 & 57 & . 48 & . 15 & 39 & 57 & . 88 & 178 & . 07 & 10 & 1.71 & . 06 & . 10 & 12 & 51 \\
\hline
\end{tabular}

SELCO - A DIVISION OF BP FFROECT - S62-10141 .FILE \# E5-2764
FAGE 7..

SAXPLE

8185562932270 8185562932271 9165562 932272 8185562932273

STD C
RE 日1B5S62 932272


ACME ANALYTICAL LABORATORIES LTD.
PHONE: 253.3158
\(852 \mathrm{E}:\) lastings St., Vancouver, B.C. V6A 1R6

Date: DCT 18 1995

TERMS:
NET TWO WEEKS 2\% PER MONTH CHARGED ON
OVERDUE ACCOUNTS.

please pay last amount




SELCO - A DIUISIDN OF EP FROJECT - 562-10141 FILE II B5-2日3t
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8185562932275 & 25 & 704 & 17 & 65 & 1.2 & 18 & 11 & 118 & 1.63 & 66 & 5 & No & 1 & 46 & 2 & 6 & 5 & 96 & 1.82 & ． 17 & 3 & 11 & ． 95 & 26 & ． 01 & 2 & ． 26 & ． 02 & ． 18 & 1 & 350 \\
\hline 8185562932276 & 3 & 870 & 38 & 60 & ． 9 & 11 & 11 & 600 & 4.12 & 56 & 7 & No & 2 & 18 & 2 & 3 & 2 & 96 & 1.94 & ． 20 & 5 & 11 & ． 88 & 31 & ． 01 & 2 & ． 21 & ． 02 & ． 17 & 1 & 250 \\
\hline 8185562 932271 & 17 & 148 & 23 & 37 & .1 & 14 & 15 & 130 & 4.59 & 8 & 5 & N0 & 2 & 21 & 1 & 2 & 2 & 86 & ． 33 & ． 20 & 1 & 19 & ． 53 & 21 & ． 02 & 6 & ． 37 & ． 02 & ． 31 & 1 & 10 \\
\hline 8185562932278 & 28 & 176 & 21 & 34 & .1 & 24 & 21 & 213 & 6.23 & 10 & 5 & H0 & 2 & 39 & 1 & 12 & 2 & 82 & ． 88 & ． 22 & 3 & 18 & ． 64 & 16 & ． 01 & 1 & ． 29 & ． 13 & ． 19 & 1 & 13 \\
\hline 8185562932279 & 15 & 61 & 16 & 21 & .1 & B & 12 & 128 & 5.96 & 5 & 5 & No & 2 & 16 & 1 & 28. & 2 & 45 & ． 20 & ． 19 & 1 & 8 & ． 15 & 22 & ． 01 & 2 & ． 19 & ． 63 & ． 11 & 1 & 3 \\
\hline 8185562932280 & 12 & 87 & 17 & 30 & .1 & 12 & 13 & 120 & 6.64 & 20 & 5 & No & 2 & 11 & 1 & 26 & \(\checkmark 2\) & 60 & .17 & ． 23 & 3 & 16 & ． 39 & 26 & ． 01 & 2 & ． 39 & ． 04 & ． 17 & 1 & 1 \\
\hline 8185562932281 & 9 & 78 & 11 & 31 & .1 & 11 & 11 & 136 & 5.33 & 19 & 5 & No & 2 & 15 & 1 & 26 & 2 & ． 53 & ． 21 & ． 23 & 1 & 9 & ． 30 & 19 & ． 01 & 2 & ． 33 & ． 04 & .16 & 1 & 2 \\
\hline 8185562932282 & 16 & 162 & 31 & 51 & ． 6 & 16 & 17 & 248 & 1.71 & 14 & 5 & NO & 2 & 23 & 1 & 12 & 2 & 64 & ． 19 & ． 18 & 6 & 12 & ． 50 & 22 & ． 01 & 2 & ． 31 & ． 66 & ． 18 & 1 & \(\gamma\) \\
\hline 8185562932283 & 196 & 196 & 1026 & 164 & 9.8 & 8 & 11 & 123 & 5.04 & 18 & 5 & NO & 2 & 69 & 9 & 17 & 26 & 100 & ． 81 & ． 15 & 8 & 11 & ． 55 & 129 & ． 02 & 2 & ． 39 & ． 02 & ． 19 & 1 & 11 \\
\hline 8185562932281 & 59 & 229 & 39 & 33 & ． 7 & 12 & 15 & 235 & 4.34 & 18 & 5 & ND & 2 & 21 & 1 & 13 & 5 & 100 & ． 25 & ． 19 & 6 & 11 & ． 53 & 65 & ． 02 & 1 & ． 18 & ． 11 & ． 29 & 1 & 13 \\
\hline 8185562932285 & 23 & 61 & 19 & 21 & ． 3 & 11 & 11 & 103 & 8.49 & 36 & 5 & KD & 3 & 13 & 1 & 5 & 2 & 89 & ． 07 & ． 20 & 5 & 26 & ． 43 & 11 & ． 02 & 2 & ． 37 & ． 05 & ． 18 & 1 & 10 \\
\hline 8185562937286 & 22 & 67 & 32 & 19 & .1 & 6 & 9 & 65 & 5.51 & 31 & 5 & KD & 2 & 22 & 1 & 6 & 2 & 79 & ． 05 & ． 16 & 2 & 17 & ． 31 & 49 & ． 02 & 2 & ． 26 & ． 03 & ． 26 & 1 & 5 \\
\hline 8185562 932287 & 21 & 105 & 23 & 21 & ． 3 & 18 & 15 & 167 & 5.55 & 37 & 5 & ND & 2 & 18 & 1 & 10 & 2 & 91 & ． 31 & ． 20 & 5 & 25 & ． 19 & 29 & ． 02 & 2 & ． 31 & ． 05 & ． 22 & 1 & 11 \\
\hline 8185562932268 & 21 & 86 & 26 & 29 & ． 3 & 11 & 8 & 112 & 1.92 & 29 & 5 & ND & 2 & 19 & 1 & 15 & 2 & 104 & ． 14 & ． 21 & 1 & 26 & ． 11 & 124 & ． 02 & 5 & ． 50 & ． 0 & ． 28 & 1 & 6 \\
\hline 8165562 932289 & 11 & 85 & 20 & 22 & ． 2 & 11 & 9 & 111 & 5.55 & 14 & 5 & KD & 3 & 21 & 1 & 9 & 2 & 90 & ． 10 & ． 21 & 7 & 21 & ． 52 & 72 & ． 01 & 2 & .12 & ． 06 & .22 & 1 & 7 \\
\hline 8165562932290 & 11 & 37 & 10 & 24 & ． 2 & 6 & 5 & 133 & 3.92 & 10 & 5 & ND & 3 & 14 & 1 & 1 & 2 & 112 & ． 15 & ． 21 & 9 & 18 & ． 56 & 110 & ． 01 & 2 & ． 56 & ． 01 & ． 20 & 1 & 1 \\
\hline 8185562932291 & 22 & 67 & 10 & 29 & ． 3 & 10 & 14 & 201 & 5.79 & 11 & 5 & ND & 2 & 21 & 1 & ， & 2 & 112 & ． 31 & ． 25 & 5 & 17 & 1.52 & 31 & ． 16 & 2 & ． 96 & ． 05 & ． 17 & 1 & 1 \\
\hline 8165562932292 & 18 & 65 & 8 & 22 & ． 1 & 132 & 11 & 196 & 3.76 & 5 & 5 & no & 1 & 12 & 1 & 2 & 2 & 53 & ． 63 & ． 14 & 3 & 292 & 1.37 & 36 & ． 18 & 2 & ． 56 & ． 05 & ． 34 & 1 & 1 \\
\hline \(818556 ? 932293\) & 7 & 98 & 2 & 17 & ． 1 & 165 & 18 & 228 & 3.09 & 8 & 5 & ND & 1 & ， & 1 & 2 & 2 & 10 & ． 45 & ． 12 & 3 & 221 & 1.31 & 43 & ． 12 & 2 & ． 66 & ． 01 & ． 32 & 1 & 1 \\
\hline 8185562932291 & 5 & 103 & 3 & 5 & ． 3 & 269 & 25 & 528 & 4.12 & 6 & 5 & ND & 1 & 14 & 1 & 3 & 2 & 85 & ． 62 & ． 17 & 1 & 379 & 3.76 & 29 & ． 18 & 3 & 2.06 & ． 05 & ． 98 & 1 & 2 \\
\hline 8185562932295 & 127 & 110 & 68 & 25 & 1.2 & 11 & 9 & 189 & 4.56 & 11 & 5 & ND & 2 & 11 & 1 & 2 & 5 & 108 & ． 27 & ． 16 & & 13 & ． 96 & 33 & ． 15 & 1 & ． 66 & ． 01 & ． 35 & 1 & 1. \\
\hline 8185562932296 & 22 & 12 & 8 & 20 & ． 1 & 7 & 1 & 132 & 1．36 & 12 & 5 & No & 2 & 26 & 1 & 2 & 2 & 102 & ． 11 & ． 17 & 2 & 28 & ． 93 & 19 & ． 17 & 2 & .60 & ． 06 & ． 38 & 1 & 1 \\
\hline 8185562932297 & 53 & 298 & 15 & 138 & 1.1 & 10 & 17 & 296 & 5.26 & 15 & 5 & ND & 1 & 35 & 10 & 2 & 5 & 105 & ． 46 & ． 18 & 5 & 30 & ． 78 & 11 & ． 10 & 2 & ． 50 & ． 01 & ． 10 & 1 & 8 \\
\hline 8185562932298 & 1665 & 375 & 429 & 70 & 3.2 & 21 & \(\therefore 35\) & 1249 & 2.55 & ， & 5 & ND & 1 & 24 & 3 & 2 & 19 & 65 & ． 23 & ． 05 & 5 & 39 & ． 29 & 185 & ． 02 & 1 & ． 32 & ． 01 & ． 09 & 1 & 33 \\
\hline 8185562932299 & 13 & 111 & 7 & 33 & ． 3 & 24 & 18 & 502 & 5.39 & 2 & 5 & No & 2 & 14 & 1 & 2 & 2 & 156 & ． 30 & ． 21 & 7 & 53 & 1.89 & 122 & ． 18 & 3 & 1.36 & ． 05 & ． 65 & 1 & 1 \\
\hline 8185562932700 & 111 & 121 & 85 & 35 & 1.6 & 31 & 26 & 121 & 3.88 & ， & 5 & ND & 2 & 17 & ， & 2 & 7 & 85 & ． 44 & ． 16 & ， & 48 & ． 73 & 32 & ． 10 & 1 & ． 11 & ． 05 & ． 30 & 1 & 1 \\
\hline 8185562932301 & 17 & 122 & 91 & 26 & 1.8 & 15 & 20 & 557 & 2.20 & 1 & 5 & N0 & 2 & 19 & 1 & 2 & 2 & 12 & ． 33 & ． 15 & 5 & 30 & ． 21 & 171 & ． 08 & 2 & ． 19 & ． 01 & ． 11 & 1 & 3 \\
\hline SID C & 21 & 61 & 40 & 136 & 7.6 & 69 & 29 & 1181 & 3.95 & 38 & 16 & \(B\) & 36 & 50 & 16 & 16 & 21 & 60 & ． 16 & ． 15 & 38 & 61 & ． 89 & 174 & ． 08 & 40 & 1.75 & ． 06 & ． 11 & 11 & － \\
\hline 8185562932302 & 10 & 186 & 100 & 58 & 1.1 & 15 & 12 & 353 & 5.06 & 5 & 5 & Nig & 2 & 21 & 1 & 2 & 3 & 151 & ． 11 & ． 19 & S & 51 & 1.37 & 206 & ． 10 & 2 & 1.14 & ． 03 & ． 83 & 1 & 2 \\
\hline 8185562932303 & 17 & 82 & 10 & 32 & ． 2 & 28 & ， & 158 & 6．13 & 2 & 5 & no & 2 & 35 & 1 & 2 & 2 & 152 & ． 17 & ． 17 & 1 & 154 & 1.98 & 59 & ． 21 & 2 & 1.02 & ． 06 & ． 83 & 1 & 1 \\
\hline RE 81655t2 932291 & 5 & 99 & 1 & 52 & ． 2 & 265 & 25 & 516 & 4.30 & b & 5 & No & 1 & 13 & & 2 & 2 & 83 & ． 60 & ． 17 & ， & 367 & 3.64 & 29 & ． 17 & 2 & 2.04 & ． 05 & ． 96 & 1 & 3 \\
\hline 8185562932304 & 24 & 18 & 9 & 23 & ． 1 & 11 & 7 & 127 & 4.00 & 2 & 5 & ND & 2 & 11 & 1 & \(?\) & 2 & 124 & ． 11 & ． 18 & 1 & 32 & 1.18 & 108 & ． 06 & 2 & ． 68 & ． 07 & ． 39 & 1 & 2 \\
\hline 8185562932305 & 81 & 304 & 307 & 67 & 3.6 & 25 & 21 & 548 & 5.12 & 1 & 5 & MD & & 31 & 1 & 2 & 7 & 106 & ． 12 & ． 16 & 6 & 71 & 1.02 & 175 & ． 07 & 2 & ． 12 & ． 01 & ． 38 & 1 & 175 \\
\hline 8185562932306 & 5 & 255 & 10 & 58 & ． 4 & 35 & 21 & 976 & 5.25 & 2 & 5 & N0 & 2 & 31 & 1 & 2 & 2 & 163 & 1.01 & ． 21 & 9 & 59 & 2.09 & 179 & ． 21 & 2 & 1.49 & ． 04 & 1.04 & 1 & 1 \\
\hline 8185562932307 & 1 & 80 & 3 & 53 & .1 & 34 & 20 & 370 & 3.05 & 1 & 5 & ND & 2 & 40 & 1 & 2 & 3 & 81 & 1.25 & ． 15 & 7 & 66 & 1.12 & 11 & ． 22 & 6 & 1.62 & ． 05 & ． 32 & ． & 8 \\
\hline 8185562932308 & 3 & 69 & 2 & 30 & .1 & 22 & 15 & 248 & 3.19 & 1 & 5 & NO & 2 & 26 & 1 & 2 & 2 & 104 & 1.11 & ． 16 & 8 & 26 & ． 91 & 39 & ． 23 & 5 & 1.36 & ． 06 & ． 11 & 1 & 6 \\
\hline 8185562932309 & 5 & 109 & 1 & 35 & 1 & 34 & 20 & 298 & 3.22 & 1 & 5 & NO & 2 & 27 & 1 & 2 & 2 & 86 & 1.16 & ． 19 & 5 & 58 & 1.02 & 36 & ． 19 & 5 & 1.10 & ． 05 & ． 10 & ， & 7 \\
\hline 8165562932310 & 1 & 117 & 1 & 55 & ． 2 & 19 & 22 & 147 & 3.62 & 5 & 5 & N0 & 2 & 36 & 1 & 2 & 2 & 100 & 1.63 & ． 16 & 6 & 17 & 1.28 & 33 & ． 23 & & 1.71 & ． 06 & ． 11 & 7 & IJ \\
\hline \(5 \mathrm{IJ} \mathrm{C} / \mathrm{fA}\)－AL & 20 & 81 & 39 & 131 & 7.5 & 70 & 30 & 1178 & 3.94 & 38 & 16 & 7 & 36 & 19 & 17 & 15 & 21 & 59 & ． 46 & ． 15 & 31 & 59 & 㫙 & 174 & ， & 39 & & & & 13 & 51 \\
\hline
\end{tabular}

Fintil: \(\therefore\)
sanflel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 816556? 932:11 & 1 & 59 & 3 & 76 & . 2 & 16 & 23 & 590 & 4.14 & \(\theta\) & 5 & ND & 1 & 57 & 1 & 2 & 2 & 89 & 1.72 & . 16 & 6 & 18 & 1.56 & \(2 t\) & . 14 & 6 & 1.12 & . 10 & . 11 & 11 & 9 \\
\hline 818556? 932312 & 1 & 60 & 1 & 87 & . 2 & 11 & 30 & 651 & 5.23 & 15 & 5 & No & 1 & 50 & 1 & 2 & 2 & 99 & 1.02 & . 16 & 1 & 19 & 1.72 & 42 & . 16 & 9 & 1.13 & . 08 & . 16 & 13 & 10 \\
\hline 8185562932513 & 5 & 67 & 1 & 60 & .1 & 22 & 22 & 14 & 3.91 & 11 & 5 & ND & 1 & 49 & 1 & 2 & 1 & 80 & . 88 & . 16 & 10 & 21 & 1.105 & 36 & . 19 & 5 & 1.01 & . 06 & . 15 & 8 & 1 \\
\hline 8185562932314 & 10 & 100 & 2 & 59 & . 3 & 29 & 20 & 305 & 4.17 & 6 & 5 & ND & 2 & 32 & 1 & 2 & 3 & 11 & . 13 & . 16 & 9 & 38 & . 98 & 10 & . 15 & 1 & . 94 & . 08 & .2? & 6 & 10 \\
\hline 8185562932215 & 1 & 101 & 1 & 78 & . 1 & 27 & 21 & 438 & 4.27 & 7 & 5 & N0 & 2 & 10 & 1 & 2 & 2. & 14 & . 68 & . 15 & 8 & 12 & 1.23 & 11 & . 17 & \(b\) & 1.04 & . 01 & .13 & 2 & 22 \\
\hline 8185S52 932316 & 7 & 95 & 6 & 71 & . 3 & 24 & 21 & 181 & 4.23 & 12 & 5 & N0 & 2 & 23 & 1 & 2 & 2 & 111 & . 53 & . 16 & 11 & 12 & 1.39 & 14 & . 19 & 3 & 1.20 & . 05 & . 16 & 3 & 15 \\
\hline 81855 ¢2 932317 & 22 & 123 & 9 & 113 & . 1 & 19 & 23 & 514 & 5.11 & 12 & 5 & No & 2 & 51 & 1 & 2 & 2 & 113 & . 58 & . 15 & 10 & 12 & 1.28 & 175 & . 17 & 2 & 1.09 & . 01 & . 26 & 12 & 55 \\
\hline SIC C & 20 & 59 & J8 & 131 & 7.5 & 69 & 29 & 1176 & 3.98 & 39 & 17 & 6 & 36 & 50 & 16 & 15 & 22 & 58 & . 46 & . 15 & 38 & 80 & . 89 & 175 & . 08 & 37 & 1.75 & . 06 & . 11 & 13 & - \\
\hline 8185562932318 & 7 & 121 & 6 & 55 & . 2 & 25 & 22 & 510 & 5.62 & 13 & 5 & no & 2 & 23 & 1 & & 2 & 168 & . 10 & . 18 & 12 & 12 & 1.17 & 97 & . 10 & 1 & 1.28 & . 05 & . 32 & 1 & 85 \\
\hline 8165562 932319 & 1 & 88 & 9 & 55 & . 2 & 35 & 22 & 391 & 3.74 & 7 & 5 & ND & 1 & 16 & 1 & 2 & 2 & 85 & 1.54 & . 19 & 9 & 12 & 1.31 & 79 & . 18 & 9 & 1.69 & . 04 & . 11 & 3 & 22 \\
\hline 8185St2 952320 & 1 & 87 & 3 & 11 & .1 & 31 & 21 & 372 & 3.65 & 8 & 5 & ND & 1 & 43 & 1 & 7 & 2 & 91 & 1.11 & . 19 & 10 & 16 & 1.30 & 53 & . 18 & 8 & 1.79 & . 05 & . 11 & 2 & 24 \\
\hline 8185562 932321 & 1 & 119 & 3 & 31 & . 2 & 10 & 35 & 263 & 4.71 & 12 & 5 & no & 1 & 84 & 1 & & 2 & 61 & 1.58 & . 18 & 1 & 38 & . 96 & 31 & . 19 & 10 & 1.11 & . 05 & . 12 & 1 & 10 \\
\hline 8185562932322 & 1 & 103 & 1 & 12 & .1 & 37 & 20 & 350 & 4.17 & 5 & 5 & Hid & 1 & 32 & 1 & 2 & , & 㫙 & 1.42 & . 19 & 6 & 19 & 1.52 & 58 & . 19 & - & 1.8s & . 01 & . 68 & 1 & 1 \\
\hline 8185562 932323 & 3 & 108 & 9 & 12 & . 1 & 36 & 23 & 336 & 1.01 & 8 & \({ }^{5}\) & ND & 1 & 25 & 1 & 2 & 2 & 71 & 1.51 & . 19 & 7 & 13 & 1.24 & 26 & . 11 & \(\theta\) & 1.86 & . 04 & . 05 & 1 & 3 \\
\hline 8185562932324 & 2 & 65 & 5 & 42 & .1 & 34 & 20 & 366 & 3.80 & 17 & 5 & ND & 1 & 21 & 1 & 2 & 2 & 85 & 1.70 & .19 & 9 & 12 & 1.45 & 21 & . 11 & 8 & 1.90 & . 01 & . 05 & 1 & 1 \\
\hline 8165562932325 & 3 & 79 &  & 11 & . 1 & 36 & 21 & 363 & 8.11 & 11 & 5 & no & 1 & 32 & 1 & 2 & 2 & 69 & 1.61 & . 20 & , & 12 & 1.11 & 51 & . 15 & 1 & 1.81 & . 05 & . 08 & 1 & 3 \\
\hline 8185562932326 & 2 & 80 & 9 & 26 & . 2 & 36 & 19 & 251 & 2.82 & 3 & 5 & N0 & 1 & 24 & 1 & 2 & 2 & 57 & 1.98 & . 19 & 6 & 32 & . 87 & 20 & . 12 & 9 & 1.11 & . 15 & . 61 & 1 & 6 \\
\hline 8165562932327 & 2 & 81 & 6 & 28 & . 2 & 36 & 20 & 322 & 3.18 & 1 & 5 & N0 & , & 21 & 1 & 2 & 2 & 66 & 1.50 & . 19 & 7 & 32 & 1.11 & 23 & . 12 & 13 & 1.71 & . 08 & . 07 & , & 1 \\
\hline 8185562 932328 & 3 & 137 & 7 & 37 & . 2 & 19 & 26 & 119 & 4.99 & 6 & 5 & no & 1 & 19 & 1 & 2 & * 2 & 99 & 1.55 & . 16 & 8 & 13 & 1.29 & 19 & . 17 & 11 & 1.93 & . 01 & . 06 & 1 & 7 \\
\hline 8185562932329 & 2 & 121 & 9 & 33 & . 1 & 18 & 23 & 382 & 4.38 & 2 & 5 & no & 1 & 21 & 1 & 2 & 3 & 93 & 1.83 & . 16 & 6 & 16 & 1.14 & 10 & . 18 & 1 & 1.81 & . 06 & . 01 & 1 & 13 \\
\hline 8185562932330 & 2 & 119 & 1 & 36 & .1 & 20 & 21 & 383 & 4.58 & 2 & 5 & ND & 1 & 23 & 1 & 2 & 2 & 101 & 2.11 & . 16 & 9 & 15 & 1.18 & 11 & . 19 & 8 & 1.98 & . 01 & . 01 & 1 & 1 \\
\hline 8185562 932331 & 3 & 234 & 1 & 12 & . 3 & 18 & 34 & 116 & 6.95 & 1 & 5 & N0 & 1 & 20 & 1 & , & 2 & 103 & 1.17 & . 16 & 1 & 16 & 1.71 & 13 & . 16 & 8 & 1.93 & . 01 & . 03 & 5 & 5 \\
\hline 6:65562 932532 & 5 & 213 & 5 & 10 & . 3 & 18 & 28 & 132 & 5.90 & 14 & 5 & ND & , & 24 & 1 & , & 2 & 90 & 1.15 & . 16 & 5 & 11 & 1.51 & 16 & . 16 & 8 & 1.87 & . 01 & . 05 & 3 & 6 \\
\hline 8185562932333 & 1 & 174 & 11 & 39 & .1 & 15 & 22 & 110 & 5.31 & 21 & 5 & ND & 1 & 28 & 1 & 2 & 3 & 92 & 1.23 & . 16 & 9 & 14 & 1.38 & 19 & :16 & 1 & 1.73 & . 05 & . 01 & 2 & , \\
\hline 8185562 932334 & 1 & 159 & 2 & 12 & . 4 & 18 & 20 & 465 & 4.91 & 6 & 5 & ND & 1 & 21 & 1 & 2 & 2 & 85 & 1.10 & . 17 & I & 13 & 1.19 & 26 & . 17 & 7 & 1.69 & . 05 & . 05 & 1 & 6 \\
\hline KE B185562 932326 & 2 & B4 & 9 & 27 & . 1 & 31 & 19 & 259 & 2.90 & 3 & 5 & ND & 1 & 25 & 1 & - 2 & 2 & 59 & 2.11 & .19 & , & 31 & . 90 & 21 & . 13 & 6 & 1.73 & . 05 & . 01 & 1 & 7 \\
\hline 8185562932335 & 13. & 178 & 5 & 15 & . 6 & 15 & 18 & 510 & 5.92 & 6 & 5 & no & , & 31 & 1 & , & 2 & 99 & . 80 & . 17 & 1 & 15 & 1.65 & 21 & . 19 & 6 & 1.73 & . 05 & . 11 & 1 & 6 \\
\hline 8185562932336 & 9 & 148 & 8 & 56 & . 5 & 15 & 18 & 505 & 6.21 & 10 & 5 & HB & , & 25 & , & 2 & 2 & 103 & . 66 & . 17 & 4 & 14 & 1.62 & 24 & . 18 & 3 & 1.71 & . 08 & . \(06{ }^{\circ}\) & 1 & 3 \\
\hline 8185562932337 & 10 & 119 & 1 & 98 & . 6 & 14 & is & 536 & 5.12 & 8 & 5 & KD & 1 & 37 & 1 & 2 & 2 & 93 & . 91 & . 16 & 6 & 18 & 1.17 & 22 & . 19 & 12 & 1.69 & . 04 & . 07 & J & B \\
\hline 6185562932338 & 9 & 95 & 6 & 123 & .1 & 18 & 20 & 47\% & 1.92 & 1 & 5 & No & 1 & 55 & 1 & 2 & 3 & 86 & 1.07 & . 16 & 6 & 16 & 1.10 & 14 & . 21 & 6 & 1.62 & . 01 & . 01 & 1 & 12 \\
\hline 8185562932339 & 10 & 134 & 6 & 113 & .1 & 19 & 21 & 579 & 5.04 & 6 & 5 & N0 & 1 & 11 & 1 & 2 & 2 & 79 & . 83 & . 16 & 5 & 20 & 1.71 & 13 & . 17 & 1 & 1.57 & . 08 & . 04 & 10 & 14 \\
\hline 8185562932.410 & 11 & 111 & 11 & 102 & .1 & 15 & 21 & 124 & 4.87 & 1 & 5 & NO & 1 & 50 & 1 & 2 & 2 & 101 & 1.30 & . 16 & 6 & 17 & 1.81 & 19 & . 20 & 9 & 1.67 & . 05 & . 01 & 3 & 13 \\
\hline 8165562932341 & 9 & 125 & 6 & 71 & . 3 & 19 & 16 & 501 & 3.92 & & 5 & N0 & 1 & 39 & 1 & 2 & 2 & 81 & 1.00 & . 11 & 9 & 23 & 1.14 & 10 & . 21 & 1 & 1.09 & . 01 & . 11 & 2 & 8 \\
\hline 8185562932342 & 8 & 121 & 1 & 17 & .4 & 18 & 16 & 693 & 1,50 & 4 & 5 & ND & 1 & 39 & 1 & 2 & 2 & 100 & 1.05 & . 18 & 11 & 30 & 1.30 & 48 & . 25 & & 1.31 & . 01 & . 23 & 3 & 6 \\
\hline 8185562 932343 & 12 & 118 & 2 & 58 & .1 & 16 & 21 & 536 & 5.22 & 5 & 5 & ND & 1 & 45 & 1 & 2 & 2 & 89 & . 91 & . 17 & 6 & 25 & 1.24 & 27 & . 25 & 6 & 1.11 & . 07 & . 15 & 1 & 13 \\
\hline 8385562932341 & 11 & 99 & 2 & 37 & . 1 & 20 & 19 & 385 & 4.22 & 1 & 5 & ND & 1 & 30 & 1 & 2 & 2 & 81 & . 83 & . 18 & d & 31 & 1.13 & 38 & . 21 & 7 & 1.06 & . 07 & . 06 & 2 & 6 \\
\hline 818556? 932345 & 8 & 184 & 1 & 40 & . 5 & 23 & 22 & 422 & 3.98 & 5 & 5 & NO & 1 & 33 & 1 & 2 & 2 & 69 & 1.02 & . 17 & - & 26 & 1.01 & 45 & . 18 & 1 & 1.03 & . 06 & . 06 & 2 & 5 \\
\hline 8185562932346 & 18 & 85 & 1 & 32 & . 2 & 19 & 15 & \({ }^{108}\) & 3.71 & 8 & 5 & ND & 1 & 36 & 1 & 2 & 2 & 68 & 1.19 & . 11 & 5 & \(2)\) & . 85 & 32 & . 20 & 1 & 1.02 & . 05 & . 05 & 9 & 12 \\
\hline 510 C/FA-AU & 19 & 59 & 39 & 134 & 7.1 & 66 & 29 & 1149 & 3.96 & 38 & 18 & 8 & 36 & 19 & 16 & 15 & 20 & 58 & . 16 & . 15 & 37 & 59 & . 88 & 171 & . 07 & 36 & 1.71 & . 06 & 10 & 11 & 19 \\
\hline
\end{tabular}

PAGE \(\because\)

Sinflet
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8165562932347 & 10 & 88 & 8 & 23 & . 1 & 19 & 18 & 285 & 3.90 & 16 & 5 & No & 1 & 28 & 1 & 2 & 2 & 51 & . 93 & . 15 & 6 & 20 & . 66 & 26 & . 19 & 1 & . 90 & . 01 & . 08 & 7 & 18 \\
\hline E14556? 932318 & 9 & 109 & 5 & 23 & .1 & 23 & 17 & 258 & 3.60 & 18 & 5 & HD & 1 & 11 & 1 & 2 & 3 & 66 & . 93 & . 16 & 6 & 21 & . 78 & 28 & . 19 & 1 & 1.09 & . 05 & . 06 & 1 & 1 \\
\hline 818556? 932319 & 6 & 103 & 6 & 22 & . 1 & 26 & 20 & 210 & 3.74 & 1 & 3 & ND & 1 & 11 & 1 & 2 & 2 & 68 & 1.04 & . 11 & 8 & 21 & . 81 & 23 & . 19 & 1 & 1.14 & . 05 & . 06 & 1 & 6 \\
\hline Sid C & 20 & 59 & 40 & 136 & 7.1 & 68 & 30 & 1180 & 3.93 & 38 & 16 & 8 & 36 & 19 & 17 & 16 & 21 & 59 & . 47 & . 15 & 38 & 58 & . 88 & 171 & . 08 & 38 & 1.12 & . 06 & . 11 & 12 & - \\
\hline \(8165562932 \mathrm{J50}\) & 3 & 161 & 13 & 25 & . 3 & 30 & 22 & 241 & 4.19 & 3 & 5 & No & 2 & 11 & 1 & 2 & 2 & 59 & . 86 & . 18 & - & 25 & . 68 & 28 & . 20 & 5 & . 89 & . 06 & . 66 & 2 & 6 \\
\hline 8185562 932351 & 1 & 88 & 10 & 30 & . 5 & 17 & 15 & 273 & 3.51 & 2 & 5 & ND & 1 & 66 & 1 & 2 & 2 & 60 & 1.26 & . 16 & 1 & 19 & . 61 & 11 & . 22 & 2 & 1.01 & . 05 & . 05 & 1 & Q \\
\hline 8185562 932352 & 1 & 82 & 2 & 21 & . 1 & 11 & 13 & 208 & 3.08 & 5 & 5 & no & 1 & 64 & 1 & 2 & 2 & 59 & . 99 & . 15 & 1 & 23 & . 51 & \(b\) & . 23 & 1 & . 63 & . 06 & . 10 & 1 & 12 \\
\hline 81ES562 932353 & 3 & 63 & 5 & 30 & . 1 & 16 & 20 & 359 & 3.23 & 19 & 5 & No & 1 & 25 & 1 & 2 & 2 & 71 & 1.18 & . 17 & 7 & 57 & 1.10 & 32 & . 16 & 6 & 1.50 & . 05 & . 04 & 1 & \(t\) \\
\hline 818556? 932354 & 3 & 50 & 5 & 55 & . 2 & 20 & 15 & 167 & 2.96 & 3 & 5 & No & 1 & 16 & 1 & 2 & 2 & 89 & 1.78 & . 20 & 6 & 21 & 1.18 & 3 & . 23 & 6 & 1.65 & . 05 & . 01 & 1 & 11 \\
\hline 81es562 932.55 & 3 & 16 & 2 & 58 & . 2 & 23 & 13 & 136 & 2.78 & 5 & 5 & ND & 1 & 42 & 1 & 2 & 3 & 83 & 1.51 & . 19 & \(b\) & 11 & 1.11 & 28 & . 21 & 5 & 1.41 & . 05 & . 06 & 1 & 10 \\
\hline 8185562932356 & I & 54 & 5 & 36 & . 2 & 21 & 13 & 569 & 2.34 & 5 & 5 & ND & 2 & 38 & 1 & 2 & 2 & 60 & . 99 & . 15 & 7 & 21 & . 68 & 32 & . 19 & 3 & . 12 & . 05 & . 14 & , & 4 \\
\hline 8185562932357 & 1 & 69 & 1 & 45 & . J & 21 & 12 & 560 & 2.06 & 2 & 5 & ND & 1 & 59 & 1 & 2 & 2 & 59 & 1.02 & . 16 & 1 & 20 & . 57 & 11 & . 23 & 1 & . 81 & . 05 & . 06 & 1 & 5 \\
\hline 8185562932358 & 1 & 12 & 7 & 43 & . 2 & 18 & 15 & 115 & 3.03 & 1 & 5 & ko & 2 & 35 & 1 & , & 2 & 75 & 1.10 & . 16 & 7 & 25 & . 89 & 31 & . 24 & 5 & 1.08 & . 15 & . 05 & 1 & 1 \\
\hline E185562 932359 & 3 & 19 & 1 & 13 & . 2 & 18 & 12 & 322 & 2.30 & 1 & 5 & ND & 1 & 26 & 1 & 2 & 2 & 69 & 1.55 & . 16 & 8 & 21 & . 68 & 23 & . 21 & 3 & . 80 & . 05 & . 01 & 1 & 3 \\
\hline 8185562932350 & 1 & 121 & 13 & 13 & . 5 & 21 & 17 & 182 & 3.65 & 9 & 5 & N0 & 2 & 23 & 1 & 2 & 3 & 81 & 1.28 & . 16 & 5 & 32 & 1.02 & 31 & . 25 & 2 & 1.32 & . 05 & . 05 & 2 & 4 \\
\hline 8185562932361 & 3 & 66 & 2 & 54 & . 1 & 18 & 15 & 503 & 3.17 & 11 & 5 & Ni & & 30 & 1 & 2 & 2 & 111 & 2.61 & . 16 & 7 & 13 & 1.67 & 25 & . 24 & 2 & 1.88 & . 05 & . 04 & 1. & 2 \\
\hline 8185562932362 & 5 & 53 & b & 38 & . 1 & 17 & 13 & 423 & 3.27 & 11 & & Ho & 1 & 23 & 1 & 2 & 2 & 90 & 1.86 & . 15 & 10 & 31 & 1.30 & 20 & . 23 & 5 & 1.51 & . 0.5 & . 03 & 1 & 6 \\
\hline 8185562932363 & 3 & 50 & 2 & 54 & .1 & 18 & 15 & 653 & 4.16 & 18 & 5 & no & 2 & 12 & 1 & 2 & & 136 & 3.20 & . 14 & B & 11 & 2.09 & 38 & . 25 & 4 & 2.19 & . 01 & . 06 & 1 & 3 \\
\hline 8185562932361 & 3 & 56 & 2 & 57 & . 1 & 18 & 15 & 615 & 4.22 & 21 & 5 & No & 1 & 29 & 1 & 2 & 2 & 146 & 2.30 & . 15 & s & 18 & 2.01 & 34 & . 26 & 2 & 2.13 & . 04 & . 16 & 1 & 1 \\
\hline 8185562932385 & 3 & 66 & 6 & 51 & . 1 & 21 & 17 & 581 & 4.52 & 34 & 5 & H0 & 2 & 21 & 1 & 2 & 2 & 155 & 1.63 & . 16 & 7 & 51 & 2.01 & 31 & . 29 & 1 & 2.13 & . 01 & :05 & 1 & 3 \\
\hline 8185562932366 & 2 & 23 & 5 & 35 & . 1 & 16 & 16 & 117 & 2.98 & 23 & 5 & ND & 1 & 15 & 1 & 2 & 2 & 104 & 1.24 & . 15 & 10 & 33 & 1.15 & 24 & . 21 & 8 & 1.85 & . 05 & . 03 & 2 & 2 \\
\hline 8185562 932367 & 2 & 34 & 4 & 14 & . 1 & 17 & 1 & 475 & 3.59 & 11 & 5 & No & , & 13 & 1 & 2 & 3 & 118 & . 93 & . 17 & 8 & 40 & 1.71 & 25 & . 30 & 4 & 1.95 & . 04 & . 01 & 1 & 1 \\
\hline B1es562 9323id & 3 & 12 & 6 & 11 & . 1 & 20 & 15 & 112 & 3.36 & 17 & 5 & ND & 2 & 18 & 1 & 2 & 2 & 116 & 1.80 & . 17 & 1 & 11 & 1.35 & 20 & . 31 & 8 & 1.92 & . 01 & . 03 & 1 & 1 \\
\hline 8165562932369 & 3 & 66 & 2 & 39 & .1 & 18 & 19 & 115 & 3.01 & 24 & 5 & ND & 1 & 18 & 1 & 2 & 2 & 106 & 1.95 & . 16 & 1 & 36 & 1.18 & 28 & . 30 & 9 & 1.87 & . 05 & . 04 & 1 & 3 \\
\hline 8186562932370 & 2 & 33 & 6 & 11 & . 1 & 19 & 16 & 513 & 3.74 & 19 & 5 & ND & 1 & 15 & 1 & 2 & 6 & 138 & 1.33 & . 11 & 9 & 53 & 1.67 & 33 & . 35 & 9 & 2.09 & . 08 & . 04 & 1 & 1 \\
\hline 8185562932371 & 2 & 32 & 1 & 49 & . 1 & 19 & 14 & 455 & 3.31 & 25 & 5 & ND & & 16 & 1 & 3 & 2 & 115 & 1.60 & . 17 & P & 11 & 1.51 & 19 & . 29 & 9 & 2.08 & . 01 & . 03 & 1 & 2 \\
\hline 81E5562 932372 & 2 & 39 & 7 & 38 & . 1 & 19 & 15 & 171 & 3.25 & 11 & 5 & N0 & 2 & 20 & 1 & 2 & , & 102 & 1.76 & . 15 & 9 & 39 & 1.36 & 23 & . 28 & 13 & 2.01 & . 01 & . 03 & 1 & 1 \\
\hline 81 E5562 932373 & 4 & 50 & 2 & 49 & . 1 & 26 & 13 & 623 & 1.22 & 11 & 5 & No & 1 & 23 & 1 & 2 & 2 & 136 & 1.17 & . 16 & 6 & 18 & 1.66 & 4 & . 25 & 5 & 1.93 & . 04 & . 04 & 1 & 3 \\
\hline e1e5562 932374 & 3 & 90 & 8 & 7 & . 1 & 24 & '17 & 565 & 4.11 & 11 & 5 & NO & 2 & 31 & 1 & 2 & 2 & 141 & 2.80 & . 16 & 6 & 47 & 1.69 & 31 & . 23 & 6 & 2.08 & . 04 & . 05 & 1 & 2 \\
\hline 8185562 932375 & 3 & 67 & 6 & 11 & . 2 & 20 & 15 & 781 & 1.61 & 10 & 5 & N0 & 2 & . 38 & 1 & 2 & 2 & 126 & 3.25 & . 15 & 5 & 11 & 1.96 & 31 & . 11 & 3 & 2.55 & . 02 & . 05 & 1 & 3 \\
\hline 8165562 932376 & 5 & 98 & 88 & 57 & . 3 & 28 & 18 & 196 & 5.02 & 10 & 5 & no & 2 & 22 & 1 & 11 & 2 & 159 & 1.10 & . 16 & 7 & 39 & 1.76 & 32 & . 15 & 2 & 2.08 & . 01 & . 07 & 1 & 2 \\
\hline EIES562 932377 & 6 & 139 & 10 & 74 & . 2 & 35 & 19 & 458 & 5.00 & 8 & 5 & NH & 2 & 20 & 1 & 2 & 2 & 110 & 1.20 & . 16 & , & 52 & 1.84 & 23 & . 11 & 2 & 2.17 & . 03 & . 06 & 1 & 1 \\
\hline 8185562932378 & 5 & 113 & 1 & 63 & . 3 & 28 & 22 & 511 & 5.75 & 9 & 5 & NO & 1 & 17 & 1 & 2 & 2 & 148 & . 95 & . 18 & 8 & 51 & 2.09 & 28 & . 14 & 2 & 2.39 & . 03 & . 08 & 1 & 2 \\
\hline İE 81E5\$62 932365 & 3 & 66 & 1 & 19 & . 1 & 21 & 16 & 567 & 4.38 & 29 & 5 & ND & 1 & 20 & 1 & 2 & 2 & 151 & 1.57 & . 16 & 7 & 47 & 1.97 & 32 & . 21 & 5 & 2.08 & . 01 & . 05 & 1 & 3 \\
\hline 818556? 932379 & 5 & 121 & 13 & 72 & 13 & 32 & 21 & 132 & 5.25 & 日 & 5 & KD & 2 & 20 & 1 & 2 & 2 & 167 & 1.73 & . 16 & B & 11 & 1.67 & 29 & . 16 & 7 & 2.28 & . 03 & . 07 & 1 & 1 \\
\hline 8185562932380 & 3 & 87 & 2 & 63 & .2 & 20 & 21 & 135 & 5.53 & 19 & 5 & ND & 2 & 30 & 1 & 3 & 2 & 163 & 1.36 & . 19 & 9 & 11 & 2.27 & 36 & . 18 & 3 & 2.57 & . 04 & . 06 & 1 & 2 \\
\hline e195562 932301 & 2 & 89 & 8 & 76 & . 2 & 24 & 18 & 123 & 5.11 & 7 & 5 & MD & 2 & 45 & 1 & 2 & 2 & 123 & 1.63 & . 16 & 9 & 13 & 2.10 & 16 & . 17 & 3 & 2.38 & . 03 & . 69 & 1 & 1 \\
\hline 8185562 932382 & 3 & 121 & 14 & 10 & . 3 & 31 & 18 & 691 & 5.67 & 3 & 5 & H0 & 2 & 21 & 1 & 1 & 2 & 120 & 1.14 & . 16 & 9 & 50 & 1.86 & 12 & . 15 & J & 2.15 & . 03 & . 08 & 1 & 2 \\
\hline \(510 \mathrm{C} / \mathrm{ff}\)-Al & 20 & so & 39 & 136 & 7.5 & 67 & 29 & 1170 & 3.97 & 39 & 16 & 8 & 35 & 19 & 17 & 15 & 22 & 59 & . 41 & . 15 & 31 & 58 & . 88 & 182 & . 01 & 40 & 1.71 & . 06 & .1] & 12 & 18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ho & \(\mathrm{Ca}_{1}\) & Pb & in & Ag & Ni & Co & \(x_{n}\) & ft & As & 0 & Au & Ih & Sr & cd & Sb & 81 & \(v\) & Ca & P & 12 & [f & Hg & 4 & 11 & 4 & AI & Xa & \(k\) & * & Aull \\
\hline PPM & ffn & PPM & PPM & PFM & PFM & PPM & PFM & 2 & PFM & PPK & PrK & PPM & fFM & PPM & Fin & PPM & PPK & 1 & 1 & PPM & HFM & 1 & HFM & 1 & PFM & \(x\) & 1 & 1 & PPM & PPB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8185562 932303 & 3 & 95 & 14 & 70 & . 6 & 21 & 22 & 784 & 5.14 & 22 & 5 & N0 & 1 & 34 & 1 & 2 & 2 & 169 & 1.81 & : 20 & 12 & 34 & 2.1\% & 29 & . 12 & 15 & 2.76 & . 04 & . 08 & 2 & \\
\hline B1as562 9323e4 & 2 & 63 & 5 & bs & .1 & 18 & 17 & 158 & 5,35 & 2 & 5 & N0 & 1 & 19 & 1 & 2 & 2 & 156 & 1.86 & . 11 & ? & 39 & 2.25 & 7 & . 16 & 2 & 2.36 & . 05 & . 10 & 1 & \\
\hline 8185562932385 & 3 & 58 & 17 & 81 & . 1 & 150 & 29 & 1255 & 5.89 & 31 & 5 & No & 2 & 61 & 1 & 2 & 2 & 159 & 3.01 & . 18 & 8 & 259 & 3.5) & 32 & . 11 & 2 & 3.23 & . 03 & . 01 & 1 & 2 \\
\hline 8185532 932388 & 3 & 83 & 6 & 69 & . 5 & 24 & 19 & 809 & 5.64 & 30 & 5 & K1 & 2 & 3 & 1 & 2 & 2 & 179 & . 99 & . 18 & 8 & 48 & 2.34 & 66 & . 13 & 2 & 2.62 & . 03 & . 10 & 1 & 8 \\
\hline 8185562932887 & 5 & 98 & 3 & 163 & . 8 & 40 & 19 & 101 & 4.85 & 35 & 5 & NO & 2 & 19 & 1 & 2 & 2 & 155 & 2.10 & . 19 & 1 & \({ }^{81}\) & 1.99 & 38 & . 10 & 5 & 1.81 & . 01 & . 06 & 1 & \\
\hline 818556? 932360 & 1 & 123 & 7 & 226 & . 6 & 52 & 18 & 109 & 5.69 & 11 & 5 & ND & 1 & 33 & 1 & 2 & 2 & 175 & 1.31 & . 16 & 9 & 81 & 1.99 & 39 & . 11 & 11 & 1.91 & . 04 & . 07 & 1 & \\
\hline 8185562932389 & 15 & 119 & ¢ & 150 & . 8 & 59 & 16 & 315 & 4.27 & 36 & 5 & N0 & 1 & 67 & 2 & 2 & 2 & 110 & 3.88 & . 18 & 6 & 67 & 1.07 & 39 & . 11 & 11 & 1.21 & . 03 & . 10 & 1 & \\
\hline E185562 932390 & 8 & 112 & \(b\) & 251 & . 6 & 50 & 11 & 311 & 4.64 & 11 & 5 & N0 & 2 & 33 & 3 & 2 & 3 & 121 & 1.67 & . 19 & 3 & 82 & 1.11 & 16 & . 12 & 2 & 1.15 & . 01 & . 05 & 1 & \\
\hline 8195562 932391 & 8 & 103 & 8 & 198 & . 6 & 18 & 16 & 291 & 4.04 & 21 & 5 & ko & 2 & 31 & 6 & 2 & 2 & 167 & 1.89 & . 15 & 6 & 61 & 1.23 & 12 & . 12 & 1 & 1.18 & . 04 & . 16 & 1 & \\
\hline 510 C & 19 & 81 & 41 & 135 & 7.5 & bs & \(3!\) & 114 & 3.95 & 38 & 19 & 1 & 35 & 18 & 16 & 16 & 21 & 59 & . 16 & . 14 & 31 & 58 & . 88 & 112 & .08 & 39 & 1.74 & . 06 & . 11 & 11 & \\
\hline 8185562932392 & 13 & 151 & 10 & 321 & . 9 & 51 & 21 & 111 & 4.80 & 223 & 5 & NO & 2 & 36 & 4 & 3 & 2 & 116 & 1.08 & . 21 & 9 & 92 & 1.62 & 53 & . 12 & 11 & 1.29 & . 03 & . 05 & 1 & 26 \\
\hline 8185ss2 932393 & 6 & 61 & 8 & 233 & .1 & 14 & 16 & 357 & 3.56 & 48 & 5 & N0 & 1 & 37 & 2 & 2 & 2 & 18 J & . 99 & . 11 & 9 & 79 & 1.84 & 55 & . 11 & 2 & 1.81 & . 11 & . 09 & 1 & 2 \\
\hline 8185562932394 & 6 & 22 & 2 & 63 & . 2 & 32 & 25 & 864 & 6.19 & 5 & 5 & x 0 & 1 & 52 & 1 & 2 & 2 & 121 & 2.21 & . 18 & 2 & 108 & 3.25 & 91 & . 11 & 10 & 2.11 & . 04 & 1.82 & 1 & \\
\hline 8185582932385 & 1 & 58 & 9 & 87 & .1 & 33 & 24 & 888 & 8. 19 & 14 & 5 & KD & 1 & 17 & 1 & 1 & 2 & 132 & 2.00 & . 18 & 12 & 100 & 3.12 & 124 & . 19 & 6 & 2.00 & . 01 & 1.72 & 3 & \\
\hline 8185562932396 & 1 & 72 & 22 & 56 & .1 & 33 & 31 & 871 & 1.29 & 1 & \(\vdots\) & ko & 3 & 83 & 1 & 2 & 2 & 130 & 4.24 & . 11 & 1 & 116 & 2.93 & 148 & . 19 & 8 & 1.84 & . 04 & 1.60 & 1 & \\
\hline B185562 932397 & J & 243 & 5 & 62 & . 5 & 31 & 12 & 813 & 5.67 & 3 & 5 & N0 & 2 & 10 & 1 & 2 & 2 & 122 & 1.81 & . 18 & 6 & 128 & 2.79 & 135 & . 19 & 5 & 1.89 & . 05 & 1.45 & 1 & 2 \\
\hline kE 61855s2 932392 & 13 & 152 & 12 & 316 & . 9 & 52 & 20 & 436 & 4.76 & 228 & 5 & xo & 1 & 36 & 4 & 2 & 1 & 115 & 1.05 & . 20 & 11 & 91 & 1.06 & 5 & . 12 & 1 & 1.26 & . 03 & . 05 & 2 & 28 \\
\hline 8185562932398 & 3 & 105 & 3 & 62 & .4 & 35 & 29 & 966 & 8.86 & , & 5 & no & 2 & 14 & 1 & 2 & 2 & 111 & 3.72 & . 18 & 9 & 82 & 3.07 & 69 & . 21 & 1 & 2.00 & . 05 & 1.69 & 1 & \\
\hline 8185562932399 & 3 & 64 & 3 & 17 & . 3 & 31 & 22 & 817 & 5.98 & 6 & 5 & * 0 & 1 & 55 & 1 & 2 & 2 & 126 & 2.08 & . 19 & 6 & 81 & 1.95 & 71 & . 17 & 10 & 1.35 & . 04 & . 58 & 1 & 10 \\
\hline SID [/FA-aU & 20 & 61 & 38 & 133 & 7.4 & 67 & 31 & 1155 & 3.91 & 39 & 11 & 8 & 35 & 49 & 17 & 15 & 22 & 59 & . 16 & . 11 & 39 & 51 & . 88 & 185 & . 01 & 39 & 1.72 & . 08 & .11 & 12 & 50 \\
\hline
\end{tabular}

\(\qquad\) SELCO-A DIVISIDN OF BP FROJECT - : 562-10141 FILE || 日S-2日89
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SAMPLEI & \[
\begin{array}{r}
K_{0} \\
\text { PPK }
\end{array}
\] & \({ }_{\text {PPK }}^{\text {Cu }}\) & Pb
PPM & ln & \[
\begin{gathered}
A_{1} \\
P P M
\end{gathered}
\] & \[
\underset{\text { PPM }}{\substack{\text { ii } \\ \hline}}
\] & \[
\begin{gathered}
\text { Co } \\
\text { PPK }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Kn}_{\mathrm{n}} \\
\text { PP }
\end{gathered}
\] & Fe & As
PPM & VPM & PPM & \[
\begin{aligned}
& \text { In } \\
& \text { PPK }
\end{aligned}
\] & PPK & PPK & Sb
PPK & \[
\begin{gathered}
81 \\
P P K
\end{gathered}
\] & PPM & [1 & 1 & \(1 /\)
PPK & Cr & \(\stackrel{\mathrm{Kg}}{1}\) & 81
PPM & II & PPK & 4 & H
1
1 & \(k\) & PPK & \[
\begin{gathered}
\text { Aull } \\
\text { PPB }
\end{gathered}
\] \\
\hline \multirow[t]{23}{*}{TRI} & 8185562932106 & 1 & 180 & 3 & 38 & . 6 & 5 & 11 & (13 & 2.37 & 8 & 5 & no & 2 & 23 & 1 & 2 & 1 & 5 & . 91 & . 11 & 8 & 2 & . 21 & . 317 & . 01 & 1 & . 16 & . 03 & . 20 & 1 & 60 \\
\hline & 8185562932107 & 1 & 206 & 1 & 31 & . 2 & 3 & 10 & 175 & 2.08 & 3 & 5 & NO & J & 13 & 1 & 1 & 2 & 1 & 2.12 & . 1 J & 8 & , & . 22 & 602 & . 01 & 3 & . 36 & . 02 & . 19 & 1 & 10 \\
\hline & 8185562 93: 100 & 1 & 321 & 2 & 12 & . 1 & 5 & 13 & 512 & 2.01 & 13 & 5 & kD & 3 & 36 & 1 & 60 & 1 & 1 & 2.53 & . 11 & 1 & 3 & . 21 & 313 & . 01 & 3 & . 10 & . 02 & . 21 & 1 & 95. \\
\hline & 8185562932109 & 1 & 383 & 5 & 50 & .1 & 1 & 16 & 173 & 2.20 & 2 & 5 & No & 1 & 21 & 1 & 3 & 3 & 1 & 1.18 & . 13 & 10 & 1 & . 09 & 391 & . 01 & 1 & . 39 & . 03 & . 18 & 1 & 55 \\
\hline & 8185562932110 & 1 & 1231 & 119 & 321 & 2.1 & 2 & 3 & 586 & 2.08 & 39 & 5 & N0 & 2 & 18 & 3 & 212 & 3 & 3 & 2.51 & . 13 & 5 & 1 & . 11 & 281 & . 01 & 2 & . 36 & . 01 & . 20 & 1 & 250 \\
\hline & SID C & 20 & 6 & 38 & 136 & 7.6 & 61 & 21 & 1161 & 3.92 & 39 & 11 & 8 & 35 & 16 & 17 & 16 & 23 & b0 & . 18 & . 11 & 37 & 51 & . 86 & 170 & . 08 & 38 & 1.73 & . 06 & . 11 & 13 & - \\
\hline & 8185562932111 & 2 & 1185 & 213 & 181 & 3.2 & 1 & 2 & 231 & 2.05 & 11 & 5 & KD & 2 & 56 & 1 & 521 & 2 & J & 3.11 & .13 & 5 & 2 & . 52 & 165 & . 01 & 2 & . 31 & . 01 & . 19 & 1 & 215 \\
\hline & 8185562932112 & 1 & 1113 & 10 & 58 & 1.0 & 1 & 3 & 636 & 2.22 & 1 & 5 & No & 2 & 32 & 1 & 46 & 2 & 1 & 1.98 & . 13 & 5 & 1 & . 11 & 317 & . 01 & 5 & . 31 & . 02 & . 19 & 1 & 95 \\
\hline & 8185562932113 & 1 & 102 & 5 & 58 & . 1 & 3 & 1 & 569 & 2.17 & 13 & 5 & No & , & 32 & 1 & 51 & 2 & 1 & 2.11 & . 13 & 1 & 1 & . 25 & 220 & . 01 & 2 & . 31 & . 02 & . 18 & 1 & 125 \\
\hline & 8185562932111 & 1 & 1151 & 5 & 65 & 1.1 & 1 & 1 & 113 & 2.11 & 7 & 5 & ND & 2 & 36 & 1 & 3 & 2. & 6 & 2.02 & . 12 & 5 & 3 & . 20 & 621 & . 01 & 3 & . 35 & . 02 & . 19 & 1 & 225 \\
\hline & 8185562932115 & 1 & 1311 & 2 & 81 & . 1 & 5 & 5 & 606 & 6.00 & 5 & 5 & ND & 2 & 25 & 1 & 40 & 2 & 21 & 1.13 & . 13 & 2 & 1 & .12 & 173 & . 01 & 2 & . 33 & . 02 & . 19 & 1 & 390 \\
\hline & 8185562932116 & 2 & 1511 & 3 & 11 & 1.6 & 1 & 1 & 610 & 4.15 & 2 & 5 & HD & 1 & 51 & 1 & 3 & 2 & 20 & 1.62 & . 14 & 6 & , & . 21 & 515 & . 01 & 5 & . 33 & .03 & . 18 & 1 & 10 \\
\hline & 8185562932111 & 1 & 511 & 5 & 76 & . 1 & 1 & 3 & 526 & 2.05 & 1 & 5 & NB & 1 & 29 & 1 & 12 & 2 & 1 & 1.51 & . 11 & 5 & 1 & . 01 & 178 & . 01 & 2 & . 39 & . 02 & . 20 & 1 & 110 \\
\hline & 8185562932118 & 2 & 1192 & 3 & 69 & 1.8 & 5 & \(J\) & 511 & 3.91 & 1 & 5 & N0 & 1 & 36 & 1 & 51 & 2 & 8 & . 96 & . 12 & 2 & 1 & . 15 & 65 & . 01 & 3 & . 35 & . 02 & :20 & 1 & 195 \\
\hline & 8185562932119 & 1 & 1026 & 1 & 108 & 3.2 & 12 & 11 & 83J & 3.81 & 30 & 5 & no & 2 & 93 & 1 & 129 & 2 & 10 & 1.69 & . 15 & J & 9 & . 63 & 16 & . 01 & 2 & . 31. & . 01 & . 18 & 1 & 230 \\
\hline & 8185562932420 & 3 & 169 & 10 & 81 & . 8 & 12 & 30 & 1188 & 6.01 & 1 & 5 & N0 & 3 & 151 & 1 & 31 & 2 & 14 & 4.11 & . 11 & 2 & 30 & 1.67 & 11 & . 01 & 2 & . 31 & . 01 & . 20 & 1 & 90 \\
\hline & 8185562932421 & 23 & 169 & 821 & 252 & 7.1 & 219 & 33 & 2706 & 5.89 & 66 & 5 & ND & 1 & 52 & 3 & 65 & 2 & 11 & 1.86 & . 12 & 2 & 38 & 1.00 & 31 & . 01 & , & . 16 & . 01 & . 13 & 1 & 130 \\
\hline & 8185562932422 & 2 & 232 & 11 & 51 & .6 & 15 & 20 & 168 & 3.03 & 1 & 5 & KD & 1 & 55 & 1 & 2 & 2 & 9 & 3.19 & . 11 & 3 & 5 & . 90 & 55 & . 01 & & . 10 & . 01 & . 20 & , & 38 \\
\hline & 8185562932123 & 1 & 128 & 5 & 10 & .1 & 18 & 12 & 389 & 2.16 & 3 & 5 & KD & 2 & 13 & , & & 2 & 18 & . 39 & . 11 & 5 & 6 & . 65 & 126 & . 01 & 2 & . 86 & . 03 & . 11 & 1 & 11 \\
\hline & 8185562932124 & 1 & 88 & 5 & 11 & . 3 & 12 & is & 551 & 3.26 & 1 & 5 & ND & 3 & 24 & 1 & 2 & 2 & 39 & 1.29 & . 16 & 6 & 15 & 1.03 & 128 & . 02 & 5 & 1.21 & . 03 & . 11 & 1 & 31 \\
\hline & 8185562932125 & 1 & 89 & 2 & 13 & . 2 & 12 & 12 & 603 & 3.51 & 2 & 5 & No & 2 & 31 & 1 & 2 & , & 51 & 1.31 & . 15 & 1 & 15 & 1.35 & 62 & . 01 & J & 1.16 & . 03 & . 11 & 1 & 31 \\
\hline & 8185562932126. & 1 & 81 & 1 & 56 & . 2 & 16. & is & 131 & 1.00 & 1 & 5 & ND & 2 & 31 & , & 2 & 2 & 11 & 1.05 & . 18 & 1 & 22 & 1.55 & 58 & . 02 & 3 & 1.60 & . 04 & . 11 & 1 & 15 \\
\hline & 8185562932121 & & 98 & 1 & 52 & . 3 & 11 & 15 & 121 & 3.90 & 1 & 5 & ND & 2 & 28 & 1 & , & 2 & 68 & 1.16 & . 11 & 5 & 22 & 1.17 & 56 & . 01 & & 1.51 & . 03 & . 12 & 1 & 18 \\
\hline \multirow[t]{2}{*}{\(\because\)} & 8185562932128 & & 85 & 6 & 55 & . 2 & 15 & 15 & 691 & J. 91 & 1 & 5 & NO & 2 & 29 & 1 & 2 & 2 & 81 & . 69 & .18 & 1 & 25 & 1.80 & 13 & . 05 & 2 & 1.81 & . 03 & . 11 & 1 & 29 \\
\hline & 8185562932129 & 1 & 90 & 5 & 60 & . 1 & 16 & 16 & 116 & 1.36 & 1 & 5 & \% & 2 & 19 & 1 & , & 2 & 18 & 2.81 & .19 & 5 & 30 & 1.67 & 130 & . 05 & , & 1.13 & . 03 & . 11 & 1 & 34 \\
\hline \multirow[t]{10}{*}{fr\%} & 8185562932130 & & & 1 & 61 & & 2 & 3 & 511 & 1.08 & 2 & 5 & no & 2 & 29 & 1 & 25 & 2 & 9 & 1.28 & . 11 & 2 & 3 & .16 & 101 & . 01 & & . 39 & . 02 & . 20 & 1 & 195 \\
\hline & 8185562932131 & 1 & 815 & 1 & 81 & . 6 & 3 & 10 & 788 & 1.55 & J & 5 & N0 & \(J\) & 30 & 1 & 10 & 2 & 11 & 1.12 & . 13 & , & 3 & . 10 & 128 & . 01 & 1 & . 10 & . 02 & . 20 & 1 & 95 \\
\hline & 8185562932132 & 1 & 688 & 2 & 31 & . 3 & 1 & 1 & 620 & 2.62 & 2 & 5 & No & 2 & 26 & 1 & 1 & 2 & 5 & 1.01 & . 13 & 5 & 2 & . 08 & 783 & . 01 & 3 & . 38 & . 02 & . 19 & 1 & 85 \\
\hline & RE 8185562932121 & 1 & 86 & 6 & 13 & . 2 & 15 & 13 & 576 & J. 13 & , & 5 & no & 2 & 25 & 1 & 2 & 3 & 10 & 1.37 & . 11 & 5 & 16 & 1.09 & 131 & . 02 & 3 & 1.21 & . 03 & . 15 & 1 & 31 \\
\hline & 8185562 932131 & 1 & 1817 & 5 & 38 & 1.1 & 2 & 1 & 386 & 3.10 & 8 & 5 & no & 2 & 30 & 1 & 96 & 2 & 5 & . 81 & . 01 & 2 & 1 & . 11 & 26 & . 01 & J & . 25 & . 03 & . 11 & , & 1180 \\
\hline & 8185562932135 & & & & & & & 21 & 1240 & 1.19 & 1 & 5 & & 1 & 137 & 1 & 6 & 2 & 11 & 5.81 & . 12 & 5 & J5 & 1.51 & 202 & . 01 & 2 & . 26 & . 01 & . 15 & 1 & 15 \\
\hline & 8185562932136 & 1 & 1308 & 1 & 52 & . 8 & 12 & 2 & 558 & 3.66 & 2 & 5 & ko & 3 & 21 & 1 & 5 & 2 & 21 & . 13 & . 01 & 2 & 1 & . 07 & 481 & . 01 & 2 & . 21 & . 03 & . 11 & 1 & 215 \\
\hline & 8185562932151 & 1 & 2001 & 19 & 110 & 1.3 & 3 & 1 & 617 & 2.15 & 23 & 5 & Ho & 2 & 31 & 1 & 208 & 2 & 5 & 1.30 & . 06 & 2. & 1 & . 05 & 311 & . 01 & J & . 19 & .03 & . 09 & 1 & 505 \\
\hline & 8185562 932438 & 1 & 839 & 1 & 50 & . 5 & 11 & 6 & 697 & 3.11 & \(?\) & 5 & no & 3 & 12 & 1 & 18 & 2 & 9 & 2.31 & . 13 & 1 & 11 & . 62 & 311 & . 01 & 2 & . 32 & . 01 & . 18 & 1 & 190 \\
\hline & 8185562932139 & 1 & 522 & 11 & 10 & . 8 & 1 & 2 & 315 & 1.29 & 3 & 5 & KD & 2 & 18 & , & 5 & 2 & 1 & . 26 & . 05 & 6 & 3 & . 03 & 353 & . 01 & 2 & . 28 & . 02 & . 15 & , & 11 \\
\hline & - 8185562937840 & \(?\) & 657 & 11 & 42 & 1.8 & 1 & 2 & 557. & & 1 & 5 & no & & 15 & 1 & & 2 & 6. & .12 & . 06 & 3 & 2 & . 04 & 364 & . 01 & 2 & . 26 & . 03 & . 11 & 1 & 250 \\
\hline & 8185562932111 & 2 & 789 & 8 & 52 & 1.3 & 5 & 1 & \(498{ }^{\circ}\) & 1.82 & 1 & 5 & 10 & 2 & 15 & 1 & 18 & 2 & 5 & . 52 & . 06 & 5 & 1 & . 06 & 336 & . 01 & 2 & . 29 & . 03 & . 12 & 1 & 110 \\
\hline & 510 C/FA-AU & 19 & 58 & 39 & 138 & 1.5 & 65 & 29 & 1173 & 3.96 & 39 & 16 & 1 & 3 & 16 & 16 & 15 & 20 & 80 & . 18 & . 11 & J8 & 59 & . 88 & 175 & . \(08{ }^{\circ}\) & J8 & 1.11 & . 06 & . 11 & 12 & 31 \\
\hline
\end{tabular}
```

SELCO - A DIVISION OF EP FROJECT - EG2-10141 FILE | E5-28G9

```

PAGE 2

SAKfle

8183562932142 8105567 932143 81 BS562 932111
SID C
1185567 932445
0185562937146
日185562 932011 1805562 932148
RE 8185562937111
8185562932419
8185562932150
sĩo C/TA-AU

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 360 & 8 & 50 & . 1 & 12 & 11 & 513 & 2.01 & 3 & 5 & ND & 1 & 18 & 1 & 8 & 2 & 8 & . 63 & . 06 & 6 & 6 & . 16 & 136 & . 01 & 2 & . 29 & . 01 & . 10 & 1 & 60 \\
\hline 2 & (3) & 10 & 89 & . 1 & 11 & 20 & 135 & 2.62 & 11 & 5 & \% & 1 & 25 & 1 & 1 & 2 & 19 & 1.51 & . 11 & 6 & 1 & . 38 & 118 & . 01 & 2 & . 19 & . 02 & . 11 & 1 & 65 \\
\hline 1 & 109 & 5 & 11 & . 5 & 11 & 18 & 682 & 2.31 & 11 & 5 & H0 & 1 & 55 & 1 & 13 & 1 & 1 & 1.82 & . 08 & 6 & 1 & . 60 & 132 & . 01 & 2 & . 31 & . 03 & . 11 & 1 & 85 \\
\hline 20 & 58 & 39 & 131 & 7.5 & 68 & 29 & 1129 & 3.90 & 31 & 16 & 1 & 31 & 45 & 11 & 11 & 20 & 51 & . 48 & . 14 & 36 & 58 & .81 & 172 & . 01 & 38 & 1.88 & . 06 & . 10 & 11 & \\
\hline 1 & 121 & J & 53 & . 3 & 8 & 20 & 351 & 2.11 & 1 & 5 & No & 1 & 11 & , & 2 & 1 & 13 & . 78 & . 12 & 1 & 1 & . 81 & 162 & . 01 & 3 & 1.03 & . 02 & . 11 & 1 & 29 \\
\hline 1 & 161 & 1 & 11 & . 1 & 1 & 11 & 358 & 2.32 & 2 & 5 & No & 1 & 22 & 1 & 2 & 2 & 15 & . 85 & . 09 & 5 & 6 & . 11 & 125 & . 01 & J & . 91 & . 03 & . 13 & 1 & 45 \\
\hline 1 & 631 & 6 & 59 & . 1 & 7 & 5 & 161 & 2.80 & 2 & 5 & no & 1 & 23 & 1 & 2 & 2 & 23 & . 95 & . 12 & 5 & 1 & . 96 & 256 & . 03 & 2 & 1.12 & . 03 & . 15 & 1 & 65 \\
\hline 2 & 2143 & 11 & 10 & .1 & 21 & 11 & [33 & 1.88 & 1 & 5 & ND & 1 & 31 & 1 & 2 & 2 & 66 & 1.11 & . 18 & 1 & 37 & 1.69 & 86 & . 08 & 2 & 1.11 & . 02 & . 12 & 1 & 230 \\
\hline 1 & 105 & 1 & 11 & . 6 & 12 & 18 & 683 & 2.36 & 15 & 5 & no & 1 & 56 & 1 & 11 & 2 & 1 & 1.81 & . 09 & 6 & 1 & . 61 & 112 & . 01 & 3 & . 32 & . 03 & . 11 & 1 & 80 \\
\hline 1 & 811 & 5 & 13 & . 3 & 30 & 11 & 985 & 4.19 & 11 & 5 & KD & 1 & 11 & 1 & 6 & 2 & 50 & 1.12 & . 15 & 1 & 39 & 1.31 & 111 & . 01 & 2 & 1.18 & . 02 & . 16 & 1 & 85 \\
\hline 2 & 115 & 2 & 82 & .1 & 54 & 19 & 1153 & 4.00 & 5 & 5 & ND & 1 & 65 & 1 & 2 & 2 & 111 & 2.11 & .16 & 1 & 131 & 3.21 & 306 & . 09 & 2 & 2.50 & . 02 & . 01 & 1 & 220 \\
\hline 21 & 10 & 10 & 135 & 1.5 & \({ }^{6}\) & 30 & 1201 & 3.91 & 39 & 19 & 8 & 35 & 19 & 11 & 15 & 22 & 58 & . 17 & . 15 & 31 & b1 & . 81 & 183 & . 08 & 38 & 1.12 & . 06 & . 11 & is & \(30^{\circ}\) \\
\hline
\end{tabular}

\section*{ACME ANALYTICAL LABORATORIES LTD.}

852 East Hastings St., Vancouver, B.C. V6A 1R6 File: _85-2889
Date: \(\square C T\) 25_1285


PLEASE PAY LAST AMOUNT

\section*{APPENDIX 7}

GEOCHEMICAL PREPARATION AND ANALYTICAL PROCEDURES
1. Soil samples are dried at \(60^{\circ} \mathrm{C}\) and sieved to -80 mesh.
2. Rock:samples are pulyerized to - 100 mesh.

Geochemical Analysis (AA and ICP)
0.5 gram samples are digested in hot dilute aqua regia in a boiling water bath and diluted: to 10 ml with demineralized water. \(\therefore\) Extracted metals are determined by :
A. Atomic Absorption (AA)

Ag*, \(\mathrm{Bi} \mathrm{A}^{*}, \mathrm{Cd} \mathrm{Cl}^{*} \mathrm{CO}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{In} ; \mathrm{Mn}, \mathrm{MO}, \mathrm{Mi}, \mathrm{Pb}, \mathrm{Sb} *, \mathrm{Tl}, \mathrm{Y}, \mathrm{Zn}\)
(. * denotes with backgrourd correction.).
8. Inductively Coupledः Argon Plasma (ICP) :
\(\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Au}, \mathrm{B}, \mathrm{Ba}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}\), \(\mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Sr}, \mathrm{Th}, \mathrm{Ti}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Zn}\).

\section*{Geochemical Analysis for Au*}
10.0 gram samples that have been ignited overnite at \(800^{\circ} \mathrm{C}\) are digested with hot dilute aqua regia, and the clear solution obtained is extracted with Methyl Isobutyl Ketone.

Au is deterinined in the MIBK extract by Atamic Absorption using background correction (Detection Limit. \(=5\) مob direct AA and 1 ppo graphite AA.):
Geochemical Analysis for Au**, Pd, Pt, Rh.
10.0-30.0 gram samples are subjected to Fire Assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and \(\mathrm{Au}, \mathrm{Pd}, \mathrm{Pt}\) and Rh are determined in the solution by graphite furnace Atomic Absorption.

\section*{Geochemical Analysis for As}
0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml . As is determined in the solution by Graphite furnace Atomic Absorption (AA) or by Inductively Coupled Argon Plasma (ICP).
Geochemical Analysis for Barium
0.1 gram samples are digested with hot NaOH and EDTA solution, and diluted to 10 ml .

Ba is determined in the solution by Atomic Absorption or ICP.
Geochemical Analysis for Tungsten
1.0 gram samples are fused with \(\mathrm{KCl}, \mathrm{KNO}_{3}\) and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) flux in a test tube, and the fusions are leached with 20 ml water. \(W\) in the solution determined by ICP with a detection of 1 ppm.

\section*{Geochemical Analysis for Uranium}
0.5 gram samples are digested with hot aqua regia and diluted to 10 ml .

Aliquots of the acid extract are solvent extracted using a salting agent and aliquots of the solvent extract are fused with \(\mathrm{NaF}, \mathrm{K}_{2} \mathrm{CO}_{3}\) and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) flux in a plaṭinum dish:

The fluorescence of the pellet is determined on the jarrel Ash Fluorometer. Geochemical Analysis for Fluorine
\(0.25^{\text {ºm }}\) gram samples are fused with sodium hydroxide and leached with 10 ml water: The solution is neutralized, buffered, adjusted to pH 7.8 and diluted to 100 ml .

Fluorine is determined by Specific Ion Electrode using an Orion Model 404 meter.
\(\therefore 1: 0\) gram samples are fused with ammonium iodide in a test tube. The: sublimed iodine is leached with dilute hydrochloric acid.

The solution is extracted with MIBX and tin is determined in the extract by Atomic Absorption. Geochemical Analysis for Ciromium
0.1 gram samples are fusad with \(\mathrm{Na}_{2} \mathrm{O}_{2}\). The melt is leached with HCI and analysed by AA or ICP.
Geochemical Analysis for Hg
0.5 gram samples is digested with aqua regia and diluted with \(20 \% \mathrm{HCl}\) :

Hg in the solution is determined by cold vapour AA using a F \& J Scientific Hg assembly. An aliquot of the extract is added to a stannous chloride / hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it is measured by \(A A\).

\section*{Geochemical Analysis for Ga \& Ge}
0.5 gram samples are digested with hot aqua regia with HF in pressure bombs.

Ga and Ge in the solution are determined by graphite furnace AA.
Geochemical Analysis for Tl (Thallium)
0.5 gram samples are digested with \(1: 1 \mathrm{HNO}_{3}\). Tl is determined in the extract by graphite AA.
Geochemical Analysis for Te (Tellurium)
0.5 gram samples are digested with hot aqua regia. The Te extracted in MIBK is analysed by AA graphite furnace.

APPENDIX 8
METHOD OF HISTOGRAM INTERPRETATION

Rules for choice of size coding or contouring intervals
(1) Examine both arithmetic and logarithmic:histograms for each type of survey data. Choose the histogram which most: closely approximates a normal (or lognormal) aistribution. If there are several populations exhibited on the histogram, subjectively divide the data into a series of nomal or lognormal distributions... Avoid interpreting histograms which are strongly skemed. Portions of the arithmetic or logaritmic histograms may be chosen for data interpretation over specific metal concentration intervals, if this allows for the best portrayal of the data in graphical form.
(2) Choose, es two of the coding intervals, points which represent between \(90 \%\) and \(95 \%\) and \(95 \%\) and \(97.5 \%\) of the data, two different numbers: These choices hignlight 1 in 10 and 1 in 20 samples which are considered slightly anomelous and definately anomalous, respectively. These limits are optimistic in that the two categoiies are defined to be anomalous regardiess of the distribution. of values on the remaincer of the histogram. A rigorous statistical approach would suggest that only the 97.5\% value be considered the anomaly.threshold.
(3) Divide the remaining portion of the kistogram into recognizable populations The dividing point of each of these populations is chosen as a coding interval. Minimums caused by the failure of a laboratory to record specific concentration values are ignored. These airtificial breaks in the histogram can be recognized by scanning the laboratory reports.
(4) For each population, choose one or two numbers which correspond to the \(90 \%\) and \(95 \%\) cumulative frequencies for that population (I in 10 and 1 in 20 samples for that population respectively). These will also be used to represent anomalous conaitions for each population.
(5) A maximum of six numbers can be chosen to plot: symbol maps. This. number is dictated by the ability to present data in graphical form with sufficientiy. different symbol sizes to be easily. distinguishable, particularly if maps are to be reauced. The seven defined concentration classes are normally sufficient to represent geochemical data on \(a\) mip.i. More intervals can be chosen if! data are to be controured. Avoid choosing arithmetic intervals without considering rules (1) and.(4):
Maps plotted using the preceeding instructions might result in two areas being distinguished from each other by a relatively uniform density of symbol sizes, yet only poor contrast anomalies are indicated. Differences between the two areas, A and B, might be due to underlying geology, overburden character, soils etc. Whatever the cause, the data are not well displayed. If the underlying control distinguishing \(A\) and \(E\) can be recognized, the data must be divided and re-interpreted following steps (I) to
(5): Iwo sets of meps can be drawn, or botin sets of interpreted cata can be plotted on i single map..- Eor such süperimposed geochemicai maps the symbol sizes:lose- their absolute meaning but essume a. more imoortant stance; that"of reflecting anomalous conditions regardiess of the underlying control. To illustrate, consider the case where \(A\) and \(B\) are areas underiain by very aifferent geology: Anomalous conditions. for low background rock types might be concentrations which are much lower than average values for the high background rock types. Nevertheless, anomalies defined in each area are to be considered significant. Reliance on absolute concentrations can be misleading in such cases.
APPENDIX 9
NOTES ON THEORY, METHOD OF FIELD OPERATION AND PRESENTATION OF DATA FOR THE IP METHOD

\section*{APPENDIX 9}

\section*{PHOENIX GEOPHYSICS LIMITED NOTES ON THE THEORY, METHOD OF FIELD OPERATION AND PRESENTATION OF DATA FOR THE INDUCED POLARIZATION METEOD}

Induced Polarization as a geophysical measurement refers to the blocking action or polarization of metallic or electronic conductors in a medium of ionic solution conduction.

This electro-chemical phenomenon occurs wherever electrical current is passed through an area which contains metallic minerals such as base metal sulphides. Normally, when current is passed through the ground, as in resistivity measurements, all of the conduction takes place through ions present in the water content of the rock, or soil, i.e., by ionic conduction. This is because almost all minerals have a much higher specific resistivity than ground water. The group of minerals commonly described as "metallic", however, have specific resistivities much lower than ground waters. The induced polarization effect takes place at those interfaces where the mode of conduction changes from ionic in the solutions filling the interstices of the rock to electronic in the metallic minerals present in the rock.

The blocking action or induced polarization mentioned above, which depends upon the chemical energies necessary to allow the ions to give up or recieve electrons from the metallic surface, increases with the time that a d.c. current is allowed to flow through the rock; i.e., as ions pile up against the metallic interface the resistance to current flow increases. Eventually, there is enough polarization in the form of excess of ions at the interfaces, to appreciably reduce the amount of current flow through the metallic particle. This polarization takes place at each of the infinite number of solution-metal interfaces in a mineralized rock.

When the d.c. voltage used to create the d.c. current flow is cut off, the Coulomb forces between the charged ions forming the polarization, causing them to return to their normal position. This movement of charge creates a small current flow which can be measured on the surface of the ground as a decaying potential difference.

From an alternate veiwpoint it can be seen that if the direction of the current through the system is reversed repeatedly before the polarization occurs, the effective resistivity of the system as a whole will change as the frequency of the switching is changed. This is a consequence of the fact that the amount of
current flowing through each metallic interfaces depends upon the length of time that current has been passing through it in one direction.

The values of the percent frequency effect or F.E. are a measurement of the polarization in the rock mass. However, since the measurement of the degree of polarization is related to the apparent resistivity of the rock mass, it is found that the metal factor values or M.F. can be useful values determining the amount of polarization present in the rock mass. The M.F. values are obtained by normalizing the F.E. values for varying resistivities.

The Induced Polarization measurement is perhaps the most powerful geophysical method for the direct detection of metallic sulphide mineralization, even when this mineralization is of very low concentration. The lower limit of volume percent sulphide necessary to produce a recognizable IP anomaly will vary with the geometry and geologic environment of the source, and the method of executing the survey. However, sulphide mineralization of less than one percent by volume has been detected by the IP method under proper geological conditions.

The greatest application of the IP method has been in the search for disseminated metallic sulphides of less than \(20 \%\) by volume. However, it has also been used successfully in the search for massive sulphides in situations where, due to source geometry, depth of source, or low resistivity of surface layer, the EM method cannot be successfully applied. The ability to differentiate ionic conductors, such as water-filled shear zones, makes the IP method a useful tool in checking EM anomalies which are suspected of being due to these causes.

In normal field applications the IP method does not differentiate between the economically important metallic minerals such as chalcopyrite, chalcocite, molybdenite, galena, etc., and the other metallic minerals such as pyrite. The Induced polarization effect is due to the total of all electronic conducting minerals in the rock mass. Other electronic conducting materials which can produce an IP response are magnetite, pyrolusite, graphite, and some forms of hematite.

In the field procedure, measurements on the surface are made in a way that allows the effects of lateral changes in the properties of the ground to be separated from the effects of vertical changes in the properties. Current is applied to the ground at two points in distance (X) apart. The potentials are measured at two points (X) feet apart, in line with the current electrodes is an integer number ( \(n\) ) times the basic distance ( \(X\) ).

The measurements are made along a surveyed line, with a constant distance ( \(n X\) ) between the nearest current and potential electrodes. In most surveys, several traverses are made with various values of (n); i.e., (n) \(=1,2,3,4\), etc. The kind of survey required (detailed or reconnaissance) decides the number of values of ( \(n\) ) used.

In plotting the results, the values of apparent resistivity, apparent percent frequency effect, and the apparent metal factor measured for each set of electrode positions are plotted at the intersection of grid lines, one from the centre point of the current electrodes and the other from the center point of the potential electrodes. The resistivity values are plotted at the top of the data profile, above the metal factor values. On a third line, below the metal factor values, are plotted the values of the percent frequency effect. The lateral displacement of a given value is determined by the location along the survey line of the center point between the current and potential electrode. This distance of the value from the line is determined by the distance ( \(n X\) ) between the current and potential electrodes when the measurement was made.

The separation between sender and receiver electrodes is only one factor which determines the depth to which the ground is being

\begin{abstract}
sampled in any particular measurement. The plots then, when contoured, are not section maps of the electrical properties of the ground under the survey lines. The interpretation of the results from any given survey must be carried out using the combined experience gained from field results, model study results and the theoreticl investigations. The position of the electodes when anomalous values are measured is important in the interpretation.
\end{abstract}

In the field procedure, the interval over which the potential differences are measured is the same at the interval over which the electrodes are moved after a series of potential readings has been made. One of the advantages of the Induced Polarization method is that the same equipment can be used for both detailed and reconnaissance surveys merely by changing the distance (x) over which the electrodes are moved each time. In the past, intervals have been used ranging from 25 feet tc 2000 feet for (X). In each case, the decision as to the distance (X) and the values of ( \(n\) ) to be used is largely determined by the expected size of the mineral deposit being sought, the size of the expected anomaly and the speed with which it is desired to progress.

The IP measurement is basically obtained by measuring the difference in potential of voltage ( V ) obtained at two operating frequencies. The voltage is the product of the current through the ground and the apparent resistivity of the ground. Therefore, in field situations where the current is very low due to poor electrode contact, or the apparent resistivity is very low, or a combination of the two effects; the value of ( \(V\) ) the change in potential will be too small to be measureable. The symbol "TL" on the data plots indicates this situation.

In some situations spurious noise, either man-made or natural, will render it impossible to obtain a reading. The symbol "N" on the data plots indicates a station at which it is too noisy to record a reading. If a reading can be obtained, but for reasons of noise there is some doubt as to its accuracy, the reading is bracketed in the data plot ().

In certain situations negative values of Apparent Frequency Effect are recorded. This may be due to the geologic environment or spurious electrical effects. The actual negative frequency effect value recorded is indicated on the data plot; however, the symbol "NEG" is indicated for the corresponding value of Apparent Metal factor. In contouring negative values the contour lines are indicated to the nearest positive value in the immediate vicinity of the negative value.

The symbol "NR" indicates that for some reason the operator did not attempt to record a reading, although normal survey procedures would suggest that one was required. This may be due to inaccesible topography or other similar reasons. Any symbol other than those discussed above is unique to a particular situation and is described with the body of the report.```

