Geochemical Report

- on the -

Bolo Claims

Vernon and Nicola Mining Division, British Columbia

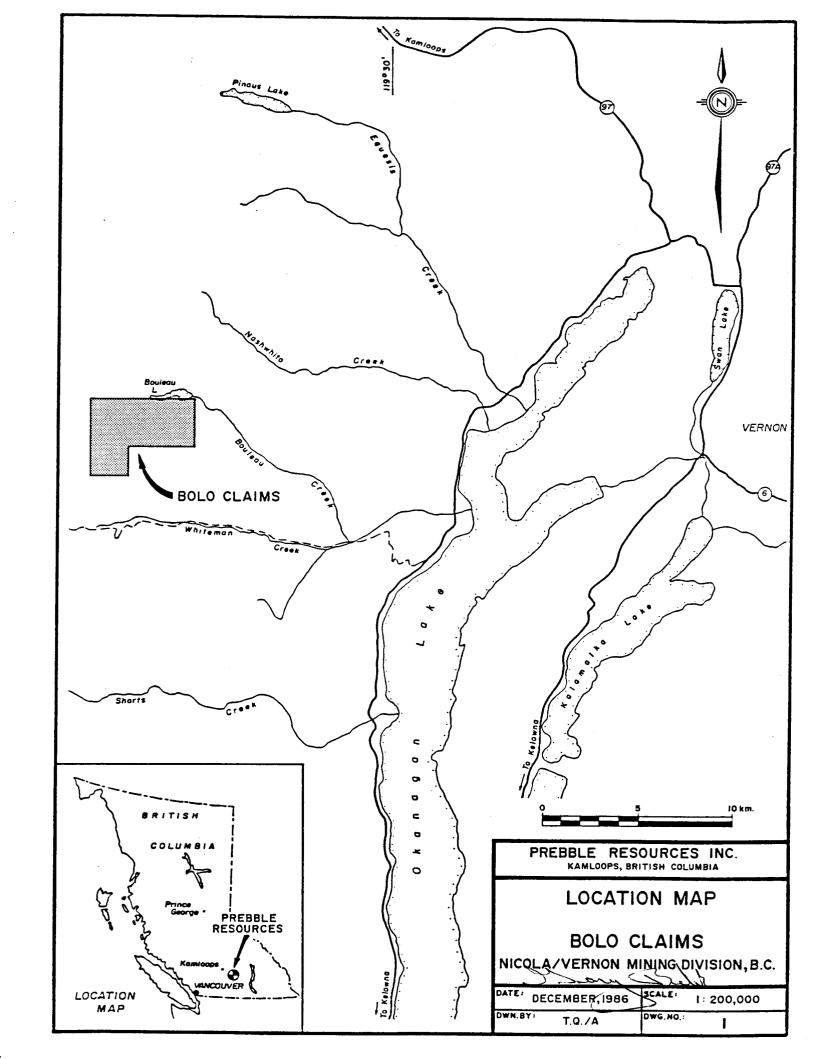
N.T.S. 82L/5E

50° 16′ 119°41′ - for -

Prebble Resources Inc. 664 Sunvalley Drive Kamloops, B. C. V2B 6S4

Prepared by:

G. Belik & Associates Limited 664 Sunvalley Drive Kamloops, B. C. V2B 6S4


Gary D. Belik, M.Sc. December 16, 1986

GEOLOGICAL BRANCH ASSESSMENT REPORT

FILMED

Table of Contents

							1	Page No.
INTRODUCTION .	•	•	•	•	•	•	•	2
CLAIMS .	•	•	•	•	•	•	•	2
LOCATION AND ACC	ESSIBILIT	Ϋ́	•	•	•	•		3
GENERAL GEOLOGIC	CAL SETTIN	i G	•	•	•	•	•	3
PREVIOUS EXPLORA	TION	•	•	•	•	•	•	4
SOIL SAMPLING P	ROGRAM	•	•	•	•	•	•	4
Sampling Me	ethod	•	•	•	•	•	•	4
Laboratory	Determina	tion	Metho	d	•	•	•	5
Presentatio	on of Resu	ılts	•	•	•	•	•	5
Discussion	of Result	ts	•	•	•	•	•	5
CONCLUSIONS AND	RECOMMENI	OATION	IS	•	•	•	•	6
FIGURES:								
1	Location	Map	•	•	•	•	•	1
2	Plan Map Soils	of Go	old ar	nd Ars	enic	in •	•	Pocket
APPENDICES:								
I	Geochemic	cal Ar	nalyse	es				
II	Statemen	t of E	Expend	liture	es			
III	Statemen	_	ualit	ficati	lons:			

INTRODUCTION

During September 25 to October 11, 1986, a preliminary soil sampling program was completed over parts of the Bolo 1-3 mineral claims situated near Bouleau Lake, south-central British Columbia. The soil sampling program was carried out in order to evaluate the northerly extension of a Tertiary volcanic sequence which is known to host several gold-bearing, epithermal vein structures on the adjacent Brett claims held by Huntington Resources Inc.

The 1986 program was completed by G. Belik & Associates Limited, Kamloops, B. C., under the supervision of G.D. Belik, M.Sc.

CLAIMS

The Bolo Property is comprised of 4 contiguous metric claims totalling 67 units as detailed below:

			Annual Control of the	and the second of the second o
Mining <u>Division</u>	Claim Name	Units	Record No.	Record <u>Date</u>
Vernon	Bolo 1	20	2067	Dec. 20, 1985
Vernon	Bolo 2	15	2068	Dec. 20, 1985
Vernon	Bolo 3	20	2069	Dec. 20, 1985
Nicola	Bolo 4	12	1665	Dec. 23, 1985

LOCATION AND ACCESSIBILITY

The Bolo claims are located about 23 km due west of the City of Vernon at approximate geographic co-ordinates 50° 16' North Latitude and 119° 41' West Longitude. The Bolo 3 claim occurs within the Vernon Mining Division. The Bolo 1, 2 and 4 claims occur partly within the Vernon Mining Division and partly within the Nicola Mining Division.

The northern part of the claim area is readily accessible via the Bouleau Lake access road which connects onto the Westside Okanagan Lake Road near Whiteman Creek. The Westside Okanagan Lake Road connects with Highway 97 about 14 km north of Vernon.

GENERAL GEOLOGICAL SETTING

The Bolo claims are underlain by a thick, flat-lying sequence of Tertiary, andesitic to basaltic flows with minor tuff interbeds. East of the claim area, the volcanic sequence unconformably overlies granitic rocks of Jurassic or Cretaceous Age. To the south, on the adjacent Brett claims, the volcanics are cut by north-to northwest-trending altered shear zones and complex quartz vein zones which

locally host significant gold and silver mineralization.

PREVIOUS EXPLORATION

There are no records of any appreciable exploration work having been previously carried out within the area of the Bolo claims.

SOIL SAMPLING PROGRAM

In total 352 soil samples were collected during the 1986 program. Samples were taken at 50-meter intervals along 5 east-west grid lines spaced at 400 meter intervals.

All samples were analysed for arsenic and gold by Kamloops Research and Assay Laboratory Limited, located at 912 Laval Crescent, Kamloops, B. C.

Sampling Method

Soil samples were obtained by digging holes with a maddock to a depth of 15 cms to 30 cms. The "B" horizon was sampled or in some cases the "B-C" horizon depending on soil development at each sample site. Samples were placed in waterproof kraft envelopes and the line number

and station number were marked on the envelopes with an endelible-ink pen.

Laboratory Determination Method

All samples were first dried and then seived to obtain a -80 mesh fraction. Determinations for gold and arsenic were as follows:

	Sample Weight	Digestion	<u>Determination</u>
gold	20.0 grams	fire assay preconcentration	atomic absorp- tion
arsenic	1.0 gram	aquia regia	colormetric

Presentation of Results

Results of the gold and arsenic analyses are listed in Appendix I and shown on Plan Map 2 at a scale of 1:10,000.

Results are reported in parts per billion for gold and parts per million for arsenic.

Discussion of Results

Gold content for the samples collected ranges from

less than 5 ppb to 240 ppb with 97.72% of the samples containing 10 ppb or less. Only one sample is strongly anomalous (240 ppb). Three samples (40 ppb-75 ppb) are considered weak to moderately anomalous and four (15 ppb-20 ppb) are possibly weakly anomalous.

Arsenic values are low and range from less than 2 ppm to 12 ppm. There appear to be no truly anomalous values.

CONCLUSIONS AND RECOMMENDATIONS

The soil survey identified several single-station gold anomalies which occur widely scattered over the grid area. With the exception of one sample, all of the anomalies are relatively weak and do not warrant follow-up work at this time.

A check sample should be taken at 8+00S/10+00E. If this anomaly is repeatable, detailed sampling and prospecting should be carried out in the vicinity in order to determine its extent and possible source.

Respectfully Submitted,

Sile Comald

Gary D. Belik, M.Sc.

G. BELIK & ASSOCIATES LTD.

December 16, 1986

Appendix I

Geochemical Analyses

KAMLOOPS RESEARCH B.C. CERTIFIED ASSAYERS ASSAY LABORATORY LTD.

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

GEOCHEMICAL LAB REPORT

GARY BELIK & ASSOCIATES 664 SUN VALLEY DR., KAMLOOPS, B.C. V2B 654

DATE OCT. 22 1986

FILE NO. G 1531

PAGE 1 / 5

			•	
KRAL NO.	IDENTIFICATION	AU	AS	
i	0+00 L4S	5.0	1.0	
三	0+50E	5.0	1.0	
3	1+00E	3.0	1.0	
4	1+50E	3.0	1.0	
5	2+00E	3.0	1.0	
5	2+505	3.0	1.0	
7	3+00E	₃.೦	1.0	
`a	3+50E	3.0	1.0	
Э	4+00E	3.0	1.0	
10	4+50E	3.0	1.0	
- 11	5+00E	3.0	12.0	
12	5+50E	5.0	3.0	
13	6+00E	3.0	1.0	
14	6+50E	3.0	1.0	
15	7+00 <u>5</u>	3.0	1.0	
16	7+50E	3.0	1.0	
17	8+00E	3.0	1.0	
18	8+50E	3.0	1.0	
19	9+00E	3.0	1.0	
20	10+00E	3.0	1.0	
- 21	10+50E	3.0	1.0	
22	11+00E	3. O	1.0	
23	11+50E	3.0	1.0	
_ 24	12+00E	3.0	1.0	
25	12+50E	3.0	1.0	
26	13+00E	3.0	1.0	
27	13+50E	3.0	2.0	
28	14+00E	3.0	1.0	
29	14+50E	3.0	2.0	
30	15+00E	3.0	1.0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

PAGE 2 / 5

RAL	. NO.	FILE NO. IDENTIFIC	9 1531 ATION	AU	AS	
	31	15+50E		5.0	1.0	
	32	16+00E		3.0	1.0	
	33	15 +5 0E		3.0	1.0	
-	34	17+00E		3.0	1.0	
	35	17+50E		3.0	1.0	
	36	18+00E		3.0	1.0	
-	37	18+50E		3.0	3. 0	
	38	19+00E		3.0		
	39	19+50E		3.0	1.0	
-	40	20+00E	L45	3.0	i.O	
	41	0+50W	L4S	3.0		
	42	1+00W		3.0		
	43	1+50W		3.0		
-	44	2+00W		3.0		
	45	2+50W		3.0		
	46	3+00W		₃.0		
	47	3+50W		3.0		
	48	4+00W		3.0		
	49	4+50W		3.0		
	50 -	5+00W		3.0		
	51	5+50W		3.0		
	52	6+00W		3.0	1.0	
	53	6+50W		3.0		
_	54	7+00W		3.0		
	55	7+50W		3.0		
	56	8+00W		3.0		
	57	8+50W		3.0		
	58	9+00W		3.0		
	59	9+50W		3.0		
-	60	10+00W		3.0		
	61	10+50W		3.0 3.0		
	62 63	11+00W 11+50W		3.0		
	64	12+00W		3.0	2.0 1.0	
	65	12+50W		3.0	1.0	
	66	13+00W		3.0	1.0	
	67	13+50W		3.0	1.0	
	68	14+00W		75.0	1.0	
	6 9	14+50W		15.0	1.0	
	70	15+00W	1 45	3.0	1.0	
_	, ,	ii. 4.2 3 32 3.14 4.14 44	T	U. U	3. a 1./	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

PAGE 3 / 5

'RAL	. NO.	FILE NO. IDENTIFICA	G 1531 ATION	AU	AS	
	71	0+00 L	 -65	3.0	1.0	
	72	0+50E		3.0	1.0	
	73	1+00E		3.0	1.0	
	74	1+50E		3.0	1.0	
	75	2+00E		3.0	2.0	
	75	2+50E		3.0	1.0	
	77	3+00E		3.0	1.0	
	78	3+50E		3.0	1.0	
	79	4+00E		3.0	1.0	
	80	4+50E		3.0	1.0	
-	81	5+00E		3.0	1.0	
	82	5+50E		3.0	1.0	
	83	6+00E		3.0	i.O	
_	84	6+50E		3.0	1.0	
	85	7+00E		3.0	1.0	
	86	7+50E		3.0	1.0	
_	87	8+00E		3.0	1.0	
	88	8+50E		3.0	1.0	
	89	9+00E		3.0	1.0	
	90	9+50E		3.0	1.0	
•	91	10+00E		240.0	1.0	
	35	10+50E		3.0	1.0	
	93	11+00E		3.0	1.0	
-	94	11+50E		3.0	1.0	
	95	12+00E		3.0	1.0	
	96	12+50E		3.0	1.0	
	97	13+00E		3.0	1.0	
	98	13+50E		15.0	1.0	
	99	14+00E		3.0	1.0	
_	100	14+50E		3.0	0.0	
	101	15+00E		3.0	1.0	
	102	15+50E		3.0	1.0	
	103	16+00E		3.0	1.0	
	104	16+505		3.0	1.0	
	105	17+00E		3.0	1.0	
	106	17+50E		3.0	1.0	
-	107	18+00E		3.0	1.0	
	108	18+50E		3.0	1.0	
	109	19+00E		3.0	1.0	
	110	19+50E		3.0	1.0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

PAGE 4 / 5

		FILE NO. G 1531			
.BUL	. NO.	IDENTIFICATION	AU	AS	
_	111	20+00E L8S	3.0	1.0	
	112	0 +50W L8S	3.0	1.0	
	113	1+00W	3.0	1.0	
~	114	1+50W	3.0	1.0	
	115	2+00W	3.0	1.0	
	116	2+50W	3.0	1.0	
	117	3+00W	3.0	1.0	
	118	3+50W	3.0	1.0	
	119	4+50W	3.0	1.0	
-	120	5+00W	3.0	1.0	
	121	5+50 W	3.0	1.0	
	122	6+00W	3.0	1.0	
	123	6+30W	3.0	1.0	
	124	7+00W	3.0	1.0	
	125	8+00W	3.0	1.0	
	126	8+50W	3.0	1.0	
	127	9+00W	3.0	1.0	
	128	9+50W	3.0	1.0	
	129	10+00W	3.0	0.0	
	130	10+50W	3.0	1.0	
	131	11+00W	3.0	1.0	
	132	11+50W	3.0	1.0	
	133	12+00W	3.0	1.0	
~	134	12+50W	3.0	1.0	
	135	13+00W	3.0	1.0	
	136	13+50W	3.0	1.0	
_	137	14+00W	3.0	1.0	
	138		3.0	1.0	
	139		3.0	1.0	
_	140		3.0 3.0	1.0	
	141			1.0	
	142		3.0	1.0	
_	143	1+50W	3.0	1.0	
	144	2+00W	3.0	1.0	
	145	2+50W	3.0	1.0	
	145	3+00W	3.0	1.0	
-	147	3+50W 4+00W	20.0 3.0	1.0	
	148			1.0	
	149	4+50W 5+00W	3.0	2.0	
_	150	STOOM	3.0	1.0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

		FILE NO. G 1531			PAGE 5 / 5
RAI	_ NO.	IDENTIFICATION	AU	AS	
-	151	5+50W	3.0	1.0	
	152	5+00W	₃.೦	1.0	
	153	6+50W	3.0	0.1	
	154	7+00W	3.0	1.0	
	155	7+50W	3.0	a.o	
	156	8+00W	3.0	1.0	
_	157	8+50W	3.0	1.0	
	158	9+00W	3.0	1.0	
	159	9+50W	3.0	1.0	
	150	10+00W	3.0	2.0	
-	161	10+50W	3.0	1.0	
	162	11+00W	3.0	1.0	
	163	11+50W	3.0	1.0	•
-	154	12+00W	3.0	2.0	
	165	12+50W	3.0	1.0	
	166	13+00W	3.0	1.0	
	167	13+50W	3.0	1.0	
	158	14+00W	3.0	i. O	
	169	14+50W	3.0	1.0	
	170	15+00W L125	3.0	1 . O	

IN AS COLUMN 1 INDICATES (2 PPM O INDICATES INSUFFICIENT SAMPLE FOR TESTING

KAMLOOPS RESEARCH B.C. CERTIFIED ASSAYERS

ASSAY LABORATORY 912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

GESCHEMICAL LAB REPORT

GARY BELIK & ASSOCIATES 664 SUN VALLEY DR.. KAMLOOPS, B.C. V2B 6S4

DATE NOV 6 1986

FILE NO. G 1537

PAGE 1 / 5

 KR	aL NO.	IDENTIFICATION	AU	AS
		and white the course which which which which which which which which which could wise to		
	1	0+50E L12S	3.0	1.0
	2	1+00E	5.0	1.0
	3	1+50E	3.0	1.0
	4	2+00E	3.0	1.0
	5	2+50E	3.0	1.0
	6	3+00E	5.0	1.0
	7	3+50E	3.0	1.0
	8	4+00E	3.0	1.0
	9	4+50E	3.0	1.0
	10	5+00E L12S	3.0	1.0
	11	5+50E	3. 0	1.0
	12	6+00E	3.0	1.0
	13	6+50E	3.0	1.0
	14	7+00E	3.0	1.0
~ -	15	7+50E	3.0	1.0
	15	8+00E	3.0	1.0
	17	8+50E	3.0	1.0
·	18	9+00E	3.0	1.0
	19	9+50E	3.0	1.0
	20	10+00E L12S	3.0	1.0
	21	10+50E	3.0	1.0
	22	11+00E	3.0	1.0
	23	11+50E	3.0	1.0
	24	12+00E	3.0	1.0
	25	12+50E	3.0	1.0
	26	13+00E	3.0	1.0
	27	13+50E	3.0	1.0
	28	14+00E	3.0	1.0
	29	14+50E	3.0	1.0
	30	15+00E L12S	3.0	1.0

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

News, a		FILE NO. G 1537			PAGE	2	/	5
KRAL	NO.	IDENTIFICATION	AU	AS				
	31	15+50E	3.O	1.0				
	32	16+00E	3.0	1.0				
	33	16+508	3.0	1.0				
	34	17+00E	3.0	1.0				
-	35	17+50E	3.0	1.0				
	36	18+00E	3.0	1.0				
	37	18+50E	3.0	1.0				
	38	19+00E	3.0	1.0				
	39	19+50E	3.0	1.0				
	40	20+00E L12S	3.0	1.0				
_	41	0+00 L16S	3.0	1.0				
	42	0+50E	3.0	1.0				
	43	1+005	3.0	i.O				
	44	1+50E	3.0	1.0				
	45	2+00E	5.0	1.O				
	46	2+50E	5.0	i.o				
	47	3+00E	3.0	1.0				
	48	3+50E	3.0	1.0				
	49	4+00E	3.0	1.0				
	50	4+50E L16S	3.0	1.0				
	51	5+00E	з. О	1.0				
	52	5+50E	3.0	1.0				
	53	6+00E	3.0	1.0				
	54	6+50E	3.0	1.0				
_	55	7+00E	3.0	1.0				
	56	7+50E	5.0	1.0				
	57	8+00E	3.0	1.0				
*i	58	8+50E	3.0	1.0				
	59	9+00E	3.0	1.0				
	60	9+50E L165		1.0				
	61	10+00E		1.0				
	62	10+50E	3.0	1.0				
	63	11+00E	3.0	1.0				
-	64	11+50E	3.0	1.0				
	65	12+00E	3.0	1.0				
	66	12 +5 0E	3.0	1.0				
	67	13+00E	3.0	1.0				
	68	13+50E	3.0	1.0				
	69	14+00E	5.0	1.0				
	70	14+50E	3.0	1.0				

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

PAGE 3 / 5

	FILE NO. G 1537		
RAL NO.	IDENTIFICATION	AU	AS
71	15+00E L16S	3.0	1.0
72	15+508	3.0	1.0
73	16+00E	3.0	1.0
74	16+50E	3.0	1.0
75	17+00E	10.0	1.0
76	17+50E	3.0	1.0
77	18+00E	3.0	1.0
78	18+50E	5.0	1.0
79	19+00E	3.0	1.0
. 80	19+50E L16S	3.0	1.0
81	20+00E	3.0	1.0
82	0+50W L16S	3.0	1.0
83	1+00W	3.0	1.0
84	1+50W	3.0	1.0
85	2+00W	3.0	1.0
86	2+50W	3.○	1.0
87	.3+00W	₃.0	1.0
88	3+50W	3.0	1.0
89	4+00W	3.0	1.0
90	4+50W	3.0	1.0
91	5+00W	3.0	1.0
92	5+50W	3.0	1.0
93	6+00W	3.0	1.0
94	6+50W	3.0	1.0
95	7+00W	3.0	1.0
96	7+50W	5.0	1.0
97	8+00W	5.0	1.0
98	8+50W	40.0	1.0
59	9+00W	3.0	i.0
100	9+50W L168	3.0	1.0
101	10+00W	3.0	1.0
102	10+50W	5.0	1.0
103	11+00W	3.0	1.0
104	11+50W	3.0	1.0
105	12+00W	3.0	1.0
106	12+50W	3.0	1.0
107	13+00W	3.0	1.0
108	13+50W	3.0	1.0
109	14+00W	5.0	1.0
110	14+50W	3.0	1.0

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT FILE NO. 15-15-1

RAL	. NO.	FILE NO. G 1537 IDENTIFICATION	AU	AS		PAGE	4	/
	111	15+00W L16S	3.0	1.0				
	112	0+50E L20S	3.0	1.0				
	113	1+00E	5.0	1.0				
.=	114	1+506	3.0	0.0				
	115	2+00E	10.0	1.0				
	116	2+50E	3.0	1.0				
	117	3+00E	3.0	1.0				
	118	3+50E	3.0	1.0				
	119	4+00E	3.○	1.0				
-	120	4+50E L20S	3.0	1.0				
	121	5+00E	3.0	1.0				
	122	5+50E	3.0	1.0				
	123	6+00E	3.0	1.0				
	124	6+50E	3.0	1.0				
	125	7+00€	3.0	1.0				
	126	7+50E	3.0	1.0				
	127	8+00E	3.0	1.0				
	128	8+50E	3.0	1.0				
	129	9+00E	3.0	1.0				
	130	9+50E L20S	3.0	1.0				
	131	10+00E	3.0	1.0				
	132	10+50E	3.0	0.0				
	133	11+00E	3.0	1.0				
	134	11+50E	3.0	1.0				
	135	12+00E	3.0	1.0				
	1.36	12+50E	3.0	1.0				
	137	13+00E	3.○	1.0				
	138	13+50E	3.0	1.0				
	139	14+00E	3.0	1.0				
	140	14+50E L20S	3.0	1.0				
	141	15+00E	3.0	1.0				
	142	15+50E	3.0	1.0				
	143	16+00E	3.0	1.0				
-	144	16+50E	3.0	1.0				
	145	17+00E	3.0	1.0				
	146	17+50E	3.0	1.0				
	147	18+00E	3.0	1.0				
	148	18+50E	3.0	1.0				
	149	19+00E	70.0	1.0				
	150	19+50E	5.0	1.0				

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

FILE NO. G 1537 RAL NO. IDENTIFICATION AU AS							PAGE 5				
RAL	NO.	IDENTIFICATION	AU	AS		· •		_	•	•	
_	151	20+00E L20S	3.0	1.0							
	152	0+00 L205	3.0	1.0		1					
	153	0+50W	3.0	1.0		· \					
-		1+00W	5.0	1.0							
	155	1+50W	3.0	1.0							
	156	2+00W	3.0	1.0							
	157	2+50W	3.0	i.0							
	158	3+00W	3.0	1.0							
	159	3+50W	3.0	I.O							
_	160	4+00W L20S	10.0	1.0							
	161	4+50W	3.0	1.0							
	162	5+00W	3.0	1.0							
	163	5+50W	3.0	1.0							
	164	6+00W	3.0	1.0							
	165	6+50W	3.0	1.0							
	156	7+00W	3.0	1.0							
	167	7+50W	5.0	1.0							
	168	8+00W	3.0	1.0							
	169	8+50W	3.0	1.0							
	170	9+00W L20S	3.0	1.0							
	171	9+50W	3.0	1.0							
	172	10+00W	3.0	1.0							
	173	10+50W	3.0	1.0							
-	174	11+00W	3.0	1.0							
	175	11+50W	3.0	1.0							
	176	12+00W	3.0	1.0							
	177	12+50W	3.0	1.0							
	178	13+00W	3.0	1.0							
	179	13+50W	3.0	0.0							
-	180	14+00W	3.0	1.0							
	181	14+50W	5.0	1.0							
	182	15+00W L20S	20.0	1.0							

N AS COLUMN 1 INDICATES (2 PPM O INDICATES INSUFFICIENT SAMPLE FOR TESTING

Appendix II

Statement of Expenditures

Statement of Expenditures

1. Labour

	Dale Arens (Sept. 25-Oct. 11, 1986) -grid preparation and soil sampling -13.0 days at \$150/day	\$1,950.00	
	Des Arens (Sept. 26-Oct. 2, 1986) -grid preparation and soil sampling -6.0 days at \$150/day	900.00	
	R. Herridge (Oct. 5-11, 1986) -grid preparation and soil sampling -6.0 days at \$150/day	900.00	\$3,750.00
2.	Supervision and Report Preparation -G.D. Belik, M.Sc3.0 days at \$285/day		855.00
3.	Truck Rental -12.0 days at \$40/day -3916 km at \$0.15/km	\$480.00 	1,067.40
4.	Gas		262.35
5.	Field Supplies (soil bags, flagging)		120.00
6.	Geochemical Analyses		3,312.65
7.	Drafting		275.59
8.	Secretarial, Report Binding, Map Prin Xerox	130.00	
		Total Herein	\$9.772.99

Appendix III

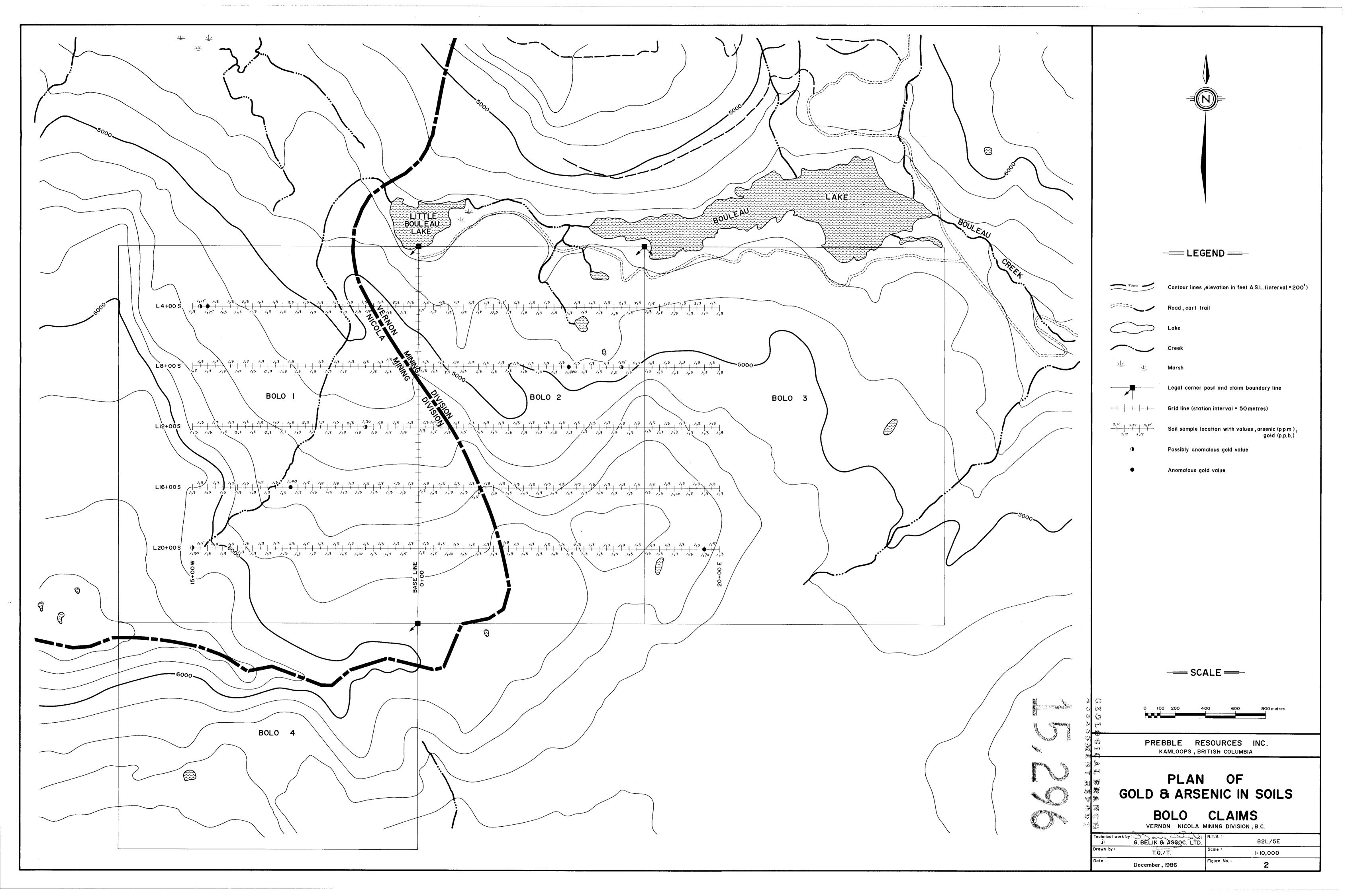
Statement of Qualifications: G.D. Belik

GARY D. BELIK, M.Sc.

Consulting Geologist Mineral Exploration

#6 NICOLA PLACE, 310 NICOLA STREET • KAMLOOPS, B.C. V2C 2P5 • PHONE (604) 374-4247

CERTIFICATE


I, GARY D. BELIK, OF THE CITY OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:

- (1). I am a member of the Canadian Institute of Mining and Metallurgy, and a fellow of the Geological Association of Canada.
- (2). I am employed by G. Belik and Associates Limited, with my office at 664 Sunvalley Drive, Kamloops, B. C.
- (3). I am a graduate of the University of British Columbia with a B.Sc. in Honors Geology and M.Sc. in Geology.
- (4). I have practised continuously as a geologist since May, 1970.
- (5). The geochemical survey discussed in this report was carried out under my direct supervision during September 25 to October 11, 1986.

Gary D. Belik, M.Sc. GEOLOGIST

December 16, 1986

KAMLOOPS, B. C.

