86-801-15364

Owner/Operator: COMINCO LTD. EXPLORATION NTS: TO3P/14W, 103P/13E, 103P/11W, 103P/12E

4

7) *

WESTERN CANADA

ASSESSMENT REPORT

GEOLOGY AND GEOCHEMISTRY

<u>0F</u>

SAULT 1,3,4,5,7, AND 8 MINERAL CLAIMS

SKEENA M.D.

عة.ع' z≉.B' LATITUDE: 55°46'N, LONGITUDE: 129°269'W

WORK PERFORMED:

JULY 17 to AUGUST 18,1986

GEOLOGICAL BRANCH

UN DER 1 6 1986 M R. # Ş VARGGANZI, R.C

FILMED

TABLE OF CONTENTS

JMMAR Y	1
NTRODUCTION	2
EOLOGY	
INERALIZATION	
EOCHEMISTRY	
NTERPRETATION	9
COMMENDATIONS	
FERENCES	1

•

APPENDIX	А	-	STATEMENT OF EXPENDITURES
APPENDIX	В	-	STATEMENT OF QUALIFICATIONS
APPENDIX	С	-	AFFIDAVIT - J.D. BLACKWELL
APPENDIX	D	-	SOIL GEOCHEMICAL ANALYSES
APPENDIX	Ε	-	ROCK GEOCHEMICAL ANALYSES

FIGURES:

1.	Location Map
2.	Claim Map
3 (i)	Geology (1:5000)- East Sheet
3 (11)	- West Sheet
3(iii)	
4 (i)	Geology (1:000)- East Sheet
4 (ii)	- West Sheet
5 (1)	Soil Geochemistry (1:2000) - Grid 1 - West End
5 (ii)	- Grid 2 - Showing Lake West
5(iii)	- Grid 3 - Lake Showing
5 (iv)	- Grid Lake South
5 (v)	- Discovery
5 (v) 6 (i)	Rock Sample Locations (1:1000) - East Sheet
6 (ii)	- West Sheet
	k

•

.

.

.

COMINCO LTD.

EXPLORATION NTS: 103P/14

WESTERN CANADA 11 December 1986

ASSESSMENT REPORT

GEOLOGY AND GEOCHEMISTRY OF

SAULT 1,3,4,5,7 and 8 MINERAL CALIMS

SUMMARY.

The Sault claims are located 30 km north of Alice Arm, B.C. The property is underlain by an east-striking, 10° to 50° north dipping sequence of andesite and dacite pyroclastic tuff breccias, overlain by calcareous debris breccias, bedded base metal-rich pyritic tuff, barite/celestite beds, black limestone and rhyolitic tuff and breccia. These units are overlain, perhaps disconformably by basaltic flows and flow breccia. This pre-Middle Jurassic sequence is overlain unconformably by mid-Jurassic fossiliferous epiclastic breccia, arenaceous wacke and mudstone correlated to the Bowser Group. All units are greenschist to sub-greenschist metamorphic rank. Numerous north and north-east trending vertical faults cut the property.

A sulphate horizon has been located at five points along a 6.5 km trend. Detailed mapping of one area suggest a minimum 800 m long strip of prospective geology containing relatively continuous sulphate beds with scattered lenses of massive pyrite containing sphalerite and galena. High contrast soil geochemical anomalies support continuity and suggest possible extensions to this zone.

Further geological mapping, soil geochemistry, grid geophysics and diamond drilling is recommended.

INTRODUCTION

Located along the southern shore of Kitsault Lake, in NTS 103P/11W, 12E, 13E and 14W. Distance to town of Kitsault is 32 km, Terrace 200 km and Stewart, 40 km. Access by float plane or helicopter. Kitsault River Valley road comes to within 5 km of property, however this access route is in disrepair and no longer serviceble. (Figure 1).

Claim information is summarized as follows and shown on Figure 2.

<u>Claim Name</u>	Units	Record Date
Sault 1	20	July 25,1984
Sault 3	6	July 25,1984
Sault 4	15	August 26,1985
Sault 5	3	August 26,1985
Sault 7	10	October 17,1985
Sault 8	8	October 17,1985

The claims are in the Skeena Mining Division.

On March 25,1985 the Sault 1 and 3 claims were transferred to Cominco Ltd. and on August 26,1985 the Sault 4 and 5 claims were also transferred to Cominco Ltd., 2200-200 Granville Street, Vancouver, B.C. V6C 1T2.

The Kitsault Valley has a long history of exploration and mining, centred upon silver veins at Torbrit and Dolly Varden. The Sault claims were staked in 1983, 1984 and 1985 to cover barite and realgar mineralization noted by Woodcock and Wychopen in 1966. In late 1984 Cominco optioned the property from Woodcock.

The 1986 programme builds upon the data base established and reported on for 1984 (Woodcock 1985) and 1985 (Blackwell 1986). During 1986 geological mapping at 1:5000 and 1:1000 scales was undertaken aimed at mapping the stratigraphy, establishing rock types, testing surface continuity of showings and host units and testing selected areas by a small soil sampling grid. In addition rock geochemistry and re-analysing 1985 soils for Ag, Cu and Ba were undertaken.

GEOLOGY

The geology of the property is portrayed on Plates 3i and 3ii (1:5000). Recce scale mapping was done using a photo enlargement base. Mapping was done using an "as non-interpretive" legend as possible, utilizing a rock name (numeric designation) followed by a textural modifier (alphabetic). All features are based on field descriptions. Rock type is based on apparent modal composition, colour and density. Rhyolites mapped contain siliceous clots reminiscent of quartz eyes and siliceous clasts. Textural modifiers for pyroclastic and flow rocks are based on size classifications in international useage. Rock names for pyroclastic rocks are based on fragment composition not matrix.

To facilitate a geological description in the text, several rock packages are broken out and described here from oldest to youngest.

Wacke and Conglomerate

Not studied during the 1986 programme, but outcropping along the southern edge of the property near the Trout Lakes. These rocks include grey to black, medium bedded grewywacke, mudstone and conglomerate. These units are likely the oldest rocks on the property, dipping under the metavolcanic sequence.

2.

3.

Andesite to Dacite Pyroclastic Rocks:

This is the volumetrically most important rock package on the property, occurring as a thin band in the west, expanding eastward to form a thick sequence underlying and overlying the mineralized stratigraphy. The contact with underlying units has not been observed. Characteristic features are pale to apple green colour, abundant feldspar crystals and a major tuff to lapilli component.

Southwest of Grid Lake, this package comprises dacitic lapilli breccias occurring as massive thick units. Northwards to the Showing Lake area, lapilli tuff, tuff and subordinate waterlain tuff predominate as medium to thin bedded units.

South of the Discovery area, lapilli tuffs occur as massive, ridge forming units. Northward, to Kitsault and Apostrophe Lakes, medium to thick beds of crystal tuff and lapilli tuff predominate. East to the property boundary this package becomes coarser, comprising lapilli breccias and block breccias. In this latter area the separation of dacite breccias from diamictite becomes difficult due a increasingly heterolithic fragment component.

Diamictite, Lithic Breccias, Limestone, Sulphate/Sulphide Rocks:

This rock package occurs as an east trending strip running through the centre of the property. Lithologies appear to both intermix and change in proportion along strike. The area southwest of Kitsault Lake and Showing Lake has coarse to medium grained diamictite* resting sharply in dacitic tuffs. Diamictites in this area tend to be highly calcareous, containing abundant clasts of black limestone, dacite, pyrite and mudstone. These pass into and are overlain by thin bedded, massive outcrops of celestite-barite and massive pyrite (with sphalerite and galena) or into black, flaggy limetone. In this area a second very coarse diamictite unit separates rhyolitic tuffs from overlying basalt.

In the Quartz-Eye Lake and Discovery areas, coarse to medium grained calcareous diamictite and black limestone appears to underlie dacitic tuffs. The footwall contact appears to be a fault. Overlying and interdigitating with limestones in the northeast of this area, thin-bedded celestite with minor pyrite laminae (plus sphalerite) occurs as lenses up to 6 m thick. Overlying the sulphate lenses is a lithic breccia composed of a clast supported breccia with fragments of limestone, dacite, rhyolite, hematite-stained barite, pyrite and quartz porphyry up to 40 cm on an edge. The lithic breccia appears to contain an essential volcanic component of highly flattened rhyolite blocks.

^{*} The term diamictite is non-genetic and is herein used to cover a range of terrigenous unsorted, poorly bedded rocks displaying a wide range of particle sizes and clast lithology supported in a fine-grained matrix. On the Sault claims they may or may not be calcareous.

East of Discovery a unit at least 35 metres thick of grey to black medium-bedded limestone with rare celestite layers (i.e. Tom showing) occurs. South of the Ian showing this unit changes rapidly to coarse diamictite with a high proportion of both limestone and dacite breccia debris.

At the Ian showing, coarse diamictite, thin bedded black limestone and thin lenses of celestite occur interbedded with dacite tuffs and breccias. A second area of very coarse diamictite occurs along a stream section 900 m to the west. This area has not been sufficiently mapped to establish a tie-in to the rest of this rock package on the property.

Rhyolite Tuffs

South and west of Kitsault Lake through Showing Lake to the West End Showing occurs a band of rhyolite tuff. This unit is composed of thin to medium-bedded tuff and lapilli tuff with minor waterlain tuff. It is characteristically yellowish coloured and contains varying proportions of broken quartz, feldspar and purple to bronze mica. It is commonly ankerite-altered and can be very siliceous. This unit has been field mapped as a rhyolite tuff, though derivation by hydrothermal alteration of a dacite tuff protolith cannot be discounted.

Basalt Flows and Breccias

Massive basalt flows and flow breccia occur north of Showing Lake and as an outlier north and east of Grid Lake. These rocks are characteristically maroon to deep green coloured, feldspar, magnetic and pyroxene-phyric, vesicular (chlorite and hematite infillings) and relatively non-descript. No pillows, bedded tuffs and breccias, or interflow sediments have been noted. Bedding attitudes most commonly observed are flat to northwards dipping at less than 20°. It is likely that this sequence rests with slight disconformity on underlying sediment and volcanic units.

Andesite to Rhyolite Lapilli Tuffs and Sedimentary Rocks

South of Quartz-Eye Lake and in the Summit Lake area a distinct appearing package of rocks caps local high ground. This package comprises brick red to maroon, rarely green, pink feldspar, mica and guartz-phyric lapilli tuffs, tuffs and thin bedded tuffaceous mudstones. Units are thin to medium bedded, traceable for short distances along strike, and are highly variable in composition. Most pyroclastic units appear to be of secondary or debris flow origin, based on fragment rounding, crude grading features and abundant interflow sediment. The relationship with other rock packages on the property is not clear. South of Quartz-Eye Lake it rests with apparent conformity in dacite tuffs. The north and west edge of this outlier is in fault contact with diamictite and lithic breccias or basalt respectively. North of Summit Lake contacts with dacite tuff were not observed, but appear to be in fault contact. A subaerial or very shallow marine environment is suspected, but no unequivocal environmental depositional indicators have been observed.

Bowser Group Sedimentary Rocks

Fossiliferous mudstone, debris breccia, black mudstone and arenaceous wacke correlated to the Bowser Group occurs along the northern portion of the map area. A Middle Jurassic age assignment is based on fossil fauna studies by

4.

Tipper of the GSC (Alldrick, personal communication). Fossiliferous mudstone and breccia outcrops on rocky points along the south shore of Kitsault Lake west of camp, and on islands northwest of camp. Along the north shore of Kitsault Lake, east of Apostrophe Lake, black mudstone units occurs. North of these exposures, and at the east end of Kitsault Lake, thick bedded arenaceous wacke and mudstone occur. Bowser rock west of Apostrophe Lake appear to rest unconformably on older metavolcanic rocks. To the east, the contact is a vertical fault.

Showing Lake Area

The area extending 1.5 km west from Canoe Cove on Kitsault Lake was mapped at 1:1000 (Plates 4i and 4ii) utilizing compass and topofil lines. The area of interest covers several sulphate/sulphide prospects (Lake and West End), and was selected for detail mapping based on its mineralization, fair exposure and relative accessibility. The area is covered by low swampy peat bogs, clumps and stands of hemlock/cedar, numerous small lakes and ponds, and about 20% outcrop. Mapping was undertaken utilizing the same legend as the 1:5000 property map and the following descriptions follow a similar format used under the property geology section.

Andesite to Dacite Pyroclastic Rocks

In the Grid Lake area, south of Showing Lake, extending west, outcropping dacite tuff and crystal tuff occurs. Minor, laminated waterlain tuff occurs south of Showing Lake. Rocks are typically mid to apple green, feldspar-crystal rich with rare quartz phenocrysts. Near the Lake Showing, and along the small bay immediately west, coarse white muscovite up to 4 mm is common. Rock attitude tend to be $065/10-40^{\circ}N$.

Lower Diamictite/Limestone/Mudstone Unit

A unit of interbedded diamictite, black limestone, and black mudstone starts 170 m southwest of Showing Lake, running along the south shore of the lake, then along Showing Creek to Canoe Cove on Kitsault Lake, a distance of 1100 metres. Black, pyritic mudstone occurs in the southwest corner of Showing Lake. This bed may subcrop alog the entire package length, but weathers recessively and is not exposed at surface.

Calcareous, metalliferous diamictite occurs along the entire strip. Along the south shore of Showing Lake, and at the Lake Showing, this rock is a thick bedded, heterolithic breccia with clasts up to 20 m across. Clast lithology includes mudstone, pyritic tuff, dacite tuff and limestone. It is black to dark grey, fetid smelling, highly porous and pyritic. There is little fabric to the rock and fragments are randomly oriented. Outcrops are frequently coated in hydrozincite. Elsewhere this unit is finer-grained, with white dacite chips up to 2 cm in a gritty, calcareous matrix.

Black flaggy limestone, possibly interbedded with diamictite occurs within the entire package. Best exposures are immediately downstream from the Lake Showing and at Canoe Cove. This unit is black, pyritic, fetid and fine-grained. At the "Creek Pits" and Canoe Cove minor interbedded celestite occurs, and joints are filled with strontianite veinlets up to 15 cm thick.

5.

Celestite/Barite Unit

At the east end of Showing Lake, up to 8 m of laminated celestite, barite, limestone and chert, containing laminae and lenses of pyrite and sphalerite rest on limestone and dacite tuff. This unit is thin to medium bedded, finely laminated, white to buff coloured and exceedingly fine-grained. This unit trends 090/20 to 38°N.

Other exposures of this unit occur further east at the "Creek Pits" and Canoe Cove.

Rhyolite Tuff and Crystal Tuff

Massive units of rhyolite tuff and crystal tuff overlie diamictite/limestone/ sulphate units. This unit appears to thicken westward. Near Canoe Cove it is highly calcite and silica altered, while west of Showing Lake it is ankeritic, contains bronze coloured mica and quartz veinlets. As previously mentioned, the term rhyolite is a mapping or field identification only, and hydrothermal alteration of a dacite protolith cannot be discounted.

Upper Diamictite(s)

West of Showing Lake a 10 m thick, very coarse diamictite unit occurs overlain by rhyolite waterlain tuff and dacite tuff, striking 100/28°N. Fragments of dacite tuff, limestone and sulphate up to 60 cm across occur. This unit is a useful local marker, but its relationship to other diamictites is not clear.

A second higher and more stratigraphically continuous diamictite, 6 m thick occurs at the base of the basalt unit. This diamictite is very coarse (30 to 80 cm clasts), locally flattened and schistose, and appears conformable to the overlying basalt. It does not have a calcareous matrix and no minerlization has been noted in it.

Basalt Unit

Massive, thick non-descript basalt flows, breccias and tuffs occur along the north edge of the map area, and south of Canoe Cove to east of Grid Lake. These rocks are usually dark green to maroon, have chlorite/hematite filled amygdules and appear relatively fresh. They appear to rest flatly on the underlying, north dipping rhyolite and sediment packages.

Andesite to Rhyolite Lapilli Tuffs and Sedimentary Rocks

In the southwestern portion of the map area, thin bedded andesite lapillistone, lapilli tuff, grit and mudstone occur. These units are brick red, sometimes green, well bedded and modestly well exposed. A small, faulted(?) block of similar lithologies occurs along the northern shore of Canoe Cove.

STRUCTURE

No major folds have been mapped on the property. Sulphate and limestone exposures are frequently crenulated, with OlO° fold axis plunging 15 to 20° north. No major structure related to these minor folds has been established.

Numerous 000 to 040° trending vertical faults cut the property with apparent east-side up displacements. A pronounced airphoto linear passing through Grid Lake to Canoe Lake on Kitsault Lake is a fault zone, may have a significant throw (200 or 300 m), with east side down, accounting for the preservation of a basalt outlier in this area.

MINERALIZATION

Descriptions of mineralization has been previously reported by Woodcock (1985) and Blackwell (1986). Additional results to report for 1986 include:

1. The "Creek Pits", old overgrown trenches found between the Lake showing and Canoe Cove, expose laminated celestite, barite, chert, limestone and pyrite with minor sphalerite and galena. The exposure is 3 m thick. Analyses are reported in Appendix E, see Plate 6 for sample location.

2. The Tom showing, located 600 m east of the Discovery area, where a low dry hillock contains rubble of massive and laminated pyritic celestite. There is little outcrop exposure in this area, and thickness or extent is unknown.

GEOCHEMISTRY

Soils

Soil grid areas are plotted on plate 3ii and results are plotted on plates 5i to 5v inclusive, with analytical data and analytical procedure tabulated in Appendix D. Grids are numbered one to five, from west to east. During the 1986 programme additional soil samples were collated on Grid 3, with new sampling done at grids 2 and 4. All 1985 soil samples were analysed for Ag, Ba and Cu. All new and previously existing data has been collected, digitized and replotted (Plates 5i to 5v), and the entire package is presented in this report. Descriptive summaries following are in addition to results reported by Blackwell (1986).

8.

(i) Grid 1, West End

Analyses of 1985 samples for Cu, Ba and Ag. Copper values are low, with a peak value of 25 ppm. Barium values range from 267 to 10567 ppm. Anomalous values cluster near outcropping barite-celestite-diamictite beds. Silver values range from detection limit (<0.4 ppm) to 2.9 ppm. High values occur near the west and, near Ba, Pb and Zn highs.

(ii) Grid 2, Showing Lake West

A new grid, established over an area of outcropping diamictite, limestone and dacite tuff. Modest to high contrast soil geochem anomalies in Pb,Zn,Ba and Ag occur over diamictite and limestone areas. Strong anomalies at the west edge and northeast corners of the grid are unaccounted for and require follow up sampling and prospecting.

(iii) Grid 3, Lake Showing

Five new lines established, plus new analyses of Cu,Ag,Ba. Strong, high Pb,Zn,Ag,Ba and As anomalies occur south of Showing Lake, near the Lake Showing, Creek Pits and Canoe Cove. the anomalies south of Showing Lake may reflect glacial dispersion from the Lake showing area. Other anomalies coincide with areas thought to be underlain by diamictite, sulphate or limestone. Copper values are flat, with a peak value of 44 ppm.

(iv) Grid 4, Grid Lake South

Two recce lines were run south from Grid Lake to check to basalt-dacite contact. The area is swampy, and no outcrop is present. One sample with coincident Cu (55 ppm), Ba (1514 ppm) and Zn (439 ppm) occurs.

(v) Grid 5, Discovery Grid

New analyses of 1785 samples for Cu,Ba and Ag. Copper values are flat, with a peak value of 39 ppm. Silver values up to 1.2 ppm occur at the north end of the grid, however they do not correlate to anomalous values in other elements. Barium values are remarkably elevated along the south and southwest portions of the grid. These coincide with anomalous As,Zn and Pb. Outcrop is poor, and this area is through to be underlain by lithic breccia or diamictite.

9.

Rocks

A selection of mapping samples collected during 1:1000 mapping has been analysed for Pb,Zn,Cu,Ag,Ba and Sr, and 14 were submitted for whole rock analysis. Sample locations are plotted on Plates 6i and 6ii, results and analytical procedure reported in Appendix E. At the time of reporting this data had not been processed and its significance awaits thin section study. The following comments can be made concerning the whole rock data.

(i) Sample DR 77, field mapped as a rhyolite-tuff, has an unacceptable LOI and total. It is suspected that the sample is extremely ankerite-altered.

(ii) Samples DR 37, DR 57, DR4 probably accurately reflect basalt compositions. They are likely ferrotholeiitic basalts. High total iron reflects modal magnetite.

(iii) Samples of dacite and andesitic tuff appear to be chemically indistinguishable. They are all likely andesite. All rocks or relatively alkali rich.

INTERPRETATION

Property and detail mapping suggest the Sault claims are underlain by a north dipping sequence, which from oldest to youngest comprises:

- 1. Wacke and Conglomerate
- 2. Andesite to dacite pyroclastic rocks, which are coarse near the base and to the east, fining upwards and west.
- 3. Diamictite, lithic breccia, limestone, sulphate/sulphide, which occurs as an intermixed band running easterly through the property. Five sulphate lenses, with minor base metal sulphides have been located. It is doubtful that these are interconnected.
- 4. These units are overlain perhaps disconformably by basaltic flows, and andesite to rhyolite pyroclastic and epiclastic units.
- 5. Bowser Group rocks unconformably overly units 1 to 4, and provide an upper age limit of middle Jurassic.

Metavolcanic and metasedimentary units of interest are tentively correlated to pre-Middle Jurassic Hazelton Group rocks. Mineralization is apparently stratabound. Elevated metal contents in sulphates, diamictites and limestone appear to be reflected in soil geochemistry. In the Showing Lake area, favourable geology can be traced 500 metres, and soil geochemistry results suggests a possible 300 m strike length worthy of follow-up exploration.

RECOMMENDATIONS

Additional geological mapping east of Discovery to the property boundary is required. Soil sampling between existing grid areas, and east and south of Discovery is necessary. Grid magnetometer and IP surveys may aid in targeting to selected zones in the mineralized section. The Lake Showing area is sufficiently mapped and prospected to be followed-up by diamond drilling.

REFERENCES

BLACKWELL, J.D. (1986): Geology, Geochemistry and Geophysics of Sault 1,3,4, and 5 Mineral Claims; Assessment Report.

WOODCOCK, J.R. (1985): Geology and Geochemistry Sault Claims; Assessment Report.

Report by:

J.D. BLACKWELL

Project Geologist, Exploration.

Approved for Release by:

W.J. WOLFE,

W.J. WULFE, F Manager, Exploration-Western Canada.

JDB/pm <u>Distribution:</u> Mining Recorder Western Canada

APPENDIX "A"

STATEMENT OF EXPENDITURES

Salaries:	J.D. Blackwell	30	days	0	228,00	=\$	6,840.00
	D. Rhodes	22	days	0	228.00	=	5,016.00
	H. Kang	22	days	0	119.00	=	2,618.00
	T.J. Fitzmaurice						
	A. Roberts	6	days	0	171.00	=	1,026.00
	A. MacGregor	11	days	0	172.00	=	1,892.00
	R. Essey						320,00
	-					-	the second s

÷

\$20,492.00

.

۲

\$48,947.00

•

.

12 December 1986

,

...

APPENDIX "B"

ì

STATEMENT OF QUALIFICATIONS

I. JERRY D. BLACKWELL of the Village of Lions Bay, in the Province of British Columbia, hereby certify:

- 1. THAT I am a geologist residing at 253 Stewart Road, Lions Bay, Briitsh Columbia.
- 2. THAT I graduated with an Honours B.Sc. in Geology from the University of Western Ontario in 1974.
- 3. THAT I have practiced Geology with Cominco Ltd. from 1974 to 1986.

ï

Signed: 4 D. BLACKWELL

Project Geologist.

.

12 December 1986

APPENDIX "C"

IN THE MATTER OF THE B.C. MINERAL ACT

AND THE MATTER OF A GEOLOGICAL PROGRAMME

CARRIED OUT ON THE SAULT 1,3,4,5,7 AND 8 CLAIMS

AND LOCATED 30 KM N OF ALICE ARM, B.C.

IN THE SKEENA MINING DIVISION OF THE

PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY

N.T.S. 103P/14

AFFIDAVIT

I, JERRY D. BLACKWELL, of the Village of Lions Bay in the Province of British Columbia, make oath and say:

- THAT I am employed as a Geologist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I hereinafter depose;
- THAT annexed hereto is a true copy of expenditures incurred on a geological survey on the SAULT claims;
- 3. THAT the said expenditures were incurred between July 17 and August 18,1986, for the purpose of mineral exploration of the above noted claims.

ż

Mul D. BLACKWELL

Project Geologist, Exploration-

APPENDIX "D"

SOIL GEOCHEMICAL ANALYSES

Collection and Analytical Procedure

Most soils were collected from "B" horizon at a depth of 15 to 40 cm, some were collected from gleysols preserved under 80 to 160 cm of peat. Samples were collected by auger and shovel, stored in kraft paper bags, airdryed, then seived through 80 mesh. Coarse fraction was rejected, fines analysed for Cu,Pb,Zn,Ag,As and Ba by the Cominco Research Laboratory in Vancouver,

Cu,Pb,Zn,Ag analyses involve digestion with hot 20% HNO₃ followed by Atomic Absorption analysis. Detection limits are Cu -2 ppm, Pb -4 ppm, Ag -0.4 ppm. Arsenic is done by colourimetric with a 2 ppm detection limit. Barium is done by XRF on a pressed pelet, 20 ppm detection limit.

KIT OPTION-WD

A Real Property

1 - **M**

a source a start and a start and the start and

KITSAULT LAKE

LOB U 86-03465 REPORT BATE 28 AUG 1986

LAP NO	FIELD NUMBER	Ag	 Cu	BA
	FIGED RODER	PPM	PPM	PPM
				· ··· ··· ··· ···
SS204240	B85101	<.4	11	756
\$8506541	B85102	(.4 (.4	9	659
S8506542		(, 4	19	612
S8506543	BB5104	۲.4	14	
\$8506544	B8510 5	<.4	33	654
\$8506545	B 85106	<.4	23	643
\$8506546	BB5107	<.4	34	800
\$8506547	B85108	<.4	21	.629
\$8506548	B85107	(.4	28	731
\$8506549	B85110	۲.4	26	584
\$8506550	B85111	<.4	15	572
\$8506551	B85112	<.4	28	824
S8506552	B85113	(,4	14	510
\$8506553	B85114	₹.4	21	496
\$8506554	B85115	<.4	30	791
\$8506555		. 6	23	.711
S8506556		2.3	23	1228
SB506557		.9	10	769
\$8506558		(. 4	20	702
\$8506559		<.4	25	728
\$8506560		(,4	26	785
S8506561		<.4	16	667
\$8506562		ζ.4	19	718
\$8506563		<.4	16	733
\$8506564		(.4	26	645
SR506565		(.4	11	861
\$8506566		(.4	21	449
\$8506567		<.4	22	B61
\$8506568		٢.4	20	595
\$8504569		<.4	33	693
\$8506570		(.4	28	914
\$8504571		٢.4	13	861
\$8506572		4.4	10	1149
08506573		<.4	24	720
S8506574		<u>₹.</u> 4	16	536
\$8506575		<.4	îë	506
\$8506576		C. 4	12	2881
\$8506577		ζ.4	15	626
\$8504578		C. 4	22	495
SR506579		< 4	15	455
S8506580		· (.4	6	390
S8506581		<.4	20	731
\$3506522		N 40 (M N 40 (M	10	453
	885144	<.4	Ê.	645
38506584		(.4	26	40.5
- 38506585 - 88506585	B85146	<.4	17	503
- 38506586 - 38506586	B65147	<	20	\$38 \$03
S8506587		<.4	8	502
- 56506067 - 58506588		<	18	002 699
59503589 59503589		(,4 (,4	10 9	7306
- 55506570 - 55506570		1.1	1.4	3669
اين د در دي اي برد ي برد برد بي د هم موجوع عوالي بد مدارد	an baran da sa an	j, j	۰ ۳ هر ۱۰۰ م ۲ افغا ما ۲۰۰ م	

the state of the second

86-03465 PAGE 2

LAB NC	FIELD NUMBE	R AG	C.o.	BA
		PPM	6 6 M	PPM
S8506591		7.8	38	1443
S8504592		21.2	35	1000
58506593		2.3	25	968
38506594		(,4	14	1102
S8506595		<.4	ន	1233
38504596		(15	563
S8506597		<.4	18	444
S8506598		,4	15	527
58506579		1	42 15	295 1895
SB506600		.8		
S8506601		<.4	20 17	624 525
\$8506602		(.4		611
58506603		<.4 (.4	.30	525
S8506604			18 7	783
S8504405		<.4 <.4	16	760 846
\$8506606 \$8506607		<.4	20	644
TS8506608		(.4	14	583
\$8506609		<.4	5	622
S8506610		۲ <u>۰</u> ۳ ۲,4		652
S8506611		<.4	16	547
S8506612		√ - 1 < , 4	17	620
S8506613		2.8	11	943
SB506614		.8	15	10567
S6506615		,₀ ≺ . 4	5	3073
S8506616		(.4	14	774
S8506617			12	550
S8506618		. 4	14	864
58506619		۰.4 د_4	17	583
S8506620		<		1932
S8506621		۲.4	12	414
S8506622		(.4	5	719
S8506622		1.1	25	599
S8506624		2.9	23	740
58506625		.5	22	853
S8506626		(.4	12	1234
\$8506627		< 4	16	970
38506628		(.4	19	768
S8506629				454
S8506630		6.4	1.6	755
S8506631		<.4	10	721
S8506632		1 I	19	267
S6506633		.4	4	1076
\$8506634		<.4	2	623
SR506635		. 9	9	497
\$8506636		ζ, 4	12	854
S8506637		4 4	11	571
\$8506638		(,4	18	807
1S8506637		4.4	5	<u> </u>
\$8506640		(4	3	538
S6506641		<.4	4	769
\$\$506642	B85203	. (.4	21	311
\$8506643		<.4	17	535
\$8506644	885205	<.4	8	617

1

State The State State

F.

ŗ

2

ſ

.

ý Ki ÷.,

LAB NO	FIELD NÜMBEE	АБ РРМ	Cu PPM	Ва ррм
S8506645				589
S8506646	B85207	(.4	14	425
S8506647	-	<.4	11	692
38 506648		<pre></pre>	71	774
158506649		<.4	15	492
138506650	B85211	<.4	20	4110
\$8506651	B85212	<.4	28	667
		(,4	20	616
S6506653		۲.4	32	1046
S8506654		ζ.4		510
S8506655		<.4	7	946
SB206626		<.4	11	2372
S8506657		.4	28	4974 636
S8506658		۰.4 ۲.4	18	587
58506657		<.4 <.4	19	594
		(.4	14	820
SB506660				
58506661		<.4	29	829
\$8506662		۲.4	23	899
\$8506663		.5	17	2509
SB506664	-	<u>{</u> ,4	19	3075
S8506665		<.4	29	539
- S8506666	BB5227	5,4	10	E17734
\$8506667	B85228	<.4	16	807
\$8506668		۲.4	15	4262
\$8506669		۲.4	27	2406
S8506670		۲.4	15	1372
S8506671	B85232	. K.4	17	7057
S8506672		٢.4	7	7516
\$8506673	B85234	۲.4	10	5149
S8506674		۲.4	9	3921
\$8506675	B65236	۲.4	18	759
S8506676	B85237	. 4	14	2399
S8506677	B85238	<.4	7	590
\$8506678	B8523 9	ζ,4	3	494
\$8506679	B85240	.4	18	669
S8506680	B85241	(,4	33	534
S8506681	B65242	.5	15	438
38506682	885243	1.	6	345
\$8506683		<.4	19	495
S8503684	885245	. 4	18	640
\$8504485	B85246	<.4	8	466
38506686		(,4	6	454
S8506687		۲.4	21	320
S8506488		1.2	25	498
A \$8506687		1 5	16	419
T SB506690	B85251	(.4	14	45.6
S8506691	B85252	6.4	3	1443
\$8506692		.5	25	653
\$8506693	B85254	K.4	19	4154
S8506694	885255	<.4	Î.	1006
S8506695	BB5256	<.4	20	667
58506676 58506676	B85257	<.4	16	4580
S6506697	B65258	<.4	3	- 680 - 680
S8506698			L L	438
	a a na serie de la companya de la co	•••	J. J.	

86-03465 PAGE 4

anter anter a contraction of the second s

LAR NO	FIELD NUMBER	ас Маа	Cu PPM	97 97
 S8506677	B85260	 (.4		410
S2006700		(.4	1.4	751
· ·	B85262	< , 4	12	1583
	取 启所完成了	(. A	1.7	775
38504703		4.4	17	905
38506704		. 4	21	687
S8504705		.8	19	650
S8506706		. 6	18	668
\$8506707 J	B85266	<.4	15	717
\$850370B		<.4	12	2257
\$8506709	965270	<.4	39	3498
SE506710	B85271	<.4	15	839
S8506711	B85272	1.4	19	597
SE506712		4.4	16	563
C8506713	B85274	<.4	22	615
	B85275	<.4	24	1633
\$8506715		4.4	17	871
S8506716		(,4	10	1546
	885278	5.4	^	1629
S8506718		ζ.4	5	554
\$8506719		<.4	9	610
S8506720		<.4	13	85)
S6506721		<.4	20	605
S8506722		(,4	15	544
88506723		<.4	5	1027
S8506724		<.4	19	964
S8506725		<.4	3	837
S8506726		<.4	14	724
58506727		<.4	18	479
SB504728		<.4 <.4	2 10	214(
SB506729				
		<.4	5	1442
\$8506730		٢,4	13	864
	BR5292	<.4	14	345
SB506732		<.4	16	1004
S8506733		۲.4	16 .	.579
S8506734		<.4	11	603
S8506735	-	1.4	5	.337
\$8506736		<	9	49
S8506737 .		୍ - ଟ୍	11	312
S850-6733		<.4	7	55)
S8506739		۲.4	4	.382
S6504740		. 9	20	1500
88506741		<.4	25	977
S8506742		<.4	15 .	7004
SE206243		۲.4	15	1609
S0506744		<.4	11	4200
S8506745		<.4	11	1070
	885307	ζ.4	20	755
	BR5308	<.4	17	646
	885309	ζ,4	9	2493
	B85310	<.4	10	485
\$8500750	BR55また。	z	17	502
	885312	۲.4	15	543
SES04752	885313	.5	38	717

NEN GERBRUCHTROCHT HINNESSEN AND DE

*

.

\$

(w) < 12

Be	Cu.	A rs	FIELD NUMBER	LAR NO
997 	P PM	PPM		
499	25	<.4	BE5314	\$8506753
436	28	. 4	B85315	38506754
952	12	<.4	865316	S8506755
51.4	-,	(<u>4</u>	10月17日17日 1月17日1日 1月17日	33506756
541	22	<.4	B65316	38506752
411	27	ć, 4	BBSBLF	38506758
497	20	< . 4	B65320	\$8506759
571	28	5.4	885321	\$8506760
1259	17	4.4	B85322	S8506761
998	25	<.4	885323	38506762
364	5	C.4	B85324	S8506763
457	16	\$.4	885325	\$8506764
537	23	K.4	B85326	S8504765
751	19	(.4	885327	S8506766
529	20	1.2	B8532B	SE506767

I-INSUFFICIENT SAMPLE X-SHALL SAMPLE E-EXCEEDS CALIBRATION C-BEING CHECKED R-BEVISED IF AEQUESTED ANALYSES ARE NOT SHOWN TRESHTS ARE TO FOLLOW

ANALYTICAL NETHODS

AS 201 HOUS BECONFOSITION / AAS

EU 20% HNG3 BECOMPOSITION / AAS

BA X-RAY FLUORESCENCE / LOOSE FORDER

LAD FIELD		•• • •	Cu	Pu .	Zm		Ja.	As
NUMBER	E EAST	MORTH _	PPN	PPN	. PPN	, PPA .	F PN 	
	1 A.F.F.			.114	830		1113	55
8605576 1796	12+50E	11 25¥		. 68	489	6	1024	. 28
B605577 1797	12+50E		19		40	64	474	
8605578 1798		. 75N.	10	15	63	4.4	603	12
8605579 1799				1Ē	.2990	64	214	71 .
8605580 1800	12+00E			157	. 2		515	10
8605581 1801	12+005		_ 10	110	39.	1.4		. 15
8605582 1802	L2HOVE			10	. 14		. 610	15
8605583 1803	12+00E		15	120		1.6	515	19
8605584 1804	L2+VOE		18	.		. 1.1	124	. 42
8605585.1805	12+00E	255	11	18	.36	9		
8605586 1806	12+095		17	. 52	82			27
8405588 1808	12+00E		<u> </u>		190	_ 64	1165	12
18605589. 1809.	L2+00E	1005		. 10		. گې .	650 .	. 11
8605590 1810	_12+50E	1065	1	_5	_11			
8605591 1811	12+50E	755	· • • •	79	5	1.L	100	1
2605572 1812	12+50E		. 13		13.			
58605593 1813	L2+50E	255	21	. 112	125	1.4	1010	
18105574 1814	2+25E		11.	121			1299	<u> </u>
8605595 1815	L1+75E		21	78	519	.4		
58605576_1816	11+506		12	14		5_		
S8605597 1817	L1+50E		4	5.	10	1.4	45	7
58605598 1818	1+50E		1	. (4	🖌	المك .		· · · · 19 ···
\$8605599_1819	L1+50E		5	. 12	<u> </u>	<u> </u>		
58605609 1820	LI						473	
\$8605601 1821	L1+00E		B.	. 17	2		. 51	. 15
58605602 1822	LIHOOE		4		11			<u>11</u>
\$8605603 1823	LIHOE		18		A	1.1	37.	7
58605694 1824	11:100			11	14	. (.4		<u> </u>
\$8405605 1825	L1+00E		. 29	- 46.	12	. 44	. 844	138
58405604 1826	L1+00E	the second s		101				172
\$8605607 1827	L1+00E		9	1.	37	<u>.</u>	18%4	. <u>u</u>
58445608 1878	11+00							_
				44		/ 1		-
.58605609 1829	11+00		The support of the second s	11	<u> </u>	<u> </u>	542	ៈ ធី-
58605610 1830	L1+50							
S\$605611 1831	L1+50				154	العامين. الأن ال	2873	
58605612 1832	L1+50			. 144			573	
S8605613 1833	11+50			.214		1.4 1.4		2
S8605614 1834	L1+2					ા દાવા ા દાવા		<u>u</u>
58605615 1835	LAT			<u></u>	1		02.	7
\$8605616 1836	LOHS			_ (4.				LL L
S8605617 1837	10+50			1		- <u>.</u>	554	. 72
58605618 1838	1.0+50			<u> </u>		4.4		7
S8605617 1839	1945	-	L 1					- A
58605620 1840	1.0+50				23			
.58605621 1841	10-01				<u> </u>	17	H.	
\$8605622 1842	10+0			51	н. 			j
S8405471 1843	0+64						151.	. 5
S8605624 1844	L0+00		<u> </u>	179	1640			<u> </u>
S8605625 1845				LI //	. 3	1.1 1.1	521	
SB605626 1846	L0+2			. (4.		ديو. فية		
_58605627 1847	LOHO				<u>15</u>	man and a second se		Ś
S8605628 1848	L9+0				142			. 1
58685629 1847			-					···
S8605630 1850	LOHO		-		<u>15</u>	<u>ه، در ان</u> هرک		11
	145	DE 100	L 1		🚚			-
58605631_1851			-				744	76
	10+5 19+5	E 73	2		کل 101			24

t

	FJELJ . Ng	hap zone	EAST		Pa PPR	Zil - . PPH		. A 5 	Ás PPR	- N 1998
	855		LI	<u>.</u>		1120				
58606277	1856		<u> </u>	. 50H .	. 9	38	27 .		. 27	488
	857			100%	1		24	1.1	23	
\$8606279			LI	150W	. 6	69		<u> </u>	<u> </u>	443
S8606280			Ц	201				1	.552	
S8606281			Ш	250H.	10	. 117	35		171	1473
S8606282				JOON	_24		9		.390	
SB606283			- LI	3541	. 158	590	25	4.4		1084
_S8606284_3			11	4001	. 467	1520	21			
\$8606285 J		an a	11	4501	19 _	200	<u> </u>		ELIZO	17
S8606286 1			11		21	1200			34	_1314
\$8606287				5501	· • •	. 70 .	15			627
S\$606289_1						1				
S8606287			12		1	<u> 7</u>	12		_ 2	412
58606290								فيك	_ 11	74
58606291			<u></u> 2			32	12	ū	- <u>1</u>	
			12		i i			1.4	100	
S8606293		-	12		11	17.	21	4.4	146	
				THE.	<u></u>	.				
S8606295.1		- · ·	12		·	38 ·				
					· •		 	ւսը։ . <u></u>	-	
_S8606296_1		n an agus an tha bhaile an agus	12						34	
58606297					. ₽ .		15		21	50
.\$8606299.1			13					<u></u>	4	
S8606299 1	_		<u>11</u>	505	<u> </u>	. 42.	14	. (.4.	<u> </u>	<u> </u>
							45	1.4	12	
\$8606301 1			L3		Т., ,	. 48	. 18 .	<u>64</u>	19	72
_S8606302_1			<u>, 13</u>							1514
\$8606303.1		•••	ីដើ		1	19	12	4	Н	74
SB606304 1						_ 11 -	1.		. 19	
SE406305 1			<u> </u>			. 111	21	<u> </u>	_ 21_	<u>.</u>
			4	_500			15			
S\$606307_1			Ļ		t -	21	. 13	(4)	. <u>15</u>	. 45.
.98666398_1	1867	-				X				
							~		47	
666307 188					Q	_			<u> </u>	
8606310 188				250H.	- 7	11		G4	11 .	514
8686311 189			<u>4</u>		.9		29	_{_4	19	715
8606312 189	1		850E.		<u> </u>			<u> </u>		- 473
8606313 189			ESIE		_71		13			
8606314. 18 9	3			56H _	8.			. 64 .	17	#
8606315 189			ESOE	_73			12	المک		
8606316 187	5	1	ISOE .		. 7.	77	2	11	H	
8606317 189	6		ese _		17		. 13	- 	175	
8696318 187	7		950E	. 🗰	L	. 75	25			
8606317 189	8	1	75Æ		S	111	22	1.1	<u>ii</u>	
8696320 189	9	1	950E	SHE.	15	. 🕌	21	L .	14.	
8606321 199		1	THE .		1400	. 147		. 1.2	19	5171
8606322 190		ay ta sea ser servici	L		·····	.	. 2	T. T	12	57
8606323 190						.346		5.4		
8606324 190			15	1500	7	130	43	64	197	124
		·		_2941	10	331				
RANK CALINE			15	25ML.	21	530	I	. 	13	1175
							12		10	
8606326 190			15		- 17	, =				
8606325 190 8606326 190 8606327 190 8606327 190	é.	· - ⁻ · -			<u>. 15</u>			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 1 1 A 4 A 4	
8606326 190	16 12 .	· -	ـــــــــــــــــــــــــــــــــــــ	- 3500	1194. 	910 247	. ZI 12	2.9		1114 _711

·

APPENDIX "E"

ROCK GEOCHEMICAL ANALYSES

Rocks sent in for analysis were free from weathered surface, lichen and soil. Samples for rock analyses were reasonably homogenous and "fresh" appearing. Whole rock analyses are done by XRF on a pressed pellet, except sodium on a fused disc. Detection limits are 0.1%.

Analyses for Pb, Zn, Ag and Cu are done by aqua regia decomposition followed by atomic absorption analyses. Detection limits are Pb -4 ppm, Zn -2 ppm, Ag -0.4 ppm and Cu -1 ppm. Barium and strontium analyses are done by XRF with 20 ppm and 2 ppm detection limits respectively. While every effort has been made to produce good strontium numbers, concentrations such as those encountered on the Sault claims are rarely dealt with in analytical laboratories, and reasonable standards at these levels are not available.

KIT OPTION - WHOLE ROCK ANALYSES

Field <u>No.</u>	<u><u><u>\$</u> <u>Si0</u>2</u></u>	1102 1102	<u>Å</u> 1 ₂ 03	<u>%</u> <u>Fe₂03</u>	<u>ж</u> <u>м</u> о	% <u>CaO</u>	% <u>Na 20</u>	<u>к₂0</u>	<u>L.O.I.</u>	<u>Total</u>	F	ield Name
DR 77	37.16	0.62	14.23	11.03	4.25	13.82	2.27	1.04	13.54	97.96	1k	Rhyolite tuff
DR 37	63.04	0.54	16.24	7.31	2.11	1.22	3.45	2.71	3.17	99.79	4k	Basalt tuff
DR 38A	50.85	0.50	15.86	5.42	1.54	9.35	3.69	2.59	8.64	98.44	4i	Basalt lapilli tuff
DR 68	59.68	0.73	17.79	6.54	1.29	2.28	5.19	1.96	3.94	99.40	21	Dacite crystal tuff
DR 61	53.36	0.66	16.77	7.86	1.39	6.16	2.99	4.59	5.18	98.96	2k	Dacite tuff
DR 66	62.83	0.58	16.23	8.18	2.90	0.62	2.92	2.23	3.26	99.74	3k	Andesite tuff
DR 57	48. 69	0.98	17.34	11.10	4.91	5.64	3.93	1.59	5.07	99.25	4k	Basalt tuff
DR 54	60.94	0.5 6	15.38	5.48	2.66	3.39	2.08	3.06	5.64	99.19	1k	Rhyolite tuff
DR 16	59.12	0.61	15.98	7.81	3.02	3.16	1.86	2.60	5.42	99.58	1k	Rhyolite tuff
DR 15	60.32	0.58	17.74	5.61	1.24	3.32	1.16	4.00	5.31	99.28	3k	Andesite tuff
DR 4c	45.89	1.01	18.70	12.45	4.84	4.34	2.40	3.37	6.32	99.32	4k	Basalt tuff
DR 70	63.50	0.54	16.35	6.50	1.96	1.66	1.83	3.09	4.17	99.60	3k	Basalt tuff
DR 39	63.22	0.57	17.70	5.98	2.21	0.77	3.29	2.86	3.54	100.14	21	Dacite crystal tuff
DR 8	52.47	0.58	17.83	4.94	0.74	6.08	1.04	3.81	9.18	96.67	4k	Basalt tuff

.

11 December 1986

Tisk List

.

٠.

.

. इ.स. सम्	élénű settéré	<u>.</u>		6.13	. 5	66141	5.9	$a_{12}2\rangle$
		as M	PEN	SeM	PEN	99 1	88 B	49¥
42042323 B		(4				50	(20	7
erside?		. 4	:	7	. 4	- 47	<u>.</u> 43	÷,
28608377]		5	52	17	€,∎			
-3ee 3878 -	•• ••	: 4		26	. 4			Ī
88603879		4	138	43	ŝ.4			?
53665588		ż	197	53	6,4	302	3203	11
88608881		< 4	122	4	:,4			14
33508882		14	101	29	÷.4			
23503883			23					
284.085R4		í.	114	78	£.4			
38402885			56	28	€,4			
38406884		4	73	23				
36966999			84	10		790	555	14
K8908855		24	59	52	-			
		14 14	152		1.4			
R8608889		14 14	102	37				
¥8408390			- 19J	35	4			ą
88603891		6 (4	30 3 9	,,, 6				12
38408892		:4 (4	77	32	1.4			16
Read8393			79		č.4			14
88408894		(4 7	7 <u>1</u>	42	4,4			16
P8403895		-	_	21	1,4 {_4			1.0
38608896		(4	84 70					
RB608B97		(4	79	23	3. 4			
<u> 284088998</u>		(4	35	15	44			{4
28608 899	DR 67	(4	68	11		r.08	070	{4
r8608900	88 68	14	68	11	₹ . 4			7
28408991	BR 61	< k	85	2	C_4			י ד
RB608902	DR 66	(4	108	29	- C.4	1550	511	-
28608903	DR 65	- (4	68	29	C.4			11
28608904	<u>98 54</u>		86	170	£.4			
R8608905	BR 58	7	7 3	17		1003		
R8608906	DR 75	8	136	15		556	781	4
R8608907	BR 83	6	531	14	€ , ¥			
R8408908	DR 42Y	(4	36	5	3 . 4			
R8608909	BR 2	688	6710	10	<.#	2279	E119817	15
38608910	DR 57	(4	· 110	23				6
R8608911			70	6	(14)		E146108	
R8608912		10	56	13	,4	2960	E22438	
R8608913		(4	8t	4	- C,4	2934	E15219	
R8608914		8	109	44	₹,4			6
R8608915		(4	98	11	6.4			10
R8608916		24	76	30	1.4			1
R8608917		ζ4	112	31	<. 4			11
28608918	-	7	51	7	£.4			
88608919		(4	56	29	4,4			
28608920		16	114	34				
28608921		(4	93	78				- E-
R8608922			30 0	7	.,4	718	1796	
P8608921		4	281		1.4	.141		i.
R8608924		14	218	7		745		
V00101	5 B# 12		31	4		5781		

Bellete and the William State of the State of the

A CONTRACTOR OF AN AND A CONTRACTOR OF A CONTRACTOR

86-0458R PAGE 2

јйд (2) Реп	Sa PPR	<u>В</u> д(4) РРН	86 849	50 898	Zn Per	Pa PPH	FIELD WUNNER	LAB NO
	E65529	3109	 {,4	 1	236	5	DD 776	
			E, A	35	117	(4		R8608927
5			£,4	13	120	(4		P8608928
			č.4	19	110	(4	•	R8408929
	E59702	1866	٩,	11	9810	446		R8608930
	E10118	1657	{ , 4	7	F16800	890		R8608931
	E136900	4133	₹,4	4	2190	135		28608932
	E92380	3005	ť,4	2	79	(4	-	R8608733
11			6,4	12	193	₹€		R8608934
6			1,4	58	126	(4		R8608935
19			4.4	34	75	Č4		R8608936
4	696	1084	6.4	21.	104	14	-	R8608937
	•		₹.4	10	350	31		R8608938
	•		1.4	4	217	7		R8608939
10			6.4	51	120	(4		R8608940
	4372	187	š,4	4	82	- (4		R8608941
			4,3	11	368	25		R8608942
			.8	11	574	35		R8608943
1			٤,٤	22	147	7		R8608944
	E166025	3559	4.4	5	2330	78		RB608945
	E114840	3190	.7	5	5240	307		88608946
	E173325	4767	. 6	4	2800	166		R8608947
	E11322	1584	.5	\$	7010	470		R8608948
	_		,4	23	113	<u> </u>	· · · · · · · · · · · · · · · · · · ·	R8608953

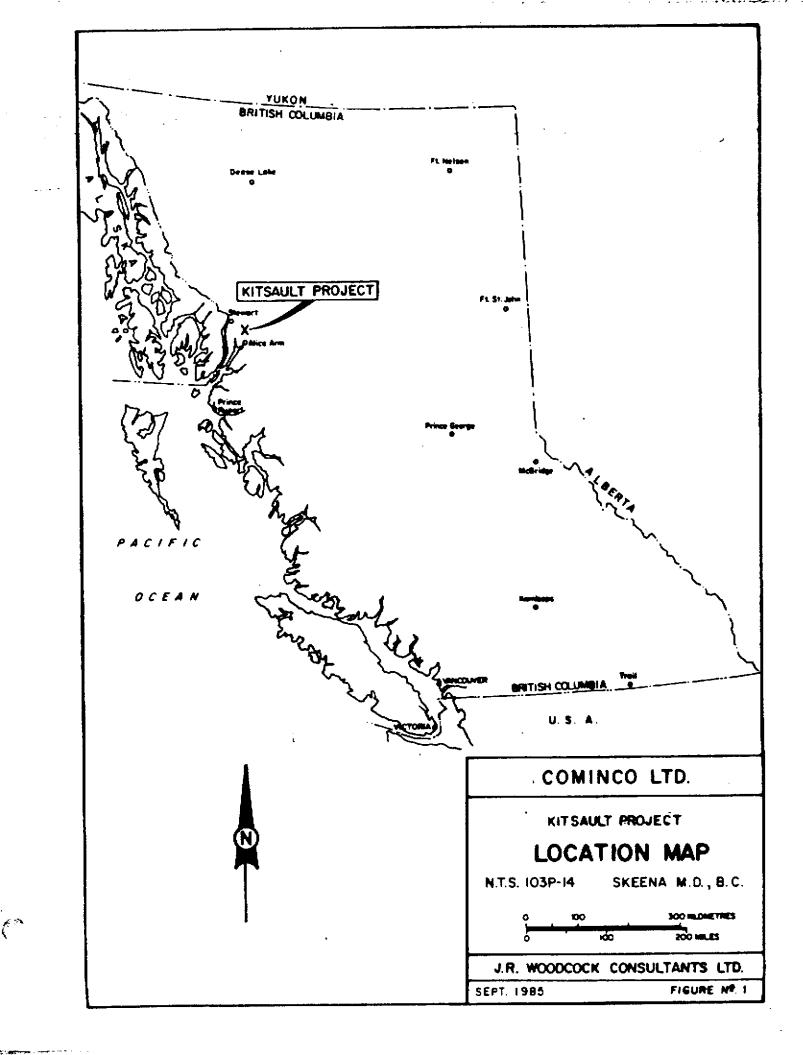
J=INSUFFICIENT SAMPLE X=SNALL SAMPLE E=EXCEENS CALIBRATION D=BEING CHECKEN R=BEVISEN

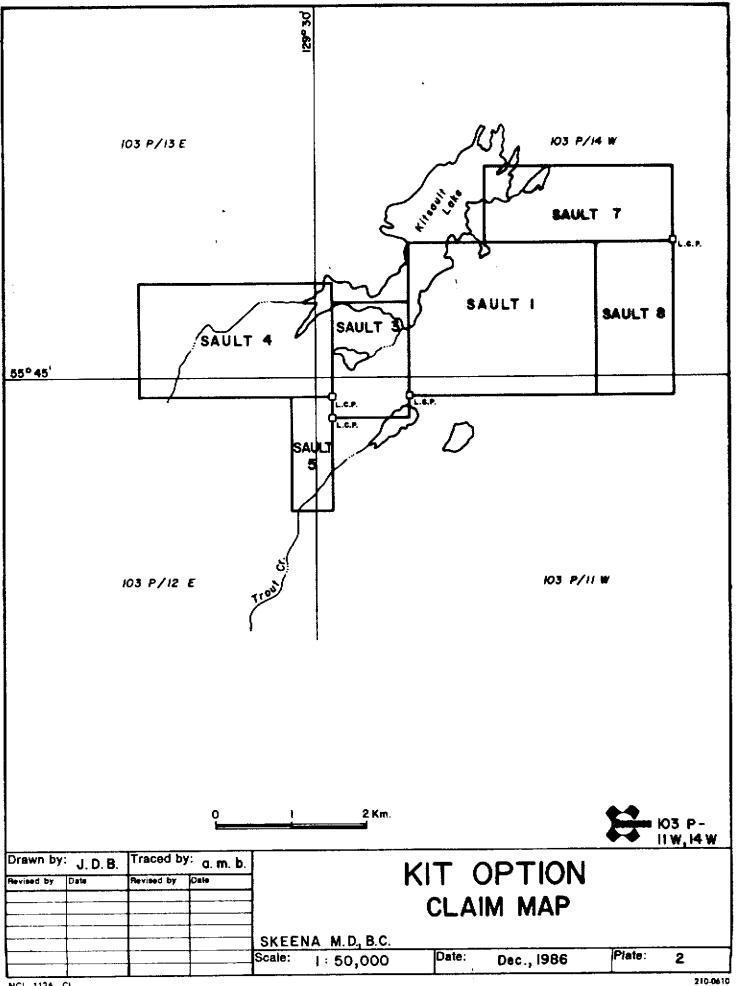
IF REQUESTED ANALYSES ARE NOT SHOWN PRESULTS ARE TO FOLLOW

ANALYTICAL NETHODS

PR AQUA REGIA RECOMPOSITION / AAS

TH ADUA REGIA DECOMPOSITION / AAS


CU AQUA REGIA RECOMPOSITION / AAS


AG AQUA REGIA RECOMPOSITION / AAS

BA(4) X-RAY FLUORESCENCE/FUSION

58 X-RAY FLUORESCENCE/FUSION

NE(2) HE - HCLO4 RECOMPOSITION / MAS

KITSAULT LAKE

DISCOVER

QUARTZ

EYE

AKE

KITSAULT LEGEND ROCK TYPE VOLCANICS : 1 RHYOLITE 2 DACITE 3 ANDESITE 4 BASALT SEDIMENTS : 5 LIMESTONE 6 CHERT 7 MUDSTONE / ARGILLITE 8 WACKE 9 CONGLOMERATE IO SULPHATE 12 LITHIC BRECCIA INTRUSIVES DD DIABASE

QFP QUARTZ + FELDSPAR PORPHRY

C FLOW BRECCIA

OL MÁŠŠIVĒ

D PILLOWED

- d PHYRIC OR PORPHYRITIC
- SPHERULITIC OR PERLITIC FLOW BANDED

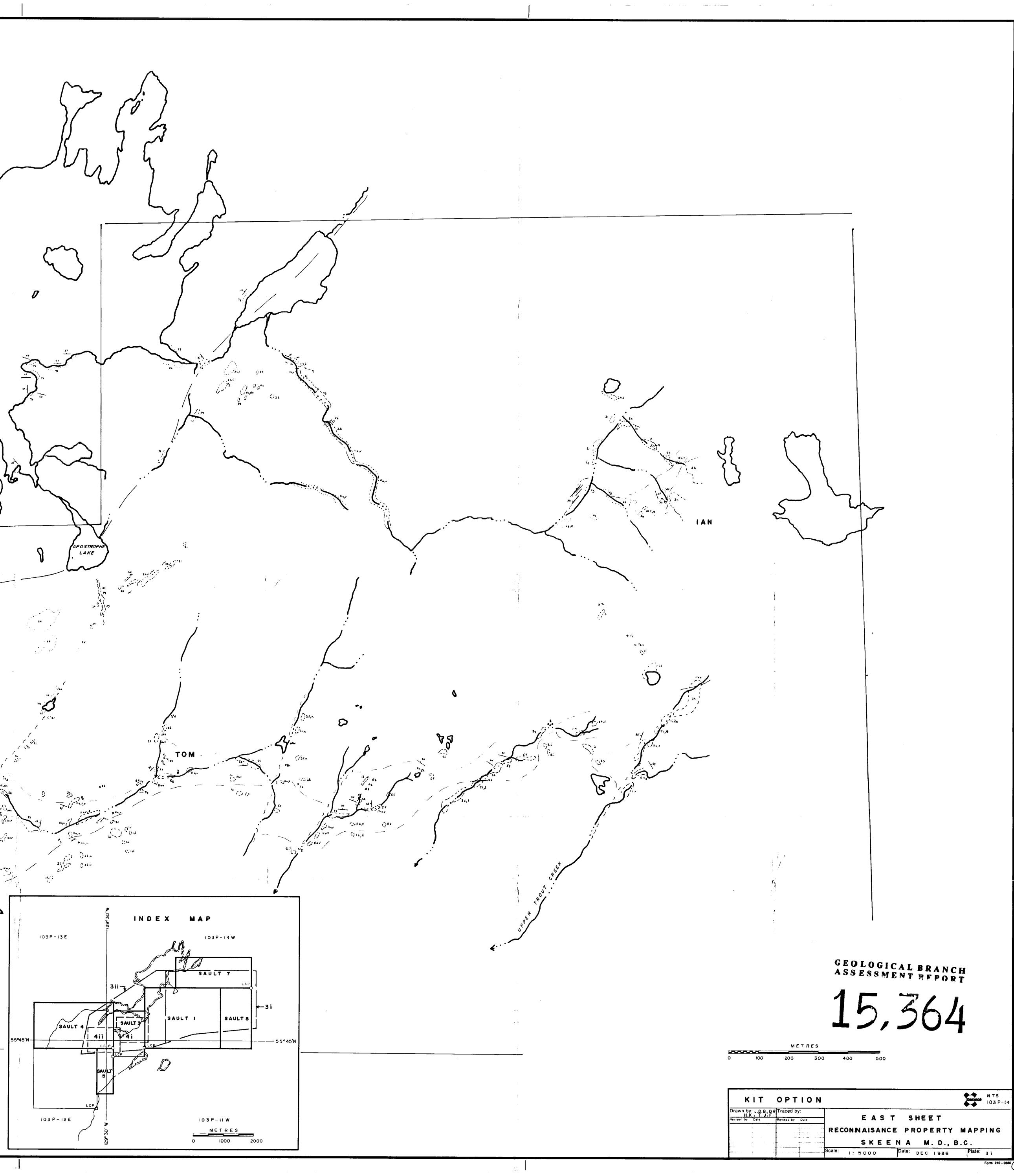
TEXTURAL MODIFIER

- PYROCLASTICS :
- g BRECCIA over 2/3 of clast are over 64 mm
- h TUFF BRECCIA 1/3 to 2/3 of clasts are over 64mm

 \mathcal{G}

- I LAPILLI TUFF 1/3 to 2/3 of clasts are 2 to 64mm
- j LAPILLI over 2/3 of clasts are 2 to 64 mm
- k TUFF over 2/3 of clasts are under 2 mm
- CRYSTAL TUFF CRYSTAL RICH TUFF
- M WATERLAIN TUFF A ASH FLOW TUFF-ELONGATE CHLORITE FRAGMENTS
- O ACCRETIONARY LAPILLI

EPICLASTICS :


- P GRADED BEDDING
- q CARBONACEOUS/GRAPHITIC
- r MASSIVE BEDDED over 30 cm s MEDIUM BEDDED 10 to 30 cm
- THIN BEDDED less thus IQcm
- L CALCAREOUS
- y GRAIN SIZE: COARSE >64mm
 - MEDIUM 4 to 64mm
- GRANULAR (4 m m
- ABBREVIATIONS HZ HYDROZINCITE
- (]) OUTCROP x ISOLATED OUTCROP

KITSAULT SYMBOLS

- °° FLOAT
- 🥆 BEDDING ATTITUDE
- JOINT ATTITUDE SCHISTOSITY ATTITUDE المسلو
- PLUNGE ATTITUDE (minor folds, Str STRONTIANITE mineral lineations)
- 🛏 TRENCH
- 🛛 CLAIM POST
- GEOLOGIC CONTACT

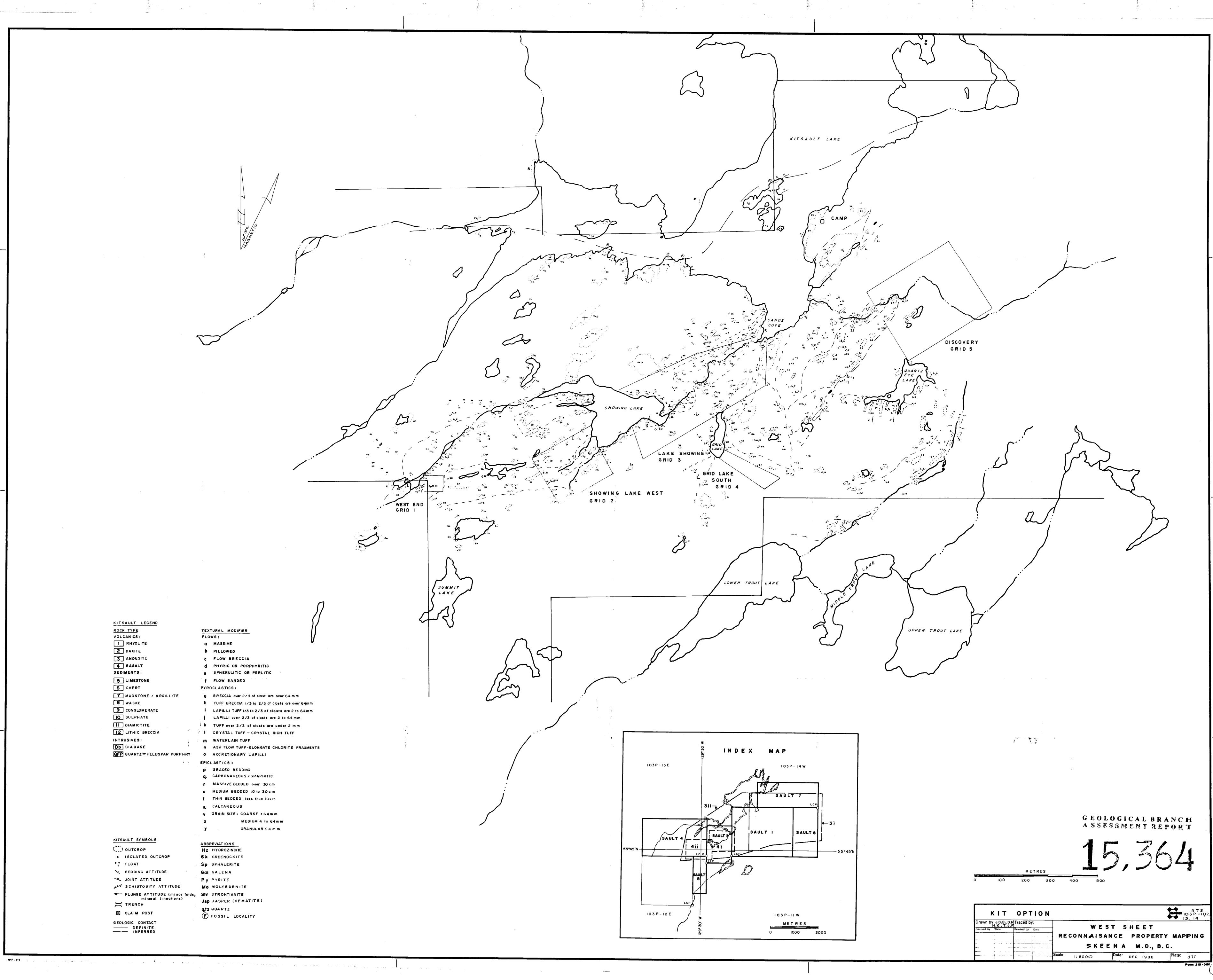
NCI - 119

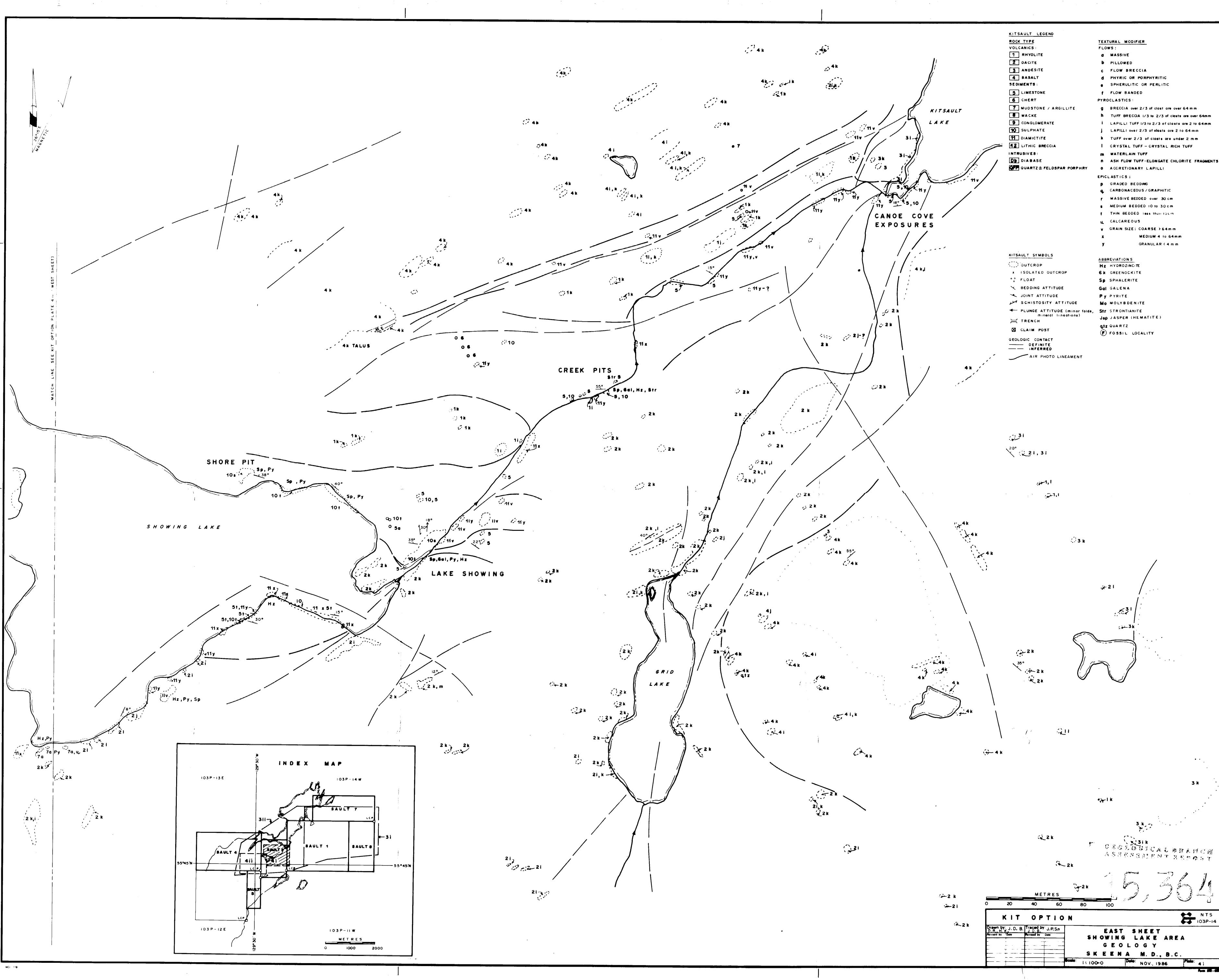
- Ek GREENOCKITE Sp SPHALERITE **Gai** galena Py PYRITE Mo MOLYBDENITE JSP JASPER (HEMATITE)
- **qtz** QUARTZ
- FOSSIL LOCALITY

KITSAULT LEGEND ROCK TYPE I RHYOLITE 2 DACITE 3 ANDESITE 4 BASALT SEDIMENTS : 5 LIMESTONE 6 CHERT 7 MUDSTONE / ARGILLITE 8 WACKE 9 CONGLOMERATE

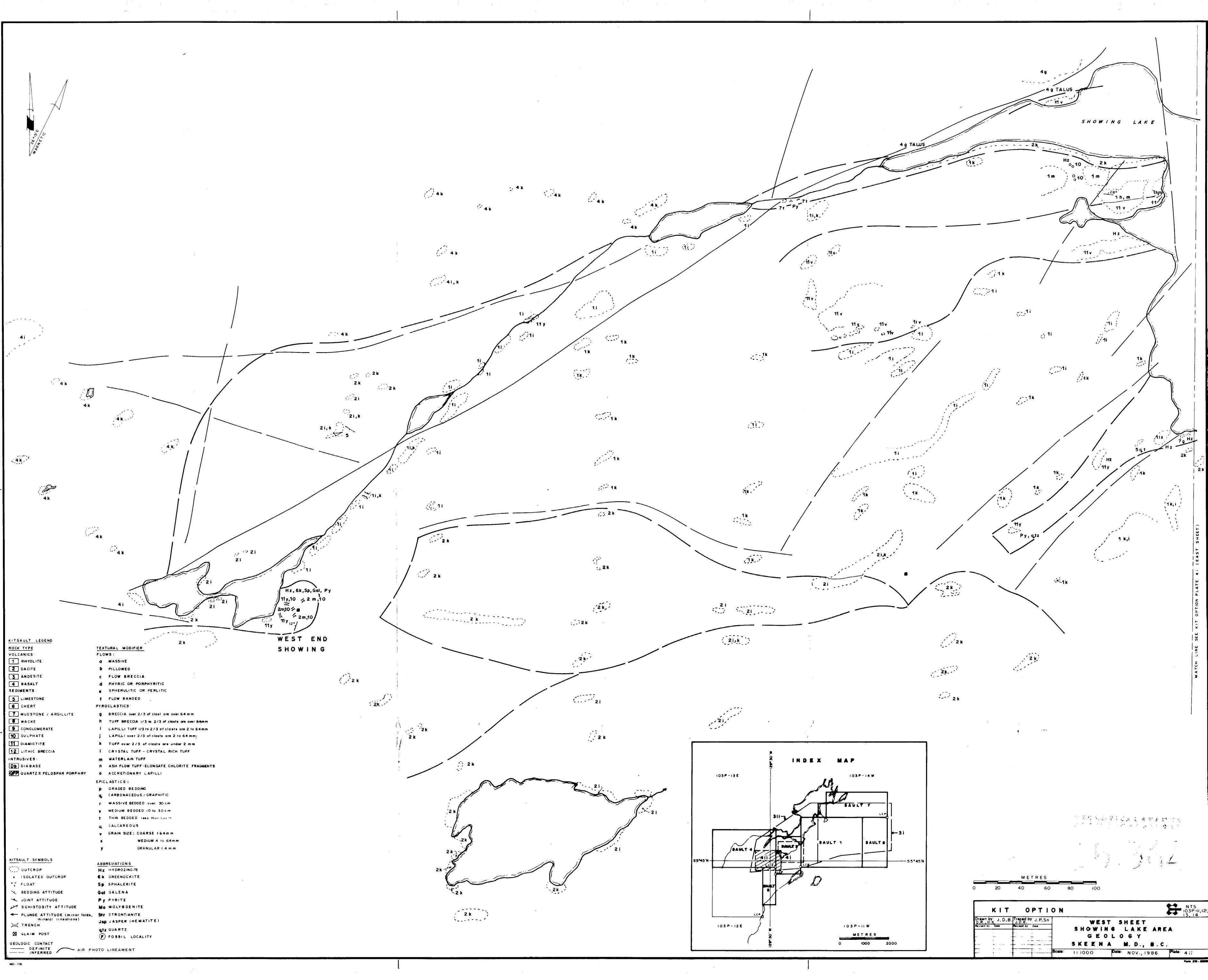
10 SULPHATE 12 LITHIC BRECCIA INTRUSIVES: DD DIABASE GFP QUARTZ + FELDSPAR PORPHRY ÷,

> KITSAULT SYMBOLS OUTCROP


* ISOLATED OUTCROP


- "; FLOAT 🥆 BEDDING ATTITUDE
- JOINT ATTITUDE
- SCHISTOSITY ATTITUDE
- PLUNGE ATTITUDE (minor folds, Str STRONTIANITE mineral lineations) 🛏 TRENCH
- 🛛 CLAIM POST
- GEOLOGIC CONTACT
- DEFINITE

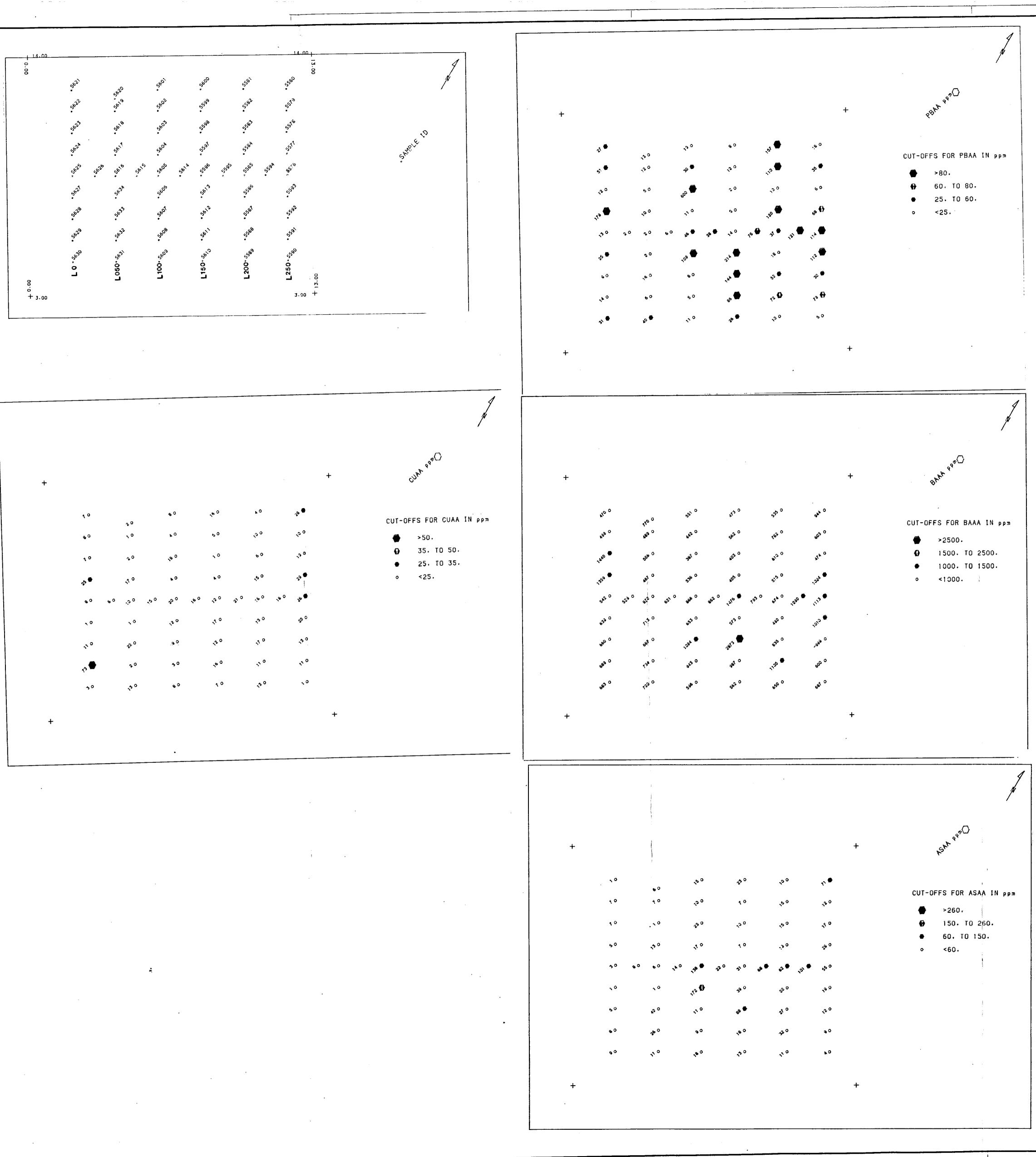
- G MASSIVE
- D PILLOWED
- C FLOW BRECCIA
- d PHYRIC OR PORPHYRITIC
- SPHERULITIC OR PERLITIC
- FLOW BANDED
- PYROCLASTICS :
- g BRECCIA over 2/3 of clast are over 64 mm
- h TUFF BRECCIA 1/3 to 2/3 of clasts are over 64mm
- LAPILLI TUFF 1/3 to 2/3 of clasts are 2 to 64mm
- j LAPILLI over 2/3 of clasts are 2 to 64 mm
- k TUFF over 2/3 of clasts are under 2 mm
- / I CRYSTAL TUFF CRYSTAL RICH TUFF
- M WATERLAIN TUFF
- A ASH FLOW TUFF-ELONGATE CHLORITE FRAGMENTS O ACCRETIONARY LAPILLI
- EPICLASTICS :
- P GRADED BEDDING
- **q** CARBONACEOUS/GRAPHITIC
- r MASSIVE BEDDED over 30 cm
- s MEDIUM BEDDED 10 to 30 cm t THIN BEDDED less than locim
- L CALCAREOUS
- y GRAIN SIZE: COARSE >64mm
- MEDIUM 4 to 64mm
- GRANULAR (4 m m
- ABBREVIATIONS
- HZ HYDROZINCITE EK GREENOCKITE
- Sp SPHALERITE
- **Gai** galena
- Py PYRITE
- Mo MOLYBDENITE
- JSP JASPER (HEMATITE)
- gtz QUARTZ
- F FOSSIL LOCALITY

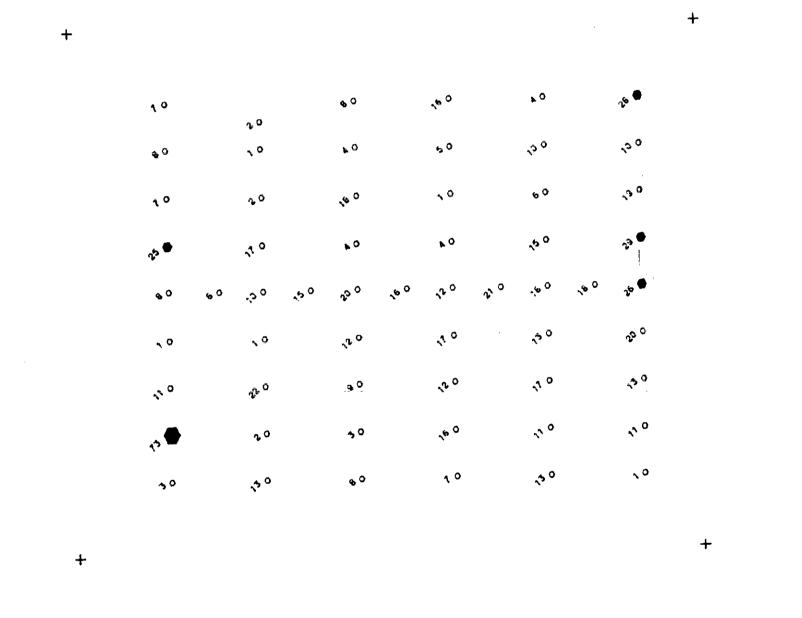


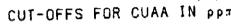
3 k 部聚氧化乙酮 N T S 103P-14

fun \$10-620

NCI - 117 - CL

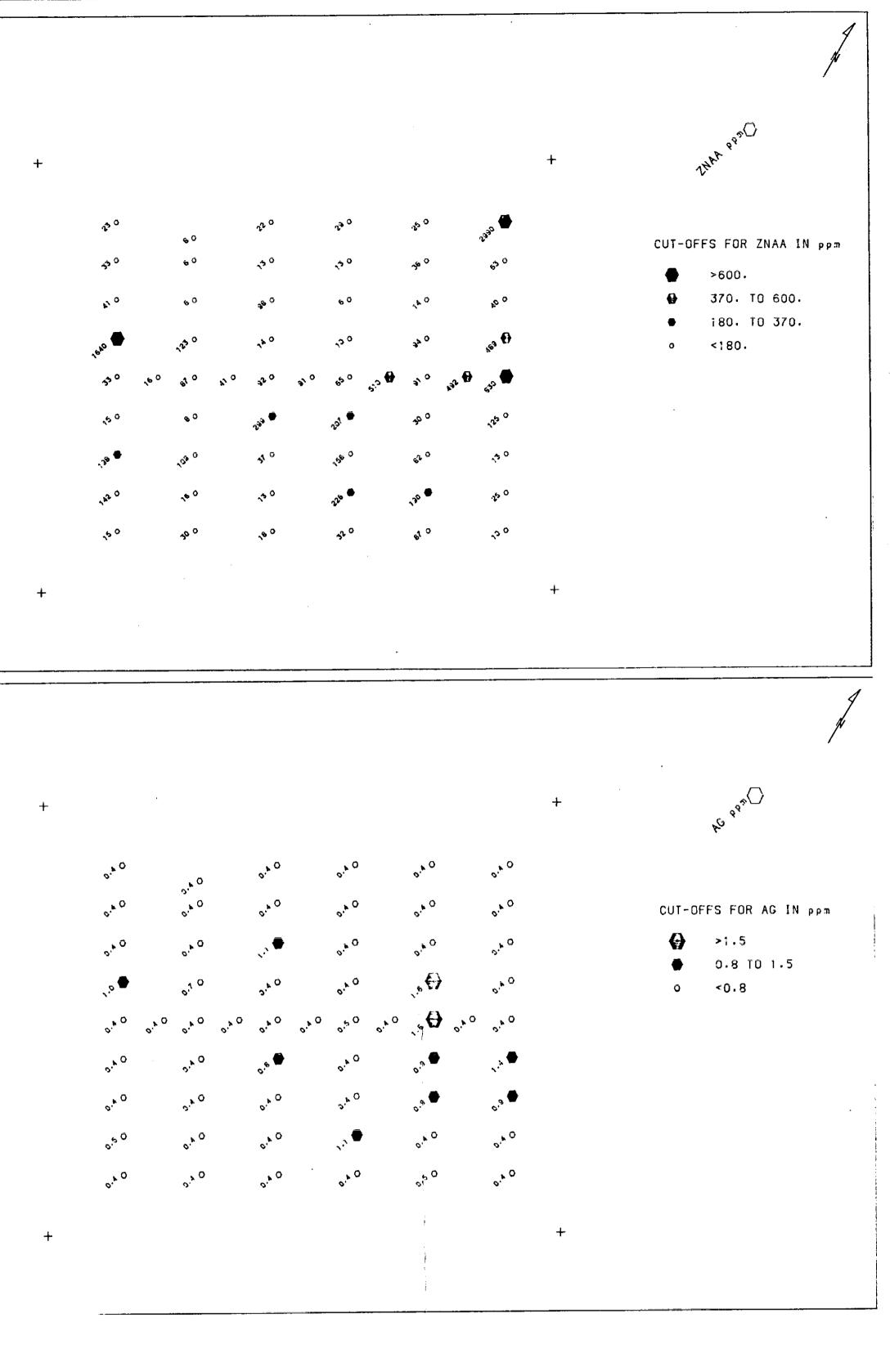






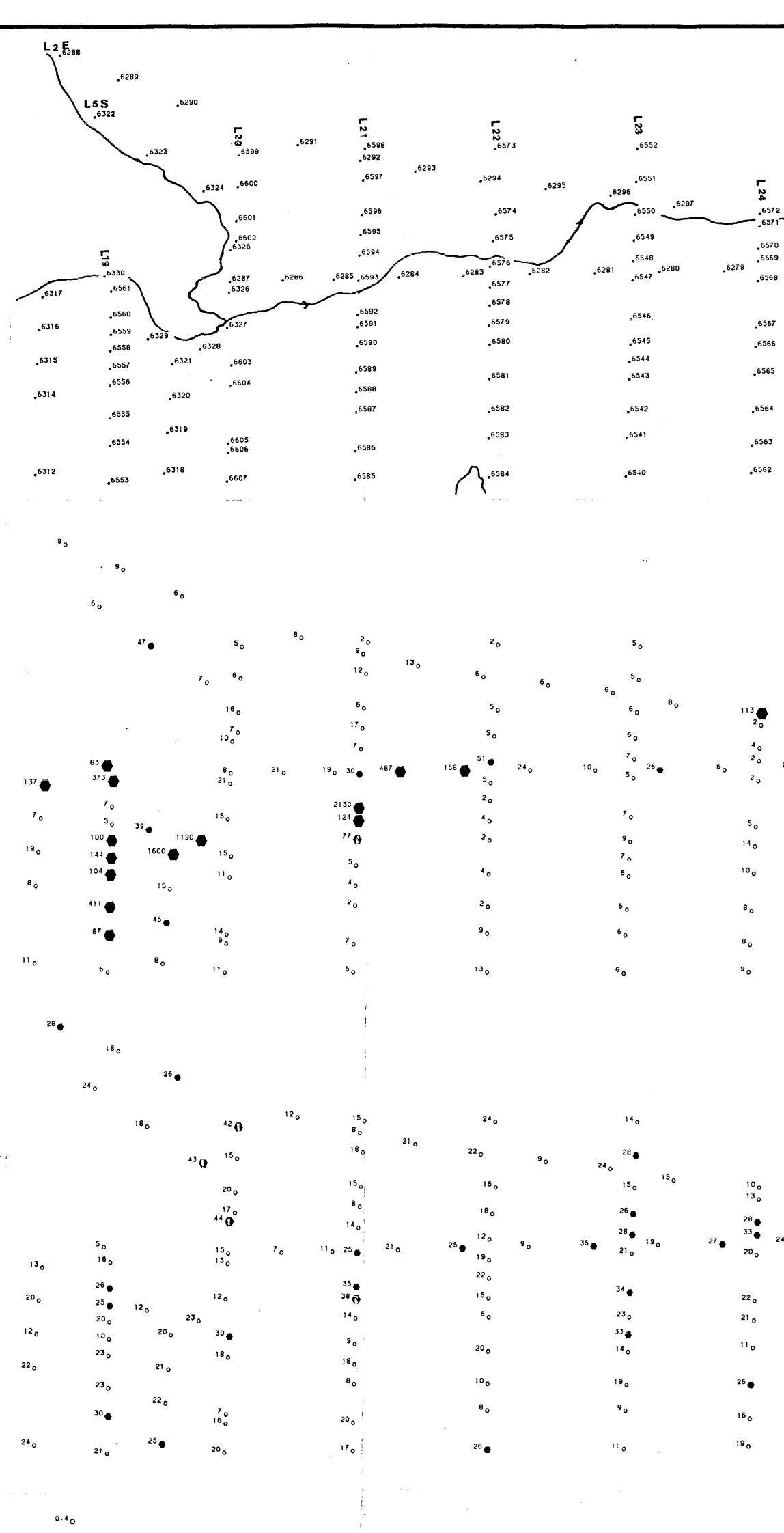
. . . .

· · · · • • • Plate: 51 Scale: 1:2000 (5) From \$10-6 ---------, <u>.</u>____



•

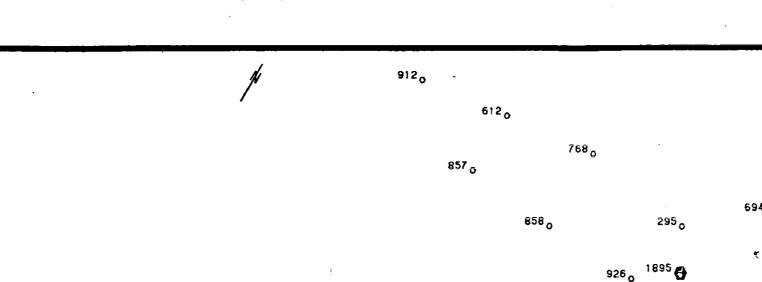
•



GEOLOGICAL BRANCH ASSESSMENT PEPORT

meters

Drawn by: JDB	Traced by:		-			•
Revised by IOale	Revised by .De			SEOCHEMISTRY SRID 2		
	·			NG LAKE WEST	•	
·····		Scale:	1:2000	Date: 12-86		191



0.4 0.40

0.4O

0.40 0.4₀ 0.4₀ 0.40 0.40 1-0 0.40 0.4₀ 0.40 0.40 0.40 0.4₀ 0.8 0.40 0.40 0.40 0-40 0-40 0.40 0.40 0.40 0.40 0-40 0.4₀ 0.4₀ 0.40 0.4 Ō 0.40 0.40 0.40 0-4o 0.4₀ 0.7₀ 0.4₀ 0.4₀ ^{0.4}0 0.4₀ 0.40 0.40 0.4₀ 0 - 8 🗬 - - 3 🚯 🤒 - 4 🚱 0.40 0.40 0.40 0.6 0.40 ^{0.4}0 0.40 21-0 0.40 0.4₀ 0.40 0.40 7 - 6 0.40 0.4₀ 0.40 D.40 0.40 0.40 1-1 🚭 0-4o 2.9 0.4₀ 0.4₀ 8.2 0.4o 0.40 0.9 🗃 0.40 0.40 0.4₀ 0.4o 2.3 0.4₀ 0,4 O 0.4o 0-40 0.40 0.4₀ 0.4₀ 0.4₀ 0.60 0.40 1•1 💮 ^{0.4}0 0.40 0.4₀ 0.40 0.40 0.40 0-4₀ 0-4₀ 0.4₀ 0-4₀ 0.40 0.4₀ 0.4₀ 0-40 0-4₀

NCI - 119 •

		2504	
	801 o	667 ₀	-
		785 ₀	
SAMPLE ID	589 ₀	728 ₀	701 o
	•	702 ₀	-
	560 ₀	769 ₀	5371
		1228	
	⁶⁹⁹ 0	-	650 ₀
		7110	
	860 o	-	498.0

589 ₀	⁷⁸⁵ 0		736 ₀	
0030	728 ₀	701 o		
560 ₀	702 ₀	1116	-	•
	769 ₀	5371	611 ₀	
	1228		525 o	
⁶⁹⁹ 0		650 ₀		
040	711 o			
860 o		498 ₀	703	
	⁷⁹¹ o		783 ₀ 846 ₀	
693 ₀		952 ₀		
0	496 o	Ū	644 ₀	

37 o

624 o

525 0 894 0

679₀ 1975 **()**

1594 **()**

1233

1102

837₀ 968₀

1000

1443 👝

3669

699,

502 e

638₀

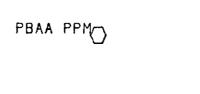
503 o

1520

65 _

44 0

100


10

10

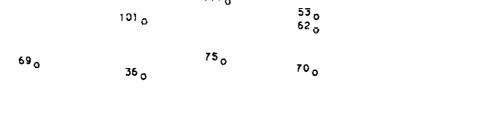
1 ₀

170

CUT-OFFS FOR PBAA IN PPM

>80.

60. TO 80.


25. 10 60.
<25.

6277

_6278

_6276 L1 W

		72 c	>			
	88 ₀					
		³⁴⁶		72 ₀	32 ₀	20 37 c
			1 30 0	79 ₀		75
				³⁷³ 🔂		33
						27
				64 o 351 ⊕		77 c
259	161 o 362 ⊕			⁷⁰ 0 530 🚯	1200	2430 — 71 o
•	406 a					1320
97 ₀	⁴⁰⁶ ()			⁷⁸ 0		368
	374 🔂 178 ₀	267	910 🛋	•		254
218	³³⁹	1490	-	75 ₀		53 ₀
	650			52 ₀		51 o
71 o	-	68 ₀				
	⁴¹⁵					9 o
		1110				

13₀ 120 402 👝

		402	•••		180 🕢
			107 💣 578 🖶		2020
			89 🖷		38 ₀
			180		351 🖶
			54 ₀		691 🕌
135	113 75		6₀ 138⊕	366	⁴¹²⁰ 4 ²⁵⁷
140	7 ₀ 8 ₀	15 ₀	¹⁰ 0		674 320
68 🍎	5 ₀ 60	19 ₀	21 ₀ 7 ₀		?85 🖶 701 🛋
170	58 ₀	14 ₀	130		110
11 o	100	¹¹ 0			¹ o
	110		5 o 7 o		15 ₀
100	10	24 0	11 ₀		4 ₀

p.	<i>3</i> :		
	ч 	1 ₀	¹ o
		29	44 ()
		⁸ o	¹ o
		6 o	1 0
			2 <mark>0</mark>
AG IN ppm	23		10
0 1.5	² o		³⁴ () 18 ●
•	3 ₀ 4 ₀		56
	2 ₀	3 ₀	41 🚯
	30	3	

30 3₀ ² o 3 ₀ 4 o 2 o ¹ o ³0 2 ₀

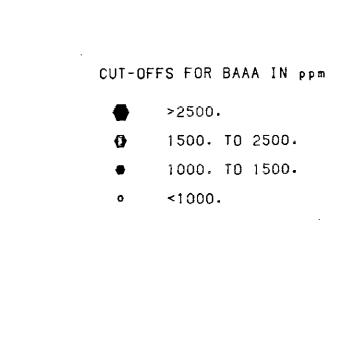
•

CUAA PPMO

CUT-OFFS FOR CUAA IN PPM >50. **3**5. TO 50. ● 25. TO 35. ° <25.

AG ppm

CUT-OFFS FOR >1.5


•	0.8 TO 1.5
0	<0.8

0.4 0 ^{0.4}0

• •

.

BAAA ppm

ZNAA PPM

CUT-OFFS FOR ZNAA IN PPM

	>600.
0	370. TO 600.
٠	180. TO 370.
o	<180.

ASAA ppm

CUT-OFFS FOR ASAA IN ppm

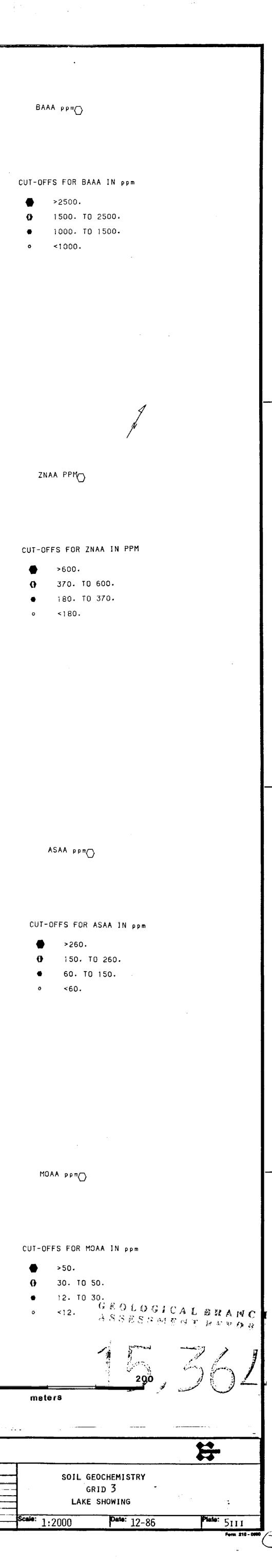
	>260.				
Ð	150. TO 260.				
۲	60. TO 150.				

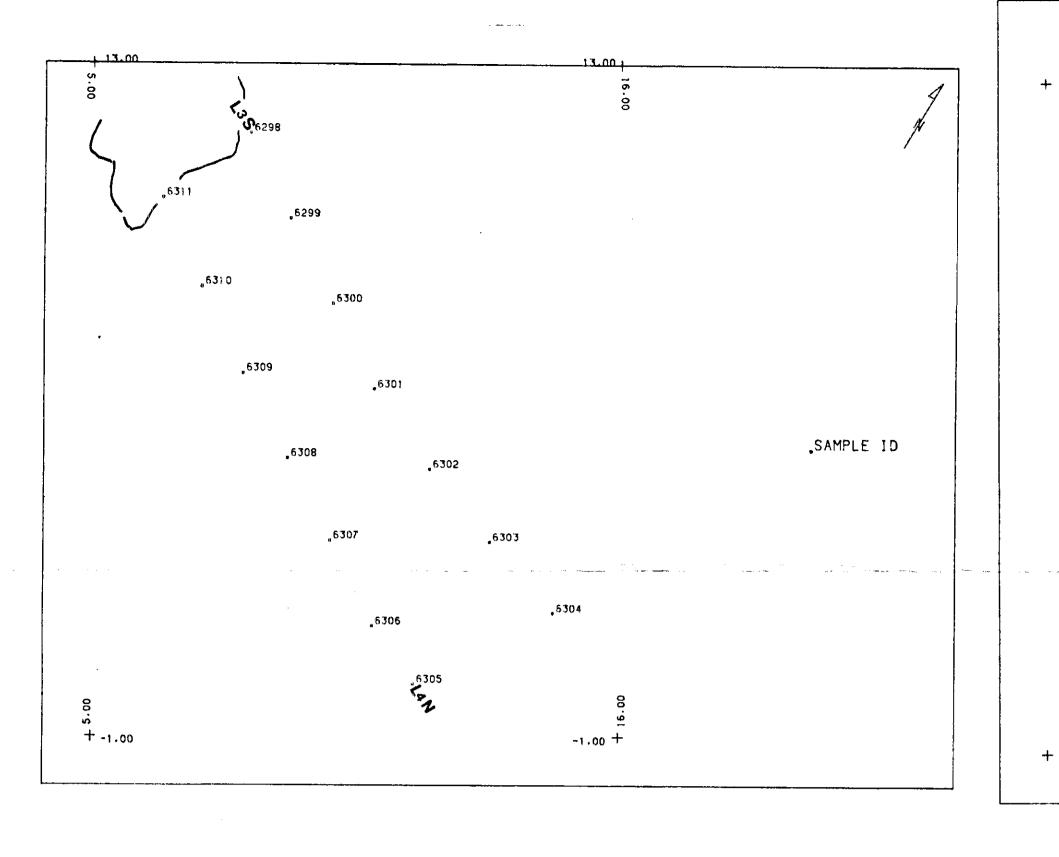
- <60.
- CUT-OFFS FOR MOAA IN ppm
- >50. **()** 30. TO 50.
- 200 meters

 			· ·			
_				_		_

344

27 o

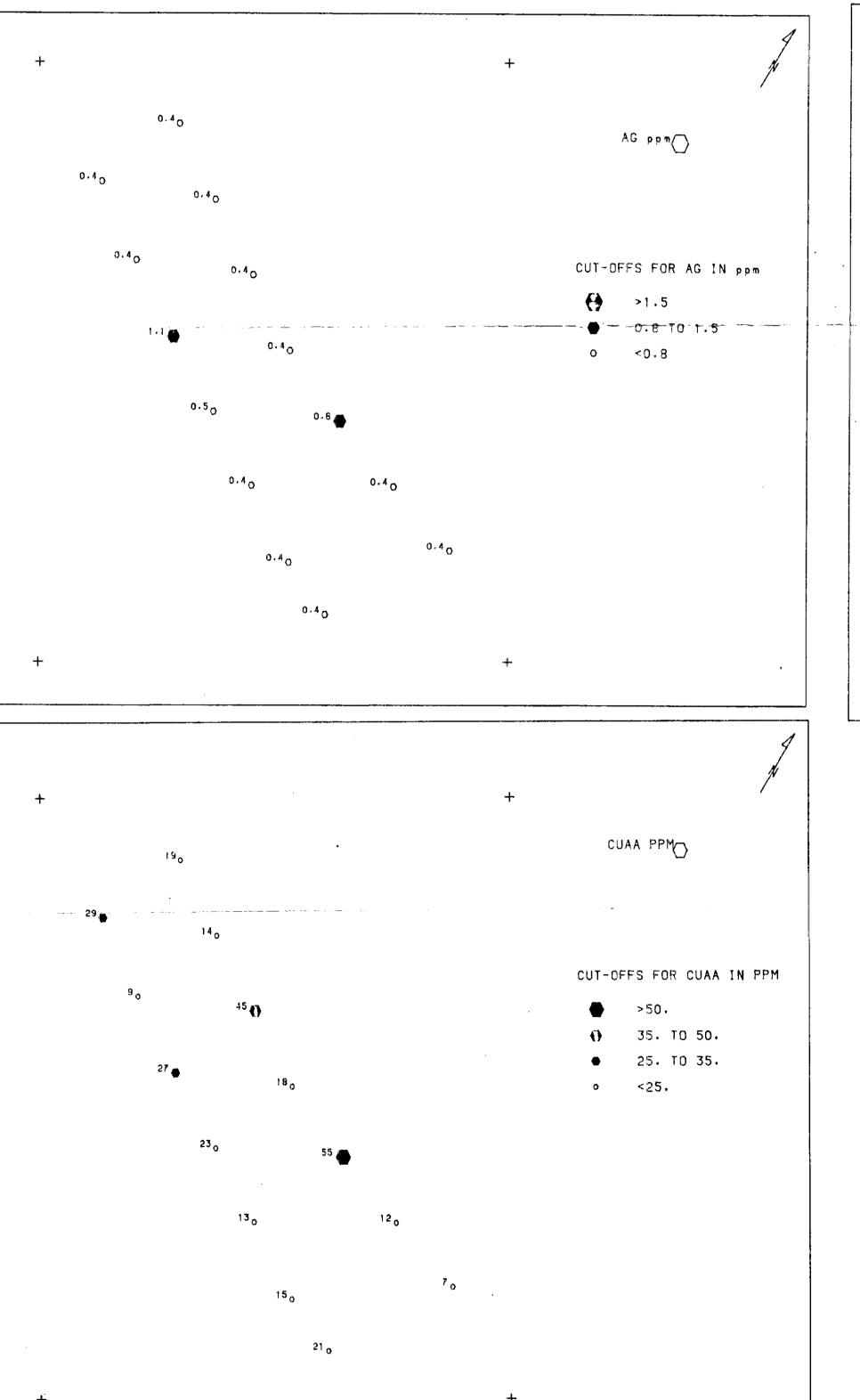

К	IT OPTION		
Drawn by: JDB	Traced by:		
Revised by Date	Revined by .Date	SOIL G	EOCHEMISTRY
		G	RID 3 -
		LAKE	SHOWING
		Scale: 1:2000	Date: 12-85


	⁷²⁰ 0	510 ₀	
679 ₀	591 ₀	686 ₀ 869 ₀	
	536 ₀	572 ₀	517 ₀ 1149 861
	506 g	⁵⁸⁴ 0 731	914 693
65 ₀	2881 2301 1084 2301 626 0	731 ₀ 1493 737 629 ₀	663 ₀ 595
	495 ₀ 455 ₀	800 o	861,
	390 0	643 ₀ 654 ₀	449
	731 ₀	562 ₀	· 861 (
	453 ₀	612 ₀	645 ₀
	645 ₀	659 ₀	733 ₀
	406 ₀	⁷⁵⁶ 0	718 ₀
	• •• •		

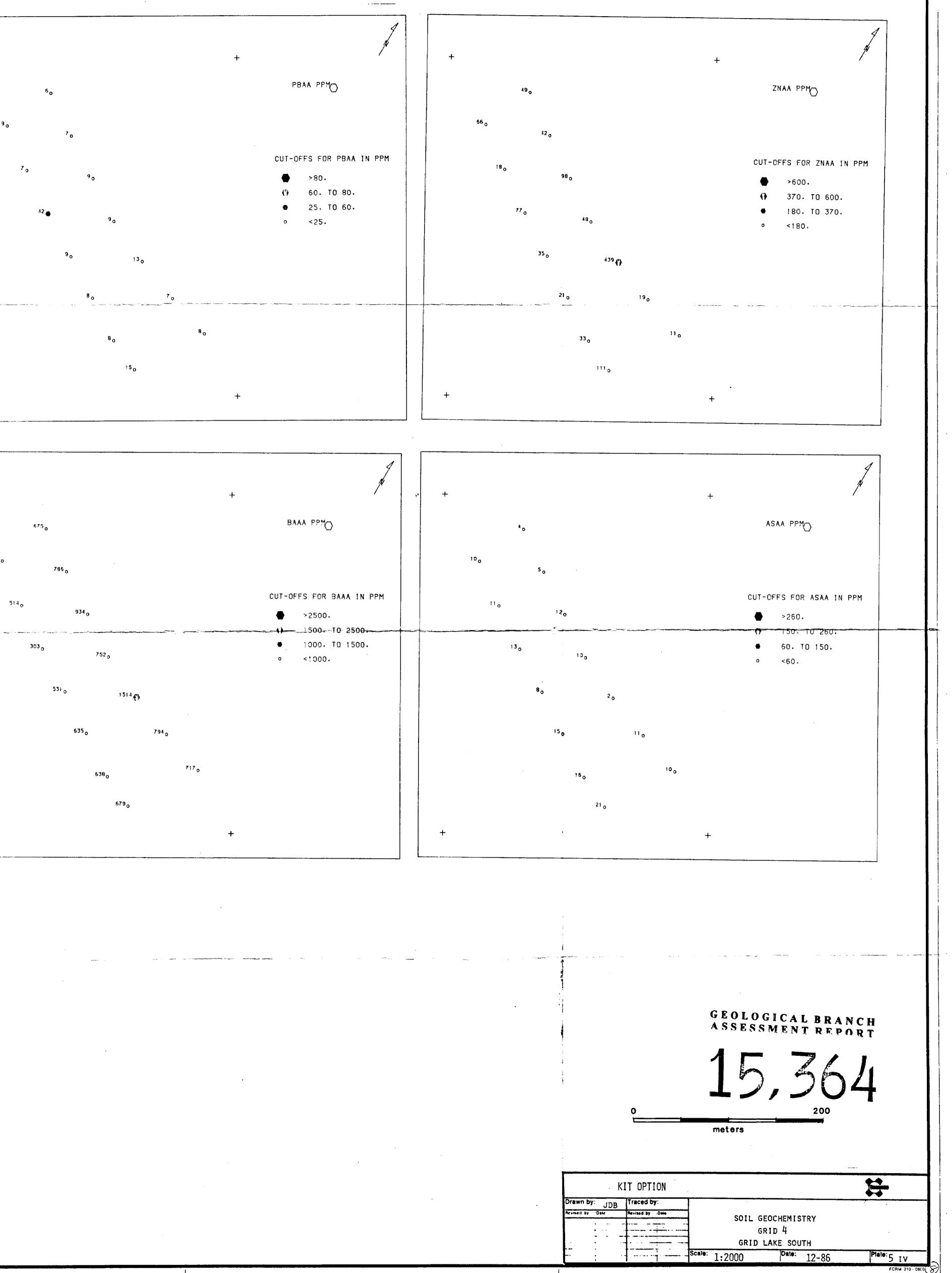
	63 ₀		²⁷ o				
67 ₀	67 ₀	38 ₀ 86	70 ₀				
	39 ₀		33 ₀ 43 ₀		462 () 293 •		
•	³⁹ 0 ³⁵⁰ ● 6 ⁵⁹⁰ ⊕ ⁴⁴ 0	55 ₀ 117 ₀	65 ₀ . 78 ₀ ?400 € 52 ₀	69 ₀	1040 1170 810 590	88 ₀	1120
	34 ₀ 30 ₀		1090		129 ₀		
	7 ₀ 61 ₀		60 ₀ 63 ₀ 45 ₀		73 ₀ 64 ₀		
	140		⁴² o		57 ₀		:
	29 ₀		†5 ₀		85 ₀		
	45 o		4; ₀		31 ₀		-

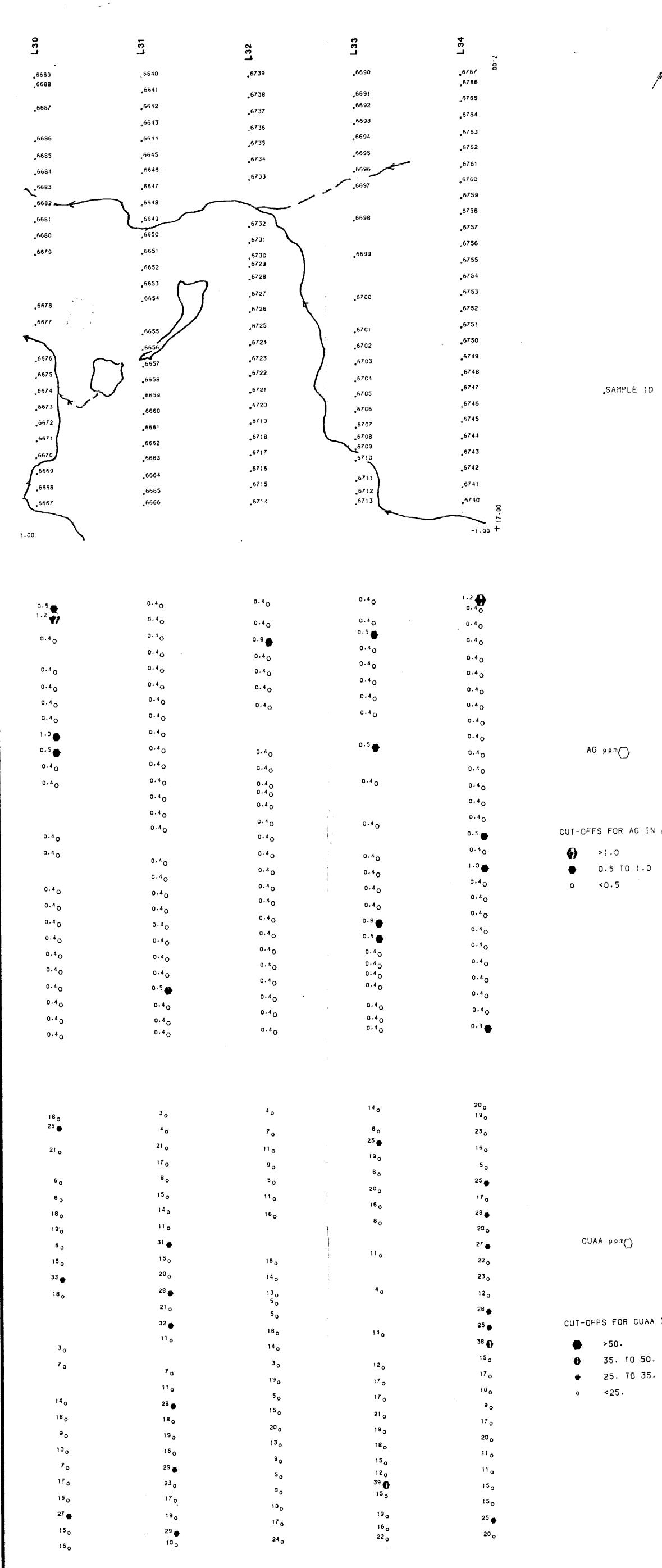
	4 o			¹ o			
6 €	20 ₀	18 o	³⁴ o	⁸ o			
	. 4 ₀		·	5 ₀	23 ₀	1030 656	
	9 ₀ 229 () 598 ● 38	۰ 🕳	¹⁷¹ 0	⁴ 0 80 552	•	²² 0 ⁹ 0 230	

⁹³	2 ₀	4 6
190		
9.0	7 ₀	37 o
[†] o	110	27 ₀
	8 o	
70	9 o	22 ₀
20	17 o	140
30 ₀	١٥ ₀	20 ₀
		0
70	⁶ o	23 ₀
ĺ		
o	3 ₀	
i	-	
	3 ₀	
2 ₀	⁴ o	14
¹ o	² o	14
	2 ₀	1 o 4 o
14	3 ₀	1 o
4 o 1 o		-
1 0	2 ₀	2
1 ₀	² o	20 30
	3 ₀	0
¹ o	¹ o	10
ⁱ o	2 ₀	3 ₀
¹ o	⁴ 0	7 o
:		
' o	⁴ o	³ o
· · ·		



9 o

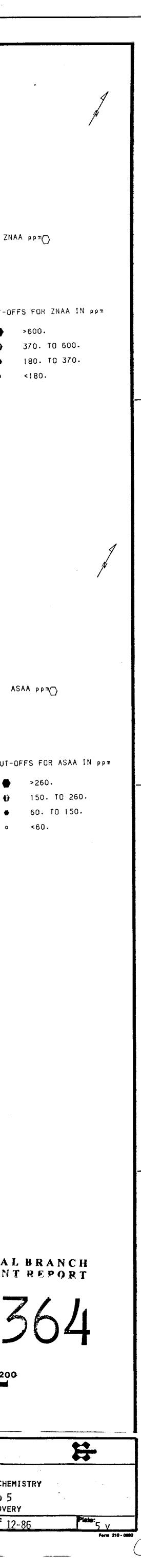

+

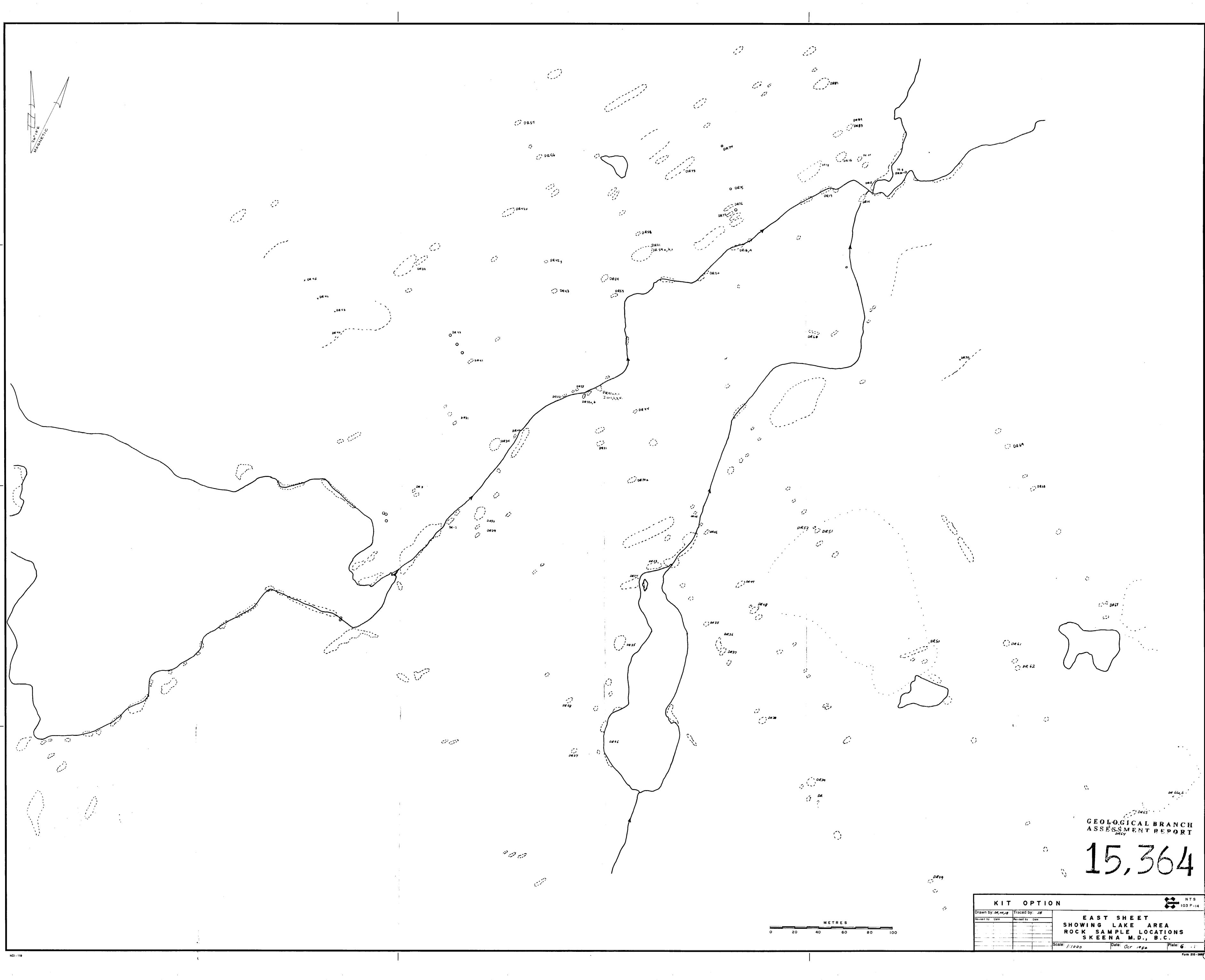

+

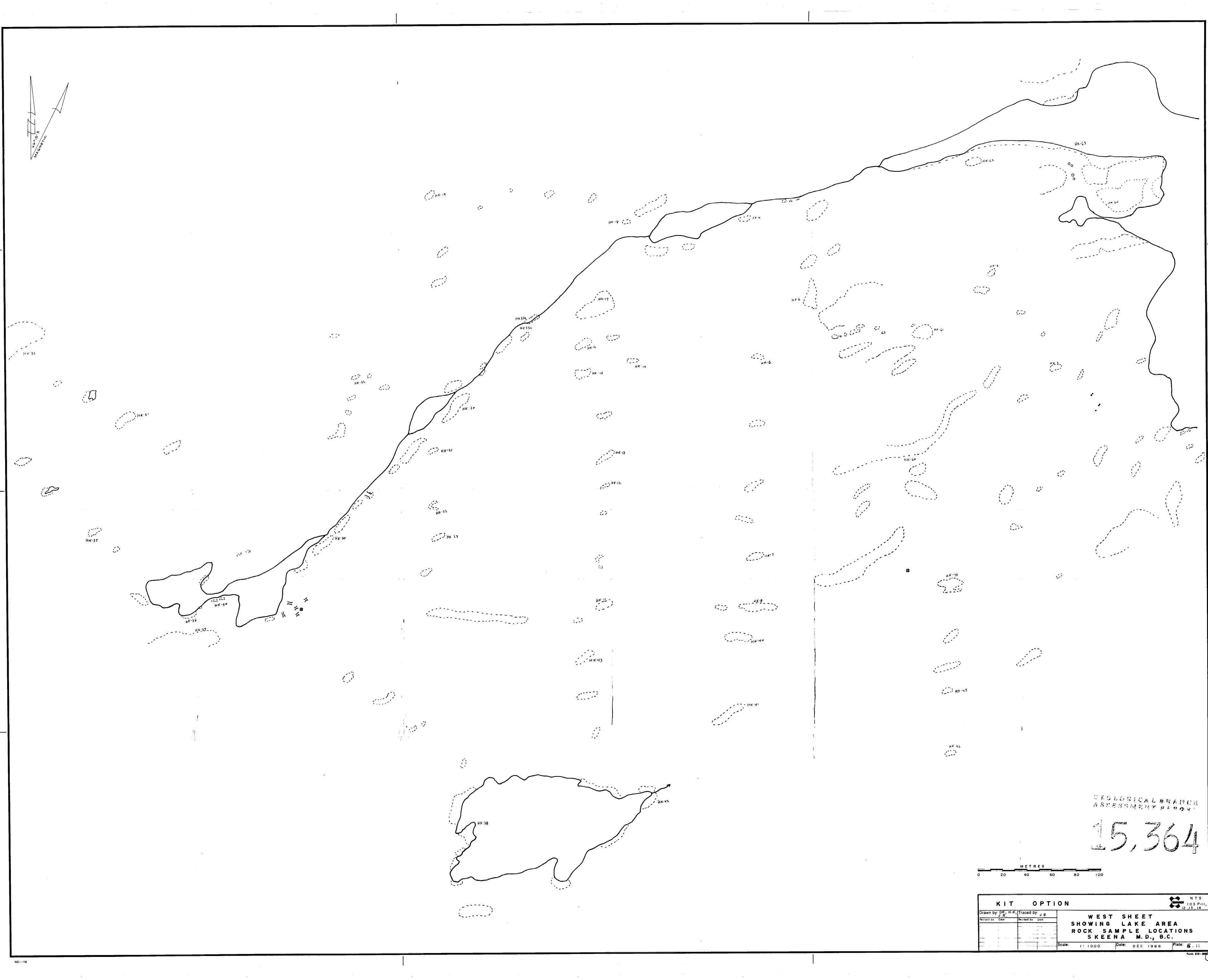
715₀

+

								المنابع المراجع المتعاد المناجع المتعادي بمبدو ساراته		· · · · · · · · · · · · · · · · · · ·		
ID	5_0 4_0 7_0 15_0 7_0 4_0 4_0 20_0 12_0 16_0 18_0 9_0 77_0 49_0 25_0 20_0 20_0 30_0 50_0 12_0 $12_$	5_0 2_0 4_0 2_0 4_0 7_0 14_0 18_0 15_0 13_0 27_0 22_0 31_0 27_0 22_0 31_0 50_0 74_0 58_0 117_0 20_0 12_0 1	$ \begin{array}{c} 11 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ $	2_{0} 2_{0} 7_{2} 5_{0} 8_{0} $1_{3_{0}}$ 8_{0} 2_{5} 5_{0} 2_{0} 7_{0} 6_{0} 4_{0} 7_{0} $1_{4_{0}}$ 5_{0} 8_{0} 1_{27} 3_{10} 4_{0} $1_{3_{0}}$ 8_{0} 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0} 8_{0} $1_{3_{0}}$ 8_{0} 8_{0	7_{0} 6_{0} 8_{3} 6_{0} 2_{0} 7_{3} 4_{0} 4_{0} 4_{0} 4_{0} 4_{0} 6_{3} 6_{0} 7_{0} 5_{0} 3_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 9_{0} 7_{0} 12_{0} 14_{0}	 PBAA ppm() CUT-OFFS FOR PBAA IN ppm ● 80. ● 60. TO 80. ● 25. TO 60. ● 25. 	$ \begin{array}{c} 101_{0} \\ 116_{0} \\ 25_{0} \\ 18_{0} \\ 18_{0} \\ 18_{0} \\ 52_{0} \\ 41_{0} \\ 23_{0} \\ 67_{0} \\ 120_{0} \\ 35_{0} \\ \end{array} $ $ \begin{array}{c} 9_{0} \\ 35_{0} \\ 35_{0} \\ 120_{0} \\ 35_{0} \\ 120_{0} \\ 35_{0} \\ 120_{0} \\ 120_{0} \\ 178_{0} \\ 407_{1} \\ 222_{1} \\ 120_{0} \\ 270_{1} \\ 184_{0} \\ 222_{0} \\ 120_{0} \\ 270_{0} \\ 163_{0} \\ 213_{0} \\ \end{array} $	$ $		28_0 23_0 350 350 149_3 135_0 50_0 53_0 50_0 22_0 6_0 58_0 122_0 70_0 184_0 140_0 184_0 150_0 182_0 122_0	127_{0} 40_{0} 59_{0} 26_{0} 7_{0} 45_{0} 21_{0} 43_{0} 68_{0} 43_{0} 60_{0} 13_{0} 52_{0} 71_{0} 22_{0} 22_{0} 105_{0} 57_{0} 23_{0} 55_{0} 51_{0} 30_{0} 160_{0} 55_{0} 142_{0} 101_{0} 208_{0}	ZNAA CUT-OFFS
IN ppm	419_{0} 498_{0} 320_{0} 454_{0} 454_{0} 456_{0} 640_{0} 495_{0} 345_{0} 438_{0} 534_{0} 669_{0} 494_{0} 590_{0} 2399_{1} 759_{0} 3921_{1} 5149_{1} 5149_{1} 7516_{1} 7057_{1} 1372_{1} 2406_{1} 809_{0} 809_{0}	538_{0} 769_{0} 311_{0} 539_{0} 617_{0} 589_{0} 425_{0} 692_{0} 774_{0} 492_{0} 4110 667_{0} 616_{0} 1046_{0} 2372_{1} 638_{0} 510_{0} 946_{0} 2372_{1} 638_{0} 587_{0} 594_{0} 820_{0} 829_{0} 839_{0} 83075_{1} 539_{0} 1773_{1}	382_0 551_0 312_0 495_0 337_0 603_0 579_0 1006 1442 2140 478_0 1442 2140 478_0 724_0 837_0 964_0 1027 544_0 605_0 851_0 616_0 554_0 1546 871_0 1633	456_{0} 1443_{0} 653_{0} 4154_{0} 1085_{0} 667_{0} 4580_{0} 438_{0} 438_{0} 410_{0} 751_{0} 1583_{0} 775_{0} 903_{0} 687_{0} 687_{0} 650_{0} 666_{0} 717_{0} 2257_{0} 3498_{0} 839_{0} 597_{0} 563_{0} 615_{0}	529_{0} 751_{0} 537_{0} 457_{0} 364_{0} 998_{0} 1259_{0} 411_{0} 541_{0} 541_{0} 514_{0} 952_{0} 436_{0} 499_{0} 717_{0} 543_{0} 502_{0} 489_{0} 2493_{10} 646_{0} 755_{0} 1070_{10} 4200_{10} 1609_{10} 7004_{10} 977_{0} 1500_{10}	 BAAA ppm() CUT-OFFS FOR BAAA IN ppm ≥2500. 1500. T0 2500. 1000. T0 1500. ≤ 1000. 	$12_{0} \\ 2_{0} \\ 13_{0} \\ 1_{0} \\ 6_{0} \\ 37_{0} \\ 4_{0} \\ 100_{118} \\ 184_{123} \\ 123_{123} \\ 142_{$	2_{0} 10 12_{0} 28_{0} 11_{0} 26_{0} 66_{0} 189_{0} 26_{0} 89_{0} 331_{0} 51_{0} 46_{0} 32_{0} 13_{0} 122_{0} 122_{0} 122_{0} 122_{0} 120_{0} 122_{0} 120_{0} 15_{0} 62_{0} 10_{0} 77_{0} 253_{0} 377_{0} 21_{0} 432_{0}	4_0 1_0 1_1_0 39_0 4_0 1_0 39_0 3340 960 30_0 570 740 346 82 57_0 1160 27_0 28_0 1160 27_0 28_0 12_0 77 137 255 565 720 39_0 61	14_0 1_0 $133_$ 226_2 220_2 51_0 426_2 9_0 10_0 10_0 10_0 10_0 10_0 51_0 23_0 70_2 62_2 84_2 12_0 22_0 37_4 660_162 30_0 1_0 30_0 1_0	17_{0} 37_{0} 23_{0} 10 22_{0} 1_{0} 22_{0} 1_{0} 24_{0} 8_{0} 12_{0} 13_{0} 25_{0} 5_{0} 1_{0} 21_{0} 240 29_{0} 54_{0} 213 216 74 506 144 180 30	ASA CUT-OF O
DAA IN ppm 50. 35.		$1 \circ$ $2 \circ$ $3 \circ$ $3 \circ$ $7 \circ$ $4 \circ$ $1 \circ$ $3 \circ$ $1 \circ$ $4 \circ$ $3 \circ$ $1 \circ$ $4 \circ$ $4 \circ$ $4 \circ$ $4 \circ$ $3 \circ$ $1 \circ$ $2 \circ$ $1 \circ$ $2 \circ$ $1 \circ$ $2 \circ$ $1 \circ$ $3 \circ$ $2 \circ$ $2 \circ$ $2 \circ$ $3 \circ$ $2 \circ$ $2 \circ$ $3 \circ$ $2 \circ$ $2 \circ$ $3 \circ$ $2 \circ$ $2 \circ$ $3 \circ$ $3 \circ$ $2 \circ$ $3 \circ$ $3 \circ$ $3 \circ$ $2 \circ$ $3 \circ$	$1 \circ$ $1 \circ$ $2 \circ$ $4 \circ$ $1 \circ$ $1 \circ$ $1 \circ$ $2 \circ$ $5 \circ$ $1 \circ$	3_0 1_0 1_6 3_0 3_0 1_0 1_0 1_0 1_0 1_0 4_0 6_0 7_0 1_6 25_0 7_5 4_0 8_0 1_3 21_0 5_0 3_0 1_0 3_0 1_0 3_0 1_0 3_0 1_0 3_0 1_0 3_0 3_0 1_0 3_0 3_0 1_0 3_0 3_0 1_0 3_0 3_0 1_0 3_0 3_0 1_0 3_0	$ \begin{array}{c} 13 \\ 3_{3} \\ 4_{0} \\ 73 \\ 1_{0} \\ 3_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ 1_{0} \\ 2_{0} \\ 1_{0} \\ $	MOAA ppm() CUT-OFFS FOR MOAA IN ppm > 50. 30. TO 50. 12. TO 30. > <12.				O KIT OPTION	GEOL ASSE 1 meters	OGICAL SSMENT


.


.


.

	KIT	OPTION			
	Drawn by: JDB	Traced by:	1		
ļ	Asvised by Date	Peviced by Delo	-	•	SOIL GEOCHEMISTRY
					GRID 5
					DISCOVERY
			Scale:	1:2000	Date: 12-86

•