86-917-15432

CLAIMS WORKED

CLAIM	TYPE	LOT	RECORD	ANNIVERS	ARY
ELANORE	R.C.G.	951	369	MARCH	28
IRON COLT	R.C.G.	795	367	MARCH	23
VIKING	R.C.G.	4416	314	SEPTEMBE	R 1
GEORGIA	R.C.G.	928	165	AUGUST	25
POTT	R.C.G.	733	363	MARCH	9
CALEDONIA/PUTNAM	R.C.G.	734/4917	364	MARCH	9
BUCKEYE	R.C.G.	534	365	MARCH	9
SILVERINE	C.G.	732			
EVENING STAR	C.G.	801			
GEORGIA FRACTION	C.G.	4668			
LA BELLE	C.G.	729			
MASCOT/KAPAI FR.	R.C.G.	1344/11012	776	JANUARY	16
ST. LAWRENCE	R.C.G.	1197	777	JANUARY	16
COPPER JACK/MICHIGAMI	(E /				
G.B. ARCHITECT FR.	R.C.G.	1185/1294/1707	778	JANUARY	16
NORTH STAR/TIP TOP	R.C.G.	797/798	779	JANUARY	16
KAY	M.C.	-	774	JANUARY	23
Alberta	R.C.G.		801	JANUARY	25

LOCATION: 49°05,4/117°46,4 47.2' OWNERS: M. & C. DELICH, M.M. BUTORAC, C. SIDECO, GALLANT GOLD MINES LTD. OPERATOR: GALLANT GOLD MINES LTD. PROJECT GEOLOGIST: J.L. HARDY OF MARK MANAGEMENT LTD.

GALLANT GOLD MINES LTD. REPORT ON THE GEORGIA PROPERTY TRAIL CREEK MINING DIVISION BRITISH COLUMBIA N.T.S. 82 F/4

SUMMARY

The Georgia property consists of 20 modified grid units, four crown grants and reverted crown grants located in the Rossland Gold camp in the West Kootenay district of S.E. British Columbia. It lies within two km of the former Le Roi-Centre Star-Josie systems. Still owned by Cominco, between 1890 and 1936 this produced about 6.2 M/T of ore grading 0.47 oz/t Au, 0.6 oz/t Ag, and 1% Cu. Up to 1941, gold was produced on a limited scale on several of the Georgia claims and old reports suggest that extensions to the Le Roi system exist on the Georgia property.

In 1982 Gallant Gold Mines Ltd. completed a preliminary field examination and literature review. This work confirmed that economic grades of gold exist at least locally on the claims. The following year, Gallant optioned the crown grants and seven of the reverted crown grants and by 1984 had acquired the property as it exists today. This was the first time that the ground had been assembled as a package and explored using modern geologic mapping, geochemical sampling and geophysical techniques.

Preliminary geophysical, geochemical and geological surveys in 1983 and 1984 investigated the potential of the property for vein, stockwork-type and stratabound mineralization. The results indicated that several strong mineralized veins and vein systems are present, and at least locally carry values up to 0.724 oz/t Au with wallrock values up to 0.340 oz/t Au. VLF-EM conductors are at least partly coincident with known vein systems, and extend beyond into covered areas.

The 1986 program carried out in late May, June and early July consisted of approximately 30 line km of Genie EM and magnetometer and about 4 line km of I.P. over what was believed to be the most geologically favourable area. These were followed by 1:2000 scale geological mapping over the entire property and 1:1000 scale geological and rock chip sampling over areas of interest. A 2277 ft (694 m) diamond drill program was completed in 7 holes; all core was analyzed for f.a.a. Au and 30 element ICP.

Genie anomalies (for the most part at least broadly coincident with previous VLF results) are typically narrow (<5 m width) but extend over strike lengths up to 500 m and dip nearly vertical. The Columbia-Kootenay, a past producer, currently owned by Cominco (and surrounded by Gallant ground) is marked by an excellent conductor 750 m long and up to 15 m wide. Two shorter and narrower conductors on Gallant ground are sub-parallel to that anomaly, and are at least partly coincident with outcropping massive suphides.

11

4

I.P. results provide broad zones of high chargeability/low resistivity with highest intensity centres up to 40 m displaced from the Genie centres. A significant high with 300 m strike length and up to 100 m wide lacks a corresponding Genie response.

Drill testing of the best selected anomalies revealed up to 15% finely disseminated iron sulphides over widths up to 7 m (20 ft), and massive sulphide veinlets from several inches to 1 m (3.0 ft) in width. Best intersection was 0.131 oz/t Au over a 0.7 m (2.3 ft) massive pyrrhotite vein in hole G86.4.

Mineralization on the Georgia claim is related to the aureole of intrusive activity around the Rossland monzonite. The targets tested lie within a favourable environment for precious metal accumulations of mesothermal type, as evidenced by: high disseminated iron sulphide content, anomalous As, local high grade intersections in massive sulphide veins/wallrocks, pervasive silicification, etc. Drilling to date however, has failed to indicate the existence of economic quantities of precious metals. Several geophysical anomalies are as yet totally or partially untested. TABLE OF CONTENTS

SUM	MARY	i
1.	INTRODUCTION 1.1 Location and Access 1.2 Physiography 1.3 Claim Information 1.4 History and Previous Work 1.5 Work by Gallant Gold Mines Ltd. Prior to 1986 1.6 1986 Work by Gallant Gold Mines Ltd.	1 1 4 6 8 8
2.	<pre>GEOLOGY and SAMPLING 2.1 Regional Geology 2.2 Economic Geology of the Rossland Camp 2.3 Property Geology 2.3.1 Elise Formation: Siltstone Map Unit 2.3.2 Elise Formation: Tuff Map Unit 2.3.3 Elise Formation: Augite Porphyry Map Unit 2.3.4 Rossland Monzonite Map Unit 2.3.5 Nelson Granodiorite Map Unit 2.3.6 Dykes 2.4 Property Mineralization 2.4.1 Georgia 2.4.2 Evening Star 2.4.3 Buckeye 2.4.4 Silverine 2.4.5 Iron Colt 2.4.7 Mascot</pre>	10 10 13 15 15 17 17 18 20 22 23 24 25 25 26 27
3.	GEOPHYSICS 3.1 GENIE-EM Results 3.2 I.P. Results 3.3 Magnetometer Results	28 28 28 29
4.	DIAMOND DRILLING 4.1 Logistics 4.2 Results of the Program	30 30 30
5.	DISCUSSION AND CONCLUSIONS	34
6.	BIBLIOGRAPHY	35
7.	STATEMENT OF QUALIFICATIONS	37
8.	COSTS STATEMENT	38

FIGURES

FIGURE	1	CLAIM AND LOCATION MAP	2
FIGURE	2	GENERALIZED GEOLOGY OF THE ROSSLAND AREA as shown	7
FIGURE	3	GEOLOGY OF GRID 1, SE AREA 1:2000 po	cket

,

iii

Page

-

~

Table of Contents cont'd.

BTOIDB		TEOLOGY OF COID 2 NW ADEA INCLUDING CEODGIA	Page
FIGURE	4 (AND EVENING STAR: 1:2000	pocket
FIGURE	5 I	DETAILED GEOLOGY OF GEORGIA AND EVENING STAR SCALE: 1:1000	pocket
FIGURE	6	VERTICAL CROSS SECTION DDH G-86.1	pocket
FIGURE	6.2	VERTICAL CROSS SECTION DDH G-86.2	pocket
FIGURE	6.3	VERTICAL CROSS SECTION DDH G-86.3	pocket
FIGURE	6.4	VERTICAL CROSS SECTION DDH G-86.4	pocket
FIGURE	6.5	VERTICAL CROSS SECTION DDH G-86.5	pocket
FIGURE	6.6	VERTICAL CROSS SECTION DDH G-86.6	pocket
FIGURE	6.7	VERTICAL CROSS SECTION DDH G-86.7	pocket
FIGURE	7	COMPILIATION MAP: Geophysics and Best Rock Chip Sampling Results; as shown	pocket
		TABLES	
TABLE]	. GI	EORGIA PROPERTY CLAIMS	5

-
21
33

APPENDICES

APPENDIX 1: DIAMOND DRILL LOGS AND CORE RECOVERIES **APPENDIX 2:** ASSAYS AND ANALYTICAL RESULTS iv

-

1. INTRODUCTION

In 1982 and 1984 Gallant Gold Mines Ltd. optioned the Georgia gold property located in the Rossland gold camp. A preliminary property examination and literature review completed in 1982 showed that veintype mineralization is present on the property. Gold was produced in small quantities from several of the claims up until 1941. Drill indicated reserves at that time showed 38,500 proven tons averaging 0.228 oz/ton gold. Since then no work was carried out until 1980 when Cominco completed a small percussion drill program to test for low grade stockwork type mineralization.

In 1983 and 1984 Gallant carried out short term but systematic exploration programs using small crews based at the foot of Red Mountain. The work confirmed the potential of the known vein systems as described in the old reports and established the excellent possibility of extensions to the known mineralization. The 1986 programme described in this report further assessed the property potential.

1.1 LOCATION AND ACCESS

The Georgia property is located just north of Rossland on the flanks of Columbia-Kootenay and Monte Cristo Mountains in the Trail Creek Mining Division of the West Kootenay District of Southeastern British Columbia (Figure 1). It is centred on 49°06' and 117°47' within NTS 82/F 4 and covers an area of about 7.32 square kilometres.

Good access to the crown grants and reverted crown grants is provided by a network of dirt and gravel roads that connect with the Rossland street system. The only access to the Kay claim is in the southwestern corner where it overlaps the crown grants. From Rossland, the Cominco smelter at Trail is only ten kilometres away by paved highway.

1.2 PHYSIOGRAPHY

The Georgia property is situated on the gently sloping north and east flanks of Monte Cristo and Columbia-Kootenay mountains which reach an elevation of 4200 feet (1280 metres) and 4060 feet (1237 metres) respectively. The property extends from these peaks down to 2400 feet (732 metres).

There are no major creeks on most of the property but surface drainage flows into Acme Creek to the north and northwest and Milkranch Creek to the southeast. The area is well wooded with vegetation consisting predominantly of western hemlock, Douglas fir, western white pine, lodgepole pine, western red cedar, Engelmann spruce, white spruce, black cottonwood, aspen, common paper birch, larch, alpine fir, and grand fir. Some water is available in the old mine shafts and in Coyote Swamp.

In this Southern Interior climatic region, summers are temperate and dry while winters are cool with heavy snowfall. Precipitation averages 56 to 170 centimetres annually. Mean daily temperature in

July is 16° to 18° C and in January is -5° to -10° C. The growing season lasts 181 days from April 15 to October 13.

The area has been glaciated and a thin mantle of till covers much of the map area.

1.3 CLAIM INFORMATION

The Georgia property consists of three adjacent groups of mineral claims referred to as the Georgia Group, the Georgia Extension and the Mining School Group. The Georgia Group, under option from Michael and Catherine Delich of Rossland, consists of one crown grant, and seven reverted crown granted claims. The Georgia Extension consists of three crown granted claims¹ under option from Michael M. Butorac, also of Rossland. The Mining School Group is comprised of four reverted crown grants¹ under option from Crispulo C. Sideco of Trail, B.C. In addition Gallant owns the Alberta reverted crown grant and the 20 unit Kay modified grid claim in its own right. For assessment purposes all fifteen claims were grouped together in the Georgia group. The claims are all located in the Trail Creek Mining Division.

Additional claim information is given in Table 1.

1Although several of the claims were orginally staked separately, contiguous claims have since been reissued together as one reverted crown grant where they form a combined total of 25 hectares or less. In addition there are four crown grants are not part of the main Georgia property.

TABLE 1

CLAIMS

			LOT	RECORD
CLAIM	OWNER	STATUS	No.	No.
ELANORE	M & C DELICH	R.C.G.	951	369
IRON COLT		R.C.G.	795	367
VIKING		R.C.G.	4416	314
GEORGIA		R.C.G.	928	165
РОТТ		R.C.G.	733	363
CALEDONIA/PUTNAM		R.C.G.	734/4917	364
BUCKEYE		R.C.G.	534	365
SILVERINE		R.C.G.	732	
EVENING STAR	M M BUTORAC	C.G.	801	
GEORGIA FRACTION		C.G.	4668	
LA BELLE		C.G.	729	
MASCOT/KAPAI FR.	C C SIDECO	R.C.G.	1344/11012	776
ST. LAWRENCE		R.C.G.	1197	777
COPPER JACK/MICHIGAM	IIE/			
G.B. ARCHITECT FR.		R.C.G.	1185/1294/1707	778
NORTH STAR/TIP TOP		R.C.G.	797/798	779
ALBERTA	GALLANT GOLD	R.C.G.		801
	MINES LTD.			
КАҮ	GALLANT GOLD MINES LTD.	M.G.C.	20 UNITS	774

R.C.G. - Reverted Crown-Granted Mineral Claims M.G.C. - Modified Grid Claims C.G. - Crown-Granted Mineral Claims.

1.4 HISTORY AND PREVIOUS WORK

Gold was first discovered in the Rossland area in 1887 and in 1890 the first claims were staked on Red Mountain about two kilometres west of the Georgia property. The resulting exploration and development work led to discovery of high-grade gold veins on the War Eagle claim in 1894. In 1895, similar mineralization was discovered on the nearby Centre Star and LeRoi claims. This brought on a gold rush that lasted until 1896.

The mines remained important producers until 1936. Production peaked at 360,000 tons per year in 1903 and averaged 286,000 tons per year until 1916, when there was a sharp decline until the main mines closed in 1928. At that time ores averaging 0.285 oz/t Au were not economic. Among the most important past producers were: LeRoi (39%), Centre Star (25%), War-Eagle (24%) and Josie (10%). Total district production was about 6.2 MT with an average grade of 0.47 oz/t Au, 0.6 oz/t Au and 1% Cu, while the initial ore (0.13 MT) graded 1.46 oz/t Au, 1.96 oz/t Ag and 1.73 % Cu.

The claims under option to Gallant Gold Mines Ltd. were all staked during the gold rush years from 1890 to 1896. Although the claims have been held almost continuously since the 1890's, government records show that only five claims, the Georgia, Evening Star, Iron Colt, Buckeye and Silverine have had significant exploration or development. This will be detailed in Section 2.4.

Apart from work directly related to old showings and workings, little has been done since that time. In 1980, Cominco drilled 20 percussion holes over a 350 x 400 m area at sites shown in Figures 4 and These tested for low grade stockwork type mineralization over As-5. Au soil anomalies (Nichols, 1981). However holes were drilled vertically to test near vertically dipping structures. In addition all core was analyzed, gold was run using only atomic absorption rather than fire assay techniques; limited work by Mark Management suggests that this will provide at best a 43% extraction. Results are therefore inconclusive. Highest values came from an area 200 x 100 m 😁 which contains several E-W dipping veins of the main Georgia vein system; nine holes were anomalous but not economic. Best grades of 0.283 oz/t Au were recorded in 80.9 from 200-210 ft. It was concluded that reasonable potential remained for developing economically interesting tonnages of underground material.

1.5 WORK BY GALLANT GOLD MINES PRIOR TO 1986

In 1983 and 1984 short systematic field programs were carried out by small crews based in the town of Rossland. These are detailed in Ridley & Troup (1983) and Troup, Freeze & Butterworth (1984) and were carried out to investigate the potential for vein and stockwork mineralization on the Georgia property.

VLF-EM was completed over much of the property on lines spaced at 100 m intervals with readings at 20 m stations, using a Geonics EM-16. Over the Mining School Group lines were run at 200 m intervals. Several strong but narrow conductors are coincident with known mineralized structures in outcrop and extend beyond into overburden covered areas. A strong conductor 900 m long and about 50 m wide coincides with the Columbia-Kootenay vein system. A less defined conductor about 400 m long and 30 m wide marks the most northerly of the Mascot veins. While conductors are present in the vicinity of the Georgia and Evening Star, they are more diffuse. Projections of several trends suggest possible extensions SW to the Le Roi.

Two distinct orientations are evident in both VLF and veins: broadly 70° in the east and more nearly 0° to 10° in the west. The VLF in the Georgia area may show evidence of both trends.

While many conductors are still unexplained, they tend to decrease in intensity northward as overburden cover increases. The sole exception is a well defined 200 m long x 20 m wide 80% anomaly at the border of the Kay and Viking claims trending about 150.

Prospecting, mapping and rock chip sampling were carried out over known showings and areas of anomalous VLF. For the most part outcropping massive sulphides albeit of limited width and strike length are found to exist near the conductors.

The encouraging results of these programs indicated that further work was clearly required to fully assess the nature and extent of anomalies and mineralization on the Georgia property.

1.6 WORK IN 1986 BY GALLANT GOLD MINES LTD.

In 1986 the following program was carried out over the period May 27 to July 11, 1986 by a two person crew based in Rossland.

1. Detailed geological mapping and sampling of the property at 1:2000 and 1:1000 scale. Emphasis was placed on known showings, old workings and geophysical anomalies.

In addition a three person geophysical crew from P.E. Walcott and Associates Ltd. carried out as follows:

2. A Genie EM and magnetometer survey was completed over lines spaced at 50-100 m with measurements taken every 20 m on two grids.

3. An Induced Polarization survey was carried out on five lines in the most promising area of Grid 2. A narrow electrode spacing wasd used to probe for veins as well as disseminated sulphides. This geophysical work is described by Walcott (in process).

4. The program concluded with systematic diamond drilling of the most favourable targets identified in 1,2 and 3.

2.0 GEOLOGY AND SAMPLING

2.1 REGIONAL GEOLOGY

The Rossland mineral deposits occur within an area of plutonic and dyke rocks which intrude Upper Paleozoic and Lower Jurassic volcanic and sedimentary rocks, whose ages have been determined by a limited number of fossils. The Carboniferous Mt Roberts Fmt includes grey sandstone, conglomerate and minor siltstone. limestone. The Jurassic Rossland Group is primarily andesitic volcanic breccia, lapilli tuff, volcanic sandstone/conglomerate and lenses of grey to siltstone. These rocks are intruded variably black and metamorphosed by three major groups of plutonic rocks: the Trail Pluton, the Coryell Batholith and the Rossland Monzonite. A large number of dykes, including diorite, lamprophyre and syenite also crosscut these rocks. Generalized regional geology is shown in Figure 2.

The camp is located on what Fyles (1984) has termed the Rossland break. This is a poorly defined long-lived zone of movement defined by an irregular line of intrusions and faults which trend ENE through both volcanics and sediments. Faults are inferred from discontinuities across the intrusions. The break extends for many kilometres north and south of the Rossland area and reflects the southernmost curvature of the Kootenay Arc which may be related to it. The area south of the break is characterized by NE trending structures, while the north domain in which the major mineral deposits occur contains northerly trending structures. Five kilometres north of the break these structures terminate against schistose rocks which dip at low S and SW The complex distribution of the intrusive facies of the angles. Lower Jurassic Rossland Group (ie. augite porphyry sills increase in size and number toward the break) would suggest that the break originated during Rossland volcanism. It later became a locus of repeated intrusions and now contains the Rossland monzonite and a group of serpentinites.

The Rossland area is adjacent to the SW corner of the Trail Pluton whose southern margin dips beneath the main camp. The eastern margin of the Coryell batholith occurs about 1 km west of the camp and related dykes and irregular stocks are present within. Each of these intrusions is surrounded by a zone of thermal metamorphism.

The pattern of the mineralization of the Rossland area suggests that it is a product of the complex structural and intrusive history of the camp.

On a regional basis, the area has been mapped by Little (1985, 1982, 1960 at 1:125000, 1:50000 and 1:250000 scales) and by Fyles (1982 at 1"=1000 ft). Almost all this regional field work was completed prior to 1970 though there has been more recent mapping in small sub-areas. Both regional workers agree that the Rossland Monzonite, and Rossland Group Volcanics/Sediments are present on the property. However, the distribution of these units differs and slightly different descriptive terminologies are used, which may in part be a function of

the different mapping scales used.

On a 1:12500 scale Little has mapped the Georgia property as underlain by Pennsylvanian Mt Roberts Fmt, Jurassic Elise Fmt and the Rossland Monzonite. The first is described as consisting of a thick assemblage of argillaceous quartzite, limestone, greywacke, black siltstone, chert, pebble conglomerate and minor volcanics. The base of the Mt Roberts Fmt is not exposed and the top has been deeply eroded prior to deposition of the Elise Fmt. A Pennsylvanian age is currently favoured, allowing tentative correlation with the Milford and Cache Creek Groups (Little, 1985, p.19).

This description of lithologies appears to fit well the fine grained sediments present on the Georgia property. On a larger scale however both Little and Fyles have considered these rocks as part of the Elise Fmt of the Rossland Group.

The Rossland Group consists of a complex succession of volcanic and sedimentary rocks. No Rossland type locality has been defined and sparse fossil marker beds indicate that the group is complexly folded. Because of these factors and because of alteration, shearing, faulting and widespread intrusion, it has not been possible to determine the local stratigraphic succession in the Rossland area. Fyles (1984) has defined green volcanic conglomerate/breccia and related volcanic rocks (unit 2e), augite porphyry sills and dykes (unit 2f), grey to black siltstone and argillite (unit 2c) and massive greenstone of uncertain origin (unit 2d). Little (1982) has considered these are part of map units: Jurassic Elise volcanics (Jev), Jurassic Elise sediments (Jes) and Jurassic Elise augite porphyry (Jei). This convention has been followed on the Georgia mapping. Age is believed to be lowermost Jurassic to early middle Jurassic (Little, 1982, p. 15).

On surface all rocks appear to be of greenschist metamorphic grade. Thermal metamorphic effects are most pronounced adjacent to the Rossland monzonite which has an aureole of hornfels up to 500 m wide with bleaching, silicification, extensive biotite and locally garnet and pyroxene development. Patterns may be locally complicated by the Trail intrusions.

Regionally the Elise Fmt consists of up to 2750 m of andesite and propylitized basalt metamorphosed to sub-greenschist and greenschist Accurate measurements of thickness are difficult because facies. bedding attitudes are scarce. Agglomerates, flow breccias, massive flows, tuffs, volcanic conglomerates and minor shales are included in Irregular sill-like bodies of synvolcanic augite these units. porphyry are common. In the area of the main mines the augite porphyry forms the Rossland sill up to 760 m thick. Augite phenocrysts are present in all volcanic units. The upper part of the with soft, carbonaceous shales of Elise is interbedded Pliensbachian/Toarcian age. It is underlain unconformably by beds of Sinemurian age. This would indicate a lower Jurassic (Sinemurian) age for the Elise, which thus correlates with Nicola and Takla Groups (Beddoe-Stephens 1982, p. 586).

The Rossland Monzonite forms two large stocks, one extending east from Rossland and one to the east-southeast of Trail and some smaller bodies north of Rossland. For the most part it is a non-equigranular green to green-grey medium crystalline rock comprised of feldspar hornblende and biotite. Variations are caused augite. by alteration, proximity to margins of the intrusion and to large inclusions within it. The mass at Rossland is particularly heterogeneous with the colour ranging from light grey to dark green and the grain size from fine to coarse. The fine grained facies superficially resembles andesites of the Rossland Group. The monzonite intrudes the Elise Fmt, while there is disagreement about Trail batholith. It is probably its relationship with the genetically related to the Nelson intrusions aand hence of late Jurassic or early Cretaceous age. Contacts with the surrounding country rock vary from sharp to gradational over a few tens of metres. Near the main mines two monzonite protrusions are separated by an E plunging arch of augite porphyry.

To the north of the property Little has shown the Nelson intrusion, while Fyles has shown part of the Trail pluton, itself an irregular mass of granodiorite about 12 km across. Contacts in the Rossland area are mostly sharp and irregular. Lithologies are primarily relatively fresh biotite-hornblende granodiorite grading into quartz diorite and diorite. The granodiorite is generally a green-grey hypidiomorphic coarse to medium crystalline rock with visible quartz, feldspar, hornblende and biotite. Quartz diorite and diorite are most common as border phases. Age is believed to be late Jurassicearly Cretaceous.

The Rossland camp is characterized by abundant dykes which however have all been dated as Tertiary. Lamprophyre dykes typically trend 10-20 wand dip steeply. They range from a few cm to tens of metres thick. Biotite or hornblende may dominate. In the main mines the Josie and Nickel Plate dykes average more than 20 m in thickness and in part appear to have controlled the ore concentrations. Diorite and diorite porphyry dykes are also common.

The structure of the area is extremely complex and hard to decipher due to the lack of continuous rock outcrops. Faults and fractures most commonly dip steeply and occur in sets. A complex sequence of fracturing, faulting and filling of fractures by dykes has been only partly deciphered. Multiple episodes of brittle deformation apparently took place in Tertiary time. However, deep-seated pre-Tertiary fractures apparently controlled the Rossland break, which itself influenced subsequent deformation.

Two well-defined steeply dipping fracture sets occur: the fault dyke set trends northward (N200W) and the other vein set trends eastward. The fault dyke set consists of extension fractures containing Tertiary dykes with dominant fault movements down on the west. The dykes are spaced at intervals of a few tens of metres and form part of a regional dyke swarm which occurs for many kilometres E and W of Rossland. The emplacement of the dykes took place during a period of regional E-W extension which produced fault bounded blocks and expansion within them of up to 5% (Fyles, 1982, p.33).

The pattern of the vein set suggests it developed by east-west compressive stresses which produced shear failures in the 115/065 direction and tension fractures in the 90° direction (Ibid p.33). The area affected by this stress system may not have been larger than the Rossland Camp itself, and is a significant change from the E-W tensional system that produced the dykes.

2.2 ECONOMIC GEOLOGY OF THE ROSSLAND CAMP

Drysdale (1915) and Gilbert (1948) have provided the most detailed accounts of the gold mineralization using information which was based for the most part on primary observation. Later workers have relied heavily on their data. The ores are summarized as follows after Drysdale and Gilbert.

The Rossland ore consists mainly of pyrrhotite and chalcopyrite, associated with a gangue of altered country rock containing some quartz and locally a little calcite. The sulphides form from 50 to 70percent of the mass. The values are largely in gold (0.4 to 1.1 ounces), with some copper (0.7 to 3.6 percent), and a little silver (0.3 to 2.3 ounces). There are all transitions from typical ore to solid sulphides or to rock matter, or to gangue with little apparent mineralization but carrying values.

The Centre Star-LeRoi was mined almost continuously over a strike length of several thousand feet but in general the veins are a series of ore shoots of no great width or strike length. On the whole the veins are non-persistant; one dies out and a parallel one appears, possibly connected with the first by a cross break. As the fissures strike at various angles within a 60° section, the relations of the shoots are often complex and their positions largely unpredictable. In the central area there are more than 20 individual veins which contain ore shoots up to 350m in strike and dip length and 15m thick.

Five main types of deposits have been recognized in the district, which may be enumerated as follows:

1. Ore deposits in true replacement vein fissures with fairly definite hanging and foot-walls. In contrast to the other types, such veins show great uniformity in width and value of ore. The best examples of this type traverse augite porphyrite country rock.

2. Ore deposits occurring along sheeted fissure or shear zones, in irregular, generally lens or tabular shaped shoots with intervening stretches of barren vein characterized by crushed country rock and fault gouge. The shoots as a rule, though not invariably, lie along the portion of the shear zone traversing a formational contact. In many cases only one definite wall is present, the other boundary being a commercial rather than a structural one, although there is generally a certain parallelism of lines of fracture for short distances which 3. Ore deposits in cross fractures or fault fissure veins which are of very local occurrence and of not very great economic importance. In some cases, however, the intersections of such cross fractures with main vein fractures show enrichment, whereas in other cases they show impoverishment. Such cross fractures are often misleading in diamond drill operations.

4. Ore deposits as irregular impregnations of country rock; in part somewhat resembling stockworks. This type of deposit occurs more commonly in areas underlain by the sediments of the Elise Formation.

5. Gold-bearing quartz fissure veins carrying iron, copper, and lead sulphides as well as gold. This type of deposit is more in the nature of cavity fillings than replacement veins.

While gold typically occurs with sulphides, there are several periods of mineralization and even massive sulphides do not necessarily show high gold values. The presence of silica and calcite is typically a good clue to the presence of gold.

The main Rossland veins occur on two general trends: the best developed is N600-00E as shown in the Centre Star-Le Roi and the other N600W as shown by the War Eagle. Less significant veins are parallel to these or in the acute angle between them. All veins dip between 60-800N. The strongest veins are concentrated in three groups: the North Belt, Main Camp and the South Belt. On the Georgia property Monte Cristo Mountain claims lie within the North belt while the Columbia-Kootenay and probably the Mascot are within the Main Belt.

Between 1894 and 1941 about 6.2 MT of ore with an average grade of 0.47 oz/t and (13 g/t Au), 0.60 oz/t Ag and 1% Cu was produced from the veins of all Belts (Gilbert 1948, p.189). Since that time there has been no production. More than 98% of the ore shipped came from the Main veins (LeRoi, Centre Star, Josie and War Eagle claims) and more than 80% came from the central core zone between the Josie and Nickel Plate dykes an area of about 4000 feet by 2000 feet (Ibid. 1948, p.192). Silicification often accompanied ore deposition and appears independent of position with respect to intrusions (Bruce, 1917, p. 218).

While there is a great deal of conflicting evidence (summarized in Fyles, 1984, p.52) gold mineralization is now believed to be mainly post-Tertiary in age, though it is recognized that multiple periods of mineralization have occurred perhaps with multiple sources for metals.

As mining progressed, most of the important properties were taken over by the Consolidated Mining and Smelting Company of Canada Ltd (now Cominco) who were the principal owners during the period of mining and into the early 1960's. Intense geological work and appraisal were carried out by Cominco between 1941 and 1943. Little systematic work has been carried out since that time.

2.3 PROPERTY GEOLOGY

S.

Mapping in 1986 used two geophysical grid bases at 1:2000 scale. The following map units are recognized with legends as shown in **Figures 3**, 4 and 5.

Cretaceous: Nelson Intrusions Map Unit 5: Granodiorite Map Unit 4: Rossland Monzonite Jurassic: Rossland Group: Elise Formation Map Unit 3: Augite Porphyry a. hornblende granodiorite Map Unit 2: Andesite Tuff to Agglomerate Map Unit 1: Siltstone

2.3.1 Elise Formation Siltstones (Map Unit)

Siltstones within map unit 1 are typically black to dark grey to brown grey and often finely laminated on a 5 mm to 5 cm scale. Lithologies range from siltstones to fine quartzites with lesser carbonaceous mudstones (as at L4N, 0+75E) and rare litharenites; they may be calcareous locally. Graded beds and soft sediment deformation are common in places.

Silicification is widespread and highly erratic and may be accompanied by bleaching. Biotite, frequently present as extremely finely crystalline aggregates is ubiquitous. It occurs within specific beds which tend to be somewhat more quartz-rich and lower in sulphide and in hornfelsed zones around intrusives.

fine Pyrite and pyrrhotite are frequently found a s very disseminations in amounts from trace to 30%. Both sulphides may occur together or one may dominate. Either or both may be present in coarser crystalline clots, impregnations or along fractures +/gypsum. Rarely sulphides are apparently stratabound but more often occur in highly irregular concentrations of cross-cutting patches. One such sample (83113) with 5% iron sulphides near the Evening Star graded 0.173 oz/t Au without obvious veining. Arsenopyrite may also be present as fine disseminations and up to 10% locally as apparent replacements. Sporadic discontinuous quartz and calcite veins are also found, generally less than 10 cm in width.

2.3.2 ELISE FORMATION - TUFFS

The volcanics of map unit 2 are typically dark green to grey-green to brown green andesites. Generally they are fine-grained, though lapilli or larger sized fragments may be visible on the most favourable weathered surfaces. Augite, feldspar and hornblende phenocrysts are common. Where grain size is small, the greenish colour aids in distinction from map unit 1. The bulk of the unit is volcaniclastic. Individual fragments typically merge with the matrix due to hornfelsing, alteration, weathering, and shearing. Fragments vary from lapilli to coarse agglomerate size. Finer varieties are commonly well banded on a cm scale and often show graded bedding. Fragment and groundmass compositions are closely similar, but variations in crystal size produce heterolithic tuffs. These often grade laterally into epiclastic varieties and eventually into siltstones.

Pyroclastic agglomerates are well exposed on the road to the microwave station and outcrop on the Silverine, Buckeye, and Elanore claims. Poorly sorted fragments up to 25 cm in diameter range from sub-rounded to highly angular in shape; these pass laterally into lapilli and eventually into crystal tuff. Locally there is patchy epidote alteration. Near L1N, 3+10E, agglomerate contains angular to subangular fragments with 15-20% pyrrhotite and a ground mass with 1-2% pyrrhotite.

Dark grey siltstone to fine quartzite is common as minor interbeds within the volcanic map unit at several horizons. On a regional basis sparse ammonites provide a Sinemurian (Early Jurassic) age. These rocks are commonly consistently hard and dense and may be weakly hornfelsed. Patchy silicification is common especially near intrusives.

In the tuffs, disseminated to clotted iron sulphides (both pyrite and pyrrhotite) vary from trace to over 30% locally, 1 but average less than 1-2%. In the agglomerates sulphides are generally less than 2%. Minor amounts are also present along paper-thin fractures +/- gypsum. Up to 5% very fine arsenopyrite needles may also occur. Thin quartz stringers are erratically developed and may account for up to 5% of rock volume.

1This is apart from massive sulphide veins to be discussed more fully in the section on mineralization.

2.3.3 ELISE FMT AUGITE PROPHYRY MAP UNIT

The augite porphyry map unit is very complex as befits an origin during activity on the Rossland break. There are well-defined intrusive portions intermixed with distinct clastic phases. The unit is in places very difficult to distinguish from massive volcaniclastics with scattered hornblende phenocrysts, particularly where there has The largest outcrops are present on the southerly been alteration. slopes of Columbia-Kootenay Mt. Typically the unit is dark green with a slight brownish or pink tinge. Up to 15% phenocrysts of dark green or black augite or hornblende up to 5 mm across are characteristic in an aphanitic groundmass. Blocky feldspar phenocrysts may also be characteristic locally in a finer darker groundmass.

Commonly the rock is fragmental with sub-rounded to angular texturally heterolithic blocks from mm to up to a metre across. These are somewhat lighter in colour than the main mass of the porphyry but essentially the same composition. Typically the fragments are composed of augite porphyry in which the matrix is richer in plagioclase than the matrix of the surrounding porphyry. Because textures ara often obscure, sawing may be needed to confirm the fragmental nature of the porphyry and in places these agglomerates are indistinguishable from those in map unit 2. Best exposures are on the SE slope of Columbia-Kootenay Mountain.

The augite porphyries are believed to be mostly peneconcordant with the tuffs and flows, and may be sill-like apophyses of feeders to the later flows.

A second major lithology is present in the augite porphyry map unit along the lower slopes of Columbia-Kootenay Mountain. This unit labelled map unit 3a in **Figure 3** is a hornblende granodiorite which passes laterally over short distances to more typical augite porphyry lithologies. It is distinguished from map unit 5 by the presence of needle like, frequently aligned hornblende in a matrix of quartz, feldspar and finer mafics to provide an overall salt and pepper colour with a yellowish tinge. Blocky feldspar laths are typical in the groundmass.

Apart from massive sulphide veins which will be discussed in the section on mineralization, disseminated pyrrhotite and/or pyrite may be present from trace to 20% locally. Highest abundances may be associated with patchy silicification which leaves islands of unsilicified material. In addition iron sulphides occur along erratic paper-thin fractures, often with gypsum. Arsenopyrite may be present as fine needles or clots to 2-3% locally.

2.3.4. ROSSLAND MONZONITE MAP UNIT

Outcrops of the Rossland Monzonite, map unit 4, would appear to be scarce on the Georgia property or it is just a very difficult unit to distinguish from the main mass of the Trail Pluton. Irregular dykelike bodies have been mapped on Columbia-Kootenay Mountain and north from it east of Monte Christo Mountain toward the south of the Georgia property.

Where present it is a grey to grey-green medium crystalline equigranular rock with hornblende, plagioclase and potassium feldspar, and minor biotite in a finer crystalline groundmass. No quartz is present and it is typically non-rusty in contrast to the granodiorite and augite porphyry map units.

Cominco mapping in 1980 included areas of "mine granodiorite" as part of the Rossland Monzonite. In 1986, these outcrops were placed in the granodiorite map unit 5.

2.3.5 NELSON GRANODIORITE MAP UNIT

The Trail pluton (a probable phase of the Nelson Intrusions) outcrops north and south of the Georgia property. Regionally on the north slope of Columbia-Kootenay Mountain the contact trends E and dips south, but this is difficult to observe on the property itself.

The southern outcrops are shown by both Fyles and Little to be part of the Rossland Monzonite. While sparse quartz poor varieties were in fact mapped as that unit, most outcrops contained +10% quartz and hence fitted within the map unit 5.

Lithologies are typically medium grey to grey-pink medium crystalline equigranular hornblende granodiorite. Crystal borders are variably distinct, but general alteration is confined to minor saussuritization of feldspars. Hornblendes are not typically needle-like or aligned in contrast to those within map unit 3. Locally slightly larger feldspar or hornblende phenocrysts or biotite spots may be present. In places magnetite occurs in 1-2 mm spots.

In some areas patchy silicification and feldspathization are very prominent. For example, in the area of the Evening Star workings, (apparently close to the contact of map units 1 and 2 with the granodiorite) highly altered hybrid lithologies occur cut by abundant anastomosing actinolite veins with patchy bleaching and feldspathization. Map unit end members are extremely hard to distinguish.

2.3.6 DYKES

Mapping in 1986 basically identified dyke end members as felsic (fd) and mafic (md) dykes. Trends are most typically N-S.

The first are most commonly aplitic: light grey or white, very finely crystalline, characteristically sucrosic and composed predominantly of quartz, feldspar and <2% mafics. Well defined crystal banding on a mm scale is present in several dykes on Grid 2. Generally feldspars show a slight pinkish tinge. Widths range from a few cm to over 10 m.

These lithologies may grade into somewhat darker grey granodioritic varieties, which texturally resemble the main granodiorite masses but have obvious linear form. Alternatively they may consist of 10-15% feldspar phenocrysts in a grey-green aphanitic groundmass.

Lamprophyre dykes occur in all areas of the property. Typically they are soft and dark brown-grey with biotite or hornblende subhedra. Widths are generally less than 2 m. Calcite vesicles may be present and the dykes are typically strongly magnetic.

Diorite dyke swarms are prominent on both Monte Cristo and Columbia-Kootenay Mountains. Typically there are green to brown-green, aphanitic and very fine-grained or porphyritic. In some cases, fine hornblende needles can be recognized. Widths vary from a few cm to over 3 m. Commonly these are also magnetic.

On the Columbia claim along the main access road a distinctive 8 mwide conglomeratic dyke outcrops whose description resembles that of the "conglomerate" or "white dyke" described by Drysdale (1915, p.3). It is a lamprophyre crowded with wallrock fragments, including a high proportion from formations which do not occur on surface in the Rossland area, such as apparent white quartzite, gneiss, syenite, vein quartz and aplite. Fragments up to 50 cm long are present in a poorly sorted fragment supported matrix.

2.4 PROPERTY MINERALIZATION AND SAMPLING

In general 1986 mapping revealed so many old pits, showings, workings, and veins it is impossible to describe them all. It is likely that during the peak of mining activities both Columbia-Kootenay and Monte Cristo Mountain were burned free of vegetation and almost their entire area worked at on time or another. Numerous additional workings remain unmapped and undiscussed.

Mineralization on the Georgia property falls into all five of Drysdale's deposit categories but types 1, 5 and 4 are the most common. Mineralization in the form of massive sulphide veins, veinlets and sulphide dissemination occurs in all map units. Sulphides include pyrrhotite, arsenopyrite, chalcopyrite and pyrite. In most cases these zones assay high in gold. Apart from the Columbia-Kootenay five significant veins have been found with assays ranging from 0.25 oz/ton over 25 cm to 0.614 oz/ton Au over 140 cm (Butterworth, Freeze & Troup, 1984).

The Georgia, Buckeye, Silverine and Evening Star claims on Monte Cristo Mountain are part of the North Belt deposits. On a regional scale they appear continuous but in detail are lenticular and offset by N trending faults. The North Belt veins occur in monzonite, granodiorite, siltstone and tuff and the host appears to control their structural characteristics and mineralogy (Fyles 1984, p. 38). All veins are offset by the N trending fault-dyke set.

The Iron Colt, Mascot and Columbia-Kootenay claims are believed to lie within the Main Belt. These veins form a continuous well-defined fracture system on a regional scale which extends from the southern slopes of Red Mountain NE through the city of Rossland to the eastern slopes of Columbia-Kootenay Mountain. The system trends 70° and consists of a series of veins dipping steeply to the north as well as important veins that trend about 120° and 90° with steep dips. The central Le Roi-Centre Star-War Eagle vein system was mined to elevations of about 600 m and explored by drilling to sea level.

Results of 1986 sampling are shown in **Table 2** which also gives the general location and a description of samples collected. The samples were placed in numbered plastic bags and sent to Chemex Labs Ltd. in North Vancouver for analysis. In the laboratory, samples were put through primary and secondary jaw crushers and a tertiary cone crusher. A sub-sample of approximately 250 grams was then pulverized in a rotary pulverizer. Pulp for precious metal analysis was screened to minus 100 mesh and examined for 'metallics'. The pulp was then analyzed for Au by atomic absorption after digestion with hot concentrated nitric and hydrochloric acids. Further the samples were analyzed for 30 elements (Al, Ag, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Ti, Tl, U, V, W, and Zn) by ICP-AES analysis.

Table 2

-

× .

Table 2Georgia Property: sample descriptions and results

-

SAMPLE NUMBER		TYPE INTERVAL	Au (oz/t)	DESCRIPTION	GENERAL LOCATION
83112	С	chip; 25 cm	0.071	gouge zone with 15% py & po in horn- felsed siltstone/granodiorite.	Evening Star
83113	C	panel; 1 m ²	0.173	limonitic siltstone 5-10% sulphides	Evening Star
83114	С	panel; 1 m ²	0.004	limonitic siltstone without obvious veins, 1-2% iron sulphide	Evening Star
83115	С	chip; 10 cm	0.008	gouge vein in limonitic siltstone, <5% Fe-sulphide	Evening Star
83116	С	chip; 10 cm	<0.003	Q-rich shear zone; <5% Fe-sulphides in siltstone	Evening Star
83117	С	whole rock	0.020	light grey ash tuff with crystals	near 80.10
83118	С	panel; 1 m ²	0.016	limonitic siltstone with up to 15-20% po	S of Evening Star near 80.6
83119	C	panel; 1 m ²	0.008	limonitic siltstone, up to 10% po, minor aspy	near 80.6
83120	С	panel; lm ²	<0.003	limonitic siltstone, 5-10% po	near 80.6
83121	C	chip; 10 cm	0.006	sulphide mud from gouge zone in grano- diorite	S of Evening Star
83122	C	chip; 10 cm	0.026	massive po; lesser py, 5% cpy in granodiorite	S of Evening Star
83123	С	chip; 15 cm	0.038	oxidized granodiorite with massive po, lesser py, 1-5% cpy	just E of main road
83124	C	panel; 1 m ²	0.037	strongly oxidized wallrock with mas- sive po, py where accessible	E of main road
83125	C	chip 75 cm	0.049	? orientation of vein with massive po, py	E of main road

Table	2	cont'd		Рас	ge 2 of 7
83126	С	panel 1 m ²	0.007	strongly oxidized granodiorite with massive po, py	just E main road
83127	С	chip; 25 cm	<0.003	silicified siltstone with 5-10% py, po; minor aspy	L5N, 2+22W
83128	С	chip; 5 cm	0.005	limonitic gouge zone in granodiorite	L7N, 0+60 W
83129	С	chip; 10 cm	0.020	limonite gouge zone with Q, py, po; aspy 1-2%	SE of Micro- wave
83130	С	panel; 1 m ²	0.064	bulk py, 2% cpy, 2% aspy in Hb grano- diorite	N₩ of Micro- wave
83131	C	panel; 1 m ²	0.002	HW chip; andesite tuff; 5% po, 1% aspy	Columbia Kootenay
83132	С	chip; 10 cm	0.004	massive po≻py; qtz gangue	Columbia Kootenay
83133	С	chip; 25 cm	0.092	massive po, minor cpy, partly oxidized	Georgia #1
83134	С	chip; 10 cm	0.044	massive py>>po, minor cpy	area of 80.8 & 86.3
83135	C	chip, 8 cm	0.022	oxidized massive py with yellow brown earth	Evening Star
83136	С	chip; 20 cm	0.020	massive po, 2-3% cpy	Evening Star
83137	C	panel; 1 m ²	0.002	rusty siltstone 1-15% po	area of 80.20
83138	С	chip; 25 cm	1.780	massive po in augite porphyry	top of Columbia Kootenay
83139	С	chip; 30 cm	0.022	FW of 83140 C; oxidized, silicified intrusive	Columbia Kootenay
83140	С	chip; 13 cm	0.092	massive aspy with po; 2-3% cpy	Columbia Kootenay
83141	С	chip; 2 m	0.276	massive; py>>po with qtz in grano- diorite; trace cpy	Columbia Kootenay
83142	С	chip; 35 cm	0.004	massive po to 5% cpy in silicified au⊷ gite porphyry	Mascot area

Table	2	cont'd			Pag	e 3 of 7
83143	С	chip;	1.6 m	0.054	across W wall of pit silicified aug. porphyry; Q veins with po, py, aspy and cpy	Mascot area
83144	С	chip;	30 cm	0.006	semi-massive po>>aspy, 2-3% cpy	Iron Colt
83145	С	chip;	10 cm	0.054	massive aspy, po; minor cpy	Iron Colt
83146	С	chip;	1.2 m	0.112	across most intense mineralization;	St. Law-
83147	C	chip;	15 cm	0.046	massive po and py; silicified	area of 80.8
83148	С	chip;	40 cm	0.016	very oxidized vein plus wallrock; mas- sive veins 25 cm, 5 cm	Georgia #6
83149	C	chip;	10 cm	0.106	strongly oxidized; rusty qtz plus py	Evening Star
83150	С	chip;	15 cm	0.074	massive po with Q veins & sulphide mud	⊺ір- ⊺ор
00951	E	chip;	1.3 m	0.146	massive po; minor cpy in silicified and veined ? siltstone	Columbia "cglt dyke"
00952	E	chip;	10 cm	0.024	massive po, minor cpy in silicified siltstone	near G86.5
00953	E	chip;	8 cm	0.056	qtz vein with grey sulphide mud in hornfelsed ? siltstone	Mascot
00954	E	chip;	10 cm	0.010	gouge zone in augite porphyry quartz zone; oxidized, friable	Mascot
00955	E	chip;	20 cm	0.040	gouge zone; oxidized, friable, sulphide mud in augite porphyry	Mascot
00956	E	float		0.002	massive po, c.xline; minor cpy to 5% quartz	Mascot
00957	ε	float		0.002	as above, increased silica, cpy to 5%	Mascot
00958	E	float		0.004	? silicified augite porphyry with po veinlets, 1-2% cpy	Mascot
00959	E	chip;	20 cm	0.012	gouge zone: friable; oxidized black sulphide and yellow aspy mud	Mascot
00960	Ε	float		0.006	euhedral striated py to 20%, partly oxidized; augite porphyry host	Mascot
00961	E	chip;	10 cm	<0.002	gouge zone; friable, yellowish, earthy	Mascot

Table 2 cont'd Page 4 of 7 Mascot 00962 E chip; 2.5 m 0.004 black sulphide, yellow aspy mud in oxidized, silicified augite porphyry <0.002 strongly silicified with quartz, Tip-Top 00963 E chip; 1 m sulphide + aspy mud, 5% po <0.002 mass po, 0-5% cpy, partly oxidized Tip-Top 00964 E chip; .6 m 00965 E chip; .6 m <0.002 ?parent: solfaterically altered host Tip-Top with black sulphide & yellow aspy mud 00966 E chip; 10 cm <0.002 friable sulphide mud with py remnants; Tip-Top augite porphryry host 00967 E dump 0.150 massive po, veinlets coarse cpy 2-3% Columbia in places 5%;masses coarse aspy to 2% Kootenay Columbia 00968 E dump 0.084 partly oxidized massive po, 1-2% cpy Kootenay Columbia 00969 E grab 0.138 from open stope; very oxidized silicified? augite porphyry map unit Kootenay with massive po, cpy and aspy Columbia 00970 E dump 0.232 massive po, 1-2% cpy; needles actinolite Kootenay 00971 E dump Columbia 0.020 massive po; 1-2% cpy Kootenay Columbia 00972 E dump 0.014 as above Kootenay 00973 E 0.016 Columbia dump as above Kootenay Columbia 00974 E 0.032 finer xline massive po, 1-2% cpy dump Kootenay Columbia 0.070 two main veins <5cm,silicified wall-00975 E chip; 30 cm rock with black and yellow mud Kootenay 0.022 silicification/solfateric alteration Columbia 00976 E chip; 20 cm in siltstone with black & yellow muds Kootenay with gouge zone Columbia 00977 E dump 0.098 massive po, partly oxidized Kootenay 1 Columbia 0.048 granular quartz with po, partly 00978 E dump oxidized Kootenay 00979 E dump 1.524 massive po with up to 5% cpy, fine Columbia chlorite Kootenay 00980 E dump 1.120 massive aspy, with lesser po, 1-2% cpy Columbia Kootenay

Table 2 cont'd Page 5 of 7 00981 E float 0.080 massive aspy vein 2" wide in silici-Columbia Kootenay fied augite porphyry 00982 E grab 0.328 semi-massive po from below 0964E; Mascot granular qtz or subrounded inclusions 0.008 massive po, tr to minor cpy with gran- Mascot 00983 E grab; 0.8 m ular quartz (?tectonic) 00984 E chip; 30 cm 0.006 E wall of above: chlorite-rich with Mascot cpy veins 2-3% 0.004 W wall of above; 1-2% cpy with 00985 E chip; 20 cm Mascot oxidized quartz vein networks 00986 E chip: 10 cm 0.004 gouge zone with gtz veins in oxidized Georgia siltstone #2 42 m E from end <0.002 gtz vein, striking low angle/dips S Georgia 00987 E chip; 5 cm trace Fe-sulphide #2 34 m E from end 00988 E chip; 20 cm 0.002 qtz-rich shear zone, cuts face at Georgia 50° angle; 1-2% Fe-sulphide #2 27 m E from end 00989 E chip; 2 m <0.002 shattered and qtz veined siltstone Georgia trace Fe sulphide #2 25 m E from end 00990 E chip; 10 cm <0.002 friable qtz vein in silicified silt-Georgia #2 stone; 1-2% Fe-sulphide • 22 m E from end Georgia 00991 E chip; 20 cm <0.002 high angle quartz veins up to 8 cm wide with oxidized siltstone gouge #2 16 m W from portal 00992 E chip; 35 cm <0.002 as above with silicified siltstone Georgia and vein to 35 cm (pinch & swell) #2 15 m W from 1 portal Georgia 00993 E chip; 15 cm <0.002 qtz vein in silicified siltstone; trace po #2 13 m W from portal

Table	2	cont'd			Рас	je 6 of 7
00994	Ε	chip;	30 cm	<0.002	7 cm qtz vein plus 5 cm vein with silicified siltstone; 1-2% py	Georgia #2 6 m W from portal
00995	E	chip;	10 cm	<0.002	veins 80 ⁰ on wall in silicified siltstone	Georgia #1 end of north branch
00996	E	chip;	10 cm	0.004	qtz veins and friable silicified siltstone	Georgia #1 3 m W on north branch
00997	E	chip;	30 cm	0.112	series of veins at 90 ⁰ on face likely silicified granodiorite	Georgia #1 1 m north on north branch
00998	E	chip;	5 cm	0.004	strong vein 65 ⁰ vertical; calcite, some quartz with chlorite	Georgia #1 N face N branch
00999	E	chip;	10 cm	0.002	qtz vein with chlorite in granodiorite	Georgia #1 N face N branch
01000	ε	chip;	5 cm	0.002	quartz plus calcite vein with green- ish wallrock fragments in siltstone host	Georgia #1 2 m W from E end E branch
16401	E	chip;	8 cm	0.026	qtz vein with slices of greenish country rock 90 ⁰ on face	Georgia #1 6 m W from portal
16402	E	chip;	20 cm	0.156	friable rusty material; ? gouge	Buckeye adit 125 m from E end

Table	2	cont'd				Pa	ge 7 of 7
16403	E	chip;	20	CM	0.002	oxidized; granodiorite with qtz vein; excavated by previous workers	Buckeye adit 156 m from E end Buckeye adit
16404	E	chip;	25	CM	<0.002	granodiorite with oxidized vein; 2-3% po, trace cpy	Buckeye
16405	E	chip;	10	CM	0.010	qtz vein in silicified siltstone	Mascot

2.4.1 GEORGIA

The Georgia was staked on August 27, 1893 and from 1893 to 1897 was explored with a series of trenches, shafts and two adits. In 1937 the property was optioned by the Gold Cup Mining Co. Ltd. and from 1937 to 1941 was worked by with a series of trenches, diamond-drilling holes and hundreds of feet of underground workings on three levels. This led to the discovery of 12 veins with gold values ranging from trace to about 0.4 oz/ton. Grades from 0.15-0.25 oz/ton Au were repeatedly obtained across widths of 5-10 feet in massive pyrrhotite/pyrite veins with arsenopyrite and minor chalcopyrite. The strongest veins are over 15 feet in width with grades improving with depth (Haggen 1940, p. 18). Past production of 49 tons yielded 466 grams of gold and 653 grams of silver (Fyles 1982, p. 36), and suggests that best gold values are not always associated with the heaviest sulphides.

A company report dated 1940 states that reserves of 38500 tons averaging 0.228 oz/ton Au were drilled off along veins 11, 11A and 12 in 1938. Spot values up to 2.5 oz/t Au were recorded. Two ore shipments of 232 lbs. and 200 lbs. were sent for metallurgical testing. The shipments averaged 0.225 and 0.30 oz/ton Au and lab tests indicated that 92.0% recovery could be obtained with cyanidation.

In 1938 a mining operation was recommended on the Georgia "in view of the highly favourable conditions for deeply seated ore bodies, the presence of ore stringers over a wide belt and ore at the east contact of the favourable diorite" (Haggen 1938, p.23) ie. those conditions which produced the large ore bodies of the Rossland camp. This work was not completed but it was concluded that workings to that time did not reach the sections most favourable for ore deposition (Haggen 1940, p.4). Geological conditions were described as (Haggen 1938, p. 9) similar to the Le Roi with the possiblity that the vein in the SW corner of the Georgia was the Le Roi extension as augite porphyry was intruded by Rossland monzonite and both were penetrated by diorite porphyrite tongues of the Trail batholith. The #12 vein shown on Figure 5 lay only 3500' (1067 m) from the productive easterly limit of the Le Roi workings, trended sub-parallel, and so was assumed to lie along the same shear. A calcite stringer on the south wall was cited as supportive evidence, as this is also present in the Le Roi.

1In addition there are 1000 tons of 0.228 oz/t Au listed as probable and 6500 tons of 0.375 oz/t Au listed as proven with extensions to the east and in depth indicated. In 1980 the property was optioned by Cominco and explored for a lowgrade stockwork that could be mined by open-pit mining methods. Cominco tested the property with 20 vertical percussion drill holes ranging in depth from 20 to 270 feet. The drill holes were all subeconomic ranging from 54 to 312 ppb gold. Cominco's report suggests the results are inconclusive since vertical drilling was used to test mineralization controlled by vertical structures.

In 1983, Gallant chip sampling in quartz stockworks in silicified sediments with pyrrhotite, arsenopyrite and minor chalcopyrite yielded best grades of 0.248 oz/t Au (47160) over 25 cm. Similar values were recorded in dump material (47163). Individual sulphide veins ranged up to 35 cm in width and provided grades up to 0.528 oz/t (47182) and 0.160 oz/t (47292) Au.

Mapping in 1986 suggests that the Georgia showings are underlain by quartz-bearing granodiorite of the Trail batholith which intrudes strongly hornfelsed pyrrhotite-rich siltstones and minor tuffs of the Elise Formation. Sampling in the No. 1 adit returned best values of 0.112 oz/t Au over 30 cm in 7 samples. This compares with historic values from 0.03 to 0.30 oz/t Au with hand-sorted bin samples yielding 0.44 oz/t Au. A total of 9 samples in the No. 2 adit provided only sub-economic values less than historic FW and HW averages of 0.055 and 0.06 oz/t Au respectively. Widths of up to 40 ft of siliceous ore which had been reported (Haggen 1940, p. 14) were not observed. The No. 3 vein, a strong north-south vein which dips about 700W, provided best surface exposures of the Georgia mineralization. Maximum width was 1.35 m but best "in place" values in massive pyrrhotite were sub-economic.

2.4.2 EVENING STAR

The Evening Star crown grant staked in 1890, lies immediately northwest of the Georgia claims. Little information is available on this claim but B.C. Department of Mines records show that it was worked from 1896 to 1901, from 1907 to 1908 and from 1932 to 1941. About 2859 tons were mined to yield 56701 grams of gold and 21521 grams of silver. In 1935 it was the largest shipper from the camp and up until 1940 shipped several thousand tons of ore averaging 0.3 to 0.5 oz/t gold (Haggen, 1940). Assays up to 80 oz/t are reported (Drysdale 1914, p. 146); average ore ran 1.2 oz/t in one vein in a siltstone host.

In 1980 Cominco optioned the claim and explored it for a low-grade gold stockwork that could be mined by open-pit methods. Seven vertical percussion drill holes ranging in depth from 30 to 270 feet were put down. All were sub-economic. The best hole located near former workings assayed only 47 ppb Au.

The veins trend 65° , dipping at moderate angles to the NW. Best grades are reported where E-W stringers cross the large veins. Despite the limited production, extensive underground workings exist on the property with about 20,000 tons of hornfelsed siltstone and tuff on the dump in front of the lower adit (Troup, 1982). Two composite samples of dump material assayed 0.042 and 0.030 oz/ton gold

suggesting that mineralization extends into the wall rocks adjacent to the veins. A chip sample taken across a six-inch quartz vein exposed in the lower adit assayed 0.402 oz/ton gold (Ibid). In 1983 best results were 0.312 oz/t Au in a 1.8 m zone with disseminated pyrrhotite/pyrite and 1.8% Cu; best grab results were 0.150 oz/t Au in a massive sulphide sample in a sedimentary host. More recently, dump samples of disseminated arsenopyrite and pyrrhotite showed highest values of 0.878 oz/t Au but gold distribution would appear to be Host rocks are hornsfelsed siltstones for the most part erratic. with lesser tuffs and granodiorite. Silicification is widespread but erratic. Aresenopyrite is common with the other sulphides in veins and disseminated up to 5% in the country rock. One chip sample of HW gave values of 0.22 oz/t Au over 1 m in silicified volcanics (Hardy, 1984).

In 1986 best results were obtained from a 1 m^2 panel which assayed 0.173 oz/t Au (83113C) in a limonitic siltstone with 5-10% very finely disseminated sulphides.

OVERVIEW GEORGIA - EVENING STAR CLAIMS

Past work concentrated primarily on evaluating the east-west veins typical of the main Rossland camp on the Georgia and Evening Star. Veins are generally steep dipping zones 5-10' wide in which average grades of 0.15 to 0.25 oz/t Au were consistently obtained. The underground workings tested an area about 200 m x 200 m. Within this area perhaps 4 major veins are present and traceable for up to 50 m along strike. Early drill holes have intersected the veins up to 70 m down dip. Several narrower veins are also intersected which trend N-S and usually connect two of the larger veins; these are often of replacement type along fissures. Past results sugest potential for the larger high grade veins over 230 m-300 m on strike and down dip at least 170 m. This has not been fully tested by the surface work to date.

Pyrrhotite, arsenopyrite and pyrite are present as disseminations to masses along the fissures. Locally, minor chalcopyrite may occur. Gangue usually forms only a small proportion of the vein and consists of very finely crystalline rock flour or impure quartz. Cominco concluded that a large percentage of gold appears to be associated with the arsenopyrite, but limited polished section work (Bob Buchan, Lakefield Research, personal communication, 1984) suggests that the gold is distinctly later than the arsenopyrite. From old data, wall rocks average 0.01 to 0.06 oz/t Au (Haggen 1938, 1940) and near the percussion drilling average 54-312 ppb over sections up to 60 ft. The 1986 results of 0.173 oz/t described above (83113C) also suggest potential for at least localized enrichment beyond that.

2.4.3 BUCKEYE

The Buckeye claim was staked in the early 1890's and explored with about 500 feet of underground workings prior to 1915. Two veins of 1.5 feet and 6" in width were encountered but there is no recorded production from the claim, despite the approximate 170 m extent of the
old adit.

Limited sampling in the adit yielded gold up to 0.648 oz/t Au in a 0.14 m (47178:1983) wide series of quartz veins with chalcopyrite, pyrite and arsenopyrite in a possible intrusive host. Sampling just to the north along an old open pit provided 0.614 oz/t over a similar 1.4 m wide quartz vein (47184:1983). In 1986 best results were 0.156 oz/t Au from 20 cm of rusty weathered material; country rock was silicified and appeared to be granodiorite, though much of the adit appears to be within silicified siltstone. Several other adits are present on the claim and reported to be open but were not investigated (T.Eccles, personal communication, 1986)

2.4.4 Silverine

The Silverine crown grant was staked in 1890 and explored intermittently until 1944. Government files contain no information on the exploration or production history of this claim but the Trail smelter files show that 89 tons of ore averaging 0.54 oz/t gold were shipped between 1934 and 1944. A dump containing an estimated 1500 tons of waste is present on the claim.

2.4.5 Iron Colt

The Iron Colt was staked on August 6, 1890 and worked intermittently from 1896 to 1939. The property was explored with two adits and more than 2500 feet of underground workings. Massive sulphide ore carrying about 0.20 oz/ton gold is reported to have been discovered along the footwall of a monzonite dyke. No production records are available but small shipments averaging about 0.20 oz/ton gold are reported to have been made from the claim and a 20 ton shipment yielded 186 g of gold and 466 g of silver. (Fyles 1982, p.36) in 1936-37.

Gallant work shows that veins to 1.7 m wide are present with minor arsenopyrite and chalcopyrite in silicified sediments with up to 0.196 oz/t Au (47168:1983). Sulphides are disseminated in the wallrock for 10 m on opposite sides of the vein. Massive arsenopyrite and chalcopyrite veins to 90 cm with gold values to 0.478 oz/t Au are also present in a monzonite host. The Main vein, possibly the westward extension of the Columbia-Kootenay vein, strikes N63E with a It contains ore characteristic of the Columbiasteep N dip. Kootenay, described as "light-coloured, close textured with calcite seams and patches of chalcopyrite" (Drysdale 1915, p. 207). One chip sample of FW to massive sulphide veins collected ran 0.34 oz/t Au (Hardy, 1984). In 1986, adjacent to the Iron Colt on the St. Lawrence, a 1.2 m chip across the most intensely mineralized (pyrrhotite>>arsenopyrite) area gave 0.112 oz/t Au (83146C) within a probable silicified granodiorite. A 10 cm chip across a massive arsenopyrite vein with minor pyrrhotite and chalcopyrite yielded 0.054 oz/t (83143C) in a similar host.

2.4.6 Columbia-Kootenay

The Columbia and Kootenay claims were located in 1890. Considerable work has disclosed a mineralized zone with NE-SW trend which dips 45-75 W. Despite large dumps, past production from 1896-1904 is only recorded as 144 tons containing 68,500 grams of gold. About 9750' of development was completed prior to 1898 and an estimated 15000 tons were produced from 4000 m (12000 feet) of development work; a total of 12805 tons averaged 0.38 oz/t Au. In 1940 reserves were estimated at 10000 tons of 0.15 oz/t Au.

The ore zone is reported to follow a contact between a biotite monzonite HW and an augite porphyry FW, partly replaced by ore. On surface the vein is heavily oxidized and both massive and disseminated pyrrhotite occur in a hard fine-grained gangue with minor chalcopyrite. Arsenopyrite is present locally. Vein width is reported from a few cm to thirty feet of nearly solid pyrrhotite with persistence of ore shoots dependent almost entirely on geologic structure. Despite the heavy sulphide mineralization, gold values are generally low.

While little geologic information is available, the claims were definitely considered part of the Central Belt and Haggen (1938, p. 10) at least appeared to think they were the extension of the Le Roi – Centre Star system (by way of the Georgia).

Extensive workings and dumps remain from the top of Columbia-Kootenay Mountain down to the level of the lowermost most and most easterly road shown in **Figure 4.** To try and assess best and average grades within this vein a total of 12 dump samples was collected in 1986. These are described in **Table 2** and consist primarily of massive pyrrhotite with 1-5% stringers or clots of chalcopyrite, minor coarsely crystalline pyrite and occasional disseminations to clots of trace to 2% arsenopyrite. Rarely quartz gangue is present. Values ranged from 0.016 oz/t to 1.524 oz/t Au. One grab sample in outcrop from an approximate 40 m long open stope within the augite porphyry map unit vielded 0.138 oz/t Au; a chip 2 m sample across its end provided 0.276 oz/t Au. Overall best outcrop values on the claimare 1.780 oz/t Au for a 25 cm chip across a massive pyrrhotite vein (lacking chalcopyrite) in augite porphyry on the Columbia claim near the end of the road on top of Columbia Mountain. In all cases host lithologies appear complex with patchy bleaching and silicification and may be near the contact of the granodiorite map unit. Pyrrhotite averages 2-3% finely disseminated in the wallrocks; trace to 1-2% arsenopyrite is also Some outcrop in the area of the open stope suggests at least common. localized garnet-pyroxene skarn development.

Away from the old workings, a 1.3 mmassive arsenopyrite veinlet with lesser pyrrhotite and trace chalcopyrite, (along the NE contact of the conglomerate dyke described in 2.3.6) provided 0.146 oz/t Au (00951E). Veinmargins are sharp but the vein is surrounded by a zone of bleaching and finer veining in the country rock. Float samples of massive arsenopyrite and pyrrhotite with granular quartz collected nearby graded 1.120 oz/t Au (00980E) and 0.328 oz/t Au (00982E).

2.4.7 Mascot

Three tunnels and several prospect shafts are reported on the claim for a total of about 3500' (1067 m) of development. The upper tunnel showed a couple of feet of fairly solid ore which is chiefly magnetite with little chalcopyrite. A 4-6' quartz vein is known to have yielded "good" values. Surface sampling is reported to have averaged 0.12, 0.25 and 0.30 oz/ton Au on the Main, Middle and Kapai veins (Haggen 1938, p.23) with highest values excluded. The Main vein is siliceous, extending for 1200 ft at 2 ft width and the Kapai for 1300 ft at an unspecified width, at least in places as much as 40 ft.

Chalcopyrite is present in the country rock, though the ore itself tended to be copper-poor. A total of 12800 tons of probable ore (above No.3 level) at 0.193 oz/t Au occurs on the main Mascot vein and 800 tons of 0.429 oz/t Au on the Kapai vein (probable extension of the North vein) with more favourable geology on the west extending on the St. Lawrence claim. Workings in this area have historically produced very high surface values which may represent concentrations due to weathering. Magnetite is present locally in the North vein.

In 1986, the best surface showing on the Mascot was a coarsely crystalline lens of massive pyrrhotite with 1-2% chalcopyrite (00983E). Exposed in a road bed, it yielded 0.008 oz/t Au over 0.8 m. Wallrocks averaging 0.005 oz/t Au (0984E, 0985E) are bleached, silicified and brecciated and strongly resemble material from about a 44.3-44.4 m (145.3-145.8') depth in G86.6.

3. Geophysics

Complete geophysical methods, instrumentation and logistics are described in Walcott (1986, in process). Only results and conclusions will be discussed in the sections which follow.

3.1 Genie-EM Results

Two grids were run: Grid 1 with a base line at 068° and lines spaced at 50 and 100 m intervals and Grid 2 with base line at 010° and similarly spaced lines. Each orientation was selected to cross the prevailing vein orientation near perpendicular to strike with an overlap between the two grids in the area of the Georgia-Evening Star where both vein orientations appear to be present.

On Grid 1 conductors trend sub-parallel to the base line and one another. The best conductor is about 750 m long and up to 20 m wide along L0+00E to 7+00E at 2+50S and apparently coincides with the Columbia-Kootenay vein system. Just south of it a smaller and narrower conductor on L2+00E to L4+00 E at 4+25S coincides with the surface trace of the Main Mascot vein along a very steep talus slope which precluded drill testing. A somewhat broader (up to 20 m) anomaly is present further east and south on lines 5+00E and 6+00E at 6+70S which coincides with an outcropping sulphide vein already described on the Mascot; apart from the Columbia-Kootenay anomaly this is the strongest anomaly on the property. In addition three spot anomalies are present at L3+00W, 1+75N; L5+00E, 6+00S and L6+0E, 4+75S.

On Grid 2 a very thin (<10m) conductor trends about 1600 from lines 3+00N to 7+00N. VLF anomalies recovered from previous years and plotted with the Genie results are in part coincident with and trend parallel to this conductor. A complex pattern of single line conductors occurs on L0.00 and L1+00N, W of the baseline. These are in part coincident with the previous VLF results in this area but here as elsewhere on the grid, anomalous VLF also are present in areas where no Genie conductors occur.

All anomalies suggest conductors which are relatively steeply dipping and results are compiled in Figure 7.

3.2 I.P. Results

Dipole-dipole I.P. was run on 7 lines on Grid 2 over the area of the Georgia-Evening Star where the two vein trends were known to be present. Results were classified as anomalous or possibly anomalous and resistivity lows were also recorded. These compiled results are shown in Figure 7. The best defined anomaly trends about 160-1800 from a centre on L4+00N, 2+00W to L1+00N, 1+60W. An anomaly is also present centred on L4+00N, 1+00E, and extending to L3+00N partly coincident, with the Genie conductor previously described. A third anomaly at L4+00N, 0+60W extends to L3+00N, 0+60W. Asingle line high is also present on L1+00N, 1+35E.

In general the best Genie-EM responses tend to be displaced about 40 m from I.P. centres. Maximum values of up to 71 milliseconds occur against a <10 millisecond background. Resistivities are highly variable.

3.3 Magnetometer Results

Magnetometer surveys were carried out on Grids 1 and 2, using the same lines used for the Genie-EM survey. Patterns are extremely complex and anomalies do not necessarily coincide with Genie or I.P. highs. Prospecting suggests that both magnetic and non-magnetic pyrrhotite are present and pyrrhotite/pyrite ratios are highly variable.

4. Diamond Drilling

4.1 Logistics

A modified Longyear 38 on a sled was used to drill 7 holes for a total of 2277 ft (694 m) over the last two weeks of June and the first week in July. A three man crew operated for one shift with an additional man hauling water as required. All moves were completed using a JD 550. Water was obtained from the Evening Star shaft and Coyote swamp and eventually hauled and dumped in the Georgia No. 2 adit.

All core was split in half, bagged and shipped to Chemex Labs in Vancouver. Results are shown in **Appendix 2**. It was analyzed using the procedure described in **Section 2.4**. The remaining core was removed from the property and is stored in a garage rented from Norma Syvertson of Rossland.

4.2 Drilling Results

DDH G86.1 (72.5m, -520, azimuth 1000) was drilled on L3N to intersect an I.P. anomaly centred at 3+65 W at 28 m depth. The hole penetrated dark grey siltstones with 5-10% pyrrhotite at the estimated depth of the I.P. centre as shown in Figure 6.1. At greater depth pyrrhotite abundance decreases and intervals of granodiorite are present. The anomalous I.P. therefore likely results from pyrrhotite bearing siltstones around a hornfelsed granodiorite.

Hole DDH G86.2, (-450, 82.3 m, 2900) shown in Figure 6.2, was collared to intersect I.P. centred at 0.37.5E and Genie-EM centred at 0+12E on The upper portion of the hole intersected primarily siltstones L5N. with 5-10% pyrrhotite and/or pyrite. Proportions of each of the two sulphides vary widely but decrease to 1-2% pyrite at about 40 m depth in the hole at the granodiorite contact. Minor coarsely crystalline pyrrhotite veins occur at 66.3-67.0 m, 68.4-69.0 m and 75.9-77.3 m with massive pyrrhotite from 67.0-68.4m; vein orientations are not consistent, so the widths are not possible to estimate. These are well below the estimated 50 metre maximum depth of Genie-EM penetration. The fact that the Genie anomaly was penetrated at almost 50 m below surface suggests that the hole may have passed just below the anomaly centre and may not have fully tested the target. The I.P. results however are explained by the iron sulphide abundances within the siltstones in the hole.

Hole DDH 86.3, (-62°, 153.3 m, 334°), was drilled to intersect short length Genie conductors centred at L3+00W, 1+35N and L0+50N, 0+15W as well as VLF-EM recovered from previous years and spotted in the field. It was also drilled to test intersections of up to 9636 ppb Au obtained in Cominco percussion Hole 80.8 over 61-64 m and intersections of 825 ppb Au over 20 ft and 1080 ppb Au over 10' in Hole 80.8. Nearby as shown in **Figure 6.3** two outcropping massive sulphide veins, parts of the Georgia system also deserved testing at depth. In its upper part, the hole intersected bleached and silicified siltstones with granodiorite dominating down the hole. In the lower part is a complex zone of apparent mafic and felsic dykes and granodiorite intrusives. While three massive pyrrhotite veins are present at 26.2-26.4 m (85.9-86.5 ft), 44.5-47.0 m (146-154.3 ft), 65-65.3 m (213.3-214.3 ft) and 69.5 m (227.9-228.1 ft), the Genie-EM is not well explained by granodiorite with 1-2% pyrrhotite. The veins intersected are not sufficiently distinctive to be connected with certainty to either of the outcropping veins. Best intersection was 0.086 oz/t Au from 52.5-53.4 m (172.2-175.3 ft).

Hole G86.4 was drilled at 1500 azimuth, -450, to a depth of 152 m, to test the intersections of G86.3 from the opposite direction at a spacing of close to 25 m further W. The hole was designed to test a VLF conductor derived from previous data at L3+50W, 1.55N, and 3+0W, 1.64W and confirmed by several quick lines in 1986. It also tested outcropping massive sulphides as shown and passed beneath the high grade sections in 80.8 and 80.10 already described. The lithologies present suggest that the hole passed close to the granodiorite/siltstone contact with e ommo n silicification, bleaching, hornfelsing and biotite development. As shown by the drill log in Appendix 1, the VLF is underlain by siltstones with 2-3%pyrite and granodiorite and <1% pyrite though the hole passed somewhat deeply through the anomaly at 45-50 m depth.

Numerous massive sulphide veins were intersected as at 8.0-8.1, 9.1-9.7, 15.2-15.3, 28.8-30.0, 31.2-32.6, 44.1-44.5 and 81.8-81.9 metres. The composition of the veins is dominantly pyrite or pyrrhotite, with up to 10% arsenopyrite at 8.0-8.1 m and 1-2% chalcopyrite at 15.2-15.3, 44.1-44.5 and 81.8-81.9 m. Best intersection was a massive pyrrhotite vein grading 0.131 oz/t Au over 43.8-44.5 m (143.7-146 ft), with 0.086 oz/t Au at 7.3-8.8 m (24.0-29.0 ft), 0.048 at 30.0-30.9 m (98.4-101.3'), 0.087 at 30.9 m (101.3-101.5') and 0.060 oz/t Au at 30.9-32.2 m (101.5-105.5'). Since vein orientations are not consistent no estimate of true width is possible.

Hole DDH G86.5 (-470, 83.8 m, azimuth 2900) tested moderately anomalous I.P. along L4+00 N as well as anomalous gold and copper in 80.19 as shown in Figure 6.5. It failed to test strongly anomalous I.P. centred at 1+12E and a Genie-EM conductor at 0+72E.

The hole intersected siltstones with less than 3% pyrrhotite. Lithologies were sheared and polished in places and locally carbonaceous. All intersections were less than 0.05 oz/t Au.

Hole DDH 86.6 (-45° , 83.8 m, 158° azimuth) was collared to test a Genie-EM anomaly on L6+00E at 6+50S as shown in Figure 6.6 as well as an outcropping massive lens exposed on surface. This lens has been described in section 2.3.7 and strongly resembles material intersected at about 44 m (145.3-145.8') down the hole which averaged 0.162 oz/t Au.

The hole penetrated augite porphyry and its hornblende granodiorite sub-unit with minor siltstones. Amounts of iron sulphide varied as shown but the Genie anomaly appears well explained by the massive sulphide lens observed. Best intersection recorded was 0.162 oz/t Au from 32.1-33.6 m (105.3-110.3 ft).

Hole DDH G86.7 (-460, 65.5 m, azimuth 1580) was collared on L5E to test a Genie-EM anomaly at slightly more than 30 m depth. As shown in Figure 6.7 the hole penetrated rocks averaging less than 5% iron sulphides. Two semi-massive zones at 15.6-16.8 m and 34.2-34.6 m provided up to 20% pyrrhotite and 2-3% chalcopyrite, but all grades were sub-economic. The Genie anomaly is thus not well explained.

Table 3 Core Recovery - Georgia Property

DDH G-86.2

and the second sec

-

DDH G-86.3

				<u></u>	
Core box	True	Recovery	Core box	True	Recovery
Length	Length	Percent	Length	Length	Percent
8.0- 9.5= 1.5	0.9	61.1	23.0 - 26.0 = 3.0	2.7	88.9
9.5 - 14.0 = 4.5	1.9	40.7	26.0- 36.0=10.0	8.6	85.7
14.0 - 16.0 = 2.0	0.8	37.5	36.0 - 43.0 = 7.0	6.7	95.2
16.0 - 22.0 = 6.0	4.6	76.3	43.0 - 46.0 = 3.0	2.9	97.2
22.0 - 27.0 = 5.0	3.4	68.3	46.0- 53.0= 7.0	6.0	85.7
27.0 - 37.5 = 9.5	7.8	81.6	53.0- 56.0= 3.0	2.6	86.0
37.5 - 42.5 = 5.0	3.5	70.0	56.0 - 57.5 = 1.5	0.9	61.1
42.5 - 45.0 = 2.5	0.9	36.7	57.5- 62.0= 4.5	3.8	85.1
45.0 - 47.0 = 2.0	0.3	16.5	62.0 - 70.0 = 8.0	7.7	95.8
47.0- 49.0= 2.0	1.3	62.5	70.0 - 74.0 = 4.0	3.6	89.4
49.0- 50.5= 1.5	0.8	50.0	74.0- 84.0=10.0	9.5	95.0
50.5- 53.0= 2.5	0.8	30.0	84.0- 89.0= 5.0	5.0	100.0
53.0- 55.0= 2.0	0.4	20.9	89.0- 96.0= 7.0	6.8	96.4
55.0- 56.5= 1.5	0,8	50.0	96.0-106.0=10.0	9.4	94.2
56.5-58.5= 2.0	1.1	54.2	106.0-116.0=10.0	9.8	97.5
58.5-60.5-2.0	1.3	66.5	116.0 = 123.5 = 7.5	6.8	91.1
60.5 - 62.5 = 2.0	1.4	70.9	123.5 - 132.0 = 8.5	8.1	95.1
62.5 = 64.5 = 2.0	1.7	83.4	132.0 - 141.0 = 9.0	8.6	95.3
64.5- 69.0- 4.5	3.9	83.3	141.0 - 146.0 = 5.0	5.0	100.0
69.0 - 70.5 = 1.5	0.6	38.7	146.0 = 156.0 = 10.0	9.8	97.5
	28	68.8	156.0 - 166.0 - 10.0	10.0	100.0
74.5-76.0-1.5	0.8	55.3	166.0 - 176.0 - 10.0	9.5	95.0
74.9 = 70.0 = 1.9 76.0 = 78.5 = 2.5	1.0	4 0.0		10.0	100.0
78 5 81 0- 2 5	0.8	30.0	186 0 193 5 7 5	7 4	98 9
70.9 = 01.0 = 2.9	0.0	50.0	100.0-170.7=7.7	2 S	100.0
01.0 - 02.0 = 1.0	0.5	70.0	199.9 - 202.0 = 0.9	0.7	96 7
02.0 - 04.0 = 2.0	1.0 0 1	77.0		5. 7	100 0
04.0 - 93.0 = 9.0	0.1	07.0	212.0-216.0=4.0	4.0	100.0
95.U-105.U=10.U	7.5	92.7	216.0-223.0=7.0	0.) 7.2	07.)
107.0 - 107.9 = 4.9	5.0	89.0		/ • Z	100 0
10/.3 - 114.0 = 6.3	7.8	89.7	231.0-236.0= 3.0	5.0	100.0
114.0 - 122.0 = 8.0	/.4	92.7	236.0-243.0=7.0	0.0	97.0
122.0 - 124.0 = 2.0	1./	83.4	243.0~253.0=10.0	9.6	95.0
124.0-134.0=10.0	8.5	82.7	255.0-265.0=10.0	9.1	96.7
134.0-137.5 = 3.5	2.5	/1.4	263.0-270.0= 7.0	0.0	94.0
137.3 - 143.0 = 5.3	4.5	//.5		2.2	07.5
143.0 - 149.0 = 6.0	5.5	88.8	2/4.0-2/9.0= 5.0	4./	۲)،)
149.0-124.0= 5.0	4.8	96.6	2/9.0-283.0=4.0	4.0	100.0
174.0-164.0=10.0	ל.ע	72°D	203.0-291.0= 8.0	1.3	YU.0
164.0-174.0=10.0	9.9	99.2	291.0-296.0=5.0	4.8	96.6
174.0 - 184.0 = 10.0	9.8	97.5	296.0-302.5= 6.5	6.1	93.6
184.0-194.0=10.0	9.8	98.3	302.5-309.5= 7.0	6.7	95.2
194.0-200.0=6.0	5.5	91.7	309.5-316.0= 6.5	6.5	100.0
200.0-210.0=10.0	9.9	99.2	316.0-326.0=10.0	9.4	94.2
210.0-220.0=10.0	9.7	96.7	326.0-336.0=10.0	9.8	97.5
220.0-230.0=10.0	9.7	96.7	336.0-346.0=10.0	9.7	96.7
230.0-240.0=10.0	9.2	91.7	346.0-356.0=10.0	9.2	91.7
240.0-250.0=10.0	9.8	98.3	356.0-366.0=10.0	10.0	100.0

DDH G-86.2 cont!d.

DDH G-86.3 cont'd.

Core box Length	True Length	Recovery Percent	Core box Length	True Length	Recovery Percent
250.0-260.0=10.0	9.6	95.8	366.0-368.0= 2.0	10.0	41.5
260.0-270.0=10.0	9.6	95.8	368.0-374.0= 6.0	5.1	84.7
1			374.0-382.0= 8.0	8.0	100.0
			382.0-386.0= 4.0	3.7	91.7
			386.0-388.0= 2.0	1.8	87.5
Total % core			388.0-391.5= 3.5	3.3	95.2
recovery DDH G-86.	2 = 83.	3%	391,5-394,5= 3.0	2.8	91.7
• • • • • •			394.5-396.5= 2.0	1.7	83.4
			396.5-400.5= 4.0	3.8	93.8
			400.5-410.0= 9.5	9.3	98.2
			410.0-412.0= 2.0	1.4	70.9
			412.0-416.0= 4.0	3.8	93.8
			416.0-422.5= 6.5	6.5	100.0
			422.5-430.5= 8.0	7.1	88.5
			430.5-440.0= 9.5	9.3	98.2
			440.0-448.0= 8.0	7.6	94.8
			448.0-450.0= 2.0	1.5	75.0
			450.0-459.0= 9.0	8.5	94.4
			459.0-465.0= 6.0	5.3	88.8
			465.0-467.0= 2.0	1.5	75.0
			467.0-473.5= 6.5	5.8	88.5
			473.5-475.5= 2.0	1.3	66.5
			475.5-479.0= 3.5	2.8	80.9
			479.0-483.5= 4.5	4.0	88.9
			483.5-485.0= 1.5	1.2	77.8
			485.0-493.0= 8.0	6.9	86.5

Total % core recovery DDH G-86.3 = 94%

DDH G-86.4

DDH G-86.5

Core box	Irue	Recovery	Irue	Recovery	
Length	Length	Percent	Length	Length	Percent
14.0- 15.0= 1.0	0.8	75.0	14.0- 15.0= 1.0	1.0	100.0
15.0- 17.0= 2.0	0.9	45.9	15.0- 16.5= 1.5	1.0	66.7
17.0- 20.0= 3.0	2.8	91.7	16.5- 18.5= 2.0	1.6	79.0
20.0- 25.0= 5.0	4.4	88.3	18.5- 20.5= 2.0	1.7	83.4
25.0- 29.0= 4.0	3.3	83.3	20.5- 25.0= 4.5	4.5	100.0
29.0 - 33.0 = 4.0	3.4	85.4	25.0- 31.5= 6.5	6.3	97.4
33.0- 39.0= 6.0	5.8	95.8	31.5- 35.0= 4.5	2.8	62.9
39.0- 41.0= 2.0	2.0	100.0	35.0- 40.5= 5.5	5.5	100.0
41.0 - 45.0 = 4.0	4.0	100.0	40.5- 45.0= 4.5	4.5	100.0
45.0- 55.0=10.0	10.0	100.0	45.0- 50.5= 5.5	4.9	89.4
55.0- 60.5= 5.5	5.2	93.9	50.5- 53.0= 2.5	2.5	100.0

DDH G-86.4 cont'd.

....

Core box Length	True Length	Recovery Percent	Core box Length	True Length	Recovery Percent
60.5- 62.5= 2.0	1.6	79.0	53.0- 55.0= 2.0	1.7	83.4
62.5- 71.0= 8.5	8.5	100.0	55.0- 60.5= 5.5	5.2	95.5
71.0- 78.5= 7.5	6.8	90.0	60.5- 65.0= 4.5	4.4	98.2
78.5- 81.5= 3.0	2.9	97.2	65.0- 75.0=10.0	9.7	96.7
81.5- 91.0= 9.5	9.0	94.7	75.0- 85.0=10.0	9.8	97.5
91.0- 99.0= 8.0	8.0	100.0	85.0- 95.0=10.0		
99.0-105.0= 6.0	6.0	100.0	95.0-105.0=10.0		
105.0-109.0= 4.0	4.0	100.0	105.0-115.0=10.0		
109.0-111.0= 2.0	2.0	100.0	115.0-119.5= 4.5		
111.0-115.0= 4.0	3.2	79.2	119.5-125.0= 5.5		
115.0-125.0=10.0	9.4	94.2	125.0-135.0=10.0	9.8	97.5
125.0-135.0=10.0	9.3	92.5	135.0-145.0=10.0	10.0	100.0
135.0-137.5= 2.5	2.1	83.3	145.0-155.0=10.0	9.8	98.3
137.5-143.0= 5.5	4.8	87.8	155.0-165.5=10.0	10.0	100.0
143.0-153.0=10.0	9.6	95.8	165.0-175.0=10.0	10.0	100.0
153.0-163.0=10.0	9.8	98.3	175.0-185.0=10.0	9.7	96.7
163.0-166.0= 3.0	2.7	88.9	185.0-195.0=10.0	9.8	97.5
166.0-168.0= 2.0	2.0	100.0	195.0-205.0=10.0	9.9	99.2
168.0-174.0= 6.0	5.8	97.2	205.0-215.0=10.0	10.0	100.0
174.0-181.0= 7.0	6.5	92.9	215.0-225.0=10.0	9.9	99.2
181.0-183.0= 2.0	2.0	100.0	225.0-234.0= 9.0	8.3	92.6
183.0-190.0= 7.0	6.6	94.0	234.0-244.0=10.0	9.8	98.3
190.0-196.0= 6.0	5.7	94.5	244.0-250.5= 6.5	6.5	100.0
196.0-201.0= 5.0	4.9	98.3	250.5-255.0= 4.5	4.2	92.6
201.0-209.0= 8.0	7.0	87.5	255.0-265.0=10.0	9.9	99.2
209.0-214.0= 5.0	4.8	96.6	265.0-275.0=10.0	9.7	96.7
214.0-217.0= 3.0	2.8	94.3			
217.0-219.0= 2.0	1.9	95.9			
219.0-223.0= 4.0	3.3	83.3	Total % core		
223.0-231.5= 8.5	8.2	96.1	recovery DDH G-86.	5 = 97%	
231.5-241.0= 9.5	9.4	99.1			
241.0-251.0=10.0	9.6	95.8			
251.0-255.0= 4.0	4.0	100.0			
255.0-261.0= 6.0	6.0	100.0			
261.0 - 270.0 = 9.0	8.0	88.9			
270.0-275.0= 5.0	4.9	98.3			
275.0 - 280.0 = 5.0	4.2	85.0			
280.0-282.5= 2.5	2.4	96.7			
282.5-287.0= 4.5	4.3	96.2			
287.0-289.5= 2.5	2.0	80.0			
289.5 - 294.0 = 4.5	2.7	59.3			
294.0-302.5= 8.5	8.5	100.0			
302.5-312.0= 9.5	9.5	100.0			
312.0-315.0= 3.0	2.6	86.0			
315.0-323.0= 8.0	7.4	92.7			
323.0 - 325.0 = 2.0	2.0	100.0			

UUH G-86.4 CONT	t'	d.
-----------------	----	----

-

· · · · ·

DDH G-86.6 cont'd.

-

Core box	True	Recovery	Core box	True	Recovery
Length	Length	Percent	Length	Length	Percent
325.0-327.0= 2.0	1.8	91.5	6.0- 11.5= 5.5	0.8	
27.0-331.0= 4.0	3.7	91.7	11.5- 15.0= 3.5	3.2	57.6
331.0-340.0= 9.0	8.2	90.7	15.0 - 17.0 = 2.0	0.8	21.4
340.0-350.0=10.0	9.4	94.2	17.0- 19.0= 2.0	1.3	62.5
350.0-357.0=·7.0	7.0	100.0	19.0- 21.5= 2.5	0.7	23.2
357.0-365.0= 8.0	7.6	94.8	21.5- 25.0= 3.5	1.4	40.5
365.0-375.0=10.0	9.8	98.3	25.0 - 26.0 = 1.0	0.4	41.7
375.0-385.0=10.0	9.5	95.0	26.0- 28.5= 2.5	2.2	86.7
385.0-395.0=10.0	9.2	91.7	28.5- 31.5= 3.0	2.8	94.3
395.0-405.0=10.0	9.7	96.7	31.5- 35.0= 3.5	3.2	90.5
405.0-415.0=10.0	9.8	97.5	35.0- 45.0=10.0	9.3	93.3
415.0-425.0=10.0	9.8	97.5	45.0- 47.0= 2.0	1.7	83.4
425.0-428.5= 3.5			47.0- 49.5= 2.5	2.5	100.0
428.5-436.5= 8.0			49.5- 53.0= 3.5	3.1	88.1
436.5-445.0= 8.0			53.0- 55.0= 2.0	2.0	100.0
445.0-453.0= 8.0			55.0- 59.0= 4.0	3.6	89.5
453.0-457.5= 4.5			59.0- 62.0= 3.0	2.8	94.3
457.5-461.5= 4.0			62.0 - 68.0 = 6.0	6.0	100.0
461.5-470.5= 9.0			68.0 - 73.0 = 5.0	4.3	86.6
470.5-476.5= 6.0	6.0	100.0	73.0- 80.5= 7.5	5.8	77.7
476.5-485.0= 8.5	7.8	92.1	80.5- 83.0= 2.5	2.5	100.0
485.0-495.0=10.0	8.8	88.3	83.0- 89.0= 6.0	5.8	95.8
495.0-501.0= 6.0	5.8	97.2	89.0- 95.0= 6.0	5.7	94.5
			95.0-101.0= 6.0	4.9	82.0
			101.0-110.0=10.0	8.8	98.1
Total % core			110.0-120.0=10.0	9.9	99.2
recovery DDH G-86.	4 = 94%		120.0-130.0=10.0	9.8	97.5

DDH G-86.7 cont'd.

DDH G-86.6 cont'd.

-

Core box Length	True Length	Recovery Percent	Core box Length	True Length	Recovery Percent
$\begin{array}{c} 22.0-25.0=3.0\\ 25.0-35.0=10.0\\ 35.0-39.5=4.5\\ 39.5-43.5=4.0\\ 43.5-53.0=9.5\\ 53.0-57.0=4.0\\ 57.0-59.0=2.0\\ 59.0-63.0=4.0\\ 63.0-69.0=6.0\\ 69.0-72.0=3.0\\ 72.0-75.0=3.0\\ 72.0-75.0=3.0\\ 72.0-75.0=3.0\\ 72.0-92.0=10.0\\ 92.0-92.0=10.0\\ 92.0-92.0=10.0\\ 92.0-95.0=3.0\\ 95.0-99.0=4.0\\ 99.0-100.5=1.5\\ 100.5-103.0=2.5\\ 103.0-105.0=2.0\\ 105.0-113.5=8.5\\ 113.5-119.0=5.5\\ 119.0-124.0=5.0\\ 124.0-126.5=2.5\\ 126.5-131.5=5.0\\ 131.5-135.0=3.5\\ 135.0-145.0=10.0\\ 145.0-159.0=6.0\\ 159.0-163.5=4.5\\ 163.5-173.0=9.5\\ 173.0-183.0=10.0\\ 183.0-191.0=8.0\\ 191.0-201.0=10.0\\ 211.0-215.0=4.0\\ \end{array}$	2.443928985066690052560834403850522088989 13.5.0666900525608344038505220898993.		130.0-140.0=10.0 140.0-150.0=10.0 150.0-152.5= 2.5 152.5-161.0= 8.5 161.0-169.0= 8.0 169.0-175.0=6.0 175.0-185.0=10.0 195.0-202.0= 7.0 202.0-205.0= 3.0 205.0-215.0=10.0 215.0-219.0= 4.0 219.0-229.0=10.0 229.0-235.0= 6.0 235.0-241.5= 6.5 241.5-243.0= 1.5 243.0-245.5= 2.5 245.5-257.0= 6.5 257.0-261.0= 4.0 261.0-263.5= 5.5 268.5-275.0= 6.5 Total % core recovery DDH G-86.6	9.8 9.5 2.3 8.5 7.4 6.0 9.2 9.8 6.2 9.8 6.2 9.8 6.2 9.8 5.8 6.1 1.2 2.3 4.8 6.2 5.2 5.2 6.5 = 90.4%	98.3 95.0 90.0 100.0 92.7 100.0 91.7 97.5 89.3 100.0 97.5 95.8 93.6 77.8 93.6 77.8 93.2 96.6 94.9 100.0 66.5 94.0 100.0
Total % core recovery DDH G-86.	7 = 94.	7%			

ŧ

5. Discussion and Conclusion

The Rossland camp has been an extremely rich producer in the past with a single shoot in the Le Roi system yielding over one billion dollars worth of gold at current prices. The ores extended to great depth and some veins were over 1300 m long and from a few cm to 40 m wide. No data have been released by Cominco on their ground and despite sales of other assets the Rossland ground is apparently not available. The Rossland camp is the only major past producer in BC which has not yet undergone a recent re-examination.

Most of the Georgia property was initially staked from 1890-1896 and has been held continuously ever since with little recent work. Old timer exploration concentrated on following known veins and searching for direct extensions. Less visible ore may easily have been missed, as exploration was limited to hillside adits and shallow exploration shafts.

Work by Gallant Gold Mines has established the existence of Genie, VLF-EM and I.P. anomalies, which are at least partly coincident with known gold veins and sulphide accumulations. Drill testing of the best of these produced intersections of 0.131 oz/t Au over 0.7 m in hole G-86.4 and 0.162 oz/t Au over 1.5 m in G 86.6. Conductors are more extensive than known veins in areas of low outcrop. Several anomalies remain untested and the I.P. covered only a limited portion of the ground with large anomalies open ended.

It is known for certain that the host rocks of the veins can contain anomalous gold, but as yet it has not been established whether such values over significant widths can approach economic concentrations. In 1986 the generally discouraging diamond drill results suggest that there remains only very limited potential for a low grade bulk tonnage deposit. However, in view of the fact that historically Rossland veins pinch and swell and change direction with common grade discontinuities, and the limited number of holes completed, potential still remains for small high grade vein type deposits on the property. Evaluation of this possibility would require patterned or grid drilling of all anomalies at a relatively close spacing. Further geological mapping and sampling should be completed on old workings and showings on the Alberta, Kapai, Mascot, Columbia-Kootenay, Caledonia, Iron Colt and west of the Buckeye, perhaps in the company of old timer/quide, T. Eccles.

In conclusion mineralization on the Georgia property is related to the aureole of intrusive activity around granodiorites of the Trail Intrusion or Rossland Monzonite ("mine granodiorite" of Cominco). The targets tested lie within a favourable evironment for precious metal accumulations of mesothermal type as evidenced by high disseminated iron sulphide content, regionally anomalous 30 element I.C.P. (especially As, base metals, Ag), local high grade intersections in veins and wallrocks, pervasive hornfelsing, bleaching, silicification, etc. Drilling to date however has failed to indicate the existence of economic quantities of precious metals.

6. BIBLIOGRAPHY

Beddoe-Stephens, B., 1982; "The Petrology of the Rossland Volcanic Rocks", GSA Bull. 93, p. 585-594.

Bruce, E.L., 1917; "Geology and Ore Deposits of Rossland" BCDM Annual Report, K214-K244.

Drysdale, C.W., 1915; Geology and Ore Deposits of Rossland, B.C. G.S.C. Memoir 77.

Fyles, J.T. et al, 1973; "The Age of Sulphide Mineralization at Rossland, B.C.", Econ. Geology 68, p.23-33.

Fyles, J.T., 1984; Geological Setting of the Rossland Mining Camp, BCDM Bulletin 74.

Gilbert, G., 1948; "Rossland Camp" in Structural Geology of Canadian Ore Deposits (Jubilee volume) CIM pp. 189-196

Haggen, R.W., 1938; "Report on the Georgia and Mascott Groups, Rossland, B.C.", Report for the Gold Cup Mining Co., July 16, 1938.

Haggen, R.W., 1940; "Report on the Georgia and Mascott Groups, Rossland, B.C." Report for the Gold Cup Mining Co., December 31, 1940.

Hardy, J.L., 1984; "Property Examination Report, Georgia Claims" private company report for Falconbridge Ltd.

Little, H.W., 1985; Geological Notes, Nelson West Half Map Area GSC OF 1195.

Little, H.W., 1982; "Geology of the Rossland-Trail Map Area" GSC Report 79-26.

Little, H.W., 1960; Geology of the Kootenay and Similkameen Districts, British Columbia, GSC Map No. 1090A.

Nichols, R.F., 1980; "Delich Option, Georgia Property, 1980 Year End Report", Cominco Ltd., April 10, 1981.

Ridley, J.C. and Troup, A.G., 1983; "Report on the Georgia Property, Gallant Gold Mines Ltd.", November 1983.

Thorpe, R.I., 1966; "Controls of Hypogene Sulphide Zoning, Rossland, B.C.", Ph.D. Thesis, U. of Wisconsin.

Troup, A.G., 1982; "Report on the Georgia Property", August 10, 1982.

Troup, A.G., 1984; "Report on the Georgia Property", June 1984.

Bibliography cont'd.

Troup, A.G., Freeze, J.C. and Butterworth, B.P., 1984; "Geological and Geophysical Report on the Georgia Property", November

Walcott, P, 1986 (in process); Report on Genie Em and I.P. Georgia Property

Young, G.A., 1909; Special Map of Rossland, B.C. Geological Sheet, GSC Map 1002.

-

.

7. STATEMENT OF QUALIFICATIONS

JENNA HARDY

I, Jenna Hardy of 535 E. Tenth St., North Vancouver, B.C., V7L 2E7 certify the following:

1. I am a project geologist with a B.Sc. (1974: Honours) and M.Sc. (1980) in geology from the University of Toronto.

2. I have practised my profession in the Cordillera since 1978 first with Rio-Canex Ltd, then SMD Mining and Falconbridge Ltd.

3. I am a Fellow of the Geological Association of Canada.

4. I personally supervised all work carried out on the Georgia property over the period May 27 to July 12, 1986.

5. I have no interest financial or otherwise in Gallant Gold Mines Ltd.

Respectfully submitted,

JENNA HARDY

GALLANT-GEORGIA PROPERTY

18 April - 18 July 1986

GENERAL

FOOD & ACCOMMODATION:	
2 Pers, 110 man days Q \$27.71	\$ 3,048.61
SUPPLIES:	2,426.00
FUEL:	306.51
SHIPPING & POSTAGE:	904.42
TELEPHONE SERVICE:	286.35
RENTALS:	
Mark 4WD Bronco, 21 May-11 July,	
50 days @ \$43.00 \$ 2,150.00	,
Ezekiel field equipment, 27 May-	
11 July, 92 man days @ \$6.00 552.00	
	\$ 2,702.00
MAINTENANCE:	574.12
CONSULTANT FEES:	
Archean Engineering Ltd.	7,375.00
REPORT PREPARATION:	3,373.50
TOTAL GENERAL COSTS:	\$20,996.51
GEOLOGICAL MAPPING COST	
SALARIES & WAGES:	
2 Pers, 51 man days @ \$140.74	\$ 7,177.71
BENEFITS @ 5%	371.52
GENERAL COSTS APPORTIONED:	
51/110 X \$20,996.51	9,734.75
TOTAL GEOLOGICAL MAPPING COST:	\$17,283.98
	========
DIAMOND DRILLING COST	
SALARIES & WAGES:	
2 Pers, 59 man days @ \$140.01	\$ 8,260.79
BENEFITS @ 5%	436.16
ASSAYS & ANALYSES-Chemex Labs	
412 Rocks for Au @ \$11.50 \$ 4,738.00	
20 Rocks for Au, Cu @ \$17.50 350.00	
53 Rocks for Au (2 \$17.00 901.00	
485 Pulp for 30 ele. ICP $(0, 5, 6, 50)$ 3,152.50	
1 Pulp for 23 ele. ICP (0 \$27.00 27.00	
11 Pulp for W, Sn, Ga (0 \$13.00 143.00	
Supplies 105.00	

\$ 9,416.50

Costs Statement cont'd

,

TOTAL DIAMOND DRILLING COST:		\$69,165.87 ========
GENERAL COSTS APPORTIONED: 59/110 X \$20,996.51		11,261.76
		\$39,790.66
Beaupre water truck 37 hrs @ \$50.00 E.G. Whalley & Son core boxes	1,850.00 533.66	
DIAMOND DRILLING: Beaupre 2277' @ \$16.43	\$37.407.00	

GEOPHYSICAL SURVEY

\$15,414.64
5,463.10

\$20,877.74

\$ 17,283.98
69,165.87
20,877.74
\$

\$107,327.59

.

APPENDIX 1: DIAMOND DRILL LOGS AND CORE RECOVERIES

-

LOCA	TION :	L3N 1+86W			Dia	mond Drill Record		но	LE NO. G86.1 Page 1 of 8
AZIM	UTH :	102	DIPS - collar	52	0	CONTRACTOR: Beaupre Diamo	nd Drilli	ng PR	OPERTY:Georgia
ELEV	ATION	4100'	- m		0	LOGGED BY: J.L. Hardy		CL	AIM NO. Evening Star
LENG	TH:2	38 ft.	- m		0	DATE: June 21, 1986		SE	CTION NO. 6.1
CORE	SIZE	1	_ 238'm	5 2	2 0			ST/	ARTED: June 20, 1986
PURP	OSE 1	to test broad ch	hargeability I	.P. c	centre	ed on L3N, 1+65W		CO	MPLETED: June 21, 1986
Sec	tion	POC	K	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIF	TION	from ft	to ft	MINERALIZATION etc.	Thickness A mm to	Angle core	minerals in decreasing abundance
		NOTE: BOXES 5,1	l totally spi	lled;	box	8: first two rows; box 7: 1	6-135 sp	illed	: box 10: first two rows;
		box 12: first r	ow						
		Box1: 8-24'; Bc	x 2: 24-42.5'	; Вож	3:	42.5-60.0'; Box 4: 60-78.9;	Box 5	78.9-	96.0'; Box 6: 96-115.1';
		Box 7: 115.1-13	5.0; Box 8: 1	35-15	1.5'	Box 9: 151.5-169.7; Box 10	169.7-1	88.3;	Box 11: 188.3-206.9: Box 12:
		206.9-223.8; Bc	x 13: 223.8-2	38; E	ND OI	HOLE: 238			
0	8	CASING							
8	40.3	siltstone, var	ious shades			thin chlorite-rich bands/			sparse irregular discontin-
		brown to grey	and brown-			partings, sometimes			uous quartz veins, often
		grey; fine-gra	ined with			associated with microbrecc	a		with slightly coarser po
		easily visible	biotite			zones; bands most often			
		only in most b	rown varietie	s,		near right angles to c.a.;			
		variably lamin	ated; PLUS	1		local bleaching, silicifi-			
		tuffs: green a	rey to grev.		ŀ	cation			
		fine grained,	homogeneous,			-up to 5% po, averages			
		no fragments v	isible but			1-2% but may be along			
		logged on basi	s of field			partings to 40% in tuffs;			
		mapping and pr	esence of			very finely disseminated			
		vague feldspar				po 5-10% in places 15-20%		_,	

.

-

a construction and a construction of the const

Sect	tion	ROCK	Inte	rval	ALTERATION.			VEINLETS
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abun
					but easily confused with			
					biotite (ubiquitous)			
					-frequently massive po along			
					discontinuous partings or			
					fracture planes to 40% over			
		CONTACTS typically diffuse,			distances of core diameter,			
		gradational with tuff bands			but widely discontinuous			
		averaging 1 cm thick (range			-sparse po as medium xline,			
		from 10mm-10 cm); appear in			irregular swirls, clots;			
		places patchy and at variabl	e		generally less than 1 cm			
		angles to c.a., perhaps			in extent			
		complicated by intrusive	31	31.	5 prominent microbreccia			
		proximity			zone with quartz and			
					chlorite matrix; brown		1	
	1	·			angular siltstone fragments	1	1	
			32.9	33.	l as above			
			36.5		aspy veinlet, discontinuous			
40.3	157.	e siltstone, darker grey than			sparse chlorite-quartz			
		previously, generally with-	1		micro breccia along veins			
		out greenish tuff areas			or partings; rare after 43'	1	1	
	1	and typically finer grained	1		-over interval po 5-10%,		1	
	1	than before			very finely disseminated,			
		40.3-52: dark grey, very			less in areas of patchy			
	[fine-grained			silicification: to 40% alon	4		

A.

				Dia	amond Drill Record		<u> </u> H	OLE NO. G86.1	Page 3	of
Sec	lion	ROCK	Inte	rval	ALTERATION			VEINLETS		
from ft	in ft	DESCRIPTION	۲۲ ft	₽ŧ	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in dec	reasing abu	ndanc
		60-60.4': granodiorite or			paper thin fractures, usual	У		minor quartz	veins	wit
		possible felsic dyke; grey			discontinuous; also medium			ро		
		to light green grey with			crystalline po in irregular					
		abundant feldspar subhredra			clots, swirls; discontinuou:					
		in slightly darker grey			mm to cm size; also bands/su	irls t	20%			-
		ground mass; associated with			-silicification typically					
		patchy bleaching, silicifica	tion		patchy, irregular					<u> </u>
		and 2-3% fine po	52	53	area of bleaching/breccia					
			63	65	zone of quartz veins and					
					breccia; trace sulphides in					
					cement; po bands in siltstor	e				
					show displacement					
		65.6-66': disturbed zone;						quartz occup	ies 10%	of
		minor fault with associated						interval		
		quartz influx, bleaching,								
		silicification, 15% very								
		fine po in all areas except								
		quartz								
		70-72: zone of increased	78.3	78.5	po, c. xline, cm veins and			75.5-76.5: c	lose-spa	ced
		quartz veins w/wo po rims;			irregular swirling clots,			brittle quar	tz veins	;, t
	1	veins paper thin to 10mm		1	po 15-30% of ground mass,			po		
	1	thick; irregular, discontinu	ous,		borders partly coincidant					
		accompanied by bleaching			with area of silica influx					
		and silicification								

				Dia	amond Drill Record			HOLE NO.G86.1	Page	4	of 8	3
Sect	ion	ROCK	Inte	rval	ALTERATION		•	VEINLETS		•		
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to co	e minerals in dec	reasing a	bund	ance	
		78.0- about 96.0': BOX 5			very finely disseminated							
		spilled prior to logging;			po to 5-10% plus along							
		material in box originated			paper thin fractures to mm					_		
		there but some sections			size; minor intervals of							
		missing; sequence as above			irregular swirls or clots							
		with siltstones, various			to 25%							
		shades of brown to grey-										
		brown; locally bleaching,										
		silicification and micro			·							
		breccia zones with associate	a									
		veins and quartz influx										
		96-118.1': siltstones show	103.8		disturbed zone							
		pink brown partches against	104.6	104.	9 white siltstone, strongly							
		medium grey interspersed			bleached and silicified; po							
		with areas of dark grey			along mm fractures							
			113.6	.8	semi-massive po in irregula	r,						
		119.2-119.5: andesite tuff,			discontinuous veinlets up to							
		green-grey; diffuse contacts			.8 cm wide with quartz, chlo	rite						
		with browner siltstones			•							
		above and below; bands at										
		right angles to c.a. with										
		15% med. xline po										

				Di	amond Drill Record			HOLE NO. G86.1	Page	5	of ⁸
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS			
from	fle	DESCRIPTION	(łów	₽ ₽	MINERALIZATION etc.	Thickness mm	Angl to co	le minerals in	decreasing	abun	dance
		134-? since box 8 spilled:			irregular po veinlets,						
		return to pronounced pink ar	d		bleaching, silicification						
		brown as described; laminae			continue as before						
		on mm to cm scale with good									
		evidence of soft sediment	154.2		microbreccia: very angular						
		deformation; po abundance			black siltstone fragments						
		not related to position			in crystalline po cement						
		in laminae but irregular									
		diffuse swirls cut across									
		laminae									
			1								
157.6	185	granodiorite: medium xline,			2-3% fine po plus 5mm						
		equigranular with 5% subhed	al		coarser xline clots; minor						
		feldspar slightly larger			po with quartz in veinlets,						
		than rest of ground mass;	1		fractures to 10% rarely to		Γ				
		rarely bleached			40%						
		-local chlorite bands/			-locally medium xline py	1					
		partings to microbreccia									
		zones; fractures at varying		1	••••••••••••••••••••••••••••••••••••••						
		angles to c.a. and often	1								
	·	with bleaching		1							
		161.1-9; 163.4-164: ? xeno-	1	1		1	ŀ				
		liths or irregular contact									
<u> </u>		zone of dykes; dark green		<u> </u>		1	1				<u>.</u>
		very finely xline biotite-	1	1		1					

Sect	ion	POCK	Inte	rval	ALTERATION			VEINLETS		•
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in de	creasing a	bunda
		hornblende-feldspar rich	161.9	162	1 zone of quartz influx					
		rock with 2-3% fine po;			and micro breccia with					
	_	contact sharp though slightl	У		siltstones and feldspar					
		wavy with the above			phenocrysts locally; 2-3%					
					po					
			169.2	.9	zone of broken core: bleache	d,				
		BOX 10: 169.8-175, spilled			sheared, calcite veins, no					
		but granodiorite continues			sulphides					
		as above to 184.9'								
					181.1-181.4; 182.3-182.9:					
					prominent bleaching, leaves					
	-				only sparse feldspar visible	;				
					massive po veinlets to .5 cm					
					wide; trace ? aspy, plus					
					chlorite-rich partings	· ··· · · · · · · · · · · · · · · · ·				
			184.6		.5 cm massive po vein at					
					70 angle c.a.			· · · ·		
185.	· ° ?	siltstones, distinct brown			po to 5% very finely diss-					
		grey with blotchy appearance	;		eminated plus near massive					
		may be bleached along thin			.25 cm veins, irregular and			<u></u>		
		partings and locally			discontinuous, as well as		<u>.</u>			
		laminated, though angles			along paper thin partings					
		vary widely to c.a.								<u> </u>
			†					 		

				Dia	amond Drill Record		[i	HOLE NO. G86.1	Page -	of	8
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS		•	
ŧtom	flØ	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in de	creasing ab	undan	ce
		BOX 11: 188.3-206.9: totally			1-3% finely xline po with						
		spilled, though most of			trace slightly coarser py;						
		material originated in box			veinlets of aspy 2-3% of						
		-half is feldspar-hornblend	e		interval						
		porphyritic dyke rock: light									
		to medium brown grey with									
		10-15% subhedral to anhedral									
		feldspar, slightly									
		saussuritized			·						
		-half is distinct brownish									
		siltstone as before									
								····•			
		BOX 12: 206.9-223.9: to 212									
		granodiorite as before			·						
212	230.	3 siltstones, dark grey to			po less than 5%, finely			minor diffuse	_quartz	vei	nlets
		prown grey; lack patchy			disseminated plus local			very irregula	r, typi	call	y I
		colour changes as described			veins to 5 mm, minor clots			lack po thoug	h may c	onta	in
		pefore except for 212-214.7			and swirls; generally less			trace py			
		-223.8-225.3: area of fine			po visible than in siltstone	5					
		olack squiggles: ? wisps of			above but still averages						
		finer grained mudstones			2-3%				<u> </u>		
		CONTACT: gradational over									
		2-3' with slight change of									

				Dia	amond Drill Record	Н	OLE NO. G86.1 Page 8 of 8	
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	fť	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
		colour and grain size from					•	
		brown-grey siltstone to med						· · · · · · · · · · · · · · · · · · ·
		grey granodiorite which						
		gradually increases in xl						
		size away from contact						
230	238	granodiorite finer vline			2-3% no finaly disseminated			minor quartz veinlets gon-
		than before, plus somewhat			as well as locally in			erally lack sulphides but man
·		darker in colour with			irregular 5mm voinlots			be accociated with minor
		feldspar laths less prominer	+		Thegalar same verniees			bleaching and silicification.
								plus chlorite and slight
								brecciation
238		END OF HOLE						
					·	 		
						┨────┥		
		· · · · · · · · · · · · · · · · · · ·						
						 		
			<u> </u>					
	L	L	1	1		1		

LOCATION: L5+06N, 0+55E		Diamond Drill Record						HOLE NO. G86.2 Page 1 of 6					
UTHI	279	DIPS – colla	47	c	CONTRACTOR: Beaupre Diamo	nd Dril	lingP	ROPERTY: Georgia					
ATION	3840'	÷ 1	m	0	LOGGED BY: J.L. Hardy		C	LAIM NO. Pott					
TH:	270'	-	n	0	DATE: June 23, 1986		S	ECTION NO.					
SIZE	* NQ	_ 270'	45	0			S	TARTED: June 22, 1986					
OSE #	to intersect and	omalous IP a	nd Gen	ie re	sponses		C	OMPLETEDøune 23, 1986					
ion	ROC	ĸ	Inte	erval	ALTERATION			VEINLETS					
to f+	DESCRIP	TION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance					
8	CASING												
16	siltstone, dar	k grey, rare			weathering effects as porou	s	··	irregular, high angle calcite					
	broad diffuse	laminae at			areas with oxide rims and			veins, typically 1-2% and					
	90 degrees c.a	•			rusty fracture surfaces			less than .5 cm					
					plus/minus po; persist to								
					45'								
					-pyrite with po very finely								
			1		disseminated throughout,								
					hard to estimate percent,								
					likely near 15%, rarely								
		······································			to 20%; also in very fine	······································							
	······································				fractures and along								
					partings or fracture planes								
					-slightly coarser py in								
					irregular swirls			1					
	· · · · · · · · · · · · · · · · · · ·	<u></u>	1										
25	silstone, but 1	brecciated	1										
	with open fract	tures,	1										
	partly filled	by calcite	1				·						
	LTH : ATION TH : SIZE OSE : ion to f+ 8 16 16	<pre>NON' L5+06N, 0+55E UTH: 279 ATION: 3840' TH: 270' SIZE: NQ OSE: to intersect and ion ROC to DESCRIP 8 CASING 16 siltstone, dar broad diffuse 90 degrees c.a 90 degrees c.a 90 degrees c.a 25 silstone, but 1 with open frac partly filled</pre>	Interview	INDEX: 15+06N, 0+55E UTH: 279 DIPS - collar 47 NTION: 3840' - m TH: 270' - m SIZE: NQ - 270' 45 OSE: to intersect anomalous IP and Gen - 000000000000000000000000000000000000	ICIN LS+OEN, 0+55E UTH: 279 DIPS - collar 47 o ATION: 3840' - m o TH: 270' - m o SIZE: NQ - 270' 45 o OSE: to intersect anomalous IP and Genie re ion ROCK Interval from 10 ft 0 DESCRIPTION ft 10 ft 8 CASING	Interval 279 DIPS - collar 47 ° CONTRACTOR: Beaupre Diamo UTH: 279 DIPS - collar 47 ° CONTRACTOR: Beaupre Diamo NION: 3840' - m ° LOGGED BY: J.L. Hardy TH: 270' - m ° DATE: June 23, 1986 SIZE: NQ - 270' 45 ° OATE: June 23, 1986 OSE: to intersect anomalous IP and Genie responses Interval ALTERATION, 10 ROCK Interval ALTERATION, 14 DESCRIPTION If form fo MINERALIZATION etc. 8 CASING - - Weathering effects as porou 16 siltstone, dark grey, rare weathering effects as porou broad diffuse laminae at areas with oxide rims and 90 degrees c.a. Interval rusty fracture surfaces 16 siltstone, dark grey, rare weathering effects as porou 16 siltstone, but brecciated - - 16 siltstone, dark grey, rare weathering effects as porou 16 siltstone, dark grey, rare weathering effects as porou	100.11 L5400N, 04558 47 • CONTRACTOR: Beaupre Diamond Dril LTH: 279 DIPS - collar 47 • CONTRACTOR: Beaupre Diamond Dril NION: 3840' - m 0 LOGGED BY: J.L. Hardy TH: 270' - m • DATE: June 23, 1986 SIZE: NQ - 270' 45 • • OSE: to intersect anomalous IP and Genie responses Interval ALTERATION, Thickness ion ROCK Interval ALTERATION, Thickness fr IO DESCRIPTION ft MINERALIZATION etc. Thickness 8 CASING I Interval ALTERATION, Thickness 16 siltstone, dark grey, rare weathering effects as porous Interval Interval Interval Interval 90 degrees c.a. Interval areas with oxide rims and Interval Interval Interval 90 degrees c.a. Interval areas with oxide rims and Interval Interval Interval Interval Interval Interval Interval Interval Interval Int	IDA: LS+UGN, 0+55E IPS - collar 47 ° CONTRACTOR: Beaupre Diamond Drilline P VIION: 3840' - m ° LOGGED BY: J.L. Hardy CO TH: 270' - m ° DATE: June 23, 1986 S SIZE: NQ - 270' 45 ° OATE: June 23, 1986 S S SIZE: NQ - 270' 45 ° S					

	·			Di	amond Drill Record	ի	IOLE NO. G86.2 Page 2 of 6	
Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS
from ft	lo ft	DESCRIPTION	from	₽₽	MINERALIZATION etc.	Thickness mm	Angle to core	e minerals in decreasing abundance
		and coarse vuggy areas with			coarsely crystalline py			calcite overall 2-3%
	-	oxidized edges; many veins,			and calcite in veins to 1 c	m,		
		graphitic and slickensided			py 5-10% overall, locally			
		along many surfaces			to 20% in veins			
					2 20 modium enuctallino			
25	33.4	?felsic intrusive: light			2-3% medium crystalline			
		grey, finely crystalline,			annedral py	[
		with subhedral feldspars,						
		rare dark green hornblende			·····			
		subhedra, generally soft,						
		ground mass somewhat						
		saussuritized						
		-partings show slickenside	s					
31.		but not graphitic, only						
		partly oxidized but py			· · · · · · · · · · · · · · · · · · ·			
		remains; effervesces in						
		places						
	40	hundered dark grou gilteton						
33.5	49	breciated dark grey siltston			+36.5: po dominates but py			
		as at 16-25			also present in coarsely			
		41-48: badly broken core:			crystalline areas			
		recoveries poor, graphitic						
		partings very closely spaced						
		but beware as some are						
		polished chlorite						

				Dia	mond Drill Record	Γ	HOLE NO. G86.2 Page 3 of 6	
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	10 ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to con	e minerals in decreasing abundance
49	59	return to dark grey, silt-			ро 5-10%			
		stones, faint laminae;						
		core typically broken with						
		many chloritic and often						
		graphitic slickensided						
		partings						
59	64.5	return to brecciated			po only sulphide present			
		siltstones as at 16-25'			in coarse crystalline			
					patches to 2-3%, plus			
					very fine disseminations			
					up to 5%			
64.5	81.9	siltstones, dark grey, in			po very fine throughout			sporadic zones of calcite
		places laminated with bands			about 5-10%, in places to			veins generally less than
		defined by slight changes			15%, plus local coarser			.25 cm; rubble breccias
		in colour and grain size;			patches and swirls of			common
		microfaults, slumps and			restricted size			
		load features suggest soft						
		sediment deformation;						
		partings and broken core						
		often show chlorite and						
		calcite with lesser graphite						· · · ·
		-66-68.1: siltstone, mediu	m	-	po 2-3% fine plus to 5-10%			
		grey, approaches fine quart:	lte		COATSEL SWITTS			

•

				Dia	amond Drill Record	Н		HOLE NO. G86.2 Page 4 of 6
Sect	lion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to co	e minerals in decreasing abundance
81.9	127.	6 end of intervals of broke	1		some intervals have po as			locally minor calcite veins
		core, blocky ground; siltst	one,		mm slashes, crudely paralle	<u>n</u>		with or without po and
		dark grey, laminated on mm			to banding; po also finely			microbreccia
		to cm scale but laminae			disseminated in matrix			
		at variable angles c.a.;			from 5-10% plus 2-3% along	11		
		lesser medium grey, coarser			partings and fractures			
		siltstone to quartzite to			where it grades locally to			
		10% of sequence, microfault	5		30%	11		
		and swirls suggest soft	·			<u>}</u> }		
		sediment deformation; in				<u>├</u> ──┤		
		places fabric suggests						
		shearing and may be graphit	ic					
		along partings, though						
		elsewhere chlorite; local						
		zones of gouge as at 107.3						
		or crackle breccia as at						
		110-114 and 117.5-119.2						
		-123.5-124.7: granodiorite	,		2-3% po as fine disseminati	ons		
		medium fine crystalline,			and along fine fractures			
		light grey to grey green						
		with patchy silicification,			······································	<u> </u>		
		and colour changes; locally			······································			
		sericitic and bleached					l	
127.	625	4.1 granodiorite, various			po 1-2% disseminated			sparse quartz and calcite
		shades of green to grey			throughout plus massive			veins less than 1cm

				Di	amond Drill Record		[HOLE NO. G86.2	Page 5	of ₆
Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS		
from ft	to ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in dec	reasing abu	ndance
		green to brown green, equi-		_	po in irregular discontinuo	us		minor zones of	f quartz	influx
		granular though individual			veins as at 132-133: po			with diffuse of	edges me	rging
		feldspars slightly coarser			averages less than 5%			with silicifie	ed zones	
		against greenish ground								
		mass; partings show chlorit			154.2: trace cpy with po					
		and yellow-brown oxide;			in minor vein					
		čòmmonly calcareous, locall	7							
		blocky hornblendes partly			173.2-173.5: zone of silica					
		altered to biotite; sporadie	1		and actinolite with coarse					
		xenoliths, generally less			highly irregular aspy veins	,				
		than 3 cm; rarely more			lesser po; aspy 5% and					
		than 10 cm.			po 2% of interval;also at					
					186.9-187					
					-216: trace cpy with po in					
					quartz vein					
				1	-217.4-219.8: gradual incre	ase				
					in irregular coarsely cry-					
					stalline po veins to severa	ŀ				
					every few cm; veins massive	-				
				1	generally less than 1 cm					
				 	-219:8-224.3:massive po wit	h				
				1	chlorite rim near parallel					
			<u> </u>		to c.a.; very irregular					
				<u> </u>	edges, minor cpy					
					-224.2-226.6: as at 217.4					

Diamond Drill Record							ſ	HOLE NO. G86.2	Page	6 of	6
Section		ROCK	Interval		ALTERATION	VEINLETS					
from ft	to ft	DESCRIPTION	trom	46	MINERALIZATION etc.	Thickness mm	Angl to co	minerals in decreasing abundance			e
					-241.2-241.4; 246.8-246.9: intervals of silica and						
					coarsely crystalline po						
					-249-252.9: increased very						
					coarse po as at 217.4						
					-252.9-254.1:intense massiv	e					
					po with chlorite and minor		··· - ·· ··				
					preccia with calcite; po						
					veins irregular and corrode						
					into country rock; massive					-	
					po to 40% over several cm						
254.	L 27	0 siltstone, very dark grey			po finely disseminated 10-15	8					
		well-laminated, with lamina	e						•		
		at variable angles to c.a.;									
		swirls and microfaults									
		common									
270		END OF HOLE									
				1							
				1	1						
				<u> </u>		1					
L			L		L	L		I			

471	AL'TH :	221	DIPS - colla	r 6	2 °	CONTRACTOR: Beaupre Diamond Drillin			PROPERTY L Coordin			
FLE	ATION		-	. <u>.</u> m	0	LOGGED BY: J L. Hardy	TITUR	CLAIM NO. Coorgin				
LEN	GTH:	503' (153.3m)	-	m	0	DATE: June 23, 1986			SECTION NO.			
COR	F SIZE	*NO	-153.3m 62 °			ounc 207 1900			STARTED & June 23 1986			
PUR	POSE :	to test Genie EN	M conductors	at ne	ar rid	t angles and 150' (45 7m) denth			COMPLETED: June 25, 1986			
See	ction		Interval						VEINLETS			
from ft	ft	DESCRIF	rk Ption	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to con	ngle minerals in decreasing abundance			
0	23	Casing: rubbly	y, partly			py 2-3% throughout and		1				
		broken ground,	, silicified			along irregular, discon-						
		siltstone or g	granodiorite	,		tinuous fractures or veins	5					
	1	likely very cl	lose to conta	adt								
		-brown-grey t	to green-gre	7								
		with patchy co	olour change	5								
		and areas of b										
23	29.9	disturbed zone	e: appears			finely crystalline po as						
		swirled, conto	orted with	1		highly irregular veins and	1	1				
		highly irregul	lar patches			replacements; averages		1				
		of chlorite, massive				2-3% with some semi-massiv	76	1				
	+	calcite, appar	1		sections of seveal inches							
		replacing medi	ium crystall:	ine		at 10%; minor py as irregu:	Lar					
		biotite rich s	siltstone;			clots, plus trace anhedra						
		siltstones the	emselves show	v		сру						
		patchy colour	changes and									
		silicification	n with border	s					· · · ·			
		diffuse and ha										

			н	HOLE NO. G86.3 Page 2 of 11					
Section		воск		rval	ALTERATION	VEINLETS			
from ft	۱٥ ft	DESCRIPTION		ιο ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance	
		-calcite present in anhedr	1						
		squared areas suggesting							
		altered crystals or as							
		highly irregular masses							
29.9	39.8	chlorite no longer present			po as highly irregular			calcite_alone_or_with_po	
		in significant amounts			coarsely crystalline masses	6		in highly irrregular veins	
		except for greenish tinge;			to anastomosing veins;			up_to_3_cm_wide	
		-disturbed zone with			replaces into country rock				
		irregular swirls and light			-most intense veins 29.9-				
		grey to grey-green areas of			37.2 and in places has mm				
		country rock; partings may			size fragments surrounded				
	<u></u>	show calcite, chlorite and			by po or forms crackle				
		slickensides			breccia with homogeneous				
					fragments in po cement				
					-po perhaps 10% over				
					interval but very hard to				
					estimate and 20% over best				
					areas				
				[35.6-37.8: minor cpy				
<u> </u>	1				as breccia cement and fract	ure			
			1		<u>fill</u>				
L				· ·		L			
	1								
				Dia	amond Drill Record		[HOLE NO. G86.3 Page 3 of 11	
----------	------	-----------------------------	------------	----------	-----------------------------	-----------------	-----------------	------------------------------------	
Sec	lion	ROCK	Inte	rval	ALTERATION.		•	VEINLETS	
from	fť	DESCRIPTION	from đt	to ft	MINERALIZATION etc.	Thickness mm	Angle to con	e minerals in decreasing abundance	
39.8	75	CONTACT AREA: siltstones			po 1-5% finely disseminate	a		minor calcite and quarter	
		plus granodiorites			as well as in places massi	ve		veins with po; calcite	
		-siltstones: coarse-grained	L,		to semi-massive veins			also along partings	
		with biotite easily visible	,		adding only trace overall;				
		distinct medium brown colou	r		grades hard to estimate				
		-plus distinctly green			due to biotite				
		areas which may be tuffs							
		or granodiorites, medium			-47.4-48.9: zone of bleach	ing,			
		crystalline, borders not			silificiation, quartz and				
		distinct and tend to grade			calcite veins				
		into one another			-65.3-68.1: po with siltste	ne			
		-pervasive but patchy			remnants with po as subrou	ded			
-		silicification			blebs to 10mm 1-2% of inter	val			
		-most of sequence probably							
		close to contact and has							
		been hornfelsed with presen	ce						
<u> </u>		of biotite and sporadic		1					
		feldspar crystals							
		-portions definitely grano-							
		diorite with areas of							
}		assimilated siltstone		<u> </u>					
				1		1	_		
75	146	biotite granodiorite: fine			po 1-2%, rarely to 10%,				
		to medium crystalline			medium crystalline but				
		-shades of grey to green			coarser along fractures				

				Di	amond Drill Record		нс	LE NO. G86.3	Page 4 of	• 11
Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS		
from	to	DESCRIPTION	from	to	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in de	creasing abundar	nce
		grey; individual crystal			and in clots; to 10-20% alon	a				
		borders not distinct; equi-			subrounded black xenoliths					
		granular, biotite very								
		fine in ground mass and			-85.9-86.5: massive po					
		15-20% as coarser subhedra			vein surrounded by green					
					chlorite to 10% over					
		123.2-127: lamprophyre			interval; vein very					
-1		dyke: dark green, very fine			irregular but maximum					
		grained plus augite			width about lcm, pinches					
		phenocrysts and 1 cm	1		and swells					
		irregular clots of chlorite	1		-93.8: irregular patch					
		-chloritic slickensided		1	semi-massive po					
		contacts with country		1						
		rock	1	1						
	·		1	1						
146	154	.3 likely granodiorite,	1	1	po as massive coarsely			quartz veins	irregular	and
		various shades of light to	1		crystalline veins to masse	In		discontinuou	s with po a	and_
		medium green to green-grey			of highly irregular shape;			minor calcit	e	1
		-disturbed zone of patchy			largest vein 2cm at 45					
		bleaching and silicificatio	4	1	degrees to c.a.; po less					
		-remnants of siltstone	1	1	than 5% overall					
			1	1	-trace medium crystalline					
					cpy at 146.5,149.3 with					
			1	+	calcite; immediate country	1			<u></u>	
			1	1	rock looks like	1		+		
	l			1		1	L			

				Di	amond Drill Record		н	OLE NO. G86.3	Page 5	of	11
Sect	ion	ROCK	Inte	rval	ALTERATION		•	VEINLETS			
from ft	10 ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	e minerals in decreasing abu			e
					hornfelsed siltstone						
154.3	172	l granodiorite, less			fewer po veins than above,						
		bleached and silicified			averages 2-3%; crackle						
		than previous, with more			breccia at 160.9-161.1 with						
		remnants of coarse-grained			2-3% cpy veins, minor calci-	e					
		biotite granodiorite; still			and po 30% of interval						
		patchy colour changes			-160.3: trace cpy with po						
					-168.9: trace aspy with po						
172.1	175.	3 granodiorite, very coarse			locally po in crackle brecc:	а					
		crystalline, grey-green,			with veins to 2 cm; minor						
		equigranular, feldspars			cpy, locally to 5% plus						
		not readily visible; patchy			aspy to 10% in places;	1					
		silicification and felds-			all appear to be part of a	<u> </u>					
		pathization			single vein system						
175	3 21	5.7 biotite bornblende			no 1-2% medium crustalline	<u> </u>		minor quarte	waing	1000	
		granodiorite, coarsely			disseminations to coarsely			5 cm often	with ch	lorit	
·		crystalline, generally		1	crystalline clots: aspy to			bleached are	as exte	nd ou	itwar
_	 .	fresh, green-grey colour		<u> </u>	1% in veins and dissemination	ns					
		dominates			-213.2-214.2: massive						
					po, coarsely crystalline; to						
					3% aspy and in places 1-2%						
					cpy, sometimes with chlorite	9					
[1	along slickensided fractures	e					

				Di	amond Drill Record			HOLE NO. G86.3	Page 6	of	11
Sect	tion	ROCK	Inte	rval	ALTERATION.		•	VEINLETS			
from ft	to ft	DESCRIPTION	from	ff	MINERALIZATION etc.	Thickness mm	Angl to co	le minerals in dec	minerals in decreasing abundant		
215.7	232	.3 biotite granodiorite,			214.2-217.9:disturbed zone						. <u></u>
		coarsely crystalline as			with much calcite and chlor	<u>te</u>					•
		above but distinct brown			and quartz influx with						
		rather than green dominates			coarsely crystalline po						
					veins, replacing into						
				ļ	wallrocks; patches of fine						
					grained biotite-rich mater-						
			L	ļ	ial which may be silstone						·
					remnants; po to several						
					cm across, averages 10-15%						
					over interval						
					-overall po 3-5% as fine			minor quartz	veins	and	
					disseminations and veins			actinolite zo	ones wi	th s	silio
								and bleaching	3		
					· · · · · · · · · · · · · · · · · · ·						
232.3	243	hornfelsed siltstones;			chlorite veins with calcit	¢					·
		dark brown to green brown,		ļ	and po, in places crackle						
		with patches of coarsely			breccia						
		crystalline biotite-			-227.9-228.1: major						
		hornblende granodiorite,			calcite and quartz influx						
		irregular borders			with massive po and trace						
					сру						
				<u> </u>						<u> </u>	
243	370.	2 hornblende-biotite grano	 	 	po less than 2-3%, medium	ļ	 	minor quartz	and c	alci	te
	[diorite as before			crystalline disseminations			veins less t	han lc:	n wi	de

				Di	amond Drill Record		н	OLE NO. G86.3	Page 7	of ¹¹
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS		
from ft	lo ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in de	creasing abun	dance
		equigranular, relatively			and fractures, often with			-279-280 7.	disturbed	zone
		fresh, medium dark brown			slickensided surfaces; loca	1		of calcite a	nd quart:	. influx
					zones of silica, bleaching,			with po_up_t	0_10%_of	veine
		-296-301: interval of			and chlorite					
		sheared siltstone interbed	led		-261.5: 3cm po vein with					
		with biotite-rich granodio	ite,		1-2% cpy bounded by chlorit	ic				
		finer crystalline than is			slip planes with calcite					
		typical			-274.1-275.4: .5cm po					
		-313.1-314.7:mafic dyke,			vein sub-parallel to c.a.					
		dark green, calcareous with			with minor py and trace cpy					
		mm calcite spots and 3%								
		augite phenocrysts; 2-3%								
		anhedral py								
		-360.1-361: hornfelsed			upper part quartz veins wit			-362.5-364.	7: calcit	e vein
		siltstone, medium brown			chlorite and po as irregula	ł		subparallel	to <u>c.a.</u> v	vith
		with biotite and granular			anastomosing veins; 2-3%			slickensided	chlorite	e, no
		interlocking texture			сру			sulphides		
			ļ				ļ			·
370.	2 371	.2 ?dyke, or bleached			trace py disseminations,					
		equivalent of granodiorite			medium crystalline; more					
		in contact zone: light grey	7		in apparent medium grey					
		to white, finely crystallin	e	1	xenoliths					
		with faint effervescence;		1						<u></u>
		vague white feldspar plus								
		apparent quartz subhedra								

			Dia	umond Drill Record		н	OLE NO. G86.3 Page 8 of 11	
Sect	ion	воск	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	10 ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
371.2	374.	4 ?dyke, finely crystalline,			1-2% medium crystalline py			.25 cm calcite spots 10%,
		dark purple grey, sparse						minor calcite veins with
		blocky, rounded augites,						chloritic slickensides
		strongly magnetic; relativel	У					
		softer than above						
		-contact may be irregular,						
		with apparent bleaching,						
		silicification						
374.	1 388	.5 return to light grey			trace subhedral to euhedral			
		? dyke material but medium			ру			
		crystalline with subhedral					. –	
		feldspar as before						
388.	390	.5 return to dark purple-			1% finely disseminated to			
		grey ?dyke or contact			clots of py and trace py			
		phase			as before			
							ļ	
390.5	396	5 biotite-hornblende grano			less than 1% medium cry-			minor quartz and chlorite
		diorite, medium grey			stalline po as disseminati	ons		veins
					to clots			
				Ĩ				
396.5	406	8 dark purple-grey dyke						
		as before, in places						

				Di	amond Drill Record		н	OLE NO. 686.3	Page	9 of 11	
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS			
from ft	io ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in de	reasing al	oundance	
		transition to light grey	_		py to 1-2% with calcite					• • <u>· · · · · · · · · · · · · · · · · ·</u>	
		rock with calcite spots;			spots						
		possible bleached equivalen	ts								
406.	3 414	.3 granodiorite, medium			1-2% py as before		. <u></u>			. <u></u>	
		crystalline but with more									
		alteration as individual									
		crystals not distinct									
414.	8 4 2	4 medium grey dyke, finely			less than 1% py						
		crystalline, in places wit	n								
		highly irregular green						415-420: cra	ckle b	reccia	
		hornblende crystals; mm						with irregul	ar cal	cite ve	ins
		calcareous spots in ground	 					at high angl	e to s	ub-pare	1141
		mass			· · · · · · · · · · · · · · · · · · ·			to c.a.			
424	449.	9 return to white felsic									
		dyke as before, but now		ļ							
		medium crystlline inter-									
		locking quartz and feld-				1					
		spar; in places vague		<u> </u>	······································	1					
		"circular" texture shown		1							
		with apparent clear core									
		Sallounada Sy Oloudy		· · · ·					·		
		feldspar; calcareous in									

				Di	amond Drill Record		н	OLE NO. G86.3 Page 10 of 11
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from	₽₽	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
		places, sericitized with						
		1-2% feldspar subhedra						
449.9	452	return to black dyke with						
		calcareous spots						
452	461.3	hornblende biotite grano-			po as medium crystalline			minor calcite and chlorite
		diorite, medium crystalline	,		disseminations and with			with quartz in veins; local
		medium grey green, equigran	ular		calcite in fractures and			bleaching
					veins 1-2%			
161 3	462	9 nurnle-grev dyke as						
10113	102	described				-		
462.9	487.	6 white intrusive with			1-2% subhedral medium			brittle open fractures with
		circular textures above			crystalline py	_		drusy quartz fill
487.	6 492	.9 purple-grey dyke rock			2-3% fine po, minor aspy			
		as before to 489, then						
		medium crystalline, green						
		brown material which						
		resembles finer crystalline						
		phases of granodiorite						
							L	

				Di	amond Drill Record	- F	OLE NO. G86.3 Page 11 of 11	
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	lo ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in decreasing abundance
492.9	503	granodiorite, coarsely			py 1-2%, mainly as medium			minor guartz and calcite
		crystalline, equigranular,			crystalline clots, minor py			veins
		green-grey; chlorite more						
		common than before, often						
		with biotite in bands						
		suggesting shearing or						
		siltstone inclusion						
		· · · · · · · · · · · · · · · · · · ·						
503		END OF HOLE						
			[
						1		
						<u> </u>		
••		· · · · · · · · · · · · · · · · · · ·				1		
						1		
				1				
			<u> </u>	1		<u> </u>		
			<u> </u>		· · · · · · · · · · · · · · · · · · ·			
				 		<u> </u>		
						 		
				ļ		 		
						ļ	 	
				Ľ.		ļ		

LOCA	OCATION:24m at 70 from L0+50N,2+				Dia	mond Drill Record		н	IOLE NO. G86.4 Page 1 of 13
AZIN	UTH #	158 degrees	DIPS - collar	46	0	CONTRACTOR: Beaupre Diamo	ond Dril	ling	ROPERTY: Georgia
ELEV	ATION	4060	_ 501'	45	0	LOGGED BY: J.L. Hardy		C	LAIM NO. Georgia Fr/Georgia
LENG	it H #	501'	- m		•	DATE: June 27, 1986		S	ECTION NO. 6.4
COR	SIZE	* NQ	- m		0			S	TARTED: June 26, 1986.
PURF	OSE #	to test VLF cen	tred at L3+50	w, l+	55N,	L3W, 1+64N in area of old wo	orkings	C	COMPLETED: June 28, 1986
Sec	tion	ROC	К	Inte	rval	ALTERATION.			VEINLETS
from	1°t	DESCRIP	TION	from Lt	102	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
Ö	14'	Casing		·•					
14'	16.5	siltstone: dis	tinct brown			po 2-5%, finely dissemin-			sparse calcite and chlorite
		grey, fine-gra	ined, biotite			ated			veins, generally less than
		easily visible							.5cm, variable angles
16.5	29.3	hornblende-bio	tite grano-			bleaching and silicific-			quartz veins, bleaching,
		diorite, light	green grey,			ation throughout with			silicification, often with
		medium crystal	line, equi-			oxidation to 32'			indistinct borders with
		granular; indi	vidual			-po common as sporadic			country rock
		crystals indis	tinct; in			veins less than 3mm wide,			
		places more li	ke biotite			except where noted; near			
	rich	rich siltstone, b	ich siltstone, but vague 80 degreesstocore axis;	80 degreesstoccore axis;					
		feldspars gene	rally seen;			also as irregular clots			
		moderate effer	vescence			to .5cm; averages 1-3%			
		common				-minor subhedral aspy			
						along fractures, total tra	ace		
						-py medium crystalline,			
						anhedral to euhedral as			

•

				Di	amond Drill Record		· · [HOLE NO. G86.4	Page 2 of 13
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS	
from	je V	DESCRIPTION	from	to	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in de	creasing abundance
					patches, veinlets, clots				
					to .25 cm, averages less				
					than 1%				
					-26.3-26.7: po, massive,				
					coarsely crystalline vein				
					to crackle breccia; maximum				
					vein width 1.5cm, partly				
					edged by chlorite and aspy				
					with py centre and with				
					cpy in subsidiary veinlet;				
					ру 5%, азру 10%, сру 2%,				
					plus 2-3% along veins and				
					fractures often near right				
					angles to c.a.				
29.3	38.3	siltstone: brown-grey, med.			29.3-29.6: area of more			minor quartz	and calcite
		grained with biotite easily			pervasive silicification/			veins which m	ay contain po
		visible; in places patchy			pleaching; textures gone				
		silicification and zones			-30-31.7: as above plus				
		of bleaching so likely			some open fractures, general				
		close to granodiortie			-ly zone of veins and				
		contact; chloritic with			semi-massive po with up to				
		slickensides on some			3% cpy; includes 30-30.9		•		
		partings; moderately			po, massive c. crystalline				
		strong effervescence			vein with calcite and				
					chlorite; po 15-20%				

				Dia	Diamond Drill Record			DLE NO.	Page 3 of ¹³
Sec	ion	ROCK	Inte	rval	ALTERATION			VEINLETS	•
from Rt	iet T	DESCRIPTION	from L+	if	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in de	creasing abundance
σ	0			V	36.3-38.3: zone of veins to			chlorite loca	illy on
					patches to crackle breccia			slicksided su	ırfaces
					with massive coarse po				
					corroding into wallrock;				
					magnetic; po overall about				
					35% of interval				
					-to 5% anhedral cpy				
			1	1	locally but averages 1%				
					-5-10% py with po but				
			1		averages 2-3% overall				
			1	1					
. 3	42.4	? siltstone; very patchy			po in irregular coarse			minor calcite	e veins
		medium green to brown,			veins less than .5 cm wide	4			
		silicified, likely close	1		generally with calcite;				
		to granodiorite contact			variable angles to c.a.,				
					2-3% average				
			1		39.9: coarse po with sub-				
					hedral coarsely crystalline				
					py in irregular veins with				
			1		calcite subparallel to c.a.	1			
			1		-sulphides 15% over interva	1			
					with 2-3% coarse cpy				
					-41.5: minor cpy in calcite				
					-41.9-42: coarse semi				· .
		f							
	L			<u> </u>		1	L		

				Di	amond Drill Record		· · · · [HOLE NO.	86.4	Page	4	of ¹³
Sec	tion	ROCK	Inte	rval	ALTERATION	VEINLETS						
from At	10 Rt	DESCRIPTION	from	10 Let	MINERALIZATION etc.	Thickness mm	Angle to co	e min	erals in de	creasing	abun	lance
v	U				massive po, py with minor							
					сру							
2.4	55.9	return to more typical			po and py. coarsely crystal			spora	dicall	y abun	dan	t cal-
		siltstone: medium brown			line in abundant fine veins			cite,	irreg	ular a	nđ	dis-
		grey, coarse-grained, biotit	е		and disseminated in walls;			conti	nuous	at var	ous	angle
		rich but with local			overall about 5%, locally			and c	ften w	ith co	ars	e po
		swirled or disturbed areas		1	to 10%, replace into walls							
		of green laminated material			45-45.5: po 10-15% as							
		showing closeness to grano-			irregular mesh and vein							
		diorite; patchy but			network						_	
		pervasive silicification			47.6-49.1: many veins as							
	1		1	1	HW to massive sulphides;							
			1		coarsely crystalline po							
					patches to veins 15-20%,							
					1-2% cpy overall locally							
					to 5%; fine apsy averages							
					2-3% overall to 20% locally							
			Ι		country rock dark chlorite							
					and quartz rich							
					49.1-50.9: massive po,							
				1	subparallel to c.a.; minor							
					calcite and quartz inclusion	S						
					with cpy to 10% locally							
					(averages 1-2%)							
					•	-						

•

				Diamond Drill Record			- F	HOLE NO. 86	.4	Page	5 0	f ¹³
Sect	lion	ROCK	Inte	rval	ALTERATION			VEINL	ETS		•	
from	10	DESCRIPTION	from At	10t	MINERALIZATION etc.	Thickness mm	Angle to cor	re minerals	in decr	easing a	ibunda	Ince
	9		-0	0	-highly irregular borders							
					with silicified siltstone							
		50.9-51.9: very silicified			country rock							
		light grey; all textures										
		gone; many chloritic			+50': py dominant sulphid	e						
		fractures			in veins and py greater tha	1						
					po with total sulphides							
					2-3%							
							_					
55.9	72.4	hornblende biotite grano-			py 1-2%, medium crystalline			local_ch	lorite	alo	ng v	eins
		diorite, darky green-grey,			clumps to 10 cm diameter;			and in p	atches	s wit	h_ca	lcite:
		coarsely crystalline, equi			irregular veins to 5 cm wide			minor ca	lcite	vein	s	
		granular; slight variations			63.1-63" py and po 15%							
		in composition and crystal										
		size; patchy but pervasive		1								
		silification and areas of										
		dark brown finer material										
		which may be siltstone										
		remnants										
72.4	77.3	hornblende granodiorite,			py 1-2% disseminated in clo	s						
		finely crystalline with			and along fractures; chlori	e						
		calcite spots to 1 cm			with pyrite along slicken-							
		decreasing down; likely			sided surfaces							
		close to siltstone conta	°t.									

				Di	amond Drill Record		[HOLE NO. G86.4	Page	6 of	13
Sec	tion	ROCK	Inte	rval	ALTERATION.			VEINLETS		•	
from ft	to ft	DESCRIPTION	from ft	ξŧ	MINERALIZATION etc.	Thickness mm	Angle to co	e minerals in de	creasing	abunda	nce
77.3	80	SILTSTONE, dark brown, faint	1y		78-78.1:massive coarse						
		banded with finer and coarse	r		crystalline py with calcite						
		layers, contact with below			-overall py 2-3%					.	
		bleached and silicified									
80	109.	hornblende granodiorite,			averages 1-2% med. crystal						
		equigranular with local			line py in fine veins and						
	1	areas of silificiation,			clots						
		bleaching and chlorite			83.5: close-spaced py						
		extending out from quartz			veins, right angles c.a.						_
		veins			94.5-98.4: zone of greater						
					py and po with chlorite as						
					disseminations of py						
					subhedra and po anhedra						
	1		1	1	extending irregularly						
	1		1		into rock; several massive						
			1	1	to semi-massive sections						
	[-po and py 15%						
					101.2-101.5: massive py						
					with lesser py 15-20%, plu						
					5-10% aspy	L					
					101.7-101.8; po with trace	<u> </u>					
			<u> </u>		сру	ļ					
					102.5-102.6: irregular						<u></u>
					coarse py 25%						

				нс	DLE NO. 86.4 Page 7 of 13			
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
		+105: darker green,			103.7-104.2:py and po			
		finer crystalline, likely			in veins with chlorite,			
		close to siltstone contact			also replace into ground			
					mass			
					106.5-108: bleached,			
					light grey to grey pink,			
					blotchy, silicified, no			
					primary textures remain			
					with py 5-10% as very fine			
					subhedra to massive, minor			
					ро			
109.	3 117	.2 ?dyke: dark brown, finel	Y		py 5-10% as fine dissemin-			
		crystalline; sporadic augite			ations, sometimes crudely			
		subhedra to 10%; mafics			banded, irregular swirls,			
		rimmed by calcite blebs			veinlets			
		which resemble vesicles				ļ		
117.:	2 126	.3 granodiorite, light mediu	n		l-2% py, less than <u>l% po</u>			sporadically abundant
		grey to green grey, equi-			as subhedral clots; minor			quartz and calcite veins,
		granular, only feldspars			amounts in quartz veins		1	variable angles to c.a.
		distinctly visible; patchy		1				
		silicification and chlorite	1		······			

				Н	OLE NO.	86.4	Page	8 0	f 13			
Sect	Section ROCK		Inte	rval	ALTERATION			VEI	NLETS		•	
from ft	lo ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness Ang mm to co		minerals in decreasing abundanc				ance
126.3	131.	3 mixed zone of silicified			py 5% as discrete euhedra,							
		siltstones with granodiorite	s;		irregular clots, swirls,							
		patches of siltstone remain,			veins; po less than 1% as							
		contacts irregular and			disseminations and veins							
		diffuse										
.31.3	138.	2 return to predominant			2-3% py, trace po							
		granodiorite, patchy						1				
		colour changes, bleached,					`					
		silicified, fractures	1									
	_	common						1				
138.	2 144	.7 siltstones, medium brown	1		1-2% finely disseminated							
		to brown grey with greenish			po.							
		bands, 70 degrees to c.a.,										
		some bleaching, little										
		silicification										
	-											
144.	7 151	.6 siltstone, light grey to			1-2% po				_			
		green, splotchy, highly			144.7-146: massive po							
		bleached and silicified;			replacing into country rock	٩		Τ		_		
		+147.7: returns to dark			with sharp but irregular		·					
		brown grey siltstone until	1		borders: po 60% with							
		150. <u>7</u>	1		1-2% Cpy; very silicified			1			·	

				Di	amond Drill Record		нс	DLE NO. 86.4	Page 9 of 13
Sect	ion	ROCK	Inte	rval	ALTERATION		•	VEINLETS	
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in	decreasing abundance
151.	5 168	.5 mafic dyke: 10-15%			trace to 1% fine py				
		feldspar-hornblende pheno-							
		crysts in medium green,							
		finely crystalline ground							·
		mass; local epidote							
168,	5 196	.9 siltstones, medium to			py 2-3% finely disseminate	d		quartz very	much greater than
		coarse grained, various		1	and impregnations; minor			calcite in	sporadic veins
		shades of brown green, light			po with chlorite in veins				
		green and brown, patchy;		1					
		borders diffuse; likely							
		near granodiorite contact,					-		
		since patchy silica,							
		isolated feldspars, green							
		colour							
		169.4-169.8, 170.6-171:							
		mafic dyke							
196.9	213	.6 siltstone, predominantly			1-2% po as disseminations			minor iregu	lar calcite veins
		dark brown grey and much		1	and coarser in clots	1			
		less silicified and altered		1					
		than above; localized green				ł		· ·····	
		and brown patches							
		-poorly laminated with			······································				
		colour changes and grain si	ze			<u> </u>			

Casting			Dia	mond Drill Record		НС	DLE NO. 86.4	Page 10 of 13	
Sect	ion	ROCK	Inte	rval	ALTERATION.		•	VEINLETS	
from ft	to ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in dec	creasing abundance
		differences; possible							
		sedimentary breccia							
213.6	232.	2 granodiorite, light grey			po fine dissemination and			minor quartz	veins, some
		to grey green, medium			local clots; minor veins:			up to 2 cm, h	out subparallel
		crystalline, equigranular,			minor py subhedra along			to c.a.	
		individual crystals not			very thin fractures				
		visible due to alteration;							
		pervasive silica and							
		bleaching							
232.2	255.	6 siltstone as before;			po 2-3% in minor veins and			sporadic quar	tz veins, minor
		likely close to intrusive			disseminations			breccias	
		contact with bleached and			232.2-232.3: quartz plus				· · · · · · · · · · · · · · · · · · ·
		silicified areas			arsenopyrite veins with				
					minor py and chlorite on				
					slickensided surface; marks				
					contact with siltstone belo	w			
		· · · · · · · · · · · · · · · · · · ·			and granodiorite above				
					255.1-255.6: zone of quart	z			
					influx with chlorite, po				
				[and trace cpy at contact				
			Ì		with siltstone above and	1			
			1		granodiorite below: po 10%				
					of interval				

			Diamond Drill Record					IOLE NO. 86.4 Page 11 of 13
Sect	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	10 ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	e minerals in decreasing abundance
255.	6 289	.4 granodiorite, medium			less than 1% fine py			minor sporadic quartz veins,
		grey to grey green, medium			268.37: massive po,			often 60 degrees to c.a.,
		crystalline, equigranular			with quartz, chlorite,			associated microbreccia
		though individual crystals			py on slickensided			
		cannot be distinguished;			surface; minor cpy			
		local patchy silicification						
289.	4 322	.3 granodiorite, white to			1-2% iron sulphides with			common quartz influx and
		grey green to light grey,			py medium crystalline alon	g		veins with lesser calcite
		finely crystalline with			irregular fractures and			
		individual crystals not			as fine disseminations;			
		easily visible; pervasive			chlorite along partings			
		intense silicification and			with 1-2% subhedral to			
		saussuritization; fine open			euhedral py			
		fractures locally abundant						
		creating zones of crackle						
		breccia						
	<u> </u>			1				
322.	3324	.5 mafic dyke: dark green,			trace medium crystalline			
		very finely crystalline			py clots	T T		
-		with subrounded calcite		1		ļ		
		clots; good effervescence		-	······································	<u> </u>	<u> </u>	
		in ground mass; lightens		1		1	1	
	1	downward with 5-10% horn-	[
		blende phenocrysts						

		Diamond Drill Record					HOLE NO.86.4 Page 12 of 13	
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in decreasing abundance
324.	5 336	.6 felsic dyke, light grey			1-2% medium crystalline po			
		to pink grey, ranges from		<u>-</u>	or py as clots and along			
		fine-grained with 5-15%			guartz microfractures; less			
		feldspar phenocrysts with			than 1% aspy eu or subhedra			
		hornblende to medium crystal			throughout			
		-line with angular textures						
		(?) of apparent quartz						
		inside feldspar from 324.5						
		to 328; contact with below						
		gradational with slight						
		colour change in ground						
		mass						
336.6	409	?more mafic dyke, medium			1-2% py subhedra in ground			minor calcite veins, often
		grey, finely crystalline			mass			near subparallel to ca.
	<u>_</u> .	ground mass with 5-20%						
		feldspar, lesser hornblende						
		and augite; sparse biotite;						
	-	ground mass slightly						
		effervescent						
		-contact with below sharp						
		and marked by a zone of						
ļ		calcite-cemented breccia				L		
				· · · · -				

				Di	amond Drill Record		н	OLE NO. 86.4	Page 13 of 13
Sec	tion	ROCK	Inte	rval	ALTERATION.			VEINLETS	
from ft	lo ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in dec	reasing abundance
409	501	hornblende granodiorite,			py 1-2% as subhedral			local quartz y	veins, sometimed
	1	medium to coarsely crystal			disseminations to clots,			with minor b	leaching often
		line, various shades of			minor veins; trace local			50-60 degrees	to c.a.
		grey to green grey; local			aspy				
		bleaching and silicification	on		-429.5-434.5: intense				
					silicification with brittle				
					fractures and crackle brecc	La			
					patches with 5-10% medium				
					crystalline po				
501		END OF HOLE							
		······································	1						
<u>├</u> ────									
 				1					
				1					
<u> </u>									
			1	†					
 									
				<u> </u>		<u> </u>	<u> </u>		
			†			1	1		
	1	· · · · · · · · · · · · · · · · · · ·	1	<u> </u>		1			
	i		1	1		L	1		·····

.-

			ı		Dia	mond Drill Record		Г	<u> </u>
LOCA	TION+	L4N, 060E							HOLE NO. GUU.S Page 1 of 6
AZIM	UTH:	275	DIPS - collar	44	0	CONTRACTOR: Beaupre Diamo	nd 'Dril	ling	PROPERTY: Georgia
ELEV	ATION	4040'	– m		0	LOGGED BY: J. Hardy			CLAIM NO. POEE
LENG	iTH :	275 ft.	– m		٥	DATE: July 2,3, 1986			SECTION NO.
CORE	SIZE	• NQ	- m		0				STARTED: June 30, 1986
PURP	OSE to	o test IP and Ge	enie EM anomal	lies					COMPLETED*July 1, 1986
Sec	tion	ROC	ĸ	Inte	rval	ALTERATION			VEINLETS
from ft	lo ft	DESCRIF	PTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angl to co	e minerals in decreasing abundance
0	14	CASING							
12.5	14	hornblende dio	cite: dark			open fractures with			
		grey, medium gi	cained; could			oxidation			
		be a boulder	· · · · · · · · · · · · · · · · · · ·						
14	18.5	siltstone: dar	a grey to			py as disseminations,			sporadic quartz and calcite
		brown-grey				impregnations, veinlets,			with only trace fe sulphides
		14.5-16.5:	finer, darker			averages 5%			
						-14-14.1: 15% py			
18.5	51.7	mixed hornfelse	ed siltstones			1-2% py in fine dissemina-			minor quartz and calcite
		and granodiorit	te with			tions, irregular veins,			veins, generally less than
		gradational tra	ansitions;			along partings;			10 mm; may have bleached
		CLOSE TO INTRUS	SIVE CONTACT;			localized silicification			walls; variable angles to
		various grey to	grey-green;						c.a.
		grain size coar	rse to fine;			open fractures with oxida-			
		hard to separat	te distinct			tion persist to 48'			
		end members							
		18.5-20.5:	crackle bx,						
		minor quartz,	ру						

-

.

				Dia	mond Drill Record		но	LE NO. G86.5 Page 2 of 6
Se	ction	ROCK	inte	erval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
			22	22.3	aspy 5-10%, med. xline			irregular calcite veins,
					subhedral; in vein extend-			70 c.a., less than 5% of
					ing into wallrock; 5% py			interval
			42.3	Ì	coarse po as vein to			
				1	impregnation, less than 1			26.89: area of quartz
	1				cm diameter; minor coarse			veins, bleaching, silicifi
					сру			cation; py 5% in med. xline
								clots
			+42.	3	po averages 1-2%, medium			
					xline, disseminated to			45-48: quartz vein with
					clots; minor veins over			sheared chloritic edges an
					less than 2 cm intervals			open fractures
					which contain up to 10%			
51.	7 68.	siltstone: dark grey to			po as irregular veins at			
		brown grey, very fine to			variable angles to c.a.;			
		medium grained; laminae well			sometimes parallel to			
		defined at mm to .5cm scale;			laminae with calcite veins;	;		
		85 c.a. to 58', when angles			elsewhere increased to 10-			
		are highly variable to 63;			15% in specific laminae			
		then average 70°c.a.			detail shows not strat-	-		
		-marked soft sediment	1	1	abound but slightly cross	1	·	
		deformation as folds, micro-			cutting or irregular			
		folds/faults, load features			impregnations			
					-po very fine crystalline			

				Di	amond Drill Record		нс	DLE NO. G86.5 Page 3 of 6
Sec	tion	ROCK		rval	ALTERATION		·	VEINLETS
from fë	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
					so could be mistaken for			59.3-61.2: crackle breccia,
					biotite; overall averages			calcite cement, minor po
					5-10%; in places semi-			
					massive to massive impreg-			
					nations, generally less			
-					than 3 cm diameter			
			66 8	67.1	irregular po veins rimmed			
					with calcite: massive centry	e		· · · · · · · · · · · · · · · · · · ·
-			 		subparallel to c.a. extends	[
				+	to similar zone parallel to			
				ļ	laminae			
8.3	107.9	siltstone: medium brown to			po as med. coarse xline			
		brown-grey, medium grained,		Ì	veinlet's with lesser semi			
		mostly well-laminated on mm			massive impregnations and			
		to 3 cm scale, variable			along fractures; lesser v.			
		angle to c.a.; minor faults	/		finely disseminated; averag	es		
		sometimes along veins, as			10% py overall			
		well as churned, swirled			-crackle breccia with po			
		zones; local bleached areas			veinlets and open fractures			
	ļ	surround some po impregna-	ļ	L	sporadic, widest about l'		·	
	_	tions	190.	191.	15%po	ļ		
			 		ļ			

				нс	DLE NO. G86.5 Page 4 of 6			
Sect	tion	BOCK	Inte	rval	ALTERATION			VEINLETS
from	to	DESCRIPTION	from	to	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
107.9	111.8	siltstone: med. brown to			po as irregular veinlets			
		brown grey, diffuse colour		ļ	to impregnations with open			· · · · · · · · · · · · · · · · · · ·
		changes, no laminae			fractures; 5% of interval			
_		-contact with above 50 c.a.	ļ		-minor bleaching and			
				1	silicification			
111.8	123.	6 return to dark grey,			po with calcite in irregular			intervals of crackle breccia
		finer-grained, well laminate	d		brittle veins as well as			as at 114.5-115.3, 116.5-
		siltstones, as before			fine disseminations; 5-10%			117.2, 119.5, 123.5; calcite
					overall			plus po cement, plus open
			[fractures
123.	6 128	.4 siltstone, medium brown			po 1-2% primarily as			
	1	to pink brown, medium graine	μ.		irregular, massive to semi-			
		-contact with below			massive veinlets with calci	te.		
		gradational by slight			to 10 mm; plus very fine			
	ļ	darkening in colour	ļ	<u> </u>	disseminations	ļ		
128.	4 134	return to dark grev.						
		well laminated siltstone	+		· ·	<u> </u>	<u> </u>	
	+	as before; 70° c.a. , only		-			<u> </u>	
		minor soft sediment defmt.						
	157		<u> </u>			 	ļ	
134	1.2/.	p return to brown and coarse	¥	 	po 2-3% primarily in veins	 	ļ	
1	1	silt ^{stones} , generally well	1	1	and fine disseminations		1	

				Dia	amond Drill Record		Н	IOLE NO. G86.5	Page	5 0	f 6
Sec	lion	ROCK	Inte	rval	ALTERATION			VEINLETS			
from ft	۱٥ ft	DESCRIPTION	from ft	۱٥ ft	MINERALIZATION etc.	Thickness mm	Angle to core	e minerals in de	creasing	abunda	nce
		laminated, 90°c.a.; common	137.5	.7	crackle breccia with po cement to 20%				<u></u>		
		changes in places coincide	153.3	.5	crackle breccia with minor						<u></u>
		with fine open fractures			bleaching, 5% po						
		and increased po impregna-	156.7		massive po veins, l0mm,	ļ					
		tions to 5%	 		parallel to ca with minor						·
					сру						
157.	8 168	.6 disturbed zone: blotchy			aspy veinlets, impregnation	ns,					
		pink to grey-pink, patchily			most semi-massive, but		<u> </u>			<u> </u>	
		silicified; in places open			161.7-163 crackle breccia						
_		fractures common			with massive p0 to 25% of	L	Ļ				
			ļ	<u> </u>	interval; largest vein		 				
			ļ	ļ	2 cm wide at 20 c.a.; over		 -				
					total interval po 2-3%	1					
168.	5 22	20 siltstone, medium brown to	,	<u> </u>	po 2-3% as disseminations,			sporadic irr	egular	quar	<u>ctz</u>
		brown-grey to pink-brown,			impregnations, veinlets;			veins with m	inor m	edium	a
		moderately to poorly			trace aspy			xline po; lo	cal bl	eachi	Ing
		laminated, variable angles;	169.5		minor aspy with quartz in			195: gyp:	sum ve:	in 90) [°] c.a
		medium grained; patchy			vein		ļ	210.2-21).4; 2	18.5-	·.7:
	ļ	bleaching, silicification						quartz vein	or sil:	icifi	.ed
			 	<u> </u>		ļ		5% very ragg	}d po,	50 c	.a.
	 			 		_					
	1			1		1		1			

,

				Dia	amond Drill Record		Но	DLE NO. G86.5 Page 6 of 6
Sec	tion	ROCK	Inte	rval	ALTERATION		•	VEINLETS
from	ť٤	DESCRIPTION	from Et	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
220	238.:	siltstone; dark to medium			po 2-3%, bulk finely			sporadic irregular quartz
		grey, much less brown than			disseminated to somewhat			veins
		previous; laminae variably			coarser xline veins to			234-234.8: crackle breccia,
		well-defined, changing			impregnations with up to			calcite, 3% po cement
		angles to c.a.; micro			30% po over 5 cm			
		faults and soft sediment						
		deformation; finer grained		1	• · · · · · · · · · · · · · · · · · · ·			
		mudstone wisps in some						
		intervals			·			
238.2	275	siltstones: midway between		1	2-3% po as disseminations,			269.7-271: crackle breccia,
		darker grey and brown grey			along veinlets and as errat:	c		with quartz and po cement
		end members; variably well			impregnations of restricted			
		laminated with patchy			extent; smeared po along			
		bleaching and silicification	n	 	chloritic fractures/parting	\$		
		in some case cross cutting	1					
		or obliterating laminae;	 	1				
		laminae often 70°c.a.						
			 					
275		END OF HOLE			· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·			
<u> </u>	1		<u> </u>	1		1	1	
		<u></u>	<u> </u>		······			
	1		<u> </u>	 	• • • • • • • • • • • • • • • • • • •	1		
	1							

LOCATION: L6E, 6+;4S		L6E, 6+;4S]		Dia	mond Drill Record		н	IOLE NO. G86.6 Page 1 of 10			
AZIMU	ТН 1 1	58 degrees	DIPS - collar	45	o	CONTRACTOR: Beaupre Diamo	ond Dril	llingP	ROPERTY: Georgia			
ELEVA	TION	3480'	- m		0	LOGGED BY: J.L. Hardy		C	LAIM NO. Mascot			
LENG	ГН:	275'	– m		0	DATE: July 4, 1986		S	ECTION NO.			
CORE	SIZE	* NO	- 275'	4	5°			S	TARTED: July 2, 1986.			
PURPOSE: to test Genie E		o test Genie EM	M response on line 6E plus			s subcropping massive sulphide veins			COMPLETED: July 4, 1986.			
Section		DOC		Inte	rval	ALTERATION			VEINLETS			
from ft	to ft	DESCRI	TION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance			
0	6	CASING										
5	15	augite porphyr	y, medium			2-3% fine po disseminations			minor quartz veins near			
		green, medium	fine crystal-						right angles to c.a., lack			
		line, generall	y equigranula	r					significant sulphides			
		with individua	l crystals									
		not easily dis	stinguished;	<u> </u>								
		sparse augite	phenocrysts									
		partly altered	l to chlorite			<u> </u>						
		-to26' core	recovery poor									
		and some grind	ling									
15	19	siltstone, med	lium brown-			po 2-3% as fine disseminati	ons;		minor quartz veine with			
		grey, fine gra	ined, general	lу		in places 5-10% along			oxidized faces: sparse chic			
		not silicified	l, oxidation	1		fractures and veins; in						
		common on cm p	artings	1		places disseminated to						
			······			10-15%			·			
19	27	andesite/silts	stone, medium			5-10% po as disseminations						
		green to maroo	on, fine grain	eđ		and lesser clots	1					

							но	LE NO. G86.6 Page 2 of 10
Sectio	on	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft i	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
		-locally patchy silici-						
		fication						
27 4	47	contact with above, sharp,	-		3-5% po as fine disseminati	ons,		······································
		highly irregular, embayed,			and coarser crystalline			
		with fingers cutting across			clots (often with bleached			
		laminae up to 20 cm below			rims); sparse semi-massive			
		contact			impregnations of restricted			
		-hornblende porphyritic			extent			
		granodiorite, likely part			-trace subhedral aspy			
		of augite porphyry map unit			-oxidation along partings			
		-15% hornblende partly			and fractures continues			a :
		altered to chlorite in			to +47'			
	·	lighter green ground mass				1		
		with 5% feldspar phenocrysts		1		1		
		-minor zones of bleaching						
		and silicification where						
		primary textures gone						
		-34.0-36.4: possible dyke			5-10% medium crystalline			
		or intrusion of different			po as clots and disseminat	ons		
		composition; sharp contacts						
		with above and below;						
		feldspar-augite porphyritic		1		1		
		andesite; green-brown colour	,			1		
		distinctly coarser and				1	1	

Sect	lion		Inte	rval				VEINLETS	4
from		ROCK	from		ALTERATION	Thickness	Angle	VEINCEIS	
ft	ft	DESCRIPTION	' <u>f</u> t"	Pt.	MINERALIZATION etc.	mm	to core	minerals in de	creasing abund
		lacking in lath-like horn-							
		blende in contrast to						<u></u>	
		larger unit							
47	50	siltstone, medium brown to			py 2-3% finely disseminated			sparse mino	r calcite
		brown grey, fine grained			-minor po impregnations as				
		with wispy finer-grained		ļ	at 49.0 with trace cpy				
		laminae at 70 degrees to		ļ				·	
		c.a. which seem sheared;							
		may have tuffaceous componer	t						
		-minor bleaching and							
		silicification							
50	67	feldspar augite porphyritic		 	po 2-3% as disseminations			minor calci	te veins
		andesite; diffusely patchy		1	and minor coarser crystalli	e		cm, mostly	sulphide j
		maroon and green; feldspars		1	clots; smeared along chlori	ic		variable an	gles to c
	1	poorly formed, cloudy and			fractures in sparse veins				
		blend with ground mass to			to lcm				
		10-15%, augite 5%			54.0: massive po replace:				
		63.8-67: pervasive			into wallrock, surrounded				
		silicifications and bleachin	g		by chloritic zone				
		with highly irregular edge,			62.2: massive po clot,				
		extends into country rock			minor cpy				
		and along fractures		•					

				Dia	mond Drill Record		F	HOLE NO. G	86.6	Page	4 o	f 10
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINL	ETS			
from ft	10 ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	e mineral	s in dec	reasing	abunda	ince
67	72	mixed intrusive phases,			po 2-3% as before with							
		likely close to contact:			more along irregular veins							
		hornblende -feldspar			and smeared along fracture							
		porphyritic granodiorite,			planes							
		medium grey to green grey,						_				
		patchy silicification; plus										
		feldspar-augite porphyritic										
		andesite, coarser crystalli	ne,									
		distinct chrome colour with										
		patchy silica and felds-										
		pathization; contacts										
-		diffuse and poorly defined										
		-contact with below very										
		irregular and marked by										
		massive po, with fine	[
		fingers extending into										
		wall rock, minor cpy in				1						
		quartz vein runnning 10	[
		degrees to c.a.	1									
72	82.1	feldspar augite porphyritic			2-3% po as medium crystall:	ine						
		andesite, mainly maroon to			veinlets and impregnations	1						
		green; local irregular	1		to 3 cm diameter							
		light green silicification			77" trace cpy							

				нс	DLE NO. G86.6 Page 5 of 10			
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from	۱ <mark>۵</mark> ft	DESCRIPTION	ltow	ŧ٤	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
82.1	98.2	siltstone, fine grained,			to 5-10% po, very finely			minor sporadic quartz veins
		light medium grey to brown			disseminated, higher in			
		grey to green grey; well			specific laminae but in			
		defined laminae from mm to			detail cross-cut; less than			
		10 cm scale. variable angles			1% py with quartz along			
		to c.a. but often 10-20 deg.	1		partings			
		-common microfaults						
		and soft sediment defmt.						
		84.7-87: hornblende						
		porphyritic andesite,						
		likely finger of main						
		body rather than dyke						
98.2	105.	2 plagioclase-hornblende			3-5% iron sulphides as			
		porphyritic granodiorite,			medium crystalline clots			
		could be part of augite			to ground mass impregnation	s		
		porphyry map unit; medium						
		grey ground mass with		Γ				
	1	15-20% feldspar laths;						
		sporadic black finely	1	1				
		crystalline sub-rounded						
	<u> </u>	xenoliths and in places	1	<u> </u>				
	 	fine lithic fragments	1					
		suggest tuff component		1				

				Но	LENO. ^{G86.6} Page 6 of 10			
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from Īt	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
105.	2 14	6.4 augite porphyritic			po 5% as fine disseminations			minor quartz veins discon-
		andesite; dark green to			and coarser crystalline			tinuously and at variable
		green grey to faintly			clots with bleached, silicit	ied		angles to c.a., often with
		maroon with subrounded			rims and along fractures			chlorite and bleaching and
		augites to 30% in darker						minor po
		green finer crystalline			-local areas of irregular			
		ground mass; lesser and			quartz and chlorite veins,			
		variable feldspars			bleaching with metasomatism			
					as at 112.9, 113,1, 116-			
					117.6, 123.5-124.6			
					-141.9-142.2: po 10-15%			
					-142.9-145.9: intense			
					po veins marked by more			
					biotite and less augite;			
					likely related to contact			
			1		-po as massive veins 70-90			
					degrees to c.a., often very			
					irregular though generally			
			1		less than 1 cm wide; in			
			†		places approach crackle			
<u> </u>			1		preccia; po 15-20% of interv	al 🗌		
			1		with trace cpy			
					-145.3-145.7: massive			
					po with highly angular			
					fragments of wallrock			

				Di	amond Drill Record		н	DLE NO. G86.6 Page 7 of 1
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	լւժան	₽£	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
					themselves fractured with			
	-				cpy and po infill; 2-3% cp			
					and 5-10% aspy cement			
					-contact with massive			· · · · · · · · · · · · · · · · · · ·
					area with walls below			
		-contacts with above and			very sharp, marked by			
		below diffuse, so more			.5 cm silicified zone			
		likely to be an intrusive			-resembles material			
		phase rather than dyke			observed on surface			
46.	1 174	4.5 feldspar hornblende			po 2-3%, as medium crystal.			sporadic chloritic and
		porphyritic granodiorite,			line disseminations to			silicified veins to 1 cm.
		likely part of augite			clots with lesser veinlets			often with bleaching
		porphyry map unit with						
		5-10% hornblende and 20-30%			-155.4: minor cpy with po			l
		feldspar; medium grey over			in 10 mm vein, 70 degrees			
		all with somewhat darker			to c.a.			
	1	ground mass; contact placed						
		at first occurrence of this						
		lithology but could have	1	1				
*	1	been placed at 149.1, last	1	1		1		
<u></u>		occurrence of augite porph-	1	1		1		
	<u>†</u>	yry above; feldspars variab	У	1		1		
	1—	altered; minor xenoliths		1		1		
		-contact with below						
		sharp but embayed	1				1	

				F	10LE NO. G86.6 Page 8 of 10			
Sect	ion	ROCK	Inte	rval	ALTERATION		•	VEINLETS
from ft	to ft	DESCRIPTION	from	fť	MINERALIZATION etc.	Thickness mm	Angle to core	e minerals in decreasing abundance
174.5	195	.6 augite feldspar porphyr	r		2-3% po as medium crystal-			
		with 10% feldspar phenocryst:	6		line clots to impregnations			
		and subrounded augites			in ground mass and along			
		partly altered to chlorite			fracture planes; minor veins			
		in dark green finer crystal	-		to 15 mm.			
		line ground mass; localized						
		patchy silicification,						
		bleaching	1					
			1					
195.	6 20	.5 contact with above						
		sharp with some bleaching						
-		-siltstone, brown grey with						
		intercalated medium green						
 	ļ	to green grey andesite tuffs	ļ:				ļ	
ļ		well laminated on mm to 5 cm	4	ļ				
		scale at 60 degrees to c.a.		 		1		
		bleached areas extend out				ļ		
		from fractures						
205.	520	8.9 hornblende-feldspar						
		granodiorite as before,						
		relatively sharp contact						
		with above and below; could	1					
		in fact be monzonite as						
	1	matrix darker and altered	Ι			I		
				Dia	amond Drill Record		н	OLE NO. G86.6 Page 9 of 10
------------	----------	------------------------------	------------	----------	-----------------------------	-----------------	------------------	----------------------------------
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	lO ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
208.	9 2	1.7 return to siltstone						
		and tuffs as above						
211.7	225	2 hornblende-feldspar			3-5% po as fine disseminat	ons		-sparse calcite veins less
		porphyritic granodiorite;			and coarser crystalline clo	s		than 1 cm with chlorite
		ground mass altered so			in ground mass and along			and minor po
		hard to distinguish individu	al		fractures with quartz and			
		grains; chloritic in places;			chlorite; minor massive po			
	[very hard to tell if quartz			veins less than .5cm at 80			
		present so could be			degrees to c.a.; sparse			
		monzonite		<u> </u>	py with quartz along fractu	es		
	1							
225.2	248	2 siltstones, medium brown			po 1-2% very finely			minor quartz veins with 5%
		grey to medium grey with			disseminated, trace			py along slickensided sur-
		lesser andesite tuffs; at			subhedral aspy			faces
		50 degrees to c.a. laminae						
		-contact with below sharp	1					
		and regular						
248.	2 262	.7 hornblende granodiorite			trace aspy, po 1-2% on			
		as before; sparse feldspar		1	average but sections to			
	1	laths; local biotite;	f	1	5%; py with quartz on	1		
<u> </u>		could be monzonite		1	fractures	1		
	1							
		1		1				

.

				Di	amond Drill Record		н	OLE NO. G86.6 Page 10 of 10
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
262.	727	2.2 return to brown grey to			less than 1% po along fine			
		medium brown grey laminated			fractures and py with quarts	2		
		siltstones; minor green			along open fractures			
	grey inter andesite tr	grey intervals could be						
		andesite tuffs; many open						
		fractures which approach						
		density of crackle breccia						
	<u> </u>	at highly variable angles						
<u> </u>		-contact with below		1				
<u> </u>		sharp		 				
		Just				1		
272	2 27	5 augite porphyry: dark		1	po 2-3% as medium crystal.	line		
		maroon to grey-green with	[clots in ground mass			
<u>}</u>	<u> </u>	rounded augites merging	1			1		
		with ground mass but making						
		up about 20-25%; feldspars	<u> </u>					
		less than 5%	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
			Ī					
	1		1					
275		END OF HOLE						
	1		1	1				
			1			1		
	1					1		
						1		

LOCAT	FION #	L5E, 6+39S			Dia	mond Drill Record			HOLE NO. G86.7 Page 1 of 6
AZIM	UTHI	158 degrees	DIPS – collar	46	•	CONTRACTOR: Beaupre Diamo	nd Dril	ling	PROPERTY: Georgia
ELEVA	ATION	3560'	- m		0	LOGGED BY: J.L. Hardy			CLAIM NO. Mascot
LENG	тн:	215'	- m		0	DATE: July 6,7, 1986			SECTION NO.
CORE	SIZE	: NQ	- 215'	4	6 °				STARTED: July 4, 1986
PURP	OSE ‡	to test Genie El	M at 6+705 at	abou	t 30	m depth			COMPLETED: _{July} 5, 1986
Sect	ion	ROC	ĸ	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIP	PTION	from ft	to ft	MINERALIZATION etc.	Thickness mm	Ang to co	le ore minerals in decreasing abundance
0	22	CASING							
pre	22	augite porphyr	y map unit,			po 1-2% finely disseminate	đ		
		andesite, medi	um green to						
		blue green, wi	th green-						
		brown areas; i	ndividual						
		grains not read	dily visible						
22	24.4	feldspar-horn	blende grano-			py and po 5% as fine			
		diorite, ligh	t grey to			disseminations and small			
		brown grey wi	th many			veinlets			
		plagioclase la	aths, making						
		up bulk of ro	ck; 5% horn-						
		blende to .25	cm, partly						
		altered to bio	otite; plus	Î					
		biotite finely	y in matriz						
24.4	48	augite feldspa	ar porphyriti		 	po 5% as irregular swirls,			
	†	andesitė, shad	des of medium			impregnations and massive			
[to dark green		1	1	to semi-massive along veins			

				Di	amond Drill Record		но	DLE NO. $_{G86.7}$ Page 2 of 6
Sect	ion	РОСК	Inte	rval	ALTERATION			VEINLETS
from ft	10 ft	DESCRIPTION	ស្រែរា	₽₽	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
		-irregular coarser biotite			minor cpy			minor irregular calcite,
		rich areas, more brown-grey						lesser quartz veins to
		-generally fine-grained with rounded augites (altered to						patches
		chlorite) to .3 cm making			-26.5-27: massive po			
		up 10-30% of rock and feld-			impregnations to 3 cm long			
		spar 5-20%; patchy colour			averages 10% over interval			
		changes from browner to			-35.2: 1-3% cpy with			
	<u> </u>	greener; localized bleaching			calcite and po in .25 cm			
		and silicification; pervasiv	e		veinlet			
		chlorite alteration; patchy		1				
		effervescence; in places						•
		vague subrounded shapes						
		suggest lithic fragments		ļ				
48	63.3	2 division from above and			po highly variable as irreg	lar		minor calcite veins to influ
	[·····	below difficult, arbitrary		1	impregnations, approaching			at variable angles to c.a.;
	1	on amount of bleaching,	1	1	semi-massive to massive in			49.7-50.7: massive replaceme
		silicification and irregula	ur -	1	places, elsewhere more			into wallrocks with granular
	1	areas of intrusive: white,		1	vein-like, but generally	1		quartz, chlorite and massive
	<u>†</u>	finely crystalline ground	 	1	less than 3 cm wide; also	1		to semi-massive po about 5%,
 		mass with variably distinct		1	2-3% as fine dissemination	5	1	1-2% сру
<u> </u>	1	euhedral to subhedral	1	1	-up to 5% cpy over short	1	1	
 	<u>†</u>	hornblende; zone is complex			sections	1	1	
		and tectonically disturbed				1		

	<u> </u>						Тно	LE NU. Page
Sect	ion	ROCK	Inte	rvai	ALTERATION	T1	4	VEINLETS
ſţęm	fťo	DESCRIPTION	ft	lo ft	MINERALIZATION etc.	mm	to core	minerals in decreasing abund
		or very close to intrusive						
		contact; patchy very fine						
		pinkish alteration, likely						
		biotite as well as chlorite						
		+57: lithic fragments, as			po as medium crystalline			
		well as intrusive patches			massive to semi-massive			
					impregnations; cpy medium			
					crystalline, highly irregu	ar		
					with po or along, large			
					sections 2-3%			
					-51.1-53.6: 20% po in			
					net-like texture, less			
		— — — — — — — — — — — — — — — — —			than 1% cpy			
			1		-54.2-55: coarser po in			
					mesh as before 25-30%; to	<u> </u>		
					3% coarsely crystalline cp	¥		
3.2	91.	mixed suite of slightly	<u> </u>	ļ	py less than 1% finely			· · · · · · · · · · · · · · · · · · ·
		different non-distinctive			disseminated and along			
		lithologies, likely part of			discontinuous veins; trace			
		augite porphyry map unit;			aspy			
		augite phenocrysts as well						
		as lithic frgaments; general	lу	1				
	1	dark green to brown green	<u>†</u>	1		1	1	
<u> </u>	1	with augites merging with	1	1		1	<u> </u>	

				Dia	mond Drill Record		нс	DLE NO. G86.7 Page 4 of 6
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	ie ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
		ground mass; locally 5%						
		feldspar subhedra; chlorite						
		and biotite alteration						
		patchy but pervasive; open						
		fractures, some with						
		chloritic slickensides						
		common; patchy bleaching						
		but no silicification						
			Ι					
91.7	113.	4 light grey to grey green			2-3% po as medium crystal-			irregular discontinuous
		? intrusive, very silici-			line impregnations			calcite and quartz veins,
		fied, bleached with			-98.6, 99.7-99.9: po with			most less than .5 cm
		patchy colour; cannot	1		minor cpy			
		tell parent, though in	1		-104.2-104.4: 1 cm vein			
		places clumps of feldspar			with coarsely crystalline	1		
		laths and crystalline			po and 10% cpy			
	1	texture suggest intrusive;			-105-106: 5-10% po as			
		elsewhere lapilli-sized			irregular veins to dissem-			
	1	fragments suggest lapilli			inations; minor cpy			
		tuff			-112.2-113.4: massive po			
			1		vein subparallel to ca.			
			1		with some sections of core			
					entirely massive; po 15-20%	5		
					of interval; cpy 2-3%			

				Dia	mond Drill Record		н	OLE NO. G86.7 Page 5 of 6
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	to ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to core	minerals in decreasing abundance
113.4	149	8 augite feldspar porphyrit	ic		po plus lesser py 2-3% as			irregular calcite and quartz
	•	andesite: dark to medium			irregular veins and along			veins often 60 c.a.; most
		green to green grey as			partings, also disseminated			less than 1 cm
		before with subrounded			-131.7-132.7: massive po			
		chloritic augites merging			vein replacing into walls			
		with ground mass; patchy						
		to pervasive biotite and						
 		chlorite alteration;						
		sporadic lithic fragments;	1					
		minor patchy bleaching/	1					
 		silicification: oxidation						
		continues on some partings						
49.8	163	.l biotite-rich augite			2-3% very fine disseminated			
		feldspar porphyritic			ру			
		andesite; ground mass mostl	Y		-158.6: trace cpy			
		medium coarsely crystalline						
		biotite; much calcite						
		influx, veining and many		[
		slickensides on biotite	<u>†</u>			1		
		rich partings; appears						
		sheared, tectonized and						
		splits along foliated plane	\$					
						1		

				Dia	amond Drill Record		[I	HOLE NO.G86.7 Page 6 of 6
Sect	lion	ROCK	Inte	rval	ALTERATION			VEINLETS
from ft	io ft	DESCRIPTION	from ft	lo ft	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in decreasing abundance
163.	1 21	5 augite feldspar porphyrit	ic		po 2-3% finely disseminated			minor discontinuous quartz
		andesite, variably green			throughout and in discontinu	ous		and chlorite veins
		to green grey with patchy			veinlets to swirls			
		and pervasive biotite and			-167.3-167.4: massive po			
		chlorite alteration; augite			vein to 3 cm with calcite,			
		altered to chlorite; local	1		5% сру	1		
		areas of patchy bleaching			-+189: also py 1-2% as			
		and silicification may			above			
		extend out from fractures;						
	1	very minor epidote alterati	þn;					
<u> </u>		localized effervescence	1	<u> </u>				
				1				
215	 	END OF HOLE	1					
					· · · · · · · · · · · · · · · · · · ·			
				<u>†</u>			<u> </u>	
			1			1		
<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·						
	<u>†</u>		1					
			1	<u> </u>				
			1			1		
						1		
	1							
			1			1		
	Ī		1	1	<u> </u>			
						1		

APPENDIX 2: ASSAYS AND ANALYTICAL RESULTS

.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Analytical Chemists •

Registered Assayers

Phone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ASSAY

Geochemists

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. V6C 2W2 CERT. # : A8614119-001-A INVOICE # : I8614119 DATE : 27-JUN-86 P.O. # : NONE GAG-G

CC: J. HARDY

Sample description	Prep code	AU OZ/T RUSH FA	Drill Interval	Hole (Ft)	Commer	vts	
3129 D	236	<0.002	g	14.5	6-86.1		
3130 D	236	<0.002	14.5	24			
3131 D	236	0.004	24	z9			
3132 D	236	<0.002	29	34			
3133 D	236	<0.002	34	39			
3134 D	236	<0.002	39	44			
3135 D	236	<0.002	44	49		~-	
3136 D	236	<0.002	49	54			
3137 D	236	0.002	54	59			
3138 D	236	<0.002	57	64			~~
3139 D	236	0.002	64	69			<u> </u>
3140 D	236	0.002	69	74			

manene

VOI rev. 4/85

Registered Assayer, Province of British Columbia

K				C	cho	en	ne	X	La	b	s I	_tc	ł.			212 i North Canada	Brooks Vanc	sbank :ouvei .V	Ave. r, B.C. 7J 2C1													
			۰A	nalytic	cal Chei	mist s		•Geoch	emists		•Regi	stered	Assaye	7 5		Teleph Telex:	one:(60	04) 98 043	4-0221 -52597		Semo	с u	anti	tst	1 V P	mult	1 e)	leme	nt 1	CP a	nal	y sh
TO : MARI	: MAN	46 E M	ENI	LIN		ERI	IFI	ATE	<u>1) E</u>	ANAL	<u>Y£1</u>	.]}	CERI	c. +	:	: AS	5141	20-0	001-4	A	Nitr mate dige valu	ic-A ria stic	Aqua 1 fo 5ri i repo	-Re 110 5 1 rte	913 wed ncom d fo	dige by I plet r Al	stic CP = e fc , St	on o anal or m or B	f 0. ysis any a. B	5 9m , Si Mine e, C	of rice ral 3.	t}: 5. CI.
1900 VANC V6C) - 99 OUVEI 2W2	99 W R. B	. на .с.	STI	40 5 8	ST.							1890 1818 2.0. 586)ICE 5 - # - G	ŧ	184 2 104	6141 - JUL NE	20 -96			Ga, only COhr	La, te Ent	Mg, con	K. sid	Na. ered	Sr, as	Tl. sem:	. Τι ι-qυ	, W anti	and tati	У С. УС.	31
Sample description	A1 2	Ag	As ppm	Ba ppm	Be ppa	Bi pom	Ca I	Cd ppa	Co ppe	Cr pp n	Cu ppm	Fe Z	Ga ppe	K	L3 ppm	Ng	Mn ppa	Mo ppa	Na 2	Ni ppa	P ppm	J. I Pb ppa	Sb pps	Sr ppa	r Ii 2	T1 ppm	U ppa	ij ppm	¥ ppm	Zn pom		
3129 B 3130 D 2131 D 2132 D 3133 D 3134 B 3135 D 3135 D 3136 J 2137 D 3138 D 3139 D 3140 B	2.09 2.94 3.52 3.77 2.96 2.71 2.24 2.95 2.86 3.97 2.57	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	30 30 50 190 300 90 120 40 500 680 2840 1860	410 730 640 840 310 350 230 190 160	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	222222222222222	1.49 2.79 3.02 4.56 5.91 3.27 0.82 0.70 0.92 2.30 2.51 1.81	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	17 22 24 19 18 15 13 15 20 14 18	50 59 66 73 76 46 32 23 34 35 36	37 61 44 53 77 59 45 43 43 50 45 66	3.45 4.43 5.08 5.24 4.39 4.27 4.39 4.10 4.43 4.37 4.43 4.71	10 10 20 20 10 (10 10 10	0.52 1.32 1.97 1.90 1.61 3.54 1.24 1.35 1.24 1.32 1.36	10 10 (10 10 10 10 10 10 10 10	1.25 1.44 1.75 2.06 1.61 1.21 1.21 1.21 1.18 1.03 1.08 1.14	407 636 684 727 1171 628 337 267 350 624 455 497		0.23 0.28 0.29 0.27 0.38 0.29 0.18 0.11 0.29 0.37 0.24	46 36 36 42 33 39 35 37 72 36 37 36	1210 1020 920 1060 1210 800 720 670 760 860 860	14 14 12 12 10 14 12 12 12 12 12 12 12 12	<pre>(10 (10 (10) (10) (10) (10) (10) (10) (1</pre>	91 151 149 219 289 124 70 41 77 77 118 186 92	0.19 0.24 0.27 0.25 0.26 0.24 0.20 0.18 0.20 0.22 0.22 0.20 0.22	(10 (10 (10 (10 (10 (10 (10 (10 (10 (10	(10 (10 (10 (10 (10 (10 (10 (10 (10 (10	103 157 195 182 155 161 113 102 128 159 158 185	(10) (10) (10) (10) (10) (10) (10) (10)	50 70 80 70 70 80 50 60 100 90 120		
																	-		Cer	tif	ieđ	Бγ .	14	مبنا	473	ich	le	·				

٠.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221 043-52597

> VOI rev. 4/85 ...

Registered Assayer, Province of British Columbia

Analytical Chemists •

Geochemists • Registered Assayers

Phone: Telex:

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, B.C. V6C 2W2

CERT. # : A8614244-001-A INVOICE # : 18614244 DATE 1-JUL-86 : P.C. # : NONE GALLANT

CC: J. HARDY

Sample	Ргер	Au oz/T	Drill Hole	_		
<u>description</u>	code	RUSH FA	Footage Intern (Ft)	Commen	15	
3141	236	<0.002	74	G-86.1		
3142	236	<0.002	Box 5A	- -		
3143	236	0.002	Box 58			
3144	236	<0.002	Box 5C			
3145	236	<0.002	Bax 5D			
3146	236	<0.002	96.3		<u> </u>	
3147	236	<0.002	101.2			
3148	236	<0.002				~~
3149	236	<0.002				
3150	236	<0.002				
83466	236	<0.002				
83467	236	<0.002	126.3 <u></u>			
83468	236	<0.002			·	
83469	236	<0.002	Bex 8A			
83470	236	<0.002	Box 88	- -		
83471	236	<0.002	Box 8c			
83472	236	<0.002	Box BD			
83473	236	<0.002				
83474	236	<0.002				
83475	236	<0.002	161.5167.5			
83476	236	<0.002	167.5 178			
83477	236	0.002	/78 /83			
83478	236	0.002	183	- -		
83479	236	<0.002	1851878			
83482	236	<0.002	207 212.9			
83483	236	<0.002	212.9 -> 217.9			
83484	236	<0.002		÷-		
83487	236	0.002	lettorer core			

0			-A	C	che	en	ne	-Geoch	La	b	S I	_to	1.	vrs		212 B North Canada Telepho	rooks Vance	bank ouve V (4) 98	Ave. r, B.C. 7J 2C1 4-0221		ي د اد	a.,	sat.	tut				e to	nt i	.c1 a	r.,	
TO : MARI 1900 : 1900	6 66N-	1684 19 k	ЕНТ . НА 	L in I St In	-	T.	1511	414	ÛF	ana:	<u>351</u>	<u>.</u>]	C 181 1.490 0.471 9.0. 600	. 4 DICE . 4	•	Telex: : A&: : 190 : NC.	143 143 142 100	043 45-1 45 - 11c	-52597	1		12 - sti sti ter Erl	Acua 50 10 10 10 10 10 10 10 10 10 10 10 10 10	-ke 115 2 2 7 te 510	113 227 7271 7271 16 17 16 27 27	1.14 5.01 5.01 7.11 7.1 7.1 7.1 7.1	5510 19 f(. St 11. 585	oria 5751 5753 5.6 5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	: yii: 3ny a. 1 anti	5 30 - 51 10.0 10.0 30d 1011		
Saple	Al	Âg	As	Ba	Be	B:	C.a	Ca	Co	(r	Cu	Fa	Ga	ĸ	5	Жş	n	Ac	·1	H1	. <u></u> 1		14 X D 35	ړ 5;	4		U			Zn		
description	:	. ppm	ppa	ppa	ppa	ppa	:	ppa	20m	ppa	ppa	:	ppa		opa		ppa	900		998	998	ppa	ppa	ppa		224	ppa	;;;4	ç pa	204		
3141	3.03	0.2	1580	240	(0.5	(2	2.02	(0.5	46	37	268	5.56	10	1.26	10	1.29	568	-1	0.23	33	960	10	(10	109	0.22	(10	(10	171	(10	90		
8142	3.29	0.2	1190	230	(0.5	(2	1.61	(0.5	16	45	80	4.80	10	1.07	10	1.21	368	5	0.32	20	320	12	10	115	0.14	110	10	147	10	20		
143	2.16	0.2	2190	170	(0.5		2.31	(0.5	20	41	160	4.44	20	1.00	10	1.10	3/7	5		10	790	14	10	167	1.15	15	16	149	:10	70		4
144	3.58	0.2	1700	290	10.5		1.78	(0.5	15	19	112	1.63	13	1.26	10	1.20	192	i	1.24	42	500	12	10	31	1.22	10	.10	:30	10	100		
145	3 67	0.0	50	80	(0.5	0	2.52	(0.5	15	43	85	4.62	30	0.66	10	1.15	508	4	0.23	44	770	14	(10	87	0.15	(10	(10	174	:10	110		-
147	3.12	0.2	450	120	(0.5	(2	2.30	(0.5	19	52	87	4.69	10	0.77	10	1.23	452	1	0.28	42	810	14	<10	101	0.15	(10	<10	155	<10	90		1
3148	2.83	0.4	60	100	(0.5	(2	1.83	0.5	16	49	75	4.92	10	0.84	10	1.23	451	7	0.29	48	780	12	<10	91	0.13	(10	<10	148	<10	200		
1149	2.19	0.2	290	210	:0.5	- 12	1.53	32.0	18	46	68	5.11	10	1.23	10	1.22	407	5	1.24	46	240	32	10	119	1.19	10	:10	172	10	2270		- 0
3150	3.64	1.0	1660	:90	:0.5	g	2.24	(0.5	17	55	63	5.24	20	1.35	10	1.15	119	3	5.42	22	310	12	10	155	1.19	15	10		10	20		1
3466	4.01	0	164	250	/0.5	12	A 99	10.5	10	52	62	5.21	10	1.35	10	1.38	401	3	0.29	44	900	10	(10	76	0.15	(10	(10	147	<10	80		
53467	3.10	0.2	360	300	(0.5	ä	1.77	(0.5	17	46	59	4.77	10	1.11	10	1.23	361	5	0.44	45	820	14	(10	132	0.15	(10	(10	146	(10	70		
3469	2.99	0.2	120	260	(0.5	(2	1.75	(0.5	18	43	91	5.14	10	1.17	10	1.36	387	10	0.34	53	900	12	<10	120	0.15	:10	<10	120	<10	50		
2470	3.68	0.2	170	100	0.5	1	2.19	:0.5	18	56	59	4.70	20	1.16	10	1.30	313	2	2.48	50		15	10	142	1.19		10	:59	10	50		1
3471	2.83	0.3	150	240	:0.5	:2	2.42	(0.5	17	70	82	5.25	20	1.48	10	1.40	365	5	45	57	500	14	.10	15:	1.22		.16	.94	-10	1		
2472	2.27	0.2	20	150	0.5	2	1.19	:0.5	15	46	:9	4.88	10	1.29	10	1t	260		0.22	24	3.4	12	10	105	0.00	ne	(10	200	/10	20		
33473	2.74	0.2	2800	160	(0.5	G	1.30	(0.5	45	68	94	1 22	20	1.59	(10	1.12	774	a	0.17	28	1390	52	(10	152	0.25	(10	(10	1.28	(10	240		
31/4	2.42	1.0	31.30	540	(0.5	0	3.05	(0.5	19	39	26	4.21	20	1.79	10	1.51	819	1	0.15	31	1390	8	(10	114	0.28	(10	(10	122	(10	70		
22476	1.04	0.3	302	150	0.5	12	1.97	:0.5	25	17	32	3.39	20	1.15	10	0.75	-29	1	1.13	21	1220	12	10	90	:.::	::	20	28	***	50		c.
3477	1.63	6.3	4582	190	:0.5	.2	2.06	(0.5	.41	12	22	2.61	10	1.30	10	0.35	:25	1		22	1545	1	35	::		10	12	99	11	50	••	
23478	1.43	0.2	2770	140	0.5	2	2.21	:0.5	35	25	70	3.22	10	9.95	10	9.72	145	1		22	1,40		10	63			10	122	22			1
83479	2.42	0.3	70	130	(0.5	G	1.68	(0.5	19	60	95	5.05	10	1.42	10	1.31	300	10	0.10	50	1160	10	10	140	0.76	(10	(10	112	10	70		
83482	2.24	0.2	690	200	(0.5	(2	3.39	2.0	-7	10	126	4.83	10	0.90	10	1.22	362	1	0.35	45	860	64	10	85	0.21	(10	(10	231	(10	430		
53483	2.50	1.0	190	130	0.5		0.67	0.5	15	58		4.89	.10	1.22	15	1.25		4	1.15	46	150	2	10	14	1.23		10		15	35		
93497		6	120	170	0.5		2.18	:0.5	21	55	29	4.92	16	1.14	12	1.39	:22	14	1.11	51	255	::	::	:11	:		K	111		25.7		

Hart Bichler

212Brooksbank Ave.North Vancouver, B.C.CanadaV7J 2C1Phone:(604) 984-0221Telex:043-52597

emists • Ge

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER: B.C. V6C 2W2

CERT• #		:	A8614246-001-A
INVOICE	#	:	I8614246
DATE		:	1-JUL-86
P•O• #		:	NONE
GAG-G			

CC: J. HARDY

Sample	Prep	Au oz/T	Drill Hole	_		
description	code	RUSH FA	Footage Interval (ft)	Comme	nts	
3324	236	<0.002	89	C-82.2		
3325	236	<0.002	<u> </u>			
3326	236	<0.002	99 /04			
83480	236	<0.002	Box // A	G-86.1		
83481	236	0.002	Box 11B			
83485	236	<0.002	222. 9		÷	
83486	236	<0.002				
83488	236	<0.002	8	G-86.2		
83489	236	<0.002	16			
83490	236	<0.002	25			-
83491	236	<0.002	B3.438.4			— —
83492	236	<0.002	38.4			
83493	236	<0.002				

Registered Assayer, Province of British Columbia

VOI rev. 4/85

10.				C	h	en	ne	x	La	b	s I	_to	d.			212 B North Canada	rook Vanc	sbank couver V	Ave. . B.C. 7J 2C1)
			·A	nalytic	al Che	mists		Geoch	emists	í.	•Regi	stered	Assaya	trs		Telepho Telex	ne:(6)	04) 98	4-0221		. 28 :	412	at a	1113	201	* 2 . K	4 93	95.05	n: 3	55)	1.12	-34
\$A : ::: 300	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62h	ск1 . но	L IN I	- [] (TED (05) (1	EF1	1910	ATS	05	ANAL	YSI	<u> </u>	CSP LHVI DAT	T. 1 DICE	•		43	47 - 36		4	nat: Nato Jine Ja. Ja.	10-1 1111 1411 1411 1411 1411	192 193	- 2 6	sis wod noom d fo Na. ored	file 5, 1 plet 1 Al 1r.	CP a CP a c fo . St T1. sons	or i anal or m F. P Ti i-qu	t C. Vete any a. B . W	1 3 . Ei mine e. 1 and tat.		1. 1. 1. 27
- AHC 26 C	OUVER OW2	. F	·÷ •						13				9.9	- 45	:	NT .	_			-	COMP .C:	1.	i - tard	1								
Sample destruction	41	Ag	A:	3.1	86 909	21 000	C3	63 098	Cc ppe	(; 998	Cu pps	20 :	G3 pps	ĸ :	La	Ne 1	55 199	N: 928	×3 :	5; 598	P ppa	20 ppa	Sb ppa	1: ;30	Тı :	:1 pp=	U ppa	7 ppa	y pon	2n pop		
1324	2.52	0.2	30	200	(0.5	3	1.16	(0.5	15	51	51	5.31	(10	0.84	10	1.37	742	1	0.15	28	780	10	(10	76 146	0.21	(10 (10	<10 <10	131 108	(10 (10	130 130	::	1
25	2.31	0.2	20 30	280	(0.5	0.00	0.54	10.5	15	67 19	52	4.32	.10	1.12	10	1.27	141 191	3	3.19 5.15	36 14	740	12	(10 (10	7	0.19	10	(10 (10	143 102	35 .1:	130 65	::	
145:	:.95	1.6	1840	140	:0.5	- ä	1.31	:0.5	52	47	182	4.40	10	0.94	10	1.04	216	5	2.21	22	770	11	(10		0.35	.10	(10	207	(10	50 70		2
485	1.41	0.2	100	330	(0.5	G	1.32	(0.5	15	9	41	3.08	10	0.67	10	0.68	502	a	0.18	11	970	2	(10	52	0.25	<10	<10	103	<10	50		
488	2.63	0.2	30	70	(0.5	(2	0.93	(0.5	19	39	60	4.47	(10	0.58	10	1.09	479	19	0.32	65	780	16	(10	90	0.11	(10	(10	150	<10	180		
199	3.01	0.2	50	30	(0.5	9	1.81	:0.5	18	31	33	1.52	10	0.08	40	0.99	4/4	1	0.05	21	2810	16	(10		0.03	(10	(10	112	10	76		
49:	2.20	0.4	90	50	(0.5		1.53	(0.5	25	33	28	5.45	10	0.39	10	1.22	178	30	\$.07	72	340	35	.10	::	1.12	10	:10	136	15	30		
492	2.08	0.4	30	70	(0.5	(2	2.07	(0.5	15	28	60	4.97	10	0.50	10	1.11	430	18	0.13	60	760	38	<10	13	0.02	(10	:10	120	(10	80		
3493	1.94	0.2	80	70	(0.5	(2	2.40	<0.5	13	32	54	4.20	10	0.47	10	1.09	476	36	0.09	59	830	40	<10	101	0.02	<10	<10	115	<10	130		

Services Hart Bichler

C

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER: B.C. V6C 2W2

CERT. #	:	A8614248-001-A
INVOICE #	:	18614248
DATE	:	6-JUL-86
P.O. #	:	NONE
GAG-G		

CC: J. HARDY

Sample description	Prep code	Au oz/T	Drill Hole Footage Int	در (44)	Commen	ts	
83494	207	<0.002	49 59		6-86.2		
83495	207	<0.002	59 44.9	∀			
83496	207	<0.002	64.4 69.	¥ - -			
83497	207	<0.002	69.4 74.	4			
83498	207	<0.002	74.4 #\$*	Y	- -		

Registered Assayer, Province of British Columbia

VOI rev, 4/85

 \mathcal{O}

					С	he	en	ne	X	La	b	s I	Lte	d.			212 E North Canada	Brooks Vanc	bank ouve V	c Ave. r, B.C. 7J 2C1													
				۰Aı	nalytic	al Cher	nists		•Geoch	emists	:	•Reg	isterea	Assay	ers		Teleph Telex:	one:(60)4) 98 N43	84-0221 8-52597		Sem	u qu	anti	tat	ive	mult	iel	Leme	nt l	CP a	สกุลไ	ysi
										······································									0.1			Nitr	ic-	Aqua 1 fo	-Re	g) a Lad	0330 500 1	stic	on o	f O.	5 gn	n of	+5
							ERT	16.0	A1:	<u></u>	anat	.15.		[C 1 A 3	A ()	001.0		1196	sti:	on i	5 1	ncon d fo	plet	e fo cv	311.11 1. 01. 	307 307	mine Nine	eral.	5, 5,
TO :	MARK	HANA	GEME	אינ .		ITED								1977 1977		1	: 18) : 18)	51 82 11	17- 49 	001.0	1	Ga,	r pa Tai	кера Ку, Сор	н с К.	Na, Na,	Sr,	, 30 T1	, Ti	, ₩ , ₩	and tati	Vc	an
	1900 Vanc VgC	99 00788 202	9 N. , F.	С, НА:	ST (N	1 65 5	5 T .							041 P.O 646	: † -6		: 13 : ND	NE	- 00			COM	IENT	S :	13 L72	e: eu	.12	2411	t-do	-31163			
Sample		A)	Ag	As	K 3	Ke	¥i	C3	(J	(în	1]	 Cu	ře Y	Ga	 K Z].3 000	Kg		Ко	H3		P	Ph BOD	Sh	Sr DOB	Ti 7]] 998	U	ų eee	¥ PO N	Zn		
	<u>100</u>	<u>^_</u>	<u>99</u> =	340	110	<u></u>	(2	1 32	0.5	74 74		59	5.15	10	0.71	<u>rr=</u> 10	0.99	386		0.23	57	830	18	(10	81	0.05	(10	(10	102	<10	110		
3195		2.22	0.2	80 50	100	<0.5 <0.5	2 2 2	2.02	1.5	17	35	60 52	5.09	10	0.56	10 (10	1.00	466 525	22	0.15	52 36	860 920	19	(10 (10	83 244	0.05	<10 <10	<10 <10	92 138	<10 <10	240 140	 	
83497 83498		2.30	0.2	30 50	110	(0.5 (0.5	(2 (2 (2	0.89	0.5	15	58 55	50 53	5.21	10	0.80	10	1.18	642 610	4	0.22	37 41	910 940	14	<10 (10	61 159	0.12	(10 (10	<10 <10	147 146	<10 <10	160 170		
	• •	5102				,																											
	• •																																
										-																							
						`																											
·																																	
÷.,																																	
																								14	72.	hR	is	200					

ŧ

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221 Phone: 043-52597 Telex:

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

10 : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. V6C 2W2

CERT• #	:	A8614406-001-4
INVOICE	# :	18614406
DATE	:	16-JUL-86
P.C. #	:	NONE
GALLANT	GEOF	RGIA

<u>CC</u>	:	J.	HARDY	
-	-			

⊃a mp⊺e	rrep	AU	prill Hole	•		
description	code	oz/T	Footage Interval (FA)	Comm	ents	
00951 E	207	0.146	See Table			
00952 E	207	0.024)			
03327 D	207	<0.00Z	104 109	C-86	·z	
03328 D	207	0.002	109 114			
03329 D	207	<0.002	114 119			
03330 D	207	<0.002				'
03331 D	207	<0.002				
03332 D	207	<0.002	→ 125.1 128.6			
03333 D	207	<0.002	128.6 (33.6			
03334 D	207	<0.002		 .		
03335 D	207	<0.002	143.6 153/			
03336 D	207	<0.002	153.6 163.6			
03337 D	207	0.006	163.6 /73.6			
03338 D	207	0.002	173.6			
03339 D	207	0.008	183.6 193.6			
03340 D	207	<0.002	193.6 203.6			
03341 D	207	<0.002	20 }.6 213.6			
03342 D	207	<0.002				
03343 D	207	<0.002				
03344 D	207	<0.002				
03345 D	207	0.002				
03346 D	207	<0.002				
03347 D	207	<0.002				·
03348 D	207	<0.002	252.9 2542			
03349 D	207	<0.002	254.2 2592			
03350 D	207	<0.002				
03364 D	207	<0.002	tring -> core	0-86	.3	
03365 D	207	<0.002				
03366 D	207	0.016				
03367 0	207	0.020	— — 3 7.3 39.8 — —			
03368 D	207	0.006				
03369 D	207	0.002	44.8 49.8			
03370 D	207	0.002	49.8 548			- -
03371 D	207	0.002				
03 37 2 D	207	0.002			- -	~-
03373 D	207	0.004	49.8 #4.8			
03374 0	207	0.006				
C 75 D	207	0.004	79.8 84.8			
03376 0	207	<0.002	84.9 B1.8	A n		
03377 D	207	<0.002	89.8 94.9	(Id X		`
				HALL.		VOL rev. 4/85

۲	1	-
1	Y	2
	11	0~
1	2	~
J	1	-
4	T.	

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1 Canada

Analytical Chemists

Geochemists Registered Assayers Telephone: (604) 984-0221 043-52597 Telex:

long dus titative multi element ICP inalysis

material followed by ICP analysis. Since this digestion is incomplete for many minerals.

values reported for Al, St. Ba, Be. La. Li.

is. La. 19. H. Ma. Sr. Tl. Tr. W and W ram

only be considered as semi-quantitities

Matric-Adua-Resis digestion of G.S. small

CENTIFICATE OF ANALYSIS

IC : MARY MANAGEMENT LINITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. 966 292

: A8614407-001-A CERT. 4 LAVOICE : : 1961:417 DATE : 33-311-86 : NOWE P.C. # GALLANT GEORGIA

CONNENTS : CC: J. HARDY

Sample description	A1 :	49 201	As ppe	Ba ppa	Be ppn	Bi ppa	(a 1	Cd ppe	Co ppa	Cr pps	Cu ppe	Ee :	6a 209.	1	La ppa	3g	57. 328	80 598	" :	Hi ppa	? 228	26 550	90 201	57 201	:	11 978	0 201	; ;;a	y ppa	20.	
00951 E	1.78	1.2	>9999	80	(0.5	124	0.83	(0.5	1047	59	1049 16	.79	0D	0.75	10	1.06	362	a	0.05	62	710	10	0D	63	0.08	0.0	(10	132	(10	70	 4

00952 E	0.67	1.4	2960	40	(0.5	<2	0.23	(0.5	70	18	1833 27.58	<10	0.25	<10	0.23	m	a	0.03	91	200		<10	15	0.09	- CLD	012	63	(10	79		
13327 0	2.94	0.8	110	190	<0.5	G	1.06	5.5	20	76	89 5.78	10	1.04	10	1.34	6.2	4	1.22	46	240	16	10	87	3.19	- 10	-0.0	160	(10	430		••
12328 0	2.55	0.6	20	170	(0.5	2	1.87	2.5	16	.78	71 5.34	10	0.80	16	1.30	649	5	5.22	44	\$46	22	10	94	1.15	-12	3D	189	:35	275		
12229-0	2.45	0.4	30	150	(0.5	-2	1.32	1.5	16	75	67 5.18	10	0.83	10	1.30	56.	3	1.16	40	370	14	10	71	2.17	-: 10	(10	167	410	230		
03330 0	2.39	0.6	20	200	(0.5	(2	1.04	3.5	17	80	71 5.37	10	0.99	10	1.35	615	5	0.22	50	890	18	(10	77	0.24	0.0	0D	283	0D	360		
03331 D	4.56	0.4	40	110	(0.5	(2	4.25	(0.5	11	27	22 2.03	20	0.15	(10	0.32	438	5	0.53	18	960	6	10	316	0.28	0D	(10	54	<10	90		
03332 1	2.42	0.2	50	80	(0.5	(2	1.64	2.0	17	62	83 5.26	10	0.75	10	1.31	597	8	0.22	51	910	12	10	84	0.28	- dø	0D	273	<10	270		
:2222 0	1.51	4.2	- 20	40	(0.5	C	2.07	(0.5	19	38	136 4.29	10	0.20	10	1.11	647	1	3.10	23	1460	4	:10	72	1.23	-30	(10	119	<10	60	••	
03334_0	1.42	0.2	35	60	(0.5	12	2.38	(0.5	15	35	44 3.28	10	0.35	16	0.95	62.	1	:.12	15	1360	4	:10	75	5.24	-35	-16	111	(16	56		
13235 0	1.62	0.2	50	40	<0.5	12	2.41	:0.5	20	42	90 4.15	10	0.20	10	1.22	754	- 1	\$.59	21	1470	5	30	~	1.27	(10	(10	121	<10	50		
03336 0	1.08	0.2	80	50	(0.5	02	1.55	(0.5	16	25	49 2.62	<10	0.37	10	0.62	412	1	0.13	16	1470	4	(10	63	0.25	₫Ø.	0D	87	<00	40		
03337 0	1.20	0.2	800	50	(0.5	(2	1.70	(0.5	17	28	56 2.94	10	0.45	10	0.68	445	1	0.12	17	1430	6	0D	61	0.24	0D	<10	90	<10	40		
03338 8	1.19	0.2	380	40	(0.5	02	1.82	(0.5	19	28	80 3.22	10	0.42	10	0.67	423	1	0.10	18	1460	4	(10	52	0.24	0D	0D	88	(10	40		
13339 0	1.11	0.2	730	40	(0.5	3	1.65	40.5	15	29	78 3.11	10	0.44	10	0.58	44.2	1	2.99	12	1510	4	10	51	1.24	:19	.110	38	.10	40		
03340 0	1.41	0.2	30	70	(0.5	C	1.99	(0.5	16	37	48 3.33	10	0.52	10	0.38	565	1	6.19	19	1266	ŝ	-34	72	1.30	-04-	-30	114	-15	40		**
22341 3	1.12	0.2	50	50	(0.5	- (2	1.55	(0.5	12	23	40 2.48	-C10	0.37	- 10	0.64	422	1	3.15	14	1040	2	-30	74	1.22	-30	(10	35	:10	30	**	
03342 D	1.17	0.2	80	50	(0.5	(2	1.59	(0.5	14	24	72 2.88	10	0.44	10	0.67	402	1	0.14	15	1340	2	(10	81	0.24	<10	00	89	<10	30		
03343 0	0.85	0.4	150	20	(0.5	02	1.17	(0.5	55	19	415 11.56	10	0.23	10	0.31	208	4	0.10	57	1310	6	(10	59	0.22	(10	0D	49	C10	30		
03344 0	1.23	0.2	150	60	(0.5	(2	1.20	(0.5	21	33	177 5.01	10	0.79	20	0.81	360	2	0.09	22	1640	4	(10	47	0.25	<10	0D	77	(10	40		
13345 0	1.24	2.2	50	50	(0.5	0	1.77	(0.5	15	27	40 2.76	10	0.51	10	9.68	436	1	9.14	16	1390	3	10	32	1.24	-20	010	<u>.</u>	15	20		
03346 0	1.08	0.2	40	50	<0.5	C	1.42	(0.5	12	24	43 2.64	:10	0.38	10	0.61	381	1	5.14	14	1270	- 2	20	68	1.3	- 14	:10	\$3	-16	25	••	
13347 0	1.28	0.2	60	100	-0.5	-2	1.67	:0.5	19	30	107 4.17	10	9.54	10	9.75	464	-		21	1420	- 4	-19	12	1.29	- 32	-20	24	10	-12		
03348 0	1.52	1.2	(10	20	(0.5	3	1.95	<0.5	64	35	583 21.24	10	0.25	10	0.45	307	3	0.08	93	920	6	(10	91	0.18	(10	(10	%	0D	80		
03349 0	2.86	0.4	10	190	<0.5	02	0.92	0.5	16	83	66 5.24	10	1.47	10	1.40	618	6	0.33	51	920	10	(10	119	0.23	<10	010	305	(10	170		
03350 P	3.00	0.8	10	130	(0.5	0	1.19	3.0	15	78	68 5.29	10	1.09	10	1.23	576	- 1	9.41	43	800	12	10	142	0.19	<10	(10	245	00	300		
12364 0	1.22	0.2	10	120	<0.5		2.27	:0.5	. 11	44	9 1	10	1.40	120	1.10	202	1			330		15			12	12	122	-15		••	
12365 5	7.94	9.2	90	310	0.5	਼ੁ	12.04	1.0	14	2.	35 6.42	20	2.71	:10	2.91	12	47		17	1990	21				112	110	-1.				
	1.61	3.3	39	20	:0.5		2	1.5	105	32	208 11.34		0.40	10	0.73	100	40	. 14	41	11000	-14	29		* **	12	110		110			
03367 0	0.97	0.2	10	20	(0.5	4	1.68	(0.5	19	2	136 4./3	10	0.28	10	0.42	182	11	0.10		1150	- 1	110	0.	3.33	(10	(10	100	(10	20		
03368 D	2.01	0.2	40	330	(0.5	a	1.41	(0.5	16	44	113 4.64	10	1.02	10	1.56	11/	:	0.12	21	879	•	(10	120	0.00	110	216	120	110	50		
03369 0	1.95	0.2	10	160	(0.5	G	2.60	(0.5	13	34	100 5 44	19	V.38	10	1.00	004	1	V.W/		1000	1	10	1.0		-14	110	153	1.20	20		
122.5 9	1.92	.1.2	30	290	02.5	G	1.02	19.5			1.8 5.00	10	3.5.	1.14	1.51					1020	•				10	122	101				
03371 0	2.92	5.2	130	345	:0.5		2.39	:0.5		- 80		19	1.00			200				1160	-		-		-16	120	:55		3.		20
.22.1	2.29	9.2	110	250	0.5		1.73	.0.5	-20	10	145 4.75	10	0.92	10	1.30	424	- 1	2.16	- 24	15.30		.10	15		-24	- 22	122	12	50		
03373.0	1.98	0.2	430	260	(0.5	3	1.78	(0.5	21	49	135 4.66	10	0.87	10	1.52	418	-	0.12	27	1480	- 6	(10	83	0.20	:10	<10	126	00	50		
03374 0	2.22	9.2	740	360	<0.5	C	1.49	(0.5	23	70	104 4.62	10	0.92	10	1.45	336	d	0.16	43	1220	4	(10	101	9.38	<10	0D	137	010	50		
03375 0	2.31	0.2	20	220	(0.5	G	2.10	(0.5	21	51	135 4.06	10	0.45	(10	0.93	290	a	0.29	38	1340	6	:10	133	0.27	(10	00	96	-04	30		
	1.%	2.2	10	216	9.5	-2	1.17	2.5	~	67	140 5.20	15	2.79	12	1.22		1	1.12	報	1340	:	13	22		12	12	124		5	+*	**
122. 3	1.51	2.2	15	329	.0.5	:	1.05	.0.5	34	23	122 4.23	10	6.45	12	1.01				41		4		-e		11	11	1	15		1.57	
6. j. 8																		22	tu:	: 24	by .	140	the	B	cho	ler					

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1 Canada

Analytical Chemists · Geochemists · Registered Assayers

Phone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ASSAY

O : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. V6C 2W2

CERT. # : A8614406-002-A INVOICE # : 18614406 : 16-JUL-86 DATE P.C. # : NONE GALLANT GEORGIA

CC: J. HARDY

Sample	Prep	Au	Drill Hole		
description	code	oz/T	Footage Interval (St)	Comments	\$
03378 D	207	0.002	94.8 99.8	G-86.3	
03379 D	207	<0.002	9 9.8 104.8		
03380 D	207	<0.002	104.8 109.8		
03381 D	207	0.002	109.8 114.8		
03382 D	207	<0.002	114.8 1198		
03383 D	207	0.014	/19.8 1248		
03384 D	207	<0.002	124.8 1248		
03385 D	207	0.006	129.8 134.8-		
03386 D	207	0.008	134.8 139.8		
03387 D	207	0.002	139.8 146		
03388 D	207	0.016	146 154.3		 111
03389 D	207	0.014	164.3 159.3		
03390 D	207	0.034	159.3 164.3-		
03391 D	207	0.016	164.3 169.3		
83147 C	207	0.046	_See table_		
83148 C	207	0.016			
83149 C	207	0.106			
83150 C	207	0.074			
83499 C	207	0.002			
83500 C	207	<0.002			

VOI 4/85 Registered Assayer, Province of British Columbia

Re				С	h	en	ne	хI	La	bs	5 L	to	Ι.		2 N G	12 Br orth N anada	ookst Vanco	uver, V7	Ave. B.C. J 2C1													
			An	alytic	el Chei	mists		Geoch	emists		Regis	tered A	Assayer	8	Te Te	elephor elex:	ne:(604) 984 043-5	0221		Semi	qui	nti	tat:		wit.	. e:	ener	et 1	CE 3		1.1.1
						CERI	IEI	ATE	30	ANAL	YSI	5						**		-	nitr mate dige	ic-i rial stic	iqus fo n i	-Reg 11ou	ed a	by I plet	Stic CP a e f:	in of inaly	ysis	5 gm . Si mine	c/ nce rals	thi
TO : HARP	MANA	GEM	ENT	LIN	ITED								CERT	I	, :	AS6 196	144	07-0 07	002-A	١.	valu Sa.	La.	epo Mg.	rted	d for Na.	Sr,	. St.	. В: Т1	а, В , Ш	e. C	a. 0 V ::	1.
1900	- 99	9 W	. HA	STIM	IGS	SI.							DATI	Ξ.	:	22-	JUL	-86			only	be	con	side	srsq	55	seas	-qu	anti	tata	¥8.,	
VANC	2W2	. 9	.C.										GALI	ANT	GEO	RG 14					COMM	ENIS		ny.								
- *							1		1			-		-	3		2	 2	an a							•1						
Sample	A1	Ag	As	83	Be	Bi	Ca ,	Cd	Co	Cr	Cu	Fe	63	ĸ	L3 008	ng	008	008	83	N1 008	008	200	30	15	-	200	ppa	200	ppa	_n pps		-
OBJCLIPTION	•	ppa	99 n	ppe	pya	yya		- m.	yy.	17.		- 2		1.1											1					5		
03378 D	1.80	0.2	20	390	(0.5	(2	1.44	(0.5	22	65	78	4.24	<10	0.52	10	1.29	295	(1	0.19	41	1220	6	<10	103	0.20	(10	(10	132	<10	50		
13379 D	1.57	0.2	10	290	(0.5	(2	0.84	(0.5	24	68	78	4.44	<10	0.77	10	1.18	227	a	0.14	44	1280	16	(10	24	0.19	(10	(10	158	10	50		1
13380 D	1.54	0.2	10	240	(0.5	3	0.94	(0.5	24	24	60	4.41	(10	0.19	10	1.30	200	4	A 15	45	1200	-	10	43	6 91	/16	(10	154	/15	60		
03381 P	1.80	0.2	140	510	(0.5	3	1.17	(0.5	26	74	29	5.12	(10	0.99	10	1.54	258	ä	2.14	46	1360	:	.10	55	0.23	(10	(10	164	:10	50		
A2202 B	1.50	0.2	20	460	10.5	0	0.98	(0.5	24	60	90	4.06	(10	0.60	10	1.21	255	a	0.16	40	1280	10	(10	78	0.23	(10	(10	129	(10	40		
03384 0	2.42	0.2	20	610	(0.5	ä	1.67	(0.5	25	75	62	4.76	10	0.77	30	1.73	399	0	0.43	46	2280	10	<10	253	0.23	<10	<10	152	<10	70		
03385 0	1.81	0.2	40	400	(0.5	(2	0.83	(0.5	26	75	74	4.82	<10	0.76	10	1.54	248	<1	0.13	47	1270	8	<10	71	0.21	<10	-(10	161	(10	60		
03396 D	1.71	0.2	120	440	<0.5	02	0.78	(0.5	16	48	65	3.07	(10	0.88	<10	1.16	226	- (1	0.15	28	340	24	(10	70	0.19	(10	<10	107	(10	40		**
03387 D	1.77	0.2	40	470	(0.5	<2	0.91	(0.5	21	51	76	3.83	<10	0.87	10	1.26	219	- 1	0.15	39	1270	4	(16	62	0.15	<10	(10	116	(10	40	<u>.</u>	
03388 D	1.09	0.2	360	40	<0.5	42	1.38	(0.5	50	19	776	4.95	(10	0.24	10	0.30	149	1	9.13	10	970	1	(10	52	0.22	(10	(10	105	/10	30		
03389 D	1.40	0.2	210	100	(0.5	2	0.86	(0.5	18	28	150	2.88	(10	0.71	10	0.0/	203	3	0.10	20	010		(10	60	0.43	/10	(10	145	/10	20		
03390 D	1.84	0.4	5680	120	(0.5	8	0.90	(0.5	242	44	338	8.03	(10	0.98	10	0.80	288	3	0.15	30	950	5	(10	67	6.77	(10	(10	197	(10	RO		
03391 D	1.84	0.4	1770	100	(0.5	10	0.15	(0.5	644	16	1459	18.75	10	0.07	(10	0.28	110	्यं	0.01	45	570	16	30	5	0.02	(10	(10	43	10	50		
93147 L	0.00	5.0	1096	-0	/0.5	10	1 21	10.5	99	21	233	15.85	10	0.32	10	0.59	329	14	0.09	51	690	6	<10	62	5.12	:10	(10	101	(10	40		
93146 C	1.02	1.2	1000	120	(0.5	1	0.38	(0.5	282	10	621	19.51	<10	0.28	<10	0.34	244	- (1	0.05	34	600	38	100	178	0.03	<10	<10	32	:10	170		
83150 C	0.41	1.0	1760	10	(0.5	18	0.51	(0.5	99	14	793	9.24	(10	0.04	(10	0.05	112	1	0.01	56	190	8	(10	22	0.06	<10	(10	13	270	20		
83499 C	2.84	0.6	140	140	(0.5	(2	1.08	0.5	16	72	74	5.57	10	1.09	10	1.20	706	5	0.29	48	890	12	<10	111	0.15	<10	<10	176	<10	170		
83500 C	2.94	0.4	90	280	(0.5	(2	1.08	0.5	14	63	58	4.96	10	1.30	10	1.29	706	2	0.24	35	830	12	<10	270	0.20	(10	(10	158	<10	160		••
1.1	6																															
a data a	2.12			÷.														±1);														

1

1 1966

....

contrast of Hant Bichler

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists • Ge

Geochemists • Registered Assayers

---- --- --- ---

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, 8.C. V6C 2W2 CERT• # : A8614450-001-A INVOICE # : I8614450 DATE : 16-JUL-86 P•C• # : NONE GALLANT-GEORGIA

CC: J. HARD	Y					
Sample	Ргер	Au	Drill Hole			
description	code	oz/T	Footage Interval (ft)	Com	ments	
33920	207	0.030				
33930	207	0.086				
33940	207	0.030				
33950	207	0.014	175.3-> 100.3			
33960	207	0.030	$-180.3 \rightarrow 185.3$			
3397D	207	0.014				
3398D	207	0.036	195.3- 205.3			
33990	207	0.028	205 3 + 213, 3 			
3400D	207	0.006	$\underline{} = 213.3 \rightarrow 274.3 \underline{} =$			
138510	207	0.034	$= 214.5 \rightarrow 218.3$	6	ør 5 -	
138520	207	0.008				
13853D	207	0.028				
13854D	207	0.036	55.0 7 65.0			
138550	207	0.010	<u>60.0</u> → 65.0			
15351D	207	0.002	45.0+ 70.0_			
15352D	207	0.002	<u> 222.8 →22₹3</u>	G-86-	3	
153530	207	0.004	227.3 2.32.3,	* -		
153540	207	0.002	$- 232.3 \longrightarrow 2Jf.3$			
15355D	207	0.002	↔ - ^{237.3} → ^{243.0}			
15356D	207	0.004	$\underline{\qquad 243 \longrightarrow 247.0}$			
15357D	207	0.002	247			
15358D	207	0.020	257			
153590	207	0.016		~~		~-
15360D	207	0.006	27 7 297			
15361D	207	<0.002	287 Z97			
15362D	207	0.010	297 307		`	
15363D	207	0.004				
15364D	207	<0.002	313.1 314.9			
15365D	207	0.002	314.¶ → 324.9			
15366D	207	<0.002	— 324.9 → 3 34.9 — —			
15367D	207	<0.002	— — 334.9 → 344.9 — —			
15368D	207	0.002	344.9 -+ 354.9			
15369D	207	0.002				
15370D	207	<0.002				
153710	207	<0.002	3703-+371.3			
15372D	207	<0.002	37/.3-)374.5			
15373D	207	<0.002	\$74.5-379.5			
15374D	207	<0.002	— → 379.5 → 388.5 – →	A-n		
5375D	207	<0.002	388.5	1 2-1 0		
15376D	207	<0.002	390·5	19AT	-7	
				THAT IN	Asta	VOI rev. 4/85

.....

Registered Assayer, Province of British Columbia

W	Cher	nexIabo	bt I	212 Brooksbank Ave.	0
C	Analytical Chemists	-Geochemists	-Registered Assayers	Canada V7J 2C1 Telephone: (604) 984-0221	Ceni quantitative multi element ICP analy.
IC : MARE MANA 1900 - 99 VANCOUVER	GEMENT LIGITED 9 W. HASTINGS ST. . B.C.	TIFICATE OF ANAL	CERT. 4 INVOICE 0 DATE P.O. 8 GALLANT-5	: AS614351-001-A : I0614431 : 17-JUL-S6 : NONE	Hitric-Aqua-Regis digestion of 0.5 gm of material followed b. ICP analysis. Since t disection is incomplete for many minerals, values reported for A1. Sb. Ba. Bc. Co. C: Ga. La. Hg. K. Ha. Sr. Th. Th. W and 7 can only be considered as semi-quantity
V60 202	Chemestabstat All 20 000000000000000000000000000000000				
Sample V Al description :	よう Ag As Ba Be Bi ppa ppa ppa ppa ppa	i Ca Cd Co Cr 18 2 pps pps pps	Cu Ee Ga K	La Ha Ko Ko Na Hi pa <u>pon pon pon</u>	i P Pb Sb Sr Ti Tl U V V In m ppm ppm ppm ppm 1 ppm ppm ppm ppm
33929 1.74 33930 0.74 32940 1.80 32950 1.65 32950 1.65 33929 1.72 33980 1.55 33970 1.72 33980 1.55 33970 0.31 34000 2.73 138510 1.03 138520 3.11 138550 2.35 138550 2.35 138550 2.12 153510 2.72 153520 2.11 153520 2.11 153550 3.52 153560 2.44 153550 3.52 153560 2.44 153550 3.52 153660 2.47 153550 3.52 153600 2.37 153610 2.95 153620 1.70 153620 1.70 153620 1.70 153620	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 0.79 (0.5) 24 54 2 0.83 (0.5) 283 37 2 0.83 (0.5) 283 37 2 1.57 10.5 55 61 2 1.22 10.5 55 61 2 1.33 (0.5) 36 61 2 1.33 (0.5) 36 61 2 1.33 $(0.5$ 351 24 2 5.14 $(0.5$ 351 24 2 5.14 $(0.5$ 351 24 2 5.72 111 20.53 370 2 3.70 $(0.5$ 32 70 2 3.10 $(0.5$ 32 70 2 3.15 $(0.5$ 114 86 2 2.52 $(0.5$ 114 22 2.52 105 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1.14 307 4 0.11 3 10 0.47 150 3 0.04 3 20 1.19 345 2 0.11 2 20 0.97 301 2 0.14 2 20 0.93 274 1 0.13 2 20 0.93 270 1 0.16 2 20 0.93 270 1 0.16 2 20 0.93 270 1 0.16 2 20 0.93 270 1 0.16 2 20 0.93 270 1 0.16 2 10 1.33 852 6 0.11 2 10 1.58 389 2 0.15 1 10 1.58 389 2 0.15 1 10 1.69 519 C1 0.33 3 10 1.54 505 6 0.10 2 10 1.54 505 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists .

Geochemists · Registered Assayers

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, B.C. V6C 2W2 CERT. # : A8614450-002-A INVOICE # : I8614450 DATE : 16-JUL-86 P.O. # : NONE GALLANT-GEORGIA

CC: J. HARDY

Sample	Prep	Au	Drill Hole				
description	code	oz/T	Footage Interval (F+)	Com	ents		1
153770	207	<0.002 -		0.0			
15378D	207	<0.002	396.5 - 406.8	6-86			
15379D	207	<0.002	406.8 414.3				
153800	207	<0.002	414.3 -> 424.0				
15381D	207	<0.002	424.0 414.0				
15382D	207	<0.002	434.0 - 477.0				
153830	207	<0.002	444.0 -> 447.9				
15384D	207	<0.002	4499 -> 452.0				
15385D	207	<0.002	452.0 -> 461.3				
15386D	207	<0.002	441.3 -+ 462.9				
153870	207	<0.002	462.9 -> ¥72.9				
15388D	207	<0.002	472.9 -> 462.9				
15389D	207	<0.002	462.9 -> 487.6				
153900	207	0.006	487.6 -> 492.9				
153910	207	0.002	492.9 -> 503.0				
15392D	207	0.012 -	It casing + IP.2_	6-84	4 P	- H -	
153930	207	0.010	19.0 -> 24.0		1000000		
15394D	207	0-086	24.0 -> 29.0_		1000	812 A.Y	
15395D	207	0-016	29.0 -> 30.0				
15396D	207	0-004	30.0 → 3/.7				
15397D	207	0.040	31.7 -+ 34.3			1	
15398D	207	0.046	- 34.3 - 38.3_				
153990	207	0.002	38.3 -> Y2.5				
154000	207	0-020	42.5 -+ 47.6				
	201	0.020	426 -> 49.1				

Registered Assayer, Province of British Columbia

VOI rev. 4/85

K						С	he	en	ie	хI	a	bs	s L	tc	۱.		2	12 B North Canada	rooksi Vanco	bank ouver, V7	Ave. B.C. J 2C1												
R		1			An	alytic	al Chen	nists	. 1	Geoche	mists		Regist	ered A	Assaye	**	T T	elepho elex:	ne:(604	4) 984 043-5	-0221 52597		í≠Mi	¢ u		141.	. ę 1	NGII	1.63	én es	4.3	iP o	195
2 ° 1		ł				314		ERI	1510	ATE	OF	ANAL	YEL							-			. 1: 1.310	10-)	Adia 1 fo	-ke<	ed i	11 șe 5, I	stid CF s	n s nal	e 	5 30 . 51	11 516
T0 :	MAR	RE	hana	6CK	TMS	LIM	ITED								CER 107	T. 4 DICE	t	: AS : I?	6144 6144	51-0 01	222-4		- tiu 53.	251 21 13.	repo 79.	1 10 7 10 7 10	: 10 33.	: Al Sr.	. 3: . 11.	. P. T1	ь. н . ч	e. C and	5. V :
	1 00 947 960	00 NC 3 C 3	- 99 UVER WC	9 W . B	. НА .С.	ST ()	V65 (57.							DAT P.O GAL	5 . LAPT	-65	NO NO	-391 HS A	-86			0011 00000	EKI J.	een e HAR	5164 DY	1: 9d	51	LCA.	- 44	2023	1	
Sample			Al	àş.	41	P3	Be	B:	63	63	C.	54	Cu	Fe	53	ĸ	La	Ng	Br.	đo	N3	N2	P	Pb	Sb	5:	ī:	11		7	¥	Cn.	
descrip	1100			pps	ppa	ppa	pps	ppa	•	ppa	ppa	\$pm	pps	•	ppa		ppa	** *	- 994	Ĩ.		- ppa	- ppm	<i>yya</i>	***			"	<i>,,,</i>			/	
153770		20	3.79	0.2	20	360	<0.5	0	5.27	(0.5	31	122	34	5.14	30	0.50	<10	2.68	1150	11	0.34	44	2130	14	(10	338	0.23	(10	(10	141	(10	80	
153780			2.82	0.2	20	100	(0.5	G	3.50	(0.5	25	125	115	5.14	30	0.93	20	1.00	1269	1	0.06	30	1950	15	10	110	1.32	10	10	:11	15	-0	
153,90			0.29	0.0	16	130	10.5		0.90	(0.5	3	19	4	1.0	10	0.25	40	0.19	442	2	0.67	-	135	14	.16	20	1.02	11	14	ę	.10	21	
153810			2.52	0.2	.10	10	:1.5	0	0.60	3.5	1	12	2	1.19	10	5.29	40	0.05	352	. 1	3.02	4	70	14	.20	12	2.31		:0	1	10	10	-
153820			0.48	0.2	<10	<10	(0.5	(2	0.70	(0.5	1	14	3	1.26	10	0.25	30	0.06	379	2	0.06	5	80	10	<10	12	<0.01	<10	10	1	(10	10	
153830	N.,		3.18	0.2	10	300	<0.5	<2	4.50	<0.5	26	98	35	4.46	30	0.64	10	2.23	940	9	0.31	33	1950	18	(10	284	0.18	(10	(10	119	(10	60	
153840		18	2.19	0.2	20	70	(0.5	(2	3.31	(0.5	24	104	148	4.58	20	0.98	10	1.81	818	1 3	0.08	32	2320	18	(10	112	0.17	<10	(10	112	10	130	-
153250			3.93	0.2	10	220	<0.5	-2	5.17	.0.5	30	115	29	5.56	30	0.49	10	1.94	1402	1	0.10		2190	26	10		5.16	17	10	: 10	16	30	
15386D			0.49	0.2	10	10	:0.5	12	0.63	10.5	- 5	18		1.14	10	0.24	20	0.05	302	-	4.05	e.	40	14	10	12	- 31	15	15	1	10	10	
1538/8			0.39	0.2	/10	/10	10.5	10	0.65	10.5	÷	18	3	1.55	10	0.20	30	0.09	297	1 2	0.05	9	80	18	(10	13	(0.01	(10	10	2	00	20	
153669			2.74	0.2	20	240	10.5	0	4.03	(0.5	26	107	52	5.13	30	0.90	20	2.32	940	3	0.25	34	2470	16	(10	234	0.22	(10	<10	135	(10	80	
153070			3.41	0.2	10	200	(0.5	12	2.40	(0.5	20	108	83	4.27	20	1.66	20	1.64	641	2	0.13	34	2490	10	(10	97	0.24	<10	<10	116	(10	60	
153910			1.61	0.2	150	60	(0.5	10	1.55	:0.5	17	31	148	4.16	10	0.55	10	1.00	576	4	2.14	14	1430	12	10	92	1.17	10	:10	95	:10	50	
153920			1.26	0.2	2350	60	:0.5	.3	1.38	(0.5	50	22	162	3.77	10	0.41	10	0.73	515	2	C.14	12	1045	12	.16		1.17	.10	10	77	10	31	••
153930			1.12	3.6	2160	40	:0.5	12	1.04	(0.5	112	22	1035	4.96	10	0.28	10	0.75	465	1	2.96	15	1110	12	.30	52	:.15	15	.34		10	40	
153940			1.32	0.2	190	50	(0.5	4	1.42	(0.5	31	24	230	4.06	10	0.58	10	0.85	484	; 3	0.08	13	1330	12	<10	73	0.22	<10	<10	107	(10	30	
15395D			2.36	0.2	40	70	(0.5	(2	5.09	(0.5	138	28	804	11.85	20	0.95	<10	1.09	812	31	0.21	18	930	8	(10	82	0.22	(10	(10	115	(10	20	**
153960			2.58	0.2	230	60	(0.5	(2	3.61	(0.5	23	26	232	3.63	20	1.03	(10	1.09	608	1 41	0.26	10	1100	8	(10	145	0.20	(10	:10	108	(10	20	
153970			1.40	1.2	16.30	30	<0.5	.2	2.78	:0.5	155	26	1596	21.92	10	0.62	(10	0.74	342	45	0.12	24	410	1	15	22		10	1.	30	119		
153980	(m.)		1.32	0.4	90	30	:0.5	4	2.77	:0.5	16	58	1003	5.05	10	0.42	10	0.76	1275	6	1.14	13	396	5	25	21		-44	1.	101	144	15	
152990			5.08	9	1. 20	220	.0.5		8.21	.0.5	36	1.5	451	6.31	40	1.92	.10	1	477	:	4.33		010		10	124	A 11	10	(10	.30	10	10	
15400B			2.94	2.4	29999	100	(0.5	(2	2.46	(0.5	979	37	3156	16.69	10	0.83	<10	0.75	4.0	्रः	9.00	- 20	810	- 4	110	134	4.11	110	(10	14	40	30	

HartBichler

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, B.C. V6C 2W2

CERT. #		:	A8614634-001-A
INVOICE	¥	:	18614634
CATE		:	20-JUL-86
P.C. #		:	NONE
GAG-G			

CC: J. HARDY

. .

Sample	Prep	Au	Drill Hole		•	
description	code	oz/T	Footage Interval (5+)	C.	omments	
34010	207	0.002		G-f	86.4	
34020	207	0.002	27 <i>3.</i> 7			
3403D	207	0.002				
3404D	207	0.004	— — 283.7			
34050	207	<0.002	289.5			
3406D	207	<0.002	2945			
34070	207	<0.002	299.5 304.5			
3408D	207	0.002	304.5309.5	÷-		
3409D	207	0.002	309.5			
3410D	207	<0.002	314.5			
3411D	207	<0.002				
3412D	207	<0.002	322.3 324.5			
34130	207	<0.002	324.5-329.5			
138560	207	0.024	70		<u> </u>	
138570	207	<0.002				
13858D	207	0.008	77.3 80			
13859D	207	0.002	80 85			
138600	207	0.004	BS 90			
13861D	207	0.032	90			
13862D	207	0.010	94.5 98.4		_ -	
138630	207	0.048	98.4 101.3			_ →
13864D	207	0.087	101.3 101.5			
13865D	207	0.060				
13866D	207	0.012	105.5-+ 109.3-+			
138880	207	0.002	213.6-2/8.6			
13889D	207	0.004	Z18.6			
13890D	207	0.004			÷ =	
13891D	207	0.004	2276 232.3	~ —		
13892D	207	0.036	$232.3 \rightarrow 237.3 -$			
138930	207	0.002	- - 237.3 → 2 ^{4/2} .3		·	· · · · · · · · · · · · · · · · · · ·
13894D	207	0.002	2423 →2473			
13895D	207	0.002	247.3			
138960	207	0.004	252.3-255.6			
13897D	207	0.002	255.6- 260.6			
13898D	207	0.002	260.6-+265.6			
138990	207	0.004	2656→2683			
13900D	207	0.010	268.3 → 268.7 ·-			

VQI rev. 4/85 Registered Assayer, Province of British Columbia

|--|

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

043-52597

Analytical Chemists

Geochemists

Telephone (604) 984-0221 **Registered Assayers** Telex:

Semi quantitative multi element ICP analysi

CERTIFICATE DE ANALYSIS

TO : MARE MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VARCOUVER, B.C. - V6C 2W2

CERT. 🛊		:	A8614635-001-
INVOICE	ŧ	:	18614635
DATE		:	C3-JUL-86
P.O. 🖡		:	NONE
GAG-G			

Nitric-Aqua-Regia digestion of 0.5 gm of material followed by ICP analysis. Since this digestion is incomplete for many minerals. A values reported for Al, Sb. Ba, Be, Ca. Cr. Ga. La. Mg. K. Na. Sr. Tl, Ti, W and V can only be considered as semi-quantitative.

COMMENTS : CC: J. HARDY

Sample description	Al Z	Ag ppm	As pp∎	Ba ppn.	Be ppa	Bi . ppņ.	Ca Z	Cd . ppa	Co ppa	Cr g <u>p</u> m	Cu ppa	Fe	6а рр∎	K Z	La ppm	Ng 	Ио . 208	Но рри	N3	Ni 999	P 	P5 	Sb 998	Sr ppp	Ti Z	T1 998	U . gpm	V 	V 90a	Zn ppz		
34010	1.40	á. 4	50	50	(0.5	α	1.89	(0.5	12	20	294	3.49	10	0.58	10	0.77	492	1	0.11	12	1776	16	(10	62	רי ה	Z10	Z10	99	/10	40		
34020	2.48	0.2	60	80	(0.5	~	2.96	(0.5	12	24	55	3.62	20	1.00	<10	1.02	682	i	0.35	13	1270	8	(10	96	A 28	210	210	109	/10	40		
34030	1.54	0.2	20	40	(0.5	1	3.30	(0.5	11	29	71	3.27	20	0.38	<10	0.98	595	;	0.11	17	1280	30	/10	71	0.00	210	210	110	210	30		
34040	1.48	0.7	30	40	(0.5		3.03	(0.5	15	28	108	3.45	20	0.34	(10	0.99	5.77	- ī	0.11	14	1716	17	/16	50	0.35	216	/10	107	/10	30	••	
34050	1.43	0.2	20	10	(0.5	2	4.08	(0.5		28	38	2.34	20	0.24	(10	1.04	112	i	0.17	17	1250	17	/10	- 01 01	0.00	/16	210	105	/10	20		
34060	2.11	0.2	20	30	(0.5	ō	4.63	(0.5	Ř	32	21	3.53	30	0.40	(10	1.63	600	i	0.12	18	1390	12	(10	99	0.26	<10 <10	210	148	/10	20		
34070	1.23	0.2	10	10	(0.5		3.51	(0.5	3	27	8	1.16	20	0.22	(10	0.49	227	2	0.19	14	1440		210		A 19	10	(10	190	(10	10	_	
34080	1.50	0.2	10	40	(0.5	2	3.23	(0.5	4	34	- ñ	1.94	20	0.48	(10	0.90	371	10	0.19	Ś	1360	8	(10	72	0.25	210	210	97	210	20		
3409D	1.20	0.2	10	10	(0.5	2	2.91	(0.5	5	30	19	1.64	20	0.16	<10	0.65	352	1	0.18	6	1250	10	(10	102	0.27	<10	(10	80	10	20		
34100	1.10	0.2	10	10	(0.5	$\overline{\alpha}$	2.35	(0.5	4	24	28	0.98	10	0.10	10	0.26	329	a	0.26	10	2490	12	(10	145	0.19	(10	(10	47	(10	10		
34110	1.50	0.2	10	60	<0.5	<2	2.58	(0.5	n	57	19	2.31	20	0.28	20	1.02	517	17	0.14	22	1830	12	:10	168	0.22	(10	(10	72	(10	40	••	
34120	3.20	0.2	10	240	<0.5	(2	3.68	(0.5	20	74	17	4.11	30	0.48	30	1.88	1047	7	0.33	29	1420	24	(10	219	0.24	00	(10	98	(10	60		
34130	0.56	0.2	(10	10	(0.5	· (2	0.51	(0.5	1	12	4	1.27	10	0.28	30	0.09	268	i	0.09	3	100	12	(10	14	0.03	(10	10	3	(18	10		
138560	5.48	0.6	20	490	<0.5	ā	4.17	(0.5	32	75	396	7.81	30	1.98	<10	2.37	620	ā	0.47	34	2770	8	(10	438	0.28	(10	ció	249	(10	60		
138570	3.67	0.2	<10	1010	<0.5	(2	3.86	<0.5	27	144	32	6.09	30	2.35	(10	2.95	963	2	0.19	15	2180	12	10	320	0.36	(10	(10	170	(10	100		
132580	3.99	0.4	50	670	(0.5	(2	3.69	<0.5	39	167	265	7.31	30	2.04	10	3.20	905	3	0.19	37	2690	10	.10	229	0.35	:10	(10	195	(16	100		
138590	3.46	0.8	30	160	(0.5	- 62	3.81	<0.5	21	147	80	5.06	30	2.61	10	2.61	722	2	0.17	37	2220	10	(10	153	0.33	(10	<10	161	<10	50		
138600	2.87	0.6	80	120	<0.5	(2	3.22	(0.5	21	133	107	4.71	20	2.00	10	2.14	638	13	0.14	34	2370	16	(10	147	0.32	(10	(10	144	(10	60		
138610	2.50	0.2	110	110	(0.5	8	2.45	<0.5	21	120	102	4.40	20	1.66	20	1.90	474	7	0.10	31	2150	12	(10	130	0.27	(10	(10	129	10	40		
138620	2.60	0.8	280	90	<0.5	(2	1.79	<0.5	147	121	862	13.04	20	1.73	20	1.87	413	33	0.09	43	2120	8	(10	99	0.29	(10	(10	139	(10	30		
13863D	2.59	1.0	280	150	(0.5	(2	1.64	<0.5	32	104	459	5.59	20	2.03	20	2.02	445	3	0.10	21	2140	4	.10	71	0.31	(10	(10	133	(10	40		
13864D	0.43	4.0	>9999	10	<0.5	(2	0.21	<0.5	1346	16	4555	30.31	10	0.08	10	0.33	32	2	0.01	27	(10		10	51	0.01	(10	(10	23	60	<16		
138650	4.76	0.4	500	100	(0.5	26	2.60	<0.5	51	80	417	8.60	30	2.38	10	2.91	600	1	0.36	23	2010	2	(10	251	0.32	.10	(10	279	10	40		+-
138660	2.80	0.4	100	170	<0.5	<2	2.52	<0.5	34	47	252	6.15	20	1.27	10	1.84	591	5	0.14	20	1310	4	(10	179	0.22	(10	(10	176	(10	40		
139880	1.39	0.2	20	30	<0.5	(2	2.45	(0.5	13	26	80	4.29	20	0.18	10	0.99	767	1	0.10	12	1180	6	(10	73	0.17	00	<10	103	(10	40		
138890	1.52	0.2	20	20	(0.5	<2	2.90	(0.5	12	26	83	3.68	20	0.23	(10	0.95	763	2	0.08	11	1070	4	(10	97	0.11	(10	(10	92	(10	30		
139900	1.03	0.2	20	20	(0.5	<2	1.35	<0.5	12	19	100	3.14	10	0.23	10	0.59	266	1	0.09	11	1100	8	:10	47	9.22	(10	(10	68	.10	30		
138910	0.86	0.2	60	30	<0.5	. 2	0.99	:0.5	12	18	117	3.03	10	0.26	10	0.45	399	3	0.09	13	1080	è	(10	49	0.19	(19	(10	54	(10	20	••	
13892D	1.91	0.4	8420	100	<0.5	6	1.01	(0.5	79	57	162	5.22	10	1.06	10	1.16	404	2	0.11	35	850	10	(10	50	0.22	(10	(10	206	.10	30		
138930	2.57	0.2	80	130	(0.5	(2	1.35	(0.5	14	41	100	4.77	10	1.01	10	1.10	400	14	0.28	41	830	8	(10	110	0.35	/18	210	226	(10	90		
13894D	2.23	0.2	40	150	(0.5	(2	0.83	<0.5	14	59	99	4.63	10	1.21	10	1.16	389	7	0.19	34	780	8	(10	72	0.24	(10	(10	197	(10	70		
138950	2.49	0.4	50	150	(0.5	(2	1.30	(0.5	18	41	124	5.22	10	1.26	10	1.42	557	5	0.16	27	1180	10	(10	29	0.33	(10	(10	217	(10	90		
129960	2.01	0.4	200	110	(0.5	2	1.01	<0.5	33	44	319	6.63	10	1.08	20	1.23	412	12	3.12	52	330	6	10	73	0.72	10	(10	228	10	se		
139970	1.15	0.2	30	30	(0.5	(2	1.56	(0.5	9	19	57	2.67	10	0.36	10	0.54	- (11	1	(.12	10	1060	Ē	10	74	6.22	19	10	20	.10	56		
138980	1.03	0.2	20	30	(0.5	1	1.69	(0.5	8	16	60	2.59	10	0.21	10	0.52	452	,	2.12	9	1020	i	(10	71	0.20	.10	:10	59	10	30		
138990	1.05	0.4	30	30	(0.5	0	1.58	(0.5	n	14	115	2.76	10	0.24	10	0.51	389	i	0.13	10	1130	10	(10	70	0.21	<10	(10	63	(10	30		
			••																													

HartBickler Certified by .

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists - Geochemists - Registered Assayers

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, B.C. V6C 2W2

CERT. # : A8614632-001-A INVOICE # : 18614632 : 21-JUL-86 DATE P.O. # : NONE GALLANT-GEORGIA

CC: J. HARDY

Sample	Prep	Au	Drill Hole			
description	code	oz/T	Footage Internal (f1)	C	omments	
138670	207	<0.002	109.7_114.3	—— G-B	.4	
13868D	207	<0.002				
138690	207	0.012				
13870D	207	0.016	/22.3 126.3			
138710	207	0.002	/263 /3(3			
138720	207	0.006	13/3			· · · · ·
13873D	207	0.004	— — /35' <u>}/3\$.3 — —</u>			
13874D	207	0.008				
13875D	207	0.131				
13876D	207	0.014	146 151.6			
13877D	207	0.002	151.6			
13878D	207	<0.002				
13879D	207	<0.002				
13880D	207	0.002		~-	_ -	
13881D	207	0.002				
13882D	207	0.006				
13883D	207	0.006	<i>183.4</i> / <i>B</i> &4			
13884D	207	0.002	/88.Y / 96.B			
13885D	207	0.002	196.8			
13886D	207	<0.002	201.8_ 2068			
138870	207	0.002				

Registered Assayer, Province of British Columbia

VOI rev. 4/85

R	9		4	Inalytic	cal Cher	nists	-0	Geoche	mists	-	•Regis	tered A	issaye	7	т	elephoi elex:	ne:(604	043-5	0221		Seni	qui	n.11	tst	1.15	nuit	. c	ener	64 I	2 7 - 5	nis.
10 : N	AR: 5A 900 - 5 5920091 2920092	YAGE PPC IX.	MENT K. H 9.5.	1.1M AST:		st.	; r 1 5	<u> </u>	07	<u> </u>	.¥£1]-	CER 1299 DAT 2.0 GAL	I. I DICE	-GEC	AS(190 20- 193 193	5146 5146 - JUL - JUL	22-0 33 -81	01-4	A	Hitr Mate Jige Jige Jige Jige Jige Jige Jige Jig	ic-A ris) stic ci r La. be ENTC].	dua fo i epo Hor HAR	-Re 110 1 11 1 te K. 110	913 wed hcom d fo Na. ered	dişe b, İ plet : Al : 1 : 4	stic CP : e fc . St Tl. sen:	on s: anal or m o. P: . Ti 3	n C. Noy S S. B . W Snt:	5 34 . Si mine c. C ind tat:	
Sample description	A	1 A	g As pp	Bo pps	Be	P: ppa	Ca 2	Cd ppn	Co ppm	Cr pps	Cu ppe	Se 2	Ga ppm	ĸ	La	Mg	Hr. pps	No 993	Na	Ni	P	Pb	Sb	Sr 928	Ii	11 528	U 995	7 593	¥ ppa	20	
138670 138680 139690 139700 139700 139730 139730 139745 139755 139755 139755 139750 139750 139750 139800 139800 139800 139800 139800 139800 139800 139800 139800 139800 139800	3.3 3.4 1.6 1.6 2.4 2.1 2.5 2.3 0.6 1.6 2.0 1.9 2.1 2.0 2.2 1.6 4.2 2.3 2.5 2.2 2.5	2 6.5 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 30 2 30 2 90 2 10 2 10 2 30 8 40 6 1170 4 10 2 190 2 20 2 20 2 20 2 20 2 20 2 30 2 30 4 10 2 30 2 30 2 10 3 0 2 30 4 0 5 20 2 30 2 30 2 30 8 40 6 1170 4 10 2 20 2 10 2 30 8 40 6 1170 4 10 2 20 2 10 2 30 8 40 6 1170 4 10 2 20 2 0 2 10 2 30 8 40 6 1170 4 10 2 20 2 0 2 10 2 30 8 40 6 1170 4 10 2 20 2 30 2 20 2 30 2 20 2 30 2 3	y 560 y 560 y 600 y 1200	(0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5	000000000000000000000000000000000000000	4.00 3.93 2.15 2.45 2.60 2.92 3.29 3.66 2.65 2.65 2.65 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.4	<pre>(0.5 (0.5)(0.5) (0.</pre>	28 30 16 11 15 14 14 20 20 21 21 18 20 21 21 18 20 21 21 18 20 21 18 20 21 18 18 20 21 18 20 21 18 21 19 21 20 21 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	162 229 37 19 41 18 23 29 29 29 29 29 29 29 29 29 29 29 29 29	46 48 115 124 104 105 116- 2582 2582 174 32 30 29 83 110 170 192 132 192 114	5.10 5.36 3.87 2.92 4.10 3.79 3.82 9.17 4.18 5.09 5.38 5.52 4.69 5.24 4.76 5.24 4.69 5.24 4.27 4.87	20 30 10 10 20 20 20 20 30 10 10 10 10 10 10 10 10 10 10 10 10 10	0.59 0.60 0.59 0.74 0.72 0.95 0.84 0.19 0.12 0.12 0.12 0.12 0.12 0.12 0.61 1.51 0.46 1.20 0.44 0.95 0.64	40 50 10 (10 (10 (10 20 10 10 10 10 10 20 10 10 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	2.80 3.12 1.22 2.94 1.35 0.92 1.33 1.35 1.16 1.62 1.67 1.32 1.55 1.07 1.24 1.32 1.12 1.52 1.10	762 810 650 616 155 574 582 653 162 253 162 253 899 618 723 459 613 556 613 536 440 491	005000050000000000000000000000000000000	0.38 0.34 0.10 0.12 0.17 0.25 0.17 0.25 0.17 0.25 0.11 0.09 0.17 0.22 0.12 0.28 0.17 0.28 0.17 0.22 0.12	49 62 16 19 10 28 27 24 12 21 22 15 23 17 ε 21 33 4 22	2900 3030 1220 1030 350 1060 940 560 2930 4500 4500 1810 1670 2170 1650 1850 1850 1850 380	8 8 10 0 5 6 28 120 1 1 1 1 22 22 16 5 0 0 1 1 5 10 5 10 5 10 5 10 5 10 5		493 445 104 72 39 55 203 21 45 228 228 228 228 228 104 55 52 145 106 83 96 107	6.25 0.25 0.17 0.15 0.12 0.12 0.12 0.15 0.10 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.2	(10 (10 (10) (10) (10) (10) (10) (10) (1	C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	106 120 109 94 142 89 96 170 55 190 109 113 160 145 84 199 210 249 216		70 70 40 50 50 50 50 70 120 120 120 100 150 100	the set in the second terms of the set
	-							N.																							

HartBichler

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 043-52597

Analytical Chemists • Geochemists • Registered Assayers

Telex: CERTIFICATE OF ASSAY CERT.

: A8614726-001-A INVOICE # : 18614726 DATE : 20-JUL-86 P.C. # . NONE GAG/G

CC: J. HARDY

V6C 2W2

TO : MARK MANAGEMENT LIMITED

VANCOUVER. B.C.

1900 - 999 W. HASTINGS ST.

Sample	Prep	Au	Drill Hole			
description	' code	oz/T	Footage Interval (Ft)	Comment	5	
34140	207	0.002	329.5-33.6	G-86.4		
34150	207	<0.002	— — 3 34.6 <i>—</i> → 3 14 .6 — —			
34160	207	<0.020				
34170	207	<0.002	356.6			
34180	207	<0.002				
34190	207	<0.002				 ·
34200	207	<0.002				
34210	207	<0.002				
3422D	207	<0.002	406.6 409			
3423D	207	<0.002	409		- →	
3424D	207	<0.002	419 429			
3425D	207	<0.002	429			
34260	207	0.004	439 449			
34270	207	<0.002	449 459			
3428D	207	<0.002	459			
3429D	207	<0.002	469			
3430D	207	<0.002	479			— — <i>`</i>
34310	207	0.014	489_ 499		- →	
3432D	207	<0.002				

Registered Assayer, Province of British Columbia

VOI rev. 4/85

	16	2 2			С	he	en	ie	x I	La	bs	s L	_tc	ł.		2 . N C	12 B Iorth anada	rooks Vance	bank Suver, V7	Ave. , B.C. J 2C1													
		1		A	nalytic	al Cher	nists		Geoch	emists		Regis	tered .	Assayei	rs	ד ד	elepho elex:	ne: (60	4) 984 043-9	1-0221 52597		Semi	d na	inti	tati	ve i	n⊔lt	ı el	ener	nt I	CP 3	naly	115
	1	_					<u>.e.t</u> . t	IFIC	ATE	OF.	ANAL	ΥSΙ	5									Mitr mate	ic-A rial	içua fo	-Reg 11au	ied)	dige by I	stio CP a	n o: nal:	f 0. ysis	5 gm . Si	of rice	thi.
	IO : NA	ARK MAN	46 E M	ЕNТ	LIN	ITEU								CERI Invo	r. #	; ;	A80 180	147	27-0 27	001-A	1	orge Valu Ga.	estic La.	ю 1 еро Ма.	s in rted K.	icom 1 foi Na.	r Al Sr.	e 10 , St Tl.	r ma , Ba Ti	any⊧ a, B . W	mine e, C and	raís a, C V ca	ſ.
	19 VA	900 - 90 Ancouvei	99 W K. F	. HA .C.	STIN	4GS 9	51.							DATE P.O.	5 . † /G	:	-85 10 M	- JUL 15	-86			only	be The	cón	side	ered	92	semi	- din ;	anti	tati	ve.	
	V6	نا سند باد												עניאני				-			• •	CC:	J.	HAR	DY								
	Eample description	41 2	Ag ppe	As pp=	B-a pp a	Be ppn	Bi ppm	Ca I	Cd øp∎	Co ppn	Cr gp∎	Cu ppe	Ee :	Ga ppa	K Z	La ppm	Hg Z	iin ppe,	Ho ppa	Na I	Ni ppm	Р . ррж	РЬ 	Sb ppa	Sr ppn	Ii I	11 ppm	i) PDB	y ppa	N PDB	Zn ppa		
341 341	14D 15D	0.43 2.14	0.2 0.2	10 <10	20 70	(0.5 (0.5	() (2	0.54 3.12	(0.5 (0.5	2 19	17 27	17 30	1.55 5.38	<10 30	0.24 0.19	30 80	0.05 1.69	224 862	3 2	0.08 0.06	7 20	90 4480	10 8	(10 (10	15 118	0.02 0.22	<10 <10	(10 (10	2 107	<10 <10	10 80		
341 1343 241	16D 17D 18D	2.10 1.95 1.98	0.2	10 10 10	120 70 90	<0.5 <0.5 <0.5	0 00 0 0 0	2.84 2.73 2.36	<0.5 <0.5 <0.5	19 20 19	25 26 28	35 33 36	5.18 5.39 5.31	30 30 30	0.18 0.10 0.08	80 80 80	1.62 1.71 1.62	887 886 820	5	0.06 0.07 0.07	20 20 21	4110 4200 4400	10 16 18	(10 (10 (10	129 151 198	0.21 0.22 0.21	(10 (10 (10	<10 <10 <10	109 109 100	<10 <10 <10	80 70 70	 	
34 34	19D 20D	1.92	0.2 0.2	10 10	80 70	<0.5 <0.5		2.40	<0.5 <0.5	19 20	26 26	33 33	5.23 5.22	30 30	0.09	80 80	1.61	813 826	2	0.08	20 20	4290 4050	16 18	<10 <10	205 194	0.21	<10 <10	<10 <10	100 101	<10 <10	70 70		
34	218 220 230	2.05 1.80 1.45	0.2 0.2 0.2	10 10 10	70 120 30	<0.5 <0.5 <0.5	2 2 3	2.66 2.56 1.49	<0.5 <0.5 <0.5	20 20 13	29 35 70	34 36 72	5.39 2.99	30 30 10	0.17 0.43	90 80 20	1.74 1.64 0.98	863 807 371	3	0.09 0.14 0.11	22 22 27	3960 3620 1940	20 16 6	<10 <10 	161 90	0.29 0.18	<10 <10 <10	(10 (10 (10	115 78	(10 (10 (10	70 40	 	
34 - 34	24D 125D	1.26	0.2	10 10	30 50	<0.5 <0.5	0	1.63	<0.5 <0.5	11 15	57 66	48 73	2.31	10 10	0.57	20 10	0.73	248 361 779	1	0.14	30 32	1950 1700	8 8 14	<10 <10	66 87 153	0.18	(10 (10	<10 <10	60 84 151	<10 <10	20 30 80		
: .4 34 34	لامع 270 280	2.51 2.46 2.05	0.2 0.2 0.2	20 10 20	20 50 60	<0.5 <0.5 <0.5	2 2 3	3.22 2.15	<0.5 <0.5	22 19	138 103	103 97	4.63 3.91	20 20 20	0.79 1.12	<10 20	2.17 1.48	743 538	1	0.08 9.11	45 37	2070 2170 2080	14 12 10	10 (10	156 93	0.25 0.22	<10 <10	(10 (10	138 101	<10 <10	80 60		
34	1290 1300 1310	1.85 1.93	0.2	20 10	40 70	<0.5 <0.5	() () ()	2.17	<0.5 <0.5 <0.5	18 16 17	93 88 92	72 88 107	3.81 3.63 3.58	20 20 26	0.73	20 20 10	1.45 1.23 1.35	524 435 467	2 3 2	0.08 0.10 0.06	33 30 31	1970 2190 2150	10 9 20	<10 <10 <10	94 79 92	0.20 0.21 0.18	<10 <10 < 10	<10 <10 <10	98 96 94	(10) (10) (10)	60 50 50	 	
34	320	2.22	0.2	20	30	<0.5	<2	2.80	(0.5	19	110	98	4.74	20	0.52	20	1.97	678	2	0.06	37	2220	20	10	109	0.17	(10	(10	119	(10	80	-	

.

.

contracted by tant Bichler

O : MARK MANAGEMENT LIMITED

VANCOUVER, B.C.

V6C 2W2

• •

1900 - 999 W. HASTINGS ST.

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Analytical Chemists

Geochemists •

Registered Assayers

Phone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ASSAY

CERT. #

DATE

: A8614851-001-A INVOICE # : 18614851 : 22-JUL-86 : NONE P.O. # GAG/G

Sample	Prep	Au	Drill Hole			
description	code	oz/T	Footage Interval (54)	Comm	ents	
3433 D	207	0.004	13.2	G-#	4.5	
3434 D	207	0.002				
3435 D	207	<0.002				-
3436 D	207	<0.002				
3437 D	207	<0.002	— → 33.4 → 38.4 — −	÷ •		
3438 D	207	<0.002	38.4			
3439 D	207	<0.002	— → <i>4</i> 3.4 → <i>48.4 →</i> −	~ -		
3440 D	207	0.002	48.4 57.8			
3441 D	207	0.002	51.8			
3442 D	207	<0.002	56.8 61.8			
3443 D	207	<0.002	61.8 68.1			
3444 D	207	<0.002	68.1 78.1	 `		
3445 D	207	<0.002	78.1			
3446 D	207	<0.002	88./ 98./			
3447 D	207	<0.002	98.1			
3448 D	207	<0.002	107.9-111.8			
3449 D	207	<0.002	///.g//4.g			
3450 D	207	<0.002	116.8 123.5~ -			
15401 D	207	<0.002	123.5			
15402 D	207	<0.002	/28.3	- -		
15403 D	207	0.002	/34.//44./			
15404 D	207	<0.002	144.1154.1			
15405 D	207	<0.002	154.1 157.8			
15406 D	207	0.016	157.8 -> 162.8			
15407 D	207	0.006	162.8 168.6			
15408 D	207	<0.002	168.6			
15409 D	207	<0.002	1784 ->/884			
15 41 0 D	207	<0.002	/88.6			
15411 D	207	<0.002	198.6			
15412 D	207	<0.002	2084			
15413 D	207	<0.002	220			
15414 D	207	<0.002	230			
15 415 D	207	<0.002				
15416 D	207	<0.002	248.2			
15417 D	207	<0.002	== 2 <i>5</i> 2 <i>2</i>			
15418 D	207	<0.002	268.2 276			
15419 D	207	0.002				<u>حت ہے</u>
15420 D	207	0.026	Footage black	$() \rightarrow 0$		
,21 D	207	0.002	<i>15 19 //</i>	K for	,	
15422 D	207	0.002		X+-1	[

· · · .

VOI rev. 4/85

Registered Assayer, Province of British Columbia

1 swares

212 Brooksbank Ave, North Vancouver, B.C. Canada V7J 2C1

Analytical Chemists

Geochemists Registered Assayers

Telephon∈(604) 984-0221 Telex: 043-52597

Jemi quantitative multi element ICP analysic

CERTIFICATE OF ANALYSIS

TO : MARE MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ET. Vancouver. B.C. Vac 202

CERT. #		:	A8614852-001-
INVOICE	ŧ	:	13614852
DATE		:	29-JUL-86
P.O. 🖡		:	NONE
GAG/G			

Mitric-Aqua-Fegis digestion of 0.5 whole material followed by ICP analysis. Since the digestion is incomplete for many minerals. -A values reported for Al. Sb, Ba, Be, Ca, Cr. Ga, La. Mg, K. Na. Sr. Tl, Ti, W and V can only be considered as semi-quantitative.

COMMENTS :

Sample	Al	Ag	ÀS	83	Be	Bi	Ca	٤J	Со	13	Çu	Ee	Ga	K	Ĺз	Жg	1n	Мо	Na	H1	₽	Pb	Sb	12	Ii	11	U	9	N.	Zn		
description	2	pp=	pp	₽ ₽ ₽	. PP=.	pp	Z	_92s	ppe.	99m	obe .		ppn		. ppp.		. 991	_\$9N		ppa_			.ppm_	. pps	1	ppa .	.ppa	ppn	ppa	. ppm		
3433 0	2.10	1.0	2450	210	(0.5	4	0.87	(0.5	65	70	145	6.08	10	0.88	10	1.39	513	40	0.12	130	1060	42	(10	45	0.27	(10	(10	282	<10	50		
3434 1	1.74	0.2	570	100	(0.5	$\dot{\alpha}$	1.67	(0.5	34	42	80	3.83	10	1.07	10	1.18	543	2	0.13	24	1360	14	(10	52	0.30	(10	(10	126	(10	40		
3435 D	2.19	0.2	40	330	:0.5	(2	3.40	(0.5	20	67	37	4.45	20	1.02	<10	1.66	-93	1	0.10	30	1360	12	(10	95	0.28	.10	(10	149	.10	40		
2436 0	2.17	0.2	50	60	:0.5	(2	3.60	(0.5	22	76	53	5.00	20	0.40	<10	1.80	274	1	0.08	25	1370	12	(10	98	0.27	:10	(10	156	(10	60	••	
2427 D	1.82	0.2	130	60	<0.5	4	2.11	0.5	17	65	45	3.87	10	0.61	10	1.46	631	1	0.29	19	1500	14	(10	óè	0.29	(10	<10	138	30	40		
3438 0	1.66	0.2	80	80	<0.5	2	1.80	(0.5	13	50	54	3.18	10	0.86	10	1.00	472	1	0.12	16	1390	10	<10	53	0.26	<10	<10	104	(10	40		••
3439 D	1.91	0.2	90	70	<0.5	(2	2.29	<0.5	12	54	36	3.29	10	1.10	<10	1.03	469	1	0.10	17	1390	10	<10	34	0.25	(10	<10	110	(10	40	**	
3440 D	2.04	0.2	310	120	<0.5	<2	1.80	<0.5	16	57	111	4.73	10	1.39	10	1,42	579	1	0.11	24	1340	14	<10	46	0.29	<10	<10	145	<10	50		
3441 D	3.31	0.2	120	130	(୧.୨	<2	0.90	(0.5	15	- 74	100	5.39	10	1.15	10	1.39	401	7	9.21	42	980	12	(10	- 74	0.25	(10	<10	238	110	100	••	
3442 0	2.63	0.8	60	70	(0.5	<3	1.97	(0.5	17	64	110	6.09	20	0.81	10	1.28	423	16	6.29	60	880	26	<10	100	0.lé	(10	<10	209	.16	130		
3443 D	3.13	0.2	60	100	<0.5	<u>_</u> 2	1.58	(0.5	20	64	85	6.21	10	0.99	10	1.37	519	23	0.43	65	980	20	(10	126	0.22	<10	<10	220	<10	140		
3444 D	4.67	0.2	130	140	<0.5	2	2.31	<0.5	15	60	55	4.90	20	1.03	10	1.30	258	20	0.72	46	940	12	10	204	0.22	<10	<10	195	(10	30		
3445 D	4.67	0.2	320	180	<0.5	<2	2.04	<0.5	17	59	65	5.42	20	1.25	10	1.32	19 9	16	0.72	46	890	12	(10	202	0.21	<10	(10	218	<10	20		
3446 D	4.63	0.2	190	220	<0.5	<2	1.87	<0.5	19	66	78	6.60	20	1.53	10	1.70	254	3	0.53	34	1040	16	<10	172	0.20	<10	<10	166	<10	30		
2447 D	2.51	0.2	40	280	<0.5	(2	0.69	<0.5	16	64	60	5.31	10	1.26	10	1.46	263	2	0.17	32	970	14	(10	58	0.17	(10	<10	150	:10	50		
3449 0	2.43	0.2	70	310	(0.5		0.71	<0.5	15	48	59	4.94	10	1.10	10	1.28	213	1	0.23	27	820	12	(10	65	0.17	<10 -	(10	134	.16	40		••
3449 D	2.29	0.2	20	180	<0.5	- (2	0.59	<0.5	12	62	57	4.96	10	1.29	10	1.45	256	2	0.14	31	830	14	<10	39	0.18	(1)	.10	150	(10	60		
3450 1	2.15	0.2	30	110	<0.5	2	0.82	(0.5	14	60	75	4.70	10	0.97	10	1.26	222	3	0.12	35	790	12	(10	72	0.15	(10	<10	175	<10	60		+-
15401 B	2.17	0.2	60	130	<0.5	G	0.96	(0.5	13	49	.86	4.66	10	0.83	10	1.27	188	1	0.12	26	820	12	<10	48	0.13	(10	<10	119	(10	30		
15402 8	2.31	0.2	80	100	(0.5	< <u>C2</u>	1.12	(0.5	11	60	113	4.52	10	1.03	10	1.23	226	4	0.17	30	620	12	(10	60 67	0.15	(10	(10	217	(10	80	••	
13403 0	2.6/	0.2	60	110	(0.3		1.19	(0.5	13	/4	112	1.84	10	0.98	10	1.32	243	1	0.10	23	810	12	.10	86	9.20	10	(19	200		90		
15404 U	2.36	0.2	50	140	(0.5		0.93	10.5	13	21	149	4.38	10	1.10	10	1.35	210	-	0.19	ן ז רר		10	- (10	- 53	0.01	10	<10	168	10	30	••	
15405 0	دد.ني م ۵ م	0.0	100	110	(0.5	~	1.13	10.3	140	25	174	2.10	/10	1.13	210	1.23	250	10	0.43	್ರ ಕಗ	360	<u>د</u> ا	210		کشد ۷	210	210	137	10	10		
13400 P	V.01 A 04	0.2	5000		(0.5	20	1.00	/0.5	102	47	100	9 20	/10	0.31	210	0.55	107		0.0J	10	910	2	.10	10	V.VO	210	210	106	/10	20		_
15407 p	2 50	0.2	150	150	(0.5	22	0.93	(0.5	10	55	143	4 91	10	1 44	10	1 56	174	5	0.19	24	910	12	210	10	0.14	(10	(10	100	(10	20		
15409 D	2.30	0.1	90	160	(0.5		0.41	10.5	17	50	701	4.95	<10	1.65	10	1.55	200	1	0.09	- 26	890	10	/10	79	0.05	10	/10	150	10	70		
15410 D	2.33	0.1	50	240	(0.5		0.43	(0.5	14	49	94	1.22	-10	1.61	10	1.57	24.3	ż	0.09	23	870	10	:10	79	0.24	-15	/10)49	- 16	ъс.		-
15411 D	2.35	0.2	80	190	(0.5		0.37	(0.5	12	65	76	4.43	10	1.82	10	1.58	205	i	0.03	- 25	980	10	(10	19	0.28	10	(10	176	.10	20		
15412 8	3.62	0.2	70	240	(0.5	(2	1.53	<0.5	14	79	91	4.94	10	1.38	10	1.33	294	3	0.34	32	830	12	(10	131	0.25	(10	<10	184	(10	30		
15413 0	2.52	0.2	40	280	(0.5	(2	0.46	(0.5	13	66	66	4.99	10	1.69	10	1.49	300	2	0.14	31	780	10	<10	38	0.24	(10	(10	168	(10	30		**
15414 D	2.23	0.2	100	250	(0.5	2	0.57	(0.5	14	59	51	4.21	10	1.29	10	1.28	341	ī	0.14	28	740	14	<10	33	0.18	(10	(10	144	(10	40		
15415 0	3.33	0.2	70	390	<0.5	<2	1.07	<0.5	12	68	62	4.53	10	1.62	10	1.51	368	2	0.37	38	380	12	.10	98	0.25	10	<10	173	(16	50		
15416 0	2.94	0.2	50	<20	<0.5	.2	0.77	(0.5	.15	65	- 54	4.50	10	1.69	(10	1.42	134	1	6.0	27	850	8	(10	64	0.26	-10	- : 1ê	211	:16	9 (
15417 D	3.78	0.2	40	480	<0.5	<2	1.56	1.0	16	53	70	5.01	10	1.48	10	1.32	500	2	0.23	27	360	14	(10	159	9.23	.10	<10	203	10	100	••	
15418 D	3.38	0.2	40	330	(0.5	<2	1.47	0.5	18	51	70	4.77	10	1.37	10	1.22	\$51	3	0.31	35	930	10	<10	107	0.21	<10	<10	226	<10	140		
15419 D	2.22	0.2	30	120	<0.5	<2	1.36	(0.5	17	39	44	2.85	10	0.83	10	0.79	341	1	0.22	24	1310	6	<10	119	0.13	<10	(10	101	<10	40		
15420 D	1.88	0.2	20	30	(0.5	2	1.62	<0.5	12	34	- 19	1.82	10	0.49	10	0.59	234	1	0.25	21	1480	6	<10	147	0.09	<10	(10	56	<10	10	••	
15421 0	1.28	0.2	20	30	(0.5	<2	0.46	(0.5	22	47	210	4.56	.10	1.38	(10	1.33	246	ė	0.10	20	910	3	10	24	0.20	10	<10	171	10	20		
15422 D	1.29	0.2	10	80	0.5	.2	0.67	(0.5	22	32	345	4.12	10	0.77	10	0.79	195	7	?.1 1	25	940	12	. 10j	43	0.26	.<10	40	161	E	16	••	
· ·																							-14	24.2	hR	A.L	00.					
•																			С	rtif	hed	try			. L. C	\sim	جبوب	-				

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone:

Analytical Chemists • Geochemists • Registered Assayers

(604) 984-0221 Telex: 043-52597

CERTIFICATE OF ASSAY TO : MARK MANAGEMENT LIMITED CERT. # : A8614851-002-A INVOICE # : 18614851 1900 - 999 W. HASTINGS ST. DATE : 22-JUL-86 VANCOUVER. B.C. P.O. # : NONE V6C 2W2 GAG/G

Sample description	Prep code	Au oz/T	Drill Hole Footage interval (FH)	Comments	· · · · · · · · · · · · · · · · · · ·
15423 D	207	0.004	25	G-86.6	
15424 D	207	0.002	27		
15425 D	207	0.002	32		

Registered Assayer, Province of British Columbia

VOI rev. 4/85

6				С	:he	en	ne	x I	La	b	s l	_tc	1.		2 1 - (212 B North Canada	rook: Vanc	sbank couver V:	Ave. , B.C. 7J 2C1														
			Ar	na/ytic	al Chen	nists		Geoch	emists		Regi	stered /	Assaya	vrs	ו ו	felepho felex:	one:(60	04) 984 043-	4-0221 52597		Senti	i tu	anti	tat	1.0	ault	i e	lene	nt 1	CF a	mal,		•
TO : MAR 190 Van VgC	K MANAG 0 - 999 Couver, 2W2	GEME 9 W. 9 B.	NT HA C.	LIM. STI)	ITED NGS S	<u>:ERI</u>	'IF II	ATE	0F •	ANAI	. <u>YS I</u>	ς	CER Inv Dat P.O Gag	T. # GICE E . # /G	•	: AS : I8 : 28 : 28 : NO	G 1 48 G 1 48 - Jul Ne	852-0 852 1-96	002-	A	Hitr mate dige valu Ga, only COMM	ilc=) ria stic Jes La, rte iENT	Aqua l fo on i repo Mg, con	i-Re ollo s i orte K.	913 wed ncom d fo N3, ered	dige by 2 plet or Al Sr. I as	estic ICF Le fo L, SI , TI sem:	ori o arial or m ti. B , Ti i-qu	f 0. ysis any a, E . W anti	5 gn . Si mine (e, C and tati	of nce rals a. C V ca ve.	thi: ir.	
53mple description 15423 D 15424 D 15425 D	Al Z 0.74 1.11 1.41	Ag pp= 0.2 0.2 0.2	As pp= 10 10 10	Ba pp <u>n</u> 20 30 30	Be pps <0.5 <0.5 <0.5	Bi ppm (2 (2 (2	Ca Z 0.85 1.32 1.25	Ed ppe <0.5 <0.5 <0.5	Co ppm 23 21 20	Cr ppp 24 16 24	Cu ppa 413 402 421	Fe 2 3.50 3.28 3.47	G3 ppm <10 10 10	K Z 0.25 0.33 0.56	L3 ppm 10 10 10	Hg 2 0.35 0.55 0.60	Nn 999 164 273 240	Ho ggm 13 9 7	N3 2 0.08 0.14 0.14	Ni . ppm . 22 . 13 . 14	Р . ррш 960 1480 1590	Pb . ppm 6 8 5	Sb ppm <10 <10 <10	Sr ppa 49 68 77	Ii I 0.30 0.32 0.26	T1 ppm <10 <10 <10	U ppm <10 <10 <10	у рра 88 84 69	⊌ ,ppa <10 <10 <10	2n ppa 10 10 20			

Corrierod by Hart Buchler.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221

043-52597

Analytical Chemists • Geochemists • Registered Assayers

Phone: Telex:

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. V6C 2W2

CERT. #	:	A8614907-001-A
INVOICE #	:	18614907
DATE	:	23-JUL-86
P.O. #	:	NONE
GAG/G		

Sample	Pren	Δ										
description	code	oz/T	Footage Interval (Ft)	Comme	nts							
15426 D	207	0.006	37> 42	6-86	.6							
15427 D	207	0.016	42 47									
15428 D	207	0.010										
15429 D	207	0.002										
15430 D	207	<0.002	55 60									
15431 D	207	0.002	60 65									
15432 D	207	<0.002	65 67									
15433 D	207	0.002	67									
15434 D	207	<0.002	₹z> ₹₹									
15435 D	207	0.004	<i>₹₹</i>									
15436 D	207	<0.002										
15437 D	207	0.002	87									
15438 D	207	<0.002	92									
15439 D	207	0.006	98.3									
15440 D	207	0.006	103.3-105.3									
15441 D	207	0.162	105.3-+ 110.3									
15442 D	207	0.014										
15443 D	207	0.002	—— //6./ <u> </u>									
15444 D	207	<0.002	117. 8									
15445 D	207	0.002	122.6-+127.6									
15446 D	207	<0.002	127.6									
15447 D	207	0.012	/32.6 /37.6 _ _									
15448 D	207	0.004	137.6									
15449 D	207	0.014	142.6146.4									
15450 D	207	0.004										
15451 D	207	0.006	151.4458.4									
15452 D	207	0.006	156.4161.4									
15453 D	207	0.004	161.4		_ -							
15454 D	207	0.002	1664									
15455 D	207	0.004	171.4 1744									
15456 D	207	<0.002	1744-1794									
15457 D	207	<0.002	179.4yB4.4 _ →									
15458 D	207	<0.002	184.4									
15459 D	207	<0.002	189.4									
15460 D	207	<0.002										
15461 D	207	<0.002	200.6 2055	~ ~								
15462 D	207	0.002	205 5-,208.9			—— 1						
15463 D	207	<0.002										
15464 D	207	<0.002	210.7-32.15.7	7-1 1								
15465 D	207	<0.002	215.7 220.7	<u></u>	1 ,	~						
NC:		Che	mex	Lab	s Lte	d.	212 Brook North Van Canada	couver, B.C. V7J 2C1				
--	--	--------------------	--	--	---	---	--	---	--	---	---	--
	Ana	ytical Chem	ists Geoch	emists	Registered	Assayers	Telephone:(6 Telex:	043-52597	.oni :.snt.	tative mult	i alament (CP 1631.11.
		, C.	ENTIFICATE	OS ANA	LISIS			•	Hitris-Aqui mater il fo	-Pepis di e llowed b. i	stion of 0. CP shale:is	1 44 91 . S. NCC 1
IS : MARI	MANALEHENT L	INITED			40	CCRI. I	: ASC.4	1998-001-A	values rapo	rted for Al	. Si. Ba. I	Minerois.
1900 VANC VAC	- 999 W. HAS OUVER. B.C.	TINGS S	Τ.		1	DATE P.D. I GAG/G	29-11 : NDG 2	-86	IDMMENTS	Eldered al	sem:-qubrt:	tati
			1651		110-110							2
Simple description	Al Ag As 2 pps pps	Pa Fe pon oon	bi Ca Cd ppa i ppa	C. Cr pph pph	Cu Fe	63 K 999 1	La Ny A ppa 1 ap	r. Ho +s <u>ppa :</u>	NI P F: So ppm ppm c:m ppm	57 11 11 000 1 736	pos pps pps	20 00#
15426 D 15427 D 15429 D 15439 D 15430 D 15432 D 15432 D 15432 D 15432 D 15435 D 15436 D 15436 D 15437 D 15438 D 15439 D 15440 D 15441 D 15442 D 15443 D 15444 D 15445 D 15445 D 15445 D 15445 D 15445 D 15445 D 15445 D 15452 D 15452 D 15455 D 15455 D 15455 D 15456 D 15458 D 15458 D 15458 D 15458 D 15459 D 15458 D 15458 D 15459 D 15459 D 15459 D 15458 D 15459 D 15459 D 15459 D 15458 D 15459 D 15458 D 154	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 <0.5	C 1.70 (0.5) C 1.97 (0.5) C 1.97 (0.5) C 1.97 (0.5) C 2.05 (0.5) C 2.23 (0.5) C 1.76 (0.5) C 1.79 (0.5) C 1.79 (0.5) C 1.79 (0.5) C 1.79 (0.5) C 1.66 (0.5) C 1.67 (0.5) C 1.67 (0.5) C 1.52 (0.5) C 1.52 (0.5) C 2.55 (0.5) C 2.52 (0.5) C 2.52 (0.5) C 2.52 (0.5) C 2.52 (0.5) C 1.61 (0.5) C 1.64 (0.5) C 1.61 (0.5) C 1.62	30 12 14 15 15 12 16 14 17 12 18 12 19 12 11 12 12 12 11 12 12 12 11 12 12 12 12 12 12 12 13 12 14 12 15 12 16 12 17 18 18 12 19 15 12 14 13 15 14 17 15 17 12 15 12 12 13 15 14 17 15 17 16 14 17 15 18 17 19 <	811 4.10 371 3.43 761 5.33 203 4.63 301 4.27 203 4.63 309 4.27 251 4.56 219 4.33 226 5.11 226 5.12 226 5.12 226 5.12 227 3.61 219 4.33 219 4.53 219 4.53 219 4.51 219 4.53 202 4.45 202 4.45 202 4.45 200 6.10 906 18.22 131 2.30 132 2.30 131 2.30 132 2.30 133 3.99 143 4.32 205 4.83 305 4.83 305 4.83 305 4.83 305 4.33	(10 0.19 (10 0.36 10 0.37 10 1.92 10 1.92 10 1.72 10 1.72 10 1.75 10 1.75 10 1.75 10 1.75 10 1.75 10 1.75 10 0.55 (10 0.57 10 0.58 10 0.58 10 0.58 10 0.58 10 0.59 10 0.43 10 0.43 10 1.00 10 1.00 10 0.30 10 0.30 10 0.20 10 0.20 10 0.20 10 0.20 10 0.23 20 0.59 10 0.70 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 4 0.17 7 6 0.17 0 12 1.17 2 4 1.25 0 5 0.21 1 1 0.23 1 1 0.23 1 1 0.23 1 1 0.23 1 1 0.22 2 2.19 1 2 2.19 1 2 2.19 1 3 1 0.12 3 1 0.15 5 1 5.47 2 2.40 1 2 1.40 0.41 2 2.40 1 4 2 1.40 5 0.11 0.12 7 1 0.12 7 1 0.12 6 3 0.40 5 1 0.37 4 1 1.46 5 1 0.37 4 3 1.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117 0.22 (10 97 0.30 (10 91 1.28 10 91 1.28 10 112 1.25 10 112 1.25 10 111 0.24 (10 112 1.25 10 114 0.22 (10 114 0.22 (10 114 0.22 (10 115 0.28 (10 117 0.28 (10 117 0.28 (10 119 0.24 11 119 0.28 (10 119 0.24 11 119 0.16 (10 119 0.24 10 110 115 1.16 110 115 1.16 110 110 110 111 0.20 (10 111 0.20 (10 111 112 1	(10 75 (10 (10 98 (10 10 170 15 (10 125 19 (10 121 15 (10 121 15 (10 121 15 (10 121 15 (10 82 (10 (10 83 (10 (10 131 15 (10 135 (10 (10 135 (10 (10 135 (10 (10 134 13 (10 134 13 (10 134 13 (10 131 (10 (10 131 (10 (10 131 (10 (10 131 (10 (10 131 (10 (10 132 10 (10 132 10 (10 132 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15464 D 15465 D	1.49 0.2 10 1.77 0.2 10	50 .0.5 60 .0.5	.2 1.9€ 0.5 2 2.29 :0.5	27 21 29 25	314 3.87 313 4.47	10 0.39 .10 0.54	10 0.66 20 10 (.E. 25	4 5.20	16 1670		K N H H HI R	N N
0								tert	b	ut Bichl	er	C. S.

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1 (604) 984-0221

Analytical Chemists •

Geochemists • Registered Assayers

Canada Phone: Telex: 043-52597

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, 8.C. V6C 2W2

CERT• #	:	A8614907-002-A
INVOICE #	5	I8614907
DATE	:	23-JUL-86
P.C. #	:	NONE
GAG/G		

Sampte	Prep	Au	Drill thele		N	
 description	code	oz/T	Footage Interval (5+)	Comment	* \$	
15466 D	207	0.002	220.¥ ±25.3	C-86.6		
15467 D	207	0.002	2253 230.3			
15468 D	207	0.002	2303 2353			
15469 D	207	0.004				
15470 D	207	0.002	2403 2453			
15471 D	207	0.002	Z45.3 2493			
15472 D	207	0.002				
15473 D	207	0.002		*-		
15474 D	207	0.002				
15475 D	207	<0.002				
15476 D	207	<0.002				
15477 D	207	<0.002				
15478 D	207	0.002	start to 24.4	6-86.7		
15479 D	207	0.002	24.4 Z 7.4		<u> </u>	
15480 D	207	<0.002	29.4 344			
15481 D	207	0.002	34.4 39.4			
15482 D	207	<0.002	39.4 44.4			
15483 D	207	0.002	44.4 46.8			
15484 D	207	0.002				
15485 D	207	0.004				
15486 D	207	0.008	50.7 55.2			
15487 D	207	0.002	55.2 60.2			
15488 D	207	0.002	60.2 63.3			
15489 D	207	0.004	63.3 48.3			
15490 D	207	0.002	68.3 73.3			
15491 D	207	0.002	73.3 7g.3			~-
00953 E	207	0.056	· • - • •	SEC 1718/E		
00954 E	207	0.010		[
00955 E	207	0.040				
00956 E	207	0.002	 ` - -			
00957 E	207	0.002				
00958 E	207	0.004				
00959 E	207	0.012				
00960 E	207	0.006				
00961 E	207	<0.002				
00962 E	207	0.004				
00963 E	207	<0.002		*		

Registered Assayer, Province of British Columbia

Ol rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Analytical Chemists • Geochemists • Registered Assayers

Phone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. V6C 2W2

CERT• #		:	A8615040-001-A
INVOICE	#	:	18615040
DATE		:	29-JUL-86
P.O. #		:	NONE
GAG/G			

Sample	Prep	Áu	Drill Hale			
description	code	oz/T	Footage Interval (FF)	Con	ments	
15492 D	207	<0.002	78.2	G-8	6.7	
15493 D	207	<0.002	83.3 88.3			
15494 D	207	<0.002	88.3 91.7			
15495 D	207	<0.002				
15496 D	207	0.036	96.7			
15497 D	207	0.012		→ -		
15498 D	207	<0.002				
15499 D	207	<0.002	— — (12·3 → #3·5 — —			
15500 D	207	<0.002	113.5 //B.5			~
15501 D	207	0.002	118.5			
15502 D	207	<0.002	123.5			
15503 D	207	<0.002	/28-5			
15504 D	207	<0.002				
15505 D	207	<0.002				
15506 D	207	0.012				
15507 D	207	<0.002	149.8 1548			
15508 D	207	<0.002			÷	
15509 D	207	<0.002	159.8			
15510 D	207	<0.002	143,1 > 168.1			
15511 D	207	<0.002			- -	
15512 D	207	<0.002				
15513 D	207	<0.002				
15514 D	207	<0.002				
15515 D	207	<0.002				
15516 D	207	<0.002	— — /93./ —→ /18./			
15517 D	207	<0.002				
15518 D	207	<0.002				
15519 D	207	<0.002				
15520 D	207	<0.002	2131 -> 215			
00964 E	207	<0.002		See	Table	
00965 E	207	<0.002				
00966 E	207	<0.002				
00967 E	207	0.150				
00968 E	207	0.084				
00969 E	207	0.138				
00970 E	207	0.232				
00971 E	207	0.020				
90972 E	207	0.014	^	·		
J0973 E	207	0.016	/)	1) 1		
<u>00974 E</u>	207	0.032	/Id	<u> </u>		
·				1 -	1	VOL rev 4/85

The floor Registered Assayer, Province of British Columbia

17	
- [{	
Ľ	

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Telephone:(604) 984-0221 Telex: 043-52597

Semi quartitative multi element ICP shalling

CERTIFICATE DE ANALYSIS

Geochemists

Registered Assayers

TO : MARK MANAGEMENT LIMITED

1000 - 999 W. HASTINGS ST. Mancouver, B.C. NGC 202

Analytical Chemists

CERT. # INVOICE	ŧ	::	A8615041-001 18.15041
041£ ₽.0. ₽ GAG/G		:	NCHE

Hitrid Aqua-Regis dimestion of 0.5 gm of material followed by ICP analysis. Since Midigestion is incomplete for many minerals.
A values reported for Al, Sb, Ba, Be, Ca, Cr, Ga, La, Mg, K, Na, Sr, Tl, Ti, W and V can only be considered as semi-quantitative.

COMMENTS :

Continued by Hant Buchler ...

.....

Sample	Al	Ag	As	Ba	Be	Bi	Ca	Cơ	Co	Cr	Cu	Fe	Ga	ĸ	La	Ng.	Brij	Ho ADB	Na T	Nı	P	РЪ	Sb	St	Ii	I 1	U	ÿ	لز ۲۰۰۰	CD		
oescription	*	ppm	pp	p p m	. ppm.	ррш.		pp.	h h m	hhe	yym	*	yy.	•	yy.	•	_99	yys.	•	. yy #.	yy #	<i>yy</i> =	yym	yya	•	11	µy∎	2YB	yy•			
15492 D	2.18	0.2	30	80	(0.5	2	4.52	(0.5	13	101	40	3.36	20	0.62	(10	1.97	892	3	0.12	23	1180	20	<10	106	0.18	<10	(10	157	<10	50		
15493 B	1.75	0.2	30	20	(0.5	2	3,65	(0.5	16	81	86	3.13	10	0.33	<10	1.32	575	2	0.14	3	790	18	(10	85	0.20	(10	<10	101	(10	40		
15494 D	1.91	0.2	10	30	<0.5	2	2.24	(0.5	9	53	21	2.56	10	0.49	<10	0.99	339	1	0.24	21	780	н	(10	99	0.22	10	(10	84	<10	40		
15495 D	1.29	0.3	10	10	(0.5	0	2.93	<0.5	7	49	33	2.00	10	0.12	<10	0.79	549	8	0.15	17	210	24	.10	102	9.01	:10	<10	91	.1:	30		
15496 D	0.82	0.2	20	<10	<0.5	- 4	3.13	(0.5	16	43	143	2.13	10	0.11	<10	0.40	274	27	9.14	21	1020	42	<10	76	0.21	.10	<10	64	(10	40		
15497 D	0.98	0.2	10	10	<0.5	2	3.08	<0.5	45	33	412	4.40	10	0.13	<10	0.51	314	36	0.13	30	1250	20	<10	- 75	0.17	<10	<10	67	<10	30	••	
15498 D	2.21	0.2	20	50	<0.5	<2	2.71	<0.5	18	33	99	3.45	10	0.46	<10	0.95	424	49	0.31	20	1500	- 14	(10	160	0.22	(10	<10	113	<10	30		
15499 D	1.15	3.4	30	10	<0.5	<2	1.81	<0.5	175	29	2467	16.99	<10	0.13	<10	0.70	320	3	0.09	81	1000	- 4	(10	79	0.15	<10	(10	60	<10	100		
15500 D	2.57	0.2	20	60	<0.5	2	2.92	<0.5	20	40	76	3.99	20	0.70	<10	1.22	530	4	0.32	20	1460	18	<10	165	0.25	<10	<10	125	(10	50		
15501 D	2.87	0.2	200	50	<0.5	6	4.74	<0.5	24	49	105	4.90	20	0.52	(10	1.74	941	1	0.25	21	1490	26	(16	172	0.23	(10	(10	164	(10	50		
15502 0	2.98	0.2	20	80	<0.5	4	2.92	<0.5	21	44	29	3.96	20	0.91	(10	1.35	535	1	0.42	19	1330	12	.10	229	0.27	(10	<10	137	(10	40		
15503 D	3.17	0.2	20	100	<0.5	2	2.98	(0.5	51	38	124	6.23	20	0.87	<10	1.26	2.28	a a	0.45	28	1610	12	(10	230	0.28	(10	(10	137	(10	30		
15504 D	2.98	0.2	20	150	<0.5	- (2	2.21	(0.5	-	32	24	4.18	10	1.31	<10	1.32	426	q	9.3/	1/	12/0	10	(10	1/5	9.27	(10	(10	130	(10	40		
15505 D	2.72	0.2	20	100	(0.5		2.53	(0.5	23 22	35	143	4.63	10	0.95	10	1.20	233	J 1	0.28	20	1600	12	10	1.20	0.27	10	(10	13/	(10	30		
10006 0	2.49	0.1	20	160	(0.5	6	2.03	(0.5	اد 20	10	10.4	1.0	10	1 00	10	1.00	1	1	9.04	ليتي مدد	1040	1.2		165	0.00	- 10	(10	108	10	30		
100V/ U 15500 D	3.10	0.2	00	390	20.5		4.18	20.5	5ب ړ∼	177	סמ לירן	1.JJ 5 95	20	1.90	- 10	0.JJ 7.77	י.ט ררכן	7	0.10	110	1996	11	10	1-0	0.30	/10	/10	100		70		
15546 5	2.50	A 2	100	600	20.5	20	1.00	20.5	2	262	20	5 52	30	1 77	20	2 22	1050	Å	0.00	179	7140	20	/10	197	0.28	710	210	144	210	20		
15510 0	2.55	0.2	30	130	(0.5	22	1.05	(0.5	31	73	405	4.57	20	0.95	(10	1.37	657	1	0.33	35	1630	16	(10	154	0.28	210	(10	149	(10	40		
15511 8	2.30	0.2	10	100	(0.5	2	2.11	(0.5	21	35	94	3.90	10	0.98	(10	1.00	463	ŝ	0.29	17	1560	8	(10	118	0.25	(10	(10	128	(10	30		
15512 D	1.97	0.0	30	90	:0.5	- ē	2.49	(0.5	31	36	236	4.18	10	0.75	<10	0.95	524	2	0.25	19	1490	14	10	100	0.22	:10	010	129	:10	30	••	••
15513 0	2.29	0.2	20	100	(0.5		2.53	(0.5	25	38	149	4.32	10	0.81	30	1.05	564	Ā	0.32	32	1590	14	.10	120	0.25	.10	(10	144	(10	36		
15514 D	2.76	0.2	20	120	<0.5	2	2.47	(0.5	32	33	92	3.69	10	0.90	(10	1.02	527	i	0.37	20	1640	10	10	160	9.20	10	<10	112	(10	30		
15515 D	2.62	0.2	20.	80	<0.5	(2	3.03	<0.5	22	37	165	4.12	10	0.78	<10	1.28	654	3	0.30	20	1500	12	(10	156	0.22	<10	<10	139	(10	50		
15516 D	2.75	0.2	20	90	(0.5	(2	3.18	<0.5	25	40	166	4.51	20	0.87	<10	1.44	662	5	0.31	19	1790	12	<10	157	0.27	<10	<10	167	(10	40		
15517 D	2.38	0.2	20	90	<0.5	<2	2.22	(0.5	24	35	202	4.21	10	0.83	<10	1.22	582	6	0.25	17	1680	8	(10	109	0.23	(10	(10	137	<10	40		
15518 D	2.72	0.2	10	90	(0.5	2	2.52	0.5	22	32	135	4.06	10	0.90	<10	1.19	E00	1	0.21	16	1600	9	10	166	0.22	10	(10	122	:10	40		
15519 0	2.70	0.2	20	30	:0.5		3.27	<0.5	23	38	139	4.40	20	0.67	-(10	1.37	243	-1	0.31	19	1650	10	(1¢	167	0.25	:10	.10	145	(10	40		
15520 D	2.72	0.2	30	90	0.5	<2	3.25	0.5	24	40	150	4.43	20	0.76	10	1.46	767	1	9.27	19	1590	12	. 10	153	0.22	.10	<10	141	<10	40		~-
00964 E	0.12	1.2	350	<10	<0.5	- 44	0.06	(0.5	609	15	2031	29.25	70	<0.01	<10	0.06	51	9	(0.0]	61	220	74	20	2	<0.01	<10	<10	a	200	10		
00965 E	1.07	0.2	730	70	<0.5	<2	0.42	<0.5	60	28	307	5.91	<10	0.66	<10	0.63	195	4	0.07	16	1030	10	<10	23	0.18	<10	(10	113	<10	10		
00966 E	0.91	0.2	40	110	<0.5	<2	0.21	(0.5	49	49	623	22.85	<10	0.25	10	0.53	192	3	0.02	15	1600	(2	(10	82	0.17	(10	<10	53	<10	10		
20967 E	0.11	2.4	3380	<10	<0.5	28	0.09	୍ଚ.୨	324	13	5336	29.25	30 -	(0.01	(10	0.06	111	1	0.01	68	(10	30	10	3	0.01	.10	-10	-1	10	10		
00968 E	0.12	1.0) 99 99	(10	<0.5	9ê	2.03	0.5	592	37	1906	29.24	100	(0.01	.10	0.04	153	9	9.01	64	220	- 14	30	1	10.01	.10	00	2	256	20	••	.,
VV707 2	9.13	1	6.790	(10	(0.5	- 74	0.0/	(0.5	120	17	1000	11.11 11.11	- 90 °	.V.VI	10	U.VE	¥. 107	3	.V.V:	72	130	¥.	30	1	.J.VI	10	.10	2	250	30		
00970 E	0.03	2.2	500	(10	(0.5	26	0.31	(0.5	143	13	1222	44,47	<10 <	0.01	(10	0.02	186	4	10.01		<10		.10		(0.0]	<10	(10		<10	<10		••
VV7/1 E	0.13	0.2	210	20	<0.5	28	,U.12	(0.3	لائيت لائيت	17	13// /	لٽ، لائي مرمد	110	0.03	(10	V.13	50	- 	V.01	20	240	14	10	3	V.03			1	70	(10		
10972 E	0.11	2.4	370	(10	1.2	- 74	0.03	10.5	437	10	6002	47.40 10 14	110 4	W-01	10	0.01	00 61	ئيل ە	V.VI	70	110	108	10	- CL -	V.VI	(10	10	3	330	20		
2077 3 E	9.10	1.4	032	.10	0.5	5	0.03	.V.J.	لائيل د د د	15	6V24 .	1711 1011	110	10.01	10	U.U4	38	3	1.01	38	110	39 17	20	1	1.41	19	10	· 1	1.1	20		
VV7/4 E	0.13	1.8	3086	:10	2.0	86	0. 0,	.0.5	5	16	000-	-7.34	616	V+(1	· 10	4.02	.54	14	e.01	• •	100	+16	40	÷	9.CI	16	.10	2	340	20		

2
5
/
1

Geochemists

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Telephone:(604) 984-0221

Registered Assayers Telephone:(604) 984-0221 Telex: 043-52597 Semi quartitatile multi element ICF anal...

CENTIFICATE DE ANALYSIS

TO : MARE MANAGERENT LIMITED

1900 - 999 W. HASTINGS ST. MANCOUVER. B.C. VGC 2W2

Analytical Chemists

CCRT. 1 : AS(14908-0.2-A INVOICE f : IQ(14908 DATE : 29-JUL-96 P.C. F : NOME GAG/6 Attric Adua-Regis digestion of 0.5 gm of external folicied on ICP analysis. Since the disection is incomplete for wan, minerals, values reported for Al. Sb. Bu. Be. Cu. Cr. Bs. Ls. Ap. F. Ma. Cr. TL. TL. W and V day anly be considered as semi-quantitation

: COMME: 23

Saatle	A1	49	65	25	Be	81	63	Cd	Ço	Cr	Su	Fe	Ga	ĸ	La	Ac	nn.	Ma	43	Ni	P	Pt	Sb	51	7:	11	U	7	¥	In		
description	:	ppa	pia	ppa		pan	:	99k	998	ppa	ppa	I	ppa	:	998	. 1	204	. 991		. 994	. ppn	999	201	ppa	:	pps	ppa	pps	pps	200		
15466 D	1.82	0.2	20	70	(0.5	C	2.06	(0.5	27	40	301	3.87	<10	0.49	(10	0.80	296	19	0.24	16	1630	8	<10	136	0.25	<10	<10	113	<10	20		
15467 8	7.13	0.2	50	50	(0.5	(2	1.68	(0.5	20	69	184	4.10	<10	0.46	<10	0.57	198	4	0.29	24	1080	8	(10	152	0.21	:10	<10	120	<10	10		
15468 0	2.50	0.2	10	120	:0.5	10	1.07	.0.5	15	25	117	4.22	.10	1.24	10	1.22	242	2	1.19	22	270	+	.10	115	0.27	.10	.10	162	10	20		
15.220 1	3.34	0.7	X	160	:0.5	1.5	1.02	:0.5	15	95	:04	4.37	.10	1.09	10	1.29	273	2	1.35	24	270	5	.10	102	6.27	:10	<10	195	.10	25		- 2
15470 0	2.56	5.2	10	190	.0.5	- 33	1.18	0.5	17	105	114	4.60	.10	1.21	10	1.45	345	3	1.24	25	3.25	3	.10	110	5.29	10	:10	210	:10	30	**	
15471 B	2.01	0.2	50	130	(0.5	(2	1.43	(0.5	18	87	149	4.16	<10	0.97	10	1.15	336	20	0.20	24	920	B	(10	83	0.29	(10	<10	193	<10	36		- 23
15472 B	1.87	0.2	10	80	(0.5	0	2.68	(0.5	15	41	87	2.95	<10	0.52	<10	0.%	397	23	0.39	12	1470	8	<10	127	0.35	<10	<10	135	<10	20		-
15473 8	2.12	0.2	10	80	(0.5	(2	2.72	(0.5	24	42	209	4.15	(10	0.51	<10	1.09	456	4	0.31	14	1590	6	(10	156	0.40	(10	(10	149	<10	30		-
15474 0	1.90	0.2	10		(0.5	1	2.44	0.5	20	23	170	2.57	(10	1.35	(1)	0.93	412	5	\$28	14	1510	5	10	156	2.35	10	10	120	-10	20	*-	
15475 8	1.75	6.3	10	70	(0.5		1.87	(0.5	17	49	115	5.40	(10	0.41	10	1.15	418	9	0.17	37	930	8	10	65	6.29	16	10	240	.16	50		
15476 D	1.44	0.2	10	50	(0.5	- 6	1.91	:0.5	17	41	144	4.96	10	0.34	10	1.14	340	5	0.15	.9	730	9	:10	100	1.27	.10	(10	192	:10	30		
15477 B	3.41	0.2	10	70	(0.5	12	3.29	(0.5	28	67	190	4.67	20	0.67	<10	1.34	562	4	0.47	33	1300	8	<10	283	0.26	<10	<10	147	<10	40		-
15479 8	1.95	0.2	10	160	(0.5	02	2.67	(0.5	25	30	184	3.93	10	1.15	<10	1.27	555	6	0.19	16	1290	10	(10	96	0.29	(10	<10	126	(10	30		-
15420 8	3 50	A 2	10	140	10.5	0	2.96	(0.5	27	33	265	4.52	10	1.10	<10	1.23	531	4	0.30	17	1460	10	<10	166	0.23	(10	(10	127	<10	30		
15400 0	1 00	0.0	10	40	10.5	1	7 75	:0.5	22	27	184	3.56	10	0.50	(10	0.95	:15	2	1.16	16	1620	1	10	134	0.19	10	:10	93	10	20		
15400 0	3 30	0.3	10	26	10.5		2.74	10.5	17	30	104	3.61	10	0.21	.16	1.12	(34	5	6.21	15	1490	1	.16	146	5.22	.10	00	117	(10	30		
15451 0	3 33	0.2	10	70	(0.5	-	7.77	0.5	19	12	102	3.35	10	0.74	.10	1.04	445	÷	0.32	17	1340	÷	10	149	5.21	.10	(10	:12	10	30		
15402 8	2 22	A 2	10	100	10.5	10	5 39	(0.5	11	35	33	3.07	20	0.88	(10	1.27	584	8	0.42	11	1560	12	<10	167	0.24	(10	(10	132	<10	30		
15404 0	2.17	0.2	20	30	(0.5	10	3.96	(0.5	34	28	471	2.97	20	0.32	(10	0.65	323	D I	0.30	14	1540	12	(10	157	0.16	<10	(10	68	(10	30		-
15405 0	4 00	A 2	150	60	10.5	0	20.76	(0.5	193	52	428	8.57	80	0.96	(10	2.20	1288	a	0.03	43	1030	18	10	410	0.05	<10	(10	46	<10	120		
15406 7	3 00	7 5	30	20	10.5	2.	5.99	-0.5	114	40	1794	10.27	30	0.44	10	0.78	442	.1	1.51	67	1690	20	110	122	3.32	.:0	:10	51	:10	70		-
15407 8	7 14	6.7	70	20	/6 5		6 97	10.5	70	72	122	4.10	30	0.17	:10	1.74	1942	1	\$.05	22	1350	24	:10	169	0.17	.10	.10	140	:10	56	22	10
15499 0	1.94	4.2	10	20	10.5	1.	4.69	:0.5	11	60	35	3.12	20	0.22	.10	1.43	262	3	0.17	19	1190	12	.10	116	1.30	10	10	147	:10	30		
15400 0	3 77	A 2	20	40	10 5	~	1 82	10.5	16	85	41	4.95	20	0.40	(10	2.31	1329	4	0.15	25	1050	16	(10	118	0.24	<10	<10	194	(10	50		2
15465 0	2 62	0.2	(10	50	10.5	10	4 46	(0.5	17	96	65	4.41	20	0.52	(10	2.35	832	9	0.21	24	1470	12	(10	135	0.29	(10	(10	190	(10	50		-
15401 0	2.03	A 7	(10	100	10.5	1	7 79	/0.5	12	67	33	3.61	10	1.08	(10	1.80	488	8	0.27	22	1140	4	<10	118	0.27	<10	(10	138	<10	40		-
20053 5	A 33		970	20	10.5		0.67	0.5	- 19	20	1174	5.00	10	0.11	10	3.14	252	0	1.02	11	110	2	.10	15	3.04	12	10	19	10	10		- 64
00051 5	2.01		540	1.40	6.5		0.05	0.5	79	92	295	11.25	16	1.50	10	2.12	1055	12	:.11	21	1720		11	55	2.33	10	:10	216	.36	45		
20955 F	1 11	1 3	1170	110	0.5		0.79	0.5	43	62	1962	12.97	10	1.27	10	0.96	262	1672	0.35	17	960	5	10	36	0.19	10	10	101	.10	20		
AAAKL P	4.70	1.2	100	/10	/0.5	in	A 25	10.5	381	24	2019	31.01	30	0.02	<10	0.27	167	24	0.03	49	250	16	<10	7	90.08	<10	<10	15	(10	30		
00936 E	0.38	1	100	10	10.5	1	1 21	(0.5	162	72	2177	17.06	(10	0.12	(10	0.60	299	2	0.12	18	1100	2	<10	33	0.27	:10	<10	70	<10	40		-
00737 E	0.99	1.1	10	20	0.5	1	0.40	10.5	167	39	1489	14.72	(10	0.24	(10	0.23	60	1	0.02	17	880	8	:10	7	0.17	<10	<10	39	<10	16		
2/050 E	1.00	0.8	10	50	0.0		1 20	0.5	01	19	790	9.96	10	3.67	10	0.56	100	23	2.15	16	610	14	12	12	1.17	10	.10	145	93	30		
AAA:/ F	1.02	1.0	19			5 4	1 33	0.5	11	110	70	14.13	10	0.05	10	5.91	134		1.01	27	:510	+	11	15	5.51	16	-36	46	34	56		
4/961 E	3.3.		240	72.0	0.5		0.47	2.5	60	558	125	5.20	10	1.25	20	4.00	110		1.01	242	1440	+	16		3.37	10	10	75	12	72		4
00063 8	3.03			-10	10.5		0.97	10.5	62	33	1262	9.88	(10	0.26	10	0.45	276	2	0.05	15	990	4	(10	23	0.25	.10	(10	59	(10	10		
00963 E	1.61	0.0	120	20	10.5	13	1.00	(0.5	92	35	401	6.24	10	0.80	10	0.92	384	5	0.14	16	1440	4	(10	59	0.39	10	(10	130	:10	30		-

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221

Phone: Telex: 043-52597

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER. B.C. V6C 2W2

: A8615040-002-A CERT. # : I8615040 INVOICE # : 29-JUL-86 DATE P.C. # : NONE GAG/G

Sample	Prep	Au			<i>N</i>	
description	code	oz/T		Con	ments	
00975 E	207	0.070	 	See	Table	 _
00976 E	207	0.022	 		1	
00977 E	207	0.098	 			
00978 E	207	0.048	 			
00979 E	207	1.524	 			
00980 E	207	1.120	 			
00981 E	207	0.080	 			
00982 E	207	0.328	 			
00983 E	207	0.008	 			
00984 E	207	0.006	 			
00985 E	207	0.004	 			
00986 E	207	0.004	 			
00987 E	207	<0.002	 			
00988 E	207	0.002	 			
00989 E	207	<0.002	 			
00990 E	207	<0.002	 			
00991 E	207	<0.002	 			
00992 E	207	<0.002	 			
00993 E	207	<0.002	 			
00994 E	207	<0.002	 			
00995 E	207	<0.002	 			
00996 E	207	0.004	 			
00997 E	207	0.112	 			
00998 E	207	0.004	 			
00999 E	207	0.002	 			
01000 E	207	0.002	 			
16401 E	207	0.026	 			
16402 E	207	0.156	 			
16403 E	207	0.002	 			
16404 E	207	<0.002	 			
16405 E	207	0.010	 			

Registered Assayer, Province of British Columbia

VOI rev. 4/85

2
5
-

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Analytical Chemists

Geochemists Registered Assayers

Telephone: (604) 984-0221 Telex: 043-52597

Semi quantitative multi clement ICF shalling

ditric-Aqua-Reals digestion of 0.5 am of

CERTIFICATE OF ANALYSIS

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, B.C. VGC 202

CERT. #		:	A9615041-002-
INVO ICE	ŧ	:	19615(4)
DATE		:	31-JUL-86
P.O. #		:	NONE
GAG/G			

material followed b, ICP analysis. Since this digestion is incomplete for many minerals. values reported for Al, Sb, Ba. Be. Co. Cr. Ga. La. Mg. K. Na. Sr. Tl. Ti, W and V can only be considered as semi-quantitative.

COMMENTS :

Sample A1 À5 Ba Be Bi Ca Cd Co Cr Cu Ee Ga К La ňα ňr. ňo Na Ni P Pb Sb 5: Ti 11 t IJ ٧ Zn AQ. ppa . : I DDB 2 008 008 2 008 008 008 008 000 : pps z 2 **ppa DDB** pps pps. pps 008 ppa ppa description DDB ppa 008 008 DDB. 00975 E 1.11 0.2 1320 30 (0.5 14 0.30 (0.5 24 12 593 5.20 (10 0.42 <10 0.74 272 7 0.06 7 790 10 (10 24 0.10 (10 (10 72 (10 22 12 00976 E 0.96 80 40 (0.5 32 0.43 (0.5 13 16 351 5.85 (10 0.76 (10 0.63 186 4 0.05 4 1210 (2 <10 25 0.17 <10 <10 88 <10 -----0.2 6 5026 31.07 10 0.09 (1 0.03 700 (2 9 0.03 8 <10 28 00977 E (2 0.17 (0.5 1441 (10 0.08 46 23 20 10 10 ----0.25 3.4 >9999 10 <0.5 20 2732 23.20 40 (0.01 (10 0.03 618 (1 (0.01 19 220 (2 (10 (1 (0.01 .10 (10 9 (16 18 00978 E 0.14 2.0 140 <10 (0.5 \$ 10.08 (0.5 94 ... 00979 E 7.2 70 (0.5 160 2.20 (0.5 420 8 3739 36.41 20 0.06 (10 0.54 221 1 (0.01 44 20 0 (10 46 (0.01 (10 10 23 (15 24 0.64 10 ---00980 E 0.90 3.2 >9999 20 (0.5 1125 0.28 (0.5 1397 42 1926 22.57 10 0.11 <10 0.61 228 1 0.01 64 790 16 10 12 0.05 <10 40 72 <10 34 ---(0.5 146 356 12.82 10 0.47 (10 0.53 176 6 0.12 00981 E 1.04 0.2 >9999 20 <0.5 36 0.64 16 44 970 (2 70 46 0.05 <10 (10 54 <10 16 ---1223 13 2298 20.66 20 0.01 (2 (1 0.01 22 00982 E 0.50 0.4 >9999 (10 (0.5 72 3.28 (0.5 <10 0.06 377 (1 0.02 34 410 10 <10 (10 16 <10 ---00983 E 0.53 3.0 1140 20 (0.5 (2 0.30 (0.5 507 8 3852 28.41 10 0.03 <10 0.26 172 <1 0.04 34 950 (2) 38 :10 12 0.10 <10 10 <10 73 ... ---57 0.19 2 18600 1.29 1.2 360 60 :0.5 2 1.04 :0.5 157 21 1829 9.11 10 0.35 10 0.64 324 2 0.13 15 1390 12 :10 :10 (10 73 :10 72 ------00995 E 168 4.51 0.2 100 70 (0.5 (2 1.12 (0.5 19 19 10 0.43 0.59 254 52 0.20 1.16 10 409 0.12 9 2016 4 10 .10 (10 82 10 11 --00986 E 58 438 1.57 1.97 330 60 (0.5 (2 0.83 (0.5 19 7.69 10 0.54 10 397 5 0.05 660 104 (10 53 0.19 <10 <10 165 (10 0.4 36 364 ------00987 E 1.09 70 10 (0.5 2 19.22 (0.5 38 43 2.49 40 0.09 (10 0.90 2 0.03 0.2 8 1982 9 540 18 10 1399 0.03 <10 <10 81 (10 42 ---3 88600 2.88 0.2 70 340 <0.5 (2 1.72 (0.5 15 42 70 5.74 10 0.99 10 1.33 558 2 0.11 20 900 6 (10 91 0.15 <10 <10 141 <10 72 ---00989 E 3.22 1.22 90 90 @ 1.51 15 36 38 5.38 10 0.2 (0.5 :0.5 0.63 10 401 4 0.11 24 960 0 :10 69 0.15 :10 (10 180 (10 14 --00990 E 2.64 0.2 40 56 (0.5 :2 6.18 (0.5 27 81 109 6.18 20 0.19 :10 2.34 1023 1 0.08 36 1400 12 .16 219 0.19 :16 :10 243 (15 74 ... -10991 E 62 4.52 10 0.77 2.40 0.2 260 110 (0.5 (2 2.29 (0.5 14 51 10 1.32 430 2 0.13 22 740 <10 92 0.15 (10 6 (10 183 <10 62 ... 00992 E 1.96 0.2 140 60 (0.5 (2 2.09 (0.5 13 41 77 4.99 10 0.35 10 1.19 427 3 0.08 30 740 12 (10 % 0.07 (10 <10 180 (10 78 ----131 4.81 00993 E (2 3.14 (0.5 59 20 0.20 10 1.34 2 0.05 2.00 0.2 70 30 (0.5 11 461 25 940 4 <10 123 0.05 <10 <10 171 (10 54 --00994 E 32 275 80 5.27 20 0.22 (10 3.34 (1 0.02 2.99 0.2 160 60 (0.5 (2 4.22 (0.5 614 219 1100 12 <10 139 0.12 (10 (10 109 (10 85 ----00995 E 12 58 57 4.23 20 0.12 <10 1.29 382 2 0.04 26 58 2.00 70 20 (0.5 (2 2.92 (0.5 £40 2 41 0.03 (10 140 (10 0.2 10 <10 178 0.13 00996 E 2.28 6.2 100 20 (0.5 .2 9.11 (0.5 17 99 66 3.90 30 0.05 (10 2.19 656 1 0.01 28 2140 8 10 :15 (16 99 (16 46 ... 00997 E 1.21 2.8 3830 10 :0.5 34 5.43 (0.5 172 49 3439 7.43 20 0.10 <10 0.87 493 1 0.05 22 1000 38 61 0.07 (10 (10 76 10 292 ---10 52 1.52 00998 E 0.86 60 (10 (0.5 2 25.36 (0.5 8 42 40 <0.01 (10 0.88 1783 1 (0.01 9 310 16 10 827 0.01 <10 (10 43 10 36 0.2 ---97 62 3 66600 1.97 0.2 50 50 (0.5 (2 10.94 (0.5 17 3.64 30 0.11 (10 2.08 975 1 0.03 32 1790 8 10 346 0.16 (10 (10 102 (10 46 -01000 E 50 30 (2 10.36 (0.5 18 50 77 3.71 30 0.06 <10 1.77 1209 1 0.03 21 1240 14 10 320 0.04 <10 <10 86 (10 46 ----1.73 (0.5 0.2 29 16401 E 11 1034 3.52 40 0.15 0.44 0.6 140 10 (0.5 10 23.46 (0.5 (10 0.45 1379 1 0.01 8 220 14 10 423 0.02 :10 10 24 10 32 ---27 16402 E 1.08 7.4 2980 70 (0.5 14 1.20 :0.5 122 46 4107 7.38 10 0.35 10 0.66 347 18 0.09 95% 4 110 36 0.17 (16 :10 90 46 154 ------16403 E (2 3.17 71 239 165 6.70 90 3.96 1323 1 0.05 3.08 160 1940 <0.5 <0.5 30 1.16 136 6570 6 10 392 0.16 0.2 10 <10 175 <10 110 --16404 E 400 8 2103 39.53 <10 0.12 311 (1 (0.01 0.13 3.0 (10 20 (0.5 (2 0.12 (0.5 <10 0.02 959 410 (2 (10 10 0.01 (10 20 2 (10 14 -16405 E (2 0.15 (0.5 16 18 578 7.47 (10 0.25 (10 0.43 206 20 0.02 (2 32 810 0.87 0.4 20 70 (0.5 120 21 0.10 <10 <10 80 (10 22

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists •

Geochemists
• Registered Assayers

(hogistered (host))

CERTIFICATE OF ASSAY

TO : MARK MANAGEMENT LIMITED

VANCOUVER, B.C. ROS	BOX 729
---------------------	---------

CERT.	. #		:	A8613453-001-A
INVGI	CE	#	:	18613453
DATE			:	16-JUN-86
P.0.	#		:	NONE
GALLA	NT	- G 8	EOF	RGIA

	V CC: J. HARD	Y		VEGIYO			
	Sample	Prep	Cu	Au FA			
	description	code	2	oz/T			
	83112C	207		0.071	 See	Table	
	83113C	207		0.173	 166	-12.010	
	83114C	207		0.004			
	83115C	207		0.008			
	83116C	207		<0.003			
1	83117C	207		0.020			
	83118C	207		0.016			
	831190	207		0.008			
	93120C	207		<0.003			
	83121C	207		0.006			
	831220	207	0.26	0.026			
	83123C	207	0.41	0.038			
	83124C	207	0.41	0.037			
	83125C	207	0.38	0.049			
	83126C	207	0.40	0.007			
	83127C	207		<0.003			
	83128C	207		0.005			
	831290	207	0.60	0.020			

VOI rev. 4/85 Registered Assayer, Province of British Columbia

0	-Analytical Chemis	mex l	_abs l	td.	212 Brooksb North Vanco Canada Telephone:(604 Telex:	ank Ave. uver, B.C. V7J 2C1) 984-0221 043-52597			
10 at 162	Cs	PT IS ICATS	OS ANALISI	<u>.</u>					
TO : MARK MAHAGE 1900 - 999 Vancouver. VGC 202	MENT LINITED W. HASTINGS ST B.C.			CERT. 1 INVOICE DATE P.O. 1 GALLANT-	t A8613+ t 18613: : 32-357 : NOME GLORGIA	55-011-A 55 36 	ROSSLAND MOREL Po Box 729 ROSSLAND, B & VO J. HARD (ю 1 4 0	
Sample 5102 Gescription 2 3117C 76.84	A1200 Fe202 MgD 2 2 2 12.26 1.94 0.19	Ca0 Ha20 2 2 0.14 2.82	K20 1102 2 2 5.68 0.030	1005 mmG L01 2 2 2 2 (0.01 0.02 0.72	Sb ppa As ppa org ex org e 0.2 70	Bippe Cdippe Culp orgie: orgie: orgi 0.1 0.1	pa Ssippa Pbippa ficippa <u>et orsiet orsiet</u> orsiet 15 12 18 1	49 ppm 11 ppm U pp org e. org e. org e 0.1 0.6 3.	• In pps = org.e. 9 13 -
					Ţ.				
e î State p	a.								
							14 111		

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221

Analytical Chemists

Geochemists

Registered Assayers

Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : MARK MANAGEMENT LIMITED

1900 - 999 W. HASTINGS ST. VANCOUVER, B.C. V6C 2W2

CERT. # : A8614201-001-A INVOICE # : 18614201 : 27-JUN-86 DATE P.C. # : NONE GALLANT-GEORGIA

Sample	Prep	W	Sn	Ga	Com	nante	
description	code	ppm	ppm	ppm	Cr. a	ALC: NO	
83112 C	214	1	1	1	See	Table	
33113 C	214	1	1	10		r 1	
B3121 C	214	4200	1	2			
33122 C	214	580	1	1			
3123 C	214	12	1	1			
33124 C	214	660	1	1			
3125 C	214	1	1	1			
33126 C	214	1	1	1			
33127 C	214	3	1	7			
83128 C	214	360	1	9			
33129 C	214	1	1	9		V	

VOI rev..4/85 ÷.,

. fler

dant

Certified by

R	2			-A	nalytic	cal Che	mists		-Geocl	hemists		-Regi	istered	Assay	ws		Telepho Telex:	one:(60	(4) 98 043	4-0221		Semi	qui	inti	tata	ve	sult	i el	ener	nt I	CP 7	n 31;	/51
то :	HARP 1900 VANC VGC	(MANA) - 99 COUVER 2W2	GEM 9 W . B	ЕНТ . НА [.] .С.	LIMI	ITED IGS S	ST.	IFIC	ATE	OF	ANAI	. 121	<u>.</u>]	CER INVI DAT P.O GAL	I. † DICE E . † LANT	† -GE0	A30 130 20 NOM	134 124 200 10	54-0 54 -86))]-A		Hitr mate dige valu Ga. only COMM CC:	ic-f rial stic es r La. be ENTS J.	Aqua fo n 1 repo Mg, con t : HAR	-Reg llow s in rteo K, side	ala wed icom d fo Na. ered	dige by I plet r Al Sr. as	stic CP a e fo . St Il. semi	n of naly r ma . B: . Ti qu	f O. ysis any a, B , W anti	5 on . Ei mine e. 5 and tat:	of nce ral: a. (V c: .e.	th S. Cr. an
Sample		A1	Ag	As	80	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	6.2	к	La	Mg	.fin	Mo	Na	S 2	P	рь	Sb	12	Tı	11	U	ų	¥	Zn		
descr 19	1100	:	pga	opa	ppa	pps	pps	:	ppa	998	ppa	ppa	:	ppa	:	ppa		998	ppe	:	ppe	99N	ppe	ppa	ppe	:	ppa	pps	ppa	ppa	pos		
11120	10 C	0.64	0.8	>9999	50	(0.5	(2	0.22	(0.5	340	14	492	19.91	<10	0.19	(10	0.20	115	1	0.05	7	460	10	150	76	0.05	<10	(10	21	<10	20		
113C		1.36	1.4	9400	60	(0.5	12	0.62	(0.5	221	37	1329	6.19	<10	0.55	10	0.71	306	15	0.13	34	670	12	<10	34	0.13	<10	<10	97	<10	40		
114C		3.38	0.2	360	170	(0.5	(2	1.38	<0.5	17	91	149	4.90	<10	0.85	10	1.22	549	2	0.36	24	950	16	<10	123	0.29	:10	:10	268	<10	60		-
1150		2.58	0.2	410	50	(0.5	(2	0.72	:0.5	38	60	75	4.61	10	0.44	(10	1.26	1629	11	0.19	9	210	14	:10	116	0.06	(10	<10	314	<10	20		•
1160 1		0.86	0.6	160	10	(0.5	C	0.16	<0.5	3	27	107	3.79	<10	0.08	<10	0.64	317	1	0.09	5	400	10	:10	11	80.0	(10	(10	69	<10	10		
170		0.45	0.2	60	10	<0.5	(2	0.02	(0.5	2	9	13	1.16	<10	0.22	20	0.05	144	0	0.05	3	120	24	(10	3	(0.01	(10	(10	4	(10	10		1
190		2.07	0.2	90	130	<0.5	(2	0.54	<0.5	16	67	79	4.49	<10	1.02	(10	1.29	401	4	0.14	32	740	22	(10	48	0.20	(10	(10	228	(10	90		
1190		2.65	0.4	60	240	<0.5	<2	0.83	<0.5	12	56	51	3.90	<10	1.17	10	1.13	346	3	9.15	23	750	14	(10	78	0.24	(10	(10	1/7	10	124	-	
200		2.49	0.4	110	110	<0.5	(2	0.69	(0.5	14	71	61	5.09	(10	0.58	10	1.25	488	3	0.18		310	10	(10	.8	0.13	10	(10	103	10	130		
210		0.18	2.2	3410	10	(0.5	3	0.18	(0.5	653	18	2/53	22.50	<10 KA	10.02	(10	0.07	151	10	0.02	110	250	-14	10	0	(0.01	10	(10	ŝ	570	10		
220	101 11	0.57	1.2	7130	(10	(0.5	4	0.30	(0.5	1984	11	2241	27.00	50	0.01	/10	0.10	122		0.01	70	360		20	12	0.01	(10	(10	5	160	10		
230		0.29	3.6	380	30	(0.5	42	0.19	(0.5	041	10	1202	27 03	60	/0 01	/10	0.30	167	12	0.07	120	290	20	20		(0.01	/10	(10	8	670	20		
240		0.61	1.4	7400	CIO	(0.5	6	0.33	(0.5	400	10	2410	27 02	110	10.01	(10	0.06	104	15	(0.01	107	430	92	40	2	(0.01	(10	(10	2	340	20		
250		0.15	2.6	2300	(10	4.5	16	0.16	(0.5	680	17	3464	17 01	20	(0.01	(10	0.11	207		0.01	142	370	60	30		(0.01	:10	(10	6	220	10		
260		0.36	1.8	-00	100	10.3	10	0.17	10.3	22	57	2701	6 20	(10	1. 27	10	1.14	221	-	0.14	20	840	12	(10	47	0.19	:10	:10	278	:10	30		
2/1		1.86	0.0	160	220	20.5	10	0.59	0.5	20	44	185	6.84	10	0.77	10	1.07	679	6	0.12	17	1400	492	(10	31	0.22	(10	(10	139	200	250		
1 Mar		3.20	1.0	104		10.0		4.43	4.4				0101						100														

Correspond by . Hart Bichler

IČ.	C	hem	ex La	bs Lt	d.	212 Br North V Canada	ooksbank Ave. Vancouver, B.C. V7J 2C1
	Analyti	cal Chemists	Geochemists	Registere	ed Assayers	Phone: Telex:	(604) 984-0221 043-52597
		CERT	IFICATE OF	ASSAY			
O : MARK MANAGEM	IENT LIMI	TED	Rosslar	nd moter	CERT. #	: A86 # : I86	14056-001-/ 14056
1900 - 999 W	. HASTIN	GS ST. PI). Box 729		DATE	: 9-	JUL-86
VANCOUVERT C		Ran	aland	BR	GALLANT	-GEORGIA	
VOC ZWZ	/	100	interner 1		UNCEANT	OLONOIA	
CC: J. HARD	Y		VOE	140			
Sample	Prep	Cu	Au	0	1		
description	code	2	oz/T	Lom	nents		
83130C	207		0.064	See_	Table		
83131C	207		0.002		1		
83132C	207	0.29	0.004				
83133C	207	0.50	0.092				
83134C	207	0.22	0.044				000000
83135C	207	0.24	0.022				
83136C	207	0.25	0.020				
83137C	207		0.002				
83138C	207	0.17	1.780				
83139C	207	0.43	0.022				
83140C	207	0.34	0.092				
83141C	207	0.15	0.276				
83142C	207	0.13	0.004				
83143C	207	0.16	0.054				
83144C	207	0.21	0.006				
83145C	207	0.52	0.054				
831460	207	0-16	0.112	`			

8

Registered Assayer, Province of British Columbia

VOI rev. 4/85

10				C	h	en	ne	X	La	b	s I	Lto	d.			212 B North Canada	Vanc	bank ouver V	Ave. , B.C. 7J 2C1													
	5		·A	nalytic	al Che	mists		Geoc	hemists		•Regi	istered	Assaya	15		Telepho Telex:	one:(60	043	4-0221		. e 1	24	1.54	10.5	(S.)	• • • 7		C 81 C		. : .	-	
	-					IP.	IFI		.5	AMAL	.is:	5			-	. 42				1	.::: ::::: :::::	134 144 3414	203 10 25 1	-2. 111 111	113 -71 0628,		111 21 0 f.	14 1. 27 2 27 3 21 8	f 1. .117 34. 1. B	5 51 . [] miog: e.]	 : 11	
10 11 AAH AA 201	- 463 	1626 1 4 1 4	7%3 An . •⊆•	511:	111 (433 - 5	er.							1-90 5AT 0.0 5AL	LAN1	۱ ۱۰۰۵	וני ד אס. אכוי	1.4 1.1 42 4	36			 	L3. D4	19. 205	- 10	Ree	0001 0. 0. 0.55	icon Box		Note BC	snd tst. v0	с. С	iyo
Isaple Secongroup	:	As ; pa	A: pps	80 254	20 998	9: 970	(3 2	.:3 558	Co 578	(; 298	Cu ppa	Ee :	j: ppa	:	13 33	*:	4: 528	*: 208	:	N: ppe	; ;;t): 52	30 998	5: 31	•	:: ;3	2 291	;;1	2 opa	2: ::4		
83120 C 82131 C 22132 C 82122 C 82124 C 83135 C 83135 C 83137 C 32128 C 82137 C 32128 C 83141 C 83141 C 82142 C 82143 C 32144 C 82143 C	0.51 1.56 1.22 0.15 0.05 0.05 0.05 1.15 0.15 0.15 0.15	0.420 1.5 2.2 2.1 2.0 4.2 0.2 1.5 0.2 2.1 2.0 4.2 0.2 1.5 0.2 1	>9999 200 21 9999 1800 440 100 9999 1236 9999 290 530 240 2230	90 70 10 50 10 170 10 20 70 10 30 60 40	(0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5) (0.5 (0.5) (00005003000000000	0.54 1.58 0.52 0.12 0.15 0.10 0.34 0.45 0.45 0.21 1.05 0.20 1.07 0.20 1.04	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	445 22 115 605 1957 14 2750 69 975 680 511 91 129 199	7 49 22 5 15 16 9 55 9 35 9 29 32 29 34 17	54 124 2486 3911 1750 1864 1903 88 1241 3702 2960 1268 912 1418 1670 4474	3.31 3.55 16.03 36.35 34.12 54.86 4.66 25.08 15.23 32.35 11.23 44.28 12.67 25.39 15.31	<10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.34 0.15 0.35 0.05 0.04 0.03 1.05 0.04 0.03 1.05 0.01 0.15 0.15 0.15 0.15 0.15 0.15	(1) 20 11 (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.20 0.94 0.50 0.09 0.05 1.22 0.15 0.15 0.15 0.15 0.14 0.66 0.08 0.37 0.48 0.25	159 385 112 185 751 115 221 9 153 115 115 115 115 115 115 115 115 115	1 (1 41 1 1 (1 (1 1 1 1 1 3 2 3 5 1 1 1	0.02 0.18 1.13 0.01 0.01 0.15 0.06 0.01 0.27 1.13 0.06 0.01 0.27 1.13 0.27 0.13	16315511328211388212882188	1670 1570 465 530 240 300 830 409 1010 540 940 670 910 560	8		44 160 15 1 1 7 4 7 7 1 1 7 4 7 1 1 1 1 1 1 1 1 1	0.09 0.23 0.01 0.01 0.01 0.06 0.06 0.04 0.12			4799 32 11 22 50 11 46 7 12 22 46 7 12 23 46 7 12 23 46 7 12 23 46 7 12 23 46 7 12 23 46 7 12 23 46 7 12 24 12	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500 10 11 10 00 00 11 11 10 00 00 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1		

HartBichler

			_
1		POTT	
	BUCKEVE	A X A	
	DOCKETE OF	8 8 8	3
	4	* * / * / *	
	21 1	1 1 1 1 1 1	
1			
		AP	
	\rightarrow	NING 51	
		EVEN	
	GIA FR.		1
	GEON		
			1
	7	0	5
		1	0
		0.0	×
		Or the	
		6 V V	1
1		91. 90	
		KO.CK.	
	X	OF OR GLA	
		2	
			1
			1
			_
			1
		Ke la	•
		1	~
			1
		1 .	**
		1 m	
		83144	
	N	47/66	_
	Ç0	0	-
		IRON COLT	8314
	i i	5.	
1			
			<u></u>
		17	
	LEGEND	U U	
1	CRETACEOUS	U. 7	
	5 GRANODIORITE: MEDIUM SALT AND PEPPER GREY, N GENERALLY EQUIGRANULAR WITH 5	S% QUARTZ IN GROUND	
	MASS: FRESH	ED: MEDIUM CRYSTALLINE	
	GENERALLY EQUIGRANULAR WITH N	NO QUARTZ VISIBLE	
	JURASSIC		
	ROSSLAND GROUP: ELISE FORMATION	BEDS DARK CREY CHLORITIC	
	GROUND MASS WITH 10 mm AUGITE TO 15%; TRANSITIONAL TO AUGITE	AND/OR HORNBLENDE PHENOCRYSTS PORPHYRITIC LITHIC TUFF TO	
	AGGLOMERATE AS IN 2		1
	3a HORNBLENDE GRANODIORITE: SALT AND PEPPER GR	CHARACTERISTIC BLACK HORNBLENDE	1
	ANDESITE TUFF TO AGGLOMERATE: DARK GREEN W	WITH LITHIC CRYSTAL COMPONENT:	i
	OFTEN VERY ALTERED SO FRAGME	ENTS RARELY VISIBLE	1
	1 SILTSTONE: BLACK TO BROWN-GREY DEPENDING OF OFTEN LAMINATED; FINELY-DISSEN	N VERY FINE BIOTITE CONTENT; MINATED IRON SULPHIDES AVERAGE 2-3%,	1
	RARELY TO 20% IN HORNFELSED A	UREOLES	
	80-2 1980 DH 686-2 1986 DDH	H LCP	
	BOCK CHIR SAMPLE	VEIN ORIENTATION	
	· HOCK CHIP SAMPLE		_
	→ ADIT	STRIKE & DIP BEDDING	-
	S SHAFT	FRACTURE CLEAVAGE	
	Id: FELSIC DYKE md: MAFIC DYKE	MASSIVE SULPHIDE	
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	GENIE EM		
No. of Concession, Name	GENIE EM		
	GENIE EM		
	GENIE EM		
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	DEDIECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	PROJECTION OF VEIN TRACE		
	DEDUCTION OF VEIN TRACE		

LEGEND CRETACEOUS 5 GRANODIORITE: MEDIUM S GENERAL MASS: FR 4 MONZONITE: MEDIUM GRE GENERAL	SALT AND PEPPER GREY, MEDIUM CRYSTALLINE: LY EQUIGRANULAR WITH 5% QUARTZ IN GROUND RESH TY, SLIGHTLY GREEN-TONED: MEDIUM CRYSTALLINE, LY EQUIGRANULAR WITH NO QUARTZ VISIBLE			
AUGITE PORPHYRY: VERY GROUND TO 15%: AGGLOM	FORMATION COMPLEX UNIT: END MEMBERS: DARK GREY CHLORIT MASS WITH 10 mm AUGITE AND/OR HORNBLENDE PHE TRANSITIONAL TO AUGITE PORPHYRITIC LITHIC TUFF ERATE AS IN 2	NOCRYSTS TO		GEOLOGICAL BRANCH
3a HORNBLENDE GRANODIOU LESS EG NEEDLES 2 ANDESITE TUFF TO AGGI OFTEN V 1 SILTSTONE: BLACK TO BF OFTEN L	RITE: SALT AND PEPPEH GREY, MEDIUM CHTSTALLINE: DUIGRANULAR THAN 5 WITH CHARACTERISTIC BLACK H S; GENERALLY FRESH LOMERATE: DARK GREEN WITH LITHIC CRYSTAL COMP VERY ALTERED SO FRAGMENTS RARELY VISIBLE ROWN-GREY DEPENDING ON VERY FINE BIOTITE CONT AMINATED; FINELY-DISSEMINATED IRON SULPHIDES A	ORNBLENDE PONENT: ENT: AVERAGE 2-3%,		15,432
• ROCK CHIP SAMPLE	VEIN ORIENTATION	00000 PRE 1986 VLF PROJECTION OF VEIN TRACE	MODERATELY STRONG ANOMALOUS IP	GALLANT GOLD MINES LTD. GEORGIA PROPERTY TRAIL CREEK M.D. NTS 82134 DETAILED GEOLOGICAL MAPPING
> ADIT SHAFT fd: FELSIC DYKE	STRIKE & DIP BEDDING FRACTURE CLEAVAGE md: MAFIC DYKE ms MASSIVE SULF	HIDE		AND SAMPLING GEORGIA / EVENING STAR. AREA

DRAWN JCH RWR.

1

LEGEND				
CRETACEOUS				
5 GRANODIORITE: MEDIUM S. GENERALL MASS: FRE	ALT AND PEPPER GREY, MEDIUM CRYSTALLINE: Y EQUIGRANULAR WITH 5% QUARTZ IN GROUND ISH			
4 MONZONITE: MEDIUM GREY GENERALI	Y, SLIGHTLY GREEN-TONED: MEDIUM CRYSTALLINE, LY EQUIGRANULAR WITH NO QUARTZ VISIBLE			
JURASSIC ROSSLAND GROUP: ELISE F	ORMATION			
3 AUGITE PORPHYRY: VERY GROUND M TO 15%; T AGGLOME	COMPLEX UNIT: END MEMBERS: DARK GREY CHLORIT MASS WITH 10 mm AUGITE AND/OR HORNBLENDE PHE RANSITIONAL TO AUGITE PORPHYRITIC LITHIC TUFF RATE AS IN 2	IC NOCRYSTS TO		GEOLOGICAL BRANCH ASSESSMENT REPORT
3a HORNBLENDE GRANODIOR LESS EOU NEEDLES:	TE: SALT AND PEPPER GREY, MEDIUM CRYSTALLINE DIGRANULAR THAN 5 WITH CHARACTERISTIC BLACK F GENERALLY FRESH	: KORNBLENDE		
2 ANDESITE TUFF TO AGGLO	OMERATE: DARK GREEN WITH LITHIC CRYSTAL COM ERY ALTERED SO FRAGMENTS RARELY VISIBLE	PONENT;		15 452
1 SILTSTONE: BLACK TO BRO OFTEN LA RARELY	OWN-GREY DEPENDING ON VERY FINE BIOTITE CONT AMINATED: FINELY-DISSEMINATED IRON SULPHIDES I TO 20% IN HORNFELSED AUREOLES	ENT: AVERAGE 2-3%,		エンノインレ
				GALLANT GOLD MINES LTD.
O 1980 DH	S 1986 DDH B LCP	00000 PRE 1986 VLF	MODERATELY STRONG ANOMALOUS IP	GEORGIA PROPERTY TRAIL CREEK M.D. N T S 82\ 3 4
. ROCK CHIP SAMPLE	VEIN ORIENTATION	PROJECTION OF VEIN TRACE	STRONGLY ANOMALOUS IP	DETAILED GEOLOGICAL MAPPING
- ADIT	STRIKE & DIP BEDDING	VLF-EM CROSS OVER (1986)		AND SAMPLING
SHAFT	FRACTURE CLEAVAGE	GENIE-EM CONDUCTOR		GEORGIA / EVENING STAR. AREA
Id: FELSIC DYKE	md: MAFIC DYKE ms MASSIVE SUL	PHIDE		0 10 20 30 40 50 METRES
				DATE NOV.86 SCALE I: 1000 DRAWN JCH RWR. FIGURE 5

CONCLUSIONS

IP LIKELY RESULTS FROM PYRRHOTITE-BEARING SILTSTONES

CONDUCTORS I.P. CENTRE:0+37.5SE GENIE EM CENTRE:0+12E

W

CONCLUSIONS

IP MAY BE EXPLAINED BY PO RICH SILTSTONES; GENIE CENTRE HIT AT 50m DEPTH,

HOLE MAY HAVE PASSED UNDER ANOMALY

•

CONCLUSIONS

1.HOLES CLOSE TO SILTSTONE/GRANODIORITE CONTACT

2.VLF UNDERLAIN BY SILTSTONES, 2-3% po+GRANODIORITE <1%py, AT 44-50m DEPTH FROM SURFACE. HOLES MAY HAVE PASSED SOMEWHAT DEEP IN ANOMALY.

3.NUMEROUS MASSIVE SULPHIDE VEINS.

JURASSIC ROSSLAND GROUP ELISE FORMATION

LEGEND:

4

CRETACEOUS

3 AUGITE PORPHYRY

5 GRANODIORITE

3a HORNBLENDE GRANODIORITE

2 ANDESITE TUFF TO AGGLOMERATE

I SILTSTONE

- fd FELSIC DYKE
- md MAFIC DYKE
- bx BRECCIA
- hf HORNFELSED
- hb HORNBLENDE
- MS MASSIVE SULPHIDE
- IP MODERATELY STRONGLY ANOMALOUS

•

CONDUCTOR VLF AS SHOWN FROM 1983,86 DATA. L3+50W, 1+55N L3+00W, 1+64N

0 10 20 30 METRES

40

GEOLOGICAL BRANCH ASSESSMENT REPORT

j.

L2,43

GALLANT GOLD MINES LTD.

GEORGIA PROPERTY

TRAIL CREEK M.D.-B.C. NTS:82F/4

VERTICAL CROSS SECTION

DDH G86-4

BY:J.H./rwr Date:July 1986

FIGURE: 6.4

and the second

• • •

S -	
ELEV. 3500'	CRETACEOUS 5 GRANODIORITE
005	4 MONZONITE
	JURASSIC ROSSLAND GROUP ELISE FORMATION 3 AUGITE PORPHYRY 3 HORNBLENDE GRANODIORITE
3400'	2 ANDESITE TUFF TO AGGLOMERATE
3350'	fd FELSIC DYKE md MAFIC DYKE bx BRECCIA hf HORNFELSED hb HORNBLENDE MS MASSIVE SULPHIDE
3300'	IP MODERATELY STRONGLY ANOMALOUS
GEOLOGICAL BRANCH ASS ES SMENT DEBOT	1 [.]
THE REPORT	GALLANT GOLD MINES LTD
	GEORGIA PROPERTY
16 170	TRAIL CREEK M.DB.C. NTS:82F/4
17 パライ	VERTICAL CROSS SECTION
エノ・サノレ	DDH G86-6
0 10 20 30 40	BY:J.H./rwr
METRES	DATE: JULY 1986 FIGURE: 6.6

.

LEGEND

•

