$$
86-1001-15500
$$

GEOLOGY AND GEOCHEMISTRY REPORT 1986

on the
TUT 1-6 CLATMS
(Moon Lake Project)

$$
\begin{aligned}
& \text { Atli Mining Division } \\
& 104 \\
& \text { N.T.S. } 105 \mathrm{M} / 15 E \\
& \text { Latitude } 59048.8 \mathrm{~N}^{\prime} \\
& \begin{array}{r}
\text { Longitude } 134048 \mathrm{~W} \\
41.5^{\prime}
\end{array}
\end{aligned}
$$

OwnerlOperator. Noranda Ex. Co.ctd.

TABLE OF CONTENTS

Page
CHAPTER ONE: INTRODUCTION
1-1: Introductory Statement 1
1-2: Location and Access 1
1-3: Physiography and Vegetation 3
$1-4:$ History of the Clains 3
$1-5:$ Previous Exploration 5
1-6: 1986 Work Program 6
CHAPTER TWO: GEOLOGY
2-1: Regional Geology 8
2-2: Property Gealogy 9
CHAPTER THREE: SEDIMENT GEOCHEMISTRY
3-1: Strean Sedinent Sampling 14
3-2: Soil Sampling 14
CHAPTER FOUR: MINERALIZATION AND ROCK GEOCHEMISTRY 17
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 18
References
Statements of Qualifications
Statenent of Costs

LIST OF FIGURES

FIGURE 1:	Location Map	2
FIGURE 2:	Claim Map	4
FIGURE 3:	Regional Geology and Grid Location Map	in pocket
FIGURE 4:	Main Grid Geology	in pocket
FIGURE 5:	"Nasty Cirque" Geology and Compilation	in pocket
FIGURE 6:	Sample Location Map	in pocket
FIGURE 7:	Soil Geochemistry (West) - Cu/Zn/Pb	in pocket
FIGURE 8:	Soil Geochemistry (West) - Ag/As/Au	in pocket
FIGURE 9:	Soil Geochemistry (East) - Ag/As/Au	in pocket
FIGURE 10:	Soil Geochemistry (East) - Cu/Zn/Pb	

LIST OF APPENDICES

APPENDIX 1:	Silt Sample Geochemical Results
APPENDIX 2:	Soil Sample Geochemical Results
APPENDIX 3:	Rock Sample Descriptions and Geochemical Results
APPENDIX 4:	Analytical Method

```
During the 1986 field season Noranda Exploration conducted follow-up work in the Tutshi and Moon Lakes area which eventually led to the discovery of several anomalous gold zones and the subsequent staking of 115 units known as the TUT \(1-6\) clains.
```

```
1-2: LOCATION AND ACCESS
```

The TUT $1-6$ claing are located 40 kilometres south of Carcross at the south east end of Tutshi Lake on mapsheet N.T.S. $105 \mathrm{M} / 15$ at latitude $59^{\circ} 48^{\prime} N$ and longitude $134^{\circ} 45^{\prime} W$ (Figure 1). The Skagway road is situated 2 kilometres weat of the edge of the clain block. Access to date has been by Bell 206 series helicopters based in Whitehorse, 105 kilometres to the north or by a Hughes 50OD which was based in the Wheaton River valley. A large gravel patch,situated on the Skagway road across from the Moon Lake valley,was used as a staging point for crews and camp gear.

The Venus Mine mill, with a capacity of 150 tons per day, is located approximately 30 kilonetres north of the property along the Skagway road.

The TUT claims lie at the western edge of the intermontane belt. The majority of the property is accessible by wide, gently gloping valleys and most ridges can easily be walked. The central portion of the claims is dominated by rugged alpine terrain, typical of the coast mountains. Maximum relief on the property is 4,000 feet and $5 x$ of the property is covered by glaciers.

Vegetation in the alpine is limited to lichen growth. Grasses and short shrubs occur lower in the valleys and in Moon Lake valley, itself, vegetation consists of patchy conifer growth. Swampy areas occur around Moon Lake.

```
1-4: HISTORY OF THE CLAIMS
```

The initial Moon Lake TUT 1-3 block was staked August 10,1986 and consisted of 60 units (Figure 2). The ground was staked in order to cover a large carbonate alteration zone as well as the source area for several float pieces found to be anomalous in gold.

Following encouraging results from the initial program an additional 55 units, the TUT 4-6, were added September 13, 1986. This block now covers several old showings known as the Jessie, Great Northern and Big Thing (British Colunbia - Report of Minister of Mines, 1929).

1-5: PREVIOUS EXPLORATION

Abstract

Past exploration in the area dates back to 1901 with the discovery of the Venus vein system near Tagish Lake 25 kilometres to the north by J.M. Pooley. The Jessie showing covered by TUT 1 and 4 was originally staked as the Great Northern group by Joe Bussinger in 1906. Exploration of the showing was limited to hand and blast trenching and was not reported until 1929 when a group of engineers from Timmins, Ontario expressed interest in the property. Average assays of the ore zone were reported to be $0.15 \mathrm{oz/t}$ gold, 23.6 oz/t silver and $4.9 x$ copper across a 6 foot wide shear zone in andesites.

No further exploration is reported in this area until 1981 when both Dupont and Kennco staked the area east of Tutshi Lake between Moon Lake and Skelly Lake. Acquisition of the ground was based on encouraging results from regional geochemical programs. Work during the 1981 field season for both companies consisted of limited soil, silt and rock sampling as well as some geological mapping. No work was recorded by Kennco on its Moon 1-7 claims, however B.C. Department of Mines reports indicated the claims covered a zone of minor sulphide mineralization in a sheared granodiorite. The claims were allowed to lapse in 1982. Dupont recorded work on its Skelly claims but not on its Skel 1 and 2. Results were discouraging and both clain groups were allowed to lapse in 1982.

In 1985 Noranda initiated a regional program in the area aimed at evaluating the Triassic volcanics for their potential to host massive

Abstract

sulphides. Whole rock analysis was done on 45 rock samples taken at various locations throughout the package of Triassic volcanics. Results were inconclusive. During this program pods and lenses of massive pyrrhotite were found in a sequence of cherts, shales and tuffs in Moon Creek, to the north of the present clains. These pods returned values of up to 130 ppb Au. Due to the narrow width of the volcanic belt and the high degree of exposure, the proposed airborne EM and MAG survey was never flown.

1-6: 1986 WORK PROGRAM

From June 20 to June 23 , a two man crew conducted an initial program of exploration aimed at resampling the Po showing found in 1985 as well as ailt sampling and prospecting the surrounding area. This recce work also concentrated on the south side of the Moon Valley where earlier work had located an area of alteration characterized by $N a$ depleted volcanics. Snow conditions allowed for only a limited amount of the area to be examined. Several carbonate altered rocks found in float returned weakly anomalous gold values of up to 450 ppb Au . Other anomalies were $6,000 \mathrm{ppm} \mathrm{Cu}$ and 7,800 ppm $2 n$ from different rock samples.

Based on these results, a second two man fly camp was established at the west end of Moon Lake from July 19 to 21 . A program of rock, soil and silt sampling as well as some regional mapping was carried out aimed at locating the source of the anomalous float pleces. Results proved to be encouraging with the finding of a 75 metre wide carbonate alteration zone
traced for several hundred metres which has anomalous gold and copperassociated with it. One float sample taken in "Nasty Cirque" returned goldvalues of up to $44,000 \mathrm{ppb}$ Au. On the basis of these results, the TUT 1 to
3 were staked.
From August 21 to Septerber 2, a crew of 3 to 5 people conducted a detailed exploration program on the TUT 1 to 3 claims. The program consisted of the establishaent of a 4.9 kilometre long baseline and 11.4 kilometres of cross lines. The grid was soil sampled at various intervals for a total of 524 soils and geologically mapped at a 1:2,500 scale. The rest of the property was mapped at a 1:10,000 scale.
A detailed rock sampling program was undertaken consisting of chip/grab samples, outcrop samples and float samples. In order to chip sample more inaccessible areas of Nasty Cirque, a short program of mountaineering was done. A total of 146 rock samples were analyzed.
Initial results from the program were encouraging, therefore on September 13, 1986 the TUT 4 to 6 claims were staked. This provided adequate coverage of the Jessie and Big Thing showings as well as other areas of potential mineralization.
Personnel for the 1986 program were as follows:
Wayne Reid Senior Project Geologist
Steve Mackay Geologist - Crew Chief
Craig Hart Gordon MacKay Robert Copland Jurg Hofer Larry Lebedoff

CHAPTER TWO: GEOLOGY

2-1: REGIONAL GEOLOGY

Abstract

The TUT claina are located along the western margin of the whitehorge Trough. The trough represents a 650 kilometre long Mesozoic sedimentary basin. Regional mapping by Bultman (1979) and Christie (1957) indicates the trough is a northwest trending synclinorium. The Lower and Middle Jurassic Laberge Group crops out in the central axial portion of the trough, to the east of the claims. The Upper Triassic volcanic, volcaniclastic and pyroclastic rocks of the Stuhini Group form the margin of the trough and unconformably or conformably underlie the Laberge Group, depending on the location. To the west of the Triassic volcanics is a sequence of PrePermian greenschist facies metamorphic rocks consisting of gneiss, quartzite, chlorite schist and recrystallized limestone. This sequence has been intruded by the main body of the Cretaceous Coast Range plutonics, comprised mainly of granodiorite. Contacts are often faulted and highly irregular. Several intrusive bodies occur within the trough itself. One of the largest is Jack Peak occurring north of the claims between Tutshi Lake and Moon Lake.

2-2: PROPERTY GEOLOGY

The TUT clains cover a sequence of Upper Triassic volcanica known as the Stuhini volcanics. The rocks are dominated by a sequence of basic to intermediate volcanic pyroclastics, epiclastics and minor flows with some local felsic sequences. Within this sequence occur shallow water limestones as well as some local non-volcanic clastic rocks.

Rocks in the area generally trend northwest and dip northeast at 450. In areas of intense shearing, they are generally vertical.

The entire sequence of rocks is cut by dykes of felsic to basic composition ranging in age from Late Jurassic to Tertiary. Some of these dykes and sills have been structurally deformed while others have not.

A large zone of carbonate alteration occurs on the property. It is up to several hundred metres wide and has been traced for approximately 5 kilometres. It is generally sheared and brecciated with alteration ranging from weak argillic to intense carbonate with no relict rock fragments.

The following gives the formations for the property and details for the various units:

Unit 6 consists of green to gray coloured dykes of intermediate composition. They are generally fine grained, 0.5 metres to 5 metres wide, vertical and trend northwest to north-south. They often occur parallel to each other in groupings of several dykes, especially in the eastern claims in an area locally referred to as the "Ditch". They are generally unaltered, rarely fractured and locally siliceous.

81 and RL-82 were also completed and later incorporated into the grid. Sample intervals along the lines ranged from 10 netres over the carbonate alteration to 50 metres in other portions of the grid with the average being 25 metres. All samples were analyzed for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{As}$ and Au (Appendix 2).

Soil horizon development is only evident in the lower valleys. There, the B horizon was sampled at a depth of 20 to 30 cm . Along the steeper slopes and more alpine portions of the grid, samples generally consisted of a heterogenous B / C mixture or a fine grained talus.

Copper appears to show the strongest correlation with the alteration zone and again, as with silt sampling, shows a strong correlation with gold values as do zinc and silver. Lead and arsenic show the least degree of correlation. While copper effectively traces the alteration zone, the gold in soil values indicates several linear anomalies within the alteration package or near its margin. The most significant of these is a $2,000 \mathrm{ppb} \mathrm{Au}$ anomaly at $L-18200 E / 79925 N$. Some of these anomalies have known mineralized occurrences near them such as $1,500 \mathrm{ppb}$ Au on RL-82 station $1+50$. This occurs at the waterfall within a sulphide bearing silicified section of the alteration zone. Other significant anomalies such as $1,700 \mathrm{ppb}$ Au at L16400E/79200N have an unknown source but are possibly related to another zone of alteration within the volcanics. Several high silver in soil anomalies up to 18.0 ppm Ag at $\mathrm{L}-17600 \mathrm{E} / 80025 \mathrm{~N}$ and 12.0 ppm Ag at 80000 N also occur within the carbonate alteration zone.
Two talus fines samples, TF-78464 with $850 \mathrm{ppb} A u$ and $T F-78463$ with 140ppb Au, were taken at Nasty Cirque below Gossan 2. These anomalous valuesare likely related to the weak gold values obtained on the upper part of theridge at that location.

CHAPTER FOUR: MINERALIZATION AND ROCK GEOCHEMISTRY

Abstract

Mineralization on the claims generally consists of two main types. The first type is associated with the alteration zone in the eastern half of the claims and partially covered by the main grid. The alteration zone (Unit 4d) consists of a heavily carbonate altered basic volcanic with local patches of silicification and lesser chlorite alteration. Values up to 6,400 ppb Au and 4\% Cu have been obtained from grab samples within this orange weathering zone. Typically the rock is partially sheared and contains up to 5* stringers and dissemination of pyrite and chalcopyrite.

The second type of ineralization is restricted to the Nasty Cirque and Jessie showings. Values up to $78 \mathrm{gm} / \mathrm{T} \mathrm{Au}, 617 \mathrm{gm} / \mathrm{T} \mathrm{Ag},>1,000 \mathrm{ppm} \mathrm{As}, 0.3 \%$ Cu and $5 x$ combined $\mathrm{Pb}-2 n$ have been obtained from grab samples of well brecciated, foliated to nylonitized siliceous rock with up to 15\% sulphide matrix. The Jessie showing analyzed $4.13 \mathrm{gm} / \mathrm{T}$ Au over 4.0 metres and areas in the Cirque showed up to $1,300 \mathrm{ppb}$ Au over 7.0 metres (see Figures 5 and 6).

A total of 224 rock samples were taken during the course of the program (146 of which were taken since the clains were staked). Results are presented in Appendix 3 and sample locations on Figure 6.

In general, the two types of ineralization can be characterized by:

1) Cu-Au associated with altered basic volcanics with lesser $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ correlations.
2) $\mathrm{Au}-\mathrm{As}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ meralization associated with mylonitized to foliated breccias with lesser Cu association.

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

The TUT claims are underlain by a variably altered and foliated sequence of submarine deposited basic volcanics and associated sedimentary rocks. These have been cut by a number of different types of felaic to magic dykes.

Structural controls on the mineralization appear to be quite important in localizing alteration and sulphide mineralization, however this is poorly understood as field work to date has been fairly limited and widespread.

Due to the size of the alteration zone, up to 300 metres wide and 5 kilometres long, and the high grade Au values obtained in some samples, the area deserves a systematic and concentrated exploration effort in 1987.

This should include:

1) Airborne EM, Mag and VLF over the claim blocks at 200 metre line separation to help map the different lithologies and alteration zones as well as locating new ore zones.
2) Expanded detailed, soil geochemistry, geology and ground geophysics on target areas already known and those located by the airborne. Detailed prospecting and sampling would be part of this program.
3) Some blast trenching followed by diamond drilling on the targets defined. Some of these targets are already defined and require only limited ground work prior to testing.
4) Some effort should be made toward getting a cat trail into the property from the south side of Tutshi Lake.

Respectfully submitted,

Wayne Reid
Senior Project Geologist

REFERENCES

British Columbia Report of Minister of Mines, 1929.Bultman, B.B., 1979. Geology and Tectonic History of the whitehorse Troughwest of Atlin, B.C. Unpublished Ph.D. Thesis, Yale University.
Chrigtie, R.L., 1957. Bennett Map Sheet Geology (104M). G.S.C. Map 19-1957.
Schroeter, T.G., 1985. Bennett Project (104M). BCMEMPR Geological Fieldwork, Paper 1986-1, pp. 184-189.

STATEMENT OF QUALIFICATIONS

I, Wayne Reid, of the City of Whitehorse in the Yukon Territory, do hereby certify that:

1. I have been employed as a Geologist by Noranda Exploration Company. Limited (No Personal Liability) since 1976.
2. I an a graduate of Memorial Univeraity of Newfoundland with a Bachelor of Science Degree in Geology.
3. I am a Fellow of the Geological Association of Canada, a member of the Yukon Professional Geoscientists and the Prospectors and Developers Association.
4. I helped plan and supervise part of the work described in this report.

STATEMENT OF QUALIFICATIONS

I, Steve Mackay of the city of Calgary, Alberta, do hereby certify that:

1. I was employed as a geologist by Noranda Exploration Company, Limited (NPL) during the 1984,1985 and 1986 field seasons.
2. I am a graduate of the University of Alberta with a Bachelor of Science Degree in Geology.
3. I am a member of the Canadian Institute of Mining and Metallurgy and a member in training of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
4. I helped supervise and perform the work described in this report.

PROJECT: MOON LAKE - TUT Claims		
Labour:		
58 mandays \$130		7540.00
Helicopter:		
8 hours \$550		4400.00
Ground Transport:		520.00
Supplies \& Lodging:		2320.00
Analysis:		
3 silts 8 9.00	18.00	
146 rocks 12.00	1752.00	
524 soils 9.00	4716.00	
		6486.00
Report writing, drafting, etc.:		2500.00
	TOTAL	3766.00

PROPERTY／LOCATION：MOON LAKE／NBC GENERAL

Project No．	$: 373$
Material	$:$ SOIL／SILT
Remarks	$:$

Sheet ： 1 of 1
Geol．：SM

CODE ：8607－110
－－－ー－－－－－－－－－－－
Date rec＇d：JUL 23
Date compl：AUG 07

Values in PPM，except where noted．

T．T．	SAMPLE						PPB	
No．		No．	Cu	Zn	Pb	$A g$	As	Aus
65	SOIL	73565	12	64	12	0.2	60	10
66		73566	30	84	24	0.4	70	10
67		73567	32	120	36	0.2	82	10
68		73568	16	140	10	0.4	66	10
69		73563	28	110	18	0.2	78	10
70		30132	26	$\ni 6$	28	0.2	5ะ	10
71		90133	ここ	70	10	0.2	68	10
72		30134	24	58	12	0.2	68	10
73		70135	24	70	20	0.4	80	10
74		90136	26	64	22	0.2	94	10
75		90145	4	44	6	0.2	180	10
76		90146	120	こころ	48	1.6	16	30
77		90147	170	250	56	3.2	24	10
78		90148	110	ここ0	80	1.6	40	20
79		90143	120	230	74	1.6	36	20
80	SOIL	90150	110	180	32	1.0	26	10
81	SILT	73557	54	90	42	0.4	90	10
82		78406	130	90	24	1．0	56	60
83		78408	38	84	20	0.4	66	30
84		78409	38	170	16	0.4	80	10
85		78416	45	190	18	1.0	80	10
86		90144	16	62	20	0.2	240	10
87		30154	86	130	40	0.6	70	380
88	SILT	90130	48	74	16	0.8	40	10

$8607+140$
ROSSBACHER LABORATORV LTD CERTIFICATE OF ANALYBIB

TO : NORANDA EXFLOFATION CO. LTD. 1050 DAVIE STFEET VANCOUVER E.C.
PROJECT: 375 8607-110
Moon lle (SMa) TYPE OF ANALYSIS: GEOCHEMICAL

CERTIFICATE\#:	86270
INVOICE\#:	6552
DATE ENTERED:	$86-08-05$
FILE NAME:	NOFi86270
PAGE \# :	1

ROBBBACHER LABORATORY LTD. CERTIFICATE OF ANALYBIB

2225 S. SPRINGER AVENUE BURNABY, B.C. USB 3NI TEL: (604) 299-6910

TO : NORANDA EXFLORATION CO. LTD. 1050 DAVIE STFEET VANCOUVER E.C.
PROJECT: 373 8607-110
TYPE OF ANALYSIS: GEOCHEMICAL
CERTIFICATE*: 86270
INVOICE\#: 6552
DATE ENTERED: 86-08-05
FILE NAME: NOFi86270
PAGE \# : 2

PRE		PPM	PPM	PPM	PPM	PPB	PPM	
FIX	SAMPLE NAME	Cu	Ag	Zn	Pb	Au	AS	
T	78412	78413	8	0.4	36	10	10	12
T	78414	1400	0.4	54	6	5	12	
T	78415	10	0.6	152	32	10	18	
T	30	0.2	24	4	5	8		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NORANDA VANCDUVER LAEORATORY

PRITPERTY／LOCATION：MOON LK	
Prouect NG．	$: 36 G$
Material	$: S O I L / T F / S I L T$
Remarks	$:$

CODE ：8E0ヲ－047

Sheet： 1 Gf 10
Geal．：CH／SM
Date rec＇d：SEP OB
Date compl：SEF 11
Values ir PPM，except where rioted．

T．T． NG．	SAMPLE				PPF			
	NC．	Cu	$2 n$	Pb	$A g$	As	A H_{1}	
E	$14600 E-78500 \mathrm{~N}$	70	130	46	0.2	68	10	
3	78550	54	120	$5 こ$	0.4	130	10	
4	78600	82	130	こ8	O． 2	120	10	
5	78650	EO	76	ΣE	O． 4	46	10	
ϵ	78700	18	110	48	$0 . \mathrm{E}$	44	10	
7	78750	$E \in$	$1 E 0$	$3 E$	0.2	140	10	
8	78800	160	160	24	0.4	130	10	
7	78850	130	150	EO	O．${ }^{\text {O }}$	410	10	
10	78900	2こ0	670	160	1.0	1100	10	
11	78950	84	E00	40	O．	390	10	
1 1	79000	84	140	EO	O．${ }^{\text {O }}$	180	10	
13	79050	110	180	きこ	O．E	84	10	
14	79100	100	160	14	0.8	56	10	
15	$14600 \mathrm{E}-79150 \mathrm{~N}$	110	EOO	38	O．E	130	30	
16	$16000 E-80000 N$	40	78	1Ξ	O．${ }^{\text {O}}$	ев	30	
17	80050	30	110	110	O．E	84	100	
18	80100	30	9	54	0.4	6 E	10	
19	80150	36	150	70	0.4	100	90	
EO	80175	74	110	ここ	0.6	4 E	50	
$E 1$	$80 こ 00$	74	7E	16	$0 . \Xi$	40	10	
E	80ここら	こ10	9こ	16	O．	40	00	
$\varepsilon 3$	80 ®50	E®O	98	16	O．E	36	10	
E4	$80 こ 75$	250	110	18	0.2	48	E0	
こ5	80300	ご0	110	18	O．E	38	90	
Eも	$803 こ 5$	250	120	EO	0.2	40	10	
E7	80350	E10	140	18	O． 0^{-}	40	10	
こ8	80375	110	90	10	O．	E8	10	
E9	$16000 E-80400 \mathrm{~N}$	100	86	$1 \pm$	O．E	36	10	
30	15500E－79000N	EO	88	16	$0 . E$	E4	10	
31	79050	EE	ЭG	EO	O．E	58	10	
3 ふ	79100	56	78	18	O．	4こ	10	
33	79150	E6	Эこ	ここ	O．	58	10	
34	79 OO	54	110	こも	O．	5 C	10	
35	$79 ⺀ 50$	4ご	BE	こ8	O．E	50	10	
36	79300	48	100	EO	O．	5 ご	10	
37	79350	40	78	玉こ	O．	E4	10	
38	79400	50	Эこ	$1 E$	$0 . \mathrm{E}$	EO	10	
37	79450	4 E	76	16	O．E	$E \in$	10	
40	79500	60	110	E	O． e	5 S	40	
41	79550	50	110	16	O．E	50	10	
4ご	79600	36	88	14	O． E	38	10	
43	79650	46	110	18	O．	EO	10	
44	79700	Эこ	70	B	O． E	ご	10	
45	79750	4ご	130	18	$0 . \mathrm{E}$	$5 E$	10	
46	79800	4 E	EO	10	O．E	42	10	
47	79850	34	54	10	$0 . E$	40	10	
48	－－79900	44 －	72	12	0．E－	46	－10	－
49	$15500 E-79950 \mathrm{~N}$	36	70	10	$0 . \Xi$	3®	10	

T．T． No．	SAMPLE No．	Cul	Zri	Pb	Ag	As	PPE AI	$8609-047$
50	$15500 E-80000 \mathrm{~N}$	40	54	10	$0 . \Xi$	36	10	
51	$18600 \mathrm{E}-79700 \mathrm{~N}$	88	140	16	0.2	30	10	
5こ	79750	330	$1 \approx 0$	16	O．Ξ	こも	EO	
53	79800	330	90	12	0.8	$1 E$	EO	
54	79850	550	120	16	1．こ	き8	EO	
55	79700	9き	90	10	0.3	28	10	
56	79750	170	150	EO	0.6	00	EO	
57	80000	150	130	18	$0 . \geq$	E8	10	
58	80050	110	150	32	0.4	ここ	10	
57	80100	48	80	14	$0 . \Xi$	30	10	
60	80150	56	84	20	0.3	E8	10	
61	$80 こ 00$	58	38	16	$0 . \Xi$	28	10	
$E こ$	$80 こ 50$	86	110	$E \mathrm{O}$	O．E	$\Xi 6$	10	
63	$18600 E-80300 N$	70	94	14	O．E	こも	10	
64	$17100 \mathrm{E}-80000 \mathrm{~N}$	120	110	80	0.8	50	10	
ES	80055	78	74	$1 き$	0.8	40	こ0	
EE	80050	110	9こ	16	O． 0^{-}	50	10	
67	80075	72	84	14	0.2	50	10	
68	80100	EO	90	14	O．E	60	10	
69	8015	54	84	12	O． 2	56	10	
70	80150	84	74	10	0.3	48	10	
71	80175	76	80	8	O．こ	40	E0	
7玉	$80=00$	84	110	10	O．	40	10	
73	80ここら	$1 \in 0$	130	16	$0 . \Xi$	3こ	30	
574	$80 こ 50$	$1 \Xi 0$	140	10	0.8	E®	EO	
75	80ご75	66	70	10	0.2	80	10	
76	80300	EE	88	1 E	O． $\mathrm{E}^{\text {O}}$	54	10	
77	80325	E4	1 E0	1 E	0.3	52	10	
78	80350	54	80	1Ξ	O．E	50	10	
77	80375	70	9ご	14	0.3	56	10	
80	80400	190	150	$1 シ$	0.8	56	10	
81	804E5	9ะ	160	16	O． O	$5 こ$	10	
8 8	80450	74	76	10	$0 . E$	70	10	
83	80475	44	74	14	O． E	60	10	
84	80500	56	80	$1 E$	O．${ }^{\text {O}}$	70	10	
85	805こ5	EE	Э	8	0.3	ここ	10	
86	80550	54	170	16	O．E	30	10	
87	80575	7こ	100	14	$0 . E$	こ0	10	
88	$19100 \mathrm{E}-80 \mathrm{OOON}$	EB	9こ	$1 き$	O．E	36	10	
87	$13800 \mathrm{E}-78200$	110	き10	30	O．${ }^{\text {O }}$	90	10	
90	78こ50	68	1 EO	1ご	O．E	60	10	
91	78300	BE	200	EO	$0 . \mathrm{E}$	100	10	
Эご	78350	100	E10	EO	O． E	150	10	
93	78400	74	140	こ4	O．${ }^{\text {O }}$	EO	10	
94	78450	EO	3E	14	O．E	90	10	
75	78500	EO	95	ここ	$0 . E$	$6 こ$	10	
36	78550	5 S	100	ここ	O．E	58	10	
97	78600	EO	100	14	O．E	86	10	
98	78650	88	78	18	O．E	96	10	
97	$13800 \mathrm{E}-79700 \mathrm{~N}$	80	110	EO	0.3	100	10	
－00	CHECK NL－S	EE	EE	$E \in$	1.4	58	－	
－01	$13800 \mathrm{E}-79750$	EE	130	30	O．E	330	10	
10 E	… 78800	42	170	160	E．O	730	EO	
103	78850	58	1.30	46	O．	EGO	10	
104	78900	76	E40	140	E．G	1900	EO	
-105	$13800 E=79000 \mathrm{~N}$	86	430	140	－1．0	－360	EO	－
106	$16400 \mathrm{E}-7910 \mathrm{ON}$	6ご	1000	570	1．E	150	170	

T．T． No．	SAMPLENG．	Cu	2． rl_{1}	Pb	Ag_{9}	As	$\begin{aligned} & \text { PPE } \\ & \text { A!-I } \end{aligned}$	8609－047
								Pg．Э－f 10
107	$16400 \mathrm{E}-79150 \mathrm{~N}$	240	580	130	3.0	190	700	
108	79きロロ	50	こ00	110	0.8	130	1700	
109	79250	34	190	54	1.4	E70	O－O	
110	79300	110	170	4ご	こ．0	330	50	
111	79350	48	160	E®	0.6	E70	10	
112	75400	44	130	ここ	O．	140	10	
113	79450	40	9き	24	$0 . E$	EO	10	
114.	79500	4こ	80	34	0.3	50	10	
115	79550	ここ	110	30	O．E	36	10	
116	79600	E®	E4	EO	O．E	52	10	
117	79650	ここ	EE	$E \in$	O．E	28	50	
118	79700	ここ	90	こ4	O． E	4こ	10	
113	73750	24	54	E0	O． 2	38	10	
10^{0}	79800	39	58	16	0.2	30	10	
1 こ1	79850	36	54	18	0.4	50	10	
1Eこ	79900	26	E4	1 12	0.2	4Ξ	10	
$1 こ 3$	79950	こも	Eこ	1 1－	1.4	44	10	
$1 こ 4$	16400E－80000N	46	86	16	$0 . \geqslant$	46	10	
$1 こ 5$	$14500 \mathrm{E}-79450 \mathrm{~N}$	50	140	14	O．	48	10	
$1 \Xi 6$	79550	30	52	13	$0 . \Xi$	150	10	
127	79600	26	64	1Ξ	O． 2	$4 E$	10	
1 こ8	79650	30	100	14	$0 . \geq$	56	10	
$1 \Xi 9$	79700	3 30	58	1 12	O．E	38	10	
130	79750	30	E8	13	O．	48	10	
131	79800	40	88	1 ご	O．E	68	10	
132	79850	$こ も$	90	14	O．こ	$8 こ$	10	
133	79700	36	86	1Ξ	O．E	86	10	
134	79750	こ®	88	16	O．	60	10	
135	$14500 E-80000 \mathrm{~N}$	$4 E$	130	16	$0 . E$	1 EO	10	
136	$18800 \mathrm{E}-79700 \mathrm{~N}$	ころ0	130	14	$0 . ะ$	ごこ	10	
137	79750	170	100	1Ξ	$0 . E$	$E 4$	10	
138	79800	360	120	18	0.2	3 3	10	
137	79850	E10	100	10	O．こ	E4	10	
140	79300	100	98	6	$0 . \Xi$	28	10	
141	79750	160	110	14	O．E	32	10	
14 E	80000	$こ 40$	140	ここ	O．ϵ	40	10	
143	80050	140	110	14	O．E	48	10	
144	80100	86	$1 こ 0$	38	0.4	80	10	
145	80150	E8	Эご	14	O．	150	10	
146	80こ00	150	180	こ0	0.4	40	30	
147	80こ50	$4 E$	90	14	O．E	$E \in$	10	
148	18800E－80300N	EO	78	$1 E$	O．E	44	10	
149	18900E－79700N	70	ЭE	B	O．	$3 E$	10	
E	79750	100	$\epsilon \in$	10	0.4	54	10	
3	79800	$1 E 0$	100	10	O．E	34	$E 0$	
4	79850	ここO	140	$\Xi 8$	O．	3 C	10	
5	$79 Э 50$	E10	110	14	0.6	$E 6$	10	
ϵ	80000	180	110	12	0.4	$3 \in$	10	
7	80050	64	150	60	O．$=$	68	10	
8	80100	58	150	46	0.4	60	10	
－9	80150	74	70	40	0.8	EO	10	
10	80000	34	54	8	O．E	4E	10	
11	80こ50	SE	84	10	$0 . \Xi$	40	≥ 0	
1 こ	80300	5%	100	14	O．ϵ	30	10	
13	80350	E4	94	8	0.8	$5 こ$	10	
14	－	－56	$8=$	10	0.6	54	10	－
	$18900 E-80450 \mathrm{~N}$	54	7 －	8	0.6	50	10	

T．T． NG ．	SAMPLE No．	Cul	Zri	Pb	Ag	A_{5}	PPE	$8609-047$
16	$18900 \mathrm{E}-80500 \mathrm{~N}$	32	94	30	0.3	82	10	
17	$19000 \mathrm{E}-79500 \mathrm{~N}$	$6 E$	78	10	O． E	30	10	
18	79550	80	44	E	0.8	Eこ	10	
19	79600	46	70	ϵ	0.8	$4 こ$	10	
$E 0$	79650	140	EE	4	$0 . E$	$3 こ$	10	
21	79700	58	58	8	0.4	ここ	10	
E®	79750	76	E8	8	0.4	$E 4$	10	
$\Xi 3$	79800	54	80	8	0.4	38	10	
24	79850	150	100	$1 E$	0.4	34	10	
25	79700	38	130	$1 \Xi 0$	0.8	EG	10	
$\Xi \epsilon$	79750	30	E8	E	O．E	30	10	
ご	80000	80	Fe	8	O． O	35	10	
EB	$800 E 5$	40	EO	10	O．E	30	10	
こ3	80050	56	$E \in$	46	O．E	38	10	
30	80075	56	$E E$	38	0.8	コこ	10	
31	80100	88	E4	8	0.4	44	10	
30	B01E5	8こ	$7 E$	60	1.0	48	10	
33	80150	68	84	$5 こ$	0．E	54	40	
34	80175	70	E8	3 S	O． 6	54	10	
35	80こOO	46	$6 E$	30	O．	38	10	
36	80ここら	50	54	4	1.0	4E	10	
37	80250	44	70	6	0.6	E8	10	
38	80ごフ5	E8	72	E	0.6	3 E	30	
37	80300	34	44	4	0.4	10	10	
－40	80ここら	370	78	10	0.8	34	10	
41	80350	50	70	10	0.2	34	10	
4こ	80375	$4 E$	EB	8	O．E	36	10	
43	80400	160	130	18	0.4	ここ	10	
44	804ES	54	90	10	0.8	E8	10	
45	80450	$4 E$	76	8	0.2	EO	10	
$4 E$	80475	50	74	B	O． $\mathrm{E}^{\text {d }}$	36	10	
47	80500	50	88	E	0.4	46	10	
48	805 ± 5	56	7 7	8	0.8	34	10	
49	$19000 \mathrm{E}-80550 \mathrm{~N}$	46	$7 E$	8	0.6	34	10	
50	$19 E 00 E-80050 N$	64	76	E	0.4	24	10	
51	80100	70	78	6	0.2	30	10	
5.	801E゙ら	54	$8 E$	6	0.4	40	10	
53	80150	48	8 E	8	0.2	46	130	
54	80175	$4 E$	$7 ミ$	E	$0 . E$	$3 ะ$	10	
55	$80=00$	56	86	6	O．E	EO	10	
56	80Eこ5	E4	98	E	$0 . E$	$5 こ$	10	
57	$80 こ 50$	58	80	12	O．E	46	10	
58	80ご75	44	74	E	O． O	60	10	
59	80500	72	78	9	O． 2	54	10	
60	80355	EO	94	8	$0 . E$	70	10	
61	80．375	50	70	16	0.2	Eこ	10	
Eこ	80400	160	80	4	0.4	88	10	
63	80450	． 3	90	14	0.4	$\epsilon こ$	10	
64	80485	50	E8	10	O．	4ご	10	
65	80500	80	BE	34	0.6	64	10	
56	80550	70	100	E	O．E	28	10	
67	80600	E日	80	6	O．E	30	10	
68	80350	54	EE	8	O．	54	10	
69	80650	EO	120	E	$\sigma \mathrm{O}$	30	10	
$70 \quad 1$	19E00E－80700N	58	$1 こ 0$	4	G．	12	10	
－72	$19300 \mathrm{E}-79300 \mathrm{~N}$		－70－	6	－0．e－	58	10	
7こ 1	$19300 \mathrm{E}-79350 \mathrm{~N}$	54	70	5	$0 . E$	50	10	

T．T． No．	SAMPLE No．	CH	Zri	Pb	Ag	As	PDE	8609－047
73	$19300 E-79400 \mathrm{~N}$	$5 E$	8こ	E	$0 . \Xi$	40	10	
74	79450	160	82	4	O．ϵ	ここ	10	
75	73500	74	E8	E	$0 . E$	$E \in$	10	
76	73600	170	32	18	0.4	$\because 8$	10	
77	79650	150	9き	4	0.4	30	10	
78	75700	160	110	ここ	0.4	E8	10	
79	79750	こ30	94	E	0.4	$4 E$	10	
80	79800	180	94	Ξ	0.4	30	10	
81	79700	190	Эご	Ξ	0.4	EO	70	
8 8	79950	$1 \in 0$	86	Ξ	0.4	E4	10	
83	80000	110	E8	1	O．E－	8	EO	
84	800 E5	$\ni 6$	1 こ0	$こ$	0.4	18	10	
85	80050	70	Э	E	0.4	$1 E$	10	
B6	80075	150	Эこ	E	0.4	29	10	
87	80100	78	78	E	0.2	ご8	10	
88	80125	$8 こ$	80	Ξ	$0 . E$	ここ	10	
89	80150	95	84	ε	0.4	54	10	
90	80175	ЭE	$8 き$	E	0.3	EO	10	
31	$80 こ 00$	E8	74	4	O．E	44	10	
9た	80ここら	54	60	E	0.2	E8	10	
93	$80 こ 50$	110	9	8	0.4	$4 E$	10	
94	80 ®75	$8 E$	88	4	0.3	44	10	
95	80300	$E \in$	88	E	0.4	50	10	
96	80ここら	120	74	4	O．E	30	10	
－ 97	80350	72	$8 \approx$	E	$0 . E$	ここ	10	
\％ 98	80375	130	96	E	0.4	EO	10	
99	80400	86	88	E	0.4	3 C	10	
100	CHECK NL－5	$\Xi 6$	6こ	68	1． 8	$6 \geq$	－	
101	804E゙5	110	70	4	0.6	EG	10	
105	80450	50	70	12	0.4	7 7	10	
103	805E5	3ご	$\epsilon \Xi$	1	0.4	18	10	
104	80500	4こ	120	8	0.4	50	10	
105	80550	$\epsilon \in$	110	4	0.4	34	10	
106	80575	76	110	8	0.4	38	10	
107	19300E－80600N	EB	110	ϵ	0.4	40	10	
108	$17400 \mathrm{E}-80 \mathrm{ESON}$	E50	90	E	0.4	30	10	
103	$80 こ 75$	130	50	4	0.8	16	10	
110	80300	1.30	EE	1	O． O	24	10	
111	B03E5	100	70	4	0.4	E8	10	
112	80350	110	74	2	0.4	ご	10	
113	80375	90	90	1	0.2	ε	10	
114	80400	1 EO	80	1	0.4	E	10	
115	804E5	160	96	z	O． 4	18	10	
116	80450	58	60	1	$0 . \mathrm{E}$	24	10	
117	80475	E． 4	80	1	O．E	$E 8$	10	
118	80500	40	$E E$	1	0.4	E8	10	
119	80505	64	100	4	0.4	4 C	10	
$1 E 0$	80550	54	94	8	0.6	46	10	
$1 E 1$	$19400 \mathrm{E}-80600 \mathrm{~N}$	94	100	E	0.4	40	10	
$12=1$	17100E－79350N	60	110	18	O．ϵ	30	10	
183 -4	フヲ96E． 5	170	150	E8	O．B	$1 \in 0$	340	
24 125	77975	70	50	10	0.8	40	80	
1ES	79787.5	60	88	10	0.6	34	10	
126 127	80000 80012.5	76 100	60 100	20	0.8	E	10	
$1 こ 8$	$\begin{array}{r}8001505 \\ \hline 8005\end{array}$	100 100	100 96	10 10	1.0 $=.0$	E．8 $=4$	10 $=10$	
15917	$7100 E-80037.5 \mathrm{~N}$	ЭE	70	10	0.8	54	210 10	

T．T． No．	SAMPLE NG．	CH	Zri	Pb	Ag	As	FPE A．．	$8609-647$
37	$17400 \mathrm{E}-\mathrm{BOOESN}$	こも	7 7	10	0.8	ε	10	
40	80037.5	34	EG	18	0.2	EO	50	
41	80050	36	SE	18	0.4	$E \cdot 4$	10	
$4 こ$	80075	60	94	$\because 4$	O．E	40	10	
43	80100	$4 E$	70	EO	O． E	E゙E	10	
44	80125	40	E	$1 こ$	O．E	34	10	
45	80150	34	$E \epsilon$	18	O．	5	10	
46	80175	こ8	54	1Ξ	$0 . \geq$	ここ	10	
47	$17400 \mathrm{E}-80 \mathrm{OOON}$	EO	EO	ここ	0.4	EO	10	
48	$17500 \mathrm{E}-80000 \mathrm{~N}$	$E E$	190	52	1.0	14	100	
49	80012． 5	70	300	Eiz	E．E	8	EO	
50	80055	$8 こ$	140	64	1.0	14	10	
51	80037.5	$5 E$	110	50	0.4	60	10	
50	80050	38	$8 E$	50	$0 . \Xi$	70	10	
53	BOOEE． 5	44	EE	EO	$0 . E$	56	10	
54	80075	38	$6 E$	コこ	O．E	34	10	
55	80100	34	EO	14	O．E	E4	10	
56	80125	50	80	30	$0 . \Xi$	60	10	
57	80150	34	74	ここ	O．	140	10	
58	80175	EO	80	$\Xi 4$	0.4	EO	10	
59	17500E－80EOON	36	EE	16	O．E	ごB	10	
60	$17575 \mathrm{E}-79900 \mathrm{~N}$	130	150	48	1.0	こ	10	
E1	7391 E． 5	160	170	48	1.0	E	10	
62	797 こ5	$1 き 0$	140	こO	O． 6	4	10	
E3	79737.5	130	$1 こ 0$	ここ	0.4	Ξ	10	
E4	79750	150	130	86	O． 6	1	10	
65	79787.5	150	EOO	48	1．B	14	10	
66	$17575 E-80000 \mathrm{~N}$	170	300	$7 E$	Q． 8	34	10	
67	$17 \mathrm{EOOE}-80000 \mathrm{~N}$	180	300	78	$1 E .0$	14	10	
68	80015.5	140	300	100	E．E	4	EO	
67	800E5	160	300	100	18．0	18	EO	
70	80037.5	170	E50	84	E．O	E	こO	
71	80050	130	EOO	4E	1．0	EO	$E 0$	
7こ	80065	100	150	100	1．0	30	80	
73	80075	78	170	Eこ	O． 8	100	30	
74	$17600 E-80100 \mathrm{~N}$	70	74	ここ	O．	14	10	
75	$17800 \mathrm{E}-79800 \mathrm{~N}$	Eこ	EO	14	O．E	10	10	
$7 E$	$798 こ 5$	140	89	$1 こ$	O．${ }^{\text {e }}$	E4	30	
77	79850	8こ	79	10	O．${ }^{\text {O}}$	14	EO	
78	79875	90	GO	10	O．	34	こ0	
79	79700	60	90	14	O．	3ご	EO	
80	$17800 \mathrm{E}-80100 \mathrm{~N}$	50	70	12	$0 . \geq$	36	こ0	
81	17500E－79700N	4 E	56	16	O．	Эこ	10	
8 8	フヲ7ご	44	60	1ε	O．E	14	10	
日	79750	58	80	10	O．E	50	EO	
84	79775	44	$E \subset$	12	O． O	34	10	
85	79800	6.4	74	1Ξ	O．E	36	30	
$8 E$	7Э8こら	70	88	14	$0 . E$	3 E	こO	
87	79850	EE	120	1 E	O．	こ日	30	
G8	79875	110	120	$1 E$	0.4	ご	10	
－99	79Эご	180	170	40	O． 8	14	EO	
30	79750	96	170	49	1.4	20	120	
91	79775	$9 E$	E00	EE	1．E	E8	30	
95	80000	$4 E$	110	ご	0.4	16	10	
93	800E5	40	8 8：	10	O．	E．	20	
94	－－－80050	－44	96	Eこ	0.3	－－40－	10	－．
95	$17900 \mathrm{E}-80075 \mathrm{~N}$	50	84	18	0.2	$4 こ 0$	10	

T. T. No．	SAMPLE NG.	Cu	Zri	Pb	Ag	As	$\begin{aligned} & \text { PDE } \\ & \text { AU } \end{aligned}$	$\begin{gathered} 8609-047 \\ \text { pg. } 8 \therefore 16 \end{gathered}$
96	17900E－80100N	80	100	44	0.4	50	30	
77	80125	30	90	E0	0.3	$こ 4$	EO	
78	$17900 \mathrm{E}-80150 \mathrm{~N}$	70	$7 E$	18	1．E	き8	10	
79	$18000 \mathrm{E}-79800 \mathrm{~N}$	120	100	$\because 0$	$0 . \mathrm{E}$	EG	10	
100	CHECK NL－5	$E \in$	EE	74	1．E	58	－	
101	798こ5	100	74	12	0.8	50	10	
10 O	79850	72	80	8	O．E	气日	10	
103.	79875	70	100	14	O．E	34	EO	
104	79750	ЭE	130	E4	O．E	ごこ	10	
105	79775	86	100	54	0.6	18	EO	
10 E	80000	80	88	18	0.4	10	EO	
107	800E5	70	120	36	0.4	8	10	
108	80050	110	88	24	1． 3	$1 E$	20	
109	80075	50	160	440	E．8	36	10	
110	80100	100	80	EG	O． 8	$2 \cdot 4$	50	
111	80125	70	76	34	0.4	44	30	
112	$18000 E-80150 \mathrm{~N}$	44	5 ご	Eこ	0.5	5 ご	EO	
113	$18100 \mathrm{E}-79700 \mathrm{~N}$	76	84	12	O．	38	E0	
114	797ES	80	7E	8	O． 2	14	10	
115	79750	86	88	10	O．E	32	10	
116	79775	110	$7 E$	14	0.4	30	10	
117	79800	140	こ10	72	0.6	E	10	
118	798こ5	160	390	70	0.8	18	10	
119	79850	160	こ30	36	O．E	24	10	
－1E0	79875	190	E80	78	0.8	16	EO	
－き1	79900	110	76	10	0.4	14	EO	
1モE	799 ご	140	7E	1 シ	0.4	E8	EO	
$1 こ 3$	79950	98	82	10	0.4	EG	EO	
124	79775	150	140	E8	O． 6	18	10	
125	80000	3E	54	E	0.4	1Ξ	10	
1ごG	80055	64	$8 こ$	34	O． 6	E8	10	
1 ご	80050	64	74	E4	O． 8	こも	10	
128	80075	3こ	4ご	14	$0 . E$	18	10	
129	80100	46	7 －	40	$0 . E$	$4 E$	10	
130	801E5	58	$5 こ$	18	O．E	EO	10	
151	$18100 \mathrm{E}-80150 \mathrm{~N}$	46	62	16	$0 . 已$	160	10	
13こ	18EOOE－79700N	190	76	$1 E$	0.4	Eこ	110	
133	$797 E 5$	130	170	$4 E$	0.4	40	EO	
134	79750	34	74	14	0.4	E4	EO	
135	79775	100	140	E0	$0 . E$	EO	10	
136	79800	9E	76	14	O．E	EO	10	
137	79825	76	84	E	O． $\mathrm{E}^{\text {c }}$	8	10	
138	79850	100	150	18	O．	14	10	
137	79875	E30	E70	68	こ． 4	G	10	
140	79700	110	160	110	3.0	10	30	
141	79955	150	290	150	7.6	1ϵ	2000	
14E	79950	100	100	3こ	1． 4	18	10	
143	79775	140	56	ここ	O．E	$E \in$	EO	
144	80000	日8	$E \in$	24	O． $\mathrm{E}^{\text {O }}$	EO	130	
145	80055	90	64	$\Xi 6$	$0 . E$	3 c	EO	
$\square 4 E$	80050	60	EO	14	0.4	70	10	
． 47	80075	36	55	20	O．E	100	10	
148	80100	$E E$	7 －	18	$0 . \mathrm{E}$	1EO	10	
149	80155	76	6.4	20	$0 . \Xi$	$8 こ$	10	
E 1	18EOOE－BO15ON	74	7E	こe	O．e	110	10	
3	$18300 E=79700 N$	96	80	ここ	0.6	24	-10	－－
41	$18300 \mathrm{E}-79750 \mathrm{~N}$	74	76	E4	O．\because	30	30	

T.T. N, C ．	SAMPLENG．						PPE	8609－047
		Cu	Zri	Pb	Ag	As	A 1	Pg． 3 of 10
5	1830OE－79800N	40	59	46	O．\because	30	10	
E	79825	100	100	14	0.2	16	10	
7	79850	$E E$	7き	14	O． 2	30	10	
8	79900	86	140	$こ 6$	0.2	E8	こ0	
9	797ごら	64	$E \in$	30	O．こ	$7 E$	50	
10	79875	58	88	$E 4$	$0 . \Xi$	3 O	10	
11	79750	$5 こ$	E8	64	O．E	E4	10	
12	79775	50	EE	38	O．こ	16	10	
13	80000	EE	120	$4 E$	O．E	$9 ૯$	10	
14	800 E5	48	5	14	0.2	44	10	
15	80050	170	E． 4	14	O．E	40	10	
16	80075	92	9 9	18	$0 . E$	64	10	
17	80100	8E	7こ	44	O．${ }^{\text {O}}$	40	10	
18	$801 E 5$	170	68	ご	0.4	ごも	10	
17	18300E－80150N	1 こ0	$E \in$	きこ	0.4	18	10	
20	15900E－79400N	16	88	30	0.4	110	540	
$\Xi 1$	79450	$1 E$	70	こ4	O． 2	70	170	
ここ	79500	34	110	E8	0.4	88	110	
E3	79550	64	54	E	0.2	76	10	
24	79600	24	140	90	0.2	120	こ0	
25	79650	74	130	ここ0	0.2	1700	10	
E6	79700	42	68	7 フ	0.2	130	10	
$E 7$	79750	E4	76	53	O．E	110	10	
E8	79800	18	60	30	$0 . E$	44	10	
29	79850	E8	58	18	O．E	40	10	
30	79900	40	70	18	0.3	66	10	
31	79950	$E 10$	64	8	O．E	E6	10	
3 E	15900E－80000N	$6 E$	5 5	$1 E$	O．${ }^{\text {O }}$	30	10	
33	RLE1 000	40	86	E8	0.4	E40	10	
34	10	70	120	30	0.6	E4	30	
35	EO	140	E®O	120	1.8	28	EO	
36	30	72	80	140	1．	58	ここす	
37	40	140	E70	120	E．O	E－4	30	
38	50	140	き40	$1 こ 0$	E． 6	S0	30	
39	EO	110	300	110	E． 4	34	50	
40	70	120	E40	130	こ．	34	30	
41	80	$1 \Xi 0$	E®O	110	E． 4	ここ	50	
4ご	90	$1 E 0$	140	E6	0.8	E8	30	
43	100	$8 E$	110	24	0.8	こ日	\because	
44	110	$1 こ 0$	180	48	1．\because	24	10	
45	RLE1 1E0	490	150	ここ	2．0	10	EO	
46	RLEBE OOO	38	64	ここ	O．E	96	10	
47	$E 5$	G	E8	40	O．E	190	10	
48	50	EO	170	74	O． 8	60	40	
49	75	78	120	40	O． 6	16	50	
50	100	130	94	18	0.4	こも	40	
51	155	130	160	38	O． 6	1Ξ	30	
50	150	330	180	70	1.4	10	1500	
53	175	250	140	40	$0 . \Xi$	$1 E$	ESO	
54	$E 0$	E50	120	こ4	0.4	14	110	
55	E50	300	98	16	0.4	$1 E$	80	
j6	300	350	$1 こ 0$	14	1．E	26	E50	
57	350	140	100	E6	0.4	3E	$1 \in 0$	
58	400	130	120	E8	1.0	$5 ะ$	EO	
59	450	90	78	18	O． O	18	10	
60	－	Эะ	84	－30	O．${ }^{\text {O }}$	12	70	－－－－－－－－－－－－
61	RLBE 550	54	90	$E \in$	0.4	30	10	

T．T． No．	SAMPLENG．		Cu	Zri	Pb	Ag	As	$\begin{array}{r} \text { PPE } \\ \text { AU1 } \end{array}$	8609－047	
			Pg． 10 of 10							
62	RLBE EOO			100	80	18	0.2	こ4	70	
63	FLBE ESO		40	7E	こも	0.2	30	10		
64	ELBOOOON－1825OE		34	$4 E$	3き	0.2	18	10		
65	ELAOOOON－1815OE		80	100	38	0.6	$1 E$	30		
$E \in$	17500E－7971 SN		300	98	E8	1.8	ご	30		
67	79500		310	98	$\Xi 6$	1.4	16	20		
68	799きら		ごて	Э€	24	0.4	E	10		
EF	79875		490	98	34	こ．こ	30	470		
70	79888		470	$8 \in$	34	こ．こ	20	ここ0		
71	79775		170	350	10^{0}	E． 4	12	10		
7气	17500E－79988N		120	EGO	130	9．0	14	10		
73	17800E－79775N		130	74	14	0.3	10	10		
74	7Eヒヒ7	TF	E400	160	30	Q． 4	64	30		
75	78464		100	380	140	こ．こ	150	850		
76	784E3		24	140	140	0.8	$4 E$	140		
77	7847 2		110	100	100	0.4	E0	10		
78	9189こ		140	$1 \Xi 0$	Eこ	$0 . E$	38	10		
79	91897		68	78	18	0.8	38	10		
80	91896		44	56	32	O．E	44	10		
81	97533		54	110	56	O． 6	こ50	10		
8こ	97538		110	130	14	O．E	E60	30		
83	97539		86	8 E	18	0.3	30	10		
84	97540		80	100	ここ	O．	ここ	10		
85	91899		Ee	6E	12	0.2	58	10		
B6	91900	TF	54	EO	E6	0.3	70	10		
－ 97	7Е€64 S	SILT	T 94	$1 こ 0$	30	0.2	40	E80		
88	フЕEヒE		EE	190	16	0.3	40	10		
87	91898	SILT	T E4	130	38	$0 . E$	4	10		

SAMFLE				1	ppm	pom	pont	1	pora	1		pDm				Dom
NO.	1 LOCAIION \& DESCRIPTION	1 TYPE	IWIDTH		Cu	Po	In		Ag	1	Au	As				Bd
${ }^{5} 05$	1 10x Py in silicified clay altered felsic	IGrab	1	I	421	3401	680		2.6	1	15001	220		1	401	448
	1 volcanic.	Italus	1	1	1	1		1		1	1			I	1	
	1	Ibelow	1	1	1	1		1		1	1			1	1	
47596	(Gossaned felsic volcanic.	144 ppd	1	1	20	21	16		. 2	1	10	2			3481	180
	1	l Au area		1	1	1		1		1	1			1	1	
48507	\| 10\% Py in silicified clay altered felsic.	1	1	1	361	88	18		1.2)	2581	460		1	481	128
	1	1	1	1	1	1		1		1	1			1	1	
47508	I Gossaned rhyolite, minor diss. Py.	1	1	I	34	6	28		.2	1	10	28		1	881	200
	1	1	1	1	1	1		1		1	1			1	1	
47509	I A5 47508.	1	1	1	821	10	30	1	1.8	1	701	40		1	201	688
	1	1	1	1	1	1		1		1	1			1	1	
47510	\| As 47588.	1	1	1	181	21	56	1	. 2		10	2		1	201	60
	1	1	1	1	1	1		1		1	1			1	1	
47511	\| As 47588.	1	1	1	161	21	44	1	. 2		18	24			3201	3%
	1	1	1	1	1	1		1		1	1			1	1	
47512	I As 47588.	1	1	1	141	41	32	1	.2	1	181	2		1	1201	588
	1	1	1	1	1	1		1		1	1			1	1	
71789	1	1 Chip	1	1	18	22	64	1	. 4	1	51	2		1	1	
71710		1 -	1	1	61	38	54	1	. 2		51	12		1	1	
71711		1 -	1	1	61	34	58	1	. 4		51	161		1	1	
	1	1	1	1	1	1		1		1	1			1	1	
72534	\| Moon Lake Po showing - Heavily altered sheared	1	1	1	381	24	188		. 6	1	51	24		1	1	
	I basic volcanic tuff and shales.	1	1	1	1	1		1		1	1			1	1	
	1	1	1	1	1	1		1		1	1	1		1	1	
72535	\| Chip sample across meathered section of P_{0}	1	119	1	821	28	98	1	. 4		51	281		1	1	
	! showing. I metre perpendicular to bedding (?)	1	1	1	1	1		1		1	1	1		1	1	
	1 Shears (?)	1	1	1	1	1		1		1	1	1		1	1	
	1	1	1	1	1	1		1		1	1	1		1	1	
72536	\| Same as 72535-2-3 cm cherty veins.	1	11 l	1	1381	44	86	1	. 4		51	241		1	1	
	1	1	1	1	1	1		1		1	1	1		1	1	
72537	I Float fromer. 17. Carbonate altered volcanic	1 Float	1	1	481	1061	222	1	1.0		51	121		1	1	
	\| Calcite and Quartz veining. Minor sulphides.	1	,	1	1	1		1		,	1	1		1	1	
	1	1	1	1	1	1		1		,	1	1		1	1	
72538	I Fine-graired uudstone; 75x diss. sulphides.	1 Float	1	1	861	21	56	!	.4		101	1041		I	1	
	\| Some lighter coloured (fragments ?); float	1	1	1	1	1		1		,	1	1		1	1	
	1 from Cr. 16.	1	1	1	1	1		1		,	1	1		1	!	
		1	1	1	1	1		1		1	1	1		1	1	
72539	\| Float - Cr. 16. Qtz rich with sinor chlorite	\| Float	1	1	81	141	100	1	. 2		2401	81		1	1	
	1 and 2-5x sulphides.	1	1	1	1	1		1		I	1	1		1	1	
	,	1	1	1	1	1		1			1	1		1	1	
72541	\| Hornfels - silicified clastic with *5x pyrite	1	1	1	361	181	78		. 2		51	261		1	1	
	1 1	1	1	1	1	1	1	1			1	1		1	1	
72542	I Massive fo in dark cherty chlorite mudstone.	1	1	1	201	121	258	1	. 2		51	241	58		1	
	1	1	1	1	1	1	1				1	1			1	
72543	\| Slightly calcareous siltstone with minor Py	1	1	1	221	41	180	1	. 2		51	301	20		1	
	! veins.	11	1	1	1	1	1	1			1	1		,	1	
	1	1	1	1	1	1	1	1			1	1		,	1	
72544	\| Feldspar prophyry dyke; *5x Py and Po.	1	1	1	121	81	781		. 2		51	21			1	
	,	!	1	1	1	,	1				1	1			1	
72545	: Breccia stliceous matrix; andesite fragments;	1	1	1	481	241	781		. 2		51	121			1	
	$15 \times$ diss. sulphides in fragments.	1	1	I	1	1	1				1	1			1	
		11	1	1	1	1	1				1	1			1	
. 546	\| Siltstone; minor Py; some epidote. Across	1	1	1	541	181	881		. 2		51	161			1	
	I Cr. from Po showing.	1	1	1	1	1	1				1	1			1	
	1	1	1	1	1	1	1				1	1			1	
72547	: Foat - frotif soring or frost heave. Fanded	1	1	1	101	61	24		.21		51	21			1	
	1 quart2.	1	1	1	1	1	... 1	1		-	- 1	1	-		1	

SAMFLE		1 TYPE		1	pDOm	1		1	pD*			n	$\begin{aligned} & \mathrm{ppb} \\ & \mathrm{Au} \end{aligned}$				PD.	pow	
NO.	I LOCATION 6 DESCRIPTION		\|HIDTH			Cu	1	Po	1	In	1 Ag		1						
72548	\| Volcanic breccia siliceous matrix; andesite	1	1	1	24	1		81	108	1		. 21		51	14		1	1	
	1 fragments.	1	1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
72549	\| Float - Quartz with 5x arseropyrite and	1	1	1	14	1		81	26	1		.41			4180		1	1	
	1 minor pyrite.	1	1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
72550	\| Float - Quartz vein in mafic volcanic; ~1\%	1	1	1	6808	1		41	108	1	8.6	6	70	01	6		1	1	
	\| chalcopyrite.	1	1	1		i		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		I	1	1	
72551	(float-Silicified; calcareous (?)	1	1	1	34	1	58	81	296	1		4	60		16		1	1	
	1	1	1	1		1		1		1		1		1			1	1	
72552	\| Float - Pyrite ir Otz rich coarse riyolite	1	1	1	38	1		41	7800	1	1.8	81		51	60		1	1	
	I tuff; minor sphalerite.	1	1	1		1		1		1		1		1		1	I	1	
	1	1	1	1		1		1		1		1		,		1	1	1	
72656	\| Fhyolite with azurite and quartz	1 olc	1	1	42	1		81	66	1		41		51	22		1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
72657	\| Silicified rhyolite; 4x pyrite.	$10 / 6$	1	1	4	1		61	34	1		41		51	2		1	1	
	1	1	1	1		1		1		1		1		1			1	1	
72658	\| Mafic Volcanic; $5 \times$ pyrite + pyrrhotite; some	1 Float	1	1	114	1	20	01	96	1	4.2	21	180		76		1	1	
	\| quartz.	1 olc	1	1		1		1		1		1		1		1	1	1	
	$!$	1	1	1		1		1		1		1		1		1	1	1	
72859	\| Silicified rhyolite; 1\% pyrite.	$10 / 5$	1	1	8	1	56	61	22	1	1.2		210		464		1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
72660	\| Silicified volcanic; $2 x$ pyrite.	$10 / 5$	1	1	18	I	28	1	78	1	1.8		258		136		I	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
72661	\| Extreme silicified, brecciated volcanic?	I Float	1	1	46	1	16	61	370	1	2.8		538		34		1	1	
	$12 \times$ pyrite.	1	1	1		1		1		1		1		1			1	1	
	1	1	1	1		1		1		1		1		1			1	1	
72662	\| Silicified volcanic? Some malactite; large	$10 / 5$	1	1	870		14	41	96		3.8		370		34		1	1	
	1 pyrite cubes 10x; vein material.	1	1	1		1		1		1		1		1			1	1	
	,	1	1	1		1		1		1		1		1			1	1	
72663	\| Altered quartz rich volcanic? Pyrite, chal-	1 Float	1	1	38	1	950	1	1828	1	4.8		150		68		1	1	
	1 copyrite, galena 2%.	Isubcrop	p!	1		1		1		1		1		1			1	1	
	1 1	1	1	1		1		1		1		1		,			1	1	
72665	\| Quartz rich material with pyrite and chalco-	1 Float	1	1	8		56	1	32				20		6		1	1	
	1 pyrite $6 x$. Large weathered boulder.	$\mid 1 \times 1 \times 1 m$	1	1		1		1		1		1		1			1	1	
	1	1	1	1		1		1		1		1		1			1	1	
73555	\| Basic volcanic with some silicification;	1 Float	1	1	50	1	4	41	104	1		21	5	1	124		1	1	
	\| slight reaction to HCl ; $2 x$ pyrrhotite.	1	1	1		1		1		1		1		1			1	1	
		1	1	1		1		1		1		1		1			1	1	
73556	\| Quartz carbonate alteration with quartz and	\| Float	1	1	12			61	90			21	10		2		1	1	
	1 calcite veins; $5 \times$ chloritized	1	1	1		1		1		1		1		1	1		1	1	
	1	1	1	1		1		1		1		1		1			1	1	
73557	I Quartz carbonate alteration with pervasive	1 Float	1	1	18	1	10	1	142	1	. 2	1	5	1	21		1	1	
	\| silicification; chlorite veins.	1	1	1		1		1		1		1		1			1	1	
	1	1	1	1		1		1		1		1		1	1		1	1	
73558	Silicification of a basic volcanic; 1-2x	I Float		1	114	1		1	74				10		8501		1	1	
	I sulphides; minor chalcopyrite.	1	1	1		1		1		1		1		1	1		1	1	
		1	1	1		1		1		1		1		1	1		1	1	
73560	\| Carbonate alteratıori; pervasive + veins:	1 olc	1	,	28	1	6	1	66	I	. 2	1	10	1	41		1	1	
	1 miror chlorite.	1	1	1		1		1		1		1		1	1		1	1	
	1	1	1	1		1		1		1		1		1	1		1	1	
735611	1 Quartz carbonate alteration; pervasive. Minor	$10 / \mathrm{c}$	1	1	650	1	278	1	90	1	15.8		430	1	1221		1	1	
	\| pyrite, chalcopyrite, azurite, and malachite.	1	1	1		1		1		1		1		1	1		1	1	
		1	1	1		1		1		1		1		1	1		1	1	
23562	1 Quartz carbonate alteration with chalcopyrite	$10 / 5$	1	1	5600	1	30		96		5.2		30		61		1	1	
	1 1x, pyrite and malachite.	1	1	1		1		1		1		1		1	1		1	1	
		1		T		1		1		1		1		1			1	1	
	1	1	,	1		1		1		1		1		1	1		1	1	

SAMPLE				1	ppm	1	ppm	1	ppm	1	poin	1							
NO.	I LOCATION \& DESCRIPTION	1 TYPE		1	Cu		b	1	2n	1	Ag		Au						
73563	\| Quartz carbonate alteration with chalcopyrite	$1 \mathrm{o} / \mathrm{c}$	1	1	5408	1	38	A	72	1	3.2		10	1	18				1
	1 \|x and malachite.	1	1	1		1		1		1		1		1					1
	1	1	1	1		1		1		1		1		1					1
73564	\| Carbonate alteration; basic volcanic matn	$10 / 0$	1	1	3150	1	22	1	184	1	3.8	1		51	126				1
	1 carbonate veins; 1% chalcopyrite; minor	1	1	1		1		1		1		1		1		1	1	1	1
	1 malachite.	1	1	1		1		1		1		1		1		1	I		1
	1	1	1	1		1		1		1		1		1		1	1	1	1
73578	: Silicified volcanic; 5% sulphides. Cr. 15	1	1	1	28	1	8	1	28	1	. 4			51	36		1	1	1
	1	;	1	1		1		1		1		,		1		,	I	1	1
73571	1 Basic volcanic with rhyolite clasts; $5 x$	1	1	1	94	+	4	1	172	1	. 2			51	92		1	1	1
	1 sulpriaes (pyrite).	1	1	1		\|		1		1		1		1		1	1	1	1
	1	1	1	1		1		1		1		,		i		1	I	1	1
73572	I Quartz carbonate alteration; pervasive sili-	1	1	1	8		6	1	76	1	. 2		10	1			1	1	1
	\| caficatior.	1	1	1		1		1		1)		1		1	1	1	1
	1	1	1	1		1		1		1		1		1		1	1	1	,
73573	1 Quartz carbonate alteration; minor sulohides.	1	1	1	8		46	1	48	1	. 8	1		51	24	1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	,
73574	I Silicification; chloritization; minor sul-	1	1	1	4			1	28	1	.2	1		51	16	1	1	1	
	I phides.	1	1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		!	1	1	
73575	\| Felsic volcanic; stringers of chlorite; minor	1	1	1	14		4	1	48	I	. 2	1		51	18		1	1	
	\| pyrite.	1	1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
73727	I Gossaned silicified pod? with 10x Py. Likely	\| Float	1	1	346		40		90	1	6.8	1	40		28		1	1	
	I from within carbonate alt'n zone.	1	1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		,	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
73729	I Carbonate alt'n with pod of 35x Fy with	1 Float	1	1	70		38	1	30	1	6.2		3580		114		1	1	
	1 associated silicification.	!	1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
73730	1 1m chip across sheared silicified and Fy/Po	1 Chip	1	1	72		118	1	114	1	1.6	1				1	1	1	
	i bearing basic volcanic gossaned. 2 m frosm	1	1	1		1		1		1		1		1		1	1	1	
	1 contact with grey dyke.	1	1	1		1		1		1		1		1		,	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
73731	I Silicified carbonate altered pod of basic	1	1	1	4		4	1	66	1	. 4	1		1	46		1	1	
	I volcaric caught up in shear zorre.		1	1		1		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
73732	1 Fractured and stlicified basic volcanic with	1	1	1	126	1	18		96	1	1.4	1	5	1	308		1	1	
	125% Py and fo as fracture and bleb-like	1	1	1		1		1		1		1		1		1	1	1	
	1 fillings.	1	1	1		1		1		1		1		1		1	1	,	
	1	1	1	1		1		1		1		1		1		1	1	,	
	1	1	1	1		1		1		1		1		1		1	1	1	
73744	13 cm blebs of aspy/py vugs with extreme	1	1	1	16		37		51	,	10.7	1	.017	1	0		1	1	
	I weathering + gossaning in tid cwide vein (?)	1	1	1		1		1		1	q/t		g/t			1	1	1	
	I fracture controllec, ${ }^{1} 10 \times$ perpendicular to	1	1	1		1		1		1		1		1		1	1	1	
	I structure (10 amay from 73745).	1	1	1		,		1		1		1		1		1	1	1	
	1	1	1	1		1		1		1		1		1		1	1	1	
73745	I Cortinuation of shear zone upslope; signifi-	1	1	1	12		9		61	1	(0.7	1	. 17	1	13		1	1	
	I cant silicification and fracturing. Typically	1	1	1		1		1		1	¢/t	,	g/t			,	1	1	
	I dark greers with lignt coloured flaser bands.	1	1	1		1		1		1		1		1		1	1	1	
	\| Some orange weathering carbonate (?) veining.	1	1	1		,		1		1		1		1		,	1	1	
	(No sulpnides (e) along strike).	1	1	1		1		1		I		1		1		,	1	1	
	1	1	1	1		,		1		1				1			1	1	
73746	I Dark grey silicified fragments in a lignt	1	1	1	45		16		20	1	(0.7		.07	1	250		1	1	
	1 grey silicified matrix. 2x sulphides (py)	1	1	1		,		,		1	g/t		g/t				1	1	
	\| occur as stringers and diss. Rock "30x frags		1	1		,		,		1		,		1			1	1	
	1 *2 cm rust blets away from showing.		1	1				1		1		1	\ldots	1			1	1	
		1	1					1		1		1		1			1	1	

SAMFLE				1	Ora	;	pom	;	pom	1	pom	1	Dib	1				pomi 1	
NO.	f LOCATION \& DESCRIPTION	1 TYPE	IWIDTH		Cu	1	0	1	Ln	1	Ag	1	Au		As			501	
72788	!	1	13	1	56	;	38	1	112	,	2.8	1	310		38	1		!	
72789	!	1	13	1	36	1	14	1	162	1	1.4	1	118		56			1	
72790	1 1	1	13 m	1	60	1	20	1	84	1		i	128	1	36			1	
72791	1	1	13 n	1	48	1	50	1	86	1	6.8		130	1	114	1		1	
72792	1	1	13 m	1	30	1	32	1	88	1	2	1	200	1	92	।		1	
72793	1	1 Grab	1	1	14	1	194	1	342	1	3.4		60	1	50			1	
72794	1	1 Chip	15	1	20	1	134	1	238	1	2.8		340	1	168	!		3	
73733	: Ridge near gossan 2 for climbing. Sneared	1 Grab	1	1	34	1	466		24	1	31.8	1	$2 \mathrm{C40}$		0000			1	
	1 and clay altered intermediate volcaric; $15 \times$	1	1	1		1		1		1		1		1		1		1	
	1 Py diss. Heavy gossan; minor Aspy?	1	1	1		1		1		1		1		1		1		1	
	1	1	1	1		1		1		1		1		1		!		;	
98151	1 Sneared basic tuff, chlorite, nematite,	1	1	1	28	1	6		114	,	. 2	1	40	1	4			1	
	\| silica +/- carbonate alteration (ridge gossan)			1	1		1		1		1		1		1		1		1
	1	1	1	1		1		1		1		1		1		1		1	
97503	\| Ridọe gossan	1	1	1	140	1	238	1	296		2.8	1	5	1	2			1	
72787	1 Gossan *	1	1	1	48	1	40	1	134	1	1.6	1	150)	36			,	
78476	: L-80400N, 170005	I	1	1	304	1	22		80	1	1.8	1	5		150		!	1	
78477	1	,	1	1	254	1	36	;	146	-	. 8	1	5		880	1	,	1	
	1	1	1	1		1		1		$!$		1		1		1		1	
	j	1	1	1		1		1		!		1		1		1		1	

APPENDIX 4

ANALYTICAL METHOD

The mechods lisced are presencly applied to analyse beolonical material: by che Noranda (cochemical laboratory at vancouver. (March, 1984).

PREPARATION OF SAMPIES

Sediments and soils are dried at approximately $80^{\circ} \mathrm{C}$ and sieved wich a 80 mesh nylon screen. The -80 mesh (0.18 mo) traction is used for analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples) are analysed in its entirety, when it is to be determined for gold without further sample preparation. See addendum.

ANALYSIS OF SAMPLES

Decomposition of 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux cemperature. Pulps of rock or core are weighed out at 0.2 g or less depending on the matrix of the rock, and twice as much acid is used for decomposition than that is used for silt or soil.

The concentracions of $\mathrm{Ag}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{V}$ and Zn (all the group A elements of the fee schedule) can be determined directly from the digest (dissolution) with an atomic absorption spectrometer (AA). A VarianTechtron Model AA-S or Model AA-475 is used to measure elemental concentrations.

ELEMENTS REQUIRING SPECIFIC DECOMPOSITION METHOD

Antimony - $\mathrm{Sb}: 0.2 \mathrm{~g}$ sample is attacked with 3.3 mL of 6% tartaric acid, 1.5 mL conc. hydrochioric acid and 0.5 mL of conc. nitric acid, then heated in a water bath for 3 hours at $95^{\circ} \mathrm{C}$. Sb is determined directly from the acid solution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: $0.2-0.4 \mathrm{~g}$ sample is digested with 1.5 mL of 70% perchloric acid and 0.5 mL of conc. nitric acid. A Varian $A A-475$ equipped with an As-EOL measures the arsenic concentration of the digest.

Barium - Ba: 0.1 g sample is decomposed with conce perchloric, nitric and hydrofluoric acid. Atomic absorption using a nicrous oxide-acetylene flame determines ba from the aqueous solution.

Bisouth - Bi: $0.2 \mathrm{~g}-0.3 \mathrm{~g}$ is digested wich 2.0 mL of perchloric 70% and 1.0 mL of conc. nicric acid. Bismuth is determined directly from the digest into the flame of the $A A$ instrument c / w EDI..

Cold - Au: 10.0 \& sample (Pan-concentrates see helow) is dipested with aqua regia (1 part nitric and 3 parts hydrochloric arid). (iold is extracted with Methyl iso-Butyl ketone (MLBK) from the aqueous solution. cold is determined from the $M A_{B K}$ solucion with flame $A A$.

Magnesium - Mg: 0.0S - 0. 10 g sample is digested with 4 mL perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomir absorption. The AA-475 with a nitrous oxide flame decermines Mg from the aqueous solution.

Tungsten - $W: 1.0 \mathrm{~g}$ sample sincered with a carbonate flux and chereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot, taken from a perchloric-nitric (3: 1) decomposition, usually from the multi-element digestion, is diluted with water and a phosphate buffer. This solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scincrex).

LOWEST VALUES REPORTED IN PPM

$\mathrm{Ag}-0.2$	$\mathrm{Mn}-20$	$\mathrm{Zn}-1$	$\mathrm{Au}-0.01(10 \mathrm{pPb})$
$\mathrm{Cd}-0.2$	$\mathrm{Mo}-1$	$\mathrm{Sb}-1$	$\mathrm{~W}-2$
$\mathrm{Co}-1$	$\mathrm{Ni}-1$	$\mathrm{As}-1$	$\mathrm{U}-0.1$
$\mathrm{Cu}-1$	$\mathrm{~Pb}-1$	$\mathrm{Ba}-10$	
$\mathrm{Fe}-100$	$V-10$	Bi -1	

