

LITHOGEOCHEMICAL SURVEY

OF

THE KAEL #2 MINERAL CLAIM

OMINECA MINING DIVISION

NTS: 93N/2W,7E,7W,7E [Lat 55° Z5r North, 124° 45.Z'West] 148'

Owner

Colin Campbell

Operator

Colin Campbell

Author: Colin Campbell

December, 1986

GEOLOGICAL BRANCH ASSESSMENT REPORT

15,423

FILMED

TABLE OF CONTENTS

			Page	No.
1.0	Summa	ry	1	
2.0	Intro	duction	2	
	2.1	Claim Status	2	
	2.2	Topography and Vegetation	2	
	2.3	Geology	5	
	2.4	Previous Work	5	
3.0	Litho	geochemical Survey	6	
	3.1	Field Methods	6	
	3.2	Analytical Methods	6	
	3.3 F	Results and Interpretation	7	
	3.4 F	Recommendations	7	
Bibli	iograph	ny	8	
Apper	ndix A	Statement of Qualification	9	
Apper	ndix B	Statement of Costs	10	
Apper	ndix C	Analytical Certificates	11	
Appen	ndix D	Drill Hole Locations	17	
Appen	ndix E	Petrography	19	
Illus	stratio	ons		
Figur	e l	Location on Map of B.C.	3	
Figur	e 2	Claims Map	4	
COL 8	16-3	Location of D.D.H.	pocket	t
COL 8	6-4 ,- 5	,-6,-7,-8. Gold, Arsenic and Copper		
		in D.D.H	pocket	t

1.0 SUMMARY

The Kael #2 mineral claim, consisting of 20 units, is located five kilometres north of the west end of Chuchi Lake in the Omineca Mining Division. The claims were grouped as the Col Goup and cover high grade copper mineralization found by Colin Campbell in 1969. Diamond drilling by Falconbridge Nickel, in 1970, 1971 and 1972, indicates two million tons of 0.6% copper in Zone "A".

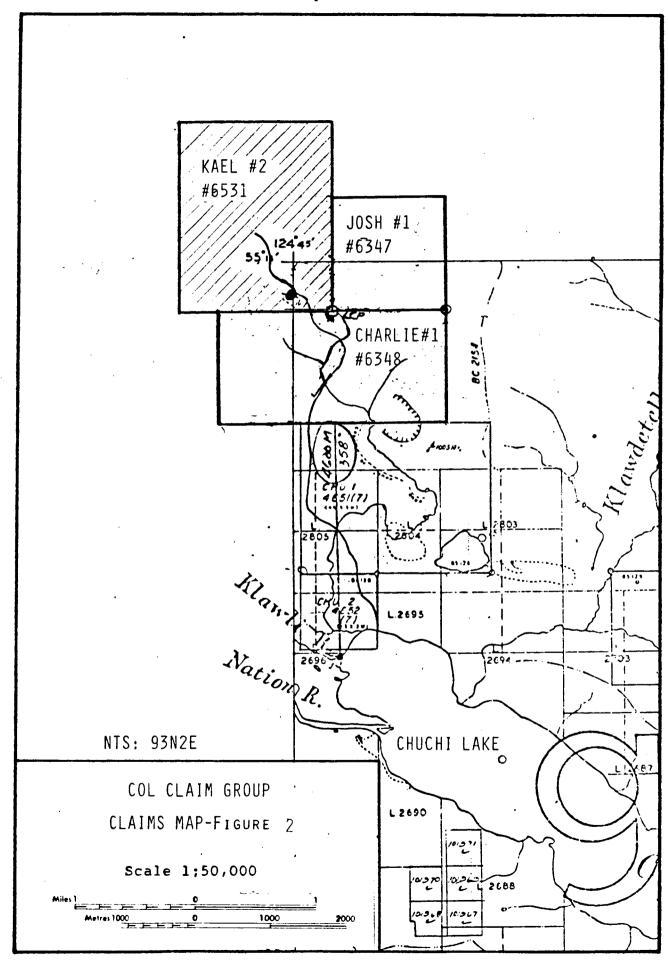
Sampling of Zone "A" in 1985 found up to 1.68 ppm gold across ten feet associated with the higher grade copper mineralization. Further work, including sampling of the remaining core and soil sampling for gold, is recommended.

2.0 INTRODUCTION

(2)

The Col Group, consisting of the Kael #2 Mineral Claim [20 units], is located five kilometres north of the west end of Chuchi Lake in the Omineca Mining Division. Access to the property is by helicopter from Ft. St. James or by logging road to within five miles then by boat and trail. A "cat" tote road, now cut out as a trail, provides access from the west end of Chuchi Lake.

During October of 1985 sixty ten foot sections of drill core were sampled to check the potential for economic gold mineralization associated with previously known copper zones. Three thin sections from a bornite quartz vein were also examined.


2.1 CLAIM STATUS

Claim Name Record No. No. of Units Expiry Date
Kael #2 6531 20 Sept.28,1988

The Kael #2 Mineral Claim was grouped as the Col Group on July 5,1985 and is owned and operated by Colin Campbell.

2.2 TOPOGRAPHY AND VEGETATION

The Col Group covers a south slope with elevations ranging from 1000 to 1300 metres. Vegetation consists of an open growth of older pine and spruce with balsam at higher elevations and "burned" areas of dense alder and young pine.

2.3 GEOLOGY

The Col Group covers a contact between syenite and monzonite of the Hogen Batholith and Takla Group volcanic rocks. Mineralization consists of quartz lenses with locally abundant bornite and as bornite and lesser chalcopyrite disseminated in altered potash feldspathized mesocratic monzonite [Garnett, 1971].

2.4 PREVIOUS WORK

The Col Group was found by Colin and Heather Campbell, in 1969, following a silt geochemical survey. In 1970 it was optioned to Falconbridge Nickel. Falconbridge fron 1970 to 1972 cut lines ran I.P., E.M.16, magnetometer, soil geochemical and geologocal surveys over the Group.

Diamond drilling by Falconbridge consisted of 541' XRPS, 4,694' AQ, and 2,506' BQ, indicating by my calculations, 2.72 million tons of 0.54% in zone "A". An independent calculation by Canex Placer Limited states "We find that 2,000,000 tons of 0.6% Cu are indicated by diamond drill holes in the anomaly area" [Smith, 1973].

From 1974 to 1984 the property was been maintained on a standby basis by Colin Campbell. Assessment work was carried out by line and trail cutting and by drilling and blasting several trenches.

Sampling by Campbell in 1984 found up to 2.175 ppm Au with 1% Cu across ten feet and prompted the current program.

6

3.0 LITOGEOCHEMICAL SURVEY

Sixty ten foot sections of drill core were sampled to check for gold mineralization associated with the higher grade bornite quartz mineralization and to check areas of silicification or "quartz-alteration" and pyrite zones noted in Falconbridge drill logs. The relationship of gold to copper and arsenic on the property is of secondary importance. The results of the survey are plotted on Figures COL 86-4,-5,-6,-7,-8.

Falconbridge did a general transit survey of grid lines and drill holes on the Col Group; the Kael #2 legal corner post was tied into these grid lines by chain and compass; all other locations were taken from Falconbridge maps and drill logs. The drill hole locations for the present sampling are plotted on Figure COL 86-3. Location, bearing, dip and purpose of each hole sampled is included in Appendix D.

3.1 FIELD METHODS

The core sampled, stored in a core shack on the property, was in relatively good condition; it had been split and one half assayed for copper by Falconbridge. One half of the remainder was selected [not quartered] resulting in two to two and one-half kilograms of material per ten foot section. The samples were placed in polyethylene bags and sent to Vangeochem Laboratory in North Vancouver for analyses. Hand specemens were kept for each sample interval.

3.2 ANALYTICAL METHODS

All samples were analyzed by Vangeochem Laboratory Ltd.
Analyses for gold was by atomic absorption and for other
elements by I.C.P.; detailed procedures are included with the
analytical certificates in Appendix C.

3.3 <u>RESULTS AND INTERPRETATION OF THE LITHOGEOCHEMICAL</u> SURVEY

Gold occurs associated with copper mineralization on the Col Group. Up to 1.68 ppm gold across ten feet was found in Zone "A". Anomalous arsenic values, up to 251 ppm, are found in fringe zones to high grade copper mineralization but drop to less than 10 ppm in the zone itself.

No gold was found in the pyrite fringe zones nor has any been found in silicified or "quartz alteration" zones sampled.

3.4 RECOMMENDATIONS

The remaining core from Zone "A" should be sampled and analyzed for gold. The large copper soil anomalies [Band 1970] should be resampled and analyzed for gold.

Colin Campbell

BIBLIOGRAPHY

Band, 1970. GEOCHEMICAL REPORT - COL CLAIMS, FALCONBRIDGE NICKEL MINES. Feb. 10,1971.

Garnett, 1971. GEOLOGY, EXPLORATION AND MINING IN BRITISH COLUMBIA, B.C. Dept. of Mines p.196.

Smith, 1973. PERSONAL LETTER, September 24,1973.

APPENDIX A

STATEMENT OF QUALIFICATION

I, Colin Campbell, of the Town of Courtenay, in the Province of British Columbia, do hereby state that:

- 1. I am a geologist.
- 2. I graduated from the University of British Columbia in 1966 with a B.Sc. Degree in Honours Geology.
- 3. I have worked steadily in mining exploration in British Columbia and Yukon Territory from 1966 to 1973; intermittently from 1974 to 1983 and steadily from January 1984 to the present.
- 4. I personally carried out, or supervised, the Lithogeochemical Survey on the Kael #2 Mineral Claim.
- 5. I own the Kael #2 Mineral Claim.

Colin J. Campbell.

APPENDIX B

STATEMENT OF EXPENDITURES - KAEL #2

1.	WAGES Colin Campbell Field Oct. 24,25,26,27,28,29,1985 Petrographic work June 17,1986		
	Report Dec. 17,19,June 18,1986 Ten days at 240.00 per day	2400.00	2400.00
2.	TRANSPORT		
	Aircraft 2.4 hours at 100.00 Courtenay to Vanderhoof rtn.	240.00	
	0.5 trip	$\frac{314.00}{554.00}$	554.00
3.	GEOCHEMICAL ANALYSIS		
	60 rock preparation at 3.00	180.00	
	Au analyses at 6.50 I.C.P. at 6.50	390.00 390.00	
	Cu assays at 5.00	10.00 970.00	970.00
		3,000	3,0,00
4.	FOOD AND LODGING 6 days at 50.00	300.00	300.00
5.	DRAFTING PRINTING AND COPIES	264.00	264.00
		TOTAL	\$4488.00

Colin Campbell

5.2 ANALYTICAL PROCEDURE FOR GOLD IN ROCK SAMPLES

Analytical procedure used to determine gold by fireassay method and detected by atomic absorption spec. in goelogical samples.

Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainles steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh for finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

Method_of_Extraction

- (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into fusion pot.
- (b) A Flux of litharge, soda ash, silica, borax, flour, or potassium nitrite is added, then fused at 1900 degrees F and a lead button is formed.
- (c) The gold is extract by cupellation and part with diluted nitric acid.
- (d) The gold bead is saved for measurement later.

Method_of_Detection

- (a) The gold bead is disolved by boiling with sodium cyanide, hydrogen peroxide and ammonium hydroxide.
- (b) The gold analyses were detected by using a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUM	BER: 85-25-016	JOB NUMBER: 85555		MR. COLIN CAN	PBELL	PAGE	3	OF	3
SAMPLE	#D.D.H.#	FOOTAGE	Cu %	Au քքե					
09231	19	166-180		⟨5					
ø 9232	19	190-200		40					
09233	19	200-210		(5					
09234	15	110-120		(5					
ø9235	15	120-130		100					
0 9236	15	130-140		70	÷				
0 9237	15	370-380		170					
0 9238	15	440-450	-	⟨5					
09239	12	80-125		10					
0 9240	12	210-220		(5					
09241	12	220-230		20					
0 9242	12	230-240	-	40					
09243	12	390-400		55					
0 9244	9	50-60		750	.022				
0 9245	9	80-90		480	.014				
0 9246	9	130-140	****	120					
09247	10	140-150		25					
0 9248	10	210-220		15					
09249	10	220-230		(5					
09250	11	80-90		110					

DETECTION LIMIT

1 Troy oz/short ton = 34.28 ppm

1 ppm = 0.0001%

ppm = parts per million

(= less than

signed:

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

1630 PANDORA ST.

VANCOUVER, B.C. V5L 1L6

(604) 251-5656

REPORT NUMB	BER: 85-25-016	JOB NUMBER: 8555	5	MR. COLIN CRIPBELL	PAGE	5	OF	3
SAMPLE	# D.D.H.#	FOOTAGE	Cu %	Au ppb				
09211	21	470-480	-	680				
09212	31	340-350	ana alia	(5				
09213	22	0-27	-	30				
09214	25	0-19		200				
09215	13	110-120	***	30				
09216	13	130-140		100				
09217	13	150-160	-	580				
09218	13	200-210	1.87	1680 /				
09219	13	210-220	1.46	990				
09220	13	410-420		60				
09221	13	420-430	-	40				
0 9222	16	160-170		(5				
09223	16	300-310		5				
0 9224	16	420-430		20				
0 9225	16	430-440	···	5				
0 9226	16	440-450		35				
0 9227	16	450-462		₹5				
0 9228	18	100-110	***	40				
09229	18	110-120	-	30				
09230	18	120-130		30				

DETECTION LIMIT

1 Troy oz/short ton = 34.28 ppm

. Ø1
1 ppm = 0.0001x

| | parts per million

(= less than

signed:

MAIN OFFICE
1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMB	ER: 85-25-016	JOB NUMBER: 85555		MR. COLIN COMPBELL	PA	PAGE						
SAMPLE	# D.D.H.#	FOOTAGE	Cu *	Au ppb								
09026	21	190-260		(5								
09076	11	150-160		(5								
09077	27	290-300		(5								
0 9078	28	340-350		(5								
09079	28	350-360		10								
0 9080	29	90-100		10								
09081	29	88-89		(5								
090 82	29	110-120		20								
Ø9Ø83	30	160-170		(5								
0 9084	31	220-230		5								
0 9085	31	350-360		(5								
09201	21	140-150		< 5								
09202	21	150-160		20								
09203	21	160-170		(5								
09204	21	170-180		< 5								
09205	21	180-190		15								
0 9207	21	220-230		10								
0 9208	21	410-420		510								
09209	21	420-430		540								
09210	21	440-450		720								

DETECTION LIMIT

1 Troy oz/short ton = 34.28 ppm

.01 1 ppm = 0.0001%

m |= parts per millio

< = less than</pre>

signed:

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HMO3 TO H20 AT 95 DEG. C FOR 90 MIMUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SM, MM, FE, CA, P, CR, MG, BA, PD, AL, NA, K, M, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS* INSUFFICIENT SAMPLE, NO: NOT DETECTED, -= NOT ANALYZED

COMPANY: COLIN CAMPBELL ATTENTION: COLIN CAMPBELL PROJECT: -- REPORT#: 85-25-016 JOB#: 85555 INVOICE#: 9151 DATE RECEIVED: 85/11/08
DATE COMPLETED: 85/11/15
COPY SENT TO: COLIN CAMPBELL

ANALYST W. Runes

PAGE 1 OF 2

	٠																												
SAMPLE NAME	AG Ppn	AL I	AS PPM	AU PPH	BA PPM	B1 PPM	CA I	CD PPK	CO PPM	CR PPM	CU PPH	FE 1	K I	MG I	NN PPN	MO PPN	MA I	N] PPH	P 1	PB PPM	PD PPM .	PT PPM	SB PPM	SN PPH	SR PPM	U PPM	W PPN	ZN PPH	
09076 09077 09078 09079 09080	.5 .3 .2 .1	.27 .86 .13 .98	17 ND ND ND	MD MD MD MD	35 82 12 50 23	ND ND ND ND	.23 2.28 1.31 .98 .96	.5 .3 .4 .6	7 1 5 2	12 31 9 44 8	3590 92 45 51 11	1.02 2.74 .60 1.98	.07 .15 .11 .12	.20 .55 .24 .54 .28	99 744 410 362 422	22 2 1 2 1	.01 .01 .13 .01	· 3 5 1 4	.02 .12 .01 .07	15 15 11 19 16	ND ND ND ND	MD ND ND ND ND	3 ND ND ND	ND ND ND ND	19 144 66 141 53	ND 8 7 4	ND ND ND ND	26 29 8 22 27	
09081 09082 09083 09084 09085	.7 3.8 ND .2	.45 .61 .60 1.03 .77	7 22 ND ND ND	ND ND ND ND	27 40 45 64 75	ND ND ND ND	4.25 4.00 1.01 1.97 .80	1.1 1.3 .1 .6	12 12 5 8 5	17 58 10 18	23 32 16 24 840	2.73 3.06 1.93 2.37 1.82	.14 .14 .10 .14	1.30 1.46 .32 .90 .43	964 965 702 678 340	20 6 1 2 13	.01 .01 .01 .01	12 19 2 5 2	.12 .15 .06 .10	4B 40 15 15	ND ND ND ND	ND ND ND ND	ND NB ND ND	MD MD MD MD MD	188 233 165 141 268	6 8 4 6	ND ND ND ND	35 54 18 25 25	-15
09201 09207 09208 09209 09211	.1 2.8 2.6 2.9	1.32 .27 1.07 .84 1.20	ND 21 7 163 ND	MD MD MD MD	52 43 39 30	ND ND ND ND	3.47 3.45 1.63 1.22 1.65	1.1 .9 1.2 .7	17 16 16 13 13	80 10 69 53 54	63 950 9895 7541 7016	3.80 4.19 2.94 2.74 2.73	.14 .16 .13 .12	2.44 2.09 1.19 1.02 1.27	746 908 372 285 512	2 13 4 5 3	.01 .01 .01 .01	40 24 28 22 22	.16 .18 .19 .20	18 23 21 18 21	ND ND ND ND	ND ND ND NO	ND 4 ND 3 ND	MD ND 2 1 ND	114 120 54 50 44	5 6 6 5 7	5 ND ND ND ND	44 56 36 32 42	'
09212 09213 >> 09217 09218 09219	.7 1.6 3.8 8.2 6.8	.93 .77 .97 .76 .85	MD MD 347 8 6	ND ND ND ND	77 89 35 28 30	ND ND ND ND	.76 .90 2.42 .74 .83	.2 1.0 .8 1.1 1.0	5 11 15 11 13	9 68 112 72 93	255 2686 10098 18455 14514	1.94 2.50 2.94 2.08 2.39	.11 .15 .13 .10	.41 .79 1.21 1.05 1.07	310 239 446 196 210	23 3 16 4 10	.01 .01 .01 .01	2 21 32 25 30	.07 .25 .16 .14	11 16 21 18 19	ND ND ND ND	ND ND ND ND	ND ND J J	ND 1 2 1 1	267 35 77 38 38,	S ND S ND ND	MD MD MD MD MD	17 26 31 7	
09220 09221 09222 09223 09225	1.5 .9 2.2 .3	1.60 .86 .82 .66	5 ND ND 4 9	ND ND ND ND ND	16 45 74 113 220	MB MD MD MD	3.35 1.05 1.92 2.30 2.72	.5 .6 .5 .7	12 12 11 12 11	50 40 54 48 36	2379 880 2110 187 255	3.79 3.43 2.52 3.66 3.14	.14 .13 .16 .15	1.43 .89 1.00 1.46 1.54	1122 317 428 709 747	14 14 3 10	.01 .01 .01 .01	30 18 27 23 19	.18 .22 .19 .18	84 17 21 17 18	DN DN DN DN	MB MD MD MD	ND 3 ND 6 ND	MD 2 MD MD ND	94 27 61 137 121	8 5 6 5	MD MD MD MD MD	71 33 29 35 43	
09227 09228 09229 09231 09232	.4 1.1 1.2 .3 2.3	.40 1.20 .84 1.18 .45	10 143 17 ND 12	ND ND ND ND	510 ~ 32 31 54 11	ND DM DM DM Z	4.03 2.67 1.08 1.59 .97	.7 .7 .7 .5	17 17 11 9	42 100 114 20 4	1139 2456 5014 684 3149	4.29 3.42 2.10 2.91 1.63	.16 .14 .12 .14 .20	2.53 1.78 .96 1.00	1136 515 235 672 371	2 30 115 12 67	.01 .01 .01 .01	32 39 25 5 3	.23 .17 .11 .11	21 23 19 17 24	ND ND ND ND ND	ND ND ND ND	5 4 5 ND 7	ND 2 1 ND ND	202 101 37 87 45	7 10 4 6	ON CON CON CON 2	62 42 23 37 32	
09237 09238 09239 09240 09244	.8 .3 .9 5.6	.28 1.02 .54 .54	ND ND 5 25,0 5	DM DM DM DM	32 76 59 21 50	ND 5 ND ND	1.27 2.41 .72 3.65 .83	.5 .4 .4 .5	3 11 7 10 15	25 50 23 75 101	2257 193 793 2057 13583	.90 2.57 2.37 2.45 2.54	.11 .15 .12 .14	.28 1.26 .51 .73 1.20	217 503 295 758 225	2 3 8 7 26	.01 .01 .01 .01	5 20 4 12 32	.03 .21 .15 .28	17 18 18 19 19	DR DR DR P2 DR	EM D MD MD MD	ND ND ND 5	ND - 2 ND N2 - 2	39 91 39 92 44	3 6 MD 6	ND ND ND ND	16 29 32 32 20	
09245 09246 09247 09248 BETECTION LINIT	4.4 1.4 .9 .7	.69 .77 .49 .67	146 20 39 19	DM DM DM DM T	35 28 50 31	0M 0M 0M 6M 7	1.37 1.66 2.54 3.33	1.0 .7 .3 .7	11 12 7 12	67 84 19 50		2.18 2.30 1.79 3.03	.14 .13 .13 .12	1.00 1.18 .49 1.36	277 382 466 671	6 5 3	.01 .01 .01	25 25 9 24	.17 .12 .07	22 21 18 23	ND ND ND	ND ND ND	4 4 ND 4	ND ND	57 78 82 82	MD 6 3	MD MD MD MD	20 27 31 42	

1
\vdash
σ
1

CLIENT:	COLIN (CAMPE	ELL	J08	*: 8:	5555	PRO	DJECT	`:			REP	ORT:	85-2	5 - 01 6	ī	DATE:	85,	/11/1	15		P	AGE	2 OF	2				
SAMPLE MAME	A6 PPM	AL I	AS PPM	AU PPM	BA PPM	9 i PPM	CA 1	CD PPM	CO PP#	CR PPK	CU PPK	FE	K	NG I	NN PPN	MO PPM	NA I	NI PPK	P I	PB PPN	PD PPM	PT PPH	SB PPM	SN PPN	SR PPM	U PPN	N PPM	IN PPH	
09249	.6	.83	4	MĐ	30	NO	.99	.3	10	35	517	2.28	.09	1.17	334	2	.01	14	.14	15	ND	MD	NĎ	2	52	5	KB	20	
097250 097202 097203 097204 097205	.1 .3 .2 .3	.08 .40 .72 .88 .33	ND 102 40 7 55	ND ND ND ND ND	13 80 359 173 479	DW DW DW DW DW	.36 2.58 3.27 2.72 3.04	.1 .3 .4 .5	1 10 13 14 14	10 28 65 74 24	355 705 332 302 685	.47 3.09 3.92 3.76 4.35	.05 .15 .13 .13	.09 1.34 2.13 2.24 1.93	116 741 1000 966 964	ND 3 2 3 5	.01 .01 .01 .01	2 14 32 33 27	.01 .18 .16 .14 .17	5 10 13 16 15	ND ND ND ND ND	ND ND ND ND	NB NB NB ND NB	MD MD MD MD MD	14 71 104 76 98	MD 7 6 10	ND ND 7 7 ND	7 41 52 69 63	
09206 09210 09214 09215 09216	.2 4.3 1.2 .9 1.6	.44 1.03	12 8 3 101 76	MD MD MD MD MD	207 53 29 23 16	ND ND ND ND	2.96 1.12 .60 1.51 1.39	.4 .5 .1 .5	15 11 8 12 8	46 41 15 120 66	450 8754 1937 2151 4960	4.13 2.51 2.72 2.61 1.37	.15 .10 .12 .10	1.96 .87 .45 1.23 .78	957 249 184 307 230	3 2 3 3	.01 .01 .01 .01	29 18 7 29 17	.19 .19 .22 .15	14 13 13 11 9	ND ND ND ND	ND ND ND ND	MD MD MD MD 3	XD 3 2 3 2	129 43 14 61 60	5 ND ND 4 7	ND ND ND ND	56 28 31 31 19	
09224 09226 09230 09233 09234	.3 .3 1.2 .6	.36 1.06 .46	ND B 7 ND ND	MB MD MD MD	297 295 26 15 27	S dn dn dn dn	3.22 2.94 1.29 1.54 1.08	.4 .4 .5 .1	15 15 14 4 6	45 29 146 49 33	357 620 5046 1599 1567	3.64 3.60 2.52 1.16 1.64	.15 .15 .10 .13	1.94 2.00 1.32 .17	909 839 292 506 226	2 17 128 49 7	.01 .01 .01 .10	30 20 26	.19 .19 .10 .05	11 12 12 8 12	ND ND ND ND	MD MD MD MD	ND ND 4 ND ND	ND ND 5 ND 2	164 152 43 57 39	8 4 3 7 5	MD MD MD MD	50 49 33 28 17	
09235 09236 09241 09242 09243	1.0 .7 .8 .8	.44 .63 .57	18 108 192 64 28	MD MD MD MD MD	30 31 57 39 67	ND ND ND ND	1.23 3.76 3.32 5.38 .67	.3 .2 .3	8 9 9 10	54 35 43 9 38	2125 2161 1833 3346 3416	2.63 1.49 2.35 1.69 1.84	.11 .10 .13 .09	.68 .57 .68 .59	237 586 642 951 150	14 23 10 17 9	.01 .01 .01 .01	14 10 12 7 12	.18 .08 .16 .10	12 12 11 10	ND ND ND ND NB	MB MD MD MD	MD 3 MD MD	2 ND 2 2	47 102 91 117 48	4 7 7 4 ND	EK DX DX DM DX	21 19 30 23 29	
DETECTION LIN	H1T .1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	10.	1	.01	2	3	5	2	2	1	5	3	1	

\$ 2º

89,801.60 July 29, 1971 Geology 21 NORTH PURPOSE HOLE No. FALCONBRIDGE Test deeper extent of Co1. #7 51,926.97 COMPLETED AUGUST 6, 1971 DIAMOND DRILL RECORD 20E: 0-10S zone intersected in DDH #13. 3528.44 ft. LENGTH 587 ft. SECTION **PROPERTY** 227⁰121 LOGGED BY G. Harner SEARING OFFSET CHUCHI LAKE OPTION Collar = $-59^{\circ}19^{\circ}$; $300^{\circ} = -60^{\circ}$; $587^{\circ} = -61^{\circ}$ (Acid Test) Drilled by S & H - AQ P.N. 161 PLOTTED 92,8,8.82 STARIED July 1, 1971 PURPOSE Check IP and EM HOLE No. FALCONBRIDGE 16 anomalies. Determine 50,268.67 COMPLETED July 3, 1971 Co1 #3 and 4 DIAMOND DRILL RECORD geology and grade under 350 ft. LENGTH ___ SECTION 13W: 0-10N PROPERTY Campbell's trenches 051⁰36' LOGGED BY --- G. Harper-OFFSET CHUCHI LAKE OPTION Collar $-46^{\circ}20'$; $350' = -47^{\circ}$ (Acid Test) Drilled by S & H - AQ P.N. 161 PLOTTED 89,686.60 ft STARTED June 6, 1971 PURPOSE Intersect sulphidelole No. 13 NORTH **FALCONBRIDGE** 51,797.97 ft. COMPLETED June 10, 1971 zone extension. Check Col 7 DIAMOND DRILL RECORD IP anomaly. Geology SECTION 20E, 10-20S 3508.15 ft. LENGTH _ 438 ft. PROPERTY Dip SEANNE Collar -60°16'; 250'-61°; 438'-60° LOGGED BY G. Harper OFFSET CHUCHI LAKE OPTION Drilled by S & H - AQ Dux Bearing 223044! P.N. 161 **PLOTTED** 89,852.58 PURPOSE Intersect Cu ore HOLE No. STARTED May 30, 1971 12 **FALCONBRIDGE** extension, Check I.P. CLAIM 51,711.80 June 4, 1971 COMPLETED Col 7 DIAMOND DRILL RECORD 3528.10 ft. LENGTH 540 ft. anomaly Geological Infosection 18E, 10-20S **PROPERTY** BEARING 2330191 LOGGED BY G. Harper CHUCHI LAKE OPTION Drilled by S & H - AQ Collar -56°36'; 250'-53°; 540'-50° P.N. 161

-17-Appendix

RTH _	89,860.23	_ STARTED	May 18, 1971
iT	51,394.00	COMPLETED	May 22, 1971
	3520.27 ft		
RING	228 ⁰ 00'	_	
	$-62^{\circ}02'\ 256' = -$	63 ⁰ - A	cid Test

FALCONBRIDGE DIAMOND DRILL RECORD

PROPERTY

CHUCHI LA	AKE OPTION	
P.N.	161	

PURPOSE	Geological	HOLE No.) <u></u>
Infor	matiòn & Cu	CLAIM _	Col	7
grade	détermination	SECTION	16E,	10 - 20S
LOGGED BY	G. Harper	OFFSET	•	
		PLOTTED		

Appendix E

17-178 ALTERED QUARTZ MONZONITE WITH QUARTZ CARBONATE BORNITE VEIN

Although fresh looking in hand specimen this sample is a sheared and strongly altered intrusive rock, especially near the 2 to 3 mm wide quartz carbonate bornite veins.

K-spar 40% Plagioclase 20% Biotite 10-12% Ouartz 6-10% Carbonate 6-8% Bornite 5-6% Chlorite 5% Sericite 5% Fe oxide 1-2% Actinolite 1%

The K-spar is patchily altered to carbonate and kaolinized. Plagioclase is sericitized some with dusty red [exsolved hematite?]. All are fractured and cut by the late quartz veins. Biotite is fresh [after horneblende?] and seems concentrated near quartz veins. Actinolite occurs as several lmm felted needle like masses.

Sequence of deposition in the veins is quartz, carbonate then bornite. Bornite also occurs with biotite disseminated throughout the wall rock.

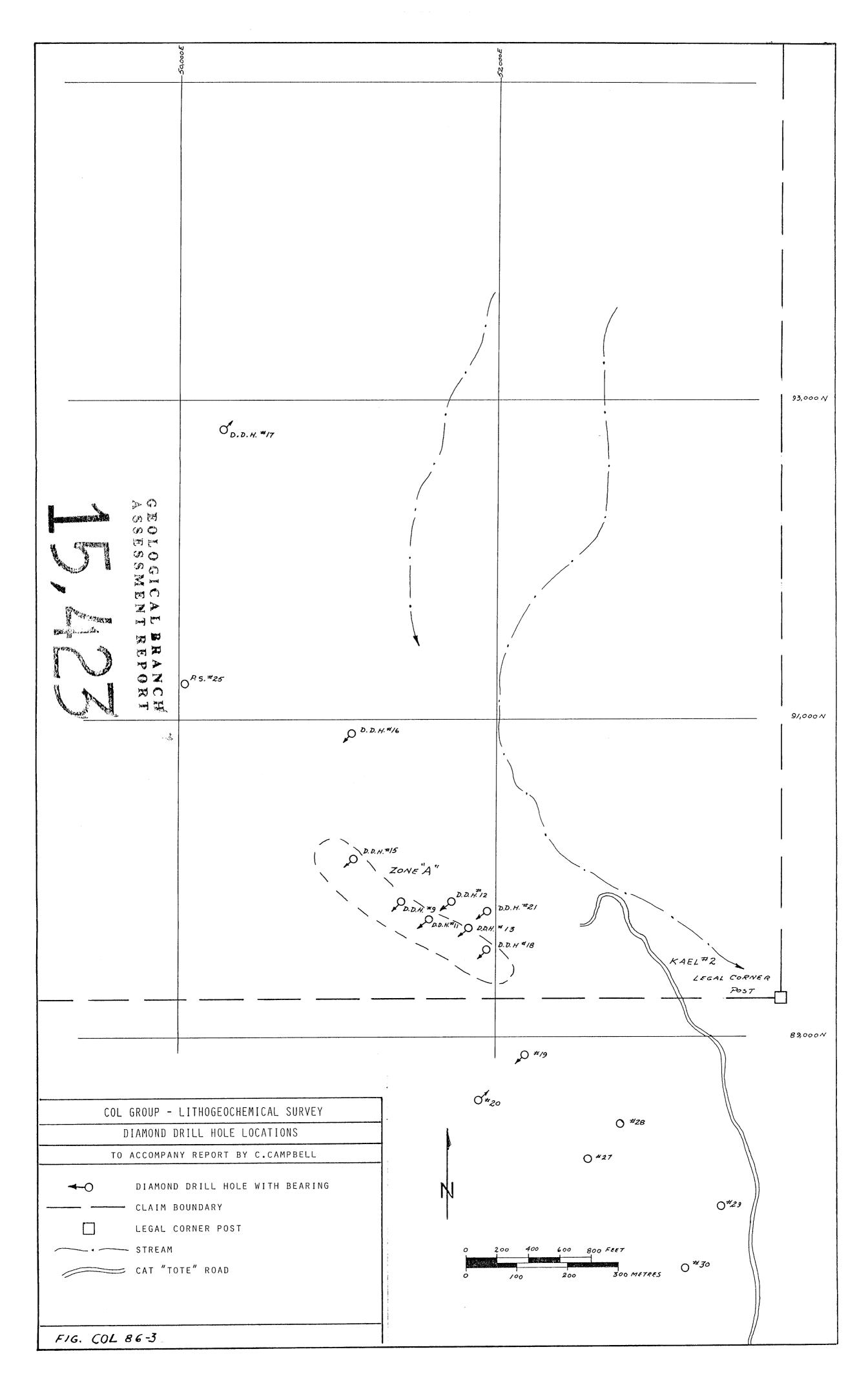
Appendix E

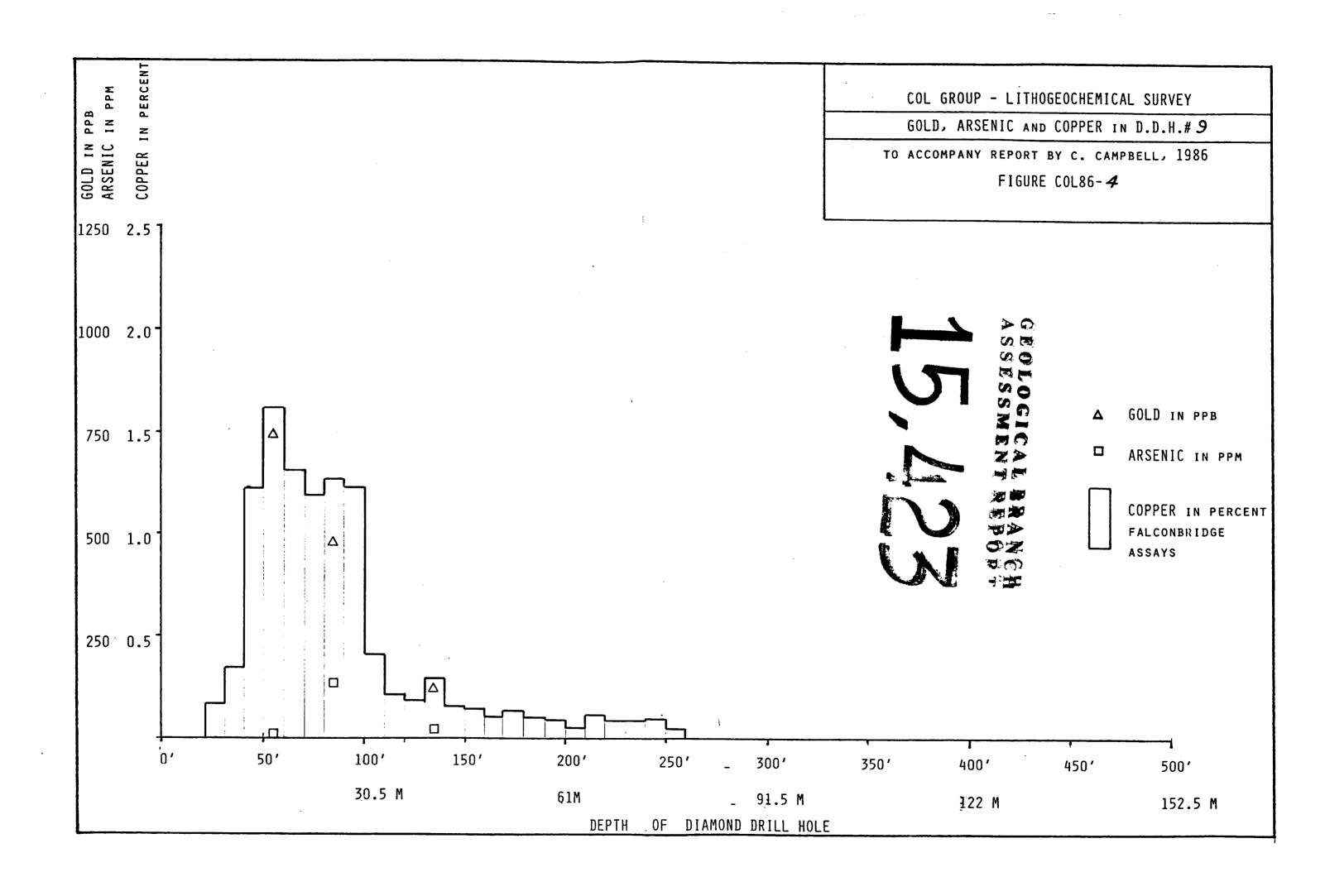
17-168 BRECCIATED QUARTZ CARBONATE VEIN

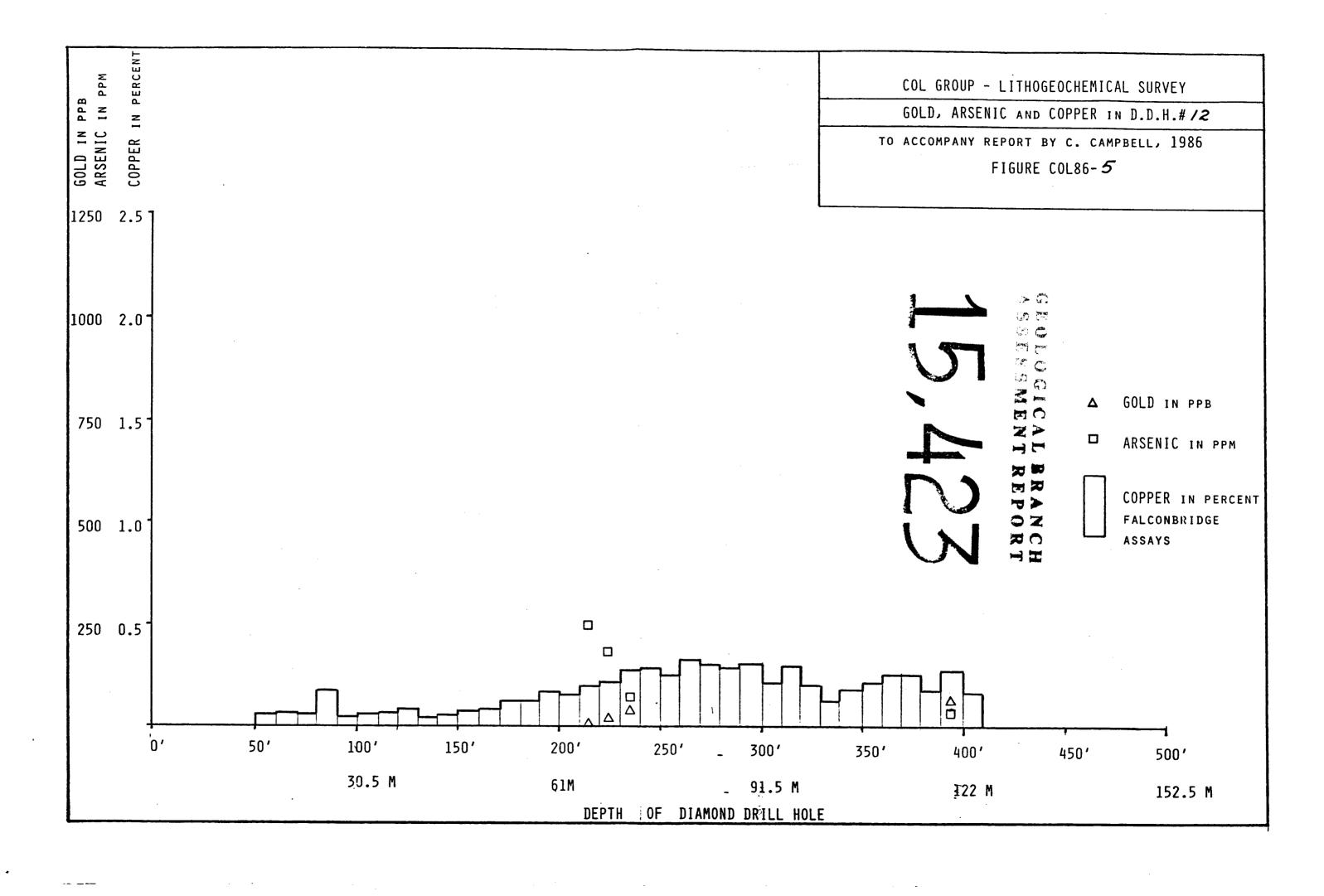
This sample consists of fragments of older quartz veins, ground up monzonite all cemented and replaced by by carbonate; some of the carbonate is dark colored and has high relief and is likely siderite. Voids lined with drusy carbonate crystals, along with 0.5mm to 3mm veins of calcite are the last minerals deposited.

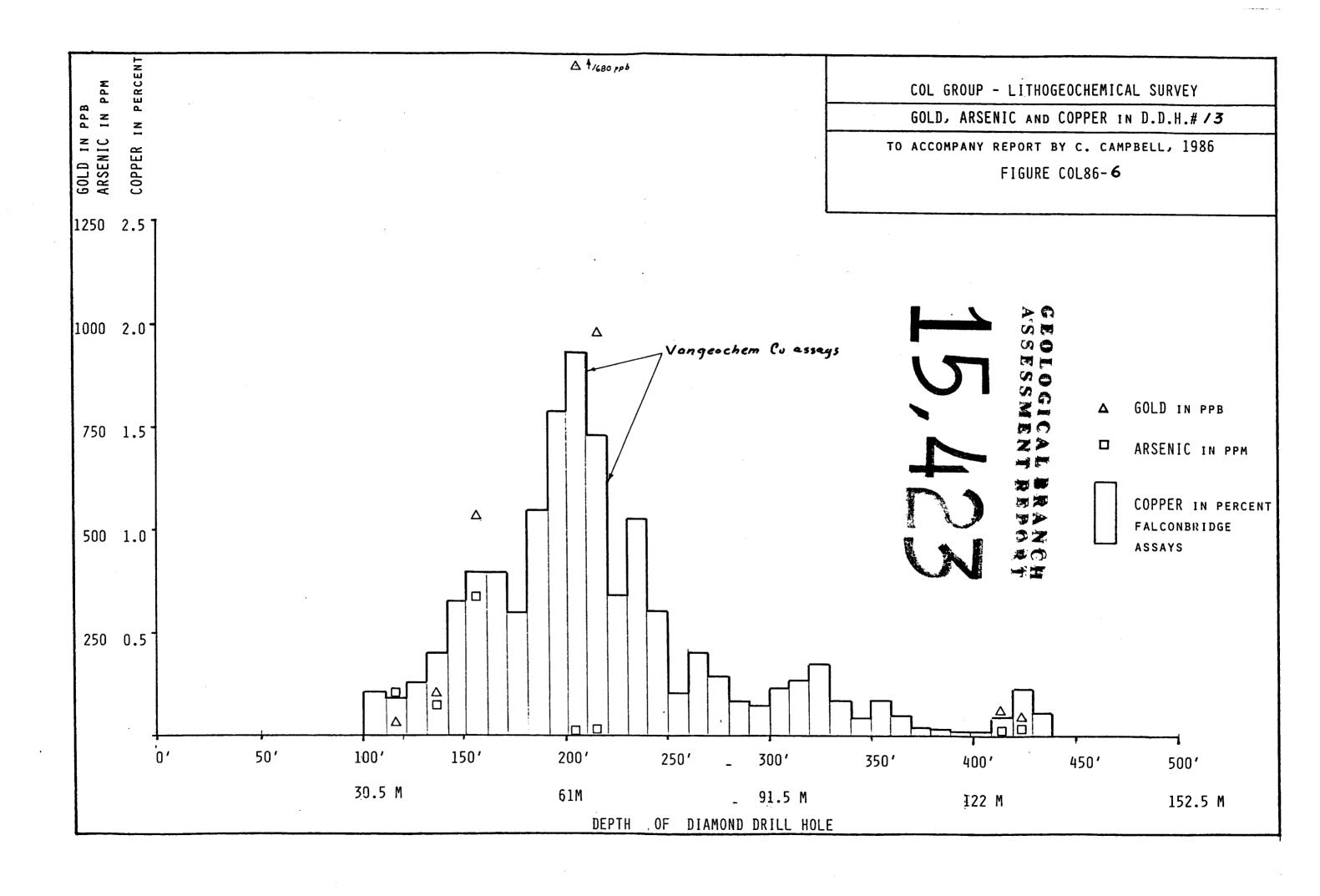
Carbonate	75%
Quartz	18%
Feldspar	5%
Hematite	1%
Apatite[?]	1%
Voids	1%

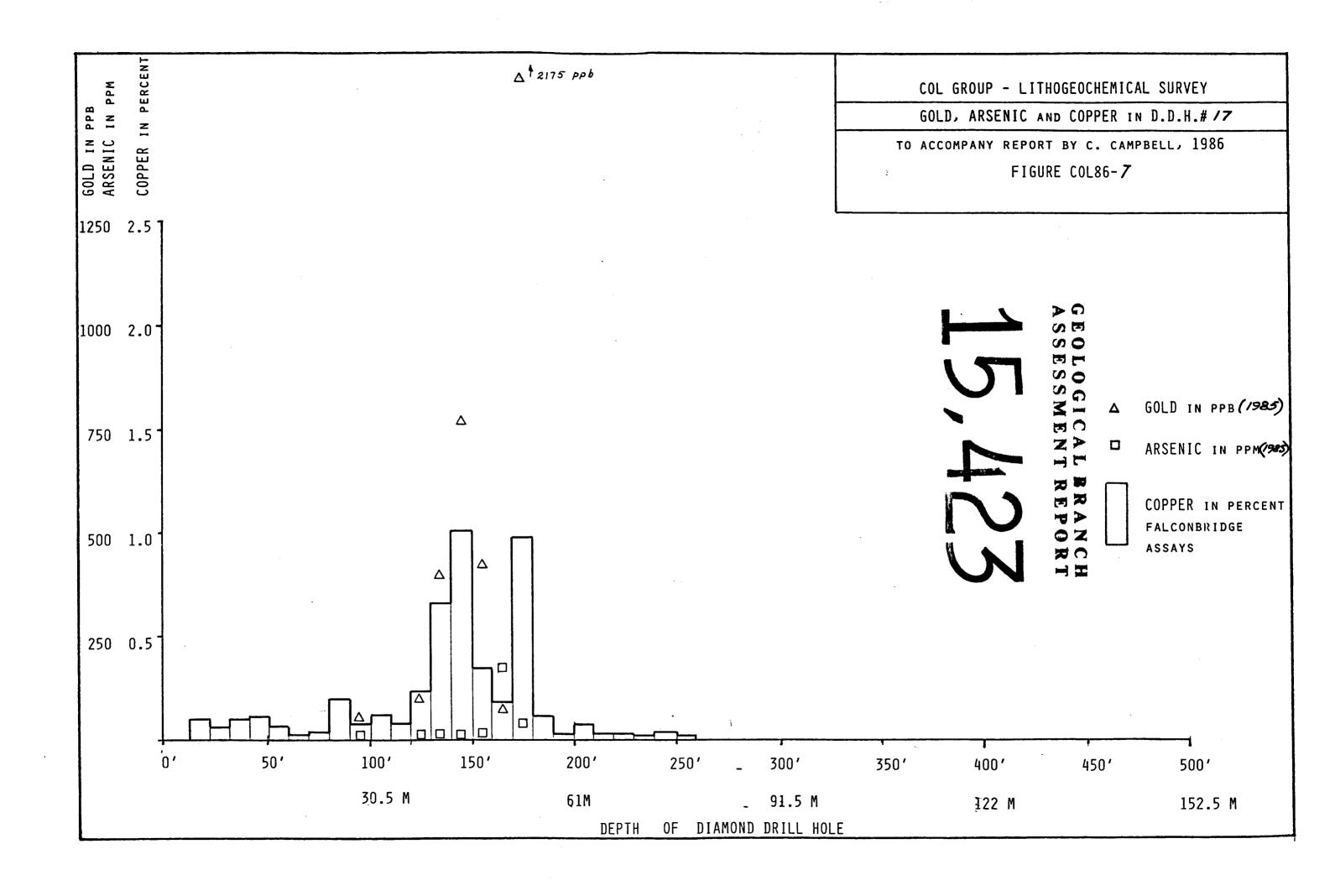
Quartz fragments up to 2mm by 6mm are not rotated but cut f.g. carbonate. The fragments consist of .05 to .25mm grains of quartz [from grinding?] and contain no alteration. Other quartz fragments contain 90% dark carbonate with high relief.


Late veins are calcite.


17-180 QUARTZ VEINS


This sample consists of two 1 cm wide quartz veins with a slice of brecciated and highly altered quartz monzonite sandwiched between the veins.


Quartz	50-60%
Carbonate	20-25%
K-spar	8-10%
Plagioclase	5-6%
Chlorite	3-5%
Sericite	3-5%
Apatite	1%
Hematite	1%


The quartz veins are layered [sheared?] with extremely fine grained to 1 mm grains of quartz patchily replaced by carbonate; they contain no sulfides. The wall rock is strongly altered to quartz [20%], the K-spar is patchily altered to carbonate and clay with the plagioclase being sericitized. Chlorite exists as fine grained areas in the wall rock. The feldspars are partly mermakitic. Late quartz- carbonate veins to 0.5 mm cut older quartz veins and wall rock.

