GEOLOGICAL BRANCH ASSESSMENT REPORT

15,338

FILMED

1986 GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT ON THE JOANNA III AND IV MINERAL CLAIMS

12/87

Toodoggone River Area
Omineca Mining Division
NTS 94E/6E

Latitude 57°28'N Longitude 127°68'W

For

Owner/Operator: International Damascus Resources Ltd. Ste. 810-625 Howe St. Vancouver, B.C. V6C 2T6

Ву

James S. Steel, B.Sc.
J. Paul Sorbara, M.Sc., F.G.A.C.
Hi-Tec Resource Management Ltd.
1590-609 Granville St.
Vancouver, B.C.
V7Y 1C6

October 3, 1986

TABLE OF CONTENTS

	<u>Page</u>
SUMMARY	1
INTRODUCTION	2
Property and Ownership Location and Access History and Previous Work	2 2 3
REGIONAL GEOLOGY AND MINERALIZATION	3
PROPERTY GEOLOGY & MINERALIZATION	5
GEOCHEMISTRY	6
Sampling and Analytical Procedure Discussion of Results	6 7
GEOPHYSICS	8
Magnetometer Survey VLF-EM Survey	8 8
CONCLUSIONS	9
RECOMMENDATIONS	9
BIBLIOGRAPHY	11
APPENDIX I Statement of Costs APPENDIX II Statement of Qualifications APPENDIX III Analytical Results	

ILLUSTRATIONS

			<u>After Page</u>
Figure	1:	Location Map, Joanna III & IV Mineral Claims, Toodoggone River Area	2
Figure	2:	Claim Map, Joanna III and IV Mineral Claims, 1:50,000	2
Figure	3:	Geology, Joanna III and IV Mineral Claims, 1:10,000	in pocket
Figure	4a:	Sample Location Map, Joanna III and I Mineral Claims, 1:10,000	
Figure	4b:	Geochemistry, Gold, Silver, Arsenic	in pocket
Figure	4c:	and Barium, 1:10,000 Geochemistry, Arsenic and Barium,	in pocket
_		1:10,000	in pocket
Figure	40:	Geochemistry, Copper, Lead and Zinc, 1:10,000	in pocket
Figure		Magnetometer Survey, 1:2,500	in pocket
Figure Figure		VLF-EM Survey, Dip Angle Profile Map, 1:2,500	in pocket
rigure	JU:	VLF-EM Survey - Contoured Fraser Filtered Data, 1:2,500	in pocket

SUMMARY

The Joanna III and IV claims, located in the east-central section of the Toodoggone gold belt north of Toodoggone Lake, are owned by International Damascus Resources Ltd. The property is underlain by plagioclase porphyry flows, tuffs and breccias with interbedded red and green cherts.

A preliminary soil and silt sampling program in 1985 delineated several geochemical anomalies over the property. For the 1986 exploration season, a program of soil and silt geochemistry, rock sampling, mapping and prospecting was undertaken to extend the known anomalies and better assess the property.

The current soil sampling program has outlined a gold anomaly (approximately 300 m x 300 m) with values up to 520 ppb in the southeast corner of the soil grid, and a smaller anomaly in the northwest corner. Silver anomalies were restricted to the area of the gold anomaly and extended south of the grid where 42.1 ppm silver was sampled in rocks. Anomalous base metals were also confined to this area where 24,249 ppm zinc was sampled in frost heave and 60,895 ppm zinc was found in a massive specular hematite outcrop to the east. Arsenic is restricted to the western part of the Joanna IV claim where 80% of samples taken were anomalous. Gold is also anomalous in silt, reaching 200 ppb, and rocks reaching 9500 ppb.

Ground geophysics showed a 350 m northwest-trending VLF-EM conductor in the west-central part of the Joanna IV claim, and a smaller one in the area of the gold, silver, copper and zinc anomalies in the southeast corner. Although magnetometer results are somewhat inconclusive, an area of anomalously high magnetics was detected adjacent to the longer electromagnetic conductor.

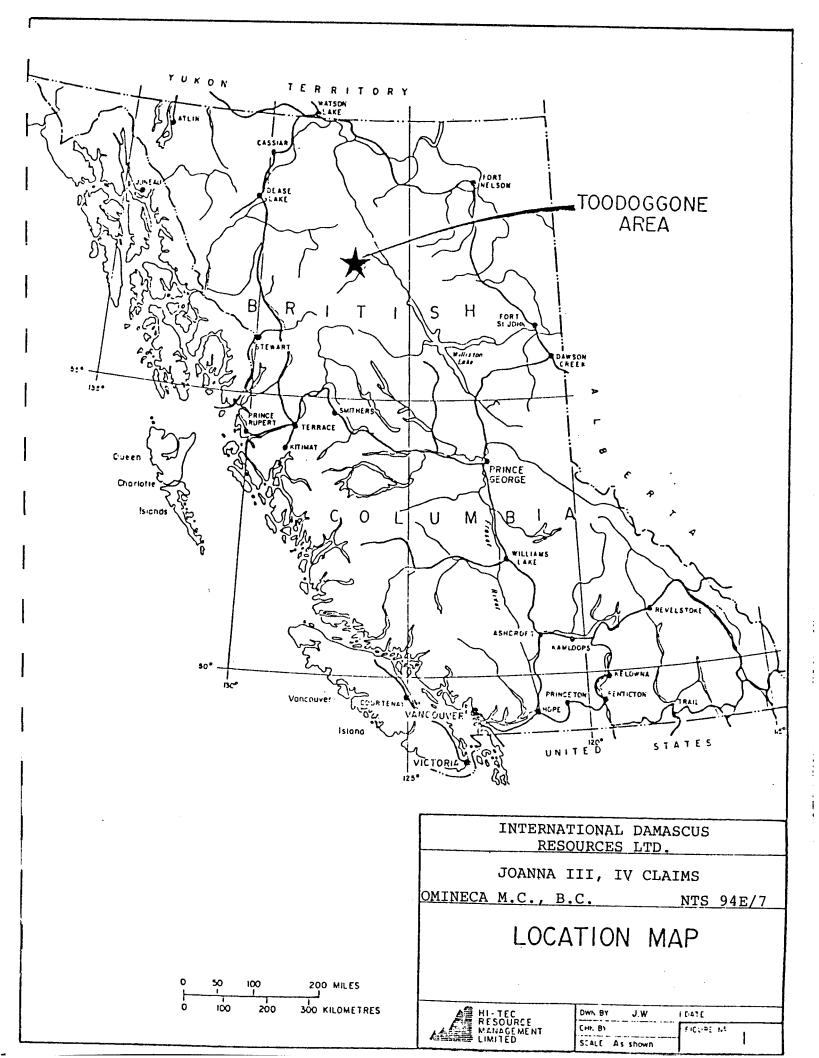
The 1986 exploration program has delineated many areas of interest on the Joanna III and IV claims and has shown that further work is warranted.

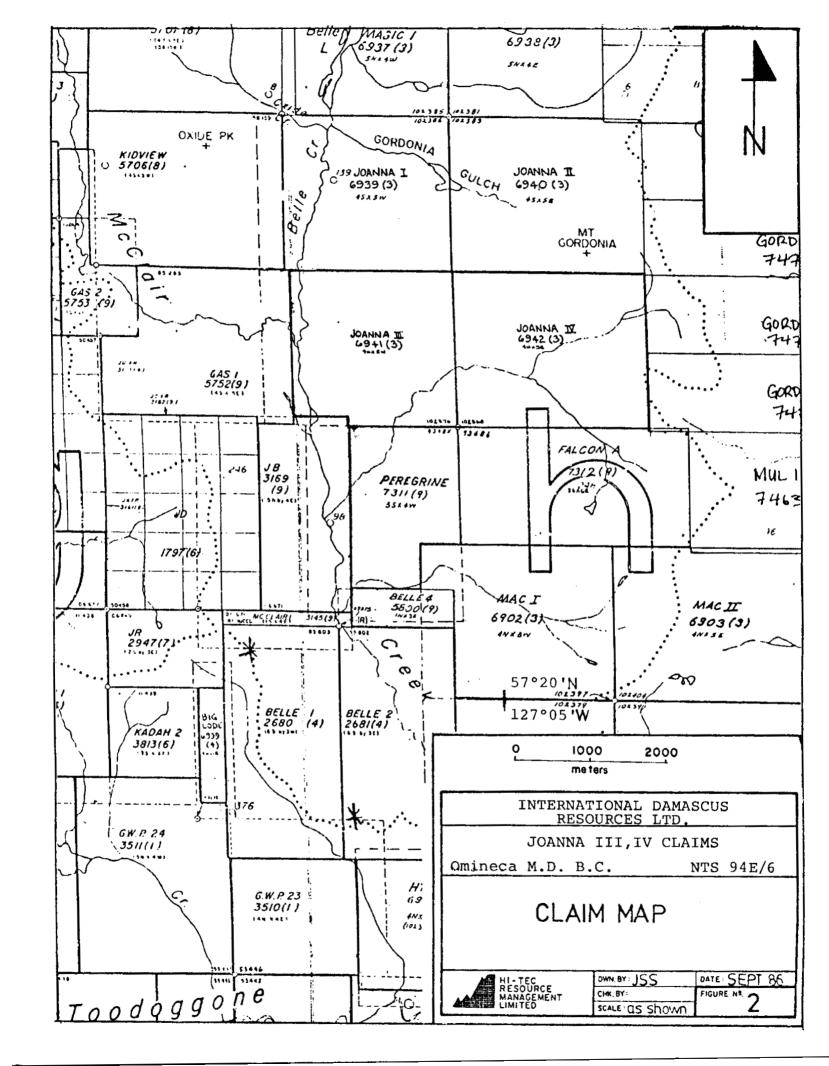
INTRODUCTION

Location and Access

The property is situated in the Toodoggone River area, some 340 kilometers north of Smithers, B.C. Approximate geographical coordinates are latitude 57°26' north and longitude 127°05' west (Figure 1). The claims are located 4 kilometers northeast of the JD property of Energex Minerals Ltd. Most of the claim area lies above timberline, but the lower areas are covered by scrub brush. The terrain is moderately rugged, with the areas barren of vegetation consisting of exposed rock and/or scree material.

Access is by fixed-wing aircraft to the Sturdee airstrip 290 kilometers north of Smithers, and then by helicopter 50 kilometers to the north.


Property and Ownership


The Joanna III and IV claims, each twenty units in size, are owned by International Damascus Resources Ltd. The claims are situated on Belle Creek, eight kilometers north of the Toodoggone River in the Omineca Mining Division, approximately 340 kilometers north of Smithers, B.C. (Figure 2).

The pertinent claim data are as follows:

Claim	Record No.	<u>Units</u>	Record Date
Joanna III	6941	20	March 25, 1985
Joanna IV	6942	20	March 25, 1985

History and Previous Work

The earliest record of exploration and mining in the area relates to placer mining activities on McClair Creek and Toodoggone River in 1930. There was sporadic exploration for gold, copper, lead and zinc between 1934 and 1960. The area was actively explored by Sumitomo, Umex and Texas Gulf Sulphur between 1963 and 1967, and in 1968 for porphyry copper and molybdenum deposits by Kennco Exploration (Western) Ltd., Cominco Ltd., and Cordilleran Engineering Ltd.

Kennco Exploration (Western) Ltd. recognized the precious metal potential of the area, staked the Lawyers and Chappelle claims, The Chappelle property was and explored them until 1975. eventually optioned to Conwest Explorations Ltd. and then to DuPont of Canada Exploration Ltd. This led to the discovery of The Baker mine was placed into production the Baker deposit. with indicated reserves of 70,000 tons with grades of 0.98 oz/T 19.0 oz/T Ag in the A vein. The Baker deposit was mined out in 1983. The Lawyers property is presently held under Surface and underground drilling has option to Serem Inc. defined a deposit containing 1,000,000 tons grading 0.21 oz/T Au and 7.1 oz/T Ag (Schroeter, 1985).

Energex Minerals Ltd., Peralto Resources Corp., Golden Rule Resources Ltd. and Lacana Mining Corporation all had active exploration programs in the Toodoggone River area during the summer of 1986.

REGIONAL GEOLOGY AND MINERALIZATION

The Toodoggone gold camp is a 15 - 20 kilometer wide belt of volcanic, sedimentary and intrusive rocks extending northwesterly from Thutade Lake to the Stikine River, a distance of more than 100 kilometers. The oldest rocks in the area belong to the Asitka Group of Permian age. This group consists

of cherts, argillites, limestone and greenstones. These rocks are overlain by the Takla Group, which consists of intermediate flows and pyroclastics of Upper Triassic age. The Takla is characterized by abundant flows of augite andesite, basalt, porphyritic feldspar andesite and their volcaniclastic sedimentary equivalents.

The volcanic rocks lying stratigraphically above the Takla Group have been classified under two headings: the Toodoggone and the Hazelton. The Toodoggone Group is of Lower Jurassic age and is equivalent to the base of the Hazelton Group (Panteleyev, 1984). The Toodoggone volcanics consist predominantly of subaerial dacite, latite, trachyte and rhyolite pyroclastic rocks more than 500 metres in thickness, which unconformably overlie the Takla Group. The majority of epithermal precious metal occurrences in the area are associated with Toodoggone volcanic rocks. The Baker deposit, however, occurs in Takla volcanic rocks.

The Toodoggone volcanics are bordered on the east by, and are in fault contact with the Hazelton Group, which consists of intermediate volcanic conglomerate, breccia, lahar and abundant pink feldspar porphyry dikes and sills. These rocks range in age from Lower Jurassic to Upper Jurassic.

In addition to the intrusive dikes and sills noted within the Toodoggone and Hazelton Groups, acid to intermediate and alkaline stocks and plugs also occur in the Toodoggone area.

The Toodoggone camp exhibits at least four types of precious metal mineralization, the most common of which is epithermal in origin. The epithermal deposits occur as massive quartz veins such as at the Baker mine, or as silicified zones and amethystine breccia zones such as at the Lawyers deposit. These deposits are generally close to major northwest faults and are associated with the Toodoggone volcanics. Quartz, barite and

carbonate are the chief gangue minerals. Vein minerals are acanthite, pyrite, electrum, chalcopyrite, native gold, sphalerite and galena. Grades range from 0.1 to 1.0 oz/T Au and 1.0 to 20.0 oz/T Ag.

PROPERTY GEOLOGY & MINERALIZATION

The Joanna III and IV claims are underlain by feldspar porphyry flows, tuffs and breccias and associated sediments of the uppermost unit of the Lower and Middle Jurassic Toodoggone volcanics (Figure 3). These are in fault contact with Upper Triassic augite porphyry basalt flows of the Takla Group to the north of the claim unit and are separated from an intrusive unit to the south by a minor northwest-trending fault zone which may crosscut the southwestern corner of the property. The majority of mineral occurrences in the Toodoggone area occur within the Toodoggone stratigraphy and are associated with faults.

Mapping by the author on the Joanna III and IV claims revealed that the stratigraphy of a west-trending ridge on the Joanna IV claim is dominated by grey-green weathering plagioclase feldspar porphyry with small interbedded units of tan-orange, fine-grained, friable tuff and a blue-grey argillaceous rock. Contacts between units where visible are oriented almost due west and dip gently north. A large undulating well-bedded chert layer outcrops on the lower slopes and trends 336°. The ridge top is cut throughout its length by small faults, all trending north to northwest.

A west-trending ridge north of the valley on the Joanna IV claim is composed of plagioclase feldspar porphyry underlain by a marker bed of feldspar porphyry with biotite and hornblende in a purple silicious matrix. This is in turn underlain by a massive, slightly foliated feldspathic breccia with angular to subrounded rock fragments. All units strike 022° to 038° and dip 36°-52° north. A well stratified section of chert

and interbedded green tuff occurs at 1700 m elevation with similar strike and dip.

Three types of mineralization were observed on the property. The south ridge has orange-red weathering gossans and silicified zones as well as malachite, galena and pyrite in siliceous-rich volcanic rocks occurring on the flanks of the south ridge just above the valley and in the south cirque on the Joanna IV claim. Specular hematite up to 80-100% is seen in outcrop at about 1700 m on the south ridge also. The north ridge shows several malachite-rich quartz veins and stringers as well as some stratiform malachite bearing tuffaceous zones.

GEOCHEMISTRY

Sampling and Analytical Procedure

A program of soil and silt geochemistry, magnetometer and VLF-EM surveys and geological mapping was performed from August 5 to 11, 1986 on the central part of the Joanna III and IV claims. The program was designed to cover the area between lines of reconnaissance soil sampling done in 1985 which returned several spot highs of gold and silver. Silt sampling was also carried out on the western section of the Joanna III claim. Field work was carried out by T. Archibald and O. Paeseler under the supervision of J. Steel of Hi-Tec Resource Management Limited.

A total of 200 soil, 51 silt and 12 rock samples were collected during the program (Figure 4a). Soil samples were taken with a mattock from the "B" soil horizon at depths of 15-25 cm, placed in numbered kraft paper bags and shipped to Min-En Laboratories in North Vancouver for analysis.

Soil and silt samples were dried overnight at approximately and then sieved to minus 80 mesh. A 0.5 gram portion of 60⁰C was extracted by digestion with nitric acid and sample atomic absorption measurement to followed by aqua-regia, All other elements were determined by ICP determine gold. Rock samples were crushed and then analysed in the analysis. manner as the soils. Results are plotted in Figures 4b to same 4d.

Discussion of Results

Threshold and anomalous contour values were calculated by the log-normal frequency method. Anomalous values for gold and 1.0 ppm, respectively. A large gold silver are 15 ppb and anomaly 350 meters in length and up to 300 meters wide with ppb occurs on the southeast corner of the soil 520 values to lesser zone with values to 90 ppb occurs as a narrow grid. band 400 meters long in the northwest corner of the grid (Figure Several isolated gold values were also delineated between 4b). 2+00S and 1+00N and between 1+00E and 3+00E. Anomalous silver values were very limited and restricted to line 2+00S at 3+00E and at 10+00E in the area of the larger gold anomaly. This area also hosts a malachite in quartz occurrence that returned 42.1 ppm silver and 5 ppb gold.

The Joanna IV claim yielded several anomalous gold and silver silt samples and very anomalous silver in rock samples collected from the ridges to the north and south. Silver values in rocks range from 2.2 ppm in an intense silica alteration zone to 23.4 ppm in a specular hematite occurrence. Gold is also anomalous in rock samples, reaching a high of 9500 ppb in a malachite and quartz occurrence on the north ridge. Several silt samples on the Joanna III claim returned values to 200 ppb.

Arsenic and barium are present only as spot anomalies on the soil grid on the Joanna IV claim, for the most part concentrated

on line 2+00S in the areas previously discussed. Silt and rock samples are predominantly devoid of both elements on the Joanna IV claim with the exception of the occurrence on the north ridge which returned a value of 3532 ppm barium. A small soil grid set up to explore the 1985 arsenic anomaly on the Joanna III claim returned 80% of samples anomalous in arsenic (Figure 4c).

Base metal results were not significant on the International Damascus property, occurring as spot highs in soil, restricted to line 2+00S between 5+00E and 10+00E. Rocks from the malachite occurrence in this area did, however, return 24,249 ppm zinc, and the specular hematite occurrence nearby showed 4353 ppm copper and 60,895 ppm zinc in rocks. No further base metal anomalies were delineated either in the silt samples or on the Joanna III grid.

GEOPHYSICS

Magnetometer survey survey corrected for diurnal variation. T.K.

A magnetometer survey covering 6.2 line-kilometers was performed over the soil sampling grid on the Joanna III and IV claims. It returned values from 39,000 gammas to 56,000 gammas. A large magnetic high is located in the area of line 0+00 2+00E and a smaller one at 1+00S 10+00E (Fig. 5a). Due to equipment difficulties, two lines to the north were not surveyed. It is possible that the western magnetic anomaly continues across this ground, which would dramatically increase its size.

VLF-EM Survey

A Phoenix 2 VLF-EM survey was also conducted over the soil sampling grid, using the Seattle, Washington transmitting station. Several conductors were located, all showing northwest trends. The dominant conductor covers an area of 300 m by 50 m in the area of 3+00N to 6+00N. A second conductor trends off the grid at the southeast corner, in the same position as

the smaller magnetometer high (Figure 5a).

Both of these EM conductors are flanked by ones of lesser magnitude, the largest of which is 400 m long, extending from 3+50N 1+00E to 0+50S 4+00E.

CONCLUSIONS

The Joanna III and IV claims cover an area that geochemically and geophysically anomalous. The southeast corner soil grid on the Joanna IV claim shows a gold and silver anomaly coincident with a VLF-EM conductor, both of which are open to the south and east. Rock samples in this area have also returned anomalous precious and base metal values. anomaly and coincident VLF-EM conductor occur in the northwest corner of the soil grid. Anomalous precious metal values occur silts in the valley on the Joanna IV claim and in stream rocks on the ridge to the north. Highly anomalous As in soils in stream silts are also seen on the western part of the The number, location and variety of anomalies Joanna III claim. III and IV claims are indicative of a high on the Joanna for the discovery of precious metal deposits on this potential property.

RECOMMENDATIONS

geophysical and geochemical surveys performed on the Joanna have delineated several areas of claims in 1986 III and IV author believes that further work interest and the A follow-up program should include a continuation of warranted. grids from line 2+00S to the claim boundary on the soil IV claim to test the soil and rock anomalies, as well as northern extension of the western soil grid to further test the arsenic anomaly in this area. The northwest corner of the grid with the gold and VLF-EM anomalies should have fill-in As well, the vicinity of all anomalous rock geochemistry done. prospected and mapped in detail. should be Pan samples

concentrates should be taken from the creek on the western section of the Joanna IV claim. Finally, an extension of the geophysical survey should parallel that of geochemistry.

Respectfully submitted,

J. Paul Sorlang

HI-TEC RESOURCE MANAGEMENT LTD.

BIBLIOGRAPHY

- Bell, J.M. 1985. 1986 Geochemical Report on the Joanna III and IV Mineral Claims, International Damascus Resources Ltd. private report.
- Burgoyne, Alfred A. 1974. Geology, Geochemical Soil Survey, and EM-16 Survey on GORD 1-40 Mineral Claims, Omineca Mining Division, B.C. Ministry of Energy Mines and Petroleum Resources (BCMEMPR) Assessment Report 5194.
- Carter, N.C. 1972. Toodoggone River Area and Chappelle, Geology, Exploration and Mining in British Columbia 1971, pp. 63-70.
- British Columbia 1973, pp. 458-461.
- Diakow, L.J. 1984. Geology between Toodoggone and Chukachida Rivers (94E), BCMEMPR Geological Fieldwork 1983, Paper 1984-1, pp. 139-145.
- Diakow, L.J., Panteleyev, A. and Schroeter, T.G. 1985. Geology of the Toodoggone River Area, NTS 94/E, British Columbia.
- Gabrielse, H., Dodds, C.J. and Mansy, J.L. 1976. Geology of The Toodoggone River (94E) Map-Area, GSC Open File 306.
- Harron, G.A. 1981. Geological and Geochemical Report on the Air 1 and 2 Claims, Omineca Mining Division, BCMEMPR Assessment Report 9282.
- McKelvie, D.L. 1972. Geophysical Report on the ED 1-14, EHL 1-12, Belle 1-42 Mineral Claims, BCMEMPR Assessment Report 2506.
- Panteleyev, A. 1983. Geology between Toodoggone and Sturdee Rivers, BCMEMPR Geological Fieldwork 1982, Paper 1983-1, pp. 142-148.
- . 1984. Stratigraphic Position of Toodoggone volcanics, BCMEMPR Geological Fieldwork 1983, Paper 1984-1, pp. 136-138.
- Schroeter, T.G. 1981. Toodoggone River, BCMEMPR Geological Fieldwork 1980, Paper 1981-1, pp. 124-131.
- . 1982. Toodoggone River Area, BCMEMPR Geological Fieldwork 1981, Paper 1982-1 pp. 122-133.
- Fieldwork 1982, Paper 1983-1. pp. 125-133.

Schroeter,	T.G.	1984.	Toodoggone	River	Area,	BCMEMPR
Geologi	cal Fieldv	ork 1983,	Paper 1984-1	, pp. 13	34-135.	
		. 19	85. Toodoggoi	ne River	Area,	BCMEMPR
Geologi	cal Fieldv		Paper 1985-1			

APPENDIX I

Statement of Costs

STATEMENT OF COSTS

Geophysical - Geochemical Programs - Project 86BC011 Joanna 3 and 4 Claims

Salaries (August 4 to August 11)

J. Steel 7.25 days @ \$250.00/day T. Archibald 7.0 days @ \$210.00/day O. Paesler 7.0 days @ \$210.00/day Mobilization/Demobilization	\$ 1,812.50 1,470.00 1,470.00 3,146.32								
Geochemistry 200 soil samples - 6 element Trace ICP, Au 51 silt samples - 6 element Trace ICP, Au 12 rock samples - 6 element Trace ICP, Au	2,070.00 527.85 144.00								
Freight	111.00								
Domicile	478.11								
Accomodation	212.50								
Camp Equipment and Fuel 140.00									
Geophysical Rental 300.00									
Communications	175.00								
Field Equipment	175.00								
Fixed Wing Support	478.73								
Helicopter Support	3,500.30								
Office Supplies	92.76								
Geochemical Report	2,250.00								
Data Compilation, Field Report	375.00								
Project Management	2,835.31								
TOTAL:	\$21,764.38								

APPENDIX II

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

- I, JAMES S. STEEL of #1608-1005 Jervis Street, Vancouver, British Columbia hereby certify that:
- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc. degree in geology.
- 2. I am presently employed as a project geologist with Hi-Tec Resource Management Ltd. of #1509 609 Granville Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies for the past two years.
- 4. The information contained in this report was obtained from an on-site property examination and supervision of the field work program conducted by Hi-Tec Resource Management Ltd. in 1986.

James S. Steel, Project Geologist

James @ Dul

DATED at Vancouver, British Columbia this 8th day of October, 1986.

STATEMENT OF QUALIFICATIONS

- I, J. PAUL SORBARA, of the Municipality of Delta, in the Province of British Columbia, hereby certify:
- 1. THAT I am a geologist residing at 6703 Nicholson Road, in the Municipality of Delta, in the Province of British Columbia.
- 2. THAT I graduated with a B.Sc. in geology from the University of Toronto, in the City of Toronto, in the Province of Ontario, in 1976, and with a M.Sc. in geology from the University of Toronto in 1979.
- 3. THAT I have practiced geology professionally from 1979 to 1986, including 5 years as an exploration geologist for Cominco Ltd.
- 4. THAT I am a registered Fellow of the Geological Association of Canada.
- 5. THAT I do not have, nor do I expect to receive any material interest in International Damascus Resources claims in the Toodoggone gold belt, or any other claims in that area.
- 6. THAT I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

Signed:

J. Paul Sorbara, M.Sc., F.G.A.C.

October 21, 1986

APPENDIX III

Analtyical Results

COMPANY: HI TEC RE	SOURCE MAN	AGEMENT		MIN-	EN LABS	ICP REPOR	ī				(A	CT:GE027) PAGE 1 DF 1
PROJECT NO: D2-86			705 WEST	15TH ST.	. NORTH !	VANCOUVER	B.C. V7	H 1T2				FILE NO: 6-642
ATTENTION: J.STEEL	/P.SORBARA			(604) 980-	-5814 OR	(604) 988	-4524	* TYPE	ROCK	SEDCHEM	£	DATE: AUGUST 26, 1986
(VALUES IN PPN)	AG	AS	BA	CŪ	PB	ZN	au-ppb					
JS 86 D001	.3	26	133	103	95	139	5					
JS 86 D002	.7	1	261	49	76	114	5					
JS 86 2003	.4	19	414	31	115	147	10					
JS 96 0004	7.4	1	140	5	6	5	5					
JS 86 D005	2.2	36	34	85	29	17	35					
JS 86 D006	6.9	77	3532	5808	125	31	9500					
JS 86 D007	2.0	4	45	355	27	18	10					
JS 86 D008	.1	i	145	38	11	45	5					
JS 86 D009	23.4	336	138	4353	282	60895	20					
TA 86 DO01	42.1	23	35	4093	233	24249	5					
TA 86 D002	5.9	6	20	7773	63	628	790					
TA 86 D003	7.3	1	596	6543	30	3646	10					

COMPANY: HI TEC RESOURCE MANAGEMENT FROJECT NO: D1-86 MIN-EN LABS ICP REPORT H St., NORTH VANCOUVER, B.C. V7M 112 (ACT: SE027) PAGE 1 OF 1

FROJECT NO: D	1-86		705 WEST	15TH ST.,	NORTH	VANCOUVER,	B.C. V7M	172	FILE NO: 6-6425/P1+2
	STEEL/P.SORBARA					(604) 788-	4524	* TYPE SOIL GEOCHEM *	DATE: AUGUST 25, 1986
IVALUES IN P		AS	BA	CU	PB		AU-PPB		
0+00 0+00	.2	8	88	15	39	109	5		
0+00 0+50E	.4	12	89	13	49	152	10		
0+00 1+00E	.1	12	114	11	30	118	5		
0+00 1+50E	. <u>1</u>	11	78	8	21	103	5		
0+00 Z+00E		<u> 4 </u>	94	18	39	157			
0+00 2+50E	.1	9	104	9	23	119	5		
0+00 3+00E	.3	9	76	10	25	93	10		
0+00 3+50E	2	6	485	17	39	135	5		
0+00 4+00E	.2	9	113	13	39	121	5		
0+00 4+50E	<u>.2</u>	16	112	15	38	90	5		
0+00 5+00E	.5	7	100	14	23	98	5		
0+00 5+50E	.2	14	93	17	37	108	15		
0+00 6+00E	.1	3	69 07	11	32	79	25		
0+00 6+50E	.1 1.1	8	87 47	16	33	96	20 75		
0+00 7+00E 0+00 7+50E	<u>1.1</u>	<u>10</u> 8	103	<u>12</u> 11	<u>27</u> 33	<u>88</u> 102	<u>35</u> 5		
0+00 8+00E	.7	2	171	21	43	94	5		
0+00 8+50E	1.6	1	277	28	49	120	10		
0+00 9+00E	.2	i	97	28	26	109	5		
0+00 9+50E	.4	18	90	16	67	97	40		
0+00 10+00E		3	<u>/\</u> 96	<u>16</u>	38	-,, 97	30		
0+00 10+50E	.5	1	76	11	36	82	35		
0+00 11+00E	.1	1	282	10	22	65	5		
1+005 0+00	i,	2	338	47	55	261	10		
1+00S 0+50E	.4	8	214	32	38	172	5		
1+005 1+00E		7	<u>214</u>	39	28	154	15		
1+005 1+50E	.4	5	157	24	34	135	25		
1+00S 2+00E	.2	i	213	24	31	137	15		
1+005 2+50E	.2	1	209	29	39	140	5		
1+005 3+00E	3.2	1	152	14	31	131	30		
1+00S 3+50E	.2	18	86	14	32	134	5		
1+00S 4+00E	.2	11	95	18	45	160	5		
1+005 4+50E	.3	5	96	11	48	83	35		
1+005 5+00E	.4	12	111	19	49	133	15		
1+00S 5+50E	.1	21	93	15	46	136	5		
1+005 6+00E	.3	21	88	15	48	138	20		
1+00S 6+50E	.6	4	120	26	63	155	25		
1+00S 7+00E	.2	1	77	9	35	106	5		
1+005 7+50E	.6	17	128	9	46	119	5		
1+005 B+00E	.5	12	94	14	58	100	20		
1+00S 8+50E	.3	3	154	70	23	91	150		
1+005 9+00E	.6	18	117	13	38	144	40		
1+00S 9+50E	. 4	28	114	14	58	126	25		
1+005 10+00E	.4	10	116	8	53	63	35		
1+00S 10+50E	.5	11	194	14	79	190	5		
1+005 11+00E	N/S								
1+00N 0+00	1.2	1	494	97	34	194	5		
1+00N 0+50E	.1	1	57	6	15	34	5		
1+00N 1+00E	.3	17	79	15	33	106	10		
1+00N 1+50E	1.3	1	487	213	39	134	15		
1+00N 2+00E	, 4	1	343	34	28	107	5		
1+00N 2+50E	.7	5	357	52	22	177	5		
1+00N 3+00E	_* 7	3	91	i 5	29	110	5		
1+00N 3+50E	.9	5	308	29	16	96	10		
1+00N 4+00E		1	245	24	28	111	5		
1+00N 4+50E	.3	4	258	29	17	110	5		
1+00N 5+00E	.5	1	195	15	21	96	5		
1+00N 5+50E	.1	1_	103	g 	24	92	5		
1+00N 6+00E	.3	7	168	16	32	115	10		
1+00N 6+50E		2	110	36	36	96	5		

COMPANY: HI TEC RESOURCE MANAGEMENT MIN-EN LARS ICP REPORT (ACT: 6E027) PAGE 1 OF 1

COMPANIE HI)		RANABEREN!			-EN LAKS			(AU):6EUZ/) PAGE 1 UF
PROJECT NO: D		ADA	/V3 #E51		•			M 172 FILE NO: 6-6425/P3+
ATTENTION: J.					0-5814 OR			* TYPE SOIL GEOCHEM * DATE: AUGUST 25, 198
IVALUES IN P			BA	<u>CU</u>	PB	ZN	AU-PPB	
1+00N 7+00E	•3		89	16	45 72	106	5	
1+00N 7+50E 1+00N 8+00E	.3		75	9	32	94	5	
1+00N 8+50E	.7		94	17	40	113	5	
1+00N 9+00E			7 4	10	33	76	10	
			65	10	<u>16</u>	84	5	**********************
1+00N 9+50E	8.	_	189	27	25	100	5	
1+00N 10+00E			143	15	26	116	5	
1+00N 10+50E			372	23	30	107	5	
1+00N 11+00E			230	18	11	119	5	
2+00N 0+00	<u>- </u>		92	9	19	53	<u>5</u> -	
2+00N 0+50E	. 1		123	7	18	37	5	
2+00N 1+00E	.3		63	6	24	52	5	
2+00N 1+50E	• 7		69	3	18	38	5	
2+00N 2+00E	.1		137	13	18	4B	5	
2+00N 2+50E			102	10	23	69	10	
2+00N 3+00E	•6		345	33	46	191	5	
2+00N 3+50E	.1	. 1	587	35	14	308	5	
2+00N 4+00E	N/S			_				
2+00N 4+50E			177	9	18	88	15	
2+00N 5+00E			 98	8	15_	42	5	
2+00N 5+50E	.]	. 6	103	11	22	84	5	
2+00N 6+00E	N/S							
2+00N 6+50E	.7		111	6	23	45	5	
2+00N 7+00E	. i		91	10	33	80	10	
2+00N 7+50E			57	6_	14	50	5	
2+00N B+00E	•7		94	21	51	111	10	
2+00N 8+50E	• 1		102	10	32	100	15	
2+00N 9+00E	. 4	8	298	12	54	100	10	
2+00N 9+50E	. 8	3 4	276	15	36	80	10	
2+00N 10+00E			91	5	29	79	5	~
2+00N 10+50E			58	10	19	47	5	
2+00N 11+00E	1.6	1	510	132	26	87	15	
2+00N 11+50E	.1	1	155	42	15	54	10	
2+00N 12+00E	40N .1	3	295	108	38	130	15	
2+00S 0+00		1	748	8	41	40	10	
2+005 0+50E	.1	1	67	10	24	34	5	
2+005 1+00E	1.2	35	784	15	85	114	5	
2+00S 1+50E	. 1	16	184	24	62	90	10	
2+00S 2+00E	.3	16	236	22	75	76	5	
2+00S 2+50E	3	4	84	14	56	66	10	
2+005 3+00E	1.7	44	209	39	70	59	35	
2+00S 3+50E	1.0	86 (494	43	87	103	5	
2+00S 4+00E	.7	16	145	26	68	119	5	
2+00S 4+50E	3.6	41	111	64	79	98	10	
2+005 5+00E	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		191	124	50	346	5	
2+005 5+50E			197	53	49	290	5	
2+005 6+00E		20	224	94	46	216	5	
2+008 6+50E	. 1		54	13	19	73	3	
2+00S 7+00E	•1		201	40	35	149	5	
2+005 7+50E	.6		296	42	26	136	10	
2+00S 8+00E			141	21	30	136	15	
2+00S 8+50E	.8		177	19	100	109	15	
2+005 9+00E	.8		139	10	80	80	520	
2+00S 9+50E	3.2		527	27	36	120	10	
2+005 10+00E		•		•	-	447	• • •	
2+009 10+508		20	160	33	44	485	5	
Z+00S 11+00E			358	17	32	173	5	
2+005 11+50F	_1	3	465	7	78	178	ח	
2+005 11+50E 2+005 12+00E			465 339	9 11	26 35	178 172	5 5	
2+005 11+50E 2+005 12+00E 3+00N 0+00		. 9	339 135	11 8	26 35 16	178 122 96	5 5	

COMPANY: HI TEC RESOURCE MANAGEMENT MIN-EN LABS ICP REPORT (ACT:SE027) PAGE 1 OF 1 FILE NO: 6-6425/P5+6 PROJECT NO: 01-84 TAS MEGT 15TH CT - NADTH UNNERHOLD - R P - UTN 1T2

PROJEC	T NO: D	1-96		705 WEST	15TH ST.,	NORTH V	ANCOUVER,	B.C. V7	1 172	FILE NO: 6-6425/P5+6
ATTENT	ION: J.	STEEL/P.SORE	ARA		(604) 980-		(604) 988-	4524	* TYPE SOIL GEOCHEM *	DATE: AUGUST 25, 1986
(VALU	ES IN P	PM) AG	AS AS	RA	CU	PB	ZW	AU-PPB		
3+00N	0+50E	.1		414	22	48	79	5		
	1+00E	.!		288	41	23	82	5		
	1+50E	. 1		187	10	33	90	10		
	2+00E	. 1		135	10	26	60	5		
	2+50E			144	10	19	61	<u>5</u> _		
	3+00E			138	21	29	70	3		
	3+50E	• !		143	11	23	84	10		
	4+00E	. 1		158	16	23	108	10		
	4+50E	#)	i i	384	17	30	87	5		
	5+00E	N/S					*			
	1 5+50E				9	34	85	5		
	1 6+00E	•1			11	21	73	15		
	6+50E	• !		206	11	27	93	10		
	1 7+00E	• 5		283	13	39	115	10		
	7+50E			217	<u>1i</u>	28	55	5_		
	8+00E	•			11	25 70	89	10		
	1 8+50E	ا. ور		303	100	38	89	20		
	9+00E			189	14	28 51	122	5		
	9+50E 10+00E	ه. : •		159 180	20 19	51 30	109 106	15 5		
	10+50E		~~~~~~~~	412	<u>17</u>	<u>30</u> 21	<u>10</u>	10		
	11+00E			178	11	34	37 B1	5		
	11+50E			97	18	35	69	5		
	12+00E			88	14	31	63	15		
	12+50E				28	28	88	10		
	1 0+00				10	<u>26</u>	85			
	0+50E	•			12	22	80	5		
	1+00E				12	21	79	20		
	1 1+50E	N/S	-				• •			
	1 2+00E		2 12	112	11	34	98	5		
	1 2+50E				59	44	151	3		
	N 3+00E				30	46	118	5		
	4 3+50E			149	13	43	133	5		
	4+00E	•			16	37	135	5		
	4+50E				13	52	111	5		
	1 5+00E				12	36	110	10		
5+001	N 0+00	•		117	9	20	91	5		
5+001	4 0+50E	, i		89	18	16	93	10		
5+001	N 1+00E		3 1	92	16	25	98	90		
5+00/	N 1+50E		1 4	117	11	29	83	5		
5+00	N 2+00E	۰	4 14	233	26	41	133	10		
5+00	N 2+50E	1.	0 17	503	98	27	99	15		
	X 3+00E	r			100	55	116	5		
5+001	N 3+50E		2 6		62	38	88	3		
5+001	4+00E		3 21	278	19	51	131	5		
5+00	N 4+50E		2 20	238	12	60	139	5		
	N .5+00E		3 4	169	11	17	88	5		
6+001	N 0+00	•	4 6	145	18	22	89	5		
	N 0+50E		8 22		28	38	105	20		
	N 1+00E		6 19		32	55	107	10		
	N 1+50E		3 14		19	34	77	5		
	N 2+00E		3 1		20	40	65	5		
	N 2+50E		4 1		13	22	73	3		
	N 3+00E		3 5		10	48	85	5		
	N 3+50E		3 13		13	58_	107	<u>5</u> _		
	N 4+00E		1 4		16	46	95	5		
	N 4+50E		5 23		16	59	131	5		
	N 5+00E		4 1		8	30	87	5		
7+00	N 0+00		7 16	101	14	32	82	5		

COMPANY: HI TEC RESOURCE MANAGEMENT

D3-29

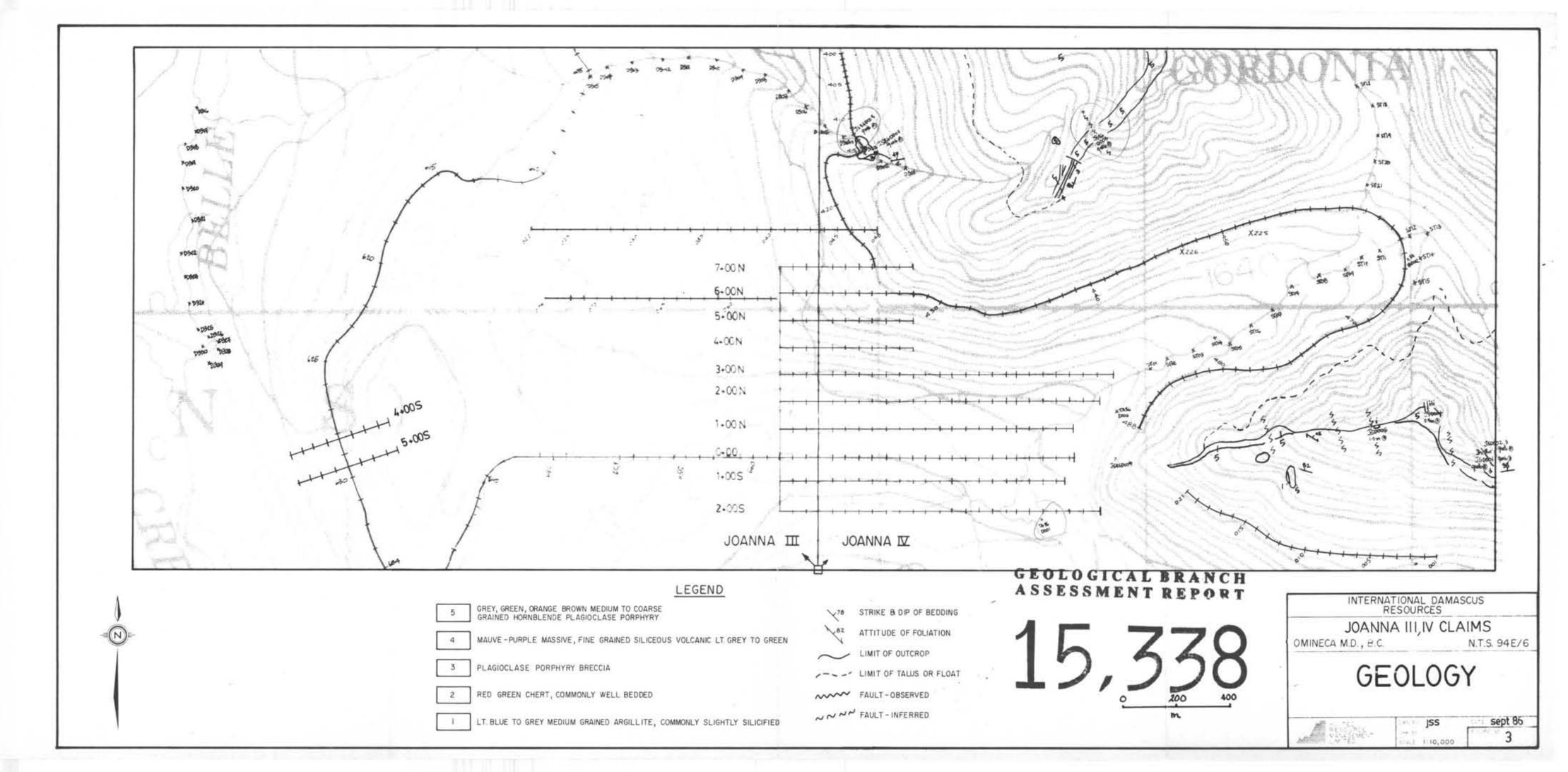
34

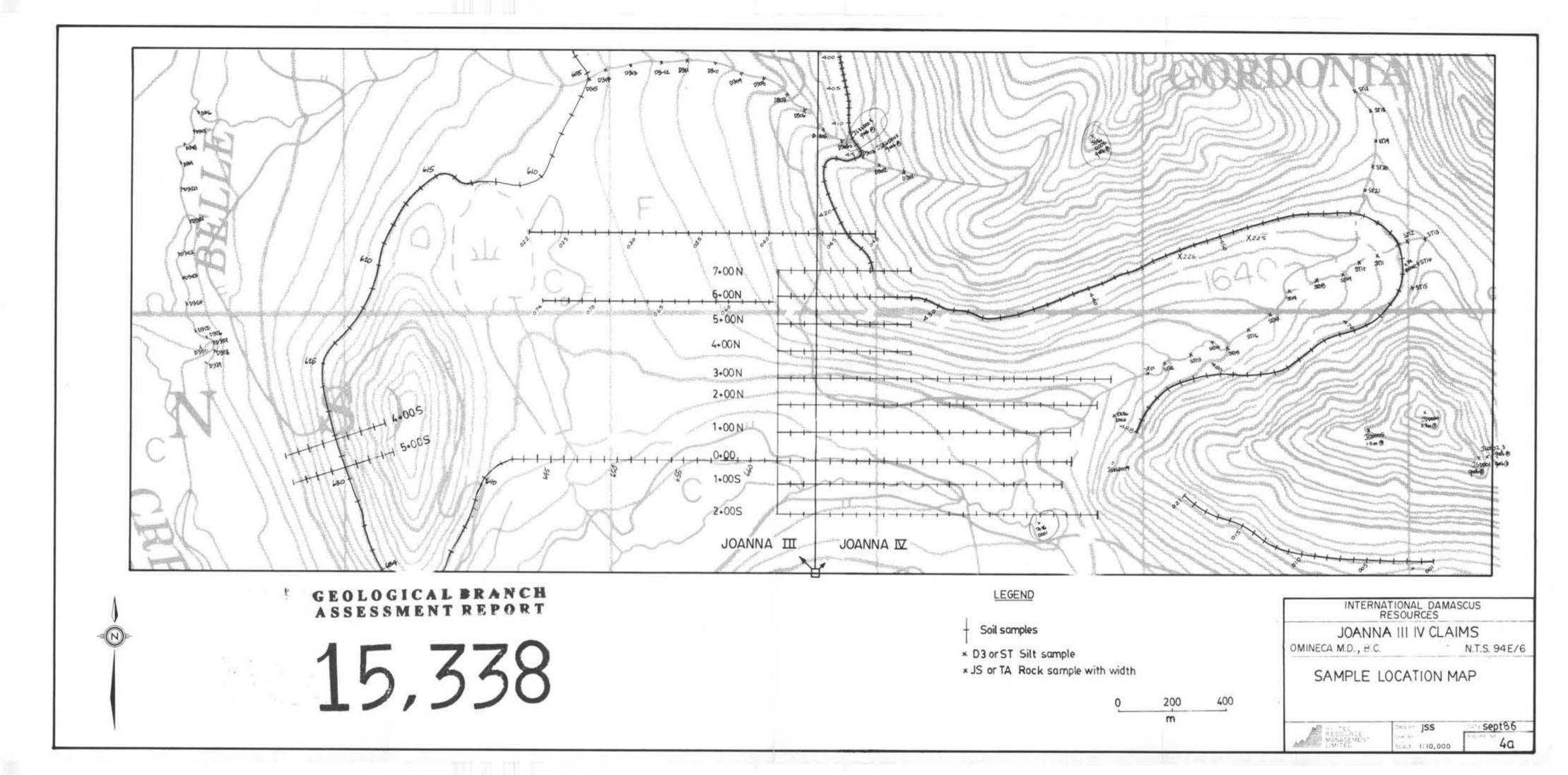
179

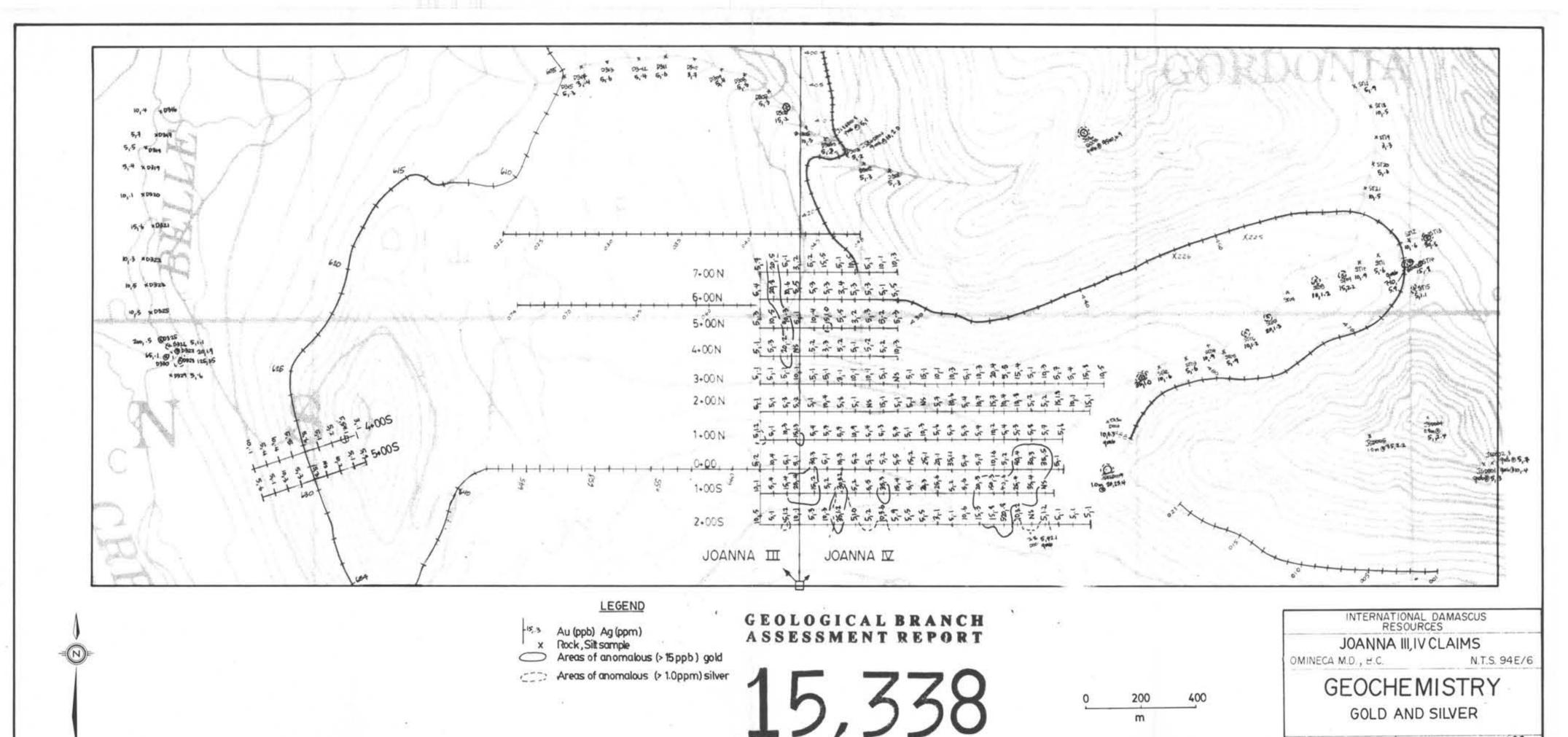
(ACT:GE027) PAGE 1 OF 1

FILE NO: 6-6425/P7+8

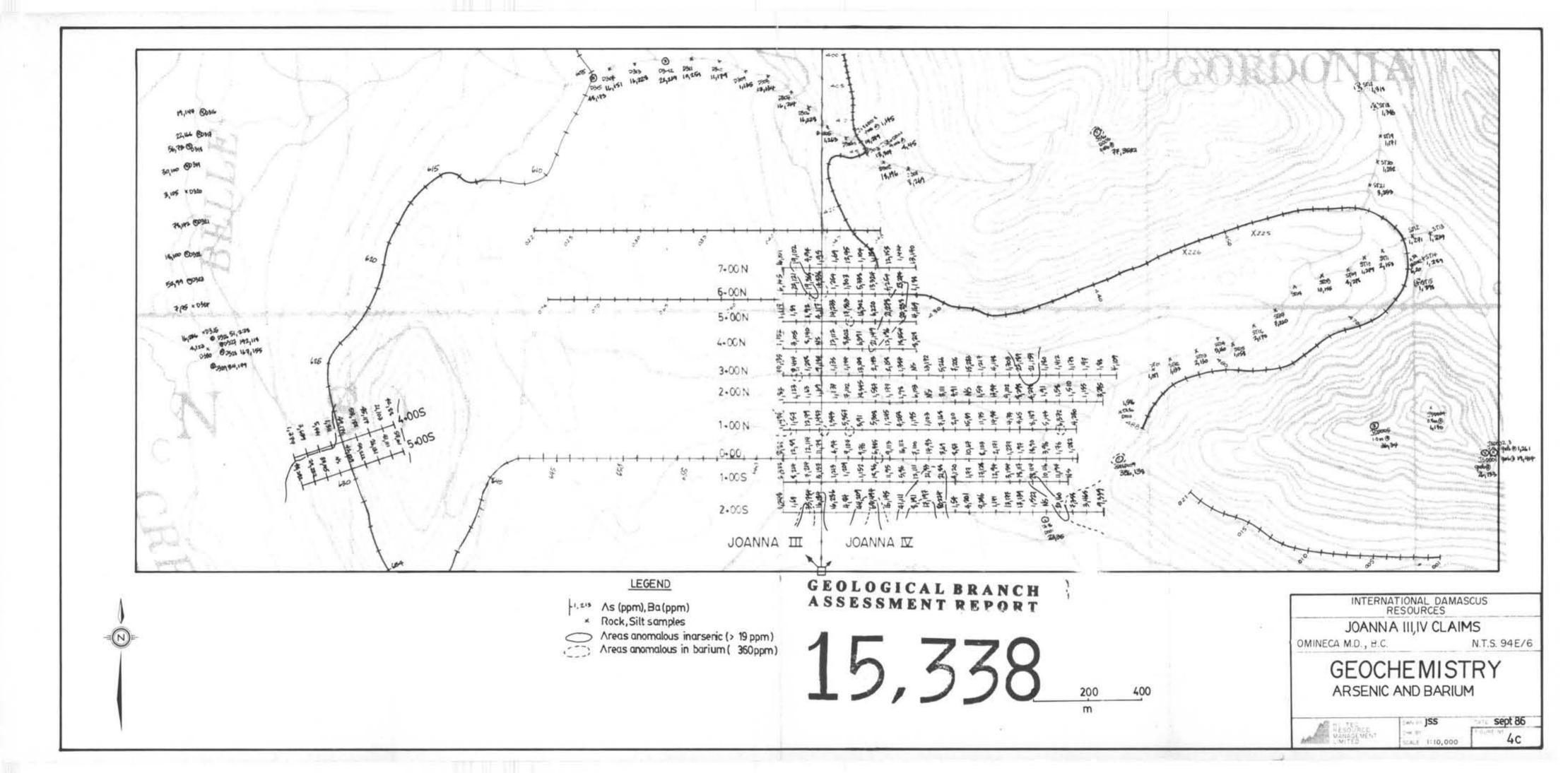
MIN-EN LABS ICP REPORT PROJECT NO: D1-86 & D3-86 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

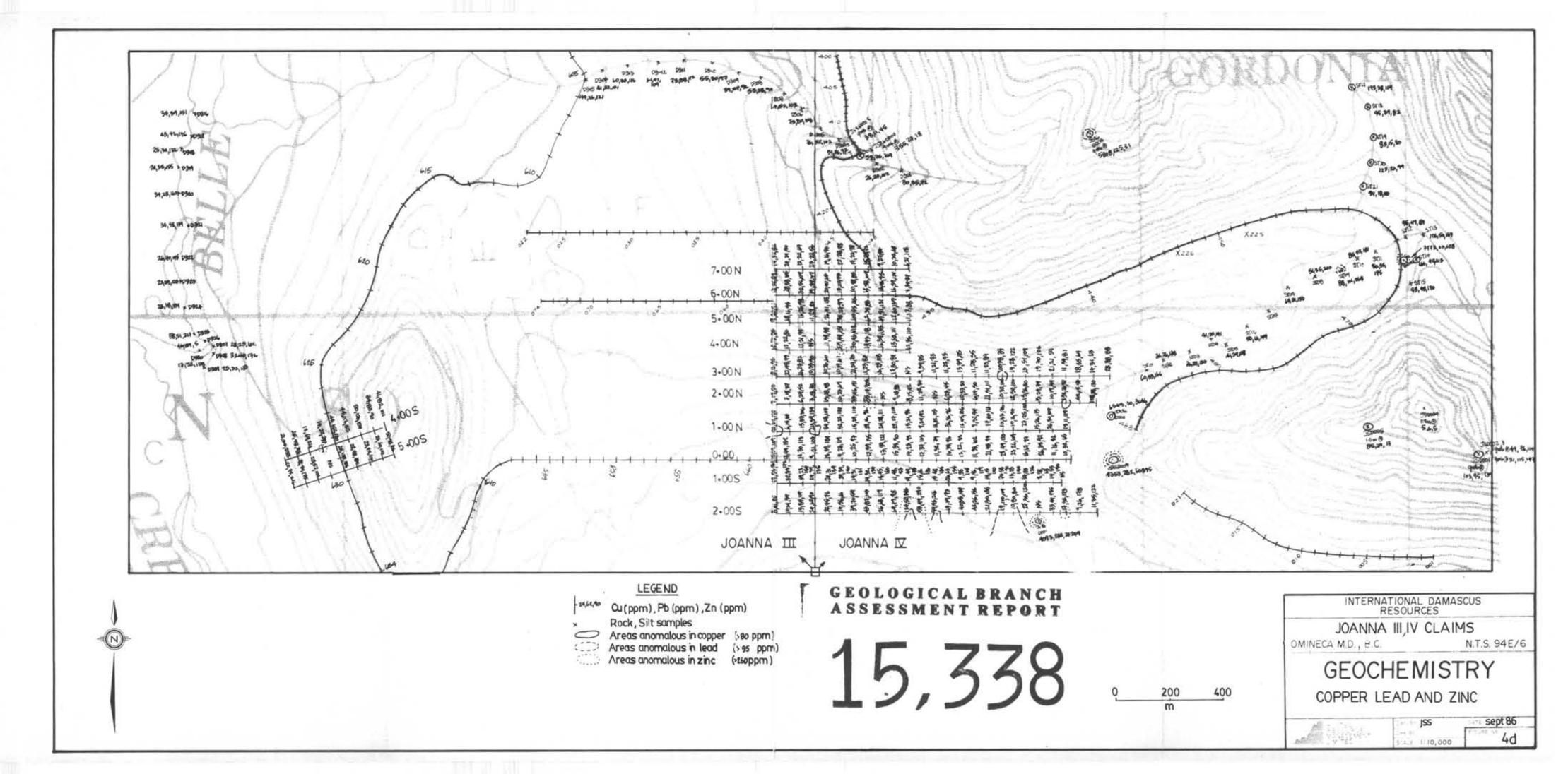

PROJECT NO: 01-6			705 WEST	1218 21"					FILE NO: 6-6425/P7+8
ATTENTION: J.STE					5814 OR (* TYPE SOIL GEOCHEM *	DATE: AUGUST 25, 1986
(VALUES IN PPM		AS	BA	<u> </u>	PB	*****	AU-PPB		
7+00N 0+50E	.5	19	102	24	27	94	20		
7+00N 1+00E 40M		4	94	12	22	69	5		
7+00N 1+50E	.2	1	99	23	22	56	3		
7+00N 2+00E	.2	1	69	19	16	74	5		
7+00N 2+50E	.5	12	95	22	28	78	15		
7+00N 3+00E	,1	1	104	17	22	78	5		
7+00N 3+50E	.1	1	188	15	23	72	10		
7+00N 4+00E	. 1	12	153	9	27	74	5		
7+00N 4+50E 40M	۱. ۱	1	414	10	22	88	10		
7+00N 5+00E	.3	13	140	6	21	118	10		
D1-ST-1	1.0]	189	60	33	166	35		
D1-ST-2 40M	.6	1	133	36	26	138	10		
D1-ST-3 40M	.6	2	130	36	27	130	5		
D1-ST-4	.9	5	160	41	20	141	10		
D1-ST-5	.9	1	158	41	29	128	5		
D1-ST-6	1.2	- Z	170	50	16	149	10		
01-57-7	1.3	7	220	64	31	150	20		
D1-ST-8 40M	1.2	10	155	51	35	200	10		
D1-ST-9	2.2	4	278	88	101	26B	15		
D1-ST-10	.9	1	277	85	42	181	10		
D1-ST-11		2	<u>21/</u> 258	80	35	175	<u>-</u>		
D1-ST 12	.6	1	271	95	49	189	10		
D1-ST 13	.5	1	239	106	50	169	30		
		,					15		
Di-ST-14	.8	1	238	166	42	213	5		
D1-ST-15	1.1	<u>1</u>	398	93	48	170			
D1-ST-16	.9	1	402	86	47 70	222	5		
D1-ST-17	.5	1	318	173	38	107	10		
D1-ST-18	.3	1	346	95 27	39	82	3		
D1-ST-19	.3	1	171	83 107	15	80	5		
D1-ST-20		1	252	123	26	 99	10		
D1-ST-21	.7	3	253	94	18	110	10		
03-1	.3	8	269	30	35	72	5		
D3-2 20N	.3	18	196	24	26	104	5		
03-3 20M	.2	13	307	58	36	109	5		
D3-4	.3	14	279	51	36	92	5		
D3-5	.3	1	263	76	32	102	10		
93-8	.2	16	228	75	B0	108	15		
D3-7	.3	16	214	64	52	103	5		
D3-8 ZOM	.3	13	134	55	28	90	5		
D3-9 20H	.7	1	135	39	24	92	3		
D3-10 40M	• 6	11	179	55	30	97	5		
D3-11	.4	10	251	73	58	112	5		
D3-12	.6	22	219	61	41	109	5		
D3-13	,4	16	228	60	30	116	3		
D3-14	.3	16	151	41	22	101	5		
D3-15 40M	-6	48	173	44	26	121	5		
D3-16	. 4	19	147	37	39	151	10		
D3-17	.7	22	166	43	42	176	5		
D3-18 20M	.5	56	73	25	30	122	5		
D3-19 20M	.4	30	100	29	35	155	5		
D3-20 20M	.1	3	105	34	23	160	10		
D3-21	.6	78	142	37	48	179	15		
D3-22	.3	18	100	26	40	145	10		
03-23 20M	.5	52	99	22	39	123	10		
D3-24	.5	32 7	75	23	18	137	10		
D3-25	.5	16	236	<u>23</u> 58	<u>10</u>	<u>337</u> 217	200		
D3-26	1.1	51	238	3 8	46	189	5		
D3-28 D3-27 40M	1.9	192	118	28	25	162	20		
D3-28 40M	1.5	167	155	32	40	172	125		
23-28 1 70	i ad	10/	100	32	9V 77	1/2	123		

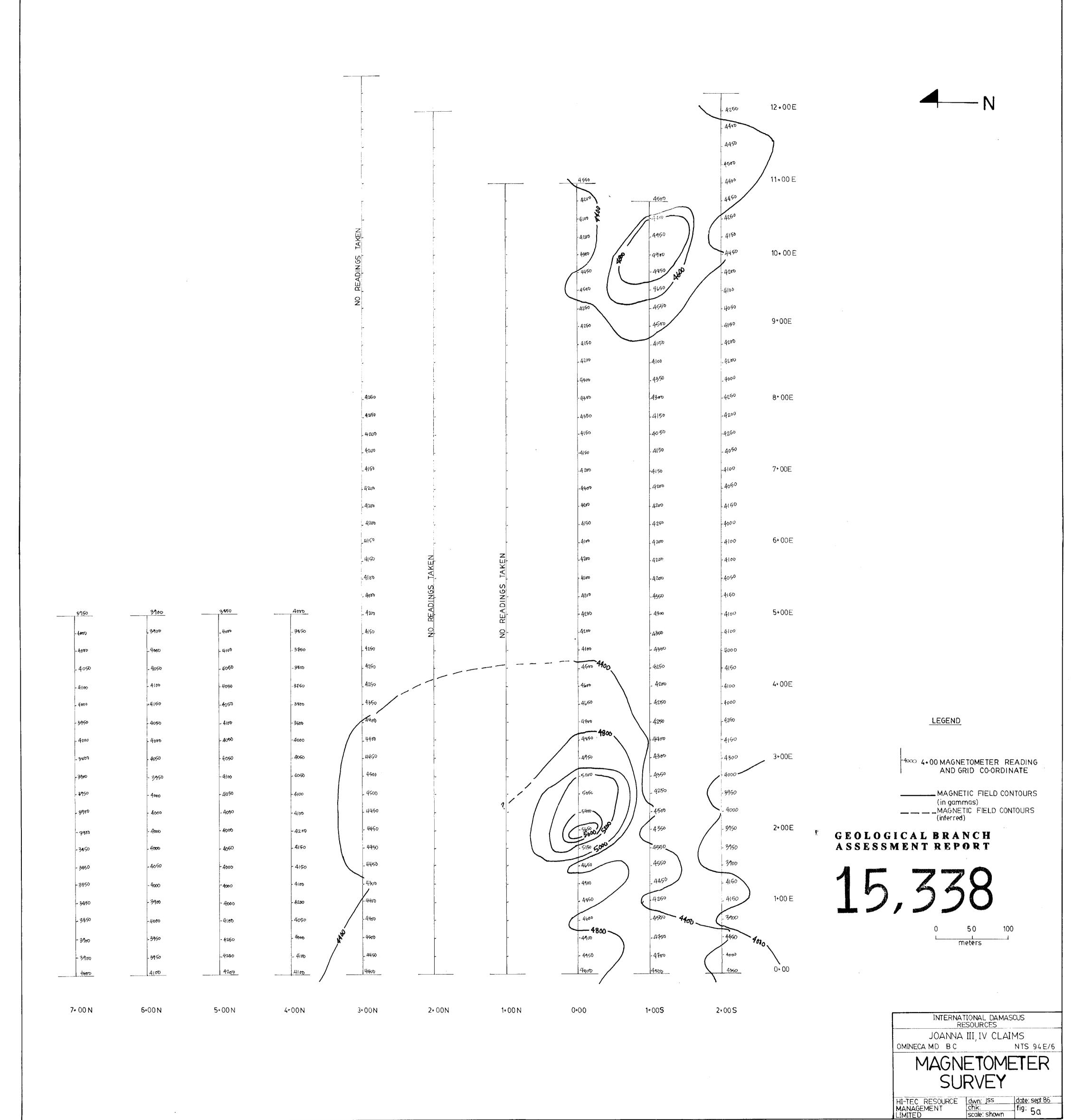

32

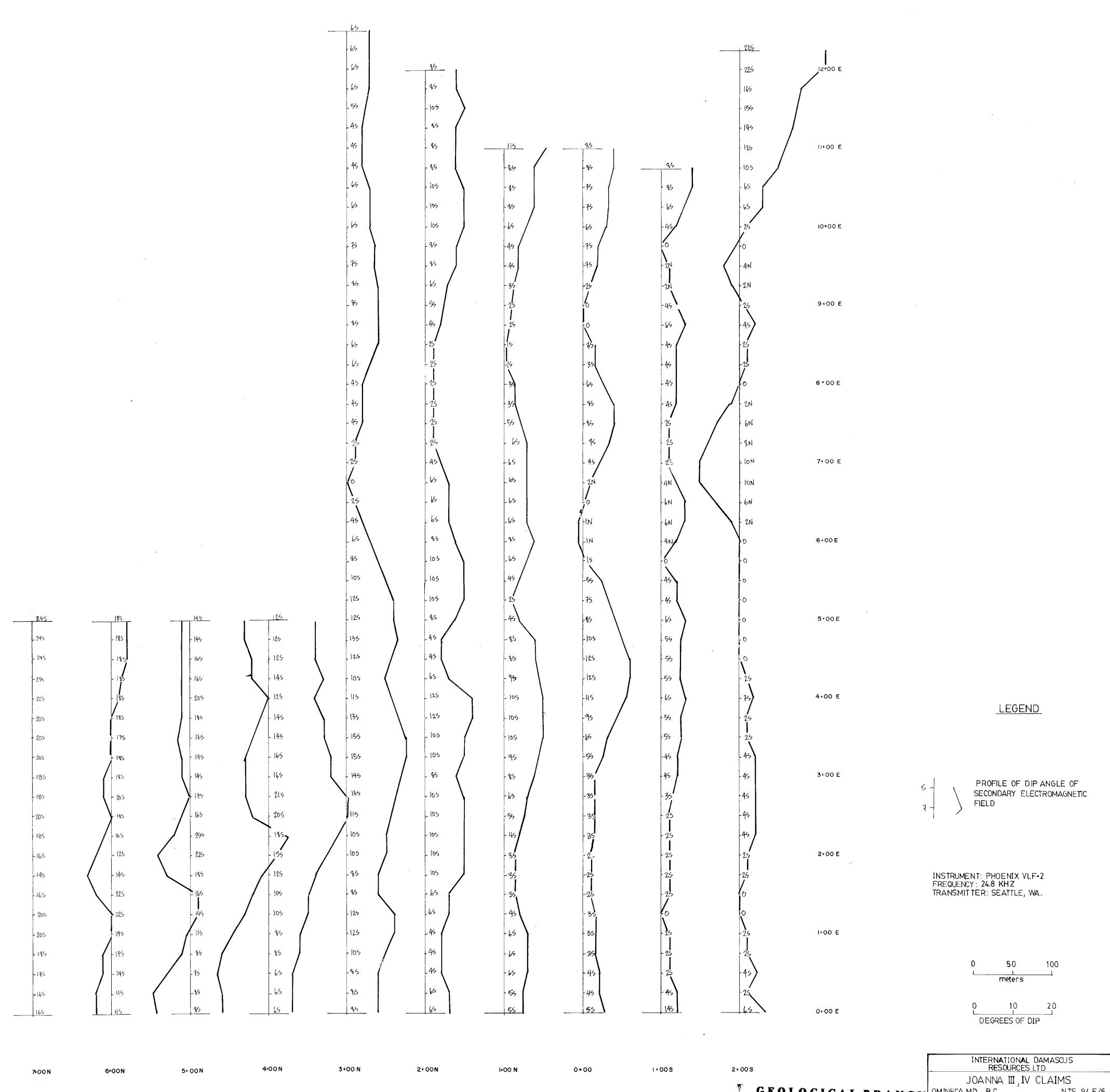

153

(ACT: GEO27) PAGE 1 OF 1 MIN-EN LABS ICP REPORT COMPANY: HI TEC RESOURCE MANAGEMENT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 6-6425/P9 PROJECT NO: 03-86 & 02-86


ATTENTION: J.STEEL	/P.SORBARA			(604) 980-	-5814 OR	(604)988	4524	# TYPE	SOIL	GEOCHEM	DATE: AUGUST 25, 1986
(VALUES IN PPM)	A6	A5	BA	C អ	PB	ZN	AU-PPB				
D3-30	.1	4	123	17	52	158	65				
4+00\$ 2+00E	.1	42	88	41	82	101	10				
4+005 1+50E	.4	21	103	34	85	90	5				
4+00S 1+00E	. 4	45	117	50	126	154	10				
4+005 0+50E	.5	53	182	44	117	135	5				
4+005 0+00	.6	49	171	44	152	170	5				
4+005 0+50W 40M	.1	1	311	14	22	297	5				
4+005 1+00W	.2	5	441	17	67	216	5				
4+005 1+50W 40M	54.1	3	639	25	48	306	5				
4+005 2+00W	. 1	<u>i</u>	377	21	34	233	3				
5+009 2+00E	.6	57	151	50	98	106	5				
5+005 1+50E	. i	41	111	23	60	110	5				
5+005 1+00E	.3	26	132	23	42	100	10				
5+005 0+50E	.3	50	212	29	78	184	5				
5+009 0+00	.3	42	189	25	129	406	15	~			
5+005 0+50W N/	\$										
5+005 1+00W	.2	33	145	23	52	100	10				
5+005 1+50W	-1	29	232	28	74	175	5				
5+008 2+00W	.9	43	292	22	75	216	5				

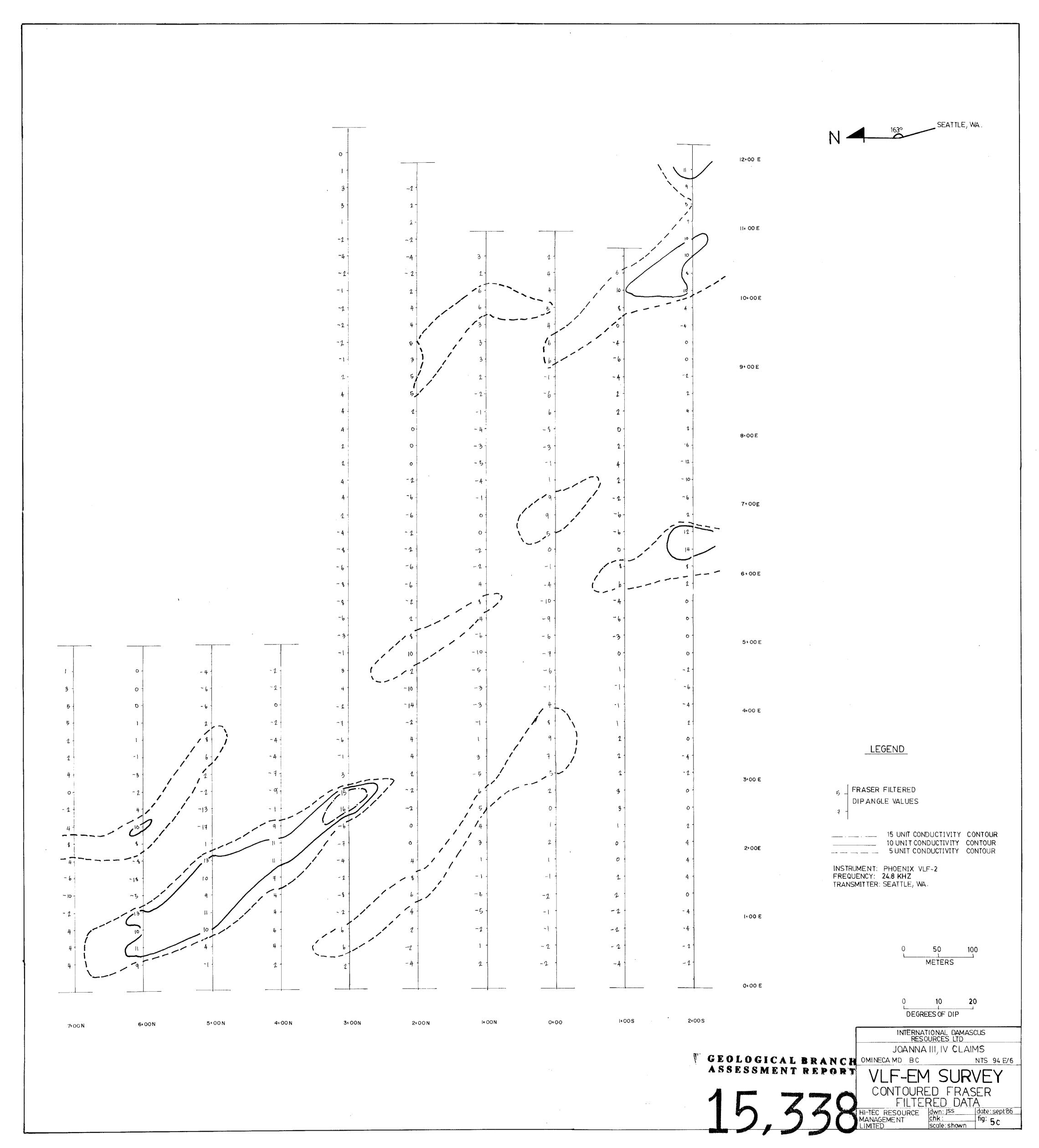






sept 86

GEOLOGICAL BRANCH OMINECA MD BC
ASSESSMENT REPORT
V| F-


NTS 94 E/6

VLF-EM SURVEY

DIP ANGLE

PROFILE MAP

HI-TEC RESOURCE | dwn: 1ss | date: sept 86 | chk: | fig: 5 b

