SOIL GEOCHEM SURVEY
EAST 86 GROUP
LONG $127^{\circ} 24^{\prime} \mathrm{W}$. Lat. $50^{\circ} 35^{\prime} \mathrm{N}$.
NANAIMO, MAD. FOR ASSESSMENT CREDIT

UTAH MINES LTD.
DECEMBER,

Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT
 title page and summary

 App 17 (lunit), Rupert $1-7,11-13$ (9 units total), Expo $5($ lunit),
Mary (16 units's), Moon (16 units)
OWNERS)
(1) : Utah Mines Ltd.
(2) . Gop radon. Min bourne
mating address
Box 370 coo Ladner Downs
Port Hardy, B.C. . VỌN 2 Po
OPERATOR (S) (that is, Company paying for the work)
(1) .Utah.Mines.L.td.
 ASSESSMUYENT REPORT
(2)

MAILING ADDRESS
Box 370
Port.Har.dy, B.C. . . .VON. . .2P0.

SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization, size, and attitude):
The Upper Triassic and Lower Jurassic volcanic and sedimentary succession of the Vancouver and Bonanza Groups underlie the area. Porphyry dykes believed linked to the Rupert' Stock' extend east from Rupert Inlet. \cdot. From south. to .north. the .underlying. succession., .dipping. gently. .southward, from top to bottom, is the Bonanza Group pyroclastic volcanics, Parson Bay format calcareous siltstones, shapes, and limestone with shaley interbeds, Quatsino Format limestone and Karmutsen fanygdalioidal basalt:. Soil geochemistry identified a large number of low to moderate single eleantat. molybdenum. anomalies.. /references to previous work

TABLE OF CONTENTS

PAGE

1.0 INTRODUCTION 1
2.0 LOCATION AND ACCESS 1
3.0 CLIMATE 1
4.0 GEOLOGY 1
5.0 PHYSIOGRAPHY AND VEGETATION 2
a) Topography and Landscape
b) Drainage
i) Stream Drainage
ii) Lakes
iii) Bogs
c) Overburden, Soils and Vegetation
i) Overburden
ii) Soil Development
iii) Vegetation
6.0 SAMPLE COLLECTIONS AND PREPARATION 3
a) Collection
i) Sampling Plan
ii) Sampling Medium Collected
iii) Sample Collectioniv) Sample Handling
b) Laboratories
c) Sample Analysis
d) Data Handling
7.0 RESULTS 5
8.0 DISCUSSION 6
9.0 RECOMMENDATIONS 6
10.0 COST STATEMENT 6
STATEMENT OF QUALIFICATIONS 7

TABLE OF CONTENTS

TABLES:

A	LAB ASSAY SHEETS		
B	FIELD SHEETS		
C	CUMULATIVE PROBABILITY	PLOTS AND	HISTOGRAMS
MAPS :			
1	INDEX MAP	1:50000	
2	TOPOGRAPHIC MAP	$1: 12000$	Back Pocket
3	CLAIM LOCATION MAP	$1: 12000$	Back Pocket
4	STATION POSTINGS	1:4800	Back Pocket
5	COPPER, MOLY, LEAD, ZINC POSTING MAP	1:4800	Back Pocket
6	SILVER, ARSENIC, MANGANESE POSTING MAP	1:4800	Back Pocket
7	COPPER ANOMALY MAP	1:4800	Back Pocket
8	MOLY ANOMALY MAP	1:4800	Back Pocket
9	LEAD ANOMALY MAP	1:4800	Back Pocket
10	ZINC ANOMALY MAP	1:4800	Back Pocket
11	SILVER ANOMALY MAP	1:4800	Back Pocket
12	ARSENIC ANOMALY MAP	1:4800	Back Pocket
13	MANGANESE ANOMALY MAP	1:4800	Back Pocket

Between July 7 and August 5, 1986, a two-person sampling crew spent twelve crew-days collecting soil samples from cut lines in the East 86 Group of Claims, east of Rupert Inlet. This was part of a soil sampling program at the east end of the mineral property. The plan was to sample the reddish-brown soil underlying the organic cover, but to collect a sample anyway if that horizon could not be reached or was absent. Samples were collected on lines at stations set 30.5 meters apart. A total of 398 samples were collected. A total of 190 were given a DCP analysis for copper, molybdenum, lead, zinc, silver, arsenic and manganese. Generally, only every second sample (odd numbers) were submitted for assay. Alternate samples will be submitted as follow-up in anomalous areas.

The objective of the survey was to provide geochemical coverage in a part of the claim group adequate to detect the presence of a near surface porphyry copper-moly deposit where the overburden was less than about 50 feet thick. The elements selected for study are considered to be the most suitable for detecting the target deposit and could possibly detect underlying lead-zinc vein type mineralization under favourable conditions of overburden thickness. By using a multi-element approach, new information could be gained about the area.

2.0 LOCATION AND ACCESS

The survey area is located in the Nanaimo Mining Division with co-ordinates $50^{\circ} 35^{\prime} \mathrm{N}$ and $127^{\circ} 24^{\prime} \mathrm{W}$. It is located on the NTS map sheet $92 \mathrm{~L} / \mathrm{llW}$ and borders on claims contiguous with the Utah Mines Ltd. mineral leases some 8 km south of Port Hardy. Access is provided part way by paved highway from Port Hardy and the remainder by logging roads suitable for two wheel drive vehicles.

3.0 CLIMATE

Precipitation at the Port Hardy airport is normally about 160 cm per year including 42 cm of snow. Minimum and maximum temperatures are usually in the range of -12° and $27^{\circ} \mathrm{C}$.

4.0 GEOLOGY

The Upper Triassic and Lower Jurassic sedimentary and volcanic succession of the Vancouver and Bonanza Groups respectively, and the Jurassic "Rupert" Stock underlie the area east of Rupert Inlet (Map 2). The succession strikes

4.0 GEOLOGY (cont'd)

approximately west-northwest and dips gently southward becoming younger to the south. From south to north the formations are: (l) Bonanza Volcanics andesitic tuffs and flows under lain by (2) Parson Bay calcareous siltstone with interbedded shales and andesitic and cherty tuffs, and limestone with shaley interbeds underlain by (3) Quatsino limestone and (4) Karmutsen amygdaloidal basalt flows. The Rupert Stock underlies the northwest corner of Rupert Inlet and the uplands cutting the Bonanza Volcanics. It is a porphyritic granodiorite.

5.0 PHYSIOGRAPHY AND VEGETATION

a) Topography and Landscape

The area is in the coastal lowland of the Suquash Basin forming part of the Nahwitti Lowlands of the Central Trough physiographic subdivision. The area is characterized by rounded, gently rolling hills with a maximum relief of about 125 meters. Washlawlis Hill, to the north of the survey area, has an elevation of 173 meters. The survey area straddles the Waukwas Creek with the land rising to the north and south of the creek.
b) Drainage
i) Stream Drainage

Waukwaas Creek and tributaries drain west across the survey area, with a low gradient, into Rupert Inlet.
ii) Lakes

A small lake occurs on line 75E, between stations 55 S and 59 S .
iii) Bogs

Marshy ground occurs in various parts of the survey area as indicated on the field notes.
c) Overburden, Soils and Vegetation
i) Overburden

The area has a variable cover of glacial till, peat and moss. Outcrop exposure in the area is sparce. Overburden thickness over the survey area is unknown, but probably exceeds 15 meters. A drill hole on the west edge of the area has 63 meters of overburden.

5.0 PHYSIOGRAPHY AND VEGETATION (cont'd)

c) Overburden, Soils and Vegetation (cont'd)
ii) Soil Development

The B horizon is well developed on the North Island, but it is not always possible to observe because of the accumulation of organic waste which varies from forest litter to well fermented material. A high proportion of the samples have been taken from the A horizon as the B horizon could not be reached.
iii) Vegetation

The vegetation consists mainly of coniferous, virgin forest.

6.0 SAMPLE COLLECTION AND PREPARATION

a) Collection
i) Sampling Plan

Samples were collected using a narrow trenching shovel at stations spaced at 30.5 meter intervals along the cut lines, with alternate samples analyzed.
ii) Sample Medium Collected

The objective was to sample, whenever possible, the reddish-brown soil underlying the organic cover. Roots, twigs and leaves were avoided, as much as possible. If the sought horizon could not be reached, or was not present, a sample of the available material was taken and the horizon recorded.
iii) Sample Collection

About 50 to 60 grams of soil were collected at each station and placed in kraft paper envelopes.
iv) Sample Handling

Samples were dried in a drying oven at a temperature of $80^{\circ} \mathrm{C}$ for about 12 hours for drying prior to shipping to lab.

6.0 SAMPLE COLLECTIONS AND PREPARATION (cont'd)

b) Laboratories

The samples were sent to one lab, Utah International's Lab in Sunnyvale, California, for the DCP analyses. Assay sheets are included in Appendix A.
c) Sample Analysis

Methods of sample analysis are provided in Appendix A with the assay sheets.
d) Data Handling

Cumulative probability plots and histograms were computer generated for all elements. Assays below detection limits were not included in the statistical analysis. These assays probably constitute a separate population. Assays are included in Appendix A. The probability curves for copper, zinc and manganese (Appendix C) suggest the presence of more than one data population, but do not allow partitioning. Thus, the thresholds were determined on the basis of slope breaks at high concentration tails and previous experience in the area. The medium and high anomaly levels were selected at approximately two and four times the standard deviation respectively above the lower threshold values. Probability plots for other elements are not suitable for interpretation. Thresholds for these elements were taken at the mean value and multiples of the standard deviations. These values and the basic distribution parameters are given in the following table. All silver values above detection level are considered anomalous.

TABLE l: STATISTICAL PARAMETERS

		ARITHMETIC (ppm)		THRESHOLDS		(ppm)	
NAME	\# OF VALUES	MEAN	STD. DEV.	LOW	MEAN	HIGH	
Cu	192	47.1	21.5	60	100	140	
Mo	178	5.4	2.1	5	7	9	
Pb	55	4.1	2.2	4	6	8	
Zn	192	44.5	24.9	60	110	160	
Ag	5	0.2	0.06	0.2	0.4	0.6	
As	44	5.3	2.6	5	9	13	
Mn	190	355.3	314.1	600	1200	1800	

The assay values for all elements are plotted on the l:4800 scale maps. The station symbols are sized according to the threshold levels the assays fall in.

7.0 RESULTS

Most of the anomalies are in the low anomaly range. The few moderate and high anomalies, other than moly, are in the organic A horizon which has probably enhanced the values relative to those low level anomalies in the horizon. About half of the anomalies are single element anomalies, excluding manganese and arsenic. Manganese anomalies are not interpreted as significant on their own, but in support of anomalies of lead, zinc and silver anomalies. Arsenic anomalies are regarded as indicators for follow-up assaying for gold. Low level copper-zinc and copper-moly anomalies are the most common of the multi-element anomalies.

Two main anomaly groupings are apparent. One occurs at the north ends of lines 59, 67 and 65. The second anomaly area lies to the west of the first and occurs at the north end of lines 27 and 35 east. The first anomaly area is comprised of two sections. The first is an east-west trending belt of copper-lead and lead anomalies. All of these anomalies occur in the high organic A horizon and are discounted. Some swampy ground occurs at station 8 N on line 75E. To the north of this, on lines 67 E and 75 E , occur a series of low level copper, +/- moly, +/- lead, +/- zinc anomalies. All but one of these anomalies occur in the B horizon and are probably valid, albeit weak anomalies. The second anomaly area consists mainly of a series of low level copper-zinc anomalies with moderate moly in the B horizon. Again, this is probably a valid but weak anomaly.

Spot anomalies of single and multi-elements occur scattered over the survey area. Most of these are either in the A horizon and are discounted, or are weak anomalies in the B horizon. There are several exceptions. Station Ll9E 19 S has a moderate copper anomaly with low manganese and moly anomalies. The sample is from the B horizon. A low copper-zinc-moly anomaly occurs at station 15 N on the same line and may be related. This anomaly is interesting because the overburden is projected to be very thick in this area. Station l3S on line 67E has a high zinc and low copper anomaly from the B horizon. This station is at the top of a cliff and therefore, overburden thickness is probably thin. The anomaly may be caused by a combination of moderate organic content and thin overburden. A moderate-high copper, lead-zinc anomaly occurs at station 69 S on line 43 E . Although this is from the organic A horizon beside a creek, the anomaly is interesting as it is one of only two moderate-high copper-lead-zinc anomalies. The other is in the first anomaly area described above. Silver and arsenic anomalies are scattered over the area and occur as single anomalies or as part of multi-element anomalies. No pattern of distribution is apparent.

7.0 RESULTS (cont'd)

A large number of low-moderate single element moly anomalies occur in the B horizon on lines 43 E and 75 E south of Waukwaas Creek. These may reflect a separate population of higher background moly levels from those north of the creek.

8.0 DISCUSSION

The low assay values reflect the thick overburden cover in the area. With the thicknesses projected it is questionable whether the anomalies could reflect underlying mineralization. The high organic content of most of the anomalous samples probably enhanced the metal concentrations.

9.0 RECOMMENDATIONS

The samples with arsenic and/or silver anomalies should be assayed for gold. The alternate samples (even numbered samples) should be submitted for assay to better define and validate the two main anomaly areas and several anomalies described above.
10.0 COST STATEMENT

ASSAYS	190 samples @ \$5.00	\$	950.00
COLLECTION	```6 days (2 person crew) @ $215/day```	\$	1,290.00
SUPERVISION		\$	120.00
OVERHEAD	25\% supervision \& labour	\$	352.50
VEHICLE	6 days @ \$19.75	\$	118.50
	Gas	\$	12.00
SUPPLIES	Flagging, tags, bags	\$	75.00
SHIPPING	Samples to Sunnyvale Lab (\$1.00/sample est.)	\$	190.00
REPORT WRITING		\$	700.00
TOTAL		\$	3,808.00

STATEMENT OF QUALIFICATIONS

-I submit that I am qualified to prepare and present this report for assessment credit. My qualifications are as follows:

1) I have a B.Sc., (Major Geology) 1971 from McGill University.
2) I have been employed as a geologist continuously since June, 1968, and am presently Chief Geologist, Island Copper Mine, Utah Mines Ltd.
3) I have been a Fellow of the Geological Association of Canada since 1974.

Island Copper Mine, Utah Mines Ltd.

Appendix A

Samples are dried and screened to -80 mesh. A 500 mg sample of the fine fraction is dissolved in a solution of 2 ml nitric/2 ml perchloric acid diluted to 10 ml in 208 hydrocloric acid for 3 - 4 hours. The solution was subjected to DC plasma analysis using a Specmin SpectraSpan 6 system, with the instrument programmed and calibrated for the elements reported.

REPORT OF CHEMICAL ANALYSIS

UTAH INTERNATIONAL INC MINERALS LABORATORY
1190 BORDEAUX DRIVE
SUNNYVALE, CALIFORNIA 94809
PHONE: (408) 744-1600

PROJECT ISLAND COPPER RECON. SUBMITTED BY J. FLEMING	
CHARGE: ISLAND CU GEO.	MINERALS LAE NO. $86-620$

SAMPLE ID PPM CU PPM MO PPM PB PPM ZN PPM AG PPM MN PPM AS

19E-23S	48	7	-2	23	-0.2	140	-2
19E-21S	59	6	-2	39	-0.2	178	-2
19E-19S	110	1	-2	50	-0.2	670	-2
19E-17S	62	8	-2	50	-0.2	570	-2
19E-15S	67	8	-2	61	-0.2	385	-2
19E-13S	38	8	-2	36	-0.2	250	-2
19E-11S	45	7	-2	48	-0.2	835	8
19E-95	54	4	-2	50	-0.2	635	-2
19E-7S	59	5	-2	51	-0.2	725	-2
19E-5S	59	6	-2	56	-0.2	1100	-2
19E-3S	51	5	-2	61	-0.2	890	-2
19E-1S	61	5	-2	55	-0.2	475	-2
19E-1N	58	4	5	64	-0.2	815	-2
19E-3N	26	5	3	23	-0.2	164	-2
19E-5N	40	7	-2	55	-0.2	440	-2
19E-7N	28	6	2	46	-0.2	210	-2
27E-23S	68	6	-2	42	-0.2	460	-2
27E-215	61	5	-2	46	-0.2	355	-2
27E-19S	42	9	-2	27	-0.2	192	-2
27E-17S	44	3	6	45	-0.2	220	-2
27E-15S	38	4	-2	41	-0.2	285	-2
27E-13S	62	5	-2	55	-0.2	705	-2
27E-11S	60	5	-2	57	-0.2	835	-2
27E-7S	46	4	-2	44	-0.2	610	5
27E-5S	64	4	-2	56	-0.9	915	-2
27E-35	53	5	-2	49	-0.2	750	-2
27E-15	54	6	-2	58	-0.2	645	-2
$27 \mathrm{E}-1 \mathrm{~N}$	35	5	-2	37	-0.2	215	-2
$27 E-3 N$	53	8	-2	58	-0.2	1300	9
27E-5N	75	6	-2	44	-0.2	385	-2
27E-7N	99	9	-2	80	-0.2	345	-2
35E-21S	17	2	3	22	-0.2	100	-2
35E-19S	27	1	5	14	-0.2	53	-2
35E-15S	21	5	-2	40	-0.2	205	-2
$35 E-135$	38	6	-2	50	-0.2	680	-2
35E-11S	45	3	-2	43	-0.2	505	-2
35E-7S	56	5	-2	49	-0.2	650	-2
35E-5S	64	5	-2	67	-0.2	265	-2
35E-3S	82	6	2	100	-0.2	440	6
$35 E-15$	43	6	-2	57	-0.2	365	-2
$35 \mathrm{E}-1 \mathrm{~N}$	86	6	-2	100	-0.2	430	-2
$35 E-3 N$	65	12	-2	65	-0.2	290	-2
$35 E-5 N$	61	8	-2	35	-0.2	270	-2
$35 \mathrm{E}-7 \mathrm{~N}$	66	9	-2	66	-0.2	235	-2
35E-9N	26	-1	3	21	-0.2	138	4
$438 E-695$	110	6	12	210	-0.2	22	-2
$438 \mathrm{E}=67 \mathrm{~S}$	37	4	5	35	- C .2	23	6

UTAH INTERNAIIONAL INC. MINERALS LABORATORY
1190 BORDEAUX DRIVE
SUNNYVALE, CALIFORNIA 94809
PHONE: (408) 744-1600

PROJECT ISLAND COPPER RECON.
CHARGE: ISLAND CU GEO.

SUBMITTED BY J. FLEMING
MINERALS LAB NO. 86-620

SAMPLE ID PPM CU PPM MO PPM PB PPM $\angle N$ PPM AG PPM MN PPM AS

$43 B E-65 S$	19	2	2	33	-0.2	7	-2
$43 \mathrm{BE}-615$	31	2	3	27	-0.2	26	3
$43 B E-595$	89	7	8	98	-0.2	625	-2
$43 B E-575$	26	8	3	50	0.2	160	2
$43 \mathrm{BE}-55 \mathrm{~S}$	71	7	4	85	-0.2	595	7
$43 B E-535$	34	6	-2	45	-0.2	225	3
$43 B E-515$	12	-1	4	29	-0.2	47	-2
$43 B E-475$	39	5	3	20	-0.2	40	-2
43BE-45S	16	-1	3	14	-0.2	35	-2
$438 E-43 S$	50	8	-2	60	-0.2	168	-2
$43 \mathrm{BE}-415$	47	2	5	22	-0.2	49	-2
$43 B E-395$	54	8	-2	36	-0.2	134	-2
$43 \mathrm{BE}-385$	36	1	-2	41	-0.2	445	3
$43 B E-375$	81	7	-2	64	-0.2	220	-2
43BE-35S	71	9	-2	59	-0.2	405	-2
$43 B E-335$	38	-1	3	21	-0.2	44	-2
$43 \mathrm{BE}-315$	59	8	-2	35	-0.2	126	-2
$43 \mathrm{BE}-295$	79	8	-2	43	-0.2	225	-2
$43 B E-275$	47	9	-2	35	-0.2	166	-2
$43 B E-25 S$	72	8	-2	55	-0.2	255	-2
$43 \mathrm{BE}-23 \mathrm{~S}$	42	1	5	21	-0.2	130	-2
$438 \mathrm{E}-215$	36	10	-2	28	-0.2	102	-2
$433 \mathrm{E}-195$	57	9	-2	39	-0.2	265	-2
$43 B E-17 S$	50	9	-2	33	-0.2	166	-2
$439 E-15 S$	53	7	-2	33	-0.2	385	-2
$43 B E-135$	31	6	-2	17	-0.2	104	-2
$43 B E-115$	56	7	-2	60	-0.2	385	-2
$438 E-95$	33	8	-2	27	-0.2	108	-2
43BE-7S	65	5	-2	28	-0.2	320	-2
$43 B E-5 S$	31	8	-2	20	-0.2	230	-2
$13 B E-35 A$	41	4	-2	46	-0.2	490	-2
$43 B E-15 A$	46	6	-2	32	-0.2	265	-2
$43 \mathrm{BE}-1 \mathrm{NA}$	49	5	-2	35	-0.2	280	5
$43 B E-3 N A$	30	4	-2	25	-0.2	150	-2
$43 B E-5 N A$	82	6	-2	64	-0.2	425	-2
$43 \mathrm{BE}-7 \mathrm{NA}$	79	6	-2	75	-0.2	810	-2
$43 B E-9 N A$	88	7	-2	98	-0.2	1080	3
$438 \mathrm{E}-11 \mathrm{NA}$	30	5	-2	43	-0.2	170	-2
$43 B E-13 N$	42	4	-2	49	-0.2	590	3
$43 E-35 B$	45	5	-2	39	-0.2	320	-2
$43 E-15 B$	35	5	-2	60	-0.2	960	-2
$43 E-1 N B$	12	-1	3	17	-0.2	23	2
$43 E-3 N 8$	48	5	-2	35	-0.2	275	-2
$43 E-5 N B$	42	7	-2	40	-0.2	2300	-2
$43 E-7 N B$	34	2	3	16	-0.2	122	-2
$43 E-9 N B$	16	-1	2	14	-0.2	71	-2
$43 \mathrm{E}-11 \mathrm{NB}$	51	6	-2	52	-0.2	400	-2

REPURT OF CHEMICAL ANALYSIS

UTAH INTERNATIONAL INC. MINERALS LABORATORY

1190 BORDEAUX ORIVE
SUNNYVALE, CALIFORNIA 94809
PHONE: (408) 744-1600
PROJECT ISLAND COPPER RECON.
CHARGE: ISLAND CU GEO.
SUBMITTEO BY J. FLEMING
MINERALS LAE NO. B6- 620

REPORT OF CHEMICAL ANALYSIS

UTAH INTERNATIONAL INC. MINERALS LABORATORY
1190 BORDEAUX DRIVE
SUNNYVALE, CALIFORNIA 94809

PHONE: (408) 744-1600

PROJECT ISLAND COPPER RECON. CHARGE: ISLAND CU GEO.

SUBMITTED BY J. FLEMING
MINERALS LAB NO. 86-620

Appendix B

$\angle 19 E$ (2) July 786
STN MOR DEP TOPKC ORGCCY REMARKS

$222 \mathrm{~N} / \mathrm{s}$

$\partial د \mathrm{JN} / \mathrm{s}$

$16 \mathrm{lN} / \mathrm{s}$

quati 486

75E
STN. 42 Lip pie Top rol oma sty Remarks.

$\angle 75 B E$
SIN. DUR DEPTE CO OE CWY REMARLS

$7 \quad 1 \mathrm{~N} / \mathrm{s}$

24

青 $3 \mathrm{r} / \mathrm{s}$

Appendix C

(

EAST86 GEOCHEM SURVEY

```
VARIABLE NAME IS: CU 
```


iCELLILOWER	LIMITI	NOI	PCTI	PERCENTAGE HISTOGRAM DF LOGARITHMIC VALUES	｜ARITH．LIMIT
11	0.92351	01	0.01	－	｜8．38581
21	0.98161	11	0．51\％		19.58521
31	1.03971	51	2．61020		110.95621
45	1.0977	21	1.017		112.52331
51	1.15581	31	1．61＊		｜14．31451
61	1.21381	41	2．11＊＊		1 16．36201
71	1．2719！	41	2．11＊＊		118.70231
81	1.33001	11	0．51\％		121.37731
91	1.38801	81	4．21\％\＃\％		24.43501
101	1.44611	131	6.81 \％		1 27.93001
111	1.50411	181			131.92491
121	1.56221	181	9．41才すもあれあもあも		136.49131
131	1.62021	221		－－	｜ 41.71071
141	1.67831	281			147.67671
151	1.73641	241			1 54.49601
161	1.79441	181			1 62．29081
171	1.85251	61	3．11＊＊＊		1 71．20041
181	1.91051	101	5.2100000		181.38441
191	1.96861	11	0．51\％	－	1 93.02501
201	2.02671	21	1．01＊		1 106．33061
211	2.08471	01	0.01		1 121．53941
221	2.14281	11	0.517		1 138．92351
231	2.20081	01	0.01		｜ 158.79421
241	2.25891	01	0.01		｜181．50701

EAST86 GEOCHEM SURVEV
variable name is: Cu

EAST86 GEOCHEM SURVEY
 variable name is: cu

EAST86 GEOCHEM SURVEY

VARIABLE NAME IS: MO

EASTBG GEOCHEM SURVEY

LOG VALUES..............:
STC.DEV. $=$
0.1939 VARIANCE $=$
0.0376

PERCENTAGE HISTOGRAM OF LOGARITHMIC VALUES

EASTB6 GEOCHEM SURVEY

Variarle name is: $2 N$
NUMBER OF VALUES IS 192
CALCULATEDPARAMETERS: MEAN $=44.5260$ SID.OEV. \quad S. $24.9416 \quad$ VARIANCE $=\quad 622.0833$

EASTBG GEOCHEM SURVEY

VARIABLE NAME IS: ZN

EAST86 GEOCHEM SURVEY

LOG VALUES..........E.E: MEAN $=-0.6285$ STE.DEV. $=$ VARIANCE $=0.0964$ V.0093

EASTB6 GEOCHEM SURVEY

VARIABLE NAME IS: AG

EAST86 GEOCHEM SURVEY

EASTBG GEOCHEM SURVEY
VARIABLE NAME IS: MN

EAST86 GEOCHEM SURVEY

