86-795-15386 12/87

ASSESSMENT REPORT

ON THE CONGRESS EXTENSION PROPERTY NEAR GOLDBRIDGE, B.C. FOR CORAL ENERGY CORP. (OWNER OPERATOR)

> Lillooet Mining Division N.T.S. 92-J-15-E Lat. 50° 265 N. Long. 122° 36 W. 55.8' 35.2'

BRADFORD J. COOKE AND TIM SANDBERG

COOKE GEOLOGICAL CONSULTANTS LTD.

NOVEMBER 28, 1986

SUB-RECORDER GEOLOGICAL BRANCH DEC 1 2 1986 ASSESSMENTREPORT NAR. # _____ \$ ____ VANCOLIVER, B.C. FILMED

SUMMARY

The purpose of this report is to document assessment work carried out on the Congress Extension property during October and November of 1986. Included in this report are the results of reconnaissance geological mapping, geochemical sampling and geophysical surveying on the claims.

Congress Extension property is located approximately 20 kilometres northeast of Goldbridge and 180 kilometres northnortheast of Vancouver, British Columbia (Figure 1). Access to the claims can be gained by truck from Vancouver, 145 kilometres east on Highway 1 to Hope, 225 kilometres north on Highways 1 and 12 to Lillooet and 100 kilometres west on gravel road towards Goldbridge. The Marshall Lake and Mud Creek logging roads cross the middle of the claims and there is an access road to cottages around Marshall Lake.

The Congress Extension property has fair exploration potential for hydrothermal gold veins, as shown by its close proximity and broadly similar geology to the Congress property and Bralorne mine. It is underlain by Triassic chert, argillite, limestone and basalt of the Bridge River Group, Cretaceous andesite, conglomerate, greywacke and argillite of the Kingvale Group, and dunite, peridotite, serpentinite and listwanite of the Triassic President Intrusions.

The old Primrose prospect was relocated northeast of Marshall Lake, where two parallel quartz veins, up to 2 metres wide, trend northwesterly for more than 240 metres. Minor disseminated pyrite and rare chalcopyrite veinlets occur in the veins and walls along a chert/argilliteserpentinite/listwanite contact, but no significant gold values were encountered.

Three weak, spotty gold soil anomalies were detected on the northeast side of the property. However, they do not correlate with geophysical anomalies and the values are low with respect to soil anomalies related to known mineralization in the Bridge River area.

Four moderate, isolated VLF-electromagnetic anomalies were located on the reconnaissance lines. They cannot be interpreted due to lack of geological data, but the L4 anomaly does occur near the Primrose veins. Three wide, strong, PP-magnetic highs were delineated on the northeast side of the property. They reflect the President ultramafics but with little geological mapping, interpretation is limited at this time. However, both geochemical anomalies and gold mineralization are lacking.

Surface surveys were successful in discovering strong VLFelectromagnetic and PP-magnetic anomalies that may indicate a favorable geological environment for hydrothermal gold veins. The soil anomalies, however, are weak and spotty, suggesting that gold mineralization does not significantly subcrop on the property, but little geological mapping has been carried out to confirm that as yet.

Although the Congress Extension claims appear to have limited exploration potential, systematic linecutting, geological mapping, geochemical sampling and geophysical surveying are necessary to further evaluate the property.

A 1 month, \$40,000 CA exploration program of line cutting, geological mapping, geochemical sampling and geophysical surveying is recommended for next year to complete the first phase of work on the Congress Extension property. Should this work be successful, fill-in surface surveys and followup backhoe trenching could be justified.

Systematic surface surveys northeast of Marshall Creek are recommended to identify the main rock units and locate prospective areas. Geological mapping, soil sampling, VLF-EM surveying and PP-MAG surveying should define areas of further interest.

Detailed mapping and sampling of the Primrose prospect should also be completed. No work should be conducted on the claims southwest of Marshall Creek unless justified by exploration success on the northeast side.

É

TABLE OF CONTENTS

INTRODUCTION

Purpose and Scope Location and Access Physiography and Climate Accommodation and Labour Claims Description Mining History	1 1 1 1 4
GEOLOGY	
Regional Property	5 8
GEOCHEMISTRY	
B-Horizon Soil Surface Rock	10 10
GEOPHYSICS	
VLF-Electromagnetic PP-Magnetic	11 12
CONCLUSION	
Conclusions Recommendations Expenditures	13 14 15
REFERENCES	16
QUALIFICATIONS	17
APPENDICES	18

LIST OF FIGURES

FIGURE	1:	Location map	2
FIGURE	51	Claim map	3
FIGURE	3:	Regional Geology map	6
FIGURE	4:	Local Geology map	9
FIGURE	5:	Reconnaissance Surface Geology	Back
FIGURE	6:	Reconnaissance Soil Geochemistry (Au, As)	18
FIGURE	7:	Reconnaissance Soil Geochemistry (Cu, Zn)	14
FIGURE	8:	Reconnaissance VLF-Electromagnetic Geophysics (Seattle)	**
FIGURE	9:	Reconnaissance PP-Magnetic Geophysics (Total Field)	28

LIST OF TABLES

TABLE 1:	Claim list	4
TABLE 2:	Formation list	7

LIST OF APPENDICES

APPENDIX 1:	Analytical Procedures	18
APPENDIX 2:	Assay Certificates	19

INTRODUCTION

Purpose and Scope

The purpose of this report is to document assessment work carried out on the Congress Extension property during October and November of 1986. Included in this report are the results of reconnaissance geological mapping, geochemical sampling and geophysical surveying on the claims.

Location and Access

Congress Extension property is located approximately 20 kilometres northeast of Goldbridge and 180 kilometres northnortheast of Vancouver, British Columbia (Figure 1). Access to the claims can be gained by truck from Vancouver, 145 kilometres east on Highway 1 to Hope, 225 kilometres north on Highways 1 and 12 to Lillooet and 100 kilometres west on gravel road towards Goldbridge. The Marshall Lake and Mud Creek logging roads cross the middle of the claims and there is an access road to cottages around Marshall Lake.

Physiography and Climate

The claims straddle Marshall Lake at elevations of 1150 metres along the lake up to 2,225 metres along the northeast corner of the property. Vegetation is typified by coniferous forest and the climate is characterized by hot, dry summers and cold, snowy winters.

Accommodation and Labour

Goldbridge Hotel is convenient for room and board, houses are available for rent in Bralorne, and there is a recreational campsite at Marshall Lake. Cooke Geological Consultants Ltd. conducted the exploration program for Coral Energy Corp.

Claims Description

The Congress Extension property consists of 2 modified grid claims, totalling 35 units and covering about 875 hectares, in the Lillooet Mining Division (Figure 2). Total annual assessment on the claims is \$3,500 each year for the first three years and \$7,000 each year thereafter (Table 1).

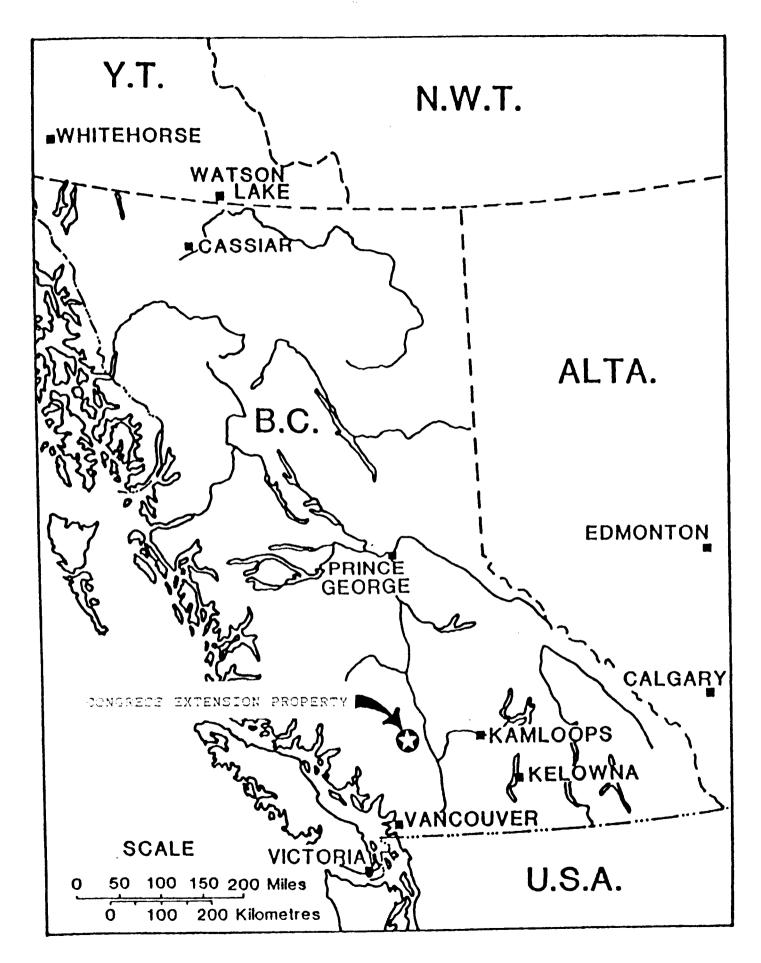


Figure 1. Location map.

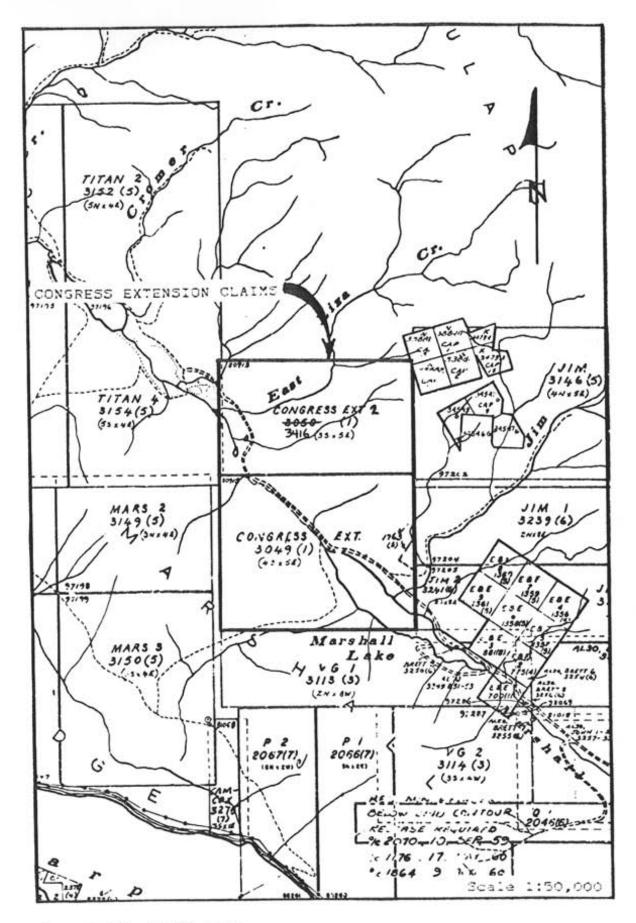


Figure 2: Claim map.

Mining History

Only one historical reference is made to the Primrose prospect, northeast of Marshall Lake, where two parallel quartz veins were developed in the 1930's by two short adits and several hand trenches. In early 1985, Mr. Gary Polischuk staked the Congress Extension claims, later restaked the Congress Extension 2, and sold them to Coral Energy Corp., who carried out the exploration work reported herein.

CLAIM NAME	CLAIM TYPE	RECORD NO.	NO. UNITS	EXPIRY DATE
Congress Extension	MG	3049	20	14-01-87
Congress Extension 2	MG	3416	15	17-03-87

TABLE 1: Claim List

4

GEOLOGY

Regional

The following summary of regional geology and tectonics is derived from the reports of many workers in the Bridge River area, with emphasis on Geological Survey of Canada and University of British Columbia reports (see References).

The Bridge River district lies at the western margin of the Intermontaine Belt of volcanic and sedimentary rocks where it abuts against the Coast Plutonic Complex of plutonic and metamorphic rocks (Figure 3). Triassic arc volcanics and backarc sediments (Cadwallader and Bridge River Groups) are intruded by synvolcanic, intermediate plutons (Bralorne Intrusions) and faulted against ophiolitic, ultramafic intrusions (President Intrusions) (Table 2).

Jurassic and Cretaceous basinal sediments and rift volcanics (unnamed, Taylor Creek and Kingsvale Groups) are sequentially intruded by Cretaceous and Tertiary plutons of felsic composition (Coast, porphyry and Bendor Intrusions). Relatively flat-lying Tertiary intermediate and mafic volcanics (Rexmount porphyry and plateau basalt) cap the lithological sequence.

Bralorne and Pioneer mines comprise the largest and richest lode gold mining camp in British Columbia. Between 1899 and 1971, they produced 4.16 million tons ore grading 0.51 oz/ton gold and 0.12 oz/ton silver. Gold-bearing quartz veins follow two sets of narrow fissures in Pioneer andesite and Bralorne diorite near Bralorne granite and albitite dikes. Mining stopped in ore some 2,000 metres down because of a miner's strike, ventilation problem, high mining costs and low gold prices.

Many other gold prospects in the region, such as the Congress vein, are gold-bearing sulfide replacements along narrow shears in Bridge River basalts and cherts, often near porphyry dikes. A significant new discovery on the Congress property of Levon Resources Ltd., 14 kilometres southwest of Coral's Congress Extension claims, assays up to 0.37 oz/ton Au, 0.32 oz/ton Ag and 1.7% Sb over 6.9 metres true width. Thus, the mining potential of old prospects such as the Primrose vein, with geology similar to Bralorne or Congress, needs to be re-evaluated.

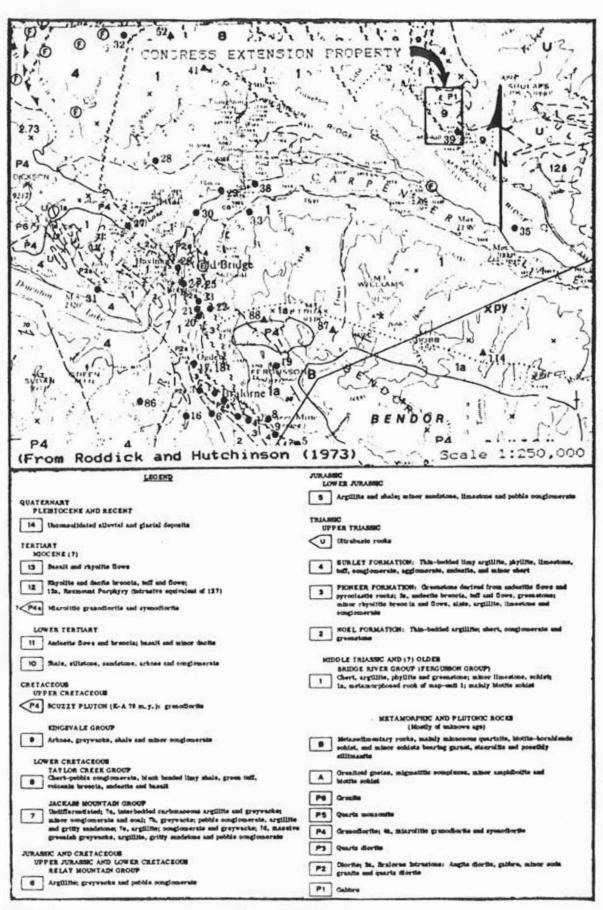


Figure 3: Regional geology map.

PERIOD	UNIT	LITHOLOGY
Upper	Plateau	basalt, rhyolite flows,
Tertiary	Beselt	breccias
		unconformable contact
Lower	Rexpount	rhyolite, dacite, andesite
Tertiary	Porphyry	tuffs, flows, plugs
		unconformable contact
	Bendor	granodiorite, quartz
	Intrusions	diorite, quartz monzonite
		intrusive contact
Upper	Porphyry	quartz, feldspar,
Cretaceous	Dikes	hornblende porphyry dikes
		intrusive contact
	Coast Range	quartz diorite, diorite,
	Intrusions	granodiorite
		intrusive contact
	Kingsvale	arkose, greywacke, shale,
	Group	conglomerate
		unconformable contact
Lower	Taylor Creek	conglomerate, shale, tuff,
Cretaceous		breccia
		unconformable contact
Lower	Unnamed	argillite, shale, sandstone
Jurassic	Sediments	limestone, conglomerate
		unconformable contact
Upper	Bralorne	augite diorite, soda
Triassic	Intrusions	granite, albitite dikes
		intrusive contact
	President	serpentinite, peridotite
	Intrusions	pyroxenite, dunite, gabbro
		fault contact
	Cadwallader	
	Group	
	Hurley	limy argillite, sandstone,
	Formation	conglomerate, limestone,
		greenstone, tuff, chert
	0 /	
	Pioneer	greenstone, basalt,
	Formation	andesite, flows, tuffs
	Noel	argillite, chert,
	Formation	conglomerate, greenstone
		conformable contact?
Middle	Bridge River	chert, argillite,
Triassic	Group	siltstone, limestone,
		greenstone, basalt,
		setesorphic equivalents

Ì

--

Table 2: Formation list.

.

Property

Surface geology of the Congress Extension property is broadly similar to the Congress property and Bralorne mine. It is underlain by northwest-striking, west-dipping chert, argillite, limestone and basalt of the Triassic Bridge River Group, Cretaceous andesite, conglomerate, greywacke and argillite of the Kingsvale Group, and east-dipping? dunite, peridotite, serpentinite and listwanite of the Triassic President Intrusions (Figure 4 and 5).

Much of the Marshall Creek Valley is covered by glacial overburden, and the reconnaissance mapping affords only limited interpretation of the surface geology. However, the Primrose prospect was relocated northeast of Marshall Lake and old trenches and adits were examined for their mineral potential.

Two parallel quartz veins, up to 2 metres wide, trend northwesterly for more than 240 metres, carring minor disseminated pyrite and rare chalcopyrite veinlets in the veins and wallrocks. Although poorly exposed, the veins appear to follow a chert/argillite-serpentinite/listwanite contact.

8

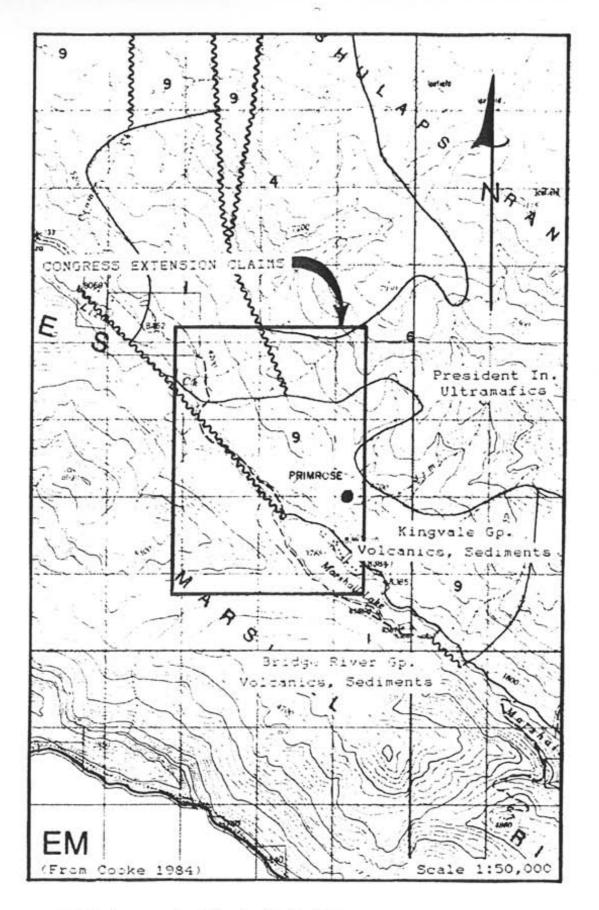


FIGURE 1: Lucal gu "agy fag

GEOCHEMISTRY

B-Horizon Soil

A total of 376 soil samples were collected at 25 metre intervals along four reconnaissance contour lines. Soil holes were dug with spades, brown B-horizon soil was placed in marked kraft paper bags, and samples were sent to Min-En Laboratories Ltd. in North Vancouver for analysis of Ag, As, Cu, Pb, Sb and Zn by I.C.P. and Au by A.A.S. methods.

Lines 1 and 2 on the southwest side have higher background Cu and Zn but lower background Au and As compared to lines 3 and 4 northeast of Marshall Creek, probably due to formational trends. Three spotty, weak gold anomalies were detected on the northeast side, as follows (Figures 6 and 7):

GRI LOC	D ATION 	MAXIMUM ((ppb)	au
L3 L4	800SE 1700-1725SE	35 85	
L4	2000SE	35	

These anomalies probably reflect downslope dispersion from unknown sources further upslope to the northeast. Although anomalous compared to background values, they are low with respect to soil anomalies related to known mineralization in the Bridge River area. One heavy mineral stream sediment sample contained low metal values also.

Surface Rock

Four rock samples from the old Primrose trenches, including quartz veins and wall rocks, did not contain anomalous metals, but one sample did carry minor disseminated pyrite and rare chalcopyrite veinlets. Quartz-ankerite-altered serpentinite or listwanite wallrocks look prospective but carry no significant gold values.

GEOPHYSICS

VLF-Electromagnetic

Approximately 10 line kilometres were surveyed at 25 metre intervals along four reconnaissance contour lines. A Sabre M27 very low frequency electromagnetometer was used to read field strengths and dip angles relative to the Seattle (24.8 KHz) transmitter. Dip angles were then fraser-filtered for anomaly interpretation and raw total field strengths were also plotted for assessment purposes.

VLF-EM geophysics produced relatively flat responses on the reconnaissance lines Four moderate, isolated anomalies were located over backgrounds of less than ± 10 FFDA and less than 60% FS, as follows (Figure 8):

Grid Loca	tion	(Maximum) (Values)	FFDA	FS ≯
L1	2125-2175SE		+ 44	60
L2	1150-1175SE		+ 16	85
L3	075SE		- 25	49
L4	2800SE		- 39	58

These anomalies cannot be interpreted with respect to geology as yet, but the L4 anomaly does occur near the Primrose veins. Other, short, weak, anomalies were detected but are not of significance to mineralization and no soil anomalies are associated with them.

PP-Magnetic

About 10 line kilometres were surveyed at 25 metre intervals along four reconnaissance contour lines. A Scintrex MP2 magnetometer was used to read field strengths on days when no magnetic storms were recorded, and no corrections were made to the raw data.

PP-MAG geophysics give a higher response on Line 3 compared to the flatter responses on lines 1, 2, and 4. Three wide, strong magnetic highs were delineated over a background of less than 57,000 gammas, as follows (Figure 9):

Location	Maximum FS gammas
	50.070
225-475SE	59,270
950-1025SE	58,158
1275-150005	59,278
15/3-130035	59,270
	Location 225-475SE 950-1025SE 1275-1500SE

These anomalies probably reflect the President ultramafics but with little geological mapping, interpretation is limited at this time. Other, short, weak, anomalies do occur but are not of significance to mineralization and no soil anomalies are associated with them.

1

1 🗄

CONCLUSION

Conclusions

1) The Congress Extension property has fair exploration potential for hydrothermal gold veins, as shown by its close proximity and broadly similar geology to the Congress property and Bralorne mine. It is underlain by Triassic chert, argillite, limestone and basalt of the Bridge River Group, Cretaceous andesite, conglomerate, greywacke and argillite of the Kingvale Group, and dunite, peridotite, serpentinite and listwanite of the Triassic President Intrusions.

2) The old Primrose prospect was relocated northeast of Marshall Lake, where two parallel quartz veins, up to 2 metres wide, trend northwesterly for more than 240 metres. Minor disseminated pyrite and rare chalcopyrite veinlets occur in the veins and walls along a chert/argilliteserpentinite/listwanite contact, but no significant gold values were encountered.

3) Three weak, spotty gold soil anomalies were detected on the northeast side of the property. However, they do not correlate with geophysical anomalies and the values are low with respect to soil anomalies related to known mineralization in the Bridge River area.

4) Four moderate, isolated VLF-electromagnetic anomalies were located on the reconnaissance lines. They cannot be interpreted due to lack of geological data, but the L4 anomaly does occur near the Primrose veins.

5) Three wide, strong, PP-magnetic highs were delineated on the northeast side of the property. They reflect the President ultramafics but with little geological mapping, interpretation is limited at this time. However, both geochemical anomalies and gold mineralization are lacking.

6) Surface surveys were successful in discovering VLFelectromagnetic and PP-magnetic anomalies that may indicate a favorable geological environment for hydrothermal gold veins. The soil anomalies, however, are weak and spotty, suggesting that gold mineralization does not significantly subcrop on the property, but little geological mapping has been carried out to confirm that as yet.

7) Although the Congress Extension claims appear to have limited exploration potential, systematic linecutting, geological mapping, geochemical sampling and geophysical surveying are necessary to further evaluate the property.

Recommendations

1) A 1 month, \$40,000 CA exploration program of line cutting, geological mapping, geochemical sampling and geophysical surveying is recommended for next year to complete the first phase of work on the Congress Extension property. Should this work be successful, fill-in surface surveys and follow-up backhoe trenching could be justified.

2) Systematic surface surveys northeast of Marshall Creek are recommended to identify the main rock units and locate prospective areas. Geological mapping, soil sampling, VLF-EM surveying and PP-MAG surveying should define areas of further interest.

3) Detailed mapping and sampling of the Primrose prospect should also be completed. No work should be conducted on the claims southwest of Marshall Creek unless justified by exploration success on the northeast side.

EXPENDITURES

ITEM	COST
Labour and Supervision 1 man x 5 days x \$250 1 man x 6 days x \$125 1 man x 22 days x \$100	4,200.00
Room and Board 33 mandays x \$32.29	1,065.53
Transportation and Fuel Truck	60.00
Equipment and Supplies Camp, Traverse, VLF-EM, PP-Mag	516.73
Assays and Analyses 376 soils x \$10.35 6 rocks x \$15.50 1 HMSS x \$29.50	4,014.10
Drafting and Reproduction Maps, Report	33 0. 73
Office and Miscellaneous Field office rent, hydro, phone, U.I.C., C.P.P., W.C.B.	501.80

Total	Expended	\$10,688.89
Total	Assessed	\$7,000.00

EXPENDITURES

ITEM	COST
Labour and Supervision 1 man x 5 days x \$250 1 man x 6 days x \$125 1 man x 22 days x \$100	4,200.00
Room and Board 33 mandays x \$32.29	1,065.53
Transportation and Fu el Truck	60.00
Equipment and Supplies Camp, Traverse, VLF-EM, PP-Mag	516.73
Assays and Analyses 376 soils x \$10.35 6 rocks x \$15.50 1 HMSS x \$29.50	4,014.10
Drafting and Reproduction Maps, Report	33 0. 73
Office and Miscellaneous Field office rent, hydro, phone, U.I.C., C.P.P., W.C.B.	501.80

Total Expended \$10,688.89
Total Assessed \$7,000.00

REFERENCES

- British Columbia Ministry of Energy, Mines and Petroleum Resources, 1985, Primrose, Minifile No. 092-JNE-039.
- Cooke, B.J., 1984, Geological compilation of the Bridge River map-area, B.C., Company Report, 25 pp.
- Harrop, J.C. and Sinclair, A.J., 1985, Geological compilation of the Bralorne area, B.C., Geology map and marginal notes, U.B.C. Publication, 15 pp.
- Roddick, J.A. and Hutchinson, W.W., 1974, Pemberton map-area (East half), B.C., G.S.C. Paper 73-17, Map 13-1973, 21pp.
- Woodsworth, G.J. and Roddick, J.A., 1977, Geology of Pemberton map area, G.S.C. Open File 482.

QUALIFICATIONS

I, Bradford J. Cooke, am a professional geologist with a consulting business, Cooke Geological Consultants Ltd., located at 100-455 Granville St., Vancouver, B.C., V6C 1T1.

I obtained a B.Sc. Honours Geology degree at Queen's University, Kingston, Ontario in 1976 and completed a M.Sc. Geology degree at the University of British Columbia, Vancouver, B.C. in 1984.

I have worked in mineral exploration, both seasonally and full-time, since 1975 and have performed geological field work since 1973.

I am a Fellow of the Geological Association of Canada, a Member of the Canadian Institute of Mining and Metallurgy and a Member of the British Columbia-Yukon Chamber of Mines.

I have personally reviewed old literature on the Congress Extension property and supervised exploration work on the claims.

I have no interest, nor do I expect to receive any interest, in the securities or properties of Coral Energy Corp.

I consent to the inclusion of this report in a Prospectus or other qualifying documents for the purpose of raising funds through the Vancouver Stock Exchange or other financial institutions.

Bradford J. Cooke

Cooke Geological Consultants Ltd.

December 5, 1986

APPENDIX 1: Analytical Procedures

ŝ

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

ASSESSMENT REPORT FOR:

HEAVY MINERAL SAMPLING AND CONCENTRATIONS

A large sample is collected from stream sediments or soils big enough to yield a minimum of 0.5 kg of the desired minus fraction. After sieving through any of the sieve mesh sizes they are adapted for the survey. After seiving the samples, the minus fraction is grinded to -80 mesh.

Then 0.4 kg of sample is weighed into a suitable centrifuge containers. The prepared concentrations of liquids are added to obtain a 3.1 specific gravity flotation.

The heavy fractions are then washed cleaned and dried. fter drying the samples they are separated. The sink float Heavy Minerals are separated into Magnetic and Non Magnetic fractions and both fractions are weighed. The percent of the Magnetic and non Magnetic fractions are calculated and reported with the analytical data.

The analysis are than carried out in the ususal analytical manner by I.C.P. or A.A. method.

Routine Gold-Assay Procedures Used by Min-En Labs. Ltd.

- 1. Samples are received, cataloged and dried at 105°C if necessary.
- 2. Whole sample is passed through a primary crusher which reduces sample to $-\frac{1}{2}$ inch.
- 3. Whole sample is further passed through a secondary crusher which further reduces the sample to -10 mesh.
- 4. The whole sample is riffled through a ½ inch riffle to obtain a subsample of approx 300-400 grams. The remaining reject is bagged and stored.
- 5. The above 300-400 gram split is then pulverized to obtain -100 mesh using an iron plate rotary mill pulverizer.
- 6. Sample pulp is now rolled and analysed.
- 7. The sample pulp is assayed for gold using a l assay ton fire assay preconcentration and atomic absorption finishing techniques.
- 8. The remaining sample pulp is retained and stored.

.

MIN-EN Laboratories Ltd. Specialius in Mineral Environments

Corner 15th Street and Bawicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HClO_4$ mixture.

After pretreatments the samples are digested with <u>Aqua Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone....

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb). MIN-EN Laboratories Ltd.

Specialists in Mineral Environmenta

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK - 26 ELEMENT ICP

Ag, Al, As, B, Bi, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn

Samples are processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sedimint samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.

1.0 gram of the samples are digested for 6 hours with HNO_3 and $HC1O_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Computer operated Jarrell Ash 9000ICP. Inductively coupled Plasma Analyser. Reports are formated by routing computer dotline print out.

APPENDIX 2: Assay Certificates

COMPANY: COOKE BEOL PROJECT NO: CONGRES				S ICP REPORT	B.C. V7N 1T		27) PAGE 1 OF 1 NO: 6-10895/P1+2
ATTENTION: BRAD COD			(604) 980-5814	•		+ TYPE SOIL GEOCHEN +	
(VALUES IN PPH)	AG	AS CU	PB S		AU-PPB		
CE LINE#1 0+00	.7	1 77		1 99	5		
CE LINE#1 0+25 CE LINE#1 0+50	.6 .4	i 52 i 54		1 135 1 52	10 10		
CE LINE#1 0+75	.6	1 45		1 150	5		
CE LINE#1 1+00	.5	1 42	10	1130	5		
CE LINE#1 1+25	,5	1 46		1 90	15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******
CE LINE#1 1+50	.6	1 39	8	1 290	5		
CE LINE#1 1+75	.3	54		1 124	10		
CE LINE#1 2+00	.4	1 57		3 132	5		
CE LINE#1 2+25 CE LINE#1 2+50	<u>.4</u> .5	<u> </u>		$\frac{1}{1}$ $\frac{163}{73}$	<u> </u>		
CE LINE#1 2+75	.4	1 43	_	2 75	10		
CE LINE#1 3+00	.6	1 49		4 58	5		
CE LINE#1 3+25	.5	1 47	23	1 124	5		
CE LINE#1 3+50	.3	1 35		1 151	10		
CE LINE#1 3+75	.5	7 44		3 57	5		
CE LINE#1 4+00 CE LINE#1 4+25	.5 .3	1 32 1 42		1 67 1 117	5 5		
CE LINE#1 4+50	.4	2 48		3 58	10		
CE LINE#1 4+75		10 60		5 51	5		
DE LINE#1 5+00	,2	1 40	10	3 55	5		
CE LINE#1 5+25	.6	i 42		2 71	5		
CE LINE#1 5+50	.5	1 42		2 61	10		
CE LINE#1 5+75 CE LINE#1 6+00	.3 .4	14 57 1 45		5 57 3 116	5 5		
CE LINERS 6+25		1 44		2 49	10		
CE LINE#1 6+50	.8	4 68		3 52	5		
CE LINE#1 6+75		12 89	23	3 48	5		
CE LINE#1 7+00	.6	4 38		3 89	10		
CE LINERI 7+25		22 52		53	5		
CE LINE#1 7+50 CE LINE#1 7+75		13 37 1 44		5 97 2 76	10 15		
CE LINE#1 8+00	.4 .4	1 44 1 45	14	160	5		
CE LINE#1 8+25	.5	1 56	8	57	5		
CE LINENI 8+50	.4	1 38	19	83	5		
CE LINE#1 8+75	.4	1 39	10		5		
CE LINE#1 9+00	. 6	1 44	7	1 73	5		
CE LINE#1 9+25	.6	\$ 45 1 34	12 2 18 2	? 81 2 85	5 5		
CE LINE#1 9+50 CE LINE#1 9+75	,4 ,4	1 34	3	2 85 81	5		
CE LINE#1 10+00	.5	37	3		10		
CE LINE#1 10+25	.5	1 39	16 2	2 96	5		
CE LINE#1 10+50	.3	1 38	4 i	79	3		
CE LINE#1 10+75	.3	1 42		2 67	5		
CE LINE#1 11+00 CE LINE#1 11+25		1 45 1 42	16		5		
CE LINE#1 11+50	.4 .6	1 50	11 4	61	5		
CE LINE#1 11+75	.4	1 39	9 2		5		
CE LINE#1 12+00	.7	1 59	9 4	84	5		
CE LINE#2 0+00	.6	1 43	5 2		10		
CE LINE#2 0+25		13 70	18 4		5		
CE LINE#2 0+50 CE LINE#2 0+75	.6	5 98 4 106	30 5 23 1	i 123 283	5 5		
CE LINE#2 1+00	.5 .7	4 106 1 60	14 1		3 5		
CE LINE#2 1+25	.8	1 59	5 1	126	10		
CE LINE#2 1+50	,5	1 56	13 7	122	10		
CE LINE#2 1+75	1.0	1 66	10 3		5		
CE LINEUZ 2+00	.4	1 45	11 7		20		
CE LINE#2 2+25 CE LINE#2 2+50		10 65 22 54	27 5 31 5		10 5		
OF FINEAT TAN		17 	ن <u>ا</u> رب		^J		

ł

COMPAN	Y: C	ODKE	GEOLOGICAL CO	NSUL TANT	S	MIN-EN	LABS	ICP REPORT		(ACT:GE027) PAGE 1 OF 1
			GRESS EXTENSI						B.C. V7H	112 FILE NO: 6-19895/P3+4
ATTENT						(604) 980-5	B14 OF	(604)988-	1524	* TYPE SOIL GEOCHEN * DATE: NOV 3. 1986
IVALU				AS	CU	PB	58	21	AU-PPB	
CELI				3	56	32	2	191	10	
				12	90	29	7	93	5 5	
CE LI) CE LII				18 1	81 62	16 18	6 2	94 142	5	
CELI				1	61	5	3	87	10	
CELI			.7		90	5	5	81	5	
CE LII	NE#2	4+25	.5	8	84	6	- 4	85	10	
CE LIN			.9	1	73	5	4	111	5	
CELI			.7	1	85	1	5	79	10	
CELIN			.3	<u> </u>	88 59	28 7	<u>7</u>	121 153	<u>5</u>	
CE LIN CE LIN				1	57 61	16	2	155	5	
CELIN			.8	1	74	6	í	118	10	
CE LIN			.7	1	73	8	4	121	10	
CE LIN	IE#2	6+25	.5	1	70	13	4	97	5	
CE LIN			.5	i	90	24	5	142	5	
CELIN			.8	1	71	5	2	80	5	
CE LIN CE LIN			.6 .7	1	66 55	6 8	1	122 94	э 5	
CELIN			.7	1	30 80	12	4	98	5	
CELIN				15	159	13	<u>;</u> -	100	5	
CE LIN			.9	7	119	7	6	94	5	
CE LIN			.6	1	69	13	4	117	10	
CE LIN			.5	17	112	18	7	92	5	
CELIN					81	26		123	5	
CE LIN CE LIN			.6 .5	5 19	82 92	19 26	56	106 119	5 5	
CELIN			.5	2	78	18	4	127	10	
CELIN			.3	- 7	41	16	3	113	5	
CE LIN	E#2	10+00		18	57	29	7	89	5	
CE L IN				13	49	18	4	104	10	
CELIN				7	52	14	3	142	20	
CE LIN				1	62 65	7 12	4	83 71	5 5	
CE LIN				1	46	7	3	150	5	
CELIN				12	57	;	5	158	5	
CE LIN				13	84	11	6	103	5	
CE LIN	E1 2	12+00	.6	16	98	21	7	111	5	
CE LIN				16	109	14	9	101	5	
CELIN				23		21		113	10	
CE LIN CE LIN				25 15	90	20 17	8	94 106	5 20	
CELIN				15	91 78	11	י 7	92	5	
CELIN				1	131	7	6	93	10	
CE LIN				23	102	10	9	105	5	
CELIN			.8	18	121	13	8	105	15	
CE LIN				8	110	17	6	98	10	
				1	83	8	4	94	5	
CE LIN				6	157 83	21 8	Ó.	113 85	5 10	
CELIN				<u>1</u> 20	<u>85</u> 91	8	6	95	5	
CELIN				19	120	18	7	82	10	
CE LIN				1	73	16	5	93	10	
CELIN			.5	32	101	29	9	94	5	
CELIN				25	95	37		92	5	
CE LIN				36 17	89 119	40 28	7	86 139	5 5	
CE LIN				8	119	14	5	95	5	
CELIN				13	111	16	8	96	5	
CELIN				8	89	15	8	115	5	

,

CONPANY: COOKE SED	LOGICAL CO	NSULTANTS		NIN-E	N LABS I	CP REPORT		(ACT16E027) PAGE 1 OF 1
PROJECT NO: CONGRES		DN	705 WEST				B.C. V7N 1	T2 FILE ND1 6-10895/P5+6
ATTENTION: BRAD CO		45				(604)988-4	1524 AU-PPB	* TYPE SOIL GEOCHEN * DATE: NOV 3, 1984
IVALUES IN PPN 1 CE LINE#2 17+75		AS 28	<u>CU</u> 95	PB 25	<u>SB</u> 7	2N 116	5 5	
CE LINE#2 18+00	.6	11	88	21	8	78	5	
CE LINE#2 18+25	.6	1	78	6	5	90	10	
CE LINE#2 18+50	.4	20	127	23	7	107	10	
CE LINE#2 18+75		1		11		101		
CE LINE#2 19+00	.7	7	96	16	6 11	94	5 5	
CE LINE#2 19+25 CE LINE#2 19+50	.9 .6	33 17	124 152	25 22	11 6	121 175	5	
CE LINE#2 19+75	1.1	1	91	5	5	92	5	
CE LINE#2 20+00	.7	1	82	8	6	85	10	
CE LINE#3 0+00	.1	92	83	56	12	71	10	
CE LINEN3 0+25	-1	47	81	42	9	59	15	
CE LINE#3 0+50 CE LINE#3 0+75	•1 •1	41 45	50 50	32 33	7 7	44 62	10 10	
CE LINE#3 1+00	 1	48	35	38	10	48	15	
CE LINE#3 1+25		51	22	37	11	45	20	
CE LINE#3 1+50	.1	52	61	47	15	49	10	
CE LINE#3 1+75	.2	47	40	46	10	60	5	
CE LINE#3 2+00	.1	50 38	28 31	41 32	13 9	47 50	10 20	
CE LINE#3 2+25 CE LINE#3 2+50	.1.	35	30			52	10	
CE LINE#3 2+75	.1	42	30	35	8	37	5	
CE LINE#3 3+00	.3	32	24	23	9	38	5	
CE LINE#3 3+25	.2	34	24	31	7	44	10	
CE LINE#3 3+50				37	10	39	10	
CE LINE#3 3+75 CE LINE#3 4+00	.3 N/S	23	44	25	6	60	5	
CE LINE#3 4+25	.1	48	55	42	11	78	15	
CE LINE#3 4+50	.1	28	21	33	9	49	10	
CE LINE#3 4+75	.1	35	46	36	9	48	5	
CE LINE#3 5+00	.1	33	40	32	7	69	5	
CE LINE#3 5+25 CE LINE#3 5+50	.1	54 15	48 44	36 23	12 7	68 72	10 5	
CE LINE#3 5+75	.4 .2	31	29	28	8	68	5	
CE LINERS 6+00	.5	1	48	9	2	169	5	
CE LINE#3 6+25	N/S							
	N/S							
	N/S	10	76	30	7	125	15	
CE LINE#3 7+00 CE LINE#3 7+25	.5 N/S	18	/8	30	2	523	50	
CE LINE#3 7+50	.6	i	45	19	3	106	5	
CE LINE#3 7+75	.5	2	52	15	2	154	10	
CE LINE#3 8+00	.5	1	38	12	4	84	35	
CE LINENS 8+25	,4 5	1	33 47	9	3 3	66 50	5	
CE LINE#3 8+50 CE LINE#3 8+75		<u>12</u> 27	<u></u>	<u>16</u> 25	<u>}</u>	 67	<u>10</u> 5	
CE LINENS 9+00	.6	47	113	48	8	90	5	
CE LINE#3 9+25	1.7	25	230	37	9	140	5	
CE LINE#3 9+50	.8	17	91	29	6	88	10	
CE LINE#3 9+75	.8	25	85	26	<u> </u>	80	5	
CE LINE#3 10+00 CE LINE#3 10+25	.5 .5	21 23	56 55	37 34	9 9	61 61	5 5	
CE LINE#3 10+50	• 2	23	56	22	9	61	5	
CE LINE#3 10+75	.1	30	53	40	12	63	10	
CE LINE#3 11+00	.6	16	43		6	80	5	
CE LINE#3 11+25	N/S	44	06		٥	147	5	
CE LINE#3 11+50 CE LINE#3 11+75	, 4 ,2	41 56	95 B5	41 56	8 10	107 86	5 10	
CE LINE03 12+00	N/S	55		uv	• •		14	
CE LINE#3 12+25	N/S							

. I

COMPANY: COOKE GEO	LOGICAL CO	INSULTANTS		MIN-E	N LABS	ICP REPORT		(ACT:GE027) PAGE 1 OF 1
PROJECT ND: CONGRE								172 FILE NOT 6-10895/P7+8
ATTENTION: BRAD CO				(604) 980-	5814 OR	(604) 988-	4524	+ TYPE SOIL BEOCHEN + DATE: NOV 3, 1986
(VALUES IN PPH)	AG	AS	CU	<u>99</u>	SB	<u>2n</u>	AU-PPB	
CE LINE#3 12+50 CE LINE#3 12+75	N/S							
CE LINE#3 13+00	N/S N/S							
CE LINE#3 13+25	N/S							
CE LINE#3 13+50	.3	18	97	24	4	61	10	
CE LINE#3 13+75	N/S							
CE LINE#3 14+00	.1	32	32	27	8	51	5	
CE LINE#3 14+25	.1	46	80	50	12	68	5	
CE LINE#3 14+50	Ħ/S							
CE LINE\$3 14+75		36	33	39	12	49	10	
CE LINE#3 15+00	.1	21	38	42	16	46	15	
CE LINERA 2+50	.2	35	58	28	6	45	5	
CE LINE#4 2+75 CE LINE#4 3+00	.1 .3	25 24	37 116	18 27	5	41 51	5 5	
CE LINERA 3+25	.1	27	43	20	4	63	5	
CE LINE#4 3+50	.2	25	78	28	5	51	<u>5</u>	
CE LINE14 3+75	.1	28	57	28	5	45	10	
CE L3NE44 4+00	.2	39	52	37	7	48	5	
CE LINE#4 4+25	.2	26	63	27	5	44	5	
CE LINE#4 4+50	.4	21	39	19	6	47	10	
CE LINE#4 4+75	.4	27	59	18	5	46	5	
CE 11NE#4 5+25	-4	21	74	29	6	58	10	
CE LINE#4 5+50	.3	29	64	31	6	59	5	
CE LINE#4 5+75	.4	24	46	22	6	44	5	
CE LINE#4 6+00 CE LINE#4 6+75	.4	<u>22</u> 34	71	24 39		<u>44</u> 72	10 5	
CE LINESS 7+00	.2	35	165	44	10	55	5	
CE LINE#4 7+25	.1	26	73	44	8	62	10	
CE LINE#4 8+00	.2	39	128	45	11	67	5	
CE LINE 44 8+25	.2	30	28	30	5	74	10	
CE LINE#4 8+50	.5	35	53	24	8	60	5	
CE LINE#4 8+75	.4	46	42	30	9	74	10	
CE LINE#4 9+00	.4	56	63	40	8	96	5	
CE LINE\$4 9+25	.4	27	45	36	4	113	10	
CE LINE\$4 9450 CE LINE\$4 9475	.1	88 39	<u>97</u> 45	<u>60</u> 32	13 5	146	<u>15</u> 5	
CE LINE#4 10+00	.3	47	47	45	ک 7	115 113	5	
CE LINE#4 10+25	.6	44	76	40	4	255	5	
CE LINE#4 10+50	.5	45	71	40	7	109	5	
CE LINE#4 10+75	.1	62	73	56	8	121	5	
CE LINE 44 11+00	,3	57	61	44	8	98	10	
CE LINE#4 11+25	.4	68	69	53	10	188	5	
CE LINE#4 11+50	.5	42	34	27	5	83	5	
CE LINE#4 11+75	.5	40	43	30	6	77	15	
CE LINE#4 12+00		39	36	33	6	154	10	
CE LINE#4 12+25	-6	80	13 8 37	46	12 7	152 65	10	
CE LINE#4 12+50 CE LINE#4 12+75	.6 .5	22 47	-37 44	19 31	8	90 90	5 5	
CE LINE#4 13+00	.5	50	48	31 31	8	143	10	
CE LINE 4 13+25	.4	47	47	34	12	50	5	
CE LINE#4 13+50	.4	44	33	35	10	48	20	
CE LINE#4 13+75	.4	39	27	24	8	47	5	
CE LINE#4 14+00	.7	24	26	19	4	77	5	
CE LINE#4 14+25	.1	10	53	37	22	35	5	
CE LINE 4 14+50		18	65	42	27	36	5	
CE LINE#4 14+75	.5	31	53	28	11	55	5	
CE LINE#4 15+00 CE LINE#4 15+25	.4	26 26	42 35	29	15 10	48 63	10 5	
CE LINE#4 15+50	.4 .4	26 22	55 31	26 21	10 6	83 70	5 5	
CE LINE#4 15+75	.3	44	57	36	11	54	5	
							ž	

COMPANY; COOKE GEO	LOGICAL CONSI	ULTANT	5	NIN-EI	I LABS	ICP REPORT		(ACT: SE027) PASE 1 OF 1
PROJECT NO: CONGRE	ESS EXTENSION		705 WEST	15TH ST.,	NORTH	VANCOUVER,	8.C. V7H	172 FILE NO: 6-10895/P9+10
ATTENTION: BRAD CO						1604) 988-		+ TYPE SOIL GEOCHEN + DATE: NOV 3, 1986
(VALUES IN PPN)	<u>A6</u>	AS	<u>CU</u>	PB	<u>SB</u> 10	2N	AU-PPB	
CE LINE#4 16+00 CE LINE#4 16+25	.5 .3	27 54	68 35	35 30	12	53 51	5 10	
CE LINE#4 16+50	.3	47	37	35	11	76	5	
CE LINE#4 16+75	.6	18	34	6	5	52	5	
CE LINE84 17+00	.5	25	47	27	10	50	40	
CE L1NE44 17+25	-1	12	43	41	24	43	B5	
CE LINE#4 17+50	.6	64	43	28	12	65	5	
CE LINE 44 17+75	.5	22 39	42 42	29	13	50	10 15	
CE LINE\$4 18+00 CE LINE\$4 18+25	.5 .5	37 26	44	31 27	10 9	50 47	10	
CE LINE#4 18+50	.8	30	42	21	·	47	10	
CE LINE#4 18+75	.8	4	35	11	5	58	5	
CE LINE#4 19+00	.3	8	32	23	12	49	20	
CE LINE#4 19+25	•1	29	38	40	18	50	10	
CE LINE84 19+50		23	39	25		64	5	
CE LINE#4 19+75	.8	21 29	34 39	16 40	7 18	49	5 35	
CE LINE#4 20+00 CE LINE#4 20+25	.1 .2	25 25	62	30	13	48 54	5	
CE LINE#4 20+50	.1	16	63	33	15	45	5	
CE LINE 4 20+75	.5	1	64	20	10	51	15	
CE LINE#4 21+00	N/S					*****		
CE LINE#4 21+25	1.0	1	58	9	7	63	5	
CE LINE#4 21+50	N/S							
CE LINE#4 21+75	N/S N/S							
CE LINE#4 22+00 CE LINE#4 22+25	.8	1	49	1	5	 B2	10	
CE LINE#4 22+50		i	25	32	21	46	5	
CE LINE\$4 22+75	.1	32	30	45	20	52	10	
CE LINE#4 23+00	.1	49	34	45	16	55	5	
CE LINE 44 23+25		20	62	17		67	5	
CE LINE#4 23+50	.4	13	49	25	2	184	5	
CE LINE#4 23+75 CE LINE#4 24+00	.3 .1	7 25	58 33	23 50	4 13	153 63	5 5	
CE LINE 44 24+25	.1	1	55 69	32	25	32	10	
CE LINE 4 24+50	.7	1	35	21	7	38	5	
CE LINE#4 24+75	.7	10	102	31	9	51	10	
CE LINE#4 25+00	.1	1	50	36	23	34	5	
CE LINE#4 25+25	.4	22	56	31	11	50	5	
CE LINE#4 25+50	• •	1	63	28	20	34	10	
CE LINE44 25+75		17	43	25		38	<u>5</u> 5	
CE LINE#4 26+00 CE LINE#4 26+25	.6 .6	17 1	31 31	22 14	6 4	58 60	10	
CE LINE#4 26+50	.6	27	25	19	13	48	5	
CE LINE#4 26+75	.6	2	20	14	5	63	5	
CE LINE#4 27+00	.4	14	27	20	4	63	10	
CE LINE#4 27+25	.7	1	36	4	2	77	5	
CE LINE#4 27+50	1.0	1	58	5	1	i1 8	10	
CE LINE#4 27+75	N/S		77	E.		× 42	ł۸	
CE LINE#4 28+00 CE LINE#4 28+25	.8 .8	1 1	32 33	5 1	4	~ 62 67	10 5	
CE LINE 44 28+50	.8		40		<u>-</u>	63	5	
CE LINE#4 28+75	,8	1	29	8	6	87	10	
CE LINE#4 29+00	1.0	22	43	25	4	250	5	
CE LINE#4 29+25	.6	14	51	13	7	78	5	
CE LINE#4 29+50	1.1		49 37	<u>6</u> 74	<u>10</u> 17	<u> </u>	<u>5</u>	
CE LINE#4 29+75 CE LINE#4 30+00	.2 .1	21 58	37 41	36 44	17	71 79	ว 5	
CE LINE#4 30+25	1.9	30	53		3	72	5	
CE LINE#4 30+50	.8	45	44	36	13	54	5	

1

COMPANY: COOKE GEOL	DGICAL COM	SULTANT	; ;	MIN-E	N LA9S	ICP REPORT		(ACT: BED27) PAGE 1 OF 1
PROJECT NO: CONGRES		DN	705 WEST	•				1172 FILE NO: 6-10895/P11+12
ATTENTION: BRAD COD						R (604)988-(ZN	1524 AU-PP8	* TYPE SOIL GEOCHEN * DATE: NOV 3. 1986
(VALUES IN PPH) CE LINE#1 12+25	A6 	<u>AS</u> 5	CU 73	<u>98</u> 17	<u></u> 50 8		5	······································
CE LINE#1 12+50	.8	ĩ	82	24	9		5	
CE LINE#1 12+75	.9	ī	55	17	6		10	
CE LINE#1 13+00	.6	1	45	14	3	102	5	
CE LINE 1 13+25	.8	1	50	15	4		5	
CE LINE#1 13+50	.9	5	68	26	8		5	
CE LINE#1 13+75 CE LINE#1 14+00	.7 .9	1 30	72 109	20 34	4 10		5 5	
CE LINE#1 14+25	.8	1	60	23			10	
CE LINE#1 14+50	,7	12	76	23	6		3	
CE LINE#1 14+75	.9	13	82	24	7	102	5	
CE LINE#1 15+00	.8	1	71	21	3		5	
CE LINERI 15+25	.8	15	61	23	7		10	
CE LINE#1 15+50 CE LINE#1 15+75	1.0 .5	14 22	104 60	27 26	8 8		5 10	
CE LINE\$1 16+00	1.8	1	53	8	4		5	
CE LINE#1 16+25	1.0	1	68	13	2		5	
CE LINE#1 16+50	1.4	15	106	18	10	96	5	
CE LINE#1 16+75	1.6	1	71	10	5		5	
CE LINEUS 17+00	1.8	<u>i</u>	142	10	9		5	
CE LINE#1 17+25 CE LINE#1 17+50	2.4 2.0	1	97 89	6 7	6		3 5	
CE LINE#1 17+75	2.2	4	112	, 1	7		5	
CE LINE#1 18+00	2.0	1	65	6	3		5	
CE LINE#1 18+25	1.6	i	61	6	4		5	
CE LINE#1 18+50	1.3	1	87	16	5		5	
CE LINE#1 18+75	-4	1	76	32	1	225	10	
CE LINE#1 19+00	.1	22	97	42	3	108	5	
CE LINE#1 19+25 CE LINE#1 19+50	.7 .5	9 39	83 129	28 48	9 9	169 140	10 5	
CE LINE#1 19+75	.6	12	106	15	·'		5	
CE LINE#1 20+00	.1	17	123	27	1	213	10	
CE LINE#1 20+25	.1	1	88	24	1	193	5	
CE LINE#1 20+50	.1	10	85	30	i	256	5	
CE LINE#1 20+75		34	139	40	5	115	5	
CE LINE#1 21+00 CE LINE#1 21+25	.3 .7	5 1	93 109	8 4	4	90 162	5	
CE LINE#1 21+50	.7	1	77	4	1	183	5	
CE LINE#1 21+75	1.3	1	110	5	4	110	5	
CE LINE#1 22+00	.6	1	102	5	4	140	10	
CE LINE#1 22+25	.7	1	90	4	4	148	10	
CE LINE#1 22+50	.7	17	110	11	7	103	5	
CE LINE#1 22+75	.6	13	117	8	8	107	5	
CE LINE#1 23+00 CE LINE#1 23+25	1.3	1	111 82	4	5	78 80	5 10	
CE LINE#1 23+50	.8	<u>i</u>	161	<u>'</u>	5	102	10	
CE LINE#1 23+75	.5	1	83	4	2	64	5	
CE LINE#1 24+00	.4	11	86	15	3	116	5	
CE LINE#1 24+25	.5	5	84	7	4	104	5	
CE LINE#1 24+50		1		5	4	93	5	
CE LINE#1 24+75 CE LINE#1 25+00	.6 .3	1 23	90 146	7 39	1	206 117	5 5	
CE LINE#1 25+25	.5	4	90	13	4	122	10	
CE LINE#1 25+50	.7	7	107	18	4	110	5	
CE LINE#1 25+75	.7	1	82	5	4	84	5	
CE LINE#1 26+00	.3	24	122	41	4	128	5	
CE LINE#1 26+25	.5	4	79 05	9	3	99 104	5	
CE LINE#1 26+50 CE LINE#1 26+75	.4 .5	1	85 91	12 6	۹ 4	106 90	5 10	
CE LINE#1 27+00	.0 .5	11	92	14	5	91	10 5	

COMPANY: COOKE SED	LOGICAL COM	SULTANT	 S	11]N-EI	LARS I	CP REPORT		(ACT:6E027) PAGE 1 OF 1
PROJECT NO: CONGRE	SS EXTENSIO	IN	705 WEST	15TH ST.	NORTH VI	ANCOUVER .	8.C. V7M	172 FILE NO: 6-10895/P13+14
ATTENTION: BRAD CO	OKE			(604) 980-5				+ TYPE SOIL GEOCHEN + DATE: NOV 3, 1986
(VALUES IN PPN)	AG	AS	CU	PB	SB	ZN	AU-PPB	
CE LINE#1 27+25	.9	1	113	4	5	118	5	
CE LINE#1 27+50	.5	14	111	14	6	159	5	
CE LINE#1 27+75	.7	6	97	7	5	142	10	
CE LINE#1 28+00	.6	6	95	10	4	111	10	
CE LINE#1 28+25	.6	21	112	20	8	159	5	
CE LINE#1 28+50	.7	14	104	18	6	186	5	
CE LINE#1 28+75	.5	1	95	6	2	130	5	
CE LINE#1 29+00	.6	10	106	5	5	96	5	
CE LINE#1 29+25	. 6	2	102	10	5	103	5	
CE LINE01 29+50	.5	6	92	9	5	93	10	
CE LINE#1 29+75	.6	1	121	7	5	91	5	
CE LINE#1 30+00	.7	15	100	13	7	91	5	
CE LINE#1 30+25	.6	11	88	13	5	99	5	
CE LINE#1 30+50	.8	1	89	4	4	75	5	
CE LINE01 30+75	.8	1	93	6	5	69	5	
CE LINE#1 31+00	.8	7	93	16	5	104	10	
CE LINE#1 31+25	.7	1	89	7	3	104	5	
CE LINE#1 31+50	.8	9	131	12	4	79	5	
CE LINE#1 31+75	.9	12	162	20	5	116	5	
CE LINE01 32+00	1.3	1	149	4	4	84	5	****
CE LINE#1 32+25	.7	6	105	6	5	89	10	
CE LINE#1 32+50	.5	22	110	19	5	106	5	
CE LINE#1 32+75	.4	34	116	41	6	110	3	
CE LINE#1 33+00	.5	20	88	18	5	100	5	
CE LINE#1 33+25	.8	13	181	19	5	124	5	
CE LINE#1 33+50	.8	1	100	6	4	80	10	
CE LINE#1 33+75	.6	11	98	11	4	97	5	
CE LINE81 34+00	.7	25	97	15	8	96	5	
CE LINE#1 34+25	.7	11	88	5	6	66	5	
CE LINE#1 34+50	.7	13	87	5		88	5	
CE LINE#1 34+75	1.3	10	87	16	8	92	5	
CE LINE#1 35+00	1.4	10	94	13	8	92	5	

-

COMPANY: COOKE GEDLO	NIN-EI	N LABS IC	P REPORT			(ACT:SE027) PAGE 1 OF 1			
PROJECT NO: CONSRESS	EXTENSIO	Ň	705 WEST	15TH ST.,		•		172	FILE ND: 6-1089
ATTENTION: BRAD COO	(E			(604)980-	5814 OR (604)988-	4524	ŧ	TYPE HA NON NAG + DATE: NOV 5. 1986
(VALUES IN PPH)	AG	AS	<u>CU</u>	PB	SB	<u> </u>	AU-PP3	HMI	
HN#1	.2	6	54	17	4	19	5	26.33	
	*			*********					

Ì

÷

COMPANY: COOKE GEDL	OGICAL CO	NSULTANT	S	HIN-E	IN LABS I	CP REPORT	(ACT: GE027) PAGE 1 OF 1
PROJECT NO: CONGRES	IS EXTENSI	ON	705 NEST	15TH ST.	NORTH V	ANCOUVER, B.C.	V7H 1T2 FILE NO: 6-1179/P1
ATTENTION: BRAD COO	KE			(604) 980-	5814 OR	(604)988-4524	+ TYPE ROCK GEOCHEN + DATE: NOV 17. 1986
(VALUES IN PPN)	A6	AS	យ	P	SI	211	
PRINROSEADIT GRI	.8	1	85	32	3	33	
CE TR-5	1.2	52	15	60	17	20	
CE TR-5 FLOUT	.4	ł	11	17	1	28	
CE L4 8+75 FLOUT	1.1	29	55	37	7	50	
CE L3 9+25	.9	1	25	12	4	17	
CE 86-R1	1.0	1	14	21	6	16	======================================

	COLCHECO	IDGE : NIG:			a the t				1861	SECTAL LUCE I OF 1
PROJECT NO: CONSRES	S EXTENSIO	N	705 WEST	15TH ST.,	NORTH VA	NCOUVER,	9.C. V7N	172		FILE NO: 6-11795/P2
ATTENTION: BRAD COD	KE 🚬	_		(604)980-	5814 GR	6041988-	4524	+ TYPE SOIL	GEOCHEN +	DATE: NOV 17, 1986
(VALUES IN PPH)	AG	AS	CU	PB	SB	ZN	AU-PPB			
CE TR5 SOIL	1.6	57	53	36	15	24	10			
CE ADIT SOIL	1.5	94	116	52	28	95	30			
CE PRIMROSE OT S	1.6	34	64	36	13	42	5			
E L4 7+50 SILT	1.2	51	50	44	19	21	10			

MIN-EN LABORATORIES LTD. Specialists in Mineral Environments 705 Hest 15th Street North Vancouver, B.C. Canada V7H 112

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company:COOKE GEOLOGICAL CONSULTANTS Project:CONGRESS EXTENSION Attention:BRAD COOKE File:6-1179/P1 Date:NOV 17/86 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

	ample umber	AU G/TONNE	AU OZ/TON	
~	RIMROSE ADIT GRAB 1	.02		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
l √ CE	E TR-5	.02	0.001	
/ CE	E TR-5 FLOAT	.01	0.001	
🗸 CE	E L4 8+75 FLOAT	.01	0.001	
√ CE	E L4 9+25	NO SA	MPLE	
	E L3 9+25	.02	0.001	
Γ [√] CE	E 86-R1	.01	0.001	

Certified by

MIN-EN LABORATORIES LTD.

1

QUALIFICATIONS

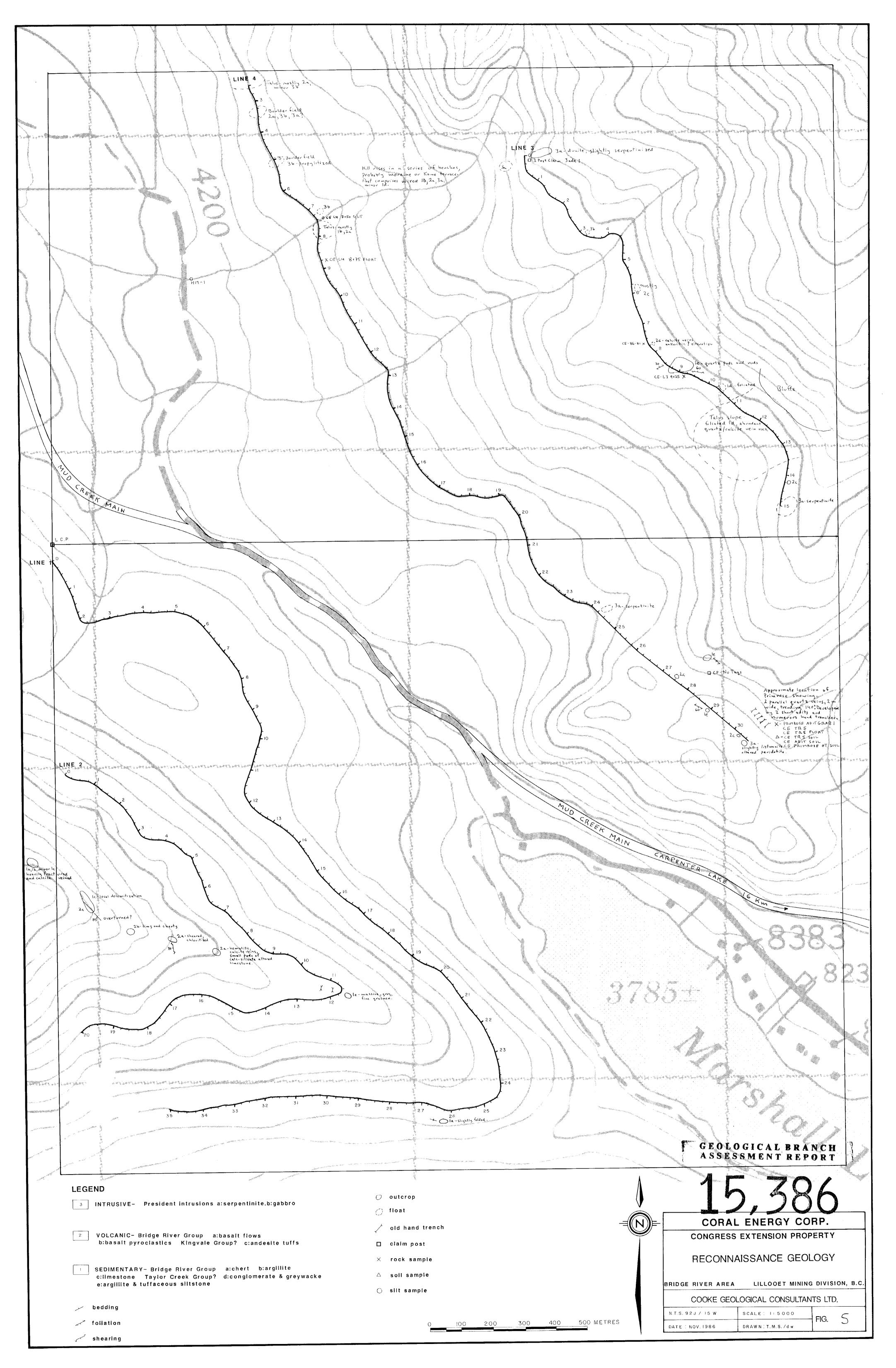
I, Bradford J. Cooke, am a professional geologist with a consulting business, Cooke Geological Consultants Ltd., located at 100-455 Granville St., Vancouver, B.C., V6C 1T1.

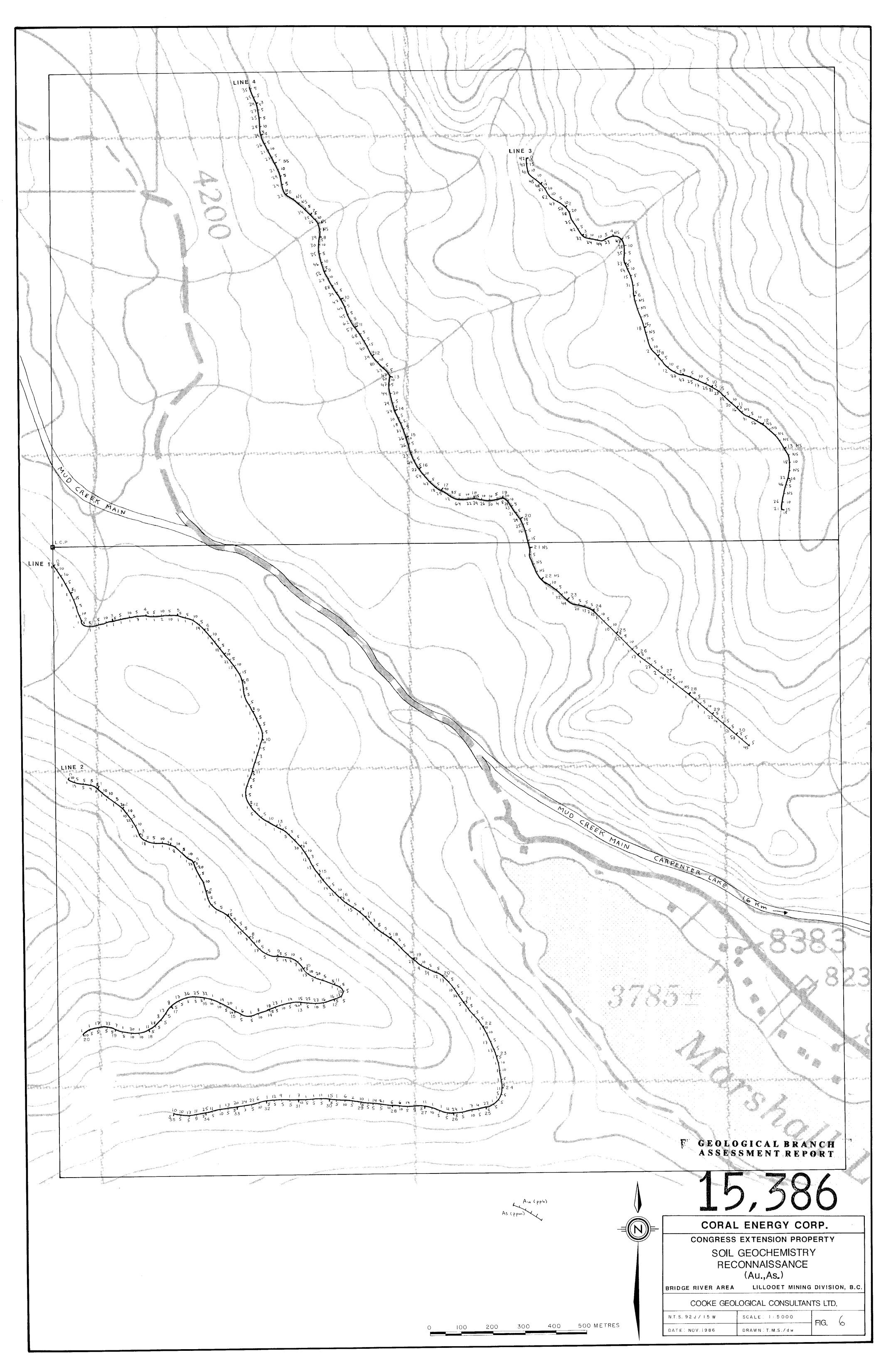
I obtained a B.Sc. Honours Geology degree at Queen's University, Kingston, Ontario in 1976 and completed a M.Sc. Geology degree at the University of British Columbia, Vancouver, B.C. in 1984.

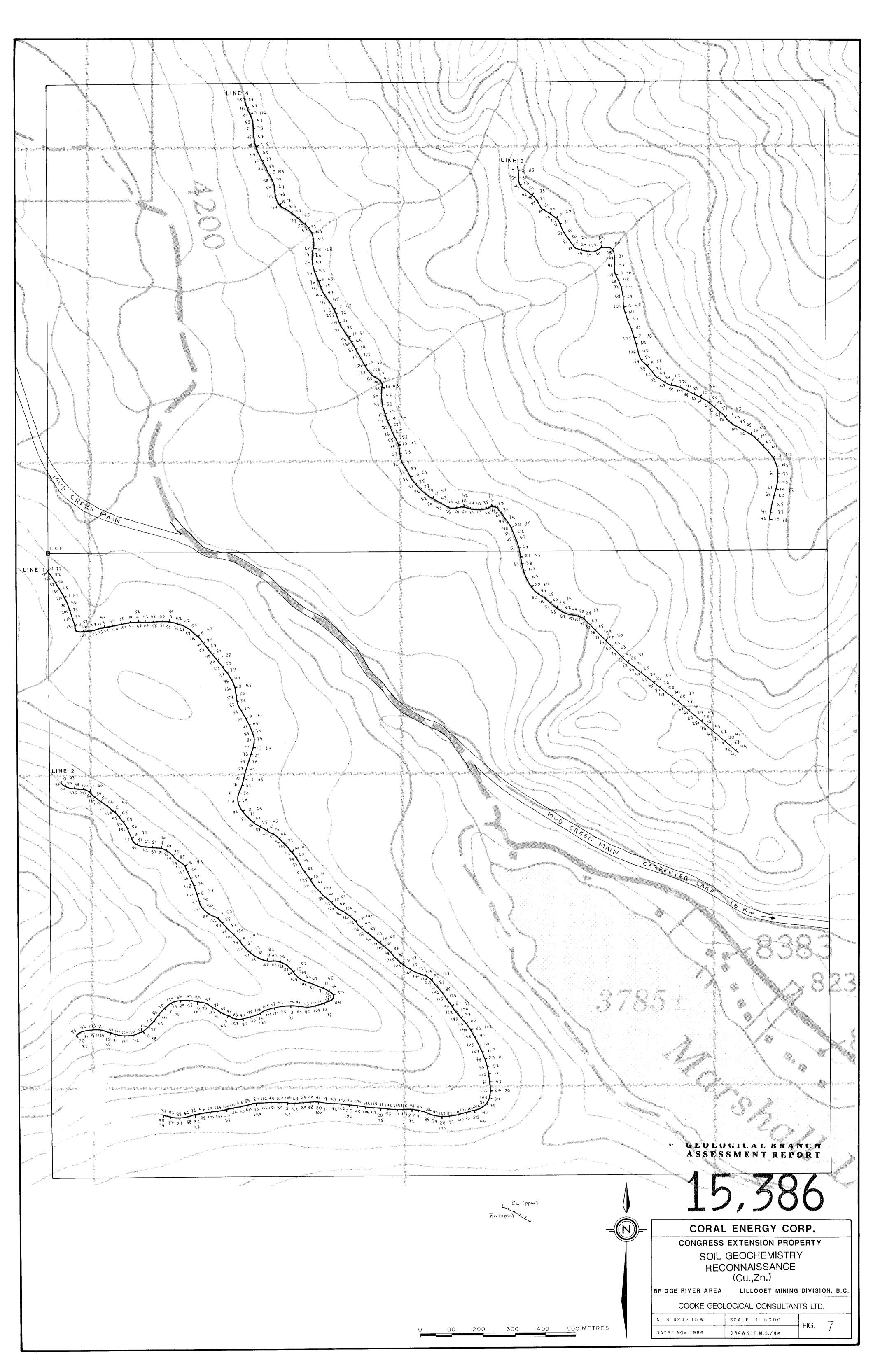
I have worked in mineral exploration, both seasonally and full-time, since 1975 and have performed geological field work since 1973.

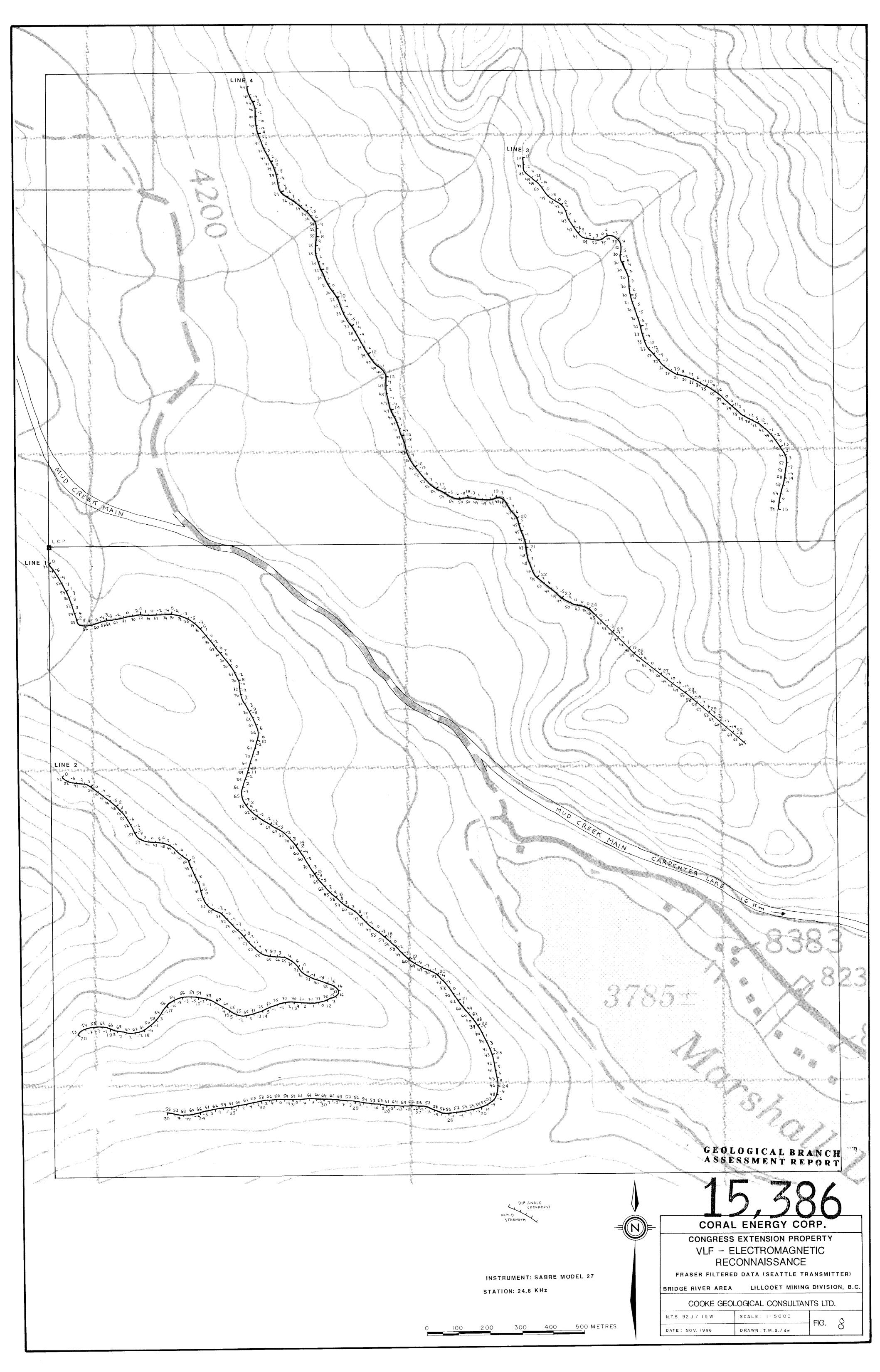
I am a Fellow of the Geological Association of Canada, a Member of the Canadian Institute of Mining and Metallurgy and a Member of the British Columbia-Yukon Chamber of Mines.

I have personally reviewed old literature on the Congress Extension property and supervised exploration work on the claims.


I have no interest, nor do I expect to receive any interest, in the securities or properties of Coral Energy Corp.


I consent to the inclusion of this report in a Prospectus or other qualifying documents for the purpose of raising funds through the Vancouver Stock Exchange or other financial institutions.


Bradford J. Cooke


Cooke Geological Consultants Ltd.

December 5, 1986

