LITHOGEOCHEMICAL SURVEY

OF

THE KAEL \#2 MINERAL CLAIM

OMINECA MINING DIVISION

> | | NTS: $93 N / 2 W, 2 E, 7 W, 7 E$ |
| ---: | :--- |
| Lat 55° | North, $124^{\circ} 45.2^{\prime}$ West] |
| 14.8^{\prime} | |

Owner	Colin Campbell
Operator	Colin Campbell
Author: Colin Campbell	December, 1986

GEOLOGICALRRANCH ASSESSMRNTREPORT 15,423

TABLE OF CONTENTS
Page No.1
2.0 Introduction 2
2.1 Claim Status 2
2.2 Topography and Vegetation 2
2.3 Geology 5
2.4 Previous Work 5
3.0 Lithogeochemical Survey 6
3.1 Field Methods 6
3.2 Analytical Methods 6
3.3 Results and Interpretation 7
3.4 Recommendations 7
Bibliography 8
Appendix A Statement of Qualification 9
Appendix B Statement of Costs 10
Appendix C Analytical Certificates 11
Appendix D Drill Hole Locations 17
Appendix E Petrography 19
Illustrations
Figure 1 Location on Map of B.C. 3
Figure 2 Claims Map 4
COL 86-3 Location of D.D.H. pocket
COL 86-4,-5,-6,-7,-8. Gold, Arsenic and Copperin D.D.H..pocket
1.0 SUMMARY

The Kael \#2 mineral claim, consisting of 20 units, is located five kilometres north of the west end of Chuchi Lake in the Omineca Mining Division. The claims were grouped as the Col Goup and cover high grade copper mineralization found by Colin Campbell in 1969. Diamond drilling by Falconbridge Nickel, in 1970, 1971 and 1972, indicates two million tons of 0.6% copper in zone "A".
Sampling of Zone "A" in 1985 found up to 1.68 ppm gold across ten feet associated with the higher grade copper mineralization. Further work, including sampling of the remaining core and soil sampling for gold, is recommended.

2.0 INTRODUCTION

The Col Group, consisting of the Kael \#2 Mineral Claim [20 units], is located five kilometres north of the west end of Chuchi Lake in the Omineca Mining Division. Access to the property is by helicopter from Ft. St. James or by logging road to within five miles then by boat and trail. A "cat" tote road, now cut out as a trail, provides access from the west end of Chuchi Lake.

During October of 1985 sixty ten foot sections of drill core were sampled to check the potential for economic gold mineralization associated with previously known copper zones. Three thin sections from a bornite quartz vein were also examined.
2.1 CLAIM STATUS
$\frac{\text { Claim }}{\text { Kael } \# 2} \frac{\text { Name }}{6531} \frac{\text { Record }}{20} \frac{\text { No. }}{20} \frac{\text { Units }}{\text { Sept. } 28,1988}$

The Kael \#2 Mineral Claim was grouped as the Col Group on July 5,1985 and is owned and operated by Colin Campbell.

2.2 TOPOGRAPHY AND VEGETATION

The Col Group covers a south slope with elevations ranging from 1000 to 1300 metres. Vegetation consists of an open growth of older pine and spruce with balsam at higher elevations and "burned" areas of dense alder and young pine.

2.3 GEOLOGY

The col Group covers a contact between syenite and monzonite of the Hogen Batholith and Takla Group volcanic rocks. Mineralization consists of quartz lenses with locally abundant bornite and as bornite and lesser chalcopyrite disseminated in altered potash feldspathized mesocratic monzonite [Garnett,1971].

2.4 PREVIOUS WORK

The col Group was found by Colin and Heather Campbell, in 1969, following a silt geochemical survey. In 1970 it was optioned to Falconbridge Nickel. Falconbridge fron 1970 to 1972 cut lines ran I.P., E.M.16, magnetometer, soil geochemical and geologocal surveys over the Group.

Diamond drilling by Falconbridge consisted of 54l' XRPS, 4,694' AQ, and 2,506' BQ, indicating by my calculations, 2.72 million tons of 0.54% in zone "A". An independant calculation by Canex Placer Limited states "We find that 2,000,000 tons of 0.6% cu are indicated by diamond drill holes in the anomaly area" [Smith, 1973].

From 1974 to 1984 the property was been maintained on a standby basis by Colin Campbell. Assessment work was carried out by line and trail cutting and by drilling and blasting several trenches.

Sampling by Campbell in 1984 found up to 2.175 ppm Au with l\% $C u$ across ten feet and prompted the current program.

3.0 LITOGEOCHEMICAL SURVEY

Sixty ten foot sections of drill core were sampled to check for gold mineralization associated with the higher grade bornite quartz mineralization and to check areas of silicification or "quartz-alteration" and pyrite zones noted in Falconbridge drill logs. The relationship of gold to copper and arsenic on the property is of secondary importance. The results of the survey are plotted on Figures COL $86-4,-5,-6,-7,-8$.

Falconbridge did a general transit survey of grid lines and drill holes on the Col Group; the Kael \#2 legal corner post was tied into these grid lines by chain and compass; all other locations were taken from Falconbridge maps and drill logs. The drill hole locations for the present sampling are plotted on Figure COL 86-3. Location, bearing, dip and purpose of each hole sampled is included in Appendix D.

3.1 FIELD METHODS

The core sampled, stored in a core shack on the property, was in relatively good condition; it had been split and one half assayed for copper by Falconbridge. One half of the remainder was seleoted [not quartered] resulting in two to two and one-half kilograms of material per ten foot section. The samples were placed in polyethylene bags and sent to Vangeochem Laboratory in North Vancouver for analyses. Hand specemens were kept for each sample interval.

3.2 ANALYTICAL METHODS

All samples were analyzed by Vangeochem Laboratory Ltd. Analyses for gold was by atomic absorption and for other elements by I.C.P.; detailed procedures are included with the analytical certificates in Appendix C.

3.3 RESULTS AND INTERPRETATION OF THE LITHOGEOCHEMICAL SURVEY

Gold occurs associated with copper mineralization on the col Group. Up to 1.68 ppm gold across ten feet was found in Zone "A". Anomalous arsenic values, up to 251 ppm, are found in fringe zones to high grade copper mineralization but drop to less than 10 ppm in the zone itself.

No gold was found in the pyrite fringe zones nor has any been found in silicified or "quartz alteration" zones sampled.

3.4 RECOMMENDATIONS

The remaining core from Zone "A" should be sampled and analyzed for gold. The large copper soil anomalies [Band 1970] should be resampled and analyzed for gold.

Colin Campbell

Band, 1970. GEOCHEMICAL REPORT $=$ COL CLAIMS, FALCONBRIDGE NICKEL MINES. Feb. 10,1971.

Garnett, 1971. GEOLOGY, EXPLORATION AND MINING IN BRITISH COLUMBIA,B.C. Dept. of Mines p.196.

Smith, 1973. PERSONAL LETTER, September 24,1973.

I, Colin Campbell, of the Town of Courtenay, in the Province of British Columbia, do hereby state that:

1. I am a geologist.
2. I graduated from the University of British Columbia in 1966 with a B.Sc. Degree in Honours Geology.
3. I have worked steadily in mining exploration in British Columbia and Yukon Territory from 1966 to 1973; intermittently from 1974 to 1983 and steadily from January 1984 to the present.
4. I personally carried out, or supervised, the Lithogeochemical Survey on the Kaed \#2 Mineral Claim.
5. I own the Kiel \#2 Mineral Claim.

Colin J. Campbell.

STATEMENT OF EXPENDITURES $=$ KAEL \#2

1. WAGES Colin Campbell

Field Oct. 24,25,26,27,28,29,1985
Petrographic work June l7,1986
Report Dec. 17,19,June 18,1986
Ten days at 240.00 per day 2400.002400 .00
2. TRANSPORT

Aircraft 2.4 hours at 100.00240 .00
Courtenay to Vanderhoof rtn.
0.5 trip
314.00
$554.00 \quad 554.00$
3. GEOCHEMICAL ANALYSIS

60 rock	preparation at 3.00	180.00		
	Au analyses at 6.50	390.00		
	I.C.P.	at 6.50	390.00	
	Cu assays	at 5.00	$\underline{10.00}$	
			970.00	970.00

4. FOOD AND LODGING

6 days at 50.00300 .00300 .00
5. DRAFTING PRINTING AND COPIES
264.00
264.00

TOTAL $\$ 4488.00$

Colin Campbell

5.2 ANALYTICAL PROCEDURE FOR GOLD IN ROCK SAMPLES

Analytical procedure used to determine gold by fireessay method and detected by atomic absorption spec. in goelogical samples.

Method_ofaSample_Preparation

(a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength $4^{\prime \prime} \times 6^{\prime \prime}$ Kraft paper baga or rock samples sometimes in $8^{\prime \prime} \times 12^{\prime \prime}$ plastic bags.
(b) The dried soil and silt samples were sifted by hand using a $8^{\prime \prime}$ diameter 80 -mesh stainles steel sieve. The plus 80 -mesh fraction was rejected and the minus 80mesh fraciton was transferred into a new bag for analyais later.
(c) The dried rock samples were crushed by using a jew crusher and pulverized to $100-m e s h$ for finer by using a diac mili. The pulverized samples were then put in a new bag for later analysis.

Method_of_Extrection

(a) 20.0 - 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into fusion pot.
(b) A Flux of litharge, soda ash, silica, borex, flour, or potassium nitrite is added, then fused at 1900 degrees F and a lead button is formed.
(c) The gold is extract by cupellation and part with diluted nitric acid.
(d) The gold bead is aved for measurement later.

Method_of_Detectign
(a) The gold bead is disolved by boiling with sodium cyanide, hydrogen peroxide and ammonium hydroxide.
(b) The gold analyses were detected by using a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values in parta per billion were calculated by comparing them with oet of gold standarda.

The analysea were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory steff.

REPORT MMBER：85－25－016
JOB MNBER： 85555

VANGEOCHEM LAB LIMITED

main office
1521 PEMBERTON AVE
NORTH VANCOUVER，B．C．V7P 2S3 （604）986－5211 TELEX：04－352578

MM CLIN DRPREL
PABE 3 OF 3

SAMPLE WD．D．H．\＃FOOTAGE

Cu

＊

09231	19	$166-180$	--	<5
ロ9232	19	$190-200$	--	40
09233	19	$200-210$	--	<5
09234	15	$110-120$	--	<5
09235	15	$120-130$	--	100

09236 15

130－140
$-\quad 70$
Q9こ37 15
370－380
－－
170
『9ころ8 15
440－450
－－
ロヲきろ9 12
80－125
－－
く 5

ロ9ごロ 12
210－220
－－

09こ41 12
220－230
－－
20
Q9E42 12
230－240
－－
40
『9e43 12
390－400
－－
55
Q9ご44 9
50－60
－$\quad 750$.022

092459
80－90
－－
$48 \square$.014

09246	9	130－140	－－	$1 \Xi \varpi$
09247	10	140－150	－－	こ5
09248	10	210－220	－－	15
09249	10	220－230	－－	＜ 5
Q9こ50	11	80－90	－	110

VANGEOCHEM LAB LIMITED

MAIN OFFICE
1521 PEMBERTON AVE
NORTH VANCOUVER，B．C．V7P 253 （604）986－5211 TELEX：04－352578

SAMFLE \＃D．D．H．\＃FOOTAGE

ロ9こ11 21
の9き1き 31
09き13 22
ロ9ジ4 25
0921513
470－480
－－
－－
Cu
＊
Au
ppb

EBZ
く5
30
0－19
110－120
－－
era

130－140
－－
102
Q9こ16 13

150－160
－－
580
ロ9E1日 13
め9219 13
200－210
1.87
1.46

1690／
990
ロ9ここの 13
410－420
－－
60
タ9ごき1 13

420－430
－－
40
Q9Eをこ 16
160－170
－－

ロヲごろ 16
－－
ロ9モこ4 16
曰9e25 16
－
－－
－－

ロヲジも 16
440－450
－－
35
ロッジ7 16
450－462－－
100－110－－
110－120－－
120－130－－
300－310

430－440

く든
ロヲジロ 18
ロッきこヲ 18
ロ9ジロ 18

421
30
32

14.

VANGEOCHEM LAB LIMITED
 MAIN OFFICE
 1521 PEMBERTON AVE． NORTH VANCOUVER，B．C．V7P 2S3 （604）986－5211 TELEX：04－352578
 BRANCH OFFICE 1630 PANDORA ST VANCOUVER，B．C．V5L 1 L6 （604）251－5656

SAMFLE \＃D．D．H．\＃FOOTAGE

Cu	Au
$\%$	$p p b$

0906	21	190－200	－	＜ 5
09076	11	150－160	－－	＜ 5
09077	27	290－300	－－	＜ 5
09078	28	340－350	－－	＜ 5
09079	28	350－360	－－	10
09080	29	90－100	－－	10
09081	29	88－89	－－	＜ 5
09082	29	110－120	－－	E
09083	30	160－170	－－	＜ 5
09084	31	220－230	－－	5

09885	31	350－360	－－	く5
09ご込	21	140－150	－－	＜5
Q9こめこ	21	150－160	－－	20
ロ9こめ3	21	160－170	－－	（5）
09804	21	170－180	－－	く5

09205	21	$180-190$	--	15
09207	21	$220-230$	--	10
$09 E \square 8$	21	$410-420$	--	510
09209	21	$420-430$	--	540
$09 \approx 10$	21	$440-450$	--	$7 E \square$

MAIN OFFICE： 1521 PEMEERTON AVE．N．VANCOUVER B．C．V7P 253 PH：（604）986－5211 TELEX：04－35257E BRANCH OFFICE： 1630 PANDORA ST．VANCOUVER E．C．V5L $1 \mathrm{~L} 6 \mathrm{PH}:(604) 251-5656$

ICAF GEOCHEMICAL ANALVSIE

I5：INSUFFICIENT SARPLE，MO：NOT DETECTED，$-z$ NO！AKALYIED

COMPANY：COLIN CAMPBELL
ATTENTION：COLIN CAMPBELL PROJECT：

REPORT\＃：85－25－016
JOB\＃：85555
INVOICE\＃： 9151

DATE RECEIVED： $85 / 11 / 0 B$
DATE COMPLETED： $85 / 11 / 15$
COPY SENT TO：COLIN CAMPBELL

PAGE 1 OF 2

		-15						
플			Fisism	ップッ～～～	ためがN	バッゥか	－9\％mid	ヘッヅ
＝${ }^{\text {cia }}$						M里是定茾		을오울웃
$\Rightarrow \frac{5}{2}$					∞	$-0-\infty$	\cdots ¢员め里	是－0m1
\％ 5	으がか	罭盗足三男			がら玉	或ず各に	のいがった	たがm．
ふ號		읏율읓오을		是いがい			是～是兵～	一家家是，
	m웃윷율		是一显川是	定是的mom		の＊の을	잉융슨	$\rightarrow-2$
－\％			블을으을					잋응․․
2あ								
＠${ }_{\text {E }}^{\text {a }}$	ッニーロ゚べ	セ゚゚ッツご			あのこにが	ごペのご		ズッロ゙
\cdots	으으융	끄ํ우ㅇㅡㅜ	옹ํㅇํㅇํ	ํッフニニ		ヘニニニ』	쯩ํำ	$\because \cong$ ¢
※즐	m	ッッ～のn	O		かロニ～～	がが心m	\cdots－	Nxom－
\％	훙ㅎ․	흥ㅎㅎ	훙훙	훙ㅎ․	웅ㅎㅇ	훙ㅎㅎ	흥․․	후후․
足喜	$\overbrace{}^{\sim-m-}$	－	へッがいか		$\because \pm ッ$－	ぺッざ边	のMローが	がいが，
줄 츙								
¢	윾ㄲㄲ	융ํ웅	$\underset{\sim}{\circ}$	둑응	¢08\％	$\underset{\sim}{\sim}$	尔ご号	
\triangle m	ッッッッ	ㅍํッニ	$\because \because \sim \sim \sim$		ニッキッニ゙			
世	O			흥후웅 －ふ～～～～～	$\begin{aligned} & \text { Ninn } \\ & \text { minn } \end{aligned}$	$\underset{\sim}{\circ}$		
己这	号がよいこ		为高高					管采㗊察
				－ロニャッ			～8～～す	かあった。
¢ ${ }^{\text {c }}$	－- －	9	ニッ゚ロッツ	\cdots		のニッの○	$m=\sim=\sim$	ニニーロー
8\％			こ®～®	$=0$	－¢ ¢ \％	「～「	\cdots	ํッワー
¢m	～			ํํํッか	Mosp	$\because 50000$		
¢ ${ }_{\text {c }}^{\text {ci }}$						¢是是是家	是い家员呈	
¢ ${ }_{\text {\％}}^{\text {\％}}$	ッロッカッ	FO\％5is	～第以om	F品以思か	ロッジッ	응がらニ	がッが滘	\＃罥禺が
루를								
$4{ }_{4}^{6}$		\cdots N员是显	윷心～m晨			－\％＝		ํㅜㅇㅇำ
\＃m	ํッツ゚ッ			ッたがった		우웅․․․․	思忒がか	¢0\％
¢	ロッヅ＊	$\because \pm 9 ?$	$\longrightarrow-\infty$	\cdots－	ツonツM	$\because \square \mathrm{ar}$	∞	$\pm \pm \infty$
		，						
管								
宸		夢駆管㻤落	푸웅웅우웅		్ㅐㅇ్ㅇ్ㅜㅇ్ㅑ웅		웅웅웅 웅ㅎㅇㅇㅎㅇㅇㅇㅇ	

	Salple maine	$\begin{aligned} & \text { A6 } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { AL } \\ \mathbf{Z} \end{gathered}$	$\begin{aligned} & A S \\ & P P K \end{aligned}$	$\begin{aligned} & \text { AU } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & B A \\ & P P M \end{aligned}$	$\begin{aligned} & 81 \\ & \text { PPM } \end{aligned}$	$\underset{i}{C A}$	$\begin{aligned} & \text { CD } \\ & \text { PFM } \end{aligned}$	$\begin{aligned} & C 0 \\ & P P K \end{aligned}$	$\begin{aligned} & C R \\ & \text { PPK } \end{aligned}$	CU PPK	$\begin{gathered} \text { fE } \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & k \\ & z \end{aligned}$	$\begin{gathered} \text { M6 } \\ \text { I } \end{gathered}$	$\begin{aligned} & \text { MH } \\ & P P M \end{aligned}$	$\begin{aligned} & \text { MO } \\ & \text { PPY } \end{aligned}$	$\begin{gathered} \mathrm{MA} \\ \mathbf{I} \end{gathered}$	$\begin{aligned} & M 1 \\ & P P K \end{aligned}$	$\begin{aligned} & p \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{PB} \\ & \mathrm{PPM} \end{aligned}$	$\begin{aligned} & P D \\ & P P K \end{aligned}$	$\begin{aligned} & \text { PI } \\ & \text { PPH } \end{aligned}$	$\begin{aligned} & \text { SB } \\ & \text { PPK } \end{aligned}$	$\begin{aligned} & \text { SM } \\ & \text { PPn } \end{aligned}$	SR PPM	$\begin{aligned} & \mathrm{U} \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { PM } \end{aligned}$	${ }_{\text {PPM }}^{l n}$	
	09249	. 6	.83	1	mo	30	N0	. 99	. 3	10	35	517	2.28	. 09	1.11	334	2	. 01	14	. 14	15	no	no	no	2	52	5	k ${ }^{\text {d }}$	38	
	09750	. 1	. 08	WD	ND	13	ND	. 36	. 1	1	10	355	. 47	. 05	. 09	116	MD	.01	2	. 01	5	no	N0	no	WD	14	ND	W	7	
	09202	. 3	. 40	102	ND	BO	HD	2.58	. 3	10	28	705	3.09	. 15	1.34	741	3	. 01	14	. 18	10	ND	kD	ND	nd	71	7	N0	41	
	09203	. 2	. 72	40	ND	359	ND	3.21	. 4	13	65	332	3.82	. 13	2.13	1000	2	. 01	32	. 16	13	no	W0	ND	ND	104	6	7	52	
	09204	. 3	. 88	7	Nid	173	3	2.72	. 5	14	74	302	3.76	. 13	2.24	966	3	. 01	33	. 14	16	MD	MD	ND	no	76	10	1	69	
$)^{1}$	09205	. 2	. 33	55	No	479	${ }^{*}$	3.04	.6	14	24	685	4.35	. 14	1.93	964	5	. 01	21	.17	15	nd	ND	no	\%	98	5	ND	63	
	10920\%	. 2	. 49	12	M	207	N0	2.96	. 1	15	46	450	4.13	. 15	1.96	957	3	. 01	29	. 19	14	MD	KD	W	x	129	5	N0	56	
	$\underline{09210}$	4.3	. 83	8	ND	53	10	1.12	. 5	11	41	8754	2.51	. 10	. 87	249	3	. 01	18	. 19	13	K0	ND	ND	3	43	W0	N0	28	
	05721	1.2	. 44	3	ND	29	N	. 60	. 1	8	15	1977	2.72	.12	. 45	184	2	. 01	7	. 22	13	ND	0	ND	2	14	10	N0	31	
	09215	. 9	1.03	101	KD	23	ND	1.51	. 5	12	120	2151	2.61	. 10	1.23	307	3	. 01	29	. 15	11	no	ND	NO	3	61	,	M	31	
	09216	1.6	. 54	76	ND	16	N0	1.39	.4	8	66	4960	1.37	.10	. 78	230	8	. 01	17	.15	9	\%	ND	3	2	60	1	NO	19	
	09224	. 3	. 44	MD	n ${ }^{\text {d }}$	297	5	3.22	. 4	15	45	357	3.64	. 15	1.94	909	2	. 01	26	. 19	11	\% ${ }^{\text {d }}$	ND	Ni	ND	164	8	ND	50	
	00226	. 3	. 36	8	\ldots	285	NV	2.94	. 4	15	29	620	3.60	.15	2.00	839	17	. 01	30	. 19	12	no	NO	ND	ND	152	4	緼	49	
	09230	1.2	1.06	7	W	26	10	1.29	. 5	14	146	5046	2.52	. 10	1.32	292	128	. 01	30	. 10	12	MD	N0	4	5	43	3	H	33	
	09233	. 6	. 46	M	M ${ }^{\text {d }}$	15	ND	1.54	.1	4	49	1598	1.16	. 13	. 17	506	49	.10	3	. 05	8	$N 0$	no	MD	ND	57	1	ND	28	
	0923	. 8	. 46	*	K	27	N0	1.08	. 2	6	33	1567	1.64	. 09	. 51	226	7	. 01	10	. 12	12	no	W0	NO	2	39	5	no	17	
	09235	1.0	. 61	18	n	30	N0	1.23	. 3	8	54	2125	2.63	. 11	. 68	237	14	. 01	14	. 18	12	N0	NO	no	2	41	4	ND	21	
	09236	. 7	. 44	108	ND	31	ND	3.76	. 3	6	35	2161	1.49	. 10	. 57	586	23	. 01	10	. 08	12	ND	M0	M ${ }^{\text {d }}$	10	102	7	KD	19	
	09241	. 8	. 63	192	no	57	ND	3.32	. 2	9	43	1833	2.35	. 13	. 68	642	10	. 01	12	. 16	11	Mo	ND	3	2	91	7	10	30	1
	09247	. 8	. 57	64	KD	38	10	5.38	. 3	8	9	3316	1.69	. 09	. 59	951	17	. 01	1	.10	10	0	MS	10	2	117	4	no	23	$\stackrel{\sim}{\square}$
	09245	. 9	. 79	28	ND	67	no	. 67	. 3	10	38	3416	1.84	. 09	. 47	150	9	. 01	12	.07	9	K	N0	18	1	48	no	WD	28	0
	Heptetiow linit	. 1	. 01	3	3	1	3	. 01	. 1	1	1	1	. 01	. 01	. 01	1	1	. 01	1	. 01	2	3	5	2	2	1	5	3	1	

89,860.23	$\begin{aligned} & \text { Started May 18, } \\ & \text { completed } \frac{\text { May 22, }}{256^{\prime}} \\ & \hline \end{aligned}$					
51,394.00						
3520.27 ft						
$228^{\circ} 00{ }^{\prime}$						
-62 ${ }^{\circ} 02 \cdot 256^{\prime}$						

FALCONBRIDGE DIAMOND DRILL RECORD property
CHUCHI LAKE OPTION P.N. 161

17-178 ALTERED QUARTZ MONZONITE WITH QUARTZ CARBONATE BORNITE VEIN

Although fresh looking in hand specimen this sample is a sheared and strongly altered intrusive rock, especially near the 2 to 3 mm wide quartz carbonate bornite veins.
K-spar $\quad 40 \%$
Plagioclase 20%
Biotite 10-12\%
Quartz 6-10\%

Carbonate 6-8\%
Bornite $5-6 \%$
Chlorite 5\%
Sericite 5\%
Fe oxide $\quad 1-2 \%$
Actinolite \quad \%

The K-spar is patchily altered to carbonate and kaolinized. Plagioclase is sericitized some with dusty red [exsolved hematite?]. All are fractured and cut by the late quartz veins. Biotite is fresh [after horneblende?] and seems concentrated near quartz veins. Actinolite occurs as several lmm felted needle like masses.

Sequence of deposition in the veins is quartz, carbonate then bornite. Bornite also occurs with biotite disseminated throughout the wall rock.

Appendix E

17-168 BRECCIATED QUARTZ CARBONATE VEIN
This sample consists of fragments of older quartz veins, ground up monzonite all cemented and replaced by by carbonate; some of the carbonate is dark colored and has high relief and is likely siderite. Voids lined with drusy carbonate crystals,along with 0.5 mm to 3 mm veins of calcite are the last minerals deposited.

Carbonate	75%
Quartz	18%
Feldspar	5%
Hematite	1%
Apatite[?]	1%
Voids	1%

Quartz fragments up to 2 mm by 6 mm are not rotated but cut f.g. carbonate. The fragments consist of .05 to .25 mm grains of quartz [from grinding?]and contain no alteration. Other quartz fragments contain 90% dark carbonate with high relief.

Late veins are calcite.

17-180 QUARTZ VEINS

This sample consists of two l cm wide quartz veins with a slice of brecciated and highly altered quartz monzonite sandwiched between the veins.

Quartz	$50-60 \%$
Carbonate	$20-25 \%$
K-spar	$8-10 \%$
Plagioclase	$5-6 \%$
Chlorite	$3-5 \%$
Sericite	$3-5 \%$
Apatite	1%
Hematite	1%

The quartz veins are layered [sheared?] with extremely fine grained to 1 mm grains of quartz patchily replaced by carbonate; they contain no sulfides. The wall rock is strongly altered to quartz [20\%], the K-spar is patchily altered to carbonate and clay with the plagioclase being sericitized. Chlorite exists as fine grained areas in the wall rock. The feldspars are partly mermakitic. Late quartz- carbonate veins to 0.5 mm cut older quartz veins and wall rock.

