86-796-15384 12/87

ASSESSMENT REPORT

ON THE PEACOCK PROPERTY NEAR GOLDBRIDGE, B.C.

FOR LEVON RESOURCES LTD. (OWNER OPERATOR)

Lillooet Mining Division

N.T.S. 92-J-15-WLat. 50°54'N. Long. 122°528W.

BRADFORD J. COOKE AND TIM SANDBERG

CODKE GEOLOGICAL CONSULTANTS LTD.

DECEMBER 5, 1986

G	E	0	L	0	G	71	С	A	L	B	R	A	N	Ĉ	H
A	S	S	E	S	S	M	E	N	T	R	E	P	Ô	R	T

15.384

	FILMED	· · · · · · · · · · · · · · · · · · ·
	X 4 S VANCOLIVER, B.C.	
ha .	DEC121986	
:	OUR-RECORDER	

SUMMARY

The purpose of this report is to document assessment work carried out on the Peacock property during October and November of 1986. Included in this report are the results of line cutting, geological mapping and geophysical surveying on the property, but not geochemical sampling, which had to be postponed due to early snow conditions.

Peacock property is located approximately 6 kilometres northwest of Goldbridge and 180 kilometres north-northeast of Vancouver, British Columbia (Figure 1). Access to the claims can be gained by truck from Vancouver, 145 kilometres east on Highway 1 to Hope, 225 kilometres north on Highways 1 and 12 to Lillooet and 100 kilometres west on gravel road to Goldbridge. The Gun Lake public road and Slim Creek logging road provide access to the claims.

The Peacock property has fair exploration potential for hydrothermal gold veins, as shown by its close proximity and broadly similar geology to the Congress property and Bralorne mine. It is underlain by northwest-trending, steeply-dipping Triassic cherts and basalts of the Bridge River Group, and intruded by Cretaceous, hornblende granodiorite of the Coast Intrusions, which contain one narrow quartz vein with minor disseminated stibnite surrounded by ankerite alteration.

Seven old trenches and two caved adits were relocated in the southeast corner of the property, near the granodiorite plug. Only one rock was geochemically anomalous, running 0.51% Sb due to disseminated stibuite in a quartz vein.

Six long, strong, VLF-electromagnetic anomalies were located on the southwest side of the grid. They appear to follow the northwesterly formational trend and may reflect the contacts of serpentinite bodies, graphitic argillites or fault zones.

One long, strong, PP-magnetic high-low couple and one moderate, spotty magnetic couple were delineated on the south part of the grid. They also follow the northwesterly formational trend and may reflect a serpentinite body and a granodiorite intrusion, respectfully.

Surface surveys were successful in discovering strong VLFelectromagnetic and PP-magnetic anomalies that may indicate a favorable geological environment for hydrothermal gold veins. Bne rock anomaly suggests that gold mineralization may occur on the property, but little geological mapping has been carried out to confirm that as yet. Although the Peacock #1 claim appears to have limited exploration potential, systematic geological mapping and geochemical sampling are necessary to further evaluate the property.

A two week, \$25,000 CA exploration program of geological mapping and geochemical sampling is recommended for next year to complete the first phase of work on the Peacock property. Should this work be successful, fill-in surface surveys and follow-up backhoe trenching could be justified.

Systematic geological mapping is necessary to identify the main rock units and locate prospective areas for dikes, shears, alteration and mineralization. The VLFelectromagnetic and PP-magnetic anomalies should be prospected with respect to geology and mineralization.

Some soil sampling is required on the south half of the claim to further evaluate the VLF-electromagnetic and PPmagnetic anomalies. No work should be conducted on the north half of the claim unless justified by exploration success on the south half of the grid.

TABLE OF CONTENTS

INTRODUCTION

Purpose and Scope Location and Access Physiography and Climate Accommodation and Labour Claims Description Mining History	: 1 1 1 4
GEOLOGY	
Regional Property	5 6
GEOCHEMISTRY	
Surface Rock	10
GEOPHYSICS	
VLF-Electromagnetic PP-Magnetic	12 13
CONCLUSION	
Conclusions Recommendations Expenditures	14 15 16
REFERENCES	17
QUALIFICATIONS	18
APPENDICES	19

LIST OF FIGURES

FIGURE	1:	Location map	2
FIGURE	2:	Claim map	3
FIGURE	3:	Regional Geology map	7
FIGURE	4:	Local Geology map	9
FIGURE	5:	Reconnaissance Surface Geology	Back
FIGURE	6:	VLF-Electromagnetic Survey (Seattle)	11
FIGURE	7:	PP-Magnetic Survey (Total Field)	

LIST OF TABLES

TABLE 1:	Claim list	4
TABLE 2:	Formation list	8

LIST OF APPENDICES

APPENDIX	1:	Analytical Procedures	18
APPENDIX	2:	Assay Certificates	19

INTRODUCTION

Purpose and Scope

The purpose of this report is to document assessment work carried out on the Peacock property during October and November of 1986. Included in this report are the results of line cutting, geological mapping and geophysical surveying on the property, but not geochemical sampling, which had to be postponed due to early snow conditions.

Location and Access

Peacock property is located approximately 6 kilometres northwest of Goldbridge and 180 kilometres north-northeast of Vancouver, British Columbia (Figure 1). Access to the claims can be gained by truck from Vancouver, 145 kilometres east on Highway 1 to Hope, 225 kilometres north on Highways 1 and 12 to Lillooet and 100 kilometres west on gravel road to Goldbridge. The Gun Lake public road and Slim Creek logging road provide access to the claims.

Physiography and Climate

The claims lie north of Gun Lake and south of Gun Creek, at elevations of 915 metres along the lake up to 1,440 metres on the top of the hill at the centre of the property. Vegetation is typified by coniferous forest and the climate is characterized by hot, dry summers and cold, snowy winters.

Accommodation and Labour

Goldbridge Hotel is convenient for room and board, houses are available for rent in Bralorne, and there is a recreational campsite at Gun Lake, southwest of the claims. Cooke Geological Consultants Ltd. conducted the exploration program for Levon Resources Ltd.

Claims Description

The Peacock property consists of 1 modified grid claim and 1 fractional claim, totalling 17 units and covering about 425 hectares, in the Lillooet Mining Division (Figure 2). Total annual assessment on the claims is \$1,700 each year for the first three years and \$3,400 each year thereafter (Table 1).



Figure 1. Location map.

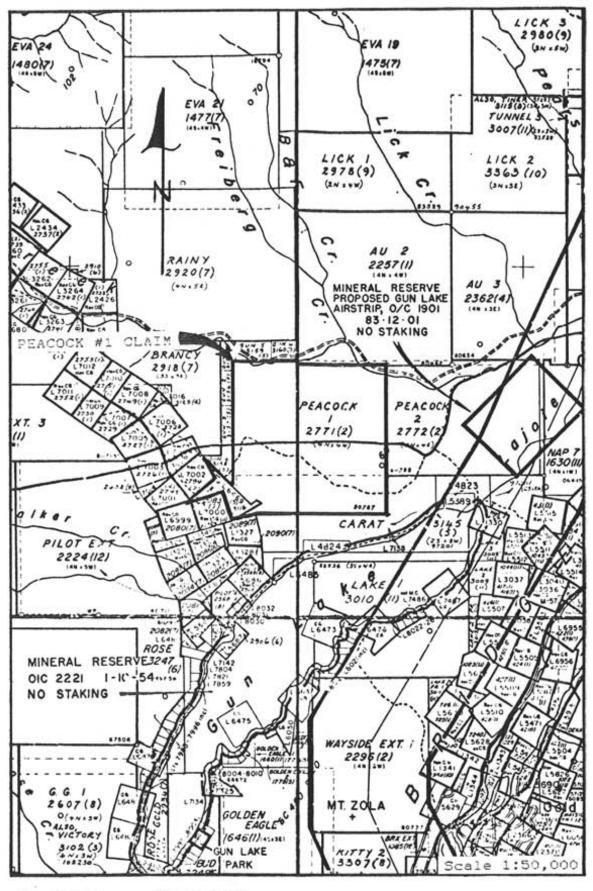


Figure 2: Claim mop.

Mining History

There is no recorded history of exploration and mining on the Peacock 1 claim but some old trenches and adits were observed near Gun Lake. In early 1984, Mr. Gary Polischuk staked the claims and subsequently sold them to Levon Resources Ltd., who carried out line cutting and geophysical surveying in 1985 and in 1986 preparation for the exploration work reported herein.

CLAIM NAME	CLAIM TYPE	RECORD NO.	NO. UNITS	EXPIRY DATE
Peacock 1	MG	2771	16	27-02-87
Selwyn Fr.	FC	3116	1	06-28-87

TABLE 1: Claim List

GEOLOGY

<u>Regional</u>

The following summary of regional geology and tectonics is derived from the reports of many workers in the Bridge River area, with emphasis on Geological Survey of Canada and University of British Columbia reports (see References).

The Bridge River district lies at the western margin of the Intermontaine Belt of volcanic and sedimentary rocks where it abuts against the Coast Plutonic Complex of plutonic and metamorphic rocks (Figure 3). Triassic are volcanics and backare sediments (Cadwallader and Bridge River Groups) are intruded by synvolcanic, intermediate plutons (Bralorne Intrusions) and faulted against ophiolitic, ultramafic intrusions (President Intrusions) (Table 2).

Jurassic and Cretaceous basinal sediments and rift volcanics (unnamed, Taylor Creek and Kingsvale Groups) are sequentially intruded by Cretaceous and Tertiary plutons of felsic composition (Coast, porphyry and Bendor Intrusions). Relatively flat-lying Tertiary intermediate and mafic volcanics (Rexmount porphyry and plateau basalt) cap the lithological sequence.

Bralorne and Pioneer mines comprise the largest and richest lode gold mining camp in British Columbia. Between 1899 and 1971, they produced 4.16 million tons ore grading 0.51 oz/ton gold and 0.12 oz/ton silver. Gold-bearing quartz veins follow two sets of narrow fissures in Pioneer andesite and Bralorne diorite near Bralorne granite and albitite dikes. Mining stopped in ore some 2,000 metres down because of a miner's strike, ventilation problem, high mining costs and low gold prices.

Many other gold prospects in the region, such as the Congress vein, are gold-bearing sulfide replacements along narrow shears in Bridge River basalts and cherts, often near porphyry dikes. A significant new discovery on the Congress property of Levon Resources Ltd., 7 kilometres east of Levon's Peacock 1 claim, assays up to 0.37 oz/ton Au, 0.32 oz/ton Ag and 1.7% Sb over 6.9 metres true width. Thus, the mining potential of new claims such as the Peacock property, with geology similar to Bralorne or Congress, needs to be re-evaluated.

5

Property

Surface geology of the Peacock property is broadly similar to the Congress property and Bralorne mine. It is underlain by northwest-striking, steeply dipping cherty sediments and basaltic volcanics of the Triassic Bridge River Group, intruded by hornblende granodiorite of the Coast Intrusions (Figure 4). Unfortunately, early snow conditions prevented detailed geological mapping of the property so only limited conclusions can be drawn regarding its surface geology.

Seven old trenches and two caved adits were relocated in the southeast corner of the property where a granodiorite plug intrudes the volcanics and sediments. One narrow (2 cm), flat quartz vein, with minor disseminated stibnite, was found crosscutting ankerite-altered granodiorite.

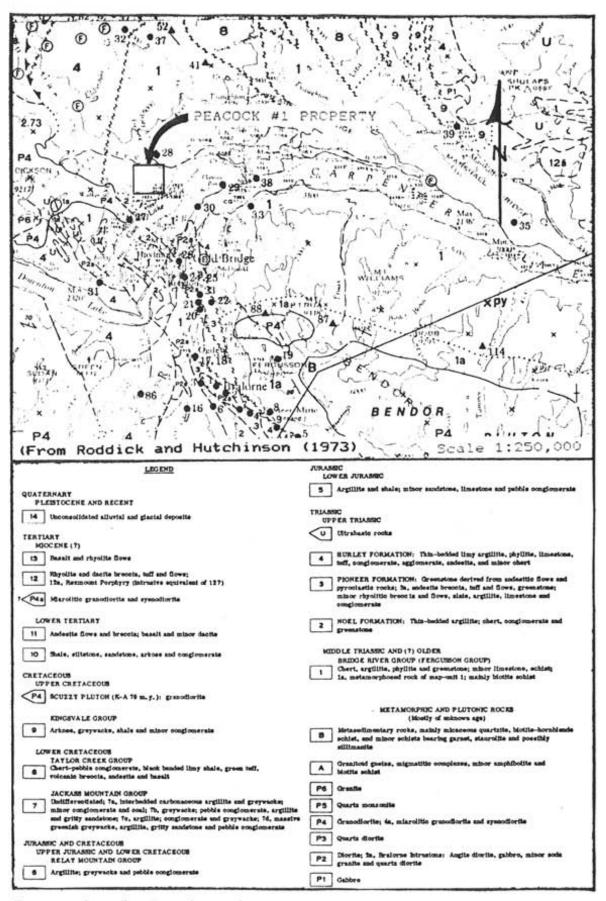


Figure 3: Regional geology map.

PERIOD	UNIT	LITHOLOGY
Vpper	Plateau	basalt, rhyolite flows,
Tertiary	Basalt	breccies
		unconformable contact
Lower	Rexmount	rhyolite, dacite, andesite
Tertiary	Porphyry	tuffs, flows, plugs
		unconformable contact
	Bendor	granodiorit e , quartz
	Intrusions	diorite, quartz monzonite
		intrusive contact
Upper	Porphyry	quartz, føldspar,
Cretaceous	Dikes	hornblende porphyry dikes
		intrusive contact
	Coast Range	querte diorito diorito
	Intruaiona	quartz diorite, diorite, granodiorite
		intrusive contact
	Kingsvale Group	arkose, greywacke, shale, conglomerate
	-	unconformable contact
lower	Taylor Creek	conglomerate, shale, tuff,
Cretaceou s	Group	breccia unconformable_contact
OWOT	Unnamed	argillite, shale, sandstone
Jurassic	Sediments	limestone, conglomerate
lpper	Bralorne	augite diorite, soda
friessic	Intrusions	granite, albitite dikes
		intrusive contact
	President	serpentinite, peridotite
	Intrusions	pyroxenite, dunite, gabbro
		fault contact
	Cadwallader	
	Group	
	Hurley	limy argillite, sandstone,
	Formation	conglomerate, limestone,
		greenstone, tuff, chert
		CHEL F
	Pioneer	greenstone, basalt,
	Formation	andesite, flows, tuffs
	Noel	angillita chant
	Roei Formation	argillite, chert, conglomerate, greenstone
	_ · · _ ·	
fiddle Triassic	Bridge River Group	chert, argillite, siltstone, limestone,
1100816	aronh	greenstone, limestone, greenstone, basalt,

ţ.

Table 2: Formation list.

.

FIEVE 1: Local geology map.

GEOCHEMISTRY

Sunface Rock

A total of 7 soils and 5 rocks were collected along the roadsides and near the old workings. Soil holes were dug with spades, brown B-horizon soil was placed in marked kraft paper bags, and samples were sent to Min-En Laboratories Ltd. in North Vancouver for analysis of Ag, As, Cu, Pb, Sb and Zn by I.C.P. and Au by A.A.S. methods.

Rock samples were tested for Au by F.A. with an A.A. finish. Only one rock was geochemically anomalous, running $0.51\times$ Sb, due to disseminated stibuite in a quartz vein.

GEOPHYSICS

VLF-Electromagnetic

Approximately 20.8 line kilometres were surveyed at 25 metre intervals along lines 100 metres apart, to compliment the 14 km previously surveyed in 1985 (LO-6N). A Sabre M27 very low frequency electromagnetometer was used to read field strengths and dip angles relative to the Seattle (24.8 KHz) transmitter. Dip angles were then fraser-filtered for anomaly interpretation, raw total field strengths were also plotted for assessment purposes, and L1-6N from 1985 were replotted.

VLF-EM geophysics on the southwest part of the survey grid are much more variable than the flatter responses on the northeast side. Several long, strong, anomalies were located over a background of \pm 10 fraser-filtered dip angle and 40% field strength, as follows (Figure 7):

Grid Locati	on	(Maximum) (Values)	FFDA	FS *
	525-1550W to 925-1950W		+ 40	88
LØN 1 L4N 1	350W to 475W		+ 19	51
L5N 1 L8N 1	375W to 450W		+ 27	73
	000-1150W to 150-1200W		+ 24	100
	75-625W to 00-750W		+ 43	74
L10N 5 L13N 7	00-525W to 00W		+ 19	84

These anomalies appear to follow the northwesterly formational trend and may reflect the contacts of serpentinite bodies, graphitic argillites or fault zones. Other short, weak, one and two-line anomalies occur, but are probably not of significance to mineralization.

<u>PP-Magnetic</u>

About 34.8 line kilometres were surveyed at 25 metre intervals along lines 100 metres apart. A Scintrex MP2 magnetometer was used to read field strengths on days when no magnetic storms were recorded. The baseline stations were first surveyed twice for control, then all grid lines were tied into the baseline, corrected on a time-elapsed basis, and plotted for interpretation.

PP-MAG geophysics are much more variable in the south part of the survey grid compared to the flatter responses in the north. One long, strong, magnetic high - low couple and one moderate, spotty, magnetic couple were delineated over a background of around 57,000 gammas as follows (Figure 8):

Grid Location	Maximum FS gammas	Minimum FS gammas
LØN 1550-2000W to L8N 2000W	61,800	
LON 1275-1525W to L9N 1925-2000W		56,097
LØN 350W to L6N 500-650W	58,511	
L5N 600W		56,264

These anomalies follow the northwesterly formational trend, but with little geological mapping, it is not known what causes the highs and lows. It can be speculated, however, that the southwest magnetic couple may reflect a serpentinite body or other mafic intrusion flanked by electromagnetic anomalies that mark the contact with the surrounding, less magnetic, less conductive formations.

This interpretation is favourable for gold exploration because serpentinite bodies occupy the faults bounding Bralorne and Pioneer mines to the south. The southeast magnetic couple occurs near the old workings and may mark the granodiorite intrusions in this area.

18

CONCLUSION

Conclusions

1) The Peacock property has fair exploration potential for hydrothermal gold veins, as shown by its close proximity and broadly similar geology to the Congress property and Bralorne mine. It is underlain by Triassic cherts and basalts of the Bridge River Group, and intruded by hornblende granodiorite of the Coast Intrusions, which contain one narrow quartz vein with minor disseminated stibnite surrounded by ankerite alteration.

2) Seven old trenches and two caved adits were relocated in the southeast corner of the property, near the granodiorite plug. Only one rock was geochemically anomalous, running 0.51% Sb due to disseminated stibuite in a quartz vein.

3) Six long, strong, VLF-electromagnetic anomalies were located on the southwest side of the grid. They appear to follow the northwesterly formational trend and may reflect the contacts of serpentinite bodies, graphitic argillites or fault zones.

4) One long, strong, PP-magnetic high-low couple and one moderate, spotty magnetic couple were delineated on the south part of the grid. They also follow the northwesterly formational trend and may reflect a serpentinite body and a granodiorite intrusion, respectively.

5) Surface surveys were successful in discovering strong VLF-electromagnetic and PP-magnetic anomalies that may indicate a favorable geological environment for hydrothermal gold veins. One rock anomaly suggests that gold mineralization may occur on the property, but little geological mapping has been carried out to confirm that as yet.

6) Although the Peacock 1 claim appears to have limited exploration potential, systematic geological mapping and geochemical sampling are necessary to further evaluate the property.

Recommendations

1) A two week, \$25,000 CA exploration program of geological mapping and geochemical sampling is recommended for next year to complete the first phase of work on the Peacock property. Should this work be successful, fill-in surface surveys and follow-up backhoe trenching could be justified.

2) Systematic geological mapping is necessary to identify the main rock units and locate prospective areas for dikes, shears, alteration and mineralization. The VLFelectromagnetic and PP-magnetic anomalies should be prospected with respect to geology and mineralization.

3) Some soil sampling is required on the south half of the claim to further evaluate the VLF-electromagnetic and PPmagnetic anomalies. No work should be conducted on the north half of the claim unless justified by exploration success on the south half of the grid.

EXPENDITURES

ITEM	COST
Labour and Supervision 1 man x 12.5 days x \$125 1 man x 19 days x \$100	3,462.50
Room and Board 31.5 mandays x \$61.37	1,933.23
Transportation and Fuel Truck	86.65
Equipment and Supplies Camp, Traverse, VLF-EM, PP-Mag	333.01
Assays and Analyses 7 soils x \$10.35 5 rocks x \$15.50	149.95
Drafting and Reproduction Maps, Report	196.50
Office and Miscellaneous Field office rent, hydro, phone, U.I.C., C.P.P., W.C.B.	655.93
Total Expended	\$6,817.77
Total Assessed	\$5,000.00

REFERENCES

- Cairnes, C.E., 1937, Geology and mineral deposits of the Bridge River mining camp, B.C., G.S.C. Memoir 213, Map 431A, 140 pp.
- Cairnes, C.E., 1943, Geology and mineral deposits of the Tyaughton Lake map area, B.C., G.S.C. Paper 43-15A, 30pp.
- Cooke, B.J., 1984, Geological compilation of the Bridge River map-area, B.C., Company Report, 25pp.
- Drysdale, C.W., 1915, G.S.C. Summary Report, Bridge River map-area, P.75-85.
- Friesen, P.S., 1985, Assessment Work Report on the VLF Electromagnetic Survey on the Peacock 1 claim, Assessment Report, 9pp.
- Harrop, J.C. and Sinclair, A.J., 1985, Geological compilation of the Bralorne area, B.C., Geology map and marginal notes, U.B.C. Publication, 15 pp.
- McCann, W.S., 1922, Geology and mineral deposits of the Bridge River map-area, B.C., G.S.C. Memoir 130, Map 1882, 115 pp.
- Roddick, J.A. and Hutchinson, W.W., 1974, Pemberton map-area (East half), B.C., G.S.C. Paper 73-17, Map 13-1973, 21 pp.
- Woodsworth, G.J., and Roddick, J.A., 1977, Seology of Pemberton map area, G.S.C. Dpen File 482.

QUALIFICATIONS

I, Bradford J. Cooke, am a professional geologist with a consulting business, Cooke Geological Consultants Ltd., located at 100-455 Granville St., Vancouver, B.C., V6C 1T1.

I obtained a B.Sc. Honours Geology degree at Queen's University, Kingston, Ontario in 1976 and completed a M.Sc. Geology degree at the University of British Columbia, Vancouver, B.C. in 1984.

I have worked in mineral exploration, both seasonally and full-time, since 1975 and have performed geological field work since 1973.

I am a Fellow of the Geological Association of Canada, a member of the Canadian Institute of Mining and Metallurgy and a Member of the British Columbia-Yukon Chamber of Mines.

I have personally researched for old literature on the Peacock property and supervised exploration work on the claims.

I have no interest, nor do I expect to receive any interest, in the securities or properties of Levon Resources Ltd.

I consent to the inclusion of this report in a Prospectus or other qualifying documents for the purpose of raising funds through the Vancouver Stock Exchange or other financial institutions.

Bradford J. Cooke

Cooke Geological Consultants Ltd.

December 5, 1986

18

Routine Gold-Assay Procedures Used by Min-En Labs. Ltd.

- 1. Samples are received, cataloged and dried at 105°C if necessary.
- 2. Whole sample is passed through a primary crusher which reduces sample to $-\frac{1}{2}$ inch.

100

- 3. Whole sample is further passed through a secondary crusher which further reduces the sample to -10 mesh.
- 4. The whole sample is riffled through a ½ inch riffle to obtain a subsample of approx 300-400 grams. The remaining reject is bagged and stored.
- 5. The above 300-400 gram split is then pulverized to obtain -100 mesh using an iron plate rotary mill pulverizer.
- 6. Sample pulp is now rolled and analysed.
- 7. The sample pulp is assayed for gold using a l assay ton fire assay preconcentration and atomic absorption finishing techniques.
- 8. The remaining sample pulp is retained and stored.

.

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HClO_4$ mixture.

After pretreatments the samples are digested with <u>Aqua Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb).

MIN-EN Laboratories Ltd.

Specialisis in Mineral Environments

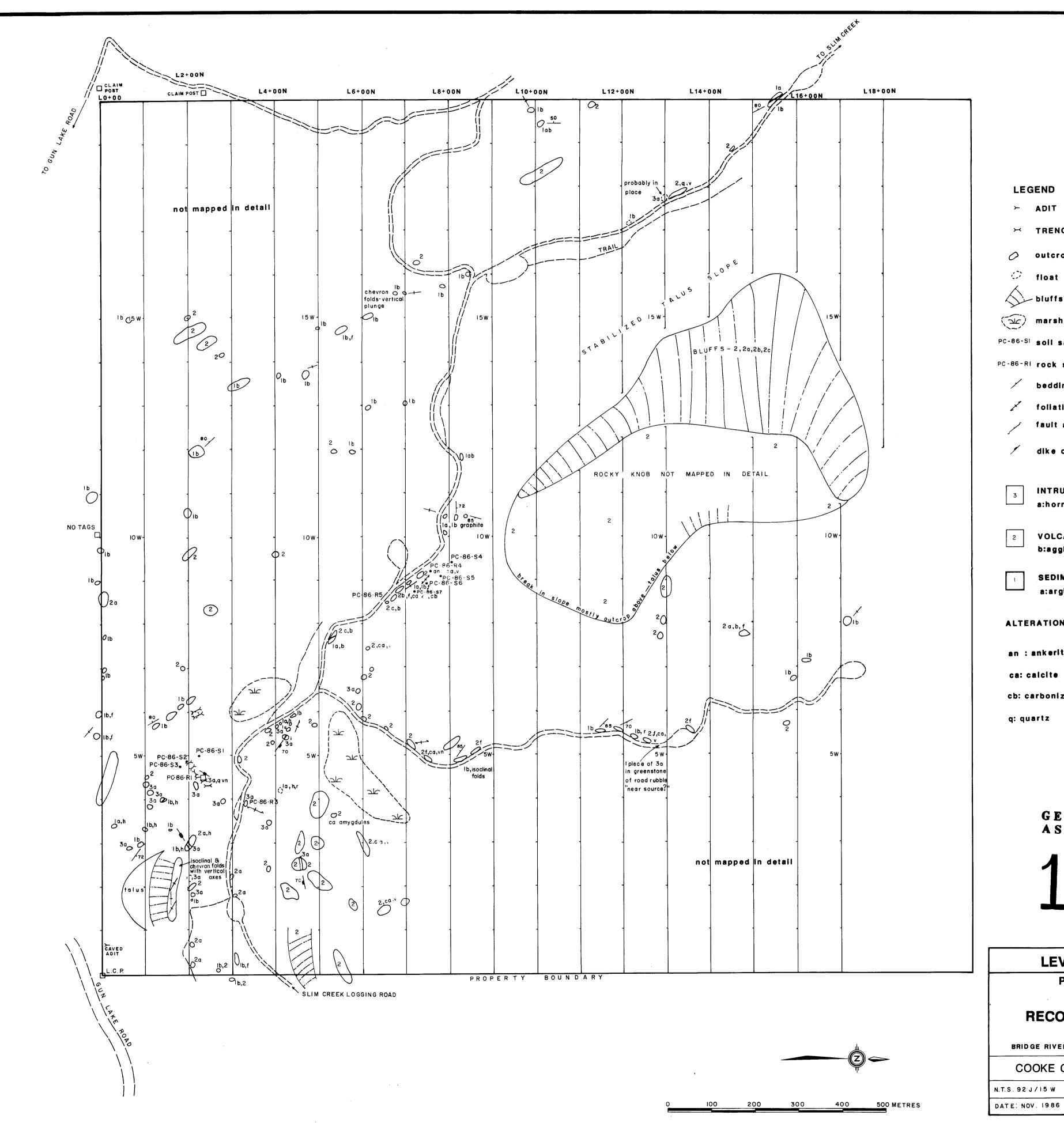
Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK - 26 ELEMENT ICP

Ag, Al, As, B, Bi, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn

Samples are processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sedimint samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.

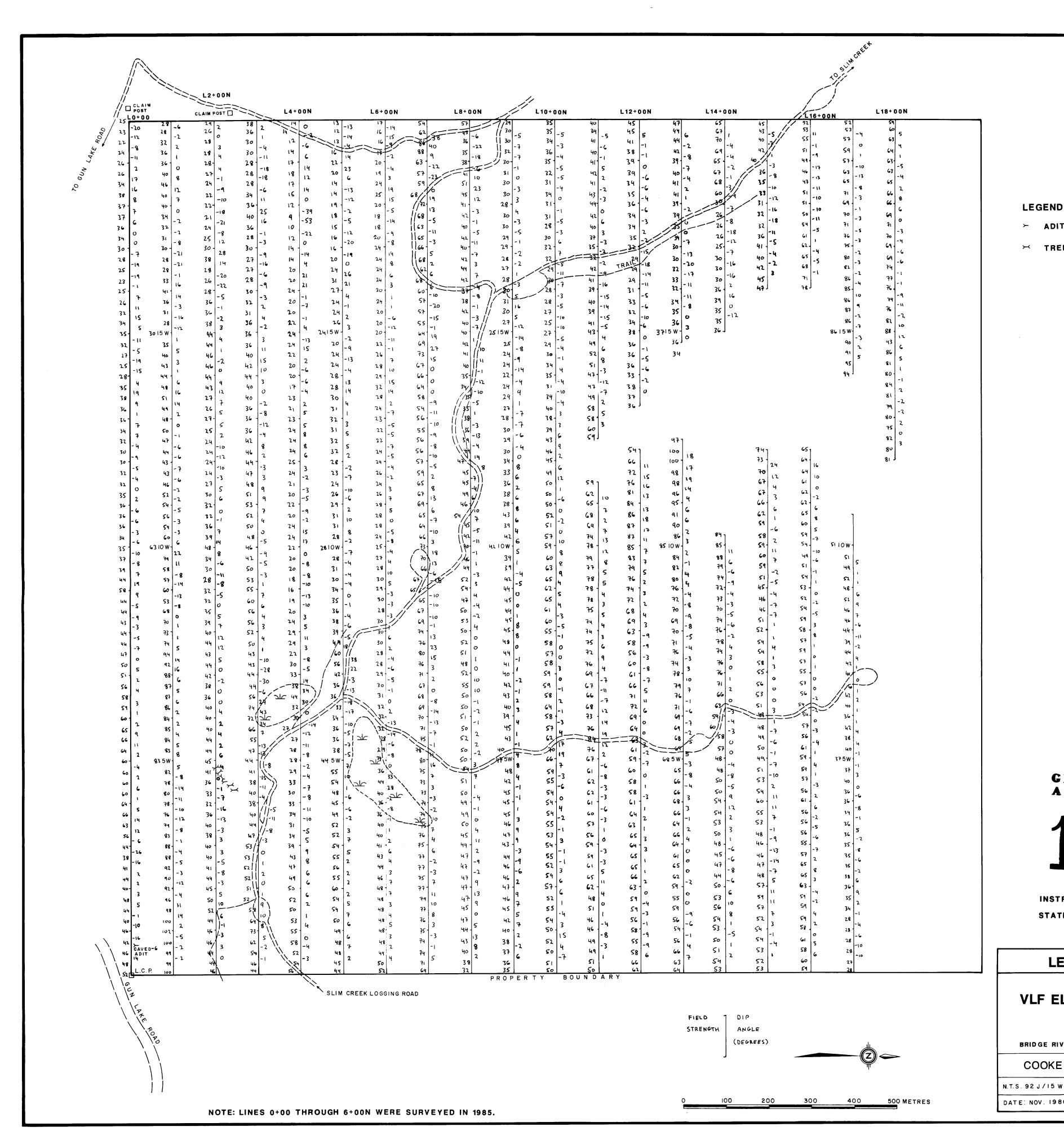

1.0 gram of the samples are digested for 6 hours with HNO_3 and $HC1O_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Computer operated Jarrell Ash 9000ICP. Inductively coupled Plasma Analyser. Reports are formated by routing computer dotline print out. APPENDIX 2: Assay Certificates

19

COMPANY: COOKE GEOL	03 _60186.	NSULTANTS		MIN-E	N LABE I	CP REPORT				(AC)	T:GEO27) PAGE	1 GF 1
PROJECT NO: LR 86 F	ч¥.		705 WEST	15TH ST.	NORTH I	VANCOUVER,	B.C. V7M	172			FILE NO: 6-	1180/P1
ATTENTION: BRAD COO				(604)980-	5814 DR	(604) 998-	4524	+ TYPE	ROCK	GEOCHEM	DATE: NOV 1	7. 1986
(VALUES IN PPH)	AG	AS	CU	PB	SB	ZN	AU-PPB					
PC 85 R1	7.1	3!	24	75	5095	89	19					
PC 86 R2	1.8	1	46	42	29	16	3					
PC 86 R3	1.0	1	21	32	10	44	4					
PC 86 R4	1.6	82	35	53	18	120	4					
PC 86 R5	1.4	59	13	41	18	79	11					

CCMPANY: COOKE GEO	LOEICAL	CONSULTANT	S	HIN-E	EN LABS I	CP REPORT	Ī			(ACT:	SE027) PAGE 1 OF 1
PROJECT NO: LR 86 F	Ж		705 WEST	15TH ST.,	NORTH V	ANCOUVER,	B.C. V7M	1T2			FILE NO: 6-1180/P2
ATTENTION: BRAD COL				(604)990-	-5814 OR	(604)988-	-4524	¥ [YPE SOIL	GEOCHEM +	DATE: NOV 17, 1986
(VALUES IN PPM)	AG	AS	CU	PE	SB	ZN	AU-PPB				
PC-86-9-1	1.9	1	33	14	7	18	10				
PC-86-9-2	.e	1	40	20	7	45	15				
PC-86-5-3	.9	1	25	19	7	60	5				
PC-86-5-4	. 9	1	28	11	6	13	5				
PC-66-5-5	.3	22	60	34	9	143	5				
PC-66-5-6	.9	1	54	25	7	50	5				
90-86-8-7	. 9	<u>i</u>	55	19	8	63	5				


LEG	END											
≻	ADIT											
×	TRENCH											
0	outcrop											
Q	float											
-	bluffs											
(H)	marsh											
PC-86-SI	soil sample											
PC - 86 - RI	rock sample											
/	bedding attitude											
ex.e	foliation attitude											
/	fault attitude											
٢	dike or vein attitude											
3	INTRUSIVES-(COAST INTRUSIONS?) a:hornblende granodiorite.											
	a.normbrende granodionte.											
2	VOLCANICS- (BRIDGE RIVER GROUP?) a:tuff. b:aggiomerate & breccia. c: pillowed.											
1	SEDIMENTS- (BRIDGE RIVER GROUP?) a:argillite. b:chert.											
ALTER	ATION-											
an : a	nkerite h: hornfels											
ca: ca	alcite r: rusty or limonitic											
cb: ca	rbonization f: ferruginous, or hematitic											
d: dna	artz v: vein											
	GEOLOGICAL BRANCH											
	ASSESSMENT REPORT											
	15,384											
	LEVON RESOURCES LTD.											
	PEACOCK #1 PROPERTY											

RECONNAISSANCE GEOLOGY

BRIDGE RIVER AREA LILLOOET MINING DIVISION, B.C.

COOKE GEOLOGICAL CONSULTANTS LTD.

SCALE : 1: 5000 **fig.** 5 DRAWN: T. SANDBERG/dw

LEGEND									
¥	ADIT								
X	TRENCH	2							

TRENCH

GEOLOGICAL BRANCH ASSESSMENT REPORT

15,384

INSTRUMENT: SABRE MODEL 27 STATION:24.8 KHz.

LEVON RESOURCES LTD.

PEACOCK #1 PROPERTY VLF ELECTROMAGNETIC SURVEY FRASER FILTERED DATA

(SEATTLE TRANSMITTER)

BRIDGE RIVER AREA LILLOOET MINING DIVISION, B.C.

SCALE : 1: 5000

COOKE GEOLOGICAL CONSULTANTS LTD.

DATE: NOV. 1986 DRAWN: T. SANDBERG/dw

FIG. (*6*)

	M	12	2+00N	59879 L4+	0.0 N	16+	0.0 N	19+	00N		+ 0 0 N	L12+	0.0 N	L14+	0.0 N			1.1	8+00N
5845	6	61800 CLA	58850	58191	58294	58038	00N 57815 57844	58033 58649		56860	57122	\$7173	57337	\$7237	57287	57273/	16+00N 57287	57346	57365
5793 5776		59 137 58974	58322 58267	57973	59289	58447 58515	57873	60035	57145/1	56909 56938	57161	57277 57203	57261 57212	57233 57224	57294 57311	57244	57329 57249	57328 57265	57385 57375
5874		58778	58173	57901	60410		58029	59124	56680	56973	57243	57165	57290	57242	57246	57250	57269	\$7324	57418
6059		58316	- 58255 58252	57864	60430 59325	60573 58030	- 58081 57789	56785	568321	57006 57007	57141	57181	57237 57184	57256	57221	57273	57320	57297	57396
5996		58449	58099	57112	58478	56863	58943	56840	56929	57024	57209	\$7253	57194	57236	572/169	57284	57308	57292	57391
5859		58736 58268	58100 - 58135	57357 57347	57433 56609	57423	57638	56912	56939 57001	57083 57193	57222	57283 57248	57220	57249	57259	57235	57267 57271	57307	57332 57270
5807		NR	\$8060	59 88	56097	57652	56696 //	56935	57018	57171	57207	57215	57217	57343	57243	57268	57267	57275	57265
5792		58167	58067	58523	56695	57418	56771	56998	57046	57110	57216	57181	57216	53249	57224	57284	57281	57326	57297
5793		57748 - 57884	58586 - 58957	57933 - 57486	58224 59036	56689 56645	56834	57043 - 57029	57074 - 57065	57159 57150	57162	57310	57.214	57264 57221	57259 57250	57322 57320	57282 57250	57274 57285	57277 57271
5772		57934	58315	56428	59457	56675	56928	57101	57105	57122	-57253-	57217 57217 TRAIL	5/7269	57234	57233	57291	57303	57299	57281
5750		57900	57038 56640	56375 56686	56313 57086	57809 57979	56910	57038	57070 57061	57160	57210	57187	57274 57201	57237 57297	57257 57280	57268 57260	57297 57292	57277 57277	57280 57273
5770	6	57558	- 56783	57695	56792	56890	56463	5+203==	5(997))	57117	57210	57246	57230	57271	57277	57284	57296	- 57278	57292
59 89		56454 56884	56334 56474	58077 56969	56868 56935	57039 57013	57126 57034	57021	57080/	57175	57196	57503 57214	57289 57289	57270	57296 57277			57285 57278	57267 57286
5676		56857	56986	56958	56974	57037	57082		570,00	57158	57254	\$7222	57269	57247	57265			57258	57259
5677		N - 56413 56956	57005	- 56956 56972	57035 15W 57057		- 57116 57135	57292 57279	57/060 15W		57223 57273	57233	57347 15 W		- 57270		13	5 W 57269	57276
2680		ऽ७२ऽ७ ऽ७२१५	57048 57040	57063	57055	57085 57049	57169	57279 57145	1157186	57203 57200	5726q	57332	57260	57262 57262				57268 57257	57270 57280
5686		56991	57041	57129	57064	57128	57218	57071	1157184	57236	57249	57258	57276					57267	57262
- 5694 57011		57011 57032	57119 57103	-57102 57054	-57091 57098	57226 57245	57284 57236	-57130 57147	1157143	57219 57282	57265	- 57247 57221	57247 57256					J 57257	57257 57265
5706	3	57072	57112	57092	57103	57-139	57137	57143	57131	57281	57272	57317	57271						57268
- 5695		57045 - 57092	57125 - 57148	57097 - 57116	57137	57126	57133 - 57171	1 1/ /	57170 57187	57215	57314	57236 57318							57271
5698	4	57093	57186	57144	57162	57160	57185	57172	57141	57230	57315	57261							57257
5705		57046 57134	57208	57165 57209	57173 57189	57196 57153	57217	57168	57163	57236 57211	57331 57316	57241	157296	57300		۰	157298		57253 57256
57100		- 57175	57180		57211	57158	- 57204	57195	57212	57218	57340		57288	57318		573	57283		57246
57198		57168 57190	57208 57206	57175 57158	57153 57274	57148 57167	57232 57270	57205 57223	57167	57244 57257	57289 57274	157274	57298 57302	57310		57291 57277	57281 57276		
57206		57227	57277	57279	57190	57135	57223	57158	1/57177	57235	57290	57265	57298	57294 57285		57277	57280		
5723	7	57214	57245		57174	57 174	57249	- 57202	1/57223	57274	57294	- 57276	57282	57240		57266	57274		
57110		57203 57227	57229	57249 57270	57064 57178	57147 57189	57309 57250	57249	57212	57256	57290 57314	57272 57274	57286 57272	57278 57258		57273 57275	57279 57 286	57293 57278	
57175		57217	57334	57260	57284	57141	57234	57219	57209	57240	57281	57278	57289	57278	57297	57280	57270	57255	
57196		N-57264 57304	- 57260 57266	57111	57189 IOW	57184 57243	57224	57195	57238 IOW	57230	57286 57298	57269	57280 10W	57274	157270 57281	57254 57268	57264 10	0W-57276 57266	
5723		57253	57292	57186	57189	57267	57212	157200//	57243	57229	57288	57256	57265	57278	57280	57255	57268	57259	
5720		57288 57265	57276 57303		57195	57180	57229	57232	57206	57233 57242	57286 -57295	57253 - 57245	57254 57269	157267 57260	57253 57266	57257 57231	57244 - 57246	57277 57262	
5724		57265	57309	57245	\$72.59	57242	57241	57217	57192	57242	57291	57253	57273	57235	57262	57230	57234	57241	
57258		57285 57274	57287 57298	57231 57235	57185	57213 57249	57239	57237 57264	57229 57387	57252	572 58 57282	57248 57264	57285 57257	57253 57244	57263 57272	57243 57250	57251 57232	57216	
57249		- 57294	57295		-57210		57306	57248	57272	57226	57288	57266	57250	\$7257	572.90	57240	57222	57219	
5728		57289	57294	57376 57252	57161 /	//57207 //57236	57351 57315	57229 57305	57170	57231	57306	57237 57247	57247 57249	57252 57210	57268 57229	57236 57211	57224	57224	
\$7247		57327 57483	57360 57275	57226	57200 /	1157307	57310	57261	57174	57240	57285 57288	57238	57249	57225	57200	57208	57212 57207	57226 57242	
\$7250		- 57610	57312	1	57265	1157558	57444	57254	57204	57235	57263	57243	57261	57251	57218	57220	57211	57196	
57263 57277		57288 57288	57373 57440	57256	572/69	58511	57171 57617	57248 57253	57212 57203	57231 57237	57255 57263	57232 57253	57243 57248	57199 57202	57228 57224	57196 57210	57216	57205	
57268		57314	57348	57290	\$7277	57404	57374	57276	57202	57235	57269	57236	57202		53219	57208	57213/	57210	
-57263 57249		57290	57425	57751	57246	56264-	57677	- 57260 57248	57236 57256	57226	57272 57270	57240	57227 57220	57217 j 57218 //	57236	57207 57216	57209	57203 57201	
5726	5	\$7335	57441	NR	57360	STREE	57780	57236	57257	57251	57288	57216	57208	5\$190	57248	57209	57195	57194	
57231		57404 W-57429	57329 57329	57/441	57410 57491 5W	57/821 1 59/031 JLC	57621	57214	57217	57231	57335	57221 57174	57235	57248	57219 57214	57197 57212	57197	57190 5W 57196	
5727		57315	1-57425	157270	57466	5/7444	Ma	57238 ==	57346	57213	57240	57190	57208	57212	57223	57204	57188	57176	
5729		57505	57336	57 402	57503 57762	57361	NR' NALC'	57257 57267	57502 57475	57207 57246	57266 57258	57204	57203	57196 57199	57232 57228	57194 57197	57204 57181	57171 57177	
5739		57332	57349	1/57423	57466	57415	*57347	57239	57290	- 57208	57253	57192	57197	57187	57319	57230	57188	57179	
5740		57452 57263	57493 57403	///57547 V/57562	57532 57430	57359	57222	57231	57294 57320	57218 57194	57267 57243	57221 57215	57216 , 57268	57190 57192	57196	57241 57179	57459 57143	57177 57155	
5742		57263 57300	57536	57525	57450	57253	57218	57235	57359	57167	57262	57186	57228	57181	57210	57161	57162	57159	
57150		57526	57404	Λ	-57313	57246	57259	-57224	57212	- 57163 52125	57269	57208	-57222	57185	57178	57166	57166	57169	
5728 5732		57291 57357	57421	57347	57216 57223	57219	57252 57252	57216	57198 57165	57175 57166	57255 57253	57206 57169	57204 57194	57167 57168	57191 57180	57170 57166	57167 57168	57170	
5747		57193	1	57217	57228	57247	57238	57234	57181	57176	57249	53192	57219	57180	57176	57165	57199	57160	
- 5 7 3 ; 5 7 3 7		57169	57407	457156	57248 57247	57219 57237	-57248 57240	57233	57196	- 57198 57175	57245	57207	57173	57168 57180	57256	57202	57154	57168	
5726		57204	157331	57218	57244	57208	57228	57225	57196	57186	57241	57212	57176	57186	57222	57181	57175	57175	
5715		57207	57245	57/219	57238 57224	57237 57224	57246 57223	57222	57195 57190	57177	57227	57173	57181 57172	57170 157172	57170	57192	57205	57170 57148	
57170	,	57197 57189	57241	57254	57187	57222	57222	57206	57177	57180	57223	57175 57189	57181	57145	57178	57185	57:82	57151	
ADIT		57191	(57233	57203	57233	57222	57210	57201	57186	57180	57233	57172	57178	57141	57182	57191	57181	57143	
57179 L.C.		57186	57218	57216	57229	NR	57225	57187	57145	57198 57195	57226 57241 BOUN	57176	57164 57172	57158 57176	57177 57219	57181 57209	57182 57190	57143 57102	

RORD

LEGEND ≻ ADIT

₩ TRENCH

•

GEOLOGICAL BRANCH ASSESSMENT REPORT

15,384

INSTRUMENT:SCINTREX MP-2 MAGNETOMETER

LEVON RESOURCES LTD.

PEACOCK #1 PROPERTY

PP MAGNETOMETER SURVEY TOTAL FIELD STRENGTH

(GAMMAS)

BRIDGE RIVER AREA LILLOOET MINING DIVISION, B.C.

COOKE GEOLOGICAL CONSULTANTS LTD.

N.T.S. 92 J/15 W SCALE: 1:5000

DATE: NOV. 1986

-2--

100

200

300

400 500 METRES

DRAWN: T. SANDBERG/dw

FIG. 7