

JANUARY, 1987. (BC'86 ASSESSMENT REP.)

Owners): Regional Resources (td.
Western Canadian Mining (WCM) $1+d$.
Operator: Regional Resources $L+d$.

GEOLOGICAL BRANCH ASSESSMENTPTPODT
15,560

GEOCHEMICAL, GEOPHYSICAL
A N D

DIAMOND DRILLING REPORT
on the
BULL 1,5,7, CLIMAX 1,3,8,11,12,13,15Fr, 16Fr, POST 15, WAY 13 CLAIMS

Liard Mining Division, British Columbia N.T.S. 104-0-16

Latitude $59^{\circ} 56^{\prime} \mathrm{N}$; Longitude $130^{\circ} 15^{\prime} \mathrm{W}$

OWNER/OPERATOR: REGIONAL RESOURCES LTD.

By

James J. Hylands, P.Eng.

CORDILLERAN ENGINEERING 1980-1055 W. Hastings Street Vancouver, B.C. V6E 2E9

JANUARY, 1987

WORK PERIOD: June 1, 1986 - October 19, 1986
CHAPTER PAGE
1 INTRODUCTION 1
1.1 Location and Access 1
1.2 Claim Status 1
1.3 History 1
1.4 1986 Program 4
2 GEOLOGY 5
2.1 Regional Geology 5
2.2 Property and Deposit Geology 7
3 GEOCHEMISTRY 9
3.1 Sampling 9
3.2 Analysis 9
3.3 Definition of Anomalies 10
3.4 Keystone Mountain 10
3.5 Donegal Mountain 14
4 GEOPHYSICS 19
4.1 Donegal Mountain 19
5 DIAMOND DRILLING 21
5.1 Tricorn Mountain 22
5.2 Northwest Disco 23
5.3 Northwest Disco South 23
6 REVERSE CIRCULATION DRILLING 25
6.1 Bull 7 Claim 25
7 SUMMARY AND CONCLUSIONS 28
8 COST STATEMENT 29
9 CALCULATION OF COSTS FOR ASSESSMENT WORK 35
10 BIBLIOGRAPHY 41
42

TABLES

PAGE
Table $1 \quad$ British Columbia Claims, Midway Property 3
Table 2 Anomalous Categories for Ag, Pb and Zn 10
Table 3 Diamond Drill Holes, Midway Property, 1986 21
Table 4 Reverse Circulation Drill holes, Midway Property, 1986 25
FIGURES
Figure 1 Location Map 2
Figure 2 Regional Geological Setting of the Midway Property 6
Figure 3 Stratigraphy of the Sulphide Deposits Area 8
Figure 4 Keystone Mountain Grid, Location Map 11
Figure 5 Keystone Mountain, Histograms of Ag, Pb and Zn 12
Figure 6 Keystone Mountain, Cumulative $\%$ Frequency Plots of Ag, Pb and Zn 13
Figure 7 Donegal Mountain Grid, Location Map 15
Figure 8 Donegal Mountain, Histograms of Ag, Pb and 2 n 16
Figure 9 Donegal Mountain, Cumulative \& Frequency Plots of Ag, Pb and Zn 17
Figure 10 Donegal Mountain, Soil Geochemistry Compilation Map 18
Figure 11 Bull 7 Claim, Location Map 26

PLATES

Plate 1	Claim Map	$1: 50,000$
Plate 2	Keystone Mountain Grid, Ag Soil Geochem	$1: 5,000$
Plate 3	Keystone Mountain Grid, Pb Soil Geochem	$1: 5,000$
Plate 4	Keystone Mountain Grid, Zn Soil Geochem	$1: 5,000$
Plate 5	Donegal Mountain Grid, Ag Soil Geochem	$1: 5,000$
Plate 6	Dongeal Mountain Grid, Pb Soil Geochem	$1: 5,000$
Plate 7	Donegal Mountain Grid, Zn Soil Geochem	$1: 5,000$
Plate 8	Donegal Mountain Grid, Magnetic Map	$1: 5,000$
Plate 9	Tricorn Mountain Grid	$1: 5,000$
Plate 10	Northwest Disco Grid	$1: 5,000$
Plate 11	Bull 7 Grid	$1: 5,000$

APPENDICES

Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G

Analysis Record Sheets, Soil Geochemistry Magnetometer Readings, Donegal Mountain Grid Diamond Drill Core Logging Eormat Diamond Drill Summary Logs Assay and Analysis Records, Core Reverse Circulation Drill Summary Logs Assay and Analysis Records, Chips

INTRODUCTION

1.3 HISTORY

The history and geology of the Midway property were reviewed by Cordilleran Engineering in 1981, 1982, 1983 and 1984. During this period Cordilleran Engineering actively explored the property on behalf of Regional Resources Ltd. One hundred and three surface holes totalling 28,767 metres were diamond drilled, 153 kilometres of baseline was cut, 61 kilomtres of Pulse EM surveys and 38 kilometres of gravity surveys were performed, and 9850 soil samples were collected and analyzed. Anomalous areas were prospected, and the property was geologically mapped. Twenty-six kilometres of main access road was reconstructed, and two steel beam bridges erected over major rivers.

Table 1 MIDWAY PROPERTY - BRITISH COLUMBIA CLAIMS (e JAN 31/86) 93 Claims (967 Units), Liard Mining Division; NTS 104/0-16; Reg. Owner:Reg. Res.

A: Claims in Area A; B: Claims in Area B.
BETH, STAR, RENEE \& TOOTS Registered Owner: Brinco Mining Limited.
NOTE: All '86 Certificates of Work received (accepted as applied).

Near the end of the 1984 surface drilling program in the Silver Creek area, after a mineralized zone approximately 250 metres by 250 metres had been defined, it was decided to start an underground exploraiton program. Underground access was required to determine mining methods and potential problems, to allow close-spaced diamond drilling of the mineral zone, and to permit in-situ examination of mineralization and alteration.

During September and early October, 1984, the infra-structure required trailer complex, dry, shop, power house, settling pond, storage and waste areas, sewer, water and communication systems - was installed. The first round was taken on October 11, 1984; by October 20, 1984, the portal was faced, air, water and ventilation systems in place, and the decline begun. Excavation continued until May 12, 1985, with a month's break for the Christmas holiday. A total of 1440 metres of ramps and drifts were driven during this period.

From these openings 170 core holes were drilled, predominantly on north-south sections 20 metres apart, to determine the shape, grade and continuity of the mineralization. A geological mineral inventory of 968,400 tonnes grading $532.7 \mathrm{gm} / \mathrm{t} \mathrm{Ag}, 10.1 \% \mathrm{~Pb}, 12.0 \% \mathrm{zn}$ and $0.89 \mathrm{gm} / \mathrm{t}$ Au was inferred from the results.

1986 PROGRAM
Between June 1 and October 19, 1986 a number of areas on the Midway property which were geologically similar to the Silver Creek area (shale overlying carbonate) were explored by prospecting, soil sampling, geophysical surveying and diamond and reverse circulation drilling. 72.7 kilometres of line were cut, 2368 soil samples collected, 153.1 line kilometres of magnetometer and 50.7 line kilometres of surface Pulse EM surveys conducted, and 971 metres of reverse circulation drilling and 1762 metres of diamond core drilling completed.

CHAPTER 2

GEOLOGY

REGIONAL GEOLOGY

The Midway property area is located within the Cassiar Platform terrain of the Northern Cordillera. Location and relationships with the major geological units of the region are shown in Figure 2.

The Cassiar Platform is an autochthonous miogeosynclinal wedge of relatively shallow-marine carbonate and clastic sediments, ?Proterozoic to Early Mississippian in age. The sedimentary wedge probably plunged to the southwest towards deeper-water depositional environments. During Mid Jurassic to Early Cretaceous times, a complex of oceanic sediments, volcanics and igneous ultramafics (the "Upper Sylvester Allochton", Gordey et al., 1982a) was thrust, probably from the southwest, and emplaced over the platform, which was later intruded by Mid- to Late-Cretaceous quartz monzonite ("Cassiar Batholith").

The Cassiar Platform is bounded to the east by the Rockie Mountain Trench, filled with basinal clastic facies. The trench is marked by a major dextral strike-slip fault along which the Cassiar Platform may have moved over a distance of at least 450 km during Mesozoic and Cenozoic times (Templeman-Kluit and Blusson, 1977). The Midway property area is underlain by Lower and Middle Paleozoic sediments intruded on the west by the Cassiar Batholith. The sedimentary succession has been assigned to the Kechika, Sandpile, McDame and Sylvester Groups (Gabrielse, 1969).

The Cambrian to Lower Silurian Kechika Group consists of siltstone, phyllite and limestone, altered to hornfels and skarns hear the Batholith contact. The Silurian to Middle Devonian Sandpile and McDame Groups consist of quartzite, dolostone and limestone. These Lower Paleozoic sediments were deposited in shallow water and on tidal flats of the Cassiar Platform. The Upper Devonian to Mississippian Lower Sylvester Group consists of a thick section of argillite, sandstone, and
local conglomerate beds. These clastic rocks were deposited by turbidity currents in an offshore basin or trough, which probably developed by subsidence of fault-bounded blocks, possibly associated with a rifting center. The Mississippian to ?Permain Upper Sylvester Group consists of phyllite, chert, local calcarenite beds, volcanic flows and tuffs and ultramafics. This unit is part of the allochthon which was thrust over the Cassiar Platform (Gordey et al., 1982a).

Figure 3 Regional geological setting of the Midway property (Modified after MacIntyre, 1983).

2.2
 PROPERTY AND DEPOSIT GEOLOGY

The geology of the Midway property in general and of the deposits area in particular was presented in Cordilleran Engineering, 1984. The stratigraphy as it is presently known, through mapping and diamond drilling, is shown on Figure 3.

Massive sulphide deposits have been found in two stratigraphic locations: "exhalative", shale-hosted, stratabound deposits near the base of Unit 2A of the Lower Sylvester Group, and replacement and open space filling, carbonate-hosted deposits at and below the unconformity between the Lower Sylvester and McDame Groups. The former have not proven to be of economic interest; exploration activity since 1982 has focussed on the latter.

The carbonate-hosted sulphide deposits (Lower Zone or LZ) have been found over a vertical interval of lo0m in McDame carbonate, throughout the upper limestone into the top of the underlying dolostone. The most extensively explored deposits are those immediately below the unconformity in the Silver Creek North zone, where sulphides have been found 20 m to 120 m below the surface. Massive sulphides have been intersected at depths between 175 m and 480 m northeast, east and south of the Silver Creek deposits.

The sulphides are spatially associated with, but not restriced to, altered and brecciated carbonate. In the Silver Creek zone there is a preferred azimuth of veins and tabular shaped bodies of 130 degrees to 150 degrees. The deposits vary in width and thickness from centimetres to tens of metres. The minerals of interest are argentiferous galena, sphalerite, and various silver-bearing sulphosalts, almost invariably accompanied by massive pyrite with lesser pyrrhotite and minor marcasite.

Both pre- and post-Sylvester faults have been found. Pre-Sylvester, post-McDame faults do not appear to have acted as barriers to mineralization. Major post-Sylvester faults are oriented northwest-southeast to north-south, dip to the west and have measured displacements of up to 200 m , east side down.

The source of the mineralizing fluids in the Midway area is unknown. Alteration in the Lower Sylvester clastics, apparent mineral zoning and interpretation of aeromagnetic data indicate a center could lie 1.5 km to 2.0 km southeast of the known deposits.

CHAPTER 3

GEOCHEMISTRY

Soil samples were collected during 1986 from grids established over various areas of the Midway property. Two of these were the Keystone Mountain and Donegal Mountain grids (Figures 4 and 7).

3.1 SAMPLING

Baselines were cut in both areas to establish control for sampling on chain and compass flagged lines. In the Keystone Mountain area flagged lines were run east-west 200 m or 400 m apart, and samples collected at 50m intervals (Plates 2 to 4). A l00m by l00m sampling grid was used in the Donegal Mountain area (Plates 5 to 7). In each area samples were obtained from the "B" soil horizon using a mattock and placed in kraft paper bags. Grid coordinates were used to identify samples; these were written on the bags, and on flagging left at each sample site. All samples were dried in the bags in a propane-fired drying oven at the base camp, and then sieved to produce a - 80 degree mesh fraction analysis.

3.2 ANALYSES

All analyses were performed by Bondar-Clegg and Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C. The samples were digested using hot $\mathrm{HNO}: \mathrm{HCl}$ and Ag, Pb and Zn determined by atomic absorption spectroscopy (AAS). The lower detection limits were $0.2 \mathrm{ppm} \mathrm{Ag}, 2 \mathrm{ppm}$ Pb and 1 ppm Zn . Copies of the analytical results are appended.

3.3

3.4

DEFINITION OF ANOMALIES

Between 1981 and 1984, in excess of 10,000 soil samples were collected from various parts of the Midway property and analyzed for Ag, Pb and 2n. From these results the following categories were defined (Cordilleran Engineering, 1981, 1982).

Table 2. ANOMALOUS CATEGORIES FOR Ag, Pb and Zn

Category

Background	<0.9	<59	<245
Weakly Anomalous	$0.9-1.9$	$59-142$	$245-485$
Moderately Anomalous	$2.0-4.2$	$143-344$	$486-964$
Anomalous	>4.2	>344	>964

KEYSTONE MOUNTAIN

Soil samples were collected on the northeast slope of Keystone Mountain (Figure 4) because surface mapping and interpretation of the airborne resistivity survey flown in 1981 indicated that the area was underlain by Lower Sylvester clastic rocks on the southwest over McDame carbonates on the northeast. 263 samples were collected at 50m intervals on flagged lines 200 m or 400 m apart. Cut base lines in this area totalled 3.2 km.

Histograms for Ag, Pb and Zn are presented on Figure 5. The distributions of Pb and Zn are close to \log normal while that for Ag is strongly skewed due to the high detection limit. Cumulative percent frequency plots (Figure 6) indicate that the samples are from a single population. Comparison of the analytical results (Appendix "A") with the categories in Table 2 shows that there is only one sample with weakly to moderately anomalous results in Ag, Pb and $\mathrm{Zn}(2.8 \mathrm{ppm}, 74 \mathrm{ppm}$ and 620 ppm , respectively).

REGIONAL RESOURCES LTD.
KEYSTONE MTN. GRID
LOCATION MAP
SCALE $\quad 1: 50,000$

KEYSTONE MTN.
Histograms of Ag, Pb and Zn

Figure 5

3.5 DONEGAL MOUNTAIN

Exposed on Hamlet, Table, and Donegal Mountains are slices of Sandpile and Kechika Group rocks thrust over younger Lower Sylvester clastics and McDame carbonate. On the northeast slope of Donegal Mountain McDame dolostone was under thrust by Lower Sylvester sandstone and siltstone. Oxidized breccia from the thrust plane was sampled during mapping in 1984, and returned values of 370 to $514 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 12 \%$ to $26 \% \mathrm{~Pb}$ and 1.7% to $3.8 \% \mathrm{Zn}$. oxidized material from a kill-zone in the valley between Table and Hamlet Mountains was anomalous in silver. Iron-oxide stained carbonate from the southeast tip of Smoke Mountain carried 1430 ppm zinc, and similar material was found in carbonate below the Lower Sylvester siltstone on Tiger Terrace.

These sampled points are peripheral to the broad, till covered western end of Moose Valley. Outcrops are sparse to non-existant except on Donegal and Table Mountains. The till is composed predominantly of rounded cobbles to boulders of granitic rock (Cassiar intrusive?) in a sandy clay matrix. There are local patches, up to several hundred square metres in area, of dark grey to black shale/siltstone. The mainly till covered area that was sampled was believed to be underlain by McDame carbonate with local patches of overlying Lower Sylvester siltstone/sandstone.

A total of 727 soil samples were collected from the 6.6 square km of the Donegal Mountain grid (Figure 7). Cut lines for control totalled 7.1 km ; 67.4 km of flagged line were sampled. Histograms for Ag, Pb and 2 n from these samples are plotted on Figure 8. The distribution of each element is similar to those for the Keystone Mountain samples. Comparing the analytical results to the categories in Table 2 and the results plotted on Plates 5 to 7 it was noted that there were a few areas weakly to moderately anomalous in Ag, Pb and Zn . These have been compiled on Figure 10. The cumulative percent frequency plots in Figure 9 indicate the samples are from a single population.

There are a number of weak zinc anomalies (C, E, G, H and I), and five with moderatey anomalous to anomalous results (A, B, D, F and J). Prospecting in these areas revealed that the majority were underlain by soil derived from carbonaceous clastic sediments. Coincident Ag, Pb and Zn anomalies were found only in areas D1, D2 and D3. These are aligned along the thrust fault, between McDame carbonate and Lower Sylvester sandstone, on which the oxidized breccia showing was found in 1984. Additional prospecting along this fault failed to find any sulphides.

REGIONAL RESOURCES LTD.
DONEGAL MTN. GRID

Pb ppm
DONEGAL MTN.
Histograms of Ag, Pb and Zn

Figure 8

CHAPTER 4

GEOPHYSICS

Magnetometer surveys were conducted in six areas of the Midway property during 1986. A total of 153 line km was surveyed at 12.5 m intervals, using EDA Instrument of Toronto OMNI 4 field and base station magnetometers. The base station magnetometer sampled the earths total magnetic field every ten seconds, and stored the readings. The field unit recorded the total field at each station. The data from each unit was merged daily using computer software supplied by EDA which made the diurnal corrections and subtracted 58,000 nano teslas from each corrected station reading. The data for each line was then fed to an in-house program which used a five point smoothing formula to provide "smoothed" data. The output for each line gives the station coordinates, the "raw" and the "smoothed" data for each reading. Actual readings are obtained by adding 58,000 nt to each value.

It was anticipated that the magnetic results, combined with other knowledge, would help in defining drill targets. After orientation surveys it was concluded that this technique would be most useful as a mapping tool in areas of extensive overburden cover, such as the Donegal Mountain grid.

4.1 DONEGAL MOUNTAIN

A total of 77.4 km of magnetometer survey was conducted in the Donegal Mountain area, on flagged lines 100 m apart. Readings were taken at 12.5 m intervals. The area covered is shown on Figure 7. The raw data, minus 58,000 nt, is plotted and contoured on Plate 8 and listed in Appendix " B ". The contours were computer-generated by Data Plotting Services of Toronto.

The majority of the magnetic features on this plate have a north northwest trend, paralleling the regional trend. The most prominent features, the two linear magnetic "highs" between $2600 \mathrm{~N}-4100 \mathrm{~N}$ and 2800E-3600E, correlate with known and inferred basic dykes in McDame carbonate. The offsets in both anomalies at their southeast ends were caused by a known fault.

The linear anomaly between $3900 \mathrm{~N}-4200 \mathrm{~N}$ and $2300 \mathrm{E}-2500 \mathrm{E}$ also overlies an explosed basic dyke. The remainder of the north northwest trending linear anomalies are concluded to indicate similar dykes.

The contour pattern located between $3200 \mathrm{~N}-3300 \mathrm{~N}$ and $3500 \mathrm{E}-4400 \mathrm{E}$ is believed to indicate an east-west structural break. A fault at the location was not previously suspected. A second east-west fault may be located betwen $3500 \mathrm{~N}-3800 \mathrm{~N}$ and 2700E-4200E. The inferred movement would be north side east.

In general, areas underlain by carbonate or quartzite have minor magnetic relief ($20 \mathrm{nt} / 100 \mathrm{~m}$) while areas underlain by Sylvester clastics have somewhat more ($40 \mathrm{nt} / 100 \mathrm{~m}$).

The coincident second-order soil geochemical anomlies described in the previous chapter are located immediately west of and parallel to the strongest magnetic linear. A possible geochemical-magnetic target is at 3050 N on line 2900E. This is the approximate location of the gossan sampled in 1984.

CHAPTER 5

DIAMOND DRILLING

All diamond drilling during the 1986 exploration program was done by E . Caron Diamond Drilling Ltd. of Whitehorse, Y. T. One unitized Longyear 38 was used from July 27 to October 27, and a second from September 12 to October 8. Ten holes, totalling 1762 metres, are listed in Table 3.

Table 3. DIAMOND DRILL HOLES, MIDWAY PROPERTY, 1986

DDH \#	AREA	CLAIM	AZIMUTH	DIP	DEPTH	DAT	
MW-86-							
274	Tricorn	Climax 11	0	-90	157.60	6	Aug-10 Aug
275	NW Disco	Bull 5	0	-90	102.11	14	Aug-17 Aug
276	Tour Creek	Climax 1	0	-90	111.86	11	Aug-13 Aug
280	NW Disco	Bull 1	270	-70	268.83	12	Sep-21 Sep
281	NW Disco	Bull 1	270	-70	228.60	19	Sep-30 Sep
282	NW Disco	Bull 5	170	-45	152.40	21	Sep-25 Sep
283	NW Disco	Bull 5	0	-90	177.39	26	Sep- 2 Oct
284	NW Disco	Bull 1	270	-70	254.20	30	Sep-11 Oct
293	Tricorn	Climax 12	0	-90	137.77	3	Oct-7 Oct
294	NW Disco	Bull 1	50	-85	171.30	12	Oct-19 Oc

A copy of the Diamond Drill Core Logging Format, and summary copies of each drill hole log giving the pertinent data, are appended, as are copies of the Assay and Analysis Records.

Diamond drilling in 1986 was concentrated in three areas where shales were known or suspected to overlie carbonates. Three holes (274, 276,293) were drilled on the Tr icorn Mountain grid approximatley 3 km south southeast of the Silver Creek deposits. The remainder were on the NW Disco grid; four (280, 281, 2281, 284, 294) in the vicinity of holes 81 and 88 in the southeast corner of the grid (NW Disco South) and three (275, 282, 283) north of Tricorn Mountain near the center of the grid, 1.5 to 2 km north northwest of the deposits. The results by area are discussed below.

5.1 TRICORN MOUNTAIN

A relatively complete stratigraphic section, from Lower Sylvester clastic rocks on the south to Upper Kechika carbonaceous siltstones on the north, is exposed on Tricorn Mountain. Geological, geochemical and geophysical surveys previously conducted on the Tour Creek grid (Cordilleran Engineering 1981, 1982) east of Silvertip Creek were extended west on to Tricorn Mountain. Two target areas were chosen to be tested by diamond drilling, one low on the east flank of Tricorn Mountain and the second at the mouth of Tour Creek (Plate 8). Surface mapping indicated that the desired Sylvester/McDame contact was located just below the valley bottom; the drill targets were chosen after interpretation of the surface Pulse EM data.

A total of 3.0 km of access road was constructed using Caron's D-6C bulldozer. DDH MW-86-274 was collared on the lower slope of Tricorn Mountain; the core confirmed that the Sylvester/McDame contact was about 50 m below the valley. No sulphides or breccias were intersected; the YBR intervals probably represent altered dykes, with the upper one occupying a fault between McDame limestone units ML2 and ML5. A large number of partially to strongly altered, steeply dipping basic dykes are exposed in the limestone on Tricorn Mountain.

DDH MW-86-293 was drilled 60m north of MW-86-274. The McDame/Sylvester contact in DDH 293 was 23 m higher than in DDH 274. This gives an apparent dip of 20 degrees to the south, similar to the dips exposed in the strata on Tricorn Mountain. Sixty metres of variably brecciated and recrystallized Upper McDame limestone was intersected. Four intervals totalling 3.22 m of red to orange iron oxide and oxide-stained limestone were found between 103 m and 118.2 m depth. These returned geochemically anomalous values in Zn , but low values in Ag and Pb .

The combination of recrystallization, brecciation and possibly oxidized sulphides is encouraging.

The third hole, 276, was drilled near the mouth of Tour Creek, east of the inferred Silvertip Creek fault. The unconformity was intersected approximatey 35 m below the valley, at the same elevation as in DDH 274. The upper 32 m of limestone was moderately brecciated Unit ML5. Textures in the limestone below this were obliterated by recrystallization and minor dolomitization. No sulphides were seen.

Displacement on the Silvertip Creek Fault in this area appears to be very minor, as compared to the apparent displacement 3 km to 4 km to the north.

5.2 NORTHHEST DISCO

The NW Disco area is covered with glacial till and glacio-fluvial sand and gravel; there are practically no bed rock exposures. Soil sampling, till mapping and magnetometer and EM surveys were combined to produce an approximate subsurface geology map. Three holes were drilled, one for stratigraphic and structural information and two in potentially mineralized zones.

The location of the first hole, MW-86-275, was based on an initial interpretation, and was expected to intersect Lower Sylvester clastics overlying McDame limestone east of the projected northward extension of the Silvertip Creek fault. The interpretation was essentially correct; 56 m of clastics were intersected, but the contact with the limestone was a major fault with up to 270 m of offset, eastside down. A 3 m silicified interval in Unit la contained up to 5% pyrite, but negligible values in Ag, Pb, and Zn .

Diamond drilling on the Reg Resources property west of NW Disco during 1985 and 1986 resulted in the definition of a variably mineralized east-west striking, steeply north dipping structure cutting shale (G. Medford, pers. comm., 1986). Drill hole MW-86-282 was drilled east of this area to intercept the mineralized structure and marble, calcareous siltstone and siltstone. It failed to find the structure, or any sulphides of economic interest. The strata have been interpreted as Middle Kechika limy silstones by correlation with similar rocks exposed off the property (J. Nelson, pers.comm., 1986).

The third hole, MW-86-203, was drilled in a fault-bounded block expected to have relatively thin Sylvester siltstone overlying limestone. Two fault zones were defined in core above the siltstone/limestone contact found at a depth of 131 m . The McDame stratigraphy could not be defined because of brecciation, recrystallization and dolomitization. Minor disseminated pyrite was found in brecciated siltstone immediately above the contact; this zone contained negligible Ag, Pb and Zn .

5.3 NW DISCO SOUTH

The southeast corner of the NW Disco grid has a common border with the Discovery grid. Two holes, MW-84-81 and 84-88, were previously drilled in this area; hole 81 intersected three carbonate-hosted sulphide horizons (LZ's) of which the deepest returned 0.9 m grading $2116 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, $33.8 \% \mathrm{~Pb}$ and 10.48 Zn . Hole $\mathrm{MW} 84-88,145 \mathrm{~m}$ to the northwest, was blank.

Four holes were drilled during 1986 to determine the extent of the mineralization. Diamond drill hole MW-86-280 was sited 110 m north of MW-84-81; it intersected four Lower Zones, total thickness 12.1 m , between depths of 202 m and 222 m . These were hosted by brecciated MLl limestone. The best intersection graded $176.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 2.6 \% \mathrm{~Pb}$ and 11.7% Zn across 2.45 m .

Hole MW-86-281 was collared 95 m west of MW-84-81 to determine if the sulphides occurred updip at a shallower depth. Unfortunately, a fault was intersected at 101 m which juxtaposed Lower Sylvester Unit 1B sandstone against 40 m of brecciated upper McDame limestone; the offset on this fault could not be determined, and the stratigraphic trap at the unconformity was not found. A second fault at a depth of 152 m was occupied by a dyke followed by a normal sequence of ML7/ML8; this package was encountered much higher than expected. A similar fault was found by hole MW-84-88 140 m to the north.

The third hole in this area, MW-86-284, was collared 70 m east of MW-84-88 to test for mineralization paralleling the unconformity north of MW-84-81 and MW-86-280. A normal Lower Sylvester clastic sequence was found between the collar and the unconformity at a depth of 211 m , although the Unit $2 B$ sandstone package appeared to have been tectonically thinned by the numerous faults intersected. Once again, brecciation and recrystallization of the limestone precluded indentification of the McDame stratigraphy. An altered dyke between 224 m and 234 m probably occupies a fault; the underlying carbonate is most probably Lower McDame dolsotone (ML8). No Lower Zones were found.

The last hole, MW-86-294, was oriented to intersect the unconformity 75 m east of 86-284. Four faults cut the Unit 2B sandstone; the shale/limestone contact was 80 m lower than in 284 . Two thin Lower Zones were found, 0.5 m at a depth of 16 m below the contact and 0.3 m at 25 m . The limestone was variably brecciated but nor recrystallized.

The results of all the drilling in the southeast corner of the MW Disco grid indicate that the Sylvester strata have been much more structurally disturbed than farther south. These gouged and broken sections make successful drill hole completion difficult. All four 1986 holes were reduced once, and two of them twice. It is possible that these fault zones represent lateral accommodation of the stresses generated during emplacement of the allochthon by bedding plane movement. Alternatively, they could be relatively high angle normal faults generated by release of compression after emplacement of the Cassiar Batholith.

REVERSE CIRCULATION DRILLING

6.1
 BULL 7 CLAIM

A large gossan, highly anomalous in Ag, Pb and Zn is exposed on the Bull 7 claims. The iron-manganese oxide mineralization is predominantly in a Sylvester siltstone remnant surrounded and underlain by McDame limestone. Trenching of the gossan in the past a) did not uncover any sulphides, and b) indicated that the siltstone cap was relatively thin.

To test this area at depth 4 km of access road was rebuilt (Figure ll), 8 drill sites were constructed, and nine reverse circulation holes, 12 cm in diameter, were drilled on two sections 225 m apart (Plate 9). All holes were vertical, and were spaced approximately 100 m part. It was necessary to drill two holes from one site after the first hole was lost.

The drilling equipment (Nodwell mounted Schramm air rotary drill and down hole hammer, Nodwell TF60 support vehicle) and two man crew were supplied by Midnight Sun Drilling Co. Ltd. of Whitehorse. The holes were completed between September 30 and October 15, 1986.

The down hole hammer produced minus $1 \backslash 4$ inch rock chips which were passed through a cyclone before splitting three times with a Jones riffle to give a final 12.5% sample. The sampling interval was 1.5 m . The chips were logged, and most samples sent for analysis. The holes are summarized in Table 4, and the logs and analysis sheets are appended.

Table 4 REVERSE CIRCULATION DRILL HOLES, MIDWAY PROPERTY, 1986

DRILL HOLE	AZIMUTH	DIP	DEPTH	DATES	
MW-86-					
285	0	-90	96.62	30 Se	- 1 Oct
286	0	-90	105.76	20 C	- 3 Oct
287	0	-90	89.00	30 C	- 40 Oct
288	0	-90	169.77	7 Oc	8 Oct
289	0	-90	127.10	90 c	- 10 Oct
290	0	-90	93.57	110	- 12 Oct
291	0	-90	108.20	1200	- 13 Oct
292	0	-90	102.72	1300	- 14 Oct
295	0	-90	78.64	1400	

Results:

1. No sulphides of economic interest were found.
2. The shale caprock was much thicker than anticipated. Where 10 m to 20 m was expected, up to 89 m was found.
3. Iron oxides were intersected from surface to depths of 20 m to 70 m , and intermittently at greater depths.
4. In general, the base of continuous oxidation was related to the Sylvester/McDame contact.
5. High Zn results, and to a lesser extent Ba , were predominantly in carbonate-hosted oxides close to the shale/limestone contact.

CHAPTER 7

SUMMARY AND CONCLUSIONS

A variety of techniques (geochemical, geophysical, geological mapping, diamond and reverse circulation drilling) were used in different areas of the Midway property during 1986 in an attempt to find more mineralization. Positive indications were found in the Tricorn Mountain area, and the known deep mineralization was extended to the north in the Discovery area. Although strong surface indications are present on the Bull 7 claim, drilling failed to find any sulphides. Limited drilling north of Tricorn Mountain, after extensive surface exploration, did not find either McDame of Atan-hosted mineralizaiton.

It can be concluded that the potential of finding carbonate hosted massive sulphide mineralization within 100 m of the surface in the areas tested is very low, with the possible exception of beneath the east slope of Tricorn Mountain.

COST STATEMENT

SALARIES;

Project Manager

- H.Thalenhorst Jun 1 - Oct 19, 79 days (salary included in Project Management)

Project Geologists
-J.J. Hylands, P.Eng.
-W. J. Jakubowski, B. Sc.
-P. Donkersloot, B.Sc.
Assistants

-G. Lafortune,	Geophysical
-L. Kostyshin,	n
-I. Hylands,	$"$
-J.Arnold,	nn
-C.Mimnaugh,	"
-J. Riddell,	Geochemical
-B.Fletcher,	n

| Jun 18 - Sep 30, 85 days e | $88 / \mathrm{d}$ | $7,480.00$ | |
| :--- | :--- | ---: | :--- | :--- | :--- |
| Jun 15 - Oct 19, 110 days e | $79 / \mathrm{d}$ | $8,690.00$ | |
| Sep 21 - Oct 27, 26 days e | $66 / \mathrm{d}$ | $1,716.00$ | |
| Sep 26 - Oct 19, 24 days e | $79 / \mathrm{d}$ | $1,896.00$ | |
| Jul 7 - Sep 17, | 31 days e | $84 / \mathrm{d}$ | $2,449.00$ |
| Jun 8 - Sep 14, | 73 days e | $84 / \mathrm{d}$ | $6,132.00$ |
| Jun 8-Sep 17, | 79 days e | $84 / \mathrm{d}$ | $\frac{6,636.00}{44,999.00}$ |

Camp Maintenance
-L. MacDonald
-J. Young

Jun 4 - Sep 12, 75 days @ $\$ 84 / \mathrm{d}$
Oct 10 - Oct 19, 10 days e $78 / \mathrm{d}$ 85 days

TOTAL B.C. SALARIES, 1986
\$39,000.00
27,060.00
8,800.00

7,480.00
8,690.00
, 716.00
2,449.00
6,132.00
$6,636.00$
$34,999.00$

6,300.00
780.00
$7,080.00$

6,014.00
2,756.00
1,881.00
525.00

5,976.00
17,152.00
$\$ 134,691.00$

```
FOOD AND ACCOMMODATION:
Midway Personnel
-Project Manager
-Project Geologists
-Assistants
-Camp Maintenance
-Catering Staff
Midway Personnel
-Project Manager
-Project Geologists
-Assistants
-Camp Maintenance
-Catering Staff
```

B.C. \& Y.T.

100 days
252 days
525 days
95 days
264 days
1236 days
B.C.

79 days
202 days
428 days
85 days
197 days
991 days

```
Contractors Personnel
-Frontier Helicopters, Watson Lake
Various pilots Jun 12 - Sep 6, 78 days total, 26 days in B.C.
-Crone Geophysics Ltd, Toronto
Richard Kurtz, operator Jun 18 - Jul 25, 38 days total, 26 days in B.C.
-G.Clark Contracting, Whitehorse
Various linecutters Jun 10 - Aug 31, 143 days total, 105 days in B.C.
-Caron Diamond Drilling, Whitehorse
Various drillers \& helpers Jul 27 - Oct 19, 494 days total, 360 days in B.C. Catskinners Jun 10 - Oct 3, 89 days total, 56 days in B.C.
-Midnight Sun Drilling, Whitehorse
Driller,helper, supervisor \(\operatorname{Sep} 30\) - Oct 25, 35 days total, 36 days in B.C.
-Canamax Resources Inc., Toronto
A. Watts, geophysicist Jun 22 - Sep 14, 43 days total, 30 days in B.C.
-Strathcona Mineral Services, Toronto
E. Roy, electrician Oct 3 - Oct 7, 5 days total, 5 days in B.C.
FOOD AND ACCOMMODATION
-Visitors, various 70 days total, 13 in B.C.
Total camp mandays, B.C. Y.T. \(=2231\)
Total camp mandays, B.C. only \(=1648\) Period: June 8 - October 19, 1986.
Cost of food and accommodation, B.C. 1648 mandays \(\mathrm{x} \$ 43.99 /\) manday \(=\$ 72,495.52\)
```

```
TRANSPORTATION
    -Return air transportation, Vancouver or Toronto
    to Watson Lake, including meals and lodging ..... = $20,999.00
    B.C. cost prorated on basis of ratio of employee
    mandays in B.C. to total employee mandays on Midway
                                    = \frac{991 }{1236}\times$20,999.00
    -Truck Rentals
    Hertz 4-wheel drive crewcab and pickup .......... = $18,586.00
    B.C. cost prorated on basis of ratio of mandays in
    B.C. to total mandays on Midway
                                    = =1648 < < $18,586.00
                                    = $13,729.15
    -Helicopter Lease
    B.C.Hours: 36.3 hrs x $443.00/hr = $16,080.90
    B.C.Fuel: 36.3 hrs x $7,680.00 = 2,598.17 $18,679.07
    107.3 hrs total
-Freight, express, delivery $15,696.00
RENTALS
-Spacetel installation
    rental Jun l - Oct 19, $ll,320 x 1640
        2231 = $ 8,361.88
    -966 Loader (all B.C.) Jun l - Aug 31 8,520.00
-Fuel tanks (all B.C.)
Jun 1 - Sep 30
                                    900.00
-Magnetometres
Jun 15 - Sep 30 $9,792 x \frac{153.1 km BC}{182.7 km tt }
$8,205.56
SURVEYS
-Crone Geophysics Limited Jun 18 - Jul 25, 38 days; Ground PEM 50.7 line km @ \(\$ 455.25 / \mathrm{km}\), B.C. ( \(\$ 34,053\) for 74.8 line km , total) Total Surveys B.C. \(\overline{\$ 23,081.18}\)
```

ANALYSES
-2325 soil samples analyzed for Ag , Pb , and Zn e $\$ 4.00 /$ sample $\$ 9,300.00$
-20 core samples assayed as follows:Sample preparation $20 \times \$ 3.75=\$ 75.00$
Silver $20 \times 5.50=110.00$
Lead $20 \times 6.25=125.00$
Zinc $20 \times 6.25=125.00$
Gold $20 \times 6.00=120.00$
Specific Gravity $\quad 19 \times 7.75=147.25 \quad 702.25$
-209 core and percussion samples analyzed as follows:
Sample preparation $209 \times \$ 3.25=\$ 679.25$
Silver $\quad 209 \mathrm{x} 2.00=418.00$
Lead $209 \times 1.00=209.00$
Zinc $\quad 209 \mathrm{x} 1.00=209.00$
Barium $\quad 196 \times 4.50=882.00$
Gold $\quad 89 \times 6.75=600.75$
Copper $5 \times 1.00=5.00$
Arsenic $\quad 5 \times 3.75=18.75$
Iron $\quad 12 \times 1.00=12.00$
Total Analyses B.C.
$\frac{3,033.75}{\$ 13,036.00}$

PROJECT MANAGEMENT

Strathcona Mineral Services, Toronto May 1 - Oct $19=\$ 90,221.00$
Prorated on basis of mandays in B.C. to total mandays in Midway
1648 x \$90,221.00 2231
$=\$ 66,644.65$
To October $30=\$ 96,766 ;$ Oct $19=\$ 90,221$

LINECUTTING

95 km of cut line, B.C. \& Y.T. $x \$ 315.00 / \mathrm{km}=29.925 .00$
Mobilization and demobilization $\quad \frac{1,300.00}{31,225.00}$
Cost $/ \mathrm{km}=\$ 31,225.00=\$ 328.68 / \mathrm{km}$
95 km
B. C. cost $=72.7 \mathrm{~km} \times \$ 328.68=$
$\$ 23,895.04$
ROAD AND DRILL SITE PREPARATION
E. Caron Diamond Drilling Ltd., Caterpillar D-6C tractor rental Jun 10 - Oct 19, 434.5 hrs x $\$ 75 / \mathrm{hr}$

DIAMOND DRILLING

REVERSE CIRCULATION DRILLING
Midnight Sun Drilling Co. Ltd., Whitehorse

$90.53 \mathrm{~m} \mathrm{e} 13.26 / \mathrm{m}$	\$ 1,200.00
837.90 m e $26.40 / \mathrm{m}$	22,120.56
44.77 m a $30.35 / \mathrm{m}$	1,358.77
973.20 m	24,679.33

$\$ 24,679.33$

Mobilization and demobilization

6,435.00
$\$ 32,639.83$

ROAD MAINTENANCE
Thawing of culverts with steam truck 2,146.00

CAMP OPERATING COSTS

Camp supplies and equipment
Food
Fuel oil
Gasoline
Propane
Oil and lube
Vehicle repairs
Equipment repairs
Field supplies
Telephone
Maps
Draughting

Total to Oct. 31
\$ 5,858.00
36,836.00
27,544.00
7,669.00
4,245.00
1,892.00
1,023.00
342.00

5,786.00
8,255.00
31.00

Draughting
2,439.00
$\$ 101,920.00$

CAMP MANDAYS

Project Manager Total to Oct. 31Project Geologist109
261Assistants
543
Maintenance 104
Catering 271
Frontier Helicopters 78
Crone Geophysics 381
Linecutters 143
Caron Diamond Drilling 616
Midnight Sun Drilling 36
Canamax Resources 43
Strathcona Mineral Services 5
Visitors 70

COST SUMMARY

Salaries	$\$ 175,615.00$
Food and Accommodation	$72,795.52$
Transportation	$64,940.80$
Rentals	$27,119.10$
Surveys	$23,081.18$
Analyses	$12,268.50$
Management	$66,644.65$
Linecutting	$22,900.50$
Road and Drill Site Preparation	$32,587.50$
Diamond Drilling	$201,011.81$
Reverse Circulation Drilling	$32,639.83$
Road Maintenance	$2,146.00$

CIRCULATION OF COSTS FOR ASSESSMENT WORK
 Costs incurred between May 1 and October 19, 1986

A. MANAGEMENT FEES, B.C.
Strathcona Mineral Services \$ $66,644.65$J. J. Hylands, Cordilleran Engineering39,600.00Applicable mandays, B.C.:Midway employees 991 days
Contractors 614 days
Consultants 30 days
Visitors
13 days
1648 days
Management fee/manday $=\frac{\$ 106,244.65}{1648 \text { mandays }}=\$ 64.47 /$ manday
B. CAMP SUPPORT AND MAINTENANCE COST
To October 31, 1986, B.C. and Y.T.
Camp operating costs $\$ 101,920.00$
Plus: Freight and express $\quad 15,696.00$
$\frac{15,696.00}{\$ 117,616.00}$
Cost/manday $=\frac{\$ 117,616.00}{2317 \text { mandays }} \quad=\quad \$ 50.76 /$ manday
To October 19, 1986, B.C. only:
Catering salaries
$\$ 17,152.00$
Maintenance salaries 7,080.00
Transportation of personel
Rentals: telephone, vehicles, loader, fuel tanks
16,836. 58
31,511.08
$\$ 72,579.61$
Cost/manday $=\frac{\$ 72,579.61}{1648 \text { mandays }} \quad=\$ 44.04 /$ manday
Total Camp Support and Maintenance Cost =
$\$ 50.76 /$ manday $+\$ 44.04 /$ manday $\quad=\$ 94.80 /$ manday
C. HELICOPTER COST, B.C.
36.3 hrs $\mathrm{x} \$ 443.00 /$ hour\$16,080. 90
Fuel 2,598.17Camp support 26 days x 94.80/manday
Management 26 days x 64.47/manday2,464.801,676.22$\$ 22,820.09$
Cost/hour $=\$ 22,820.09$
36.3 hours $=\$ 628.65 /$ hour
D. LINECUTTING COST, B.C. \& Y.T.
Line cut $95 \mathrm{~km} \quad \mathrm{x} \$ 315 / \mathrm{km} \quad \$ 29,925.00$
Camp support $\quad 143$ mandays x 94.80/mandayManagement $\quad 143$ mandays x 64.47/manday13,556.40
Mobilization and demobilization9,219.21

$$
\text { Cost/km }=\frac{\$ 54,000.61}{95 \mathrm{~km}}
$$

$$
=\quad \$ 568.43 / \mathrm{km}
$$

E. MAGNETOMETER SURVEY COSTS, B.C.Rental of field and base station magnetometer\$8,205.56
Km surveyed, B.C. $=153.1 \mathrm{~km}$
Cost/km $=\$ 8,05.56$
153.1 km$=\$ 53.60 / \mathrm{km}$
Operator cost/manday - G. LafortuneSalary $\$ 88.00$ /manday
Camp support 94.80/mandayManagement64.47/manday\$247.27/manday
F. SOIL SAMPLING COST Analyses \$4.00/sample
Sample collection and preparationSampler salary \$84.00/mandayCamp support94.80/mandayManagement64.47/manday
\$243.27/manday
G. ACCESS ROAD AND DRILL SITE CONSTRUCTION COSTS

D-6 Caterpillar tractor
Rental
Fuel Cost $\quad 4.5$ gals $/ \mathrm{hr} \times \$ 1.932 / \mathrm{gal}$
$75.00 / \mathrm{hr}$
$\$ 8.69 / \mathrm{hr}$
$\$ 83.69 / \mathrm{hr}$
Operator mandays to October 19, 1986: 89 mandays
Camp support 89 mandays $\mathrm{x} \$ 94.80 /$ manday
\$ 8,437. 20
Management 89 mandays x 64.47/manday
5,737.83
$\$ 14,175.03$
Total Cat hours with operator to October 19,1986 $=762.5 \mathrm{hrs}$.

$$
\text { Operator cost/hour }=\frac{\$ 14,175.03}{762.5 \mathrm{hrs}}=\$ 18.59 / \mathrm{hr}
$$

Hourly cost to project of $\mathrm{D}-6 \mathrm{C}=\$ 83.69+\$ 18.59=\$ 102.28 /$ hour
H. DIAMOND DRILLING COSTS, B.C.
Contractors invoices \$201,011.81

Camp support 360 mandays x. $\$ 94.80 /$ day $34,128.00$
Management 360 mandays x 64.47/day 23,209.20
Assays and analyses
20 core samples assayed $\quad 702.25$
18 core samples analyzed $\quad 310.25$
Geologists
W. Jakubowski Aug.ll-Oct. $19 \quad 38$ days $\mathrm{x} \$ 330.00 /$ day $\quad 12,540.00$
P. Donerksloot Sep.12-Sep. 2110 days x 275.00/day 2,750.00

Core helper
L. Kostyshin

Camp support $\quad 108$ mandays $x \$ 94.80 /$ day $\quad 10,238.40$
Management 108 mandays $x \quad 64.47 /$ day $\quad \underset{\$ 295,592.67}{6,962.76}$
Diamond Drilling cost/metre, B.C. $=\frac{\$ 295,592.67}{1762.06 \mathrm{~m}}=\$ 167.75 / \mathrm{m}$
I. REVERSE CIRCULATION DRILLING COSTS, B.C.
Contractos invoices $\$ 32,639.83$

Contractors personnel
Camp support 36 mandays x \$94.80/day 3,412.80
Management 36 mandays x 64.47/day 2,320.92
Analyses
191 chip samples analyzed $2,723.50$
Geologis
P. Donkersloot Sep.30-0ct.16: 17 days \mathbf{x} \$275.00/day $4,675.00$

Helper
I. Hylands Sep. 30-0ct.30: $\frac{17 \text { days }}{34} \mathrm{x}$ 66.00/day $\quad 1,122.00$

Camp support 34 mandays x \$94.80/day 3,223.20
Management 34 mandays $x \quad$ 2,191.98
\$52,309.23

Reverse Circulation drilling cost/metre $=\$ 52,309.23$

SUMMARY OF ASSESSMENT COSTS

A.	Management fees		\$ 64.47/manday
B.	Camp Support and Maintenance		94.80/manday
c.	Helicopter		628.65/hour
D.	Linecutting		$568.43 / \mathrm{km}$
E.	Mangetometer Survey	Instrument	$53.60 / \mathrm{km}$
		Operator	247.27/manday
F.	Soil Sampling	Analyses	4.00/sample
		Samplers	243.27/manday
G.	Access Road, Drill Si	uction, D-6C	102.28/hour
H.	Diamond Drilling		167.75/metre
I	Reverse Circulation D		94.86/metre

ALLOCATION OF ASSESSMENT COSTS

BULL 7 GROUP

Work performed:
Reconstruction of existing access road to Bull 7 claim;
4 km road, 4 mm wide, D-6C, 39 hours $\mathrm{x} \$ 102.28 / \mathrm{hr}$
Construction of 0.6 m new road, 9 drill sites,
D-6C, 84 hours $\mathrm{x} \$ 102.28 /$ hour $=8,591.52$
Drilling of nine reverse circulation drill holes,
$973.20 \mathrm{~m} \times \$ 47.86 / \mathrm{m}$
TOTAL PHYSICAL.......... . $\$ 12,580.44$
TOTAL DRILLING
52,309.23
\$64,889.67
$=\$ 3,988.92$
$=\frac{52,309.23}{\$ 64,889.67}$

WAY GROUP

Work performed:

Cutting of 3.2 km of baseline $3.2 \mathrm{~km} \quad \mathrm{x} \$ 568.43 / \mathrm{km}=\$ 1,818.98$
Helicopter support $\quad 1.2 \mathrm{hrs} \mathrm{x} 628.65 / \mathrm{hr}=\quad 754.38$
Collection of 263 soil samples $\quad 9$ mandays $\times 243.27 /$ day $=2,189.43$
Analyses of 263 soil samples
Helicopter support
$263 \mathrm{x} 4.00 \mathrm{ea}=1,052.00$
$1.8 \mathrm{hrs} \mathrm{x} 628.65 / \mathrm{hr}=1,131.57$
6,946.36

TOTAL GEOCHEMICAL \$ 6,946.36
PAC WITHDRAWAL \quad. . $1,053.64$
\$8,000.00

DONEGAL GROUP

Work performed:

Cutting of 7.1 km of baseline $7.1 \mathrm{~km} \quad \mathrm{x} \$ 568.43 / \mathrm{km}=\$ 4,035.85$
Helicopter support $\quad 2.0 \mathrm{hrs} \quad \mathrm{x} 628.65 / \mathrm{hr}=1,257.30$
Collection of 727 soil samples 33.0 mandays $x \quad 243.47 /$ day $=8,027.91$
Analyses of 727 soil samples 727 x 4.00 ea $=2,908.00$
Helicopter support $\quad 5.6 \mathrm{hrs} \quad \mathrm{x} 628.65 / \mathrm{hr}=\frac{3,520.44}{10.740 .50}$
$\begin{array}{lclllll}77.4 \mathrm{~km} \text { of magnetometer survey } & 77.4 \mathrm{~km} & \mathrm{x} & 53.60 / \mathrm{km} & = & 4,148.64 \\ \text { Operator } & 10 \text { mandays } & \mathrm{x} & 247.27 / \mathrm{day} & = & 2,472.70 \\ \text { Helicopter support } & 4.2 \mathrm{hrs} & \mathrm{x} & 628.65 / \mathrm{hr} & = & \underline{2,640.33}\end{array}$
TOTAL GEOCHEMICAL
\$19,749.50
TOTAL GEOPHYSICAL
$\begin{array}{r}9,261.67 \\ \hline 292011.17\end{array}$

BULL 25 GROUP

Work performed:
Diamond drilling of seven holes on Bull 1 and
Bull 5 claims, totalling $1,354.47 \mathrm{~m} \times \$ 167.75 /$ metre $=\$ 227,212.34$

DDH \#	CLAIM	DATES DRILLED	DEPTH	COST
275	Bull 5	Aug $14-$ Aug 17	102.11	\$ 17,128.95
280	Bull 1	Sep 12 - Sep 21	268.83	45,096.23
281	Bull 1	Sep 19 - Sep 30	228.60	38,347.65
282	Bull 5	Sep $21-$ Sep 25	152.04	25,504.71
283	Bull 5	Sep 26 - Oct 2	177.39	29,757.17
284	Bull 1	Sep 30 - Oct 11	254.20	42,642.05
284	Bull 1	Oct 12 - Oct 19	171.30	28,735.58
			1354.47	\$227,212.34

Construction of access road and drill sites, D-6C, $140 \mathrm{hrs} \times \$ 102.28 / \mathrm{hr}=\frac{14,319.20}{\$ 241,531.54}$

TOTAL DIAMOND DRILLING = \$241,531.54

CLIMAX GROUP

Work performed
Diamond drilling of three holes on Climax 1, 11 and 12 claims, totalling $407.23 \mathrm{~m} \times \$ 167.75 / \mathrm{m}=\$ 68,312.83$

TOTAL DIAMOND DRILLING $=\$ 81,200.11$

BIBLIOGRAPHY

CORDILLERAN ENGINEERING

1981 Geological and Geochemical Report on Way l-23, Bull l-5, Climax l-11, Post 2 and Macc Mineral Claims, Liard Mining Division, B.C. Assessment Report submitted to British Columbia Ministry of Energy, Mines and Petroleum Resources, December, 1981.

1982 Geological, Geochemical, Geophysical and Drilling Report on Way 1-33, Bull 1-6, Climax 1-11, Post 1-10 and Macc Claims, Liard Mining Division, B.C. Assessment Report submitted to British Columbia Ministry of Energy, Mines and Petroleum Resources, January, 1983.

1983 Diamond Drilling Report on Way 1-24, Bull 1-27, Climax 1-16, Post 1-16, Beth 1-4, Star 2-3, Renee land Toots 4 Claims, Liard Mining Division, B.C. Assessment Report submitted to British Columbia Ministry of Energy, Mines and Petroleum Rewources, January, 1984.

1984 Diamond Drilling and Physical Report on Way 1-35, Bull 1-27, Climax 1-16, Post 1-16, Beth 1-4, Star 2-3, Renee 1 and Toots 4 Claims, Liard Mining Division, B.C. Assessment Report submitted to British Columbia Ministry of Energy, Mines and Petroleum Resources, February, 1985.

GABRIELSE, H., 1969:
Geology of Jennings Map-area, British Columbia (104-0). Geol. Survey of Canada, Paper 68-55.

GORDEY, S.P., GABRIELSE, H., and ORCHARD, M.J., 1982a:
Stratigaphy and structure of Sylvester Allochthon, southwest McDame Map area, northeastern British Columbia. In: Current Research, Part B, Geol. Survey of Canada, Paper 82-1B, 101-106.

TEMPLEMAN-KLUIT, D. J., and BLUSSON, S. L., 1977:
Pelly-Cassiar Platform and Selwyn basin: Neither without the other. Geol. Ass. Canada, Annual Meeting, Prog. with Abstract, 2, 52.

CORDILLERAN ENGINEERING

1980 GUINNESS TOWER. 1055 WEST HASTINGS STREET. VANCOUVER,B.C. V6E $2 E 9$ TEL: (604)681-8381

CHAPTER 11

STATEMENT OF QUALIFICATIONS

I, J. J. Hylands, hereby certify that:

1. I am a geologist employed by Cordilleran Engineering of 1980-1055 West Hastings Street, Vancouver, B.C., V6E 2E9.
2. I am a graduate of the University of British Columbia (B.A .Sc., Geological Engienering, 1966).
3. I have engaged in the study and practice of mineral exploration since 1956, in Canada, the United States and the Phillippines.
4. I am the author of this report and a supervisor of the field work conducted on the Midway property during the period June 1 to October 19, 1986.
5. I am a Professional Engineer registered in the Province of British Columbia.
6. I have no beneficial interest in the claims covered by this report or in Regional Resources Ltd.

APPENDIX "A"

ANALYSIS RECORD SHEETS

SOIL GEOCHEMISTRY

BDNDAR-CLEGG
Geochemical Lab Report REFORT: 126-2805

PROJECT: MIDWAY
PAGE 1

SAMPLE NUMBER	$\begin{aligned} & \text { ELEKENI } \\ & \text { UNITS } \end{aligned}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPH} \end{array}$	$\begin{gathered} \mathrm{Ag}_{3} \\ \mathrm{PPM} \end{gathered}$	SAMPLE NUMBER	ELEMENT UNITS	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPH} \end{gathered}$	$\begin{array}{r} \text { Zn } \\ \text { PPH } \end{array}$	$\begin{gathered} A ? \\ P R M \end{gathered}$
513000 E 2800 N		240	510	<0.2	Sl 3400 E 2500 N		27	378	0.2
Sl 3000 E 2900 N		105	289	<0.2	Sl 3400E 2600N		15	79	0.4
Sl 3000 E 3000 N		46	202	0.2	Sl 3400E 2700N		16	228	0.5
Sl 3000E 3100N		67	227	0.7	S1 3400E 2800N		18	184	0.5
S1 3000E 3200N		44	221	<0.2	Sl 3400E 2900N		33	94	0.3
\$1 3000E 3300n		45	364	0.2	Sl 3400E 3000N		20	225	0.6
Sl 3000E 3400N		40	219	0.2	Sl 3400E 3100N		21	170	0.5
S13100E 2400 N		25	237	0.3	S1 3400E 3300N		17	62	<0.2
S1 3100E 2500N		27	355	0.4	Sl 3400 E 3400 N		22	64	$\bigcirc 0.2$
S1 3100E 2600N		24	287	0.6	ST 3500 E 2500N		25	343	0.5
513100 E 2700 N		26	153	<0.2	S1 3500E 2600 N		25	348	<0.2
S1 3100E 2800N		24	158	<0.2	Sl 3500E 2700N		30	108	<0.2
S1 3100E 2900\%		40	223	0.6	S1 3500E 2800N		12	120	<0.2
Sl 3100 E 3000 N		10	52	0.9	Sl 3500E 2900N		22	221	<0.2
S1 3100E 3100N		30	111	<0.2	Sl 3500E 3000N		24	163	<0.2
513100 E 3200 N		31	92	<0.2	513500 E 3100 N		10	58	0.8
513100 E 3300 N		31	127	0.4	S1 3500E 3200N		18	58	0.5
Sl 3100E 3400N		54	105	0.4	Sl 3500E 3300N		16	71	0.4
		24	378	6.2	S1 3500E 3400N		18	50	$\bigcirc 0.2$
S1 3200E 2500N		19	381	0.7	S1 3600E 2600 M		24	385	<0.2
S1 3200E 2600N		25	241	<0.2	513600 E 2700 N		41	249	<0.2
Sl 3200E 2700N		22	150	<0.2	Sl 3600E 2800N		26	223	$\bigcirc 0.2$
Sl 3200E 2800H		28	179	0.8	Sl 3600E 2900N		21	189	<0.2
513200 E 2900 N		14	43	0.5	S1 3600E 3000N		4	44	<0.2
513200 E 3000 N		57	110	0.7	S1 3600e 3100N		25	179	10.2

S1 3200E 3100N	10	20	0.6	S13600E 3200N	8	20	6.2	
S1 3200E 3200N	11	28	0.2	Sl 3600E 3300N	12	40	1.2	
513200 E 3300 N	10	20	0.3	S1 3600E 3400N	17	48	0.4	
S1 3200E 3400N	18	30	<0.2	S1 3700E 2800N	25	150	0.1	
51 3300E 2480 N	24	295	<0.2	S1 3700E 2900N	14	122	<0.2	
S1 3300E 2500N	19	197	0.4	S1 3700E 3000N	20	101	0.6	
Sl 3300E 2600H	28	267	1.2	S1 3700E 3100N	23	104	0.4	
513300 E 2700 H	22	160	<0.2	S1 3700E 3200N	16	157	0.2	
51 3300E 2800\%	24	232	0.2	S1 3700E 3300N	12	42	<0.2	
Sl 3300E 2900N	27	271	0.4	Sl 3700E 3400N	14	46	0.2	
S1 3300E 3000N	20	182						
Sl 3300E 3100N	23	137						
S1 3300E 3200N	23	109						
Sl 3300E 3300N	21	148						
S1 3300E 3400N	24	129						

BONDAR-CLEGG
130 Pemberton Ave.
North Vancouver, B.C.
Cannda V7P 2RS
Phone: (604) 985-0681
Telex: 04-352667
BCDAR-CLEGG

REPORT: 126-2805
SAMPLE ELEHENI Pb In
NUMBER

Sl 3800E 3300N UNITS PPM PPN PPM

17	72	<0.2
12	52	
30	190	0.9
22	134	0.8
23	138	0.4

22	106	0.4
77	288	0.6
17	84	60.2
16	102	00.2
20	147	0.2

0.4
0.6
0.2
0.2
0.2

S1 4000E 2900N	26	209	0.6
Sl 4000E 3000N	29	163	0.8
Sl 4000E 3100N	25	72	0.2
Sl 4000E 3200N	42	229	1.1
Sl 4000E 3300N	20	33	0.2

PROJECT: MIIDAY
PAGE 2

ELEMENT	Pt,	2 n	9
UNITS	PPH	PPM	PPN

S1 4400E 3400N	22	125	0.2
ST 4500 E 3100 N	13	37	<0.2
S1 4500E 3200N	12	35	<0.2
S1 4500E 3300N	10	47	$\bigcirc 0.2$
S1 4500E 3400N	14	47	0.2
S] 4600 E 3100 N	15	99	0.2
S1 4600E 3200N	16	40	0.9
Sl 4600E 3300N	12	44	<0.2
S1 4600E 3400N	13	49	<0.2
S1 4700E 3100N	10	16	0.2

S1 4700E 3200N	11	29	<0.2
S1 4700E 3300N	14	62	<0.2
S1 4700E 3400N	4	7	<0.2

S1 4000 E 3400 N	10	62	<0.2
S1 4100E 2700N	24	286	1.2
S1 4100E 2800N	27	227	0.7
S1 4100E 2900N	28	148	1.2
Sl 4100E 3000N	23	101	0.4

| S1 4100E 3100N | 29 | 155 | 0.5 |
| :--- | ---: | ---: | ---: | ---: |
| SI 4100E 3200N | 30 | 30 | <0.2 |
| S1 4100E 3300N | 21 | 89 | 0.2 |
| S1 4100E 3400N | 11 | 34 | <0.2 |
| S1 4200E 2600 N | 13 | 100 | 0.2 |

BONDAR-CLEGG.

REPORT: 126-3013

SAMPLE	ELEMENT	Pb	2 ft	Ag	SAMPLE	ELEMENT	9	2π	A9
NUMEER	UNIIS	PPFi	PFit	PPM	NUMEER	UNITS	PPli	FPM	PFH
543500443005		14	84	0.3	543900 N 4100 E		18	68	0.2
543500 N 4400 E		8	36	0.2	54390004200 E		18	68	0.2
54350014500 E		12	42	0.2	$543900 \pm 4300 \mathrm{E}$		37	90	<0.2
343500146005		8	52	0.2	543900 L 400 E		25	140	0.2
543500 N 4700 E		23	105	¢0.2	543000 d 400 E		13	66	0.2
543500 N 4800 E		3	33	0.4	34500 H 400 E		18	64	0.2
543700 N 3500 E		16	86	0.4	543900 N 4700 E		23	116	0.2
54370053600 E		20	20	$\bigcirc 0.2$	543900 N 4800 E		20	440	0.2
54 3700E 3700E		16	64	<0.2	543950 N 4400 E		24	56	0.2
54 3700E 3800E		18	70	<0.2	543950 N 4500 E		15	96	$\bigcirc 0.2$
543700 E 3900 E		14	122	<0.2	543950 N 4600 E		20	84	<0.2
543700 E 4000 E		16	116	$\bigcirc 0.2$	543950 N 4700 E		23	49	0.2
54 3700E 4100E		41	320	0.2	S4 3950N 4800E		20	64	(0.2
S4 3700E 4200E	-	28	620	<0.2	544000 N 3500 E		17	128	0.2
54 3700E 4300E		20	86	<0.2	54 4000N 3600E		26	135	<0.2
54 3700E 4400E		16	68	<0.2	54 4000N 3700E		40	370	0.4
54 3700E 4500E		47	470	0.4	544000 N 3800 E		17	176	<0.2
54 3700E 4600E		42	660	0.4	544000 N 3900 E		21	94	<0.2
54 3700E 4700E		31	112	<0.2	544000 N 4000 E		18	50	0.2
54 3700E 4800E		14	60	<0.2	S4 4000N 4100E		30	296	<0.2
543800 N 3500 E		84	120	0.4	544000 N 4200 E		17	54	0.2
$543800 \mathrm{~N} \mathrm{3600E}$		27	120	0.2	S4 4000N 4300E		27	152	0.4
543800 N 3700 E		36	124	<0.2	$5441000 \times 5500{ }^{-1}$		32	112	0.4
S4 3800N 3800E		28	130	0.2	S4 4100N 3600E		44	68	0.2
54 3800N 3900E		50	420	0.4	54 4100N 3700E		43	124	60.2
543800 N 4000 E		21	37	<0.2	544100 N 3800 E		24	128	<0.2
543800 N 4100 E		22	53	<0.2	54 4100N 3900E		22	84	<0.2
S4 3800N 4200 E		21	75	<0.2	S4 4100N 4000E		38	113	<0.2
543800 N 4300 E		55	180	0.2	54 4100N 4100E		29	284	0.6
S4 3800N 4400E		31	150	<0.2	54 4100N 4200E		34	100	0.4
543800 N 4500 E		23	168	0.8	S4 4100N 4300E		22	98	0.2
S4 3800N 4600E		26	266	0.2	544150 N 4400 E		29	136	0.4
54 3800N 4700E		28	200	0.2	54 4150N 4500E		24	50	0.2
S4 3800N 4800E		19	74	<0.2	54 4150N 4600E		29	110	0.2
543900 N 3500 E		19	72	<0.2	S4 4150N 4700E		22	2100	0.5
543900 N 3600 E		19	88	1.6	54.4150N 4800E		28	144	0.8
54 3900N 3700E		24	84	<0.2	54 TH8-86		25	170	0.4
S4 3900N 3800E		44	348	0.3					
54 3900N 3900E		19	80	<0.2					
543900 N 4000 E		25	140	<0.2		.			.

BONDAR-CLEGG
Geochemical
Lab Report

BONDAR-CLEGG

P4 4900N 2000E	26	56	0.2	P4 5400N 2000E	25	110	<0.2
P4 4900 N 2100 E	18	36	0.3	P4 5400N 2100E	12	40	<0.2
P4 4900N 2200E	9	88	$\bigcirc 0.2$	P4 5400N 2200E	13	46	<0.2
P4 5000N 1600E	43	210	0.5	P4 5400N 2300E	13	110	<0.2
P4 5000N 1700E	59	320	<0.2	P4 5400N 2400E	20	108	<0.2
P4 5000 N 1800 E	35	230	0.5	P4 5500N 1600E	19	60	0.8
P4 5000N 1900E	36	194	0.2	P4 5500N 1700E	12	48	<0.2
P4 5000N 2000E	37	180	0.2	P4 5500N 1800E	41	106	<0.2
P4 5000N 2100 E	46	230	0.4	P4 5500N 1900E	13	72	<0.2
P4 5000N 2200E	28	168	0.3	P4 5500N 2000E	13	58	<0.2

P4 5000N 2400E	31	150	0.3	945500 N 2100 E	10	35	8.2
P4 5100N 1600E	23	136	0.2	P4 5500N 2200E	20	110	<0.2
P4 5100N 1700E	29	178	0.4	P4 5500N 2300E	11	60	<0.2
P4 5100N 1900E	29	160	0.2	P4 5500N 2400E	13	79	60.2
P4 5100N 1900E	21	112	60.2	F4 5600N 1600E	18	170	<0.2

P4 5100N 2000E	26	100	10.2	P4 5600N 1700E	18	92	<0.2
P4 5100N 2100E	29	108	0.2	P4 5600N 1800E	16	120	0.2
P4 5100N 2200E	38	100	0.2	P4 5600N 1900E	15	100	10.2
P45100\% 2300E	27	144	0.2	P4 5600N 2000E	15	129	<0.2
P4 5200N 1600E	39	152	0.6	P4 5600N 2100E	13	220	<0.2

P4 5200N 1700E	40	200	0.2	P4 5600N 22000	22	180	0.2	
P4 5200 N 1800 E	41	272	0.4	P4 5600N 2300E	19	260	<0.2	
P4 5200N 1900E	26	152	$\bigcirc 0.2$	P4 5600N 2400E	23	182	<0.2	W ${ }^{\text {cha }}$
P4 5200N 2000E	53	340	0.2	PT 5700 K 1600 E				
P1 5200N 2100E	37	216	0.3	P4 5700N 1700E				

电

REPORI: 126-2127

SAMPLE	ELEHENI	Pb	Zn	Ag
NUMBER	UNITS	PPH	PPK	PPH

PROJECT: MIDMAY

P4 16800N 16300E	23	90	0.2
P4 16800N 16350E	27	108	<0.2
P4 16800N 16400E	18	112	<0.2
P4 16800N 16450E	21	112	0.5
P4 16800N 16500E	13	72	<0.2
P4 16800N 16550E	12	58	0.2

P4 16800N 15200E
P4 16800N 15250E
P4 16800N 15300E
$\begin{array}{rrr}16 & 126 & 0.2 \\ 17 & 113 & 0.3 \\ 22 & 99 & 0.2\end{array}$
22
-

P4 16800 N 15350 E	18	87	0.3
P4 16800N 15400 E	16	114	0.4
P4 16800N 15450E	12	70	0.2
P4 16800N 15500 E	15	34	<0.2
P4 16800N 15550 E	21	105	0.8

P4 16800N 15600E	23	105	0.2
P4 16800N 15650E	27	138	0.6
P4 16800N 15700E	15	124	0.5
P4 16800N 15750E	16	117	0.4
P4 16800N 15800E	a	15	150

REPORT: 126-2127

SAMPLE NUMEER	ELENENI UNITS	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPH} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	${ }_{\text {PPM }}$
P4 17000N 15900E		17	84	60.2
P4 17000N 15950E		17	120	0.2
P4 17000N 16000E		14	80	0.4
P4 17000N 16050E		23	168	0.2
P4 17000N 16100E		16	90	0.2
P4 17000N 16150E		27	116	0.2
P4 17000N 16200E		25	120	<0.2
P4 17000N 16250E		14	97	<0.2
P4 17000N 16300E		15	112	<0.2
P4 17000N 16350E		18	116	0.2
P4 17000N 16400 E		25	120	<0.2
P4 17000N 16450E		20	124	0.2
P4 17000 N 16500 E		15	104	<0.2
P4 17000N 16550E		14	64	0.2
P4 17000N 16600E		13	50	<0.2
P4 17000N 16650E		15	90	0.2
P4 17000N 16700E		17	85	0.4
P4 17000N 16750E		18	140	0.2
P4 17000N 16800E		13	116	<0.2
P4 17000N 16850E		18	116	0.4

PROJECT: MIDMAY
$\begin{array}{lrrrr}\text { SAMPLE } & \text { ELEMENT } & \mathrm{Fb} & \mathrm{Zn} & \text { A3 } \\ \text { NURBER } & \text { UNITS } & \text { PPH } & \mathrm{PPM} & \text { PFM }\end{array}$

P4 17200 N 15650 E	10	40	60.2
P4 17200N 15700E	16	76	60.2
P4 17200 N 15750 E	17	102	60.2
P4 17200 N 15800 E	17	34	6.2
PA 17200 N 15850 E	17	72	0.2

$\begin{array}{lllll}P 4 & 17200 N & 15900 E & 74 & 0.2\end{array}$
P4 17200N 15950E
P4 17200N 16000E
P4 17200N 16050E
P4 17200N 16100E

P4 17200 N 16150 E	20	139	<0.2
P4 17200 N 16200 E	11	60	<0.2
P4 17200 N 16250 E	21	106	<0.2
P4 17200 N 16300 E	5	44	<0.2
P4 17200 N 16350 E	8	58	0.2

P4 17200E 16400E	14	76	<0.2
P4 17200E 16450E	18	59	<0.2
P4 17200E 16500E	8	30	0.2
P4 17200E 16550E	21	96	<0.2
P4 17200E 16600E	6	27	<0.2

P4 17000N 16900E
P4 17000N 16950E
P4 17000N 17000E
P4 17000N 17050E
P4 17000N 17100E
15. $84<0.2$

12
$13 \quad 78 \quad 0$.
$13 \quad 80 \quad 0.2$
$8 \quad 92 \quad 0.2$

16

11

9
14
13
$\cdots \cdots$
$75<0.2$
$\begin{array}{rr}52 & 0.2 \\ 114 & 0.2\end{array}$
$\begin{array}{rr}52 & 0.2 \\ 114 & 0.2\end{array}$
0.2

P4 17000N 17200E
P4 17200E 16650E 20

20	98	60.2
13	192	0.4
15	120	0.2
16	142	0.2
27	390	0.2

P4 17000N 17250E

13	70	0.2
10	40	0.4
12	58	0.2
16	52	60.2
7	30	0.2

<0.2
<0.2
<0.2
0.2
0.6

7	36	<0.2
12	50	<0.2
17	63	<0.2
16	64	0.2
18	90	0.6

P4 17200N 17400E	-42	170	0.4
P4 17400N 15500E	7	34	0.4
P4 17400N 15550E	16	80	0.6
P4 17400N 15600E	9	60	0.2
P4 17400N 15650E	9	58	<0.2

BONDAR-CLEGG
*e: . A

REPORT: 126-2127

SAMPLE	ELEMENT	Pb	7n	A
NUMEER	UNIIS	PPM	PPM	PPH
P4 17400N 15700E		23	222	<0.2
P4 17400N 15750E		17	170	<0.2
P4 17400N 15800E		18	96	<0.2
P4 17400N 15850E		17	110	<0.2
P4 17400N 15900E		14	56	0.3
P4 17400N 15950E		17	68	$\bigcirc 0.2$
P4 17400N 16000E		13	52	0.2
P4 17400N 16050E		18	100	0.2
P4 17400N 16100E		20	108	<0.2
P4 17400N 16150E		12	68	<0.2
P4 17400N 16200E		7	48	<0.2
P4 17400N 16250E		4	32	<0.2
P4 17400N 16300E		18	76	<0.2
P4 17400N 16350E		18	112	<0.2
P4 17400N 16400E		23	80	0.2
P4 17400N 16450E		14	56	<0.2
P4 17400N 16500E		23	75	<0.2
P4 17400N 16550E		23	103	0.3
P4 17400N 16600E		19	71	0.2
P4 17400N 16650E		24	134	0.2

SAMPLE	ELEMENT	$P t$	$2 n$	$A A$
NUMBER	UNITS	$P Y H$	$P P N$	$P H_{H}$

BDNDAR-CLEGG
Geochemical 130 Pemberton Ave.
North Vancouver, B. North Vancouver,
Canada V7P 2RS Phone: (604) $985-0681$ Teler: 04.352667

RED日RT: 126-2899

$\begin{aligned} & \text { SAMPLE } \\ & \text { HLMPES } \end{aligned}$	
24.15200%	16500E
74 152004	165505
74 15900	166008
P4 15300	166509
3 15200	15700E

DROJECT: MTNHAV

$A Q$	SCKPLE	ETSMEN:	$P b$	$2 n$	$A 9$
$2 P M$					

PACE 1

P4 152004167505
P4 15200k 26800 E
P4 15200K 16850E
P4 15200स 16900 E
P4 15200N 16950 E
gen
18
19
:.
$: 9$
19
20
19 .
$17 \quad 70$
$20 \quad 125$
18
22
22
$40 \quad 122$

51
0.4

95
92
101
161

112
$125 \quad 0.5$
1710.5
$114 \quad 0.2$
1220.2
0.2
0.6 P4 25000世 162008

24 :60ccy $162=0 \mathrm{E}$
P4 :5000 16300 E
94: 2908: : 6350E
P4 15000 16500E
15
$\because 24$
0.7
1.2

128
0.4
0.3

24 152003 164505	18	114	0.3
P4 16000N 16500E	20	101	0.2
P4 150004 16550E	22	134	0.2
P4 16000k 16600 E	20	127	0.3
P4 16000N 16650E	20	122	0.3

P4 16000 N 16700 E	22	103	0.4
P4 16000 N 16750 E	20	98	0.2
P4 16000 N 16300 E	24	125	0.4
P4 16000 N 16850 E	22	116	0.3
P4 16000 N 16900 E	25	160	0.7

P4 16000 H 16950 E	25	153	0.9
P4 16000 N 17000 E	24	130	0.4
P4 16000 H 17050 E	14	104	0.4
P4 16000 H 17100 E	18	100	0.6
P4 16000 N 17150 E	21	157	0.8

P4 15600N 16550E	25	150	0.8	P4 16000N 17200E	22	116	0.3
P4 15600N 16600E	24	121	0.3	P4 16000N 17300E	25	106	0.2
P4 15600N 16650E	24	141	0.4	P4 16000N 17350E	26	138	0.4
9415600 N 16700 E	20	121	0.4	P4 16000N 17400E	18	99	0.3
P4 15600N 16750E	23	155	0.4	P4 16400N 16500E	22	124	0.4
P4 15600N 16800E	23	141	0.2	P4 16400N 16550E	29	151	0.4
P4 15600N 16350E	22	151	0.4	P4 16400 N 16500 E	24	174	1.0
P4 15600N 16900E	13	51	<0.2	P4 16400N 167502	20	103	0.4
P4 15600N 16950E	13	40	0.4	P4 15400N 16800E	22	146	0.5
P4 15600N 17000E	17	31	0.2	P4 16400N 16900E	18	136	0.4
P4 15600N 17050E	16	126	0.3	P4 16400N 16950E	20	152	0.4
P4 15600N 17100E	15	69	0.2	P4 16400N 17000E	21	169	0.6
P4 15600N 171502	22	127	0.5	P4 16400N 17050E	17	114	0.4
P4 15600N 17200E	11	59	0.2	P4 164004 17100E	16	125	0.4
P4 15600N 17250E	16	109	0.4	P4 16400N 17150E	14	110	0.4

| P4 15600 N | 17300 E | 16 | 58 | 0.5 | P4 16400 N 17200 E | 9 | 86 | 0.2 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| P4 15600 N | 17350 E | 13 | 44 | 0.3 | P4 16400 N 17250 E | 14 | 114 | 0.2 |
| P4 15600 N | 17400 E | 16 | 137 | <0.2 | P4 16400 N 17300 E | 12 | 88 | 0.3 |
| P4 16000 N | 16100 E | 13 | 101 | 0.2 | P4 16400 N 17350 E | 17 | 116 | 0.5 |
| P4 16000 N | 16150 E | 12 | 69 | 0.2 | P4 16400 N 17400 E | 17 | 133 | 0.4 |

Sondme-Clestat Cumpnay Lid.
130 Pemberton Ave. PiNorth Vencouver, B.C. : $:$ mnand VTP 2RS home: (604) 985-068 Tclex:04-352667

Geochemica Lab Repori

APPENDIX "B"

MAGNETOMETER READINGS

DONEGAL MOUNTAIN GRID

MIDWAY PROJECT

DONEGAL MOUNTAIN GRID

1986 MAGNETOMETER READINGS

In the following listing, some lines have a denotation slightly different from their actual line number, e.g. 3401 and 3402 instead of 3400 ; this is necessitated by the structure of the computer files from which these data were copied.

1. EAST - WEST LINES

1.1 Line 3400 N

Station E	Line N	Original Readings	
2400.0	3401.0	7.3	7.1
2412.5	3401.0	6.8	7.4
2425.0	3401.0	7.1	7.3
2437.5	3401.0	8.3	7.6
2450.0	3401.0	7.2	8.0
2462.5	3401.0	8.5	8.4
2475.0	3401.0	8.7	9.0
2487.5	3401.0	9.5	.9 .8
2500.0	3401.0	11.2	10.7
2512.5	3401.0	11.1	11.7
2525.0	3401.0	13.2	12.6
2537.5	3401.0	13.5	13.7
2550.0	3401.0	13.9	15.1
2562.5	3401.0	16.8	16.4
2575.0	3401.0	18.0	18.3
2587.5	3401.0	19.9	20.4
2600.0	3401.0	23.1	22.3
2612.5	3401.0	24.2	24.5
2625.0	3401.0	26.2	26.6
2637.5	3401.0	29.0	27.8
2650.0	3401.0	30.7	28.7
2662.5	3401.0	29.1	29.1
2675.0	3401.0	28.7	29.1
2687.5	3401.0	28.1	29.6
2700.0	3401.0	28.7	33.5
2712.5	3401.0	33.2	44.1
2725.0	3401.0	48.6	58.0
2737.5	3401.0	82.1	60.3
2750.0	3401.0	97.2	50.5
2762.5	3401.0	40.4	35.8
2775.0	3401.0	-15.8	14.5
2787.5	3401.0	-24.7	-8.6

2800.0	3401.0	-24.8	-19.5
2812.5	3401.0	-18.1	-17.9
2825.0	3401.0	-14.2	-14.0
2837.5	3401.0	-7.8	-8.7
2850.0	3401.0	-5.2	-3.9
2862.5	3401.0	1.8	1.7
2875.0	3401.0	6.0	7.5
2887.5	3401.0	13.8	14.5
2900.0	3401.0	21.2	23.1
2912.5	3401.0	29.8	34.7
2925.0	3401.0	44.7	49.9
2937.5	3401.0	64.1	69.5
2950.0	3401.0	89.7	95.6
2962.5	3401.0	119.3	126.5
2975.0	3401.0	160.1	149.0
2987.5	3401.0	199.1	154.5
3000.0	3401.0	176.6	143.0
3012.5	3401.0	117.5	113.8
3025.0	3401.0	61.5	69.0
3037.5	3401.0	14.2	29.0
3050.0	3401.0	-24.9	.6
3062.5	3401.0	-23.5	-9.7
3075.0	3401.0	-24.2	-8.4
3087.5	3401.0	10.0	-4.7
3100.0	3401.0	20.4	-3.1
3112.5	3401.0	-6.4	-1.1
3125.0	3401.0	-15.4	.4 .2
3137.5	3401.0	-14.0	21.9
3150.0	3401.0	16.2	63.6
3162.5	3401.0	129.3	77.9
3175.0	3401.0	202.1	90.3
3187.5	3401.0	55.9	108.5
3200.0	3401.0	47.8	118.4
3212.5	3401.0	107.6	99.9
3225.0	3401.0	178.4	86.3
3237.5	3401.0	109.6	71.5
3250.0	3401.0	-11.7	46.5
3262.5	3401.0	-26.4	5.7
3275.0	3401.0	-17.4	-23.8
3287.5	3401.0	-25.8	-32.3
3300.0	3401.0	-37.6	-35.1
3312.5	3401.0	-54.1	-39.1
3325.0	3401.0	-40.7	-42.6
3337.5	3401.0	-37.3	-44.9
3350.0	3401.0	-43.4	-41.2
3362.5	3401.0	-49.1	-40.6
3375.0	3401.0	-35.4	-42.1
3387.5	3401.0	-37.8	-40.3
3400.0	3401.0	-44.9	-38.3
3412.5	3401.0	-34.3	-37.3
3425.0	3401.0	-39.2	-34.0
3437.5	3401.0	-30.5	-31.5
3450.0	3401.0	-21.2	-30.5

3462.5	3401.0	-32.5	-26.5
3475.0	3401.0	-29.2	-9.7
3487.5	3401.0	-18.9	-6.8
3500.0	3401.0	53.5	1.8
3512.5	3402.0	250.1	97.2
3525.0	3402.0	71.4	73.8
3537.5	3402.0	18.8	58.3
3550.0	3402.0	-19.8	3.8
3562.5	3402.0	-29.0	-14.2
3575.0	3402.0	-22.5	-19.9
3587.5	3402.0	-18.5	-21.8
3600.0	3402.0	-9.9	-19.7
3612.5	3402.0	-29.2	-19.7
3625.0	3402.0	-18.6	-22.0
3637.5	3402.0	-22.5	-24.4
3650.0	3402.0	-30.0	-22.0
3662.5	3402.0	-21.6	-18.2
3675.0	3402.0	-17.5	-15.2
3687.5	3402.0	-1.6	-11.6
3700.0	3402.0	-7.4	-17.8
3712.5	3402.0	-12.1	-19.7
3725.0	3402.0	-52.5	-23.7
3737.5	3402.0	-26.9	-26.7
3750.0	3402.0	-19.8	-23.5
3762.5	3402.0	-22.4	-4.8
3775.0	3402.0	4.1	1.8
3787.5	3402.0	40.9	23.8
3800.0	3402.0	6.3	101.1
3812.5	3402.0	90.1	119.9
3825.0	3402.0	364.1	134.9
3837.5	3402.0	98.1	175.5
3850.0	3402.0	115.8	170.3
3862.5	3402.0	209.4	110.0
3875.0	3402.0	64.1	103.8
3887.5	3402.0	62.6	102.6
3900.0	3402.0	67.2	125.5
3912.5	3402.0	109.8	319.5
3925.0	3402.0	323.7	340.0
3937.5	3402.0	1034.3	333.9
3950.0	3402.0	165.1	322.1
3962.5	3402.0	36.7	260.9
3975.0	3402.0	50.7	50.3
3987.5	3402.0	17.9	16.2
4000.0	3402.0	-18.7	11.3
4012.5	3402.0	-5.7	2.4
4025.0	3402.0	12.4	6.9
4037.5	3402.0	6.0	18.1
4050.0	3402.0	40.6	16.2
4062.5	3402.0	37.4	14.9
4075.0	3402.0	-15.6	12.3
4087.5	3402.0	6.3	-1.5
4100.0	3402.0	-7.2	-8.5
4112.5	3402.0	-28.4	-7.0

4125.0	3402.0	2.2	-12.0
4137.5	3402.0	-7.9	-14.5
4150.0	3402.0	-18.8	-12.1
4162.5	3402.0	-19.6	-11.7
4175.0	3402.0	-16.5	-8.4
4187.5	3402.0	4.3	-9.6
4200.0	3402.0	8.5	-12.6
4212.5	3402.0	-24.6	-6.4
4225.0	3402.0	-34.7	-4.4
4237.5	3402.0	14.6	-4.8
4250.0	3402.0	14.4	2.0
4262.5	3402.0	6.1	6.5
4275.0	3402.0	9.7	4.6
4287.5	3402.0	-12.1	1.7
4300.0	3402.0	4.7	-4.3
4312.5	3402.0	.1	-8.1
4325.0	3402.0	-23.7	-4.1
4337.5	3402.0	-9.6	.6
4350.0	3402.0	8.0	19.2
4362.5	3402.0	26.4	46.7
4375.0	3402.0	94.7	56.7
4387.5	3402.0	114.2	59.9
4400.0	3402.0	40.2	59.3
4412.5	3402.0	23.8	45.1
4425.0	3402.0	23.6	27.7
4437.5	3402.0	23.6	27.8
4450.0	3402.0	27.5	36.7
4462.5	3402.0	40.6	42.3
4475.0	3402.0	68.4	47.3
4487.5	3402.0	51.4	46.8
4500.0	3402.0	48.7	44.2
4512.5	3402.0	24.8	31.1
4525.0	3402.0	27.6	20.9
4537.5	3402.0	2.9	13.0
4550.0	3402.0	.5	10.9
4562.5	3402.0	9.1	4.2
4575.0	3402.0	14.4	3.1
4587.5	3402.0	-5.7	11.5
4600.0	3402.0	-3.0	9.7
4612.5	3402.0	42.7	8.1
4625.0	3402.0	-.1	13.7
4637.5	3402.0	6.7	15.1
4650.0	3402.0	22.2	7.0
4662.5	3402.0	4.0	7.6
4675.0	3402.0	4.5	8.6
4687.5	3402.0	.5	7.0
4700.0	3402.0	9.2	13.0
4712.5	3402.0	17.7	19.1
4725.0	3402.0	33.1	20.9
4737.5	3402.0	35.2	21.7
4750.0	3402.0	9.4	20.6
4762.5	3402.0	13.0	18.0
4775.0	3402.0	12.2	14.8
4800.0	3402.0	19.3	17.2

1.2 Line 3500 N

4800.0	3502.0	3.1	-1.2
4787.5	3502.0	-7.6	16.5
4775.0	3502.0	.8	19.0
4762.5	3502.0	69.5	24.3
4750.0	3502.0	29.0	33.2
4737.5	3502.0	29.7	33.6
4725.0	3502.0	36.8	21.0
4712.5	3502.0	3.2	16.3
4700.0	3502.0	6.4	11.1
4687.5	3502.0	5.3	4.8
4675.0	3502.0	3.8	5.7
4662.5	3502.0	5.3	35.8
4650.0	3502.0	7.5	76.2
4637.5	3502.0	157.3	74.7
4625.0	3502.0	207.0	69.1
4612.5	3502.0	-3.7	69.9
4600.0	3502.0	-22.7	42.9
4587.5	3502.0	11.6	10.0
4575.0	3502.0	22.3	16.4
4562.5	3502.0	42.4	26.2
4550.0	3502.0	28.3	31.3
4537.5	3502.0	26.2	34.8
4525.0	3502.0	37.2	31.4
4512.5	3502.0	39.7	31.6
4500.0	3502.0	25.7	31.2
4487.5	3502.0	29.1	28.4
4475.0	3502.0	24.1	24.5
4462.5	3502.0	23.3	23.5
4450.0	3502.0	20.5	20.9
4437.5	3502.0	20.3	18.5
4425.0	3502.0	16.1	15.5
4412.5	3502.0	12.4	12.5
4400.0	3502.0	8.0	12.7
4387.5	3502.0	5.8	5.7
4375.0	3502.0	21.0	1.6
4362.5	3502.0	-18.6	-.9
4350.0	3502.0	-8.0	-4.4
4337.5	3502.0	-4.7	-12.1
4325.0	3502.0	-11.5	-10.1
4312.5	3502.0	-17.8	-9.8
4300.0	3502.0	-8.7	-10.2
4287.5	3502.0	-6.3	-11.3
4275.0	3502.0	-6.8	-10.4
4262.5	3502.0	-16.7	-6.8
4250.0	3502.0	-13.7	-1.9
4237.5	3502.0	9.4	-2.5
4225.0	3502.0	18.2	-.2
4212.5	3502.0	-9.9	3.0
4200.0	3502.0	-5.1	3.1
4187.5	3502.0	2.5	3.3

4175.0	3502.0	9.9	7.7
4162.5	3502.0	19.2	2.7
4150.0	3502.0	12.2	-1.3
4137.5	3502.0	-30.1	-7.7
4125.0	3502.0	-17.7	-15.6
4112.5	3502.0	-22.0	-22.2
4100.0	3502.0	-20.3	-21.2
4087.5	3502.0	-21.1	-23.2
4075.0	3502.0	-24.7	-25.2
4062.5	3502.0	-27.7	-26.6
4050.0	3502.0	-32.2	-25.2
4037.5	3502.0	-27.2	-22.5
4025.0	3502.0	-14.3	-20.3
4012.5	3502.0	-11.1	118.5
4000.0	3502.0	-16.9	227.2
3987.5	3502.0	661.9	253.3
3975.0	3502.0	516.4	246.8
3962.5	3502.0	116.3	226.7
3950.0	3502.0	-43.8	101.3
3937.5	3502.0	-117.1	239.0
3925.0	3502.0	34.8	240.9
3912.5	3502.0	1204.6	258.5
3900.0	3502.0	125.8	288.2
3887.5	3502.0	44.4	285.3
3875.0	3502.0	31.3	46.5
3862.5	3502.0	20.5	20.8
3850.0	3502.0	10.4	13.8
3837.5	3502.0	-2.7	14.7
3825.0	3502.0	9.7	19.5
3812.5	3502.0	35.8	37.4
3800.0	3502.0	44.2	74.3
3787.5	3502.0	99.9	83.7
3775.0	3502.0	181.9	81.8
3762.5	3502.0	56.6	77.3
3750.0	3502.0	26.2	57.9
3737.5	3502.0	21.7	18.5
3725.0	3502.0	3.3	5.8
3712.5	3502.0	-15.1	-6.1
3700.0	3502.0	-7.3	-6.4
3687.5	3502.0	-2.1	-10.1
3675.0	3502.0	-10.8	-10.6
3662.5	3502.0	-15.3	-6.4
3650.0	3502.0	-17.7	-9.4
3637.5	3502.0	13.9	-11.9
3625.0	3502.0	-17.3	-13.5
3612.5	3502.0	-23.0	-14.4
3600.0	3502.0	-23.3	-21.2
3587.5	3502.0	-22.1	-21.9
3575.0	3502.0	-20.4	-22.2
3562.5	3502.0	-20.6	-22.4
3550.0	3502.0	-24.4	-24.7
3537.5	3502.0	-24.7	-27.8
3525.0	3502.0	-33.6	-26.3

3512.5	3502.0	-35.7	-26.8
3500.0	3502.0	-13.0	-27.4
3487.5	3501.0	-32.1	-39.4
3475.0	3501.0	-43.3	-37.1
3462.5	3501.0	-45.1	-27.0
3450.0	3501.0	-27.7	-13.1
3437.5	3501.0	13.4	1.4
3425.0	3501.0	37.3	13.2
3412.5	3501.0	28.9	20.5
3400.0	3501.0	13.9	18.1
3387.5	3501.0	9.0	4.2
3375.0	3501.0	1.5	-7.8
3362.5	3501.0	-32.3	-16.7
3350.0	3501.0	-31.0	-26.2
3337.5	3501.0	-30.9	-33.4
3325.0	3501.0	-38.3	-31.7
3312.5	3501.0	-34.6	-33.4
3300.0	3501.0	-23.8	-33.5
3287.5	3501.0	-39.2	-32.1
3275.0	3501.0	-31.5	-33.8
3262.5	3501.0	-31.3	-36.4
3250.0	3501.0	-43.2	-36.7
3237.5	3501.0	-36.8	-37.8
3225.0	3501.0	-40.5	-39.3
3212.5	3501.0	-37.2	-38.2
3200.0	3501.0	-39.0	-38.3
3187.5	3501.0	-37.5	-33.9
3175.0	3501.0	-37.5	-15.8
3162.5	3501.0	-18.1	40.9
3150.0	3501.0	53.1	61.3
3137.5	3501.0	244.4	71.6
3125.0	3501.0	64.4	76.3
3112.5	3501.0	14.0	73.3
3100.0	3501.0	5.8	25.9
3087.5	3501.0	38.1	13.0
3075.0	3501.0	7.1	9.0
3062.5	3501.0	-6	4.9
3050.0	3501.0	-6.3	-3.9
3037.5	3501.0	-14.4	-6.9
3025.0	3501.0	-6.3	-12.0
3012.5	3501.0	-7.7	-16.5
3000.0	3501.0	-25.5	-16.4
2987.5	3501.0	-28.8	-17.1
2975.0	3501.0	-13.7	-16.1
2962.5	3501.0	-9.6	-9.5
2950.0	3501.0	-3.0	2.0
2937.5	3501.0	7.5	18.5
2925.0	3501.0	28.8	46.7
2912.5	3501.0	68.8	79.2
2900.0	3501.0	131.4	107.2
2887.5	3501.0	159.4	124.6
2875.0	3501.0	147.8	126.3
2862.5	3501.0	115.7	109.3

2850.0	3501.0	77.0	84.0
2837.5	3501.0	46.7	58.6
2825.0	3501.0	32.8	39.0
2812.5	3501.0	20.8	24.9
2800.0	3501.0	17.8	14.4
2787.5	3501.0	6.3	9.0
2775.0	3501.0	-5.9	4.5
2762.5	3501.0	6.0	-1.6
2750.0	3501.0	-1.7	-7.2
2737.5	3501.0	-12.5	-6.7
2725.0	3501.0	-21.8	-8.6
2712.5	3501.0	-3.6	-12.7
2700.0	3501.0	-3.3	-15.4
2687.5	3501.0	-22.5	-15.4
2675.0	3501.0	-26.0	-20.4
2662.5	3501.0	-21.7	-25.6
2650.0	3501.0	-28.4	-16.4
2637.5	3501.0	-29.5	-4.3
2625.0	3501.0	23.4	6.5
2612.5	3501.0	34.8	15.9
2600.0	3501.0	32.1	24.3
2587.5	3501.0	18.5	21.6
2575.0	3501.0	12.5	17.1
2562.5	3501.0	9.9	12.8
2550.0	3501.0	12.6	10.8
2537.5	3501.0	10.7	9.2
2525.0	3501.0	8.4	7.6
2512.5	3501.0	4.3	5.3
2500.0	3501.0	2.0	3.8
2487.5	3501.0	.9	3.6
2475.0	3501.0	3.2	4.6
2462.5	3501.0	7.7	6.2
2450.0	3501.0	9.1	8.3
2437.5	3501.0	10.1	10.9
2425.0	3501.0	11.5	12.4
2412.5	3501.0	16.0	13.2
2400.0	3501.0	15.3	14.3

1.3 Line 3600 N

2400.0	3601.0	22.2	21.2
2412.5	3601.0	20.6	20.7
2425.0	3601.0	20.8	20.0
2437.5	3601.0	19.3	18.3
2450.0	3601.0	17.1	16.8
2462.5	3601.0	13.5	15.2
2475.0	3601.0	13.4	14.2
2487.5	3601.0	12.8	14.2
2500.0	3601.0	14.4	16.8
2512.5	3601.0	17.1	25.9
2525.0	3601.0	26.4	28.6

2537.5	3601.0	58.7	31.8
2550.0	3601.0	26.3	45.6
2562.5	3601.0	30.7	50.6
2575.0	3601.0	85.8	45.5
2587.5	3601.0	51.6	39.9
2600.0	3601.0	33.0	29.4
2612.5	3601.0	-1.7	8.4
2625.0	3601.0	-21.6	-6.6
2637.5	3601.0	-19.1	-16.6
2650.0	3601.0	-23.4	-18.4
2662.5	3601.0	-17.0	-18.6
2675.0	3601.0	-11.1	-20.1
2687.5	3601.0	-22.3	-19.8
2700.0	3601.0	-26.8	-20.4
2712.5	3601.0	-22.0	-20.9
2725.0	3601.0	-20.0	-18.7
2737.5	3601.0	-13.3	-14.8
2750.0	3601.0	-11.6	-10.2
2762.5	3601.0	-6.9	-3.0
2775.0	3601.0	.9	4.6
2787.5	3601.0	15.8	16.5
2800.0	3601.0	24.7	32.1
2812.5	3601.0	48.1	58.1
2825.0	3601.0	71.2	59.7
2837.5	3601.0	130.8	61.9
2850.0	3601.0	23.8	60.1
2862.5	3601.0	35.6	43.5
2875.0	3601.0	39.0	9.1
2887.5	3601.0	-11.7	-5.1
2900.0	3601.0	-41.3	-19.6
2912.5	3601.0	-47.3	-35.1
2925.0	3601.0	-36.5	-38.7
2937.5	3601.0	-38.8	-34.8
2950.0	3601.0	-29.7	-30.3
2962.5	3601.0	-21.9	-25.5
2975.0	3601.0	-24.8	-20.0
2987.5	3601.0	-12.1	-16.6
3000.0	3601.0	-11.7	-12.0
3012.5	3601.0	-12.7	-2.5
3025.0	3601.0	1.3	7.7
3037.5	3601.0	22.8	22.3
3050.0	3601.0	38.8	23.6
3062.5	3601.0	61.1	20.3
3075.0	3601.0	-6.0	16.0
3087.5	3601.0	-15.1	13.6
3100.0	3601.0	1.3	-6.7
3112.5	3601.0	26.5	-8.9
3125.0	3601.0	-40.3	-10.4
3137.5	3601.0	-16.7	-17.1
3150.0	3601.0	-23.0	-29.0
3162.5	3601.0	-31.8	-24.2
3175.0	3601.0	-33.4	-20.6
3187.5	3601.0	-16.3	-14.2

3200.0	3601.0	1.7	-8.7
3212.5	3601.0	8.7	-7.2
3225.0	3601.0	-4.3	-10.2
3237.5	3601.0	-25.7	-19.4
3250.0	3601.0	-31.5	-30.6
3262.5	3601.0	-44.0	-37.1
3275.0	3601.0	-47.4	-38.4
3287.5	3601.0	-36.8	-31.3
3300.0	3601.0	-32.5	-26.5
3312.5	3601.0	4.2	-22.5
3325.0	3601.0	-19.8	-19.2
3337.5	3601.0	-27.6	-14.3
3350.0	3601.0	-20.5	-14.4
3362.5	3601.0	-8.0	-10.2
3375.0	3601.0	3.9	-7.5
3387.5	3601.0	1.3	-4.6
3400.0	3601.0	-14.2	-4.4
3412.5	3601.0	-5.9	-5.5
3425.0	3601.0	-6.9	-6.3
3437.5	3601.0	-1.8	-5.5
3450.0	3601.0	-2.5	-1.3
3462.5	3601.0	-10.3	1.5
3475.0	3601.0	15.1	-3.4
3487.5	3601.0	6.9	-3.6
3500.0	3601.0	-26.3	-1.4
3512.5	3602.0	-28.5	-23.0
3525.0	3602.0	-12.8	-23.1
3537.5	3602.0	-25.8	-22.2
3550.0	3602.0	-23.5	-19.9
3562.5	3602.0	-20.3	-20.3
3575.0	3602.0	-17.0	-17.5
3587.5	3602.0	-14.9	-14.9
3600.0	3602.0	-11.6	-11.8
3612.5	3602.0	-10.7	-10.4
3625.0	3602.0	-4.9	-9.2
3637.5	3602.0	-10.1	-9.2
3650.0	3602.0	-8.6	-7.1
3662.5	3602.0	-11.9	-5.3
3675.0	3602.0	.2	-.1
3687.5	3602.0	3.7	5.1
3700.0	3602.0	16.2	12.7
3712.5	3602.0	17.3	22.0
3725.0	3602.0	26.2	35.0
3737.5	3602.0	46.5	44.9
3750.0	3602.0	69.0	47.7
3762.5	3602.0	65.6	49.0
3775.0	3602.0	31.4	45.0
3787.5	3602.0	32.7	43.1
3800.0	3602.0	27.5	44.6
3812.5	3602.0	58.3	43.9
3825.0	3602.0	72.9	46.3
3837.5	3602.0	28.0	46.1
3850.0	3602.0	44.8	42.5

3862.5	3602.0	26.3	40.2
3875.0	3602.0	40.7	44.4
3887.5	3602.0	61.3	43.1
3900.0	3602.0	48.8	48.3
3912.5	3602.0	38.2	59.6
3925.0	3602.0	52.5	126.7
3937.5	3602.0	97.2	137.9
3950.0	3602.0	396.8	153.2
3962.5	3602.0	104.9	208.9
3975.0	3602.0	114.7	178.5
3987.5	3602.0	331.1	94.9
4000.0	3602.0	-55.2	77.5
4012.5	3602.0	-20.8	57.8
4025.0	3602.0	17.7	-3.7
4037.5	3602.0	16.0	12.0
4050.0	3602.0	23.7	17.0
4062.5	3602.0	23.4	20.7
4075.0	3602.0	4.1	23.3
4087.5	3602.0	36.3	19.7
4100.0	3602.0	29.0	14.2
4112.5	3602.0	5.5	11.7
4125.0	3602.0	-4.1	1.4
4137.5	3602.0	-8.0	-5.6
4150.0	3602.0	-15.3	-13.4
4162.5	3602.0	-6.2	-15.9
4175.0	3602.0	-33.5	-19.2
4187.5	3602.0	-16.3	-12.2
4200.0	3602.0	-24.8	-9.4
4212.5	3602.0	19.8	-8.2
4225.0	3602.0	7.9	-5.5
4237.5	3602.0	-27.6	-.5
4250.0	3602.0	-2.6	-4.1
4262.5	3602.0	-.1	-4.9
4275.0	3602.0	1.9	-1.3
4287.5	3602.0	3.9	-1.3
4300.0	3602.0	-9.7	-.2
4312.5	3602.0	-2.4	-.7
4325.0	3602.0	5.5	-.2
4337.5	3602.0	-1.0	3.2
4350.0	3602.0	6.7	9.2
4362.5	3602.0	7.1	10.3
4375.0	3602.0	27.5	16.5
4387.5	3602.0	11.3	21.5
4400.0	3602.0	29.7	26.8
4412.5	3602.0	32.1	30.5
4425.0	3602.0	33.4	32.9
4437.5	3602.0	46.0	31.3
4450.0	3602.0	23.2	30.4
4462.5	3602.0	21.7	30.9
4475.0	3602.0	27.5	28.0
4487.5	3602.0	35.9	26.0
4500.0	3602.0	31.6	23.5
4512.5	3602.0	13.3	23.6

4525.0	3602.0	9.3	19.6
4537.5	3602.0	27.9	20.2
4550.0	3602.0	15.9	28.3
4562.5	3602.0	34.7	37.2
4575.0	3602.0	53.7	42.2
4587.5	3602.0	53.7	41.2
4600.0	3602.0	52.9	31.1
4612.5	3602.0	11.0	24.5
4625.0	3602.0	-15.8	57.1
4637.5	3602.0	20.8	88.3
4650.0	3602.0	216.5	94.7
4662.5	3602.0	209.1	95.1
4675.0	3602.0	43.1	92.6
4687.5	3602.0	-14.0	49.5
4700.0	3602.0	8.1	6.3
4712.5	3602.0	1.2	-.1
4725.0	3602.0	-7.0	7.1
4737.5	3602.0	11.4	8.3
4750.0	3602.0	21.9	13.6
4762.5	3602.0	13.8	21.7
4775.0	3602.0	27.7	26.0
4787.5	3602.0	33.5	27.0
4800.0	3602.0	33.1	31.4

1.4 Line 3700 N , West of Baseline 2400 E

1600.0	3700.0	53.6	31.0
1612.5	3700.0	33.2	20.6
1625.0	3700.0	6.1	16.1
1637.5	3700.0	-10.6	6.4
1650.0	3700.0	-1.8	1.7
1662.5	3700.0	5.2	1.8
1675.0	3700.0	9.7	4.0
1687.5	3700.0	6.6	3.7
1700.0	3700.0	.5	1.6
1712.5	3700.0	-3.5	-2.2
1725.0	3700.0	-5.4	-5.2
1737.5	3700.0	-9.2	-5.4
1750.0	3700.0	-8.6	-4.5
1762.5	3700.0	-.3	-3.1
1775.0	3700.0	1.0	-2.1
1787.5	3700.0	1.8	-3.5
1800.0	3700.0	-4.3	-7.9
1812.5	3700.0	-15.7	-10.4
1825.0	3700.0	-22.3	-13.4
1837.5	3700.0	-11.6	-15.2
1850.0	3700.0	-13.2	-17.2
1862.5	3700.0	-13.4	-18.8
1875.0	3700.0	-25.4	-22.4
1887.5	3700.0	-30.6	-25.4
1900.0	3700.0	-29.3	-28.2
1912.5	3700.0	-28.5	-28.2

1925.0	3700.0	-27.1	-26.7
1937.5	3700.0	-25.5	-25.6
1950.0	3700.0	-23.3	-25.2
1962.5	3700.0	-23.7	-24.9
1975.0	3700.0	-26.4	-24.1
1987.5	3700.0	-25.7	-22.6
2000.0	3700.0	-21.2	-19.6
2012.5	3700.0	-16.1	-14.9
2025.0	3700.0	-8.5	-9.2
2037.5	3700.0	-3.1	-2.4
2050.0	3700.0	2.9	4.5
2062.5	3700.0	13.0	9.3
2075.0	3700.0	18.4	13.8
2087.5	3700.0	15.1	15.9
2100.0	3700.0	19.6	15.9
2112.5	3700.0	13.2	15.2
2125.0	3700.0	13.0	14.9
2137.5	3700.0	15.0	14.0
2150.0	3700.0	13.8	14.7
2162.5	3700.0	15.0	16.1
2175.0	3700.0	16.6	17.6
2187.5	3700.0	19.9	19.6
2200.0	3700.0	22.6	22.2
2212.5	3700.0	24.1	25.0
2225.0	3700.0	27.6	28.0
2237.5	3700.0	30.6	31.4
2250.0	3700.0	35.2	35.4
2262.5	3700.0	39.5	39.8
2275.0	3700.0	44.3	44.9
2287.5	3700.0	49.5	49.7
2300.0	3700.0	56.0	53.3
2312.5	3700.0	59.0	54.6
2325.0	3700.0	57.8	52.9
2337.5	3700.0	50.8	49.1
2350.0	3700.0	40.7	43.9
2362.5	3700.0	37.1	38.0
2375.0	3700.0	33.0	32.7
2387.5	3700.0	28.5	30.7
2400.0	3700.0	24.1	28.5

1.5 Line 3700 N , East of Baseline 2400 E

4800.0	3702.0	42.4	52.0
4787.5	3702.0	58.1	63.6
4775.0	3702.0	55.5	69.3
4762.5	3702.0	98.5	76.6
4750.0	3702.0	92.0	76.6
4737.5	3702.0	79.1	73.0
4725.0	3702.0	57.7	56.7
4712.5	3702.0	37.6	40.3
4700.0	3702.0	17.3	26.2
4687.5	3702.0	10.0	15.6

4675.0	3702.0	8.4	10.3
4662.5	3702.0	4.5	9.8
4650.0	3702.0	11.5	11.1
4637.5	3702.0	14.5	13.1
4625.0	3702.0	16.7	17.1
4612.5	3702.0	18.1	22.6
4600.0	3702.0	24.5	28.1
4587.5	3702.0	39.2	33.1
4575.0	3702.0	41.8	37.6
4562.5	3702.0	41.7	39.3
4550.0	3702.0	40.7	37.9
4537.5	3702.0	33.0	35.8
4525.0	3702.0	32.1	36.5
4512.5	3702.0	31.5	34.5
4500.0	3702.0	45.0	25.6
4487.5	3702.0	31.1	12.7
4475.0	3702.0	-11.8	3.8
4462.5	3702.0	-32.1	-3.9
4450.0	3702.0	-13.1	-13.4
4437.5	3702.0	6.2	-8.0
4425.0	3702.0	-16.1	.2
4412.5	3702.0	15.3	1.0
4400.0	3702.0	8.6	-1.2
4387.5	3702.0	-9.2	10.9
4375.0	3702.0	-4.7	22.9
4362.5	3702.0	44.3	29.8
4350.0	3702.0	75.3	37.2
4337.5	3702.0	43.3	43.8
4325.0	3702.0	28.0	44.8
4312.5	3702.0	28.2	37.1
4300.0	3702.0	49.3	32.9
4287.5	3702.0	36.6	30.7
4275.0	3702.0	22.4	28.6
4262.5	3702.0	16.8	18.9
4250.0	3702.0	17.7	9.8
4237.5	3702.0	1.2	4.6
4225.0	3702.0	-9.0	-1.0
4212.5	3702.0	-3.9	-7.5
4200.0	3702.0	-11.1	-10.3
4187.5	3702.0	-14.7	-10.5
4175.0	3702.0	-12.9	-12.1
4162.5	3702.0	-9.9	-12.3
4150.0	3702.0	-11.8	-12.1
4137.5	3702.0	-12.1	-12.2
4125.0	3702.0	-13.8	-13.4
4112.5	3702.0	-13.2	-15.0
4100.0	3702.0	-15.9	-17.3
4087.5	3702.0	-20.0	-20.8
4075.0	3702.0	-23.8	-25.1
4062.5	3702.0	-31.1	-32.0
4050.0	3702.0	-34.6	-36.1
4037.5	3702.0	-50.6	-38.9
4025.0	3702.0	-40.4	-41.9
4			

4012.5	3702.0	-37.7	-41.9
4000.0	3702.0	-46.4	-39.1
3987.5	3702.0	-34.3	-32.6
3975.0	3702.0	-36.8	-25.2
3962.5	3702.0	-8.0	-17.8
3950.0	3702.0	-.5	-13.9
3937.5	3702.0	-9.3	7.6
3925.0	3702.0	-14.8	38.0
3912.5	3702.0	70.8	60.5
3900.0	3702.0	143.9	91.0
3887.5	3702.0	111.8	124.7
3875.0	3702.0	143.2	131.5
3862.5	3702.0	153.9	114.4
3850.0	3702.0	104.9	99.2
3837.5	3702.0	58.0	75.6
3825.0	3702.0	35.8	46.3
3812.5	3702.0	25.4	26.2
3800.0	3702.0	7.3	14.5
3787.5	3702.0	4.5	9.4
3775.0	3702.0	-.3	9.8
3762.5	3702.0	10.3	15.4
3750.0	3702.0	27.1	28.0
3737.5	3702.0	35.6	39.2
3725.0	3702.0	67.5	45.3
3712.5	3702.0	55.5	46.1
3700.0	3702.0	40.7	42.0
3687.5	3702.0	31.0	30.4
3675.0	3702.0	15.5	19.7
3662.5	3702.0	9.1	10.9
3650.0	3702.0	2.2	3.5
3637.5	3702.0	-3.1	-1.8
3625.0	3702.0	-6.1	-4.4
3612.5	3702.0	-11.0	-7.6
3600.0	3702.0	-4.1	-10.4
3587.5	3702.0	-13.8	-13.0
3575.0	3702.0	-17.2	-12.5
3562.5	3702.0	-19.0	-11.5
3550.0	3702.0	-8.2	-11.7
3537.5	3702.0	.5	-11.6
3525.0	3702.0	-14.5	-8.0
3512.5	3702.0	-16.9	-7.9
3500.0	3702.0	-.8	-10.7
3487.5	3701.0	-25.8	-24.6
3475.0	3701.0	-18.3	-32.3
3462.5	3701.0	-50.3	8.3
3450.0	3701.0	-62.9	33.0
3437.5	3701.0	198.7	42.2
3425.0	3701.0	97.7	50.1
3412.5	3701.0	28.0	65.3
3400.0	3701.0	-11.2	26.8
3387.5	3701.0	13.5	5.8
3375.0	3701.0	5.8	-5.1
3362.5	3701.0	-7.1	-4.6

3350.0	3701.0	-26.5	-7.9
3337.5	3701.0	-8.8	-15.5
3325.0	3701.0	-2.9	-19.7
3312.5	3701.0	-32.0	-19.7
3300.0	3701.0	-28.5	-22.8
3287.5	3701.0	-26.4	-26.8
3275.0	3701.0	-24.0	-25.8
3262.5	3701.0	-23.3	-26.5
3250.0	3701.0	-26.6	-28.2
3237.5	3701.0	-32.4	-31.8
3225.0	3701.0	-34.8	-34.7
3212.5	3701.0	-42.0	-38.2
3200.0	3701.0	-37.5	-40.7
3187.5	3701.0	-44.1	-40.8
3175.0	3701.0	-44.9	-32.3
3162.5	3701.0	-35.7	32.1
3150.0	3701.0	.5	55.8
3137.5	3701.0	284.6	63.3
3125.0	3701.0	74.3	67.4
3112.5	3701.0	-7.4	62.4
3100.0	3701.0	-14.8	1.8
3087.5	3701.0	-24.8	-9.8
3075.0	3701.0	-18.2	-9.4
3062.5	3701.0	16.0	-10.3
3050.0	3701.0	-5.1	-7.9
3037.5	3701.0	-19.6	-9.9
3025.0	3701.0	-12.8	-18.0
3012.5	3701.0	-27.9	-21.9
3000.0	3701.0	-24.7	-24.5
2987.5	3701.0	-24.7	-28.4
2975.0	3701.0	-32.3	-24.0
2962.5	3701.0	-32.5	-25.6
2950.0	3701.0	-6.0	-27.3
2937.5	3701.0	-32.3	-27.4
2925.0	3701.0	-33.3	-27.5
2912.5	3701.0	-33.0	-32.7
2900.0	3701.0	-32.8	-33.4
2887.5	3701.0	-31.9	-35.3
2875.0	3701.0	-36.0	23.4
2862.5	3701.0	-42.7	43.6
2850.0	3701.0	260.6	54.3
2837.5	3701.0	68.2	63.1
2825.0	3701.0	21.3	71.5
2812.5	3701.0	8.0	18.0
2800.0	3701.0	-.7	1.0
2787.5	3701.0	-6.8	-8.5
2775.0	3701.0	-16.9	-15.7
2762.5	3701.0	-26.3	-21.9
2750.0	3701.0	-27.6	-26.3
2737.5	3701.0	-32.0	-29.4
2725.0	3701.0	-28.6	-30.9
2712.5	3701.0	-32.4	-34.4
2700.0	3701.0	-33.7	-37.6

2687.5	3701.0	-45.2	-41.7
2675.0	3701.0	-48.2	-44.4
2662.5	3701.0	-49.1	-45.3
2650.0	3701.0	-45.9	-35.5
2637.5	3701.0	-38.1	-16.6
2625.0	3701.0	3.6	.2
2612.5	3701.0	46.6	12.1
2600.0	3701.0	34.7	18.0
2587.5	3701.0	13.6	15.7
2575.0	3701.0	-8.3	21.4
2562.5	3701.0	-7.9	23.1
2550.0	3701.0	74.7	25.6
2537.5	3701.0	43.4	30.6
2525.0	3701.0	25.9	35.1
2512.5	3701.0	16.7	22.6
2500.0	3701.0	14.8	15.8
2487.5	3701.0	12.0	12.9
2475.0	3701.0	9.7	11.9
2462.5	3701.0	11.5	11.7
2450.0	3701.0	11.5	12.4
2437.5	3701.0	13.6	14.1
2425.0	3701.0	15.9	16.2
2412.5	3701.0	18.0	17.4
2400.0	3701.0	22.0	18.6

1.6 Line 3800 N , West of Baseline 2400 E

2387.5	3800.0	4.6	6.1
2375.0	3800.0	5.9	7.4
2362.5	3800.0	8.7	9.5
2350.0	3800.0	12.5	12.8
2337.5	3800.0	16.0	17.7
2325.0	3800.0	20.9	27.0
2312.5	3800.0	30.3	46.1
2300.0	3800.0	55.2	90.6
2287.5	3800.0	107.9	123.1
2275.0	3800.0	238.8	144.8
2262.5	3800.0	183.1	151.6
2250.0	3800.0	138.9	142.0
2237.5	3800.0	89.4	103.0
2225.0	3800.0	59.8	73.6
2212.5	3800.0	43.8	52.3
2200.0	3800.0	36.2	38.8
2187.5	3800.0	32.5	30.8
2175.0	3800.0	21.9	25.7
2162.5	3800.0	19.5	22.4
2150.0	3800.0	18.2	19.3
2137.5	3800.0	19.7	17.6
2125.0	3800.0	17.0	15.5
2112.5	3800.0	13.7	13.0
2100.0	3800.0	8.9	8.7

2087.5	3800.0	5.8	4.8
2075.0	3800.0	-1.8	2.7
2062.5	3800.0	-2.4	.9
2050.0	3800.0	2.8	-1.5
2037.5	3800.0	-2.7	-2.0
2025.0	3800.0	-3.5	-3.4
2012.5	3800.0	-4.3	-6.3
2000.0	3800.0	-9.4	-7.7
1987.5	3800.0	-11.4	-8.5
1975.0	3800.0	-10.0	-9.1
1962.5	3800.0	-7.6	-10.0
1950.0	3800.0	-7.2	-12.0
1937.5	3800.0	-13.9	-14.7
1925.0	3800.0	-21.4	-18.6
1912.5	3800.0	-23.3	-22.8
1900.0	3800.0	-27.4	-23.3
1887.5	3800.0	-27.8	-21.5
1875.0	3800.0	-16.4	-19.1
1862.5	3800.0	-12.5	-15.9
1850.0	3800.0	-11.5	-12.1
1837.5	3800.0	-11.1	-8.4
1825.0	3800.0	-9.1	-8.9
1812.5	3800.0	2.3	-12.1
1800.0	3800.0	-15.2	-15.0
1787.5	3800.0	-27.6	-17.6
1775.0	3800.0	-25.2	-22.5
1762.5	3800.0	-22.4	-24.3
1750.0	3800.0	-22.1	-21.8
1737.5	3800.0	-24.4	-20.3
1725.0	3800.0	-15.1	-20.5
1712.5	3800.0	-17.4	-20.1
1700.0	3800.0	-23.4	-18.6

1.7 Line 3800 N , East of Baseline 2400 E

2400.0	3801.0	4.4	6.6
2412.5	3801.0	5.8	10.1
2425.0	3801.0	9.5	15.7
2437.5	3801.0	20.6	29.0
2450.0	3801.0	38.1	64.1
2462.5	3801.0	70.9	192.9
2475.0	3801.0	181.5	165.3
2487.5	3801.0	653.2	134.1
2500.0	3801.0	-117.2	119.9
2512.5	3801.0	-118.0	99.4
2525.0	3801.0	-.1	-24.1
2537.5	3801.0	79.3	-4.6
2550.0	3801.0	35.5	5.1
2562.5	3801.0	-19.5	-6.7
2575.0	3801.0	-69.7	-34.6
2587.5	3801.0	-59.3	-54.0
2600.0	3801.0	-60.2	-58.8

2612.5	3801.0	-61.5	-65.4
2625.0	3801.0	-43.4	-71.2
2637.5	3801.0	-102.7	-70.1
2650.0	3801.0	-88.4	-66.7
2662.5	3801.0	-54.3	-64.6
2675.0	3801.0	-44.6	-48.9
2687.5	3801.0	-32.9	-31.3
2700.0	3801.0	-24.4	-23.8
2712.5	3801.0	-.3	-20.5
2725.0	3801.0	-17.0	-18.5
2737.5	3801.0	-27.7	-12.6
2750.0	3801.0	-23.2	3.4
2762.5	3801.0	5.1	1.0
2775.0	3801.0	79.8	1.1
2787.5	3801.0	-28.9	1.0
2800.0	3801.0	-27.2	-3.4
2812.5	3801.0	-24.0	-20.1
2825.0	3801.0	-16.7	-14.6
2837.5	3801.0	-3.8	-13.8
2850.0	3801.0	-1.2	-14.6
2862.5	3801.0	-23.1	-13.7
2875.0	3801.0	-28.1	-15.4
2887.5	3801.0	-12.4	-15.5
2900.0	3801.0	-12.3	-10.5
2912.5	3801.0	-1.8	-3.9
2925.0	3801.0	2.0	-.2
2937.5	3801.0	4.8	5.0
2950.0	3801.0	6.4	20.8
2962.5	3801.0	13.6	38.1
2975.0	3801.0	77.3	43.6
2987.5	3801.0	88.5	44.2
3000.0	3801.0	32.2	43.1
3012.5	3801.0	9.5	30.4
3025.0	3801.0	8.1	16.4
3037.5	3801.0	13.5	13.8
3050.0	3801.0	18.5	13.4
3062.5	3801.0	19.4	12.6
3075.0	3801.0	7.7	10.6
3087.5	3801.0	4.1	8.0
3100.0	3801.0	3.4	4.1
3112.5	3801.0	5.2	1.6
3125.0	3801.0	-1.0	-1.3
3137.5	3801.0	-4.8	-4.0
3150.0	3801.0	-10.5	-13.8
3162.5	3801.0	-10.2	-22.5
3175.0	3801.0	-43.4	-20.3
3187.5	3801.0	-43.6	-15.4
3200.0	3801.0	6.4	-14.1
3212.5	3801.0	13.9	-7.8
3225.0	3801.0	-3.9	-5.3
3237.5	3801.0	-11.8	-16.6
3250.0	3801.0	-31.2	-24.7
3262.5	3801.0	-50.0	-24.9

3275.0	3801.0	-26.8	-23.2
3287.5	3801.0	-4.8	-16.7
3300.0	3801.0	-3.4	-3.1
3312.5	3801.0	1.6	8.5
3325.0	3801.0	18.0	18.0
3337.5	3801.0	30.9	28.8
3350.0	3801.0	42.8	40.7
3362.5	3801.0	50.9	50.7
3375.0	3801.0	60.7	57.8
3387.5	3801.0	68.1	62.8
3400.0	3801.0	66.6	59.6
3412.5	3801.0	67.8	50.0
3425.0	3801.0	34.8	35.3
3437.5	3801.0	12.6	18.7
3450.0	3801.0	-5.1	2.3
3462.5	3801.0	-16.4	-10.3
3475.0	3801.0	-14.5	-18.7
3487.5	3801.0	-28.3	-22.1
3500.0	3801.0	-29.3	-24.0
3512.5	3802.0	-37.4	-35.6
3525.0	3802.0	-34.9	-35.8
3537.5	3802.0	-39.2	-37.3
3550.0	3802.0	-36.7	-34.4
3562.5	3802.0	-38.1	-30.1
3575.0	3802.0	-23.0	-25.4
3587.5	3802.0	-13.7	-19.8
3600.0	3802.0	-15.4	-16.0
3612.5	3802.0	-8.8	-17.0
3625.0	3802.0	-19.1	-19.6
3637.5	3802.0	-28.0	-19.5
3650.0	3802.0	-26.5	-20.6
3662.5	3802.0	-14.9	-19.1
3675.0	3802.0	-14.5	-14.5
3687.5	3802.0	-11.7	-9.7
3700.0	3802.0	-4.9	45.2
3712.5	3802.0	-2.7	41.2
3725.0	3802.0	259.7	38.0
3737.5	3802.0	-34.6	37.3
3750.0	3802.0	-27.6	37.5
3762.5	3802.0	-8.3	-14.7
3775.0	3802.0	-1.8	-8.3
3787.5	3802.0	-1.2	-1.5
3800.0	3802.0	-2.5	-1.1
3812.5	3802.0	6.3	-1.4
3825.0	3802.0	-6.4	-.1
3837.5	3802.0	-3.0	2.9
3850.0	3802.0	4.9	58.2
3862.5	3802.0	12.9	83.1
3875.0	3802.0	282.5	88.3
3887.5	3802.0	118.0	86.0
3900.0	3802.0	23.3	83.3
3912.5	3802.0	-6.7	26.4
3925.0	3802.0	-.4	2.2

3937.5	3802.0	-2.0	-3.3
3950.0	3802.0	-3.1	-3.1
3962.5	3802.0	-4.2	-3.4
3975.0	3802.0	-5.6	-3.9
3987.5	3802.0	-2.2	-7.4
4000.0	3802.0	-4.3	-11.8
4012.5	3802.0	-20.5	-18.7
4025.0	3802.0	-26.5	-24.8
4037.5	3802.0	-40.0	-31.2
4050.0	3802.0	-32.7	-37.0
4062.5	3802.0	-36.4	-36.9
4075.0	3802.0	-49.6	-34.7
4087.5	3802.0	-25.7	-31.9
4100.0	3802.0	-29.1	-27.1
4112.5	3802.0	-18.9	-13.5
4125.0	3802.0	-12.0	-3.3
4137.5	3802.0	18.0	7.5
4150.0	3802.0	25.5	17.1
4162.5	3802.0	24.7	24.9
4175.0	3802.0	29.2	29.1
4187.5	3802.0	27.1	29.0
4200.0	3802.0	38.9	27.0
4212.5	3802.0	25.3	23.5
4225.0	3802.0	14.4	18.8
4237.5	3802.0	12.0	15.6
4250.0	3802.0	3.6	12.1
4262.5	3802.0	22.5	12.5
4275.0	3802.0	8.1	14.1
4287.5	3802.0	16.1	22.9
4300.0	3802.0	20.1	28.8
4312.5	3802.0	47.7	35.2
4325.0	3802.0	51.8	41.8
4337.5	3802.0	40.2	46.5
4350.0	3802.0	49.2	43.0
4362.5	3802.0	43.6	38.4
4375.0	3802.0	30.4	32.4
4387.5	3802.0	28.8	26.3
4400.0	3802.0	10.0	35.6
4412.5	3802.0	18.6	49.9
4425.0	3802.0	90.2	56.1
4437.5	3802.0	101.9	72.7
4450.0	3802.0	59.9	83.3
4462.5	3802.0	93.0	81.0
4475.0	3802.0	71.3	80.6
4487.5	3802.0	79.0	90.3
4500.0	3802.0	99.6	85.7
4512.5	3802.0	108.8	88.7
4525.0	3802.0	69.6	85.5
4537.5	3802.0	86.6	73.9
4550.0	3802.0	63.1	56.3
4562.5	3802.0	41.2	40.9
4575.0	3802.0	21.1	23.5
4587.5	3802.0	-7.7	10.1

4600.0	3802.0	.0	.4
4612.5	3802.0	-4.0	-5.7
4625.0	3802.0	-7.2	-5.2
4637.5	3802.0	-9.8	-7.7
4650.0	3802.0	-5.1	-8.8
4662.5	3802.0	-12.4	-2.6
4675.0	3802.0	-9.7	.5
4687.5	3802.0	24.1	4.6
4700.0	3802.0	5.7	20.6
4712.5	3802.0	15.5	37.5
4725.0	3802.0	67.2	42.7
4737.5	3802.0	75.1	49.6
4750.0	3802.0	50.0	52.8
4762.5	3802.0	40.2	52.6
4775.0	3802.0	31.4	50.4
4787.5	3802.0	66.1	50.5
4800.0	3802.0	64.3	53.9

1.8 Line 3900 N , West of Baseline 2400 E

1700.0	3900.0	-37.7	-37.2
1712.5	3900.0	-35.9	-38.7
1725.0	3900.0	-38.0	-40.1
1737.5	3900.0	-43.2	-42.2
1750.0	3900.0	-45.9	-44.5
1762.5	3900.0	-47.9	-47.0
1775.0	3900.0	-47.5	-47.3
1787.5	3900.0	-50.7	-47.7
1800.0	3900.0	-44.7	-47.3
1812.5	3900.0	-47.8	-45.6
1825.0	3900.0	-45.7	-43.4
1837.5	3900.0	-39.3	-41.9
1850.0	3900.0	-39.4	-37.5
1862.5	3900.0	-37.3	-32.9
1875.0	3900.0	-25.7	-28.5
1887.5	3900.0	-22.6	-22.2
1900.0	3900.0	-17.6	-15.2
1912.5	3900.0	-7.8	-9.0
1925.0	3900.0	-2.4	-1.4
1937.5	3900.0	5.4	8.3
1950.0	3900.0	15.5	17.6
1962.5	3900.0	31.0	28.1
1975.0	3900.0	38.5	37.8
1987.5	3900.0	50.0	46.5
2000.0	3900.0	54.2	53.1
2012.5	3900.0	58.6	57.5
2025.0	3900.0	64.4	57.3
2037.5	3900.0	60.2	54.8
2050.0	3900.0	49.2	50.7
2062.5	3900.0	41.6	45.7
2075.0	3900.0	37.9	41.3

2087.5	3900.0	39.7	37.8
2100.0	3900.0	38.3	35.4
2112.5	3900.0	31.7	33.1
2125.0	3900.0	29.3	30.0
2137.5	3900.0	26.7	27.2
2150.0	3900.0	23.9	25.7
2162.5	3900.0	24.6	25.5
2175.0	3900.0	24.2	27.6
2187.5	3900.0	28.2	32.5
2200.0	3900.0	37.3	41.8
2212.5	3900.0	48.3	58.6
2225.0	3900.0	70.9	105.6
2237.5	3900.0	108.4	221.5
2250.0	3900.0	263.0	227.4
2262.5	3900.0	617.0	222.2
2275.0	3900.0	77.5	207.0
2287.5	3900.0	44.9	159.1
2300.0	3900.0	32.5	38.5
2312.5	3900.0	23.8	24.6
2325.0	3900.0	13.9	16.3
2337.5	3900.0	7.8	10.2
2350.0	3900.0	3.7	5.5
2362.5	3900.0	1.7	1.8
2375.0	3900.0	.3	-2.3
2387.5	3900.0	-4.7	-3.8
2400.0	3900.0	-12.3	-5.6

1.9 Line 3900 N , East of Baseline 2400 E

4800.0	3902.0	49.9	56.3
4787.5	3902.0	55.4	61.3
4775.0	3902.0	63.7	63.5
4762.5	3902.0	76.4	68.4
4750.0	3902.0	72.1	68.7
4737.5	3902.0	74.5	65.0
4725.0	3902.0	56.7	62.9
4712.5	3902.0	45.3	64.5
4700.0	3902.0	65.8	66.8
4687.5	3902.0	80.3	72.4
4675.0	3902.0	86.1	79.4
4662.5	3902.0	84.6	80.8
4650.0	3902.0	80.1	79.4
4637.5	3902.0	73.1	80.4
4625.0	3902.0	73.1	81.1
4612.5	3902.0	91.3	81.0
4600.0	3902.0	87.8	82.1
4587.5	3902.0	79.7	83.4
4575.0	3902.0	78.5	81.2
4562.5	3902.0	79.7	80.7
4550.0	3902.0	80.4	79.1
4537.5	3902.0	85.0	78.4
4525.0	3902.0	71.9	77.2

4512.5	3902.0	75.2	75.0
4500.0	3902.0	73.6	71.9
4487.5	3902.0	69.2	72.1
4475.0	3902.0	69.5	68.0
4462.5	3902.0	73.0	62.9
4450.0	3902.0	54.5	60.7
4437.5	3902.0	48.3	56.6
4425.0	3902.0	58.3	50.8
4412.5	3902.0	48.8	44.2
4400.0	3902.0	44.1	38.0
4387.5	3902.0	21.4	33.2
4375.0	3902.0	17.4	34.1
4362.5	3902.0	34.4	34.6
4350.0	3902.0	53.2	40.8
4337.5	3902.0	46.8	48.3
4325.0	3902.0	52.3	54.1
4312.5	3902.0	54.9	54.8
4300.0	3902.0	63.1	55.6
4287.5	3902.0	56.7	49.3
4275.0	3902.0	50.9	44.4
4262.5	3902.0	20.8	37.9
4250.0	3902.0	30.7	36.2
4237.5	3902.0	30.6	35.5
4225.0	3902.0	48.2	34.2
4212.5	3902.0	47.2	30.2
4200.0	3902.0	14.5	22.8
4187.5	3902.0	10.3	17.2
4175.0	3902.0	-6.1	12.7
4162.5	3902.0	20.3	9.0
4150.0	3902.0	24.7	2.6
4137.5	3902.0	-4.1	2.1
4125.0	3902.0	-21.6	-2.6
4112.5	3902.0	-8.9	-7.1
4100.0	3902.0	-3.2	-6.5
4087.5	3902.0	2.1	-3.0
4075.0	3902.0	-.8	3.0
4062.5	3902.0	-4.1	7.7
4050.0	3902.0	21.2	13.5
4037.5	3902.0	20.2	13.7
4025.0	3902.0	30.9	12.0
4012.5	3902.0	-12.4	8.8
4000.0	3902.0	-1	8.8
3987.5	3902.0	5.5	7.4
3975.0	3902.0	16.7	12.2
3962.5	3902.0	27.4	18.8
3950.0	3902.0	24.0	17.2
3937.5	3902.0	20.6	18.2
3925.0	3902.0	-2.7	20.4
3912.5	3902.0	21.8	23.6
3900.0	3902.0	38.4	26.4
3887.5	3902.0	40.0	35.8
3875.0	3902.0	34.3	45.5
3862.5	3902.0	44.6	59.7

3850.0	3902.0	70.4	55.0
3837.5	3902.0	109.2	49.6
3825.0	3902.0	16.7	40.3
3812.5	3902.0	7.1	27.4
3800.0	3902.0	-2.0	6.4
3787.5	3902.0	6.0	2.2
3775.0	3902.0	4.3	-1.4
3762.5	3902.0	-4.5	-4.0
3750.0	3902.0	-10.8	-9.1
3737.5	3902.0	-15.2	-13.5
3725.0	3902.0	-19.2	-9.1
3712.5	3902.0	-17.6	3.6
3700.0	3902.0	17.5	12.5
3687.5	3902.0	52.4	22.4
3675.0	3902.0	29.2	28.1
3662.5	3902.0	30.3	33.7
3650.0	3902.0	11.1	27.0
3637.5	3902.0	45.4	24.0
3625.0	3902.0	19.0	21.8
3612.5	3902.0	14.3	24.7
3600.0	3902.0	19.3	18.8
3587.5	3902.0	25.6	17.0
3575.0	3902.0	15.8	17.2
3562.5	3902.0	10.1	15.9
3550.0	3902.0	15.1	10.6
3537.5	3902.0	12.7	8.7
3525.0	3902.0	-.6	8.5
3512.5	3902.0	6.0	6.8
3500.0	3902.0	9.2	4.9
3487.5	3901.0	8.3	4.5
3475.0	3901.0	5.4	4.7
3462.5	3901.0	-.6	7.5
3450.0	3901.0	5.4	8.5
3437.5	3901.0	18.9	10.1
3425.0	3901.0	13.6	16.0
3412.5	3901.0	13.2	18.5
3400.0	3901.0	28.8	12.6
3387.5	3901.0	17.8	7.9
3375.0	3901.0	-10.3	8.1
3362.5	3901.0	-10.1	4.6
3350.0	3901.0	14.2	5.6
3337.5	3901.0	11.6	5.1
3325.0	3901.0	22.5	2.0
3312.5	3901.0	-12.9	-8.4
3300.0	3901.0	-25.4	-16.5
3287.5	3901.0	-37.8	-25.2
3275.0	3901.0	-28.7	-25.1
3262.5	3901.0	-21.2	-19.8
3250.0	3901.0	-12.4	-6.3
3237.5	3901.0	1.1	2.6
3225.0	3901.0	29.8	4.6
3212.5	3901.0	15.7	.3
3200.0	3901.0	-11.4	-4.5

3187.5	3901.0	-33.6	-12.6
3175.0	3901.0	-23.2	-14.2
3162.5	3901.0	-10.4	-13.1
3150.0	3901.0	7.6	-4.6
3137.5	3901.0	-6.1	.4
3125.0	3901.0	9.0	2.8
3112.5	3901.0	1.7	2.1
3100.0	3901.0	2.0	1.0
3087.5	3901.0	3.8	-4.4
3075.0	3901.0	-11.5	-7.8
3062.5	3901.0	-17.8	-9.4
3050.0	3901.0	-15.4	-9.6
3037.5	3901.0	-6.3	-8.6
3025.0	3901.0	2.9	-5.6
3012.5	3901.0	-6.4	-1.0
3000.0	3901.0	-3.0	1.3
2987.5	3901.0	7.9	4.0
2975.0	3901.0	5.1	4.5
2962.5	3901.0	16.4	6.5
2950.0	3901.0	-4.0	6.6
2937.5	3901.0	7.1	9.2
2925.0	3901.0	8.3	7.7
2912.5	3901.0	18.2	8.5
2900.0	3901.0	8.8	9.2
2887.5	3901.0	.0	9.5
2875.0	3901.0	10.5	6.2
2862.5	3901.0	10.0	4.5
2850.0	3901.0	1.8	4.0
2837.5	3901.0	.0	-.5
2825.0	3901.0	-2.5	-4.6
2812.5	3901.0	-12.0	-5.1
2800.0	3901.0	-10.5	-9.1
2787.5	3901.0	-.6	-12.3
2775.0	3901.0	-19.8	-14.7
2762.5	3901.0	-18.8	-17.4
2750.0	3901.0	-23.7	-19.0
2737.5	3901.0	-24.1	-16.9
2725.0	3901.0	-8.5	-12.4
2712.5	3901.0	-9.3	-7.3
2700.0	3901.0	3.6	-1.7
2687.5	3901.0	1.9	-1.1
2675.0	3901.0	4.0	-2.1
2662.5	3901.0	-5.9	-7.3
2650.0	3901.0	-14.1	-13.3
2637.5	3901.0	-22.6	-21.0
2625.0	3901.0	-27.7	-27.3
2612.5	3901.0	-34.6	-32.9
2600.0	3901.0	-37.5	-37.1
2587.5	3901.0	-42.2	-40.0
2575.0	3901.0	-43.6	-42.8
2562.5	3901.0	-42.3	-46.1
2550.0	3901.0	-48.3	-49.3
2537.5	3901.0	-53.9	-53.3

2525.0	3901.0	-58.4	-57.5
2512.5	3901.0	-63.6	-59.1
2500.0	3901.0	-63.1	-57.5
2487.5	3901.0	-56.7	-54.9
2475.0	3901.0	-45.9	-49.7
2462.5	3901.0	-45.4	-46.8
2450.0	3901.0	-37.6	-45.7
2437.5	3901.0	-48.4	-44.2
2425.0	3901.0	-51.3	-38.0
2412.5	3901.0	-38.3	-38.1
2400.0	3901.0	-14.4	-34.7

1.10

Line

4000 N

4000.0 West of Baseline 2400E

2387.5	4000.0	-53.4	-73.8
2375.0	4000.0	-76.5	-38.7
2362.5	4000.0	-126.7	-39.6
2350.0	4000.0	102.1	-35.1
2337.5	4000.0	-43.5	-19.6
2325.0	4000.0	-30.7	17.7
2312.5	4000.0	1.0	31.8
2300.0	4000.0	59.4	141.2
2287.5	4000.0	172.9	203.9
2275.0	4000.0	503.4	226.0
2262.5	4000.0	282.6	229.7
2250.0	4000.0	111.6	266.1
2237.5	4000.0	77.8	192.8
2225.0	4000.0	355.3	158.5
2212.5	4000.0	136.8	151.7
2200.0	4000.0	111.1	147.0
2187.5	4000.0	77.3	83.4
2175.0	4000.0	54.6	62.3
2162.5	4000.0	37.2	45.9
2150.0	4000.0	31.4	35.8
2137.5	4000.0	28.9	30.4
2125.0	4000.0	27.0	28.6
2112.5	4000.0	27.7	29.2
2100.0	4000.0	28.2	30.9
2087.5	4000.0	34.4	35.2
2075.0	4000.0	37.0	43.1
2062.5	4000.0	48.5	52.6
2050.0	4000.0	67.4	60.6
2037.5	4000.0	75.6	67.0
2025.0	4000.0	74.4	69.2
2012.5	4000.0	69.0	64.2
2000.0	4000.0	59.7	54.2
1987.5	4000.0	42.3	41.9
1975.0	4000.0	25.5	29.0
1962.5	4000.0	12.8	14.8
1950.0	4000.0	4.5	3.2
1937.5	4000.0	-11.0	-7.3
1925.0	4000.0	-15.9	-15.7

1912.5	4000.0	-26.7	-22.1
1900.0	4000.0	-29.6	-25.9
1887.5	4000.0	-27.5	-29.3
1875.0	4000.0	-30.0	-30.4
1862.5	4000.0	-32.7	-32.0
1850.0	4000.0	-32.0	-34.8
1837.5	4000.0	-38.0	-35.9
1825.0	4000.0	-41.4	-36.4
1812.5	4000.0	-35.4	-35.8
1800.0	4000.0	-35.1	-32.0
1787.5	4000.0	-29.1	-27.0
1775.0	4000.0	-19.2	-21.7
1762.5	4000.0	-16.1	-15.1
1750.0	4000.0	-9.2	-9.5
1737.5	4000.0	-2.1	-6.0
1725.0	4000.0	-.8	-3.1
1712.5	4000.0	-1.6	-1.5
1700.0	4000.0	-1.6	-1.3

1.11 Line 4000 N , East of Baseline 2400 E

2400.0	4001.0	-51.1	-30.7
2412.5	4001.0	-30.4	-16.9
2425.0	4001.0	-10.6	9.6
2437.5	4001.0	24.4	46.3
2450.0	4001.0	115.5	80.6
2462.5	4001.0	132.6	82.0
2475.0	4001.0	141.3	89.7
2487.5	4001.0	-3.7	63.6
2500.0	4001.0	63.0	25.9
2512.5	4001.0	-15.0	-12.3
2525.0	4001.0	-55.9	-21.0
2537.5	4001.0	-50.1	-41.6
2550.0	4001.0	-46.9	-45.3
2562.5	4001.0	-40.3	-40.0
2575.0	4001.0	-33.5	-33.4
2587.5	4001.0	-29.1	-26.4
2600.0	4001.0	-17.2	-17.5
2612.5	4001.0	-12.0	-8.7
2625.0	4001.0	4.2	-2.8
2637.5	4001.0	10.8	-2.8
2650.0	4001.0	-1.4	-4.3
2662.5	4001.0	-17.3	-11.1
2675.0	4001.0	-19.7	-17.4
2687.5	4001.0	-29.9	-18.4
2700.0	4001.0	-20.4	-17.5
2712.5	4001.0	-4.8	-14.5
2725.0	4001.0	-12.6	-7.7
2737.5	4001.0	-4.8	-2.9
2750.0	4001.0	4.3	-.6
2762.5	4001.0	3.5	4.1
2775.0	4001.0	6.8	4.7

2787.5	4001.0	10.5	1.1
2800.0	4001.0	-1.5	-.9
2812.5	4001.0	-14.0	-2.7
2825.0	4001.0	-6.5	-6.4
2837.5	4001.0	-1.9	-6.2
2850.0	4001.0	-8.1	-1.7
2862.5	4001.0	-.5	1.3
2875.0	4001.0	8.3	4.3
2887.5	4001.0	8.7	8.9
2900.0	4001.0	13.3	14.4
2912.5	4001.0	14.9	21.1
2925.0	4001.0	26.9	30.1
2937.5	4001.0	41.8	38.9
2950.0	4001.0	53.6	43.0
2962.5	4001.0	57.4	37.5
2975.0	4001.0	35.4	28.4
2987.5	4001.0	-.9	18.1
3000.0	4001.0	-3.5	5.3
3012.5	4001.0	2.2	-4.4
3025.0	4001.0	-6.8	-6.3
3037.5	4001.0	-13.2	-6.2
3050.0	4001.0	-10.0	-6.2
3062.5	4001.0	-3.1	-5.4
3075.0	4001.0	2.1	-3.6
3087.5	4001.0	-2.9	-4.8
3100.0	4001.0	-4.2	-3.4
3112.5	4001.0	-15.9	-2.5
3125.0	4001.0	3.8	.7
3137.5	4001.0	6.7	6.4
3150.0	4001.0	13.0	10.8
3162.5	4001.0	24.5	9.0
3175.0	4001.0	5.9	8.6
3187.5	4001.0	-5.1	9.0
3200.0	4001.0	4.8	8.8
3212.5	4001.0	15.0	10.1
3225.0	4001.0	23.6	10.4
3237.5	4001.0	12.2	9.8
3250.0	4001.0	-3.4	8.7
3262.5	4001.0	1.6	7.3
3275.0	4001.0	9.6	9.0
3287.5	4001.0	16.4	15.0
3300.0	4001.0	20.7	21.5
3312.5	4001.0	26.6	22.9
3325.0	4001.0	34.1	23.3
3337.5	4001.0	16.8	21.8
3350.0	4001.0	18.3	19.5
3362.5	4001.0	13.2	12.1
3375.0	4001.0	15.2	5.8
3387.5	4001.0	-2.8	-1.9
3400.0	4001.0	-15.0	-11.5
3412.5	4001.0	-20.1	-23.4
3425.0	4001.0	-34.7	-31.2
3437.5	4001.0	-44.4	-37.8

3450.0	4001.0	-41.7	-43.7
3462.5	4001.0	-48.2	-46.7
3475.0	4001.0	-49.3	-42.7
3487.5	4001.0	-50.1	-42.9
3500.0	4001.0	-24.1	-41.2
3512.5	4002.0	-2.2	-5.3
3525.0	4002.0	-9.6	-2.0
3537.5	4002.0	6.3	3.7
3550.0	4002.0	10.9	8.7
3562.5	4002.0	13.3	16.8
3575.0	4002.0	22.4	24.3
3587.5	4002.0	31.2	30.5
3600.0	4002.0	43.6	38.6
3612.5	4002.0	42.2	39.2
3625.0	4002.0	53.8	35.5
3637.5	4002.0	25.2	28.1
3650.0	4002.0	12.9	17.7
3662.5	4002.0	6.5	-1.6
3675.0	4002.0	-9.9	-11.0
3687.5	4002.0	-42.8	-17.6
3700.0	4002.0	-21.5	-18.9
3712.5	4002.0	-20.3	-9.2
3725.0	4002.0	.2	15.9
3737.5	4002.0	38.2	37.4
3750.0	4002.0	82.7	66.8
3762.5	4002.0	86.2	96.9
3775.0	4002.0	126.9	105.6
3787.5	4002.0	150.5	99.0
3800.0	4002.0	81.9	80.0
3812.5	4002.0	49.7	60.1
3825.0	4002.0	-9.0	37.1
3837.5	4002.0	27.4	28.2
3850.0	4002.0	35.6	20.0
3862.5	4002.0	37.4	24.1
3875.0	4002.0	8.6	22.4
3887.5	4002.0	11.3	15.5
3900.0	4002.0	19.3	9.5
3912.5	4002.0	.7	8.5
3925.0	4002.0	7.4	3.2
3937.5	4002.0	4.0	-1.3
3950.0	4002.0	-15.3	-1.5
3962.5	4002.0	-3.5	-4.2
3975.0	4002.0	-.2	-4.0
3987.5	4002.0	-6.0	1.6
4000.0	4002.0	4.8	4.4
4012.5	4002.0	13.1	1.7
4025.0	4002.0	10.2	.9
4037.5	4002.0	-13.7	-4.5
4050.0	4002.0	-11.0	-13.0
4062.5	4002.0	-21.1	-12.1
4075.0	4002.0	-29.4	-2.8
4087.5	4002.0	14.9	4.9
4100.0	4002.0	32.6	11.6

4112.5	4002.0	27.6	20.0
4125.0	4002.0	12.4	21.5
4137.5	4002.0	12.5	19.1
4150.0	4002.0	22.2	17.0
4162.5	4002.0	21.0	22.5
4175.0	4002.0	16.8	31.8
4187.5	4002.0	40.0	36.2
4200.0	4002.0	59.2	38.5
4212.5	4002.0	44.1	41.1
4225.0	4002.0	32.4	39.1
4237.5	4002.0	29.6	35.7
4250.0	4002.0	30.2	34.9
4262.5	4002.0	42.1	29.7
4275.0	4002.0	40.4	37.3
4287.5	4002.0	6.1	40.4
4300.0	4002.0	67.7	33.3
4312.5	4002.0	45.7	30.2
4325.0	4002.0	6.6	33.3
4337.5	4002.0	24.9	25.0
4350.0	4002.0	21.8	19.6
4362.5	4002.0	26.0	21.4
4375.0	4002.0	18.8	22.6
4387.5	4002.0	15.5	27.8
4400.0	4002.0	31.0	34.4
4412.5	4002.0	47.5	35.4
4425.0	4002.0	59.1	39.2
4437.5	4002.0	23.8	41.7
4450.0	4002.0	34.7	40.8
4462.5	4002.0	43.2	40.2
4475.0	4002.0	43.0	47.4
4487.5	4002.0	56.2	52.0
4500.0	4002.0	60.1	54.3
4512.5	4002.0	57.4	55.1
4525.0	4002.0	54.8	53.9
4537.5	4002.0	47.1	51.9
4550.0	4002.0	50.1	52.3
4562.5	4002.0	50.0	53.3
4575.0	4002.0	59.4	51.9
4587.5	4002.0	59.8	48.2
4600.0	4002.0	40.4	48.5
4612.5	4002.0	31.2	49.3
4625.0	4002.0	51.6	49.8
4637.5	4002.0	63.4	52.3
4650.0	4002.0	62.5	57.7
4662.5	4002.0	53.0	59.2
4675.0	4002.0	58.2 .0	58.6
4687.5	4002.0	59.0	56.1
4700.0	4002.0	60.3	56.0
4712.5	4002.0	49.8	53.0
4725.0	4002.0	52.6	49.2
4737.5	4002.0	43.3	48.7
4750.0	4002.0	40.0	52.6
4762.5	4002.0	57.8	56.5
4			

4775.0	4002.0	69.4	61.0
4787.5	4002.0	72.0	66.3
4800.0	4002.0	66.0	69.1

1.12 Line 4025 N

$4800.0 \quad 4012.0$
4787.5
4775.0
4012.0
4762.5
4750.0
4737.5
4725.0
4712.5
4700.0
4687.5
4012.0
. 8
71.1
68.1
68.7
68.3
66.4
61.6
61.2
57.3
57.6
$50.8 \quad 56.6$
$50.1 \quad 55.1$
$63.2 \quad 53.7$
$53.9 \quad 48.9$
$50.7 \quad 50.4$
$26.8 \quad 50.4$
57.249 .9
4662.54012 .0
$4650.0 \quad 4012.0$
4637.54012 .0
$4625.0 \quad 4012.0$
4612.54012 .0
$4600.0 \quad 4012.0$
4587.5
4012.0
4575.0
4562.5
4550.0
4537.5
4525.0
4512.5
4500.0
4487.5
4012.0
4012.0
4012.0
4012.0
4012.0
4012.0
4012.0
4012.0
$4475.0 \quad 4012.0$
4462.54012 .0
$4450.0 \quad 4012.0$
4437.54012 .0
$4425.0 \quad 4012.0$
4412.54012 .0
4400.04012 .0
$63.3 \quad 50.5$
$51.7 \quad 57.4$
$53.5 \quad 56.4$
$61.3 \quad 57.5$
$52.2 \quad 56.3$
$68.6 \quad 53.3$
$45.9 \quad 53.8$
$38.4 \quad 57.4$
$64.0 \quad 58.3$
$69.9 \quad 61.7$
$73.1 \quad 63.2$
$63.3 \quad 56.1$
$45.9 \quad 47.6$
$28.2 \quad 38.2$
$27.4 \quad 35.2$
$26.0 \quad 36.7$
$48.7 \quad 38.5$
$53.0 \quad 37.9$
$37.3 \quad 36.1$
$24.7 \quad 33.0$
$17.0 \quad 26.3$
1.13 Line 4075 N

4400.0	4112.0	28.8	37.8
4412.5	4112.0	39.8	40.4
4425.0	4112.0	44.7	41.7
4437.5	4112.0	48.4	45.4
4450.0	4112.0	46.8	48.7
4462.5	4112.0	47.3	50.5
4475.0	4112.0	56.4	53.4
4487.5	4112.0	53.4	54.1

4500.0	4112.0	63.3	54.5
4512.5	4112.0	50.3	52.0
4525.0	4112.0	48.9	50.9
4537.5	4112.0	43.9	48.2
4550.0	4112.0	48.3	49.2
4562.5	4112.0	49.8	50.4
4575.0	4112.0	55.3	51.4
4587.5	4112.0	54.5	49.3
4600.0	4112.0	48.9	47.3
4612.5	4112.0	38.2	43.8
4625.0	4112.0	39.8	43.7
4637.5	4112.0	37.5	44.2
4650.0	4112.0	54.3	45.2
4662.5	4112.0	51.2	46.9
4675.0	4112.0	43.2	50.3
4687.5	4112.0	48.5	48.7
4700.0	4112.0	54.4	47.0
4712.5	4112.0	46.2	47.0
4725.0	4112.0	42.8	48.8
4737.5	4112.0	43.0	52.3
4750.0	4112.0	57.6	56.2
4762.5	4112.0	72.1	60.3
4775.0	4112.0	65.7	61.6
4787.5	4112.0	63.1	62.5
4800.0	4112.0	49.3	59.4

1.14 Line 4100 N , West of Baseline 2400 E

1700.0	4100.0	-8.2	-10.6
1712.5	4100.0	-11.1	-11.7
1725.0	4100.0	-12.5	-12.9
1737.5	4100.0	-15.0	-14.9
1750.0	4100.0	-17.8	-16.4
1762.5	4100.0	-18.1	-18.0
1775.0	4100.0	-18.4	-19.4
1787.5	4100.0	-20.7	-20.9
1800.0	4100.0	-21.8	-20.9
1812.5	4100.0	-25.6	-20.9
1825.0	4100.0	-18.2	-19.5
1837.5	4100.0	-18.3	-16.5
1850.0	4100.0	-13.4	-12.0
1862.5	4100.0	-7.0	-6.5
1875.0	4100.0	-3.0	3.7
1887.5	4100.0	9.1	13.8
1900.0	4100.0	32.7	23.2
1912.5	4100.0	37.3	33.0
1925.0	4100.0	39.9	38.7
1937.5	4100.0	45.8	37.4
1950.0	4100.0	37.7	33.4
1962.5	4100.0	26.2	31.9
1975.0	4100.0	17.6	29.8
1987.5	4100.0	32.0	26.5

2000.0	4100.0	35.5	22.2
2012.5	4100.0	21.4	19.4
2025.0	4100.0	4.5	14.3
2037.5	4100.0	3.5	10.0
2050.0	4100.0	6.8	10.6
2062.5	4100.0	13.6	15.2
2075.0	4100.0	24.4	22.7
2087.5	4100.0	27.9	31.3
2100.0	4100.0	40.8	39.2
2112.5	4100.0	49.6	50.1
2125.0	4100.0	53.3	67.6
2137.5	4100.0	79.1	88.1
2150.0	4100.0	115.0	94.8
2162.5	4100.0	143.3	87.8
2175.0	4100.0	83.4	75.3
2187.5	4100.0	18.2	74.7
2200.0	4100.0	16.4	93.8
2212.5	4100.0	112.2	89.9
2225.0	4100.0	238.9	78.0
2237.5	4100.0	63.7	61.0
2250.0	4100.0	-41.1	23.6
2262.5	4100.0	-68.8	-38.2
2275.0	4100.0	-74.6	-64.2
2287.5	4100.0	-70.0	-51.1
2300.0	4100.0	-66.6	-50.9
2312.5	4100.0	24.7	-49.8
2325.0	4100.0	-68.1	-47.6
2337.5	4100.0	-69.2	-43.0
2350.0	4100.0	-58.7	-53.7
2362.5	4100.0	-43.7	-40.3
2375.0	4100.0	-29.0	-17.8
2387.5	4100.0	-.9	-7.5

1.15 Line 4100 N , East of Baseline 2400 E

4800.0	4102.0	59.9	63.4
4787.5	4102.0	72.3	61.1
4775.0	4102.0	58.0	58.4
4762.5	4102.0	54.2	52.3
4750.0	4102.0	47.8	43.3
4737.5	4102.0	29.1	33.1
4725.0	4102.0	27.3	21.7
4712.5	4102.0	7.0	19.6
4700.0	4102.0	-2.5	22.0
4687.5	4102.0	37.1	22.8
4675.0	4102.0	41.1	23.9
4662.5	4102.0	31.2	26.5
4650.0	4102.0	12.4	23.7
4637.5	4102.0	10.9	23.8
4625.0	4102.0	22.9	23.8
4612.5	4102.0	41.6	29.5
4600.0	4102.0	31.1	34.7

4587.5	4102.0	40.9	38.4
4575.0	4102.0	37.1	38.3
4562.5	4102.0	41.1	43.0
4550.0	4102.0	41.4	44.1
4537.5	4102.0	54.6	47.8
4525.0	4102.0	46.3	49.2
4512.5	4102.0	55.5	52.2
4500.0	4102.0	48.4	51.1
4487.5	4102.0	56.3	53.0
4475.0	4102.0	49.1	54.9
4462.5	4102.0	55.5	55.2
4450.0	4102.0	65.4	55.2
4437.5	4102.0	49.9	58.1
4425.0	4102.0	56.0	56.3
4412.5	4102.0	63.8	51.4
4400.0	4102.0	46.6	48.5
4387.5	4102.0	40.9	47.8
4375.0	4102.0	35.2	43.2
4362.5	4102.0	52.4	41.3
4350.0	4102.0	40.9	39.1
4337.5	4102.0	37.2	37.7
4325.0	4102.0	30.0	31.7
4312.5	4102.0	27.9	29.6
4300.0	4102.0	22.4	25.9
4287.5	4102.0	30.3	24.6
4275.0	4102.0	18.8	23.6
4262.5	4102.0	23.8	21.5
4250.0	4102.0	22.8	17.5
4237.5	4102.0	11.8	18.1
4225.0	4102.0	10.2	18.7
4212.5	4102.0	21.8	18.5
4200.0	4102.0	27.0	20.6
4187.5	4102.0	21.9	25.6
4175.0	4102.0	22.1	28.1
4162.5	4102.0	35.1	29.2
4150.0	4102.0	34.2	30.6
4137.5	4102.0	32.5	32.1
4125.0	4102.0	29.1	27.7
4112.5	4102.0	29.8	25.8
4100.0	4102.0	12.8	24.9
4087.5	4102.0	24.8	21.1
4075.0	4102.0	28.2	16.1
4062.5	4102.0	10.0	13.5
4050.0	4102.0	4.8	8.0
4037.5	4102.0	-.4	2.0
4025.0	4102.0	-.1	3.0
4012.5	4102.0	-4.1	8.0
4000.0	4102.0	14.9	15.9
3987.5	4102.0	33.3	17.6
3975.0	4102.0	31.6	15.6
3962.5	4102.0	12.5	13.4
3950.0	4102.0	-14.2	9.3
3937.5	4102.0	3.6	7.4

3925.0	4102.0	12.9	11.2
3912.5	4102.0	22.4	18.2
3900.0	4102.0	31.2	23.2
3887.5	4102.0	20.7	27.5
3875.0	4102.0	28.9	28.9
3862.5	4102.0	34.5	25.0
3850.0	4102.0	29.0	22.5
3837.5	4102.0	12.0	15.8
3825.0	4102.0	8.0	8.9
3812.5	4102.0	-4.6	-2.0
3800.0	4102.0	. 2	-10.8
3787.5	4102.0	-25.8	-17.2
3775.0	4102.0	-31.6	-20.5
3762.5	4102.0	-24.2	-22.6
3750.0	4102.0	-20.9	-16.0
3737.5	4102.0	-10.3	-6.3
3725.0	4102.0	7.2	-. 5
3712.5	4102.0	16.6	2.6
3700.0	4102.0	4.8	1.4
3687.5	4102.0	-5.1	-4.8
3675.0	4102.0	-16.6	-12.5
3662.5	4102.0	-23.8	-17.2
3650.0	4102.0	-21.8	-20.9
3637.5	4102.0	-18.5	-23.6
3625.0	4102.0	-23.6	1.0
3612.5	4102.0	-30.1	22.7
3600.0	4102.0	99.0	22.5
3587.5	4102.0	86.6	23.2
3575.0	4102.0	-19.6	26.7
3562.5	4102.0	-19.9	2.2
3550.0	4102.0	-12.7	-20.6
3537.5	4102.0	-23.4	-21.9
3525.0	4102.0	-27.2	-25.8
3512.5	4102.0	-26.1	-29.0
3500.0	4102.0	-39.4	-30.9
3487.5	4101.0	-35.6	-34.7
3475.0	4101.0	-35.4	-30.3
3462.5	4101.0	-27.2	-19.9
3450.0	4101.0	-12.5	-12.7
3437.5	4101.0	11.3	-3.4
3425.0	4101.0	. 4	3.4
3412.5	4101.0	11.2	7.9
3400.0	4101.0	6.8	8.6
3387.5	4101.0	9.9	12.6
3375.0	4101.0	14.8	16.0
3362.5	4101.0	20.1	19.5
3350.0	4101.0	28.5	22.4
3337.5	4101.0	24.3	27.0
3325.0	4101.0	24.4	22.3
3312.5	4101.0	37.6	14.7
3300.0	4101.0	-3.1	6.0
3287.5	4101.0	-9.9	. 6
3275.0	4101.0	-19.2	-7.9

3262.5	4101.0	-2.6	-11.9
3250.0	4101.0	-4.7	-14.3
3237.5	4101.0	-23.3	-15.7
3225.0	4101.0	-21.7	-23.0
3212.5	4101.0	-26.2	-30.7
3200.0	4101.0	-39.2	-35.3
3187.5	4101.0	-43.1	-43.1
3175.0	4101.0	-46.4	-43.5
3162.5	4101.0	-60.8	-42.1
3150.0	4101.0	-28.1	-38.7
3137.5	4101.0	-32.1	-34.0
3125.0	4101.0	-26.3	-30.2
3112.5	4101.0	-22.5	-31.8
3100.0	4101.0	-41.8	-30.5
3087.5	4101.0	-36.2	-31.2
3075.0	4101.0	-25.6	-35.5
3062.5	4101.0	-30.0	-40.1
3050.0	4101.0	-43.8	-37.4
3037.5	4101.0	-64.7	-34.3
3025.0	4101.0	-22.9	-37.9
3012.5	4101.0	-10.3	-37.6
3000.0	4101.0	-48.0	-31.0
2987.5	4101.0	-42.0	-25.8
2975.0	4101.0	-31.6	-20.0
2962.5	4101.0	2.9	-4.9
2950.0	4101.0	18.8	6.0
2937.5	4101.0	27.2	13.8
2925.0	4101.0	12.7	16.0
2912.5	4101.0	7.5	13.4
2900.0	4101.0	13.6	7.9
2887.5	4101.0	6.1	7.5
2875.0	4101.0	-.5	8.1
2862.5	4101.0	10.7	3.5
2850.0	4101.0	10.5	1.6
2837.5	4101.0	-9.4	3.1
2825.0	4101.0	-3.5	.0
2812.5	4101.0	7.1	-4.2
2800.0	4101.0	-3.8	-5.5
2787.5	4101.0	-11.5	-7.8
2775.0	4101.0	-15.7	-12.6
2762.5	4101.0	-15.1	-12.7
2750.0	4101.0	-17.0	-6.0
2737.5	4101.0	-4.1	3.8
2725.0	4101.0	21.8	12.1
2712.5	4101.0	33.3	19.3
2700.0	4101.0	26.5	21.2
2687.5	4101.0	19.0	15.9
2675.0	4101.0	5.4	7.3
2662.5	4101.0	-4.8	-2.9
2650.0	4101.0	-9.7	-13.5
2637.5	4101.0	-24.3	-22.7
2625.0	4101.0	-34.3	-31.7
2612.5	4101.0	-40.4	-40.4

2600.0	4101.0	-49.9	-46.9
2587.5	4101.0	-53.1	-51.8
2575.0	4101.0	-56.6	-56.2
2562.5	4101.0	-59.1	-59.2
2550.0	4101.0	-62.3	-63.2
2537.5	4101.0	-65.0	-67.3
2525.0	4101.0	-72.9	-73.1
2512.5	4101.0	-77.1	-77.5
2500.0	4101.0	-88.3	-82.6
2487.5	4101.0	-84.4	-86.8
2475.0	4101.0	-90.5	-87.3
2462.5	4101.0	-93.7	-65.7
2450.0	4101.0	-79.8	5.5
2437.5	4101.0	19.8	38.7
2425.0	4101.0	271.9	66.1
2412.5	4101.0	75.5	102.6
2400.0	4101.0	43.1	130.2

1.16 Line $4200 N_{\text {, }}$ West of Baseline 2400 E

2387.5	4200.0	-29.1	36.6
2375.0	4200.0	82.2	35.0
2362.5	4200.0	138.0	36.5
2350.0	4200.0	28.9	36.1
2337.5	4200.0	-37.5	10.6
2325.0	4200.0	-31.2	-23.6
2312.5	4200.0	-45.1	-17.8
2300.0	4200.0	-33.1	7.1
2287.5	4200.0	57.8	18.0
2275.0	4200.0	87.1	33.1
2262.5	4200.0	23.2	40.3
2250.0	4200.0	30.7	25.1
2237.5	4200.0	2.6	.1
2225.0	4200.0	-18.0	-12.8
2212.5	4200.0	-37.9	-22.7
2200.0	4200.0	-41.5	-15.5
2187.5	4200.0	-18.9	5.9
2175.0	4200.0	39.0	25.2
2162.5	4200.0	88.8	53.7
2150.0	4200.0	58.4	133.7
2137.5	4200.0	101.3	302.6
2125.0	4200.0	381.2	397.7
2112.5	4200.0	883.5	437.5
2100.0	4200.0	564.2	442.9
2087.5	4200.0	257.3	414.6
2075.0	4200.0	128.4	280.3
2062.5	4200.0	239.7	182.6
2050.0	4200.0	212.0	138.4
2037.5	4200.0	75.8	112.7
2025.0	4200.0	36.0	62.5
2012.5	4200.0	.0	16.7
2000.0	4200.0	-11.5	1.9

1987.5	4200.0	-17.0	.7
1975.0	4200.0	2.0	10.5
1962.5	4200.0	30.0	28.7
1950.0	4200.0	49.2	43.6
1937.5	4200.0	79.3	50.1
1925.0	4200.0	57.7	46.8
1912.5	4200.0	34.1	39.0
1900.0	4200.0	13.7	24.9
1887.5	4200.0	10.3	15.2
1875.0	4200.0	8.9	9.6
1862.5	4200.0	8.9	8.3
1850.0	4200.0	6.3	7.1
1837.5	4200.0	7.3	5.2
1825.0	4200.0	4.3	2.7
1812.5	4200.0	-1.0	.1
1800.0	4200.0	-3.5	-3.0
1787.5	4200.0	-6.8	-6.0
1775.0	4200.0	-8.2	-7.7
1762.5	4200.0	-10.3	-9.3
1750.0	4200.0	-9.7	-10.1
1737.5	4200.0	-11.5	-10.6
1725.0	4200.0	-11.0	-10.5
1712.5	4200.0	-10.5	-10.8
1700.0	4200.0	-10.0	-10.5

1.17 Line 4200 N , East of Baseline 2400 E

2400.0	4201.0	-47.7	-49.6
2412.5	4201.0	-52.1	-42.8
2425.0	4201.0	-49.1	-38.0
2437.5	4201.0	-22.2	-33.0
2450.0	4201.0	-18.8	-26.4
2462.5	4201.0	-22.6	-20.5
2475.0	4201.0	-19.5	-18.9
2487.5	4201.0	-19.6	-15.5
2500.0	4201.0	-14.1	-9.4
2512.5	4201.0	-1.5	4.7
2525.0	4201.0	7.5	27.4
2537.5	4201.0	51.2	47.7
2550.0	4201.0	93.8	52.8
2562.5	4201.0	87.6	47.1
2575.0	4201.0	23.7	28.4
2587.5	4201.0	-20.9	3.5
2600.0	4201.0	-42.4	-19.8
2612.5	4201.0	-30.4	-27.5
2625.0	4201.0	-29.1	-25.6
2637.5	4201.0	-14.8	-18.6
2650.0	4201.0	-11.5	-16.2
2662.5	4201.0	-7.4	-17.8
2675.0	4201.0	-18.4	-24.5
2687.5	4201.0	-37.0	-30.9
2700.0	4201.0	-48.2	-38.6

2712.5	4201.0	-43.6	-43.1
2725.0	4201.0	-46.0	-43.4
2737.5	4201.0	-40.6	-39.8
2750.0	4201.0	-38.7	-34.2
2762.5	4201.0	-30.0	-29.0
2775.0	4201.0	-15.6	-27.0
2787.5	4201.0	-20.1	-25.7
2800.0	4201.0	-30.5	-26.0
2812.5	4201.0	-32.1	-24.2
2825.0	4201.0	-31.9	-23.1
2837.5	4201.0	-6.6	-21.8
2850.0	4201.0	-14.6	-14.9
2862.5	4201.0	-23.9	-12.0
2875.0	4201.0	2.3	-14.1
2887.5	4201.0	-17.0	-23.4
2900.0	4201.0	-17.4	-30.4
2912.5	4201.0	-61.1	-41.5
2925.0	4201.0	-58.7	-44.3
2937.5	4201.0	-53.3	-47.1
2950.0	4201.0	-30.8	-38.8
2962.5	4201.0	-31.8	-26.6
2975.0	4201.0	-19.4	-14.8
2987.5	4201.0	2.3	-11.7
3000.0	4201.0	5.9	-8.5
3012.5	4201.0	-15.7	-6.8
3025.0	4201.0	-15.7	-11.5
3037.5	4201.0	-10.7	-13.3
3050.0	4201.0	-21.4	-10.8
3062.5	4201.0	-2.8	-12.4
3075.0	4201.0	-3.3	-9.7
3087.5	4201.0	-23.6	-5.6
3100.0	4201.0	2.6	-8.0
3112.5	4201.0	-.9	-11.4
3125.0	4201.0	-14.9	-10.6
3137.5	4201.0	-20.0	-14.6
3150.0	4201.0	-19.6	-17.7
3162.5	4201.0	-17.8	-14.5
3175.0	4201.0	-16.0	-11.1
3187.5	4201.0	-7	-5.6
3200.0	4201.0	-3.0	-.9
3212.5	4201.0	8.2	3.7
3225.0	4201.0	5.5	6.2
3237.5	4201.0	7.1	9.7
3250.0	4201.0	13.4	11.8
3262.5	4201.0	14.3	15.0
3275.0	4201.0	18.5	18.3
3287.5	4201.0	21.7	19.3
3300.0	4201.0	23.5	18.5
3312.5	4201.0	18.4	16.9
3325.0	4201.0	10.5	17.0
3337.5	4201.0	10.2	17.4
3350.0	4201.0	22.4	15.3
3362.5	4201.0	25.6	11.5

3375.0	4201.0	7.6	5.0
3387.5	4201.0	-8.1	-7.4
3400.0	4201.0	-22.5	-15.3
3412.5	4201.0	-39.6	-22.4
3425.0	4201.0	-13.7	-24.0
3437.5	4201.0	-28.2	-28.1
3450.0	4201.0	-15.8	-26.0
3462.5	4201.0	-43.0	-26.7
3475.0	4201.0	-29.5	-19.4
3487.5	4201.0	-17.1	-20.3
3500.0	4201.0	8.4	-12.7

1.18 Line 4300 N , West of Baseline 2400 E

1700.0	4300.0	-9.2	-6.5
1712.5	4300.0	-6.9	-4.9
1725.0	4300.0	-3.5	-2.5
1737.5	4300.0	. .1	2.0
1750.0	4300.0	7.0	7.4
1762.5	4300.0	13.1	13.8
1775.0	4300.0	20.4	21.9
1787.5	4300.0	28.6	29.2
1800.0	4300.0	40.2	36.2
1812.5	4300.0	43.9	41.6
1825.0	4300.0	47.7	44.8
1837.5	4300.0	47.7	44.8
1850.0	4300.0	44.4	42.9
1862.5	4300.0	40.1	40.8
1875.0	4300.0	34.6	40.1
1887.5	4300.0	37.0	52.5
1900.0	4300.0	44.3	73.3
1912.5	4300.0	106.4	82.4
1925.0	4300.0	144.0	71.6
1937.5	4300.0	80.3	63.2
1950.0	4300.0	-17.2	45.5
1962.5	4300.0	2.5	23.5
1975.0	4300.0	18.1	19.6
1987.5	4300.0	33.7	35.7
2000.0	4300.0	60.9	52.3
2012.5	4300.0	63.3	91.4
2025.0	4300.0	85.7	204.6
2037.5	4300.0	213.6	437.4
2050.0	4300.0	599.7	451.6
2062.5	4300.0	1224.6	405.7
2075.0	4300.0	134.6	354.0
2087.5	4300.0	-143.8	256.7
2100.0	4300.0	-45.0	8.3
2112.5	4300.0	113.3	-30.0
2125.0	4300.0	-17.6	-17.0
2137.5	4300.0	-56.7	-22.6
2150.0	4300.0	-79.1	-58.5

2162.5	4300.0	-72.7	-67.2
2175.0	4300.0	-66.6	-65.9
2187.5	4300.0	-60.7	-56.3
2200.0	4300.0	-50.5	-36.3
2212.5	4300.0	-31.2	-4.1
2225.0	4300.0	27.6	23.3
2237.5	4300.0	94.1	25.0
2250.0	4300.0	76.5	24.4
2262.5	4300.0	-42.2	3.8
2275.0	4300.0	-34.1	-23.9
2287.5	4300.0	-75.5	-42.0
2300.0	4300.0	-44.2	-31.8
2312.5	4300.0	-13.9	-25.8
2325.0	4300.0	8.9	-18.2
2337.5	4300.0	-4.5	-19.0
2350.0	4300.0	-37.5	-25.8
2362.5	4300.0	-48.2	-38.1
2375.0	4300.0	-47.6	-46.9
2387.5	4300.0	-52.6	-49.3

1.19 Line 4300N, East of Baseline 2400 E

1700.0	4300.0	-9.2	-6.5
1712.5	4300.0	-6.9	-4.9
1725.0	4300.0	-3.5	-2.5
1737.5	4300.0	.1	2.0
1750.0	4300.0	7.0	7.4
1762.5	4300.0	13.1	13.8
1775.0	4300.0	20.4	21.9
1787.5	4300.0	28.6	29.2
1800.0	4300.0	40.2	36.2
1812.5	4300.0	43.9	41.6
1825.0	4300.0	47.7	44.8
1837.5	4300.0	47.7	44.8
1850.0	4300.0	44.4	42.9
1862.5	4300.0	40.1	40.8
1875.0	4300.0	34.6	40.1
1887.5	4300.0	37.0	52.5
1900.0	4300.0	44.3	73.3
1912.5	4300.0	106.4	82.4
1925.0	4300.0	144.0	71.6
1937.5	4300.0	80.3	63.2
1950.0	4300.0	-17.2	45.5
1962.5	4300.0	2.5	23.5
1975.0	4300.0	18.1	19.6
1987.5	4300.0	33.7	35.7
2000.0	4300.0	60.9	52.3
2012.5	4300.0	63.3	91.4
2025.0	4300.0	85.7	204.6
2037.5	4300.0	213.6	437.4
2050.0	4300.0	599.7	451.6
2062.5	4300.0	1224.6	405.7

2075.0	4300.0	134.6	354.0
2087.5	4300.0	-143.8	256.7
2100.0	4300.0	-45.0	8.3
2112.5	4300.0	113.3	-30.0
2125.0	4300.0	-17.6	-17.0
2137.5	4300.0	-56.7	-22.6
2150.0	4300.0	-79.1	-58.5
2162.5	4300.0	-72.7	-67.2
2175.0	4300.0	-66.6	-65.9
2187.5	4300.0	-60.7	-56.3
2200.0	4300.0	-50.5	-36.3
2212.5	4300.0	-31.2	-4.1
2225.0	4300.0	27.6	23.3
2237.5	4300.0	94.1	25.0
2250.0	4300.0	76.5	24.4
2262.5	4300.0	-42.2	3.8
2275.0	4300.0	-34.1	-23.9
2287.5	4300.0	-75.5	-42.0
2300.0	4300.0	-44.2	-31.8
2312.5	4300.0	-13.9	-25.8
2325.0	4300.0	8.9	-18.2
2337.5	4300.0	-4.5	-19.0
2350.0	4300.0	-37.5	-25.8
2362.5	4300.0	-48.2	-38.1
2375.0	4300.0	-47.6	-46.9
2387.5	4300.0	-52.6	-49.3

1.19 Line 4300 N , East of Baseline 2400 E

3500.0	4301.0	-10.9	-12.5
3487.5	4301.0	-10.8	-12.7
3475.0	4301.0	-15.8	-11.7
3462.5	4301.0	-13.4	-11.4
3450.0	4301.0	-7.5	-13.6
3437.5	4301.0	-9.4	-14.4
3425.0	4301.0	-21.8	-15.8
3412.5	4301.0	-19.8	-20.0
3400.0	4301.0	-20.5	-27.4
3387.5	4301.0	-28.5	-25.0
3375.0	4301.0	-46.3	-29.8
3362.5	4301.0	-10.1	-24.6
3350.0	4301.0	-43.7	-17.6
3337.5	4301.0	5.7	-6.3
3325.0	4301.0	6.5	-1.4
3312.5	4301.0	10.0	7.4
3300.0	4301.0	14.3	7.2
3287.5	4301.0	.4	5.7
3275.0	4301.0	4.7	3.0
3262.5	4301.0	-1.1	.4
3250.0	4301.0	-3.3	1.5
3237.5	4301.0	1.2	-1.1
3225.0	4301.0	6.1	2.9

3212.5	4301.0	-8.2	2.9
3200.0	4301.0	18.6	1.7
3187.5	4301.0	-3.4	-.9
3175.0	4301.0	-4.5	4.0
3162.5	4301.0	-6.9	2.3
3150.0	4301.0	16.0	2.1
3137.5	4301.0	10.1	2.0
3125.0	4301.0	-4.0	-1.1
3112.5	4301.0	-5.2	-14.1
3100.0	4301.0	-22.3	-29.6
3087.5	4301.0	-49.2	-43.7
3075.0	4301.0	-67.2	-55.6
3062.5	4301.0	-74.8	-63.2
3050.0	4301.0	-64.3	-59.2
3037.5	4301.0	-60.5	-52.8
3025.0	4301.0	-29.4	-49.0
3012.5	4301.0	-35.0	-36.4
3000.0	4301.0	-55.9	-22.5
2987.5	4301.0	-1.3	-14.6
2975.0	4301.0	9.2	-5.1
2962.5	4301.0	9.9	8.3
2950.0	4301.0	12.6	6.5
2937.5	4301.0	11.3	2.3
2925.0	4301.0	-10.3	-4.5
2912.5	4301.0	-12.2	-12.7
2900.0	4301.0	-24.0	-17.3
2887.5	4301.0	-28.4	-16.7
2875.0	4301.0	-11.5	-14.7
2862.5	4301.0	-7.3	-11.9
2850.0	4301.0	-2.4	-9.7
2837.5	4301.0	-10.1	-14.3
2825.0	4301.0	-17.4	-13.4
2812.5	4301.0	-34.3	-11.5
2800.0	4301.0	-3.0	-10.3
2787.5	4301.0	7.3	-10.2
2775.0	4301.0	-4.1	-7.3
2762.5	4301.0	-17.0	-7.0
2750.0	4301.0	-19.5	-9.0
2737.5	4301.0	-1.6	-11.3
2725.0	4301.0	-2.7	-12.7
2712.5	4301.0	-15.6	-14.0
2700.0	4301.0	-24.0	-20.5
2687.5	4301.0	-26.3	-27.5
2675.0	4301.0	-34.0	-31.9
2662.5	4301.0	-37.5	-33.8
2650.0	4301.0	-37.6	-34.0
2637.5	4301.0	-33.7	-31.6
2625.0	4301.0	-27.4	-28.5
2612.5	4301.0	-21.6	-26.1
2600.0	4301.0	-22.2	-23.9
2587.5	4301.0	-25.6	-25.5
2575.0	4301.0	-22.6	-29.7
2562.5	4301.0	-35.6	-31.0

2550.0	4301.0	-42.6	-23.1
2537.5	4301.0	-28.5	-10.8
2525.0	4301.0	14.0	-.9
2512.5	4301.0	38.5	8.4
2500.0	4301.0	13.9	11.3
2487.5	4301.0	4.2	3.0
2475.0	4301.0	-13.9	-10.1
2462.5	4301.0	-27.7	-18.3
2450.0	4301.0	-27.0	-27.9
2437.5	4301.0	-27.2	-34.4
2425.0	4301.0	-43.7	-38.7
2412.5	4301.0	-46.3	-41.7
2400.0	4301.0	-49.4	-46.5

1.20 Line 4400 N , West of Baseline 2400 E

2387.5	4400.0	-31.3	-35.5
2375.0	4400.0	-34.0	-37.8
2362.5	4400.0	-43.5	-42.1
2350.0	4400.0	-47.2	-46.7
2337.5	4400.0	-54.3	-50.1
2325.0	4400.0	-54.4	-51.2
2312.5	4400.0	-51.2	-50.6
2300.0	4400.0	-48.8	-47.3
2287.5	4400.0	-44.1	-44.3
2275.0	4400.0	-38.0	-46.7
2262.5	4400.0	-39.2	-52.4
2250.0	4400.0	-63.6	-59.2
2237.5	4400.0	-76.9	-53.4
2225.0	4400.0	-78.2	-25.1
2212.5	4400.0	-9.0	-6.4
2200.0	4400.0	102.4	.5
2187.5	4400.0	29.8	8.0
2175.0	4400.0	-42.4	-.2
2162.5	4400.0	-40.7	-32.7
2150.0	4400.0	-49.9	-53.3
2137.5	4400.0	-60.4	-62.3
2125.0	4400.0	-73.0	-73.0
2112.5	4400.0	-87.5	-85.6
2100.0	4400.0	-94.0	-101.7
2087.5	4400.0	-113.0	-59.7
2075.0	4400.0	-140.9	-15.7
2062.5	4400.0	137.0	58.3
2050.0	4400.0	132.3	186.7
2037.5	4400.0	276.2	274.1
2025.0	4400.0	528.7	273.4
2012.5	4400.0	296.1	260.0
2000.0	4400.0	133.5	213.8
1987.5	4400.0	65.5	114.7
1975.0	4400.0	45.1	60.0
1962.5	4400.0	33.3	36.5
1950.0	4400.0	22.8	22.8

1937.5	4400.0	15.7	10.9
1925.0	4400.0	-3.0	11.2
1912.5	4400.0	-14.5	21.7
1900.0	4400.0	35.1	25.0
1887.5	4400.0	75.1	31.3
1875.0	4400.0	32.2	41.5
1862.5	4400.0	28.8	40.8
1850.0	4400.0	36.2	33.0
1837.5	4400.0	31.9	33.0
1825.0	4400.0	36.0	30.9
1812.5	4400.0	31.9	26.4
1800.0	4400.0	18.4	23.4
1787.5	4400.0	13.8	18.9
1775.0	4400.0	16.7	14.1
1762.5	4400.0	13.7	11.3
1750.0	4400.0	7.8	8.9
1737.5	4400.0	4.3	5.1
1725.0	4400.0	1.9	1.1
1712.5	4400.0	-2.4	-2.5
1700.0	4400.0	-6.3	-6.0
1687.5	4400.0	-10.1	-9.3
1675.0	4400.0	-13.0	-12.3
1662.5	4400.0	-14.8	-14.3
1650.0	4400.0	-17.1	-16.4
1637.5	4400.0	-16.6	-18.3
1625.0	4400.0	-20.4	-19.9
1612.5	4400.0	-22.4	-20.6
1600.0	4400.0	-23.0	-21.9

| 1.21 | Line | 4400 N, | East of Baseline |
| :---: | ---: | ---: | ---: | ---: |
| | 2400 | | |
| 2400.0 | 4401.0 | -43.3 | -30.8 |
| 2412.5 | 4401.0 | -24.0 | -30.2 |
| 2425.0 | 4401.0 | -25.1 | -27.3 |
| 2437.5 | 4401.0 | -28.4 | -17.4 |
| 2450.0 | 4401.0 | -15.6 | -12.6 |
| 2462.5 | 4401.0 | 6.2 | -10.7 |
| 2475.0 | 4401.0 | -.1 | -13.3 |
| 2487.5 | 4401.0 | -15.7 | -16.7 |
| 2500.0 | 4401.0 | -41.4 | -23.7 |
| 2512.5 | 4401.0 | -32.4 | -31.9 |
| 2525.0 | 4401.0 | -29.1 | -34.9 |
| 2537.5 | 4401.0 | -40.7 | -33.2 |
| 2550.0 | 4401.0 | -30.8 | -32.2 |
| 2562.5 | 4401.0 | -33.0 | -33.7 |
| 2575.0 | 4401.0 | -27.6 | -32.2 |
| 2587.5 | 4401.0 | -36.5 | -31.7 |
| 2600.0 | 4401.0 | -32.9 | -31.0 |
| 2612.5 | 4401.0 | -28.6 | -31.3 |
| 2625.0 | 4401.0 | -29.5 | -28.7 |
| 2637.5 | 4401.0 | -29.0 | -25.5 |
| 2650.0 | 4401.0 | -23.3 | -20.4 |

2662.5	4401.0	-17.1	-14.0
2675.0	4401.0	-2.9	-6.1
2687.5	4401.0	2.5	1.8
2700.0	4401.0	10.3	6.3
2712.5	4401.0	16.2	11.3
2725.0	4401.0	5.3	9.2
2737.5	4401.0	22.4	6.1
2750.0	4401.0	-8.3	1.0
2762.5	4401.0	-4.9	-3.4
2775.0	4401.0	-9.5	-8.5
2787.5	4401.0	-16.8	-11.1
2800.0	4401.0	-3.1	-13.0
2812.5	4401.0	-21.3	-10.8
2825.0	4401.0	-14.1	-8.2
2837.5	4401.0	1.3	-12.8
2850.0	4401.0	-3.8	-17.6
2862.5	4401.0	-26.3	-20.8
2875.0	4401.0	-45.3	-25.2
2887.5	4401.0	-30.0	-24.6
2900.0	4401.0	-20.6	-18.9
2912.5	4401.0	-.7	-10.0
2925.0	4401.0	2.3	-5.5
2937.5	4401.0	-.9	-.3
2950.0	4401.0	-7.6	1.0
2962.5	4401.0	5.2	-1.0
2975.0	4401.0	6.2	-1.9
2987.5	4401.0	-8.1	1.2
3000.0	4401.0	-5.4	-2.1
3012.5	4401.0	8.2	-8.6
3025.0	4401.0	-11.2	-12.5
3037.5	4401.0	-26.3	-12.8
3050.0	4401.0	-27.6	-14.4
3062.5	4401.0	-7.2	-15.6
3075.0	4401.0	.3	-12.1
3087.5	4401.0	-17.3	-10.4
3100.0	4401.0	-8.5	-10.4
3112.5	4401.0	-19.3	-11.8
3125.0	4401.0	-7.0	-8.0
3137.5	4401.0	-7.1	-5.1
3150.0	4401.0	2.0	-.3
3162.5	4401.0	6.0	2.0
3175.0	4401.0	4.6	4.6
3187.5	4401.0	4.5	3.7
3200.0	4401.0	6.0	-1.3
3212.5	4401.0	-2.6	-3.5
3225.0	4401.0	-18.9	-6.5
3237.5	4401.0	-6.7	-9.3
3250.0	4401.0	-10.5	-11.4
3262.5	4401.0	-7.7	-11.7
3275.0	4401.0	-13.3	-13.5
3287.5	4401.0	-20.1	-9.5
3300.0	4401.0	-15.8	-8.9
3312.5	4401.0	9.4	-8.8

3325.0	4401.0	-4.5	-7.9
3337.5	4401.0	-13.1	-3.6
3350.0	4401.0	-15.4	-4.2
3362.5	4401.0	5.5	-2.9
3375.0	4401.0	6.5	1.0
3387.5	4401.0	2.2	4.9
3400.0	4401.0	6.3	2.9
3412.5	4401.0	4.1	2.6
3425.0	4401.0	-4.6	4.1
3437.5	4401.0	4.8	4.0
3450.0	4401.0	10.0	1.7
3462.5	4401.0	5.6	3.1
3475.0	4401.0	-7.5	4.5
3487.5	4401.0	2.4	3.1
3500.0	4401.0	11.9	2.3

1.22 Line 4450 N

2900.0	4451.0	-25.8	-26.0
2887.5	4451.0	-28.5	-17.3
2875.0	4451.0	-23.7	-13.1
2862.5	4451.0	8.9	-8.0
2850.0	4451.0	3.7	-2.5
2837.5	4451.0	-.3	3.0
2825.0	4451.0	-1.3	-2.7
2812.5	4451.0	4.1	-6.2
2800.0	4451.0	-19.6	-9.9
2787.5	4451.0	-13.9	-14.0
2775.0	4451.0	-18.7	-15.6
2762.5	4451.0	-22.0	-11.4
2750.0	4451.0	-3.8	-6.2
2737.5	4451.0	1.5	4.0
2725.0	4451.0	12.0	11.4
2712.5	4451.0	32.4	15.2
2700.0	4451.0	14.7	16.9
2687.5	4451.0	15.4	16.8
2675.0	4451.0	9.9	10.2
2662.5	4451.0	11.8	2.1
2650.0	4451.0	-.6	-6.6
2637.5	4451.0	-26.0	-13.9
2625.0	4451.0	-28.2	-22.5
2612.5	4451.0	-26.7	-29.9
2600.0	4451.0	-31.0	-31.9
2587.5	4451.0	-37.8	-35.3
2575.0	4451.0	-35.6	-36.3
2562.5	4451.0	-45.4	-36.3
2550.0	4451.0	-31.6	-33.3
2537.5	4451.0	-31.2	-30.9
2525.0	4451.0	-22.7	-27.1
2512.5	4451.0	-23.8	-26.9
2500.0	4451.0	-26.0	-28.4

2487.5	4451.0	-31.0	-31.9
2475.0	4451.0	-38.7	-34.4
2462.5	4451.0	-40.0	-36.5
2450.0	4451.0	-36.4	-36.6
2437.5	4451.0	-36.6	-34.2
2425.0	4451.0	-31.1	-31.8
2412.5	4451.0	-27.0	-30.7
2400.0	4451.0	-28.1	-28.7

1.23 Line

4500N

3500.0	4501.0	10.7	12.7
3487.5	4501.0	13.5	13.1
3475.0	4501.0	13.8	14.0
3462.5	4501.0	14.3	14.4
3450.0	4501.0	17.7	13.5
3437.5	4501.0	12.8	11.6
3425.0	4501.0	8.8	9.7
3412.5	4501.0	4.2	6.7
3400.0	4501.0	4.9	4.2
3387.5	4501.0	2.6	.9
3375.0	4501.0	-6	-2.3
3362.5	4501.0	-7.6	-3.6
3350.0	4501.0	-11.8	-4.3
3337.5	4501.0	-1.6	-4.0
3325.0	4501.0	-1.3	-3.4
3312.5	4501.0	2.2	-2.1
3300.0	4501.0	-4.5	-2.8
3287.5	4501.0	-5.1	-4.8
3275.0	4501.0	-5.5	-4.7
3262.5	4501.0	-10.9	-4.5
3250.0	4501.0	2.3	-6.3
3237.5	4501.0	-3.2	-6.4
3225.0	4501.0	-14.4	-6.4
3212.5	4501.0	-5.9	-10.3
3200.0	4501.0	-10.6	-12.4
3187.5	4501.0	-17.5	-9.9
3175.0	4501.0	-13.7	-11.2
3162.5	4501.0	-1.9	-13.5
3150.0	4501.0	-12.5	-12.7
3137.5	4501.0	-21.7	-12.8
3125.0	4501.0	-13.7	-15.6
3112.5	4501.0	-14.2	-15.2
3100.0	4501.0	-15.8	-12.4
3087.5	4501.0	-10.5	-10.2
3075.0	4501.0	-7.9	-9.9
3062.5	4501.0	-2.5	-10.0
3050.0	4501.0	-12.6	-14.3
3037.5	4501.0	-16.6	-15.5
3025.0	4501.0	-31.7	-16.9
3012.5	4501.0	-14.3	-12.9

3000.0	4501.0	-9.4	-10.9
2987.5	4501.0	-6.7	-12.2
2975.0	4501.0	-6.6	-13.4
2962.5	4501.0	-38.3	-13.5
2950.0	4501.0	-20.3	-14.5
2937.5	4501.0	-10.0	-12.1
2925.0	4501.0	2.8	-7.2
2912.5	4501.0	5.2	-2.2
2900.0	4501.0	-13.9	-2.2
2887.5	4501.0	4.9	-2.9
2875.0	4501.0	-10.1	-4.9
2862.5	4501.0	-.5	-4.8
2850.0	4501.0	-4.9	-11.1
2837.5	4501.0	-13.5	-10.5
2825.0	4501.0	-26.5	-10.5
2812.5	4501.0	-7.0	-13.9
2800.0	4501.0	-.4	-16.2
2787.5	4501.0	-22.1	-11.1
2775.0	4501.0	-25.2	-9.4
2762.5	4501.0	-.7	-10.8
2750.0	4501.0	1.3	-9.5
2737.5	4501.0	-7.5	-8.1
2725.0	4501.0	-15.3	-9.2
2712.5	4501.0	-18.3	-9.8
2700.0	4501.0	-6.3	-9.0
2687.5	4501.0	-1.8	-5.6
2675.0	4501.0	-3.3	-3.9
2662.5	4501.0	1.6	-1.8
2650.0	4501.0	-9.6	-4.6
2637.5	4501.0	4.3	-9.1
2625.0	4501.0	-15.9	-11.9
2612.5	4501.0	-25.9	-12.0
2600.0	4501.0	-12.2	-14.7
2587.5	4501.0	-10.5	-14.9
2575.0	4501.0	-9.1	-14.1
2562.5	4501.0	-16.9	-17.2
2550.0	4501.0	-21.9	-20.0
2537.5	4501.0	-27.5	-24.9
2525.0	4501.0	-24.7	-27.2
2512.5	4501.0	-33.7	-29.5
2500.0	4501.0	-28.4	-30.6
2487.5	4501.0	-33.0	-31.3
2475.0	4501.0	-33.1	-29.6
2462.5	4501.0	-28.1	-32.0
2450.0	4501.0	-25.6	-33.1
2437.5	4501.0	-40.0	-35.1
2425.0	4501.0	-38.5	-32.1
2412.5	4501.0	-43.5	-33.8
2400.0	4501.0	-13.0	-31.7
2387.5	4500.0	-37.0	-41.0
2375.0	4500.0	-52.2	-41.0
2362.5	4500.0	-43.8	-43.6
2350.0	4500.0	-40.8	-42.9

2337.5	4500.0	-44.1	-40.7
2325.0	4500.0	-33.4	-43.4
2312.5	4500.0	-41.2	-44.3
2300.0	4500.0	-57.5	-43.3
2287.5	4500.0	-45.4	-43.9
2275.0	4500.0	-38.9	-42.9
2262.5	4500.0	-36.5	-37.5
2250.0	4500.0	-36.2	-35.9
2237.5	4500.0	-30.6	-36.1
2225.0	4500.0	-37.4	-36.7
2212.5	4500.0	-39.7	-37.0
2200.0	4500.0	-39.5	-36.8
2187.5	4500.0	-37.8	-37.8
2175.0	4500.0	-29.8	-37.0
2162.5	4500.0	-42.3	-37.0
2150.0	4500.0	-35.5	-37.8
2137.5	4500.0	-39.8	-40.0
2125.0	4500.0	-41.4	-38.0
2112.5	4500.0	-40.8	-34.9
2100.0	4500.0	-32.6	-28.7
2087.5	4500.0	-19.8	-20.3
2075.0	4500.0	-8.8	-11.8
2062.5	4500.0	.5	-4.6
2050.0	4500.0	1.5	.6
2037.5	4500.0	3.6	4.3
2025.0	4500.0	6.4	7.0
2012.5	4500.0	9.6	9.8
2000.0	4500.0	14.0	13.2
1987.5	4500.0	15.3	15.3
1975.0	4500.0	20.7	16.8
1962.5	4500.0	16.7	17.4
1950.0	4500.0	17.1	17.2
1937.5	4500.0	17.2	15.0
1925.0	4500.0	14.3	13.2
1912.5	4500.0	9.8	11.2
1900.0	4500.0	7.7	8.4
1887.5	4500.0	7.2	6.7
1875.0	4500.0	3.1	5.4
1862.5	4500.0	5.5	5.6
1850.0	4500.0	3.7	7.2
1837.5	4500.0	8.5	11.0
1825.0	4500.0	15.2	15.2
1812.5	4500.0	21.9	19.7
1800.0	4500.0	26.7	23.7
1787.5	4500.0	26.2	28.1
1775.0	4500.0	28.5	30.2
1762.5	4500.0	37.0	30.7
1750.0	4500.0	32.8	29.5
1737.5	4500.0	29.2	26.6
1725.0	4500.0	19.9	20.8
1712.5	4500.0	14.2	15.0
1700.0	4500.0	7.9	8.9
1687.5	4500.0	3.9	3.6

1675.0	4500.0	-1.2	-2.1
1662.5	4500.0	-6.6	-6.6
1650.0	4500.0	-14.6	-11.3
1637.5	4500.0	-14.5	-15.6
1625.0	4500.0	-19.5	-18.2
1612.5	4500.0	-22.8	-19.1
1600.0	4500.0	-19.6	-20.6

1.24 Line 4600 N

1600.0	4600.0	-4.3	-2.6
1612.5	4600.0	-2.4	-.7
1625.0	4600.0	-1.1	1.8
1637.5	4600.0	4.9	5.1
1650.0	4600.0	11.7	9.0
1662.5	4600.0	12.5	12.5
1675.0	4600.0	17.0	14.2
1687.5	4600.0	16.2	15.0
1700.0	4600.0	13.4	15.8
1712.5	4600.0	15.8	15.9
1725.0	4600.0	16.7	15.2
1737.5	4600.0	17.6	12.7
1750.0	4600.0	12.6	8.6
1762.5	4600.0	-4.8	3.4
1775.0	4600.0	-4.9	-3.4
1787.5	4600.0	-9.0	-11.6
1800.0	4600.0	-16.4	-16.3
1812.5	4600.0	-28.3	-16.5
1825.0	4600.0	-22.9	-13.6
1837.5	4600.0	-5.7	-9.1
1850.0	4600.0	5.5	1.0
1862.5	4600.0	6.1	9.7
1875.0	4600.0	22.1	14.3
1887.5	4600.0	20.6	17.0
1900.0	4600.0	17.2	19.3
1912.5	4600.0	18.8	21.0
1925.0	4600.0	17.9	23.5
1937.5	4600.0	30.4	26.5
1950.0	4600.0	33.3	28.7
1962.5	4600.0	31.9	31.8
1975.0	4600.0	29.8	30.0
1987.5	4600.0	33.4	27.7
2000.0	4600.0	21.8	24.4
2012.5	4600.0	21.5	19.2
2025.0	4600.0	15.6	10.3
2037.5	4600.0	3.5	2.2
2050.0	4600.0	-11.0	-6.9
2062.5	4600.0	-18.7	-14.8
2075.0	4600.0	-23.7	-22.5
2087.5	4600.0	-24.3	-29.3
2100.0	4600.0	-34.8	-34.4
2112.5	4600.0	-44.9	-35.7

2125.0	4600.0	-44.3	-35.5
2137.5	4600.0	-30.2	-31.7
2150.0	4600.0	-23.1	-24.2
2162.5	4600.0	-16.1	-17.0
2175.0	4600.0	-7.3	-12.9
2187.5	4600.0	-8.2	-9.1
2200.0	4600.0	-9.7	-7.1
2212.5	4600.0	-4.2	-6.5
2225.0	4600.0	-6.2	-8.1
2237.5	4600.0	-4.2	-12.6
2250.0	4600.0	-16.3	-20.1
2262.5	4600.0	-32.1	-24.5
2275.0	4600.0	-41.9	-29.3
2287.5	4600.0	-27.9	-32.9
2300.0	4600.0	-28.2	-32.8
2312.5	4600.0	-34.5	-30.2
2325.0	4600.0	-31.3	-29.3
2337.5	4600.0	-29.0	-25.7
2350.0	4600.0	-23.6	-17.2
2362.5	4600.0	-10.0	-7.2
2375.0	4600.0	8.1	1.8
2387.5	4600.0	18.7	8.1
2400.0	4600.0	15.6	14.1
2412.5	4601.0	-8.2	-15.0
2425.0	4601.0	-28.5	-17.7
2437.5	4601.0	-38.9	-30.5
2450.0	4601.0	-28.6	-34.7
2462.5	4601.0	-48.2	-35.8
2475.0	4601.0	-29.2	-35.4
2487.5	4601.0	-34.0	-36.7
2500.0	4601.0	-37.2	-32.5
2512.5	4601.0	-34.8	-31.2
2525.0	4601.0	-27.4	-29.1
2537.5	4601.0	-22.5	-25.8
2550.0	4601.0	-23.7	-22.8
2562.5	4601.0	-20.7	-22.1
2575.0	4601.0	-19.7	-24.1
2587.5	4601.0	-23.7	-23.3
2600.0	4601.0	-32.5	-22.2
2612.5	4601.0	-20.0	-21.2
2625.0	4601.0	-15.2	-20.0
2637.5	4601.0	-14.8	-16.9
2650.0	4601.0	-17.4	-17.0
2662.5	4601.0	-17.1	-16.9
2675.0	4601.0	-20.3	-19.3
2687.5	4601.0	-15.0	-18.0
2700.0	4601.0	-26.7	-17.2
2712.5	4601.0	-10.8	-14.9
2725.0	4601.0	-13.0	-11.0
2737.5	4601.0	-8.9	-8.9
2750.0	4601.0	4.6	-10.4
2762.5	4601.0	-16.3	-8.9
2775.0	4601.0	-18.4	-7.6

2787.5	4601.0	-5.7	-6.1
2800.0	4601.0	-2.3	-1.5
2812.5	4601.0	12.0	1.5
2825.0	4601.0	6.7	1.3
2837.5	4601.0	-3.4	.7
2850.0	4601.0	-6.5	.0
2862.5	4601.0	-5.4	-4.8
2875.0	4601.0	8.8	-3.1
2887.5	4601.0	-17.7	-2.5
2900.0	4601.0	5.4	-.4
2912.5	4601.0	-3.8	-1.6
2925.0	4601.0	5.2	1.8
2937.5	4601.0	2.9	.3
2950.0	4601.0	-.5	-.3
2962.5	4601.0	-2.4	-3.0
2975.0	4601.0	-6.8	-6.3
2987.5	4601.0	-8.2	-6.4
3000.0	4601.0	-13.8	-4.8
3012.5	4601.0	-.9	-4.5
3025.0	4601.0	5.7	-6.3
3037.5	4601.0	-5.5	-6.2
3050.0	4601.0	-17.2	-7.2
3062.5	4601.0	-12.9	-10.2
3075.0	4601.0	-6.3	-9.4
3087.5	4601.0	-9.0	-6.7
3100.0	4601.0	-1.4	-6.1
3112.5	4601.0	-3.9	-7.2
3125.0	4601.0	-9.8	-8.3
3137.5	4601.0	-12.0	-10.4
3150.0	4601.0	-14.4	-10.9
3162.5	4601.0	-11.9	-10.7
3175.0	4601.0	-6.3	-9.0
3187.5	4601.0	-9.0	-8.0
3200.0	4601.0	-3.2	-7.6
3212.5	4601.0	-9.7	-7.4
3225.0	4601.0	-9.6	-6.8
3237.5	4601.0	-5.6	-5.8
3250.0	4601.0	-6.1	-3.0
3262.5	4601.0	2.2	-.9
3275.0	4601.0	4.1	2.1
3287.5	4601.0	1.0	4.5
3300.0	4601.0	9.2	4.3
3312.5	4601.0	6.2	4.5
3325.0	4601.0	1.1	5.2
3337.5	4601.0	4.9	5.6
3350.0	4601.0	4.6	6.2
3362.5	4601.0	11.3	7.7
3375.0	4601.0	9.0	9.7
3387.5	4601.0	8.8	15.3
3400.0	4601.0	14.7	24.4
3412.5	4601.0	32.6	27.9
3425.0	4601.0	57.0	29.2
3437.5	4601.0	26.4	28.3

3450.0	4601.0	15.5	23.9
3462.5	4601.0	9.9	14.8
3475.0	4601.0	10.7	12.9
3487.5	4601.0	11.3	12.2
3500.0	4601.0	17.0	13.0

1.25 Line 4700 N

2400.0	4700.0	-41.3	-37.4
2387.5	4700.0	-38.0	-35.3
2375.0	4700.0	-33.0	-33.4
2362.5	4700.0	-28.9	-30.1
2350.0	4700.0	-26.0	-28.9
2337.5	4700.0	-24.5	-30.0
2325.0	4700.0	-31.9	-31.2
2312.5	4700.0	-38.7	-33.9
2300.0	4700.0	-34.7	-37.1
2287.5	4700.0	-39.8	-37.9
2275.0	4700.0	-40.5	-35.1
2262.5	4700.0	-35.6	-34.8
2250.0	4700.0	-24.9	-33.6
2237.5	4700.0	-33.4	-33.6
2225.0	4700.0	-33.4	-31.7
2212.5	4700.0	-40.7	-26.8
2200.0	4700.0	-26.0	-18.1
2187.5	4700.0	-.4	-10.4
2175.0	4700.0	10.1	-.1
2162.5	4700.0	4.9	4.7
2150.0	4700.0	10.9	2.3
2137.5	4700.0	-1.9	-1.9
2125.0	4700.0	-12.6	-4.4
2112.5	4700.0	-10.6	-9.7
2100.0	4700.0	-7.7	-9.9
2087.5	4700.0	-15.5	-9.4
2075.0	4700.0	-3.0	-8.4
2062.5	4700.0	-10.0	-5.5
2050.0	4700.0	-5.9	-.8
2037.5	4700.0	6.8	5.0
2025.0	4700.0	8.2	12.7
2012.5	4700.0	25.9	20.2
2000.0	4700.0	28.7	24.7
1987.5	4700.0	31.4	30.8
1975.0	4700.0	29.2	33.2
1962.5	4700.0	38.8	35.6
1950.0	4700.0	37.9	38.1
1937.5	4700.0	40.5	40.6
1925.0	4700.0	44.0	40.7
1912.5	4700.0	41.6	39.0
1900.0	4700.0	39.3	36.3
1887.5	4700.0	29.4	33.4
1875.0	4700.0	27.0	28.7
1862.5	4700.0	29.7	22.0

1850.0	4700.0	18.3	16.2
1837.5	4700.0	5.7	9.3
1825.0	4700.0	. .1	.9
1812.5	4700.0	-7.2	-7.2
1800.0	4700.0	-12.3	-12.4
1787.5	4700.0	-22.3	-16.1
1775.0	4700.0	-20.1	-15.8
1762.5	4700.0	-18.4	-12.0
1750.0	4700.0	-6.0	-.5
1737.5	4700.0	7.0	13.8
1725.0	4700.0	34.8	25.0
1712.5	4700.0	51.8	34.0
1700.0	4700.0	37.6	38.2
1687.5	4700.0	38.6	37.0
1675.0	4700.0	28.2	32.3
1662.5	4700.0	28.9	29.4
1650.0	4700.0	28.3	22.9
1637.5	4700.0	22.9	16.0
1625.0	4700.0	6.4	8.2
1612.5	4700.0	-6.7	3.2
1600.0	4700.0	-9.7	-3.3

1.26 Line 4800 N

1600.0	4800.0	16.9	13.0
1612.5	4800.0	10.0	15.1
1625.0	4800.0	12.1	16.7
1637.5	4800.0	21.6	15.8
1650.0	4800.0	22.8	17.8
1662.5	4800.0	12.6	18.2
1675.0	4800.0	20.0	15.5
1687.5	4800.0	13.8	16.3
1700.0	4800.0	8.3	17.4
1712.5	4800.0	27.0	14.6
1725.0	4800.0	17.7	10.8
1737.5	4800.0	6.2	8.4
1750.0	4800.0	-5.3	4.7
1762.5	4800.0	-3.7	1.5
1775.0	4800.0	8.6	2.3
1787.5	4800.0	1.5	8.3
1800.0	4800.0	10.2	14.0
1812.5	4800.0	25.1	18.1
1825.0	4800.0	24.5	23.7
1837.5	4800.0	29.2	28.4
1850.0	4800.0	29.7	26.5
1862.5	4800.0	33.5	26.9
1875.0	4800.0	15.4	28.3
1887.5	4800.0	26.8	29.5
1900.0	4800.0	36.1	30.1
1912.5	4800.0	35.6	31.0
1925.0	4800.0	36.8	26.9
1937.5	4800.0	19.6	20.4

1950.0	4800.0	6.6	13.9
1962.5	4800.0	3.4	6.0
1975.0	4800.0	3.0	1.6
1987.5	4800.0	-2.8	-3.3
2000.0	4800.0	-2.1	-8.5
2012.5	4800.0	-18.0	-12.2
2025.0	4800.0	-22.5	-12.7
2037.5	4800.0	-15.4	-10.7
2050.0	4800.0	-5.7	-4.1
2062.5	4800.0	8.3	7.5
2075.0	4800.0	15.0	23.5
2087.5	4800.0	35.1	43.3
2100.0	4800.0	65.0	55.1
2112.5	4800.0	93.0	57.4
2125.0	4800.0	67.2	47.1
2137.5	4800.0	26.9	29.3
2150.0	4800.0	-16.5	3.3
2162.5	4800.0	-24.1	-15.9
2175.0	4800.0	-36.9	-26.4
2187.5	4800.0	-28.9	-28.9
2200.0	4800.0	-25.7	-27.8
2212.5	4800.0	-29.1	-22.6
2225.0	4800.0	-18.4	-16.6
2237.5	4800.0	-10.8	-11.9
2250.0	4800.0	.9	-1.8
2262.5	4800.0	-2.0	7.5
2275.0	4800.0	21.1	13.0
2287.5	4800.0	28.3	13.9
2300.0	4800.0	16.5	13.1
2312.5	4800.0	5.6	-.4
2325.0	4800.0	-5.8	-11.7
2337.5	4800.0	-46.5	-21.5
2350.0	4800.0	-28.3	-31.1
2362.5	4800.0	-32.3	-37.4
2375.0	4800.0	-42.4	-32.5
2387.5	4800.0	-37.4	-33.6
2400.0	4800.0	-22.2	-34.0

1.27 Line 4900 N

2400.0	4900.0	-12.3	-21.0
2387.5	4900.0	-17.4	-22.8
2375.0	4900.0	-33.3	-24.1
2362.5	4900.0	-28.1	-25.3
2350.0	4900.0	-29.5	-25.1
2337.5	4900.0	-18.3	-20.7
2325.0	4900.0	-16.2	-17.8
2312.5	4900.0	-11.3	-15.2
2300.0	4900.0	-13.5	-14.4
2287.5	4900.0	-16.7	-14.2
2275.0	4900.0	-14.4	-15.2
2262.5	4900.0	-14.9	-14.3

2250.0	4900.0	-16.4	-12.3
2237.5	4900.0	-9.1	-11.4
2225.0	4900.0	-6.6	-11.0
2212.5	4900.0	-9.8	-10.9
2200.0	4900.0	-13.2	-12.1
2187.5	4900.0	-16.0	-16.2
2175.0	4900.0	-14.7	-17.3
2162.5	4900.0	-27.1	-16.4
2150.0	4900.0	-15.7	-15.0
2137.5	4900.0	-8.4	-13.3
2125.0	4900.0	-9.2	-7.9
2112.5	4900.0	-6.1	-3.2
2100.0	4900.0	-.3	-1.5
2087.5	4900.0	8.1	.6
2075.0	4900.0	.0	2.1
2062.5	4900.0	1.1	2.3
2050.0	4900.0	1.8	1.7
2037.5	4900.0	.6	-1.1
2025.0	4900.0	5.0	-3.8
2012.5	4900.0	-13.8	-6.1
2000.0	4900.0	-12.4	-5.9
1987.5	4900.0	-9.9	-4.6
1975.0	4900.0	1.7	.1
1962.5	4900.0	11.3	5.3
1950.0	4900.0	9.8	11.5
1937.5	4900.0	13.5	17.6
1925.0	4900.0	21.0	21.9
1912.5	4900.0	32.5	25.8
1900.0	4900.0	32.5	28.2
1887.5	4900.0	29.3	28.8
1875.0	4900.0	25.7	28.6
1862.5	4900.0	24.0	25.7
1850.0	4900.0	31.6	25.3
1837.5	4900.0	17.7	25.8
1825.0	4900.0	27.4	25.8
1812.5	4900.0	28.4	23.9
1800.0	4900.0	23.9	26.0
1787.5	4900.0	22.3	21.5
1775.0	4900.0	28.1	15.9
1762.5	4900.0	5.0	12.2
1750.0	4900.0	.0	8.0
1737.5	4900.0	5.5	.9
1725.0	4900.0	1.2	-2.4
1712.5	4900.0	-7.6	-1.4
1700.0	4900.0	-11.3	-.5
1687.5	4900.0	5.2	2.8
1675.0	4900.0	10.2	7.4
1662.5	4900.0	17.7	9.0
1650.0	4900.0	15.3	10.2
1637.5	4900.0	-3.4	12.3
1625.0	4900.0	11.0	12.5
1612.5	4900.0	20.9	11.9
1600.0	4900.0	18.9	16.9

1600.0	5000.0	7.8	9.9
1612.5	5000.0	7.8	9.5
1625.0	5000.0	14.1	10.0
1637.5	5000.0	8.4	11.3
1650.0	5000.0	11.7	13.5
1662.5	5000.0	14.6	15.1
1675.0	5000.0	18.9	16.8
1687.5	5000.0	21.8	16.6
1700.0	5000.0	17.1	18.1
1712.5	5000.0	10.5	18.4
1725.0	5000.0	22.3	22.1
1737.5	5000.0	20.1	26.2
1750.0	5000.0	40.5	31.0
1762.5	5000.0	37.4	34.6
1775.0	5000.0	34.8	37.6
1787.5	5000.0	40.3	31.6
1800.0	5000.0	34.8	24.7
1812.5	5000.0	10.9	18.6
1825.0	5000.0	2.7	14.2
1837.5	5000.0	4.3	9.0
1850.0	5000.0	18.1	5.3
1862.5	5000.0	8.8	2.4
1875.0	5000.0	-7.3	.3
1887.5	5000.0	-12.1	-6.1
1900.0	5000.0	-6.0	-9.4
1912.5	5000.0	-13.7	-5.4
1925.0	5000.0	-8.1	-.2
1937.5	5000.0	12.9	2.4
1950.0	5000.0	13.7	13.9
1962.5	5000.0	7.2	30.9
1975.0	5000.0	43.9	44.7
1987.5	5000.0	77.0	58.5
2000.0	5000.0	81.9	71.5
2012.5	5000.0	82.4	70.6
2025.0	5000.0	72.4	60.6
2037.5	5000.0	39.5	46.8
2050.0	5000.0	26.6	32.2
2062.5	5000.0	13.1	16.9
2075.0	5000.0	9.3	5.5
2087.5	5000.0	-4.0	-3.4
2100.0	5000.0	-17.3	-7.1
2112.5	5000.0	-18.0	-8.4
2125.0	5000.0	-5.7	-5.7
2137.5	5000.0	3.0	1.0
2150.0	5000.0	9.7	9.8
2162.5	5000.0	16.2	14.7
2175.0	5000.0	25.8	18.6
2187.5	5000.0	18.7	22.6
2200.0	5000.0	22.8	25.2
2212.5	5000.0	29.3	24.8
2225.0	5000.0	29.3	23.7
	50		

2237.5	5000.0	23.8	18.7
2250.0	5000.0	13.2	10.6
2262.5	5000.0	-2.0	2.8
2275.0	5000.0	-11.3	-3.6
2287.5	5000.0	-9.5	-9.7
2300.0	5000.0	-8.2	-12.1
2312.5	5000.0	-17.7	-12.6
2325.0	5000.0	-13.9	-14.3
2337.5	5000.0	-13.9	-16.9
2350.0	5000.0	-17.7	-17.8
2362.5	5000.0	-21.4	-19.5
2375.0	5000.0	-22.0	-23.7
2387.5	5000.0	-22.4	-25.2
2400.0	5000.0	-35.0	-26.5

1.29 Line 5100 N

2400.0	5100.0	-30.5	-33.5
2387.5	5100.0	-33.8	-33.6
2375.0	5100.0	-36.3	-31.8
2362.5	5100.0	-33.9	-2.3
2350.0	5100.0	-24.3	60.0
2337.5	5100.0	117.0	82.6
2325.0	5100.0	277.5	96.0
2312.5	5100.0	76.9	101.2
2300.0	5100.0	33.1	79.7
2287.5	5100.0	1.3	25.8
2275.0	5100.0	9.9	9.6
2262.5	5100.0	7.9	-.6
2250.0	5100.0	-4.0	-5.3
2237.5	5100.0	-18.0	-10.9
2225.0	5100.0	-22.3	-13.6
2212.5	5100.0	-17.9	-4.2
2200.0	5100.0	-5.7	15.8
2187.5	5100.0	43.0	29.1
2175.0	5100.0	82.0	37.0
2162.5	5100.0	44.3	41.2
2150.0	5100.0	21.2	34.9
2137.5	5100.0	15.3	27.6
2125.0	5100.0	11.7	28.9
2112.5	5100.0	45.3	29.3
2100.0	5100.0	50.9	28.7
2087.5	5100.0	23.1	26.5
2075.0	5100.0	12.5	17.4
2062.5	5100.0	.5	10.0
2050.0	5100.0	.0	4.3
2037.5	5100.0	14.0	-.2
2025.0	5100.0	-5.6	-1.5
2012.5	5100.0	-9.8	-.6
2000.0	5100.0	-6.3	-3.2
1987.5	5100.0	4.9	-2.7

1975.0	5100.0	.9	-2.2
1962.5	5100.0	-3.4	-1.7
1950.0	5100.0	-6.9	-2.4
1937.5	5100.0	-4.0	-1.5
1925.0	5100.0	1.2	1.9
1912.5	5100.0	5.7	6.6
1900.0	5100.0	13.3	10.8
1887.5	5100.0	16.8	13.2
1875.0	5100.0	16.8	14.8
1862.5	5100.0	13.5	14.6
1850.0	5100.0	13.4	13.0
1837.5	5100.0	12.5	11.7
1825.0	5100.0	8.6	13.9
1812.5	5100.0	10.5	18.9
1800.0	5100.0	24.5	25.0
1787.5	5100.0	38.2	28.7
1775.0	5100.0	43.2	30.0
1762.5	5100.0	26.9	28.5
1750.0	5100.0	17.3	22.1
1737.5	5100.0	17.0	15.5
1725.0	5100.0	6.0	13.6
1712.5	5100.0	10.3	13.4
1700.0	5100.0	17.5	11.6
1687.5	5100.0	16.1	12.2
1675.0	5100.0	8.0	10.1
1662.5	5100.0	8.9	6.4
1650.0	5100.0	.0	2.9
1637.5	5100.0	-1.0	-.4
1625.0	5100.0	-1.2	-4.0
1612.5	5100.0	-8.8	-5.1
1600.0	5100.0	-9.2	-6.4

1.30 Line 5200 N

1600.0	5200.0	-11.0	-22.0
1612.5	5200.0	-25.5	-22.6
1625.0	5200.0	-29.5	-20.6
1637.5	5200.0	-24.6	-19.9
1650.0	5200.0	-12.3	-14.7
1662.5	5200.0	-7.4	-7.3
1675.0	5200.0	.4	1.3
1687.5	5200.0	7.3	5.5
1700.0	5200.0	18.4	10.1
1712.5	5200.0	8.6	13.2
1725.0	5200.0	16.0	13.1
1737.5	5200.0	15.5	12.7
1750.0	5200.0	7.2	12.3
1762.5	5200.0	16.2	8.2
1775.0	5200.0	6.8	3.0
1787.5	5200.0	-4.7	-1.6
1800.0	5200.0	-10.7	-10.8

1812.5	5200.0	-15.4	-18.7
1825.0	5200.0	-30.0	-23.5
1837.5	5200.0	-32.5	-26.6
1850.0	5200.0	-28.9	-26.9
1862.5	5200.0	-26.1	-24.4
1875.0	5200.0	-16.9	-22.2
1887.5	5200.0	-17.7	-20.2
1900.0	5200.0	-21.2	-18.7
1912.5	5200.0	-19.3	-22.4
1925.0	5200.0	-18.5	-24.7
1937.5	5200.0	-35.5	-25.6
1950.0	5200.0	-28.9	-26.4
1962.5	5200.0	-26.0	-28.0
1975.0	5200.0	-23.1	-26.6
1987.5	5200.0	-26.7	-25.7
2000.0	5200.0	-28.2	-26.6
2012.5	5200.0	-24.7	-28.6
2025.0	5200.0	-30.2	-30.2
2037.5	5200.0	-33.2	-33.4
2050.0	5200.0	-34.6	-33.7
2062.5	5200.0	-44.1	-32.0
2075.0	5200.0	-26.4	-32.2
2087.5	5200.0	-21.9	-30.6
2100.0	5200.0	-34.2	-28.2
2112.5	5200.0	-26.2	-33.5
2125.0	5200.0	-32.4	-37.3
2137.5	5200.0	-52.6	-37.2
2150.0	5200.0	-41.3	-39.0
2162.5	5200.0	-33.5	-38.8
2175.0	5200.0	-35.0	-33.7
2187.5	5200.0	-31.6	-30.7
2200.0	5200.0	-26.9	-27.3
2212.5	5200.0	-26.4	-22.8
2225.0	5200.0	-16.8	-19.7
2237.5	5200.0	-12.2	31.6
2250.0	5200.0	-16.4	39.9
2262.5	5200.0	229.9	48.2
2275.0	5200.0	14.8	56.9
2287.5	5200.0	24.7	67.2
2300.0	5200.0	31.5	22.3
2312.5	5200.0	35.1	19.3
2325.0	5200.0	5.5	13.3
2337.5	5200.0	-.5	3.7
2350.0	5200.0	-5.3	-6.8
2362.5	5200.0	-16.5	-11.3
2375.0	5200.0	-17.4	-16.5
2387.5	5200.0	-17.0	-19.3
2400.0	5200.0	-26.4	-20.3

1.31 Line 5300 N

2400.0	5300.0	-50.9	-36.4
2387.5	5300.0	-35.6	-31.7
2375.0	5300.0	-22.7	-28.5
2362.5	5300.0	-17.7	-20.5
2350.0	5300.0	-15.4	-14.6
2337.5	5300.0	-11.1	-10.8
2325.0	5300.0	-6.3	-7.8
2312.5	5300.0	-3.5	-3.9
2300.0	5300.0	-2.8	-.5
2287.5	5300.0	4.3	1.4
2275.0	5300.0	5.8	1.1
2262.5	5300.0	3.0	-2.4
2250.0	5300.0	-4.6	-3.4
2237.5	5300.0	-20.4	18.9
2225.0	5300.0	-.6	32.4
2212.5	5300.0	117.3	64.7
2200.0	5300.0	70.4	96.2
2187.5	5300.0	156.6	86.8
2175.0	5300.0	137.1	54.2
2162.5	5300.0	-47.6	31.3
2150.0	5300.0	-45.7	-8.3
2137.5	5300.0	-44.0	-44.0
2125.0	5300.0	-41.5	-42.7
2112.5	5300.0	-41.1	-43.1
2100.0	5300.0	-41.4	-39.7
2087.5	5300.0	-47.3	-37.0
2075.0	5300.0	-27.0	-32.8
2062.5	5300.0	-28.4	-26.4
2050.0	5300.0	-20.1	-26.3
2037.5	5300.0	-9.1	-25.9
2025.0	5300.0	-47.0	-26.5
2012.5	5300.0	-25.0	-28.2
2000.0	5300.0	-31.5	-32.2
1987.5	5300.0	-28.6	-28.7
1975.0	5300.0	-28.8	-28.2
1962.5	5300.0	-29.4	-26.5
1950.0	5300.0	-22.9	-24.7
1937.5	5300.0	-22.6	-22.9
1925.0	5300.0	-19.8	-20.1
1912.5	5300.0	-19.9	-19.3
1900.0	5300.0	-15.4	-16.0
1887.5	5300.0	-18.6	-11.7
1875.0	5300.0	-6.2	-7.6
1862.5	5300.0	1.4	-7.3
1850.0	5300.0	1.0	-5.8
1837.5	5300.0	-13.9	-7.0
1825.0	5300.0	-11.3	-11.1
1812.5	5300.0	-12.4	-14.1
1800.0	5300.0	-18.8	-14.6
1787.5	5300.0	-14.0	-16.7

1775.0	5300.0	-16.4	-18.2
1762.5	5300.0	-21.7	-16.1
1750.0	5300.0	-20.1	-17.1
1737.5	5300.0	-8.5	-17.1
1725.0	5300.0	-19.0	-17.1
1712.5	5300.0	-16.4	-16.0
1700.0	5300.0	-21.4	-16.5
1687.5	5300.0	-14.7	-15.4
1675.0	5300.0	-11.2	-13.6
1662.5	5300.0	-13.1	-15.5
1650.0	5300.0	-7.8	-19.1
1637.5	5300.0	-30.5	-20.3
1625.0	5300.0	-32.7	-21.0
1612.5	5300.0	-17.3	-24.3
1600.0	5300.0	-16.8	-22.3

1.32 Line 5400 N

1600.0	5400.0	6.3	-6.6
1612.5	5400.0	-13.6	-6.8
1625.0	5400.0	-12.4	-8.1
1637.5	5400.0	-7.6	-11.5
1650.0	5400.0	-13.4	-11.2
1662.5	5400.0	-10.3	-11.2
1675.0	5400.0	-12.1	-11.7
1687.5	5400.0	-12.4	-10.7
1700.0	5400.0	-10.4	-10.4
1712.5	5400.0	-8.4	-8.7
1725.0	5400.0	-8.9	-7.4
1737.5	5400.0	-3.6	-6.2
1750.0	5400.0	-5.7	-5.5
1762.5	5400.0	-4.3	-5.0
1775.0	5400.0	-5.1	-5.1
1787.5	5400.0	-6.1	-5.9
1800.0	5400.0	-4.3	-9.0
1812.5	5400.0	-9.9	-14.8
1825.0	5400.0	-19.8	-25.5
1837.5	5400.0	-34.0	-42.3
1850.0	5400.0	-59.7	-65.5
1862.5	5400.0	-88.1	-89.2
1875.0	5400.0	-126.1	-93.6
1887.5	5400.0	-138.1	8.2
1900.0	5400.0	-55.9	8.8
1912.5	5400.0	449.2	23.0
1925.0	5400.0	-85.1	47.8
1937.5	5400.0	-55.3	55.9
1950.0	5400.0	-13.8	-33.4
1962.5	5400.0	-15.6	-10.4
1975.0	5400.0	2.8	15.2
1987.5	5400.0	30.1	24.8
2000.0	5400.0	72.5	25.3

2012.5	5400.0	34.4	18.0
2025.0	5400.0	-13.1	-1.3
2037.5	5400.0	-33.8	15.0
2050.0	5400.0	-66.7	20.5
2062.5	5400.0	154.0	32.5
2075.0	5400.0	62.2	52.0
2087.5	5400.0	46.8	79.1
2100.0	5400.0	63.8	64.2
2112.5	5400.0	68.9	68.1
2125.0	5400.0	79.2	74.3
2137.5	5400.0	81.8	75.2
2150.0	5400.0	77.6	72.7
2162.5	5400.0	68.4	65.2
2175.0	5400.0	56.6	53.7
2187.5	5400.0	41.4	42.1
2200.0	5400.0	24.7	31.1
2212.5	5400.0	19.5	22.2
2225.0	5400.0	13.4	15.5
2237.5	5400.0	12.0	11.6
2250.0	5400.0	7.7	8.3
2262.5	5400.0	5.5	10.9
2275.0	5400.0	3.1	12.8
2287.5	5400.0	26.2	16.0
2300.0	5400.0	21.5	17.9
2312.5	5400.0	23.7	19.5
2325.0	5400.0	15.0	16.1
2337.5	5400.0	11.2	12.9
2350.0	5400.0	8.9	10.2
2362.5	5400.0	5.8	9.0
2375.0	5400.0	10.0	9.2
2387.5	5400.0	9.1	9.3
2400.0	5400.0	12.4	10.5

1.33 Line 5500 N

2400.0	5500.0	16.1	16.0
2387.5	5500.0	16.2	14.1
2375.0	5500.0	15.8	12.7
2362.5	5500.0	8.2	10.5
2350.0	5500.0	7.1	8.1
2337.5	5500.0	5.3	6.8
2325.0	5500.0	3.9	6.3
2312.5	5500.0	9.4	6.2
2300.0	5500.0	5.6	8.4
2287.5	5500.0	7.0	15.5
2275.0	5500.0	16.1	25.6
2262.5	5500.0	39.3	28.4
2250.0	5500.0	60.2	31.6
2237.5	5500.0	19.5	32.7
2225.0	5500.0	23.0	29.7
2212.5	5500.0	21.5	23.9

2200.0	5500.0	24.4	27.6
2187.5	5500.0	31.3	30.9
2175.0	5500.0	37.6	35.4
2162.5	5500.0	39.8	39.6
2150.0	5500.0	43.7	42.1
2137.5	5500.0	45.6	42.7
2125.0	5500.0	43.9	41.4
2112.5	5500.0	40.6	37.8
2100.0	5500.0	33.2	32.8
2087.5	5500.0	25.9	27.1
2075.0	5500.0	20.5	22.1
2062.5	5500.0	15.5	18.6
2050.0	5500.0	15.2	17.7
2037.5	5500.0	16.1	18.4
2025.0	5500.0	21.2	20.3
2012.5	5500.0	24.0	23.8
2000.0	5500.0	25.1	26.9
1987.5	5500.0	32.5	29.8
1975.0	5500.0	31.5	33.4
1962.5	5500.0	35.7	39.5
1950.0	5500.0	42.1	45.2
1937.5	5500.0	55.7	50.7
1925.0	5500.0	60.9	56.5
1912.5	5500.0	59.2	67.8
1900.0	5500.0	64.6	86.0
1887.5	5500.0	98.5	114.3
1875.0	5500.0	147.0	158.1
1862.5	5500.0	202.4	210.6
1850.0	5500.0	278.1	245.7
1837.5	5500.0	327.1	249.1
1825.0	5500.0	273.9	229.3
1812.5	5500.0	164.1	187.0
1800.0	5500.0	103.2	131.4
1787.5	5500.0	66.8	84.6
1775.0	5500.0	49.2	57.4
1762.5	5500.0	39.7	40.4
1750.0	5500.0	28.1	30.0
1737.5	5500.0	18.1	22.1
1725.0	5500.0	15.1	17.2
1712.5	5500.0	9.3	12.3
1700.0	5500.0	15.4	9.8
1687.5	5500.0	3.8	7.2
1675.0	5500.0	5.6	5.5
1662.5	5500.0	1.9	2.9
1650.0	5500.0	2.9	1.6
1637.5	5500.0	2.1	.9
1625.0	5500.0	-2.3	.0
1612.5	5500.0	1.8	-.2
1600.0	5500.0	-2.3	-.9

1.34 Line 5600 N

1600.0	5600.0	11.6	16.4
1612.5	5600.0	13.5	20.2
1625.0	5600.0	24.2	23.0
1637.5	5600.0	31.4	30.0
1650.0	5600.0	34.3	38.1
1662.5	5600.0	46.7	45.2
1675.0	5600.0	53.7	53.4
1687.5	5600.0	59.7	64.6
1700.0	5600.0	72.7	76.0
1712.5	5600.0	90.0	88.1
1725.0	5600.0	103.7	98.8
1737.5	5600.0	114.5	106.5
1750.0	5600.0	113.1	107.7
1762.5	5600.0	111.0	103.3
1775.0	5600.0	96.0	93.9
1787.5	5600.0	82.1	85.5
1800.0	5600.0	67.4	75.3
1812.5	5600.0	71.0	65.5
1825.0	5600.0	59.8	56.2
1837.5	5600.0	47.0	49.0
1850.0	5600.0	35.9	39.7
1862.5	5600.0	31.2	31.9
1875.0	5600.0	24.7	26.6
1887.5	5600.0	20.8	23.7
1900.0	5600.0	20.6	21.9
1912.5	5600.0	21.0	22.1
1925.0	5600.0	22.5	22.2
1937.5	5600.0	25.7	20.4
1950.0	5600.0	21.2	17.6
1962.5	5600.0	11.5	14.7
1975.0	5600.0	7.0	11.5
1987.5	5600.0	8.0	9.2
2000.0	5600.0	9.7	8.3
2012.5	5600.0	9.8	8.8
2025.0	5600.0	7.0	9.0
2037.5	5600.0	9.5	9.5
2050.0	5600.0	9.2	10.5
2062.5	5600.0	11.9	12.2
2075.0	5600.0	14.9	13.7
2087.5	5600.0	15.4	15.9
2100.0	5600.0	17.3	17.7
2112.5	5600.0	19.8	19.3
2125.0	5600.0	21.1	20.9
2137.5	5600.0	22.8	23.9
2150.0	5600.0	23.7	26.2
2162.5	5600.0	32.2	29.2
2175.0	5600.0	31.2	32.0
2187.5	5600.0	35.9	30.1
2200.0	5600.0	37.2	27.3
2212.5	5600.0	14.2	31.4
2225.0	5600.0	17.8	41.4

2237.5	5600.0	52.1	46.3
2250.0	5600.0	85.6	49.9
2262.5	5600.0	61.6	50.1
2275.0	5600.0	32.5	42.4
2287.5	5600.0	18.8	27.4
2300.0	5600.0	13.3	18.3
2312.5	5600.0	10.7	14.4
2325.0	5600.0	16.1	13.3
2337.5	5600.0	13.2	12.8
2350.0	5600.0	13.1	11.8
2362.5	5600.0	11.0	9.5
2375.0	5600.0	5.8	9.6
2387.5	5600.0	4.6	8.8
2400.0	5600.0	13.6	8.0

1.35 Lin	5700N		
2400.0	5700.0	38.2	35.1
2387.5	5700.0	32.5	32.9
2375.0	5700.0	34.6	33.1
2362.5	5700.0	26.4	33.5
2350.0	5700.0	33.7	34.1
2337.5	5700.0	40.4	31.6
2325.0	5700.0	35.5	29.0
2312.5	5700.0	22.2	24.6
2300.0	5700.0	13.3	19.2
2287.5	5700.0	11.8	13.3
2275.0	5700.0	13.4	9.9
2262.5	5700.0	5.7	8.4
2250.0	5700.0	5.2	10.4
2237.5	5700.0	5.9	10.4
2225.0	5700.0	21.7	9.7
2212.5	5700.0	13.4	7.7
2200.0	5700.0	2.4	11.5
2187.5	5700.0	-4.8	11.8
2175.0	5700.0	24.7	11.9
2162.5	5700.0	23.5	14.7
2150.0	5700.0	13.5	18.3
2137.5	5700.0	16.8	16.0
2125.0	5700.0	13.0	14.3
2112.5	5700.0	13.2	13.7
2100.0	5700.0	15.2	12.7
2087.5	5700.0	10.4	12.4
2075.0	5700.0	11.8	11.2
2062.5	5700.0	11.3	9.4
2050.0	5700.0	7.1	8.5
2037.5	5700.0	6.2	7.3
2025.0	5700.0	6.3	7.0
2012.5	5700.0	5.7	6.8
2000.0	5700.0	9.8	6.9
1987.5	5700.0	5.9	7.4

1975.0	5700.0	6.9	7.5
1962.5	5700.0	8.5	7.8
1950.0	5700.0	6.6	9.4
1937.5	5700.0	11.3	10.4
1925.0	5700.0	13.7	12.0
1912.5	5700.0	11.8	14.1
1900.0	5700.0	16.8	15.0
1887.5	5700.0	16.9	16.7
1875.0	5700.0	15.9	18.4
1862.5	5700.0	21.9	20.6
1850.0	5700.0	20.4	24.5
1837.5	5700.0	27.7	29.6
1825.0	5700.0	36.7	34.3
1812.5	5700.0	41.5	41.4
1800.0	5700.0	45.0	48.3
1787.5	5700.0	56.3	55.6
1775.0	5700.0	61.8	66.4
1762.5	5700.0	73.4	78.9
1750.0	5700.0	95.3	92.3
1737.5	5700.0	107.5	110.7
1725.0	5700.0	123.6	127.5
1712.5	5700.0	153.9	141.5
1700.0	5700.0	157.2	154.5
1687.5	5700.0	165.1	162.6
1675.0	5700.0	172.8	162.2
1662.5	5700.0	164.1	157.0
1650.0	5700.0	151.8	147.4
1637.5	5700.0	131.4	131.2
1625.0	5700.0	117.0	113.4
1612.5	5700.0	91.7	103.8
1600.0	5700.0	75.1	94.6

1.36 Line 5800 N

1600.0	5800.0	122.2	120.2
1612.5	5800.0	115.9	123.6
1625.0	5800.0	122.5	125.4
1637.5	5800.0	133.8	125.7
1650.0	5800.0	132.8	126.9
1662.5	5800.0	123.6	124.9
1675.0	5800.0	121.8	119.4
1687.5	5800.0	112.3	111.4
1700.0	5800.0	106.5	102.7
1712.5	5800.0	92.7	92.4
1725.0	5800.0	80.2	82.4
1737.5	5800.0	70.3	72.2
1750.0	5800.0	62.3	63.3
1762.5	5800.0	55.7	55.3
1775.0	5800.0	47.8	47.4
1787.5	5800.0	40.4	40.4
1800.0	5800.0	30.7	33.7

1812.5	5800.0	27.6	27.6
1825.0	5800.0	22.1	23.0
1837.5	5800.0	17.4	19.9
1850.0	5800.0	17.1	17.6
1862.5	5800.0	15.2	16.1
1875.0	5800.0	16.3	14.8
1887.5	5800.0	14.5	13.0
1900.0	5800.0	11.0	11.8
1912.5	5800.0	8.2	9.7
1925.0	5800.0	9.1	8.3
1937.5	5800.0	5.8	7.8
1950.0	5800.0	7.6	7.3
1962.5	5800.0	8.5	5.5
1975.0	5800.0	5.4	4.6
1987.5	5800.0	. 3	5.2
2000.0	5800.0	1.3	7.0
2012.5	5800.0	10.6	7.0
2025.0	5800.0	17.4	7.4
2037.5	5800.0	5.4	6.9
2050.0	5800.0	2.5	4.4
2062.5	5800.0	-1.3	1.9
2075.0	5800.0	-2.0	4.4
2087.5	5800.0	5.0	4.8
2100.0	5800.0	17.6	6.5
2112.5	5800.0	4.8	8.1
2125.0	5800.0	7.0	8.6
2137.5	5800.0	6.2	7.6
2150.0	5800.0	7.3	12.2
2162.5	5800.0	12.8	19.3
2175.0	5800.0	27.9	26.3
2187.5	5800.0	42.3	28.3
2200.0	5800.0	41.0	30.7
2212.5	5800.0	17.4	28.8
2225.0	5800.0	25.1	24.4
2237.5	5800.0	18.3	18.2
2250.0	5800.0	20.0	15.8
2262.5	5800.0	10.2	12.5
2275.0	5800.0	5.5	10.8
2287.5	5800.0	8.5	8.8
2300.0	5800.0	9.9	9.9
2312.5	5800.0	10.0	16.5
2325.0	5800.0	15.6	23.6
2337.5	5800.0	38.7	31.6
2350.0	5800.0	43.8	42.3
2362.5	5800.0	50.0	52.7
2375.0	5800.0	63.3	58.8
2387.5	5800.0	67.8	62.6
2400.0	5800.0	69.1	66.7

1.37 Line
 5900N

2400.0	5900.0	.5	1.5
2387.5	5900.0	1.4	2.9
2375.0	5900.0	2.7	3.6
2362.5	5900.0	7.0	7.0
2350.0	5900.0	6.4	9.3
2337.5	5900.0	17.7	11.2
2325.0	5900.0	12.9	12.4
2312.5	5900.0	11.9	13.3
2300.0	5900.0	13.2	11.8
2287.5	5900.0	11.0	10.9
2275.0	5900.0	10.1	9.3
2262.5	5900.0	8.5	7.2
2250.0	5900.0	3.9	7.3
2237.5	5900.0	2.3	5.8
2225.0	5900.0	11.6	5.0
2212.5	5900.0	2.9	3.0
2200.0	5900.0	4.2	1.6
2187.5	5900.0	-5.9	.2
2175.0	5900.0	-4.6	-.1
2162.5	5900.0	4.4	-.2
2150.0	5900.0	1.6	1.8
2137.5	5900.0	3.4	2.3
2125.0	5900.0	4.0	.2
2112.5	5900.0	-1.9	-.1
2100.0	5900.0	-6.3	1.0
2087.5	5900.0	.3	1.9
2075.0	5900.0	9.1	2.4
2062.5	5900.0	8.5	5.1
2050.0	5900.0	.4	7.1
2037.5	5900.0	7.2	6.2
2025.0	5900.0	10.4	5.9
2012.5	5900.0	4.7	6.5
2000.0	5900.0	6.7	6.1
1987.5	5900.0	3.5	5.1
1975.0	5900.0	5.3	5.4
1962.5	5900.0	5.1	5.8
1950.0	5900.0	6.5	6.9
1937.5	5900.0	8.7	8.3
1925.0	5900.0	8.9	9.5
1912.5	5900.0	12.2	10.9
1900.0	5900.0	11.4	12.3
1887.5	5900.0	13.4	15.0
1875.0	5900.0	15.7	17.0
1862.5	5900.0	22.1	18.5
1850.0	5900.0	22.4	22.1
1837.5	5900.0	18.7	25.0
1825.0	5900.0	31.8	26.7
1812.5	5900.0	30.0	28.8
1800.0	5900.0	30.4	32.1
1787.5	5900.0	33.2	33.5

1775.0	5900.0	35.1	35.8
1762.5	5900.0	38.8	38.6
1750.0	5900.0	41.5	41.5
1737.5	5900.0	44.3	45.6
1725.0	5900.0	48.0	50.6
1712.5	5900.0	55.2	55.8
1700.0	5900.0	64.1	61.2
1687.5	5900.0	67.2	67.0
1675.0	5900.0	71.7	72.1
1662.5	5900.0	76.7	76.9
1650.0	5900.0	80.8	81.5
1637.5	5900.0	87.9	86.0
1625.0	5900.0	90.3	90.5
1612.5	5900.0	94.1	93.0
1600.0	5900.0	99.5	94.6

2. NORTH - SOUTH LINES

2.1 Line 1700 E

Station N	Line E	Original Readings	
-			
2200.0	1700.0	-7.6	-8.4
2212.5	1700.0	-20.5	-3.0
2225.0	1700.0	3.0	2.5
2237.5	1700.0	13.2	1.5
2250.0	1700.0	24.5	-11.2
2262.5	1700.0	-12.5	-32.5
2275.0	1700.0	-84.3	-55.6
2287.5	1700.0	-103.6	-79.2
2300.0	1700.0	-102.3	-94.5
2312.5	1700.0	-93.5	-94.7
2325.0	1700.0	-88.8	-90.0
2337.5	1700.0	-85.3	-85.2
2350.0	1700.0	-80.3	-81.4
2362.5	1700.0	-78.3	-78.5
2375.0	1700.0	-74.5	-76.1
2387.5	1700.0	-74.3	-72.9
2400.0	1700.0	-73.2	-70.4
2412.5	1700.0	-64.0	-68.8
2425.0	1700.0	-65.8	-66.9
2437.5	1700.0	-66.7	-65.0
2450.0	1700.0	-64.6	-64.0
2462.5	1700.0	-64.1	-62.4
2475.0	1700.0	-58.6	-61.3
2487.5	1700.0	-57.8	-59.1
2500.0	1700.0	-61.2	-57.1
2512.5	1700.0	-54.0	-54.7

2525.0	1700.0	-53.9	-52.2
2537.5	1700.0	-46.6	-49.3
2550.0	1700.0	-45.5	-47.7
2562.5	1700.0	-46.6	-45.4
2575.0	1700.0	-45.9	-44.6
2587.5	1700.0	-42.6	-43.8
2600.0	1700.0	-42.3	-42.7
2612.5	1700.0	-41.4	-40.9
2625.0	1700.0	-41.2	-39.8
2637.5	1700.0	-36.9	-38.8
2650.0	1700.0	-37.2	-37.2
2662.5	1700.0	-37.1	-34.7
2675.0	1700.0	-33.8	-32.8
2687.5	1700.0	-28.7	-31.0
2700.0	1700.0	-27.2	-28.2
2712.5	1700.0	-28.3	-25.4
2725.0	1700.0	-23.0	-22.7
2737.5	1700.0	-19.7	-20.0
2750.0	1700.0	-15.5	-18.0
2762.5	1700.0	-13.3	-16.3
2775.0	1700.0	-18.3	-15.2
2787.5	1700.0	-14.6	-11.4
2800.0	1700.0	-14.5	-8.2
2812.5	1700.0	3.6	-6.3
2825.0	1700.0	2.6	-3.8
2837.5	1700.0	-8.6	.7
2850.0	1700.0	-2.0	.0
2862.5	1700.0	7.8	-.1
2875.0	1700.0	.6	1.7
2887.5	1700.0	1.9	2.6
2900.0	1700.0	.3	2.8
2912.5	1700.0	2.6	3.5
2925.0	1700.0	8.4	4.1
2937.5	1700.0	4.4	7.7
2950.0	1700.0	4.9	11.5
2962.5	1700.0	18.3	13.0
2975.0	1700.0	21.4	16.0
2987.5	1700.0	16.1	18.7
3000.0	1700.0	19.2	19.2
3012.5	1700.0	18.4	19.4
3025.0	1700.0	21.1	20.8
3037.5	1700.0	22.3	22.6
3050.0	1700.0	23.1	21.8
3062.5	1700.0	28.3	19.5
3075.0	1700.0	14.2	15.6
3087.5	1700.0	9.8	11.2
3100.0	1700.0	2.7	7.0
3112.5	1700.0	1.1	11.1
3125.0	1700.0	7.2	19.6
3137.5	1700.0	34.9	51.1
3150.0	1700.0	52.1	72.7
3162.5	1700.0	160.2	148.7
3175.0	1700.0	109.3	185.3
3187.5	1700.0	387.0	224.7

3200.0	1700.0	218.0	211.5
3212.5	1700.0	249.1	196.2
3225.0	1700.0	94.2	123.0
3237.5	1700.0	32.9	83.4
3250.0	1700.0	20.9	36.6
3262.5	1700.0	19.8	19.6
3275.0	1700.0	15.3	15.1
3287.5	1700.0	9.0	13.7
3300.0	1700.0	10.6	12.9
3312.5	1700.0	13.9	14.2
3325.0	1700.0	15.7	16.7
3337.5	1700.0	21.9	20.1
3350.0	1700.0	21.6	25.0
3362.5	1700.0	27.4	30.4
3375.0	1700.0	38.6	35.5
3387.5	1700.0	42.4	40.7
3400.0	1700.0	47.5	44.8
3412.5	1700.0	47.5	47.5
3425.0	1700.0	47.9	49.3
3437.5	1700.0	52.0	50.9
3450.0	1700.0	51.5	54.3
3462.5	1700.0	55.4	59.0
3475.0	1700.0	64.9	64.5
3487.5	1700.0	71.4	71.3
3500.0	1700.0	79.1	78.6
3512.5	1700.0	85.7	83.6
3525.0	1700.0	91.8	85.6
3537.5	1700.0	89.8	84.2
3550.0	1700.0	81.6	81.5
3562.5	1700.0	72.1	76.3
3575.0	1700.0	72.2	68.0
3587.5	1700.0	65.7	58.6
3600.0	1700.0	48.4	49.6
3612.5	1700.0	34.4	39.0
3625.0	1700.0	27.1	30.0
3637.5	1700.0	19.5	25.2
3650.0	1700.0	20.8	24.7
3662.5	1700.0	24.0	27.4
3675.0	1700.0	32.3	34.1
3687.5	1700.0	40.4	37.5
3700.0	1700.0	53.2	42.0

2.2 Line 1800 E

3700.0	1800.0	1.9	2.2
3687.5	1800.0	.4	3.1
3675.0	1800.0	4.2	3.8
3662.5	1800.0	6.0	4.6
3650.0	1800.0	6.5	5.7
3637.5	1800.0	6.0	6.7
3625.0	1800.0	5.6	7.7
3612.5	1800.0	9.2	9.5

3600.0	1800.0	11.2	12.4
3587.5	1800.0	15.7	16.1
3575.0	1800.0	20.5	19.3
3562.5	1800.0	24.0	22.8
3550.0	1800.0	25.3	25.6
3537.5	1800.0	28.7	27.5
3525.0	1800.0	29.7	29.0
3512.5	1800.0	29.8	31.1
3500.0	1800.0	31.4	33.2
3487.5	1800.0	35.7	36.1
3475.0	1800.0	39.3	39.2
3462.5	1800.0	44.2	41.8
3450.0	1800.0	45.2	43.1
3437.5	1800.0	44.5	42.9
3425.0	1800.0	42.2	40.2
3412.5	1800.0	38.6	35.8
3400.0	1800.0	30.5	29.7
3387.5	1800.0	23.1	22.2
3375.0	1800.0	14.0	14.0
3362.5	1800.0	4.9	6.4
3350.0	1800.0	-2.3	-.5
3337.5	1800.0	-7.9	-6.3
3325.0	1800.0	-11.0	-9.8
3312.5	1800.0	-15.4	-12.2
3300.0	1800.0	-12.2	-12.0
3287.5	1800.0	-14.7	-8.2
3275.0	1800.0	-6.6	-1.7
3262.5	1800.0	7.8	6.3
3250.0	1800.0	17.4	19.3
3237.5	1800.0	27.7	37.3
3225.0	1800.0	50.1	51.3
3212.5	1800.0	83.4	52.9
3200.0	1800.0	78.0	52.2
3187.5	1800.0	25.3	49.7
3175.0	1800.0	24.1	44.1
3162.5	1800.0	37.8	47.9
3150.0	1800.0	55.4	72.0
3137.5	1800.0	97.1	87.8
3125.0	1800.0	145.6	100.5
3112.5	1800.0	103.1	108.2
3100.0	1800.0	101.3	107.7
3087.5	1800.0	93.9	101.4
3075.0	1800.0	94.6	107.2
3062.5	1800.0	114.2	107.3
3050.0	1800.0	131.8	104.3
3037.5	1800.0	102.2	100.3
3025.0	1800.0	78.7	91.9
3012.5	1800.0	74.4	79.2
3000.0	1800.0	72.5	70.5
2987.5	1800.0	68.3	64.5
2975.0	1800.0	58.4	57.6
2962.5	1800.0	48.8	49.6
2950.0	1800.0	40.0	40.7

2937.5	1800.0	32.4	32.8
2925.0	1800.0	24.0	25.6
2912.5	1800.0	18.6	19.2
2900.0	1800.0	13.1	13.4
2887.5	1800.0	8.1	8.0
2875.0	1800.0	3.3	3.0
2862.5	1800.0	-3.1	-.7
2850.0	1800.0	-6.5	-3.6
2837.5	1800.0	-5.1	-3.7
2825.0	1800.0	-6.6	-3.4
2812.5	1800.0	2.8	-4.1
2800.0	1800.0	-1.8	-5.6
2787.5	1800.0	-9.9	-6.9
2775.0	1800.0	-12.7	-9.8
2762.5	1800.0	-12.8	-12.3
2750.0	1800.0	-12.0	-14.2
2737.5	1800.0	-14.1	-16.3
2725.0	1800.0	-19.3	-18.7
2712.5	1800.0	-23.3	-20.9
2700.0	1800.0	-24.7	-23.5
2687.5	1800.0	-23.3	-25.8
2675.0	1800.0	-26.9	-27.8
2662.5	1800.0	-30.6	-28.8
2650.0	1800.0	-33.3	-30.5
2637.5	1800.0	-29.8	-33.4
2625.0	1800.0	-32.0	-35.7
2612.5	1800.0	-41.1	-37.5
2600.0	1800.0	-42.5	-40.4
2587.5	1800.0	-42.1	-43.1
2575.0	1800.0	-44.5	-44.2
2562.5	1800.0	-45.3	-45.4
2550.0	1800.0	-46.8	-47.2
2537.5	1800.0	-48.5	-48.4
2525.0	1800.0	-51.0	-50.5
2512.5	1800.0	-50.2	-51.8
2500.0	1800.0	-55.8	-53.6
2487.5	1800.0	-53.4	-55.1
2475.0	1800.0	-57.7	-56.1
2462.5	1800.0	-58.4	-57.7
2450.0	1800.0	-55.3	-59.7
2437.5	1800.0	-63.7	-61.5
2425.0	1800.0	-63.5	-63.1
2412.5	1800.0	-66.7	-65.6
2400.0	1800.0	-66.5	-66.8
2387.5	1800.0	-67.7	-68.5
2375.0	1800.0	-69.4	-69.5
2362.5	1800.0	-72.2	-71.6
2350.0	1800.0	-71.9	-74.1
2337.5	1800.0	-76.7	-75.2
2325.0	1800.0	-80.2	-79.2
2312.5	1800.0	-75.1	-81.8
2300.0	1800.0	-91.9	-84.3
2287.5	1800.0	-85.0	-88.1
2			

2275.0	1800.0	-89.2	-98.0
2262.5	1800.0	-99.5	-86.6
2250.0	1800.0	-124.6	-62.0
2237.5	1800.0	-34.6	-41.6
2225.0	1800.0	37.7	-28.7
2212.5	1800.0	13.0	-4.8
2200.0	1800.0	-35.2	5.2

2.3 Line 1900 E

3000.0	1900.0	-5.8	-4.8
2987.5	1900.0	-4.4	-4.6
2975.0	1900.0	-4.3	-4.5
2962.5	1900.0	-3.9	-4.0
2950.0	1900.0	-3.9	-3.8
2937.5	1900.0	-3.6	-3.5
2925.0	1900.0	-3.2	-3.3
2912.5	1900.0	-2.9	-3.0
2900.0	1900.0	-2.7	-2.2
2887.5	1900.0	-2.4	-1.6
2875.0	1900.0	.0	-1.0
2862.5	1900.0	-.1	-.6
2850.0	1900.0	-.0	-.4
2837.5	1900.0	-.4	-.2
2825.0	1900.0	-1.6	-.2
2812.5	1900.0	1.0	.0
2800.0	1900.0	.0	.0
2787.5	1900.0	-.8	.8
2775.0	1900.0	-.2	.7
2762.5	1900.0	2.2	.4
2750.0	1900.0	.6	-.4
2737.5	1900.0	-1.3	-1.1
2725.0	1900.0	-3.2	-1.3
2712.5	1900.0	-3.7	-2.0
2700.0	1900.0	1.3	-3.0
2687.5	1900.0	-3.1	-4.8
2675.0	1900.0	-6.1	-7.0
2662.5	1900.0	-12.6	-10.2
2650.0	1900.0	-14.3	-13.2
2637.5	1900.0	-15.0	-16.3
2625.0	1900.0	-17.9	-17.9
2612.5	1900.0	-21.5	-19.5
2600.0	1900.0	-20.6	-22.7
2587.5	1900.0	-22.7	-25.8
2575.0	1900.0	-30.7	-28.5
2562.5	1900.0	-33.5	-32.3
2550.0	1900.0	-35.1	-36.1
2537.5	1900.0	-39.3	-38.0
2525.0	1900.0	-42.1	-39.5
2512.5	1900.0	-39.9	-41.6
2500.0	1900.0	-41.2	-43.0
2487.5	1900.0	-45.3	-44.5

2475.0	1900.0	-46.6	-46.5
2462.5	1900.0	-49.6	-48.7
2450.0	1900.0	-49.9	-50.1
2437.5	1900.0	-52.0	-50.8
2425.0	1900.0	-52.3	-52.3
2412.5	1900.0	-50.4	-54.8
2400.0	1900.0	-56.7	-57.3
2387.5	1900.0	-62.8	-59.8
2375.0	1900.0	-64.5	-61.5
2362.5	1900.0	-64.5	-62.7
2350.0	1900.0	-59.0	-64.2
2337.5	1900.0	-62.9	-64.1
2325.0	1900.0	-70.2	-64.2
2312.5	1900.0	-64.0	-66.3
2300.0	1900.0	-64.7	-69.4
2287.5	1900.0	-69.6	-70.4
2275.0	1900.0	-78.4	-73.7
2262.5	1900.0	-75.5	-76.7
2250.0	1900.0	-80.3	-81.3
2237.5	1900.0	-79.7	-84.0
2225.0	1900.0	-92.8	-84.8
2212.5	1900.0	-91.6	-85.9
2200.0	1900.0	-79.4	-87.9

2.4 Line 2000 E

2200.0	2000.0	-71.1	-71.2
2212.5	2000.0	-70.1	-73.3
2225.0	2000.0	-72.5	-73.0
2237.5	2000.0	-79.4	-72.8
2250.0	2000.0	-71.7	-72.2
2262.5	2000.0	-70.2	-70.8
2275.0	2000.0	-67.2	-68.4
2287.5	2000.0	-65.3	-66.2
2300.0	2000.0	-67.4	-64.4
2312.5	2000.0	-60.7	-62.1
2325.0	2000.0	-61.6	-60.3
2337.5	2000.0	-55.5	-57.2
2350.0	2000.0	-56.4	-55.5
2362.5	2000.0	-51.8	-53.4
2375.0	2000.0	-52.0	-52.1
2387.5	2000.0	-51.4	-50.6
2400.0	2000.0	-49.0	-50.5
2412.5	2000.0	-48.7	-49.1
2425.0	2000.0	-51.6	-46.7
2437.5	2000.0	-44.8	-45.3
2450.0	2000.0	-39.5	-42.8
2462.5	2000.0	-41.9	-39.3
2475.0	2000.0	-36.1	-37.2
2487.5	2000.0	-34.1	-36.7
2500.0	2000.0	-34.3	-35.4

2512.5	2000.0	-37.3	-34.9
2525.0	2000.0	-35.0	-34.9
2537.5	2000.0	-33.7	-33.4
2550.0	2000.0	-34.1	-30.4
2562.5	2000.0	-26.9	-26.9
2575.0	2000.0	-22.3	-25.2
2587.5	2000.0	-17.7	-22.1
2600.0	2000.0	-25.1	-20.1
2612.5	2000.0	-18.3	-18.5
2625.0	2000.0	-17.1	-17.2
2637.5	2000.0	-14.3	-13.8
2650.0	2000.0	-11.2	-11.7
2662.5	2000.0	-7.9	-9.8
2675.0	2000.0	-8.1	-8.3
2687.5	2000.0	-7.4	-6.6
2700.0	2000.0	-6.9	-6.0
2712.5	2000.0	-2.7	-5.0
2725.0	2000.0	-4.8	-3.9
2737.5	2000.0	-3.0	-3.3
2750.0	2000.0	-2.3	-4.6
2762.5	2000.0	-3.9	-5.4
2775.0	2000.0	-8.8	-6.5
2787.5	2000.0	-8.8	-7.9
2800.0	2000.0	-8.9	-9.1
2812.5	2000.0	-8.9	-9.6
2825.0	2000.0	-9.9	-10.7
2837.5	2000.0	-11.4	-12.0
2850.0	2000.0	-14.6	-13.5
2862.5	2000.0	-15.4	-14.7
2875.0	2000.0	-16.1	-15.8
2887.5	2000.0	-16.2	-16.1
2900.0	2000.0	-16.5	-16.4
2912.5	2000.0	-16.2	-16.6
2925.0	2000.0	-17.1	-16.8
2937.5	2000.0	-17.0	-17.0
2950.0	2000.0	-17.4	-17.1
2962.5	2000.0	-17.2	-17.0
2975.0	2000.0	-17.0	-16.8
2987.5	2000.0	-16.3	-16.6
3000.0	2000.0	-15.9	-16.4

2.5 Line 2100 E

3000.0	2100.0	3.0	3.6
2987.5	2100.0	3.9	3.3
2975.0	2100.0	4.0	2.9
2962.5	2100.0	2.1	2.3
2950.0	2100.0	1.5	1.3
2937.5	2100.0	.1	-1.3
2925.0	2100.0	-1.2	-4.0
2912.5	2100.0	-8.8	-7.2
2900.0	2100.0	-11.5	-11.6

2887.5	2100.0	-14.4	-16.3
2875.0	2100.0	-22.1	-19.2
2862.5	2100.0	-24.7	-21.7
2850.0	2100.0	-23.5	-23.4
2837.5	2100.0	-23.6	-23.4
2825.0	2100.0	-22.9	-22.7
2812.5	2100.0	-22.4	-22.1
2800.0	2100.0	-21.2	-21.5
2787.5	2100.0	-20.2	-20.8
2775.0	2100.0	-20.6	-20.5
2762.5	2100.0	-19.6	-20.3
2750.0	2100.0	-21.0	-20.2
2737.5	2100.0	-20.0	-19.0
2725.0	2100.0	-19.8	-17.8
2712.5	2100.0	-14.4	-16.9
2700.0	2100.0	-14.0	-16.6
2687.5	2100.0	-16.4	-16.3
2675.0	2100.0	-18.7	-16.6
2650.0	2100.0	-18.1	-17.6
2625.0	2100.0	-15.7	-18.2
2600.0	2100.0	-19.0	-18.6
2575.0	2100.0	-19.6	-20.0
2550.0	2100.0	-20.6	-22.8
2525.0	2100.0	-25.0	-25.3
2500.0	2100.0	-29.9	-27.7
2487.5	2100.0	-31.6	-30.7
2475.0	2100.0	-31.5	-33.0
2462.5	2100.0	-35.4	-35.5
2450.0	2100.0	-36.8	-38.2
2437.5	2100.0	-42.2	-40.7
2425.0	2100.0	-45.0	-42.4
2412.5	2100.0	-43.9	-44.3
2400.0	2100.0	-44.0	-45.7
2387.5	2100.0	-46.3	-46.5
2375.0	2100.0	-49.2	-47.9
2362.5	2100.0	-49.1	-49.6
2350.0	2100.0	-50.7	-50.4
2337.5	2100.0	-52.5	-50.7
2325.0	2100.0	-50.7	-50.9
2312.5	2100.0	-50.6	-50.7
2300.0	2100.0	-49.8	-50.5
2287.5	2100.0	-49.7	-51.2
2275.0	2100.0	-51.9	-52.6
2262.5	2100.0	-53.8	-54.9
2250.0	2100.0	-57.9	-56.9
2237.5	2100.0	-61.2	-57.8
2225.0	2100.0	-59.6	-58.1
2212.5	2100.0	-56.7	-58.2
2220.0	2100.0	-55.2	-57.2

2.6 Line 2200E

3300.0	2200.0	.3	.6
3287.5	2200.0	.8	1.0
3275.0	2200.0	.7	1.5
3262.5	2200.0	2.1	1.5
3250.0	2200.0	3.7	2.5
3237.5	2200.0	.1	2.7
3225.0	2200.0	5.7	2.5
3212.5	2200.0	1.8	2.2
3200.0	2200.0	1.4	2.8
3187.5	2200.0	1.9	2.3
3175.0	2200.0	3.1	2.3
3162.5	2200.0	3.3	2.5
3150.0	2200.0	2.0	2.8
3137.5	2200.0	2.1	3.1
3125.0	2200.0	3.5	2.9
3112.5	2200.0	4.7	3.3
3100.0	2200.0	2.4	3.4
3087.5	2200.0	3.6	2.8
3075.0	2200.0	2.7.	2.1
3062.5	2200.0	.6	2.1
3050.0	2200.0	1.1	2.0
3037.5	2200.0	2.4	2.2
3025.0	2200.0	3.4	3.5
3012.5	2200.0	3.6	5.4
3000.0	2200.0	6.9	7.5
2987.5	2200.0	10.6	8.8
2975.0	2200.0	13.0	9.8
2962.5	2200.0	9.7	10.1
2950.0	2200.0	8.9	9.2
2937.5	2200.0	8.2	7.4
2925.0	2200.0	6.4	5.6
2912.5	2200.0	3.6	2.7
2900.0	2200.0	.8	-1.1
2887.5	2200.0	-5.6	-3.6
2875.0	2200.0	-10.6	-7.3
2862.5	2200.0	-6.2	-10.7
2850.0	2200.0	-15.0	-13.8
2837.5	2200.0	-16.1	-16.4
2825.0	2200.0	-21.2	-20.5
2812.5	2200.0	-23.6	-22.7
2800.0	2200.0	-26.7	-25.5
2787.5	2200.0	-25.9	-27.6
2775.0	2200.0	-30.0	-29.5
2762.5	2200.0	-32.0	-30.4
2750.0	2200.0	-32.7	-31.6
2737.5	2200.0	-31.3	-32.3
2725.0	2200.0	-31.8	-32.3
2712.5	2200.0	-33.5	-31.9
2700.0	2200.0	-32.0	-31.6
2687.5	2200.0	-31.1	-31.4
2675.0	2200.0	-29.4	-30.7

2662.5	2200.0	-30.9	-30.6
2650.0	2200.0	-30.3	-30.1
2637.5	2200.0	-31.4	-30.3
2625.0	2200.0	-28.4	-30.0
2612.5	2200.0	-30.5	-30.1
2600.0	2200.0	-29.6	-30.5
2587.5	2200.0	-30.6	-31.4
2575.0	2200.0	-33.6	-32.4
2562.5	2200.0	-32.6	-33.5
2550.0	2200.0	-35.6	-34.0
2537.5	2200.0	-35.2	-34.5
2525.0	2200.0	-32.9	-35.3
2512.5	2200.0	-36.0	-36.3
2500.0	2200.0	-37.0	-37.4
2487.5	2200.0	-40.2	-38.8
2475.0	2200.0	-40.9	-40.3
2462.5	2200.0	-39.8	-41.8
2450.0	2200.0	-43.4	-43.3
2437.5	2200.0	-44.8	-45.2
2425.0	2200.0	-47.8	-47.1
2412.5	2200.0	-50.1	-48.9
2400.0	2200.0	-49.4	-50.6
2387.5	2200.0	-52.6	-51.6
2375.0	2200.0	-53.3	-52.4
2362.5	2200.0	-52.4	-53.4
2350.0	2200.0	-54.3	-53.4
2337.5	2200.0	-54.2	-52.0
2325.0	2200.0	-52.7	-52.1
2312.5	2200.0	-46.4	-53.0
2300.0	2200.0	-52.8	-53.7
2287.5	2200.0	-58.9	-55.2
2275.0	2200.0	-57.6	-56.9
2262.5	2200.0	-60.4	-57.8
2250.0	2200.0	-54.9	-58.7
2237.5	2200.0	-57.3	-61.1
2225.0	2200.0	-63.4	-63.7
2212.5	2200.0	-69.3	-65.9
2200.0	2200.0	-73.6	-68.8

2.7 Line 2300 E

2200.0	2300.0	-54.8	-52.0
2212.5	2300.0	-54.2	-50.7
2225.0	2300.0	-46.9	-51.6
2237.5	2300.0	-46.8	-50.7
2250.0	2300.0	-55.1	-50.1
2262.5	2300.0	-50.5	-51.3
2275.0	2300.0	-51.1	-51.4
2287.5	2300.0	-52.9	-49.9
2300.0	2300.0	-47.3	-49.6
2312.5	2300.0	-47.6	-48.2

2325.0	2300.0	-49.1	-47.1
2337.5	2300.0	-43.9	-47.8
2350.0	2300.0	-47.5	-47.7
2362.5	2300.0	-50.9	-47.3
2375.0	2300.0	-47.0	-47.1
2387.5	2300.0	-47.2	-46.7
2400.0	2300.0	-42.8	-45.7
2412.5	2300.0	-45.6	-44.1
2425.0	2300.0	-46.0	-42.6
2437.5	2300.0	-39.1	-42.2
2450.0	2300.0	-39.4	-41.1
2462.5	2300.0	-40.7	-40.3
2475.0	2300.0	-40.4	-41.2
2487.5	2300.0	-42.0	-41.6
2500.0	2300.0	-43.6	-41.1
2512.5	2300.0	-41.4	-41.6
2525.0	2300.0	-38.3	-40.9
2537.5	2300.0	-42.7	-39.9
2550.0	2300.0	-38.7	-39.4
2562.5	2300.0	-38.5	-39.9
2575.0	2300.0	-38.8	-39.4
2587.5	2300.0	-40.9	-40.2
2600.0	2300.0	-40.2	-41.0
2612.5	2300.0	-42.5	-42.6
2625.0	2300.0	-42.5	-44.6
2637.5	2300.0	-47.0	-48.0
2650.0	2300.0	-50.6	-51.0
2662.5	2300.0	-57.3	-53.0
2675.0	2300.0	-57.4	-53.6
2687.5	2300.0	-52.8	-51.1
2700.0	2300.0	-50.1	-45.7
2712.5	2300.0	-37.9	-40.1
2725.0	2300.0	-30.2	-34.8
2737.5	2300.0	-29.4	-29.8
2750.0	2300.0	-26.3	-26.7
2762.5	2300.0	-25.2	-24.6
2775.0	2300.0	-22.6	-22.6
2787.5	2300.0	-19.5	-21.1
2800.0	2300.0	-19.6	-19.2
2812.5	2300.0	-18.6	-17.5
2825.0	2300.0	-15.7	-16.2
2837.5	2300.0	-14.2	-14.7
2850.0	2300.0	-12.7	-13.1
2862.5	2300.0	-12.1	-12.0
2875.0	2300.0	-10.9	-10.9
2887.5	2300.0	-10.2	-10.1
2900.0	2300.0	-8.8	-9.2
2912.5	2300.0	-8.3	-8.5
2925.0	2300.0	-7.7	-8.0
2937.5	2300.0	-7.7	-7.8
2950.0	2300.0	-7.7	-7.6
2962.5	2300.0	-7.5	-7.4
2975.0	2300.0	-7.3	-7.1

2987.5	2300.0	-6.9	-6.8
3000.0	2300.0	-6.0	-6.5
3012.5	2300.0	-6.3	-6.2
3025.0	2300.0	-6.0	-5.8
3037.5	2300.0	-5.6	-5.2
3050.0	2300.0	-4.9	-4.7
3062.5	2300.0	-3.2	-4.4
3075.0	2300.0	-3.9	-4.0
3087.5	2300.0	-4.4	-3.7
3100.0	2300.0	-3.6	-3.8
3112.5	2300.0	-3.5	-2.9
3125.0	2300.0	-3.7	-2.4
3137.5	2300.0	.6	-2.5
3150.0	2300.0	-2.0	-2.1
3162.5	2300.0	-4.0	-2.0
3175.0	2300.0	-1.3	-2.5
3187.5	2300.0	-3.5	-2.5
3200.0	2300.0	-1.7	-2.4
3212.5	2300.0	-2.1	-2.5
3225.0	2300.0	-3.4	-2.4
3237.5	2300.0	-2.0	-2.3
3250.0	2300.0	-2.9	-2.1
3262.5	2300.0	-1.0	-1.3
3275.0	2300.0	-1.1	-.6
3287.5	2300.0	.7	.8
3300.0	2300.0	1.3	2.0
3312.5	2300.0	3.9	2.0
3325.0	2300.0	5.2	1.9
3337.5	2300.0	-1.1	1.6
3350.0	2300.0	.2	1.1
3362.5	2300.0	-.2	.5
3375.0	2300.0	1.5	1.8
3387.5	2300.0	2.0	2.2
3400.0	2300.0	5.4	3.0

2.8 Line 2400 E

2200.0	2400.0	-51.6	-42.8
2212.5	2400.0	-43.5	-42.8
2225.0	2400.0	-33.2	-43.2
2237.5	2400.0	-42.8	-45.2
2250.0	2400.0	-45.1	-48.4
2262.5	2400.0	-61.5	-53.3
2275.0	2400.0	-59.5	-55.6
2287.5	2400.0	-57.4	-58.2
2300.0	2400.0	-54.4	-57.7
2312.5	2400.0	-58.1	-55.6
2325.0	2400.0	-59.0	-55.3
2337.5	2400.0	-49.2	-55.2
2350.0	2400.0	-55.7	-53.2
2362.5	2400.0	-53.9	-52.1

2375.0	2400.0	-48.2	-51.6
2387.5	2400.0	-53.7	-50.0
2400.0	2400.0	-46.3	-49.1
2412.5	2400.0	-47.7	-48.3
2425.0	2400.0	-49.7	-46.4
2437.5	2400.0	-44.1	-46.0
2450.0	2400.0	-44.2	-46.3
2462.5	2400.0	-44.3	-45.0
2475.0	2400.0	-49.1	-44.6
2487.5	2400.0	-43.4	-43.4
2500.0	2400.0	-42.1	-42.3
2512.5	2400.0	-37.9	-40.2
2525.0	2400.0	-39.2	-39.7
2537.5	2400.0	-38.2	-39.7
2550.0	2400.0	-40.9	-39.8
2562.5	2400.0	-42.1	-39.9
2575.0	2400.0	-38.5	-40.4
2587.5	2400.0	-40.0	-40.3
2600.0	2400.0	-40.3	-40.5
2612.5	2400.0	-40.5	-41.8
2625.0	2400.0	-43.1	-42.2
2637.5	2400.0	-45.3	-43.2
2650.0	2400.0	-41.9	-45.2
2662.5	2400.0	-45.1	-46.3
2675.0	2400.0	-50.7	-47.0
2687.5	2400.0	-48.7	-48.9
2700.0	2400.0	-48.6	-51.4
2712.5	2400.0	-51.3	-53.1
2725.0	2400.0	-57.5	-55.6
2737.5	2400.0	-59.5	-56.0
2750.0	2400.0	-61.1	-54.4
2762.5	2400.0	-50.7	-50.7
2775.0	2400.0	-43.1	-45.5
2787.5	2400.0	-39.3	-39.7
2800.0	2400.0	-33.1	-35.1
2812.5	2400.0	-32.1	-30.9
2825.0	2400.0	-27.8	-27.6
2837.5	2400.0	-22.4	-25.3
2850.0	2400.0	-22.5	-23.0
2862.5	2400.0	-21.6	-21.4
2875.0	2400.0	-20.6	-20.6
2887.5	2400.0	-20.0	-18.9
2900.0	2400.0	-18.1	-17.7
2912.5	2400.0	-14.0	-16.6
2925.0	2400.0	-15.7	-15.4
2937.5	2400.0	-15.0	-14.4
2950.0	2400.0	-14.0	-14.3
2962.5	2400.0	-13.4	-13.9
2975.0	2400.0	-13.4	-13.5
2987.5	2400.0	-13.5	-13.3
3000.0	2400.0	-13.4	-12.9
3012.5	2400.0	-12.6	-12.3
3025.0	2400.0	-11.5	-11.7

3037.5	2400.0	-10.6	-11.0
3050.0	2400.0	-10.4	-10.4
3062.5	2400.0	-10.1	-9.4
3075.0	2400.0	-9.3	-9.0
3087.5	2400.0	-6.6	-8.3
3100.0	2400.0	-8.6	-7.7
3112.5	2400.0	-6.8	-7.5
3125.0	2400.0	-7.1	-7.1
3137.5	2400.0	-8.3	-5.7
3150.0	2400.0	-4.6	-4.9
3162.5	2400.0	-1.9	-4.2
3175.0	2400.0	-2.8	-3.6
3187.5	2400.0	-3.6	-3.3
3200.0	2400.0	-5.3	-3.9
3212.5	2400.0	-2.7	-3.5
3225.0	2400.0	-5.0	-3.2
3237.5	2400.0	-1.1	-2.3
3250.0	2400.0	-2.1	-2.6
3262.5	2400.0	-.4	-2.3
3275.0	2400.0	-4.3	-2.3
3287.5	2400.0	-3.5	-2.0
3300.0	2400.0	-1.4	-1.8
3312.5	2400.0	-.4	-.7
3325.0	2400.0	.6	.4
3337.5	2400.0	1.4	1.3
3350.0	2400.0	1.7	2.2
3362.5	2400.0	3.1	3.0
3375.0	2400.0	4.1	4.0
3387.5	2400.0	4.8	4.6
3400.0	2400.0	6.3	5.1

2.9 Line 2500E

3400.0	2500.0	10.8	9.8
3387.5	2500.0	10.0	9.4
3375.0	2500.0	8.6	8.7
3362.5	2500.0	8.0	7.4
3350.0	2500.0	6.0	6.1
3337.5	2500.0	4.5	5.1
3325.0	2500.0	3.5	3.8
3312.5	2500.0	3.4	2.7
3300.0	2500.0	1.7	1.6
3287.5	2500.0	.3	.7
3275.0	2500.0	-.8	-.4
3262.5	2500.0	-1.3	-1.3
3250.0	2500.0	-1.9	-2.2
3237.5	2500.0	-2.9	-2.8
3225.0	2500.0	-3.9	-3.5
3212.5	2500.0	-4.2	-4.3
3200.0	2500.0	-4.8	-5.1
3187.5	2500.0	-5.5	-6.0

3175.0	2500.0	-7.3	-6.8
3162.5	2500.0	-8.3	-7.8
3150.0	2500.0	-8.2	-8.6
3137.5	2500.0	-9.5	-9.3
3125.0	2500.0	-9.9	-9.7
3112.5	2500.0	-10.4	-10.6
3100.0	2500.0	-10.7	-11.2
3087.5	2500.0	-12.3	-12.0
3075.0	2500.0	-12.9	-12.9
3062.5	2500.0	-13.9	-13.7
3050.0	2500.0	-14.5	-14.2
3037.5	2500.0	-14.7	-14.3
3025.0	2500.0	-15.2	-14.5
3012.5	2500.0	-13.0	-14.6
3000.0	2500.0	-14.9	-14.8
2987.5	2500.0	-15.2	-14.8
2975.0	2500.0	-15.9	-15.5
2962.5	2500.0	-15.0	-15.8
2950.0	2500.0	-16.4	-15.8
2937.5	2500.0	-16.3	-15.3
2925.0	2500.0	-15.3	-14.3
2912.5	2500.0	-13.4	-12.6
2900.0	2500.0	-9.9	-10.9
2887.5	2500.0	-8.2	-8.2
2875.0	2500.0	-7.7	-5.9
2862.5	2500.0	-1.9	-4.3
2850.0	2500.0	-1.9	-2.8
2837.5	2500.0	-1.6	-1.5
2825.0	2500.0	-1.1	-1.8
2812.5	2500.0	-1.0	-1.1
2800.0	2500.0	-3.5	-1.8
2787.5	2500.0	1.8	-2.7
2775.0	2500.0	-5.2	-3.2
2762.5	2500.0	-5.7	-4.8
2750.0	2500.0	-3.4	-9.9
2737.5	2500.0	-11.3	-17.0
2725.0	2500.0	-24.0	-24.9
2712.5	2500.0	-40.7	-32.4
2700.0	2500.0	-45.0	-39.7
2687.5	2500.0	-40.8	-44.8
2675.0	2500.0	-47.9	-48.5
2662.5	2500.0	-49.5	-50.1
2650.0	2500.0	-59.4	-52.2
2637.5	2500.0	-52.8	-52.0
2625.0	2500.0	-51.2	-51.2
2612.5	2500.0	-47.3	-48.4
2600.0	2500.0	-45.4	-47.4
2587.5	2500.0	-45.5	-48.2
2575.0	2500.0	-47.4	-48.8
2562.5	2500.0	-55.3	-46.8
2550.0	2500.0	-50.2	-46.3
2537.5	2500.0	-35.5	-44.9
2525.0	2500.0	-43.0	-42.6

2512.5	2500.0	-40.5	-40.6
2500.0	2500.0	-43.9	-42.4
2487.5	2500.0	-40.0	-42.9
2475.0	2500.0	-44.7	-45.1
2462.5	2500.0	-45.5	-45.2
2450.0	2500.0	-51.2	-46.0
2437.5	2500.0	-44.8	-49.3
2425.0	2500.0	-43.9	-49.4
2412.5	2500.0	-61.1	-47.1
2400.0	2500.0	-46.1	-46.9
2387.5	2500.0	-39.4	-47.6
2375.0	2500.0	-43.9	-44.5
2362.5	2500.0	-47.4	-43.7
2350.0	2500.0	-45.6	-47.4
2337.5	2500.0	-42.1	-51.3
2325.0	2500.0	-58.1	-52.7
2312.5	2500.0	-63.4	-55.4
2300.0	2500.0	-54.2	-58.8
2287.5	2500.0	-59.2	-63.1
2275.0	2500.0	-59.1	-61.3
2262.5	2500.0	-79.4	-59.1
2250.0	2500.0	-54.8	-56.0
2237.5	2500.0	-43.0	-54.5
2225.0	2500.0	-43.8	-52.0
2212.5	2500.0	-51.7	-51.3
2200.0	2500.0	-66.7	-54.1

2.10 Line 2600 E

2200.0	2600.0	-81.4	-47.9
2212.5	2600.0	-43.2	-40.0
2225.0	2600.0	-19.2	-35.0
2237.5	2600.0	-16.2	-24.6
2250.0	2600.0	-15.0	-24.5
2262.5	2600.0	-29.5	-28.3
2275.0	2600.0	-42.8	-28.3
2287.5	2600.0	-38.1	-24.7
2300.0	2600.0	-15.9	-20.3
2312.5	2600.0	2.7	-11.6
2325.0	2600.0	-7.5	-16.1
2337.5	2600.0	.8	-23.6
2350.0	2600.0	-60.6	-36.4
2362.5	2600.0	-53.6	-46.5
2375.0	2600.0	-61.0	-57.8
2387.5	2600.0	-58.1	-57.5
2400.0	2600.0	-55.8	-59.1
2412.5	2600.0	-58.9	-51.6
2425.0	2600.0	-61.5	-46.0
2437.5	2600.0	-23.5	-43.2
2450.0	2600.0	-30.1	-42.3
2462.5	2600.0	-42.0	-42.1

2475.0	2600.0	-54.4	-48.0
2487.5	2600.0	-60.3	-51.7
2500.0	2600.0	-53.1	-51.9
2512.5	2600.0	-48.8	-49.0
2525.0	2600.0	-42.8	-44.1
2537.5	2600.0	-39.8	-40.3
2550.0	2600.0	-36.0	-37.0
2562.5	2600.0	-34.1	-34.5
2575.0	2600.0	-32.1	-33.2
2587.5	2600.0	-30.3	-33.7
2600.0	2600.0	-33.4	-35.9
2612.5	2600.0	-38.8	-37.7
2625.0	2600.0	-44.8	-39.7
2637.5	2600.0	-41.3	-41.5
2650.0	2600.0	-40.4	-42.3
2662.5	2600.0	-42.0	-42.6
2675.0	2600.0	-42.8	-43.9
2687.5	2600.0	-46.6	-46.0
2700.0	2600.0	-47.7	-48.8
2712.5	2600.0	-50.8	-51.7
2725.0	2600.0	-56.3	-52.6
2737.5	2600.0	-57.1	-53.4
2750.0	2600.0	-51.0	-53.2
2762.5	2600.0	-51.9	-51.7
2775.0	2600.0	-49.6	-45.3
2787.5	2600.0	-49.0	-37.4
2800.0	2600.0	-24.9	-27.1
2812.5	2600.0	-11.8	-17.4
2825.0	2600.0	-.3	-8.8
2837.5	2600.0	-1.2	-5.7
2850.0	2600.0	-5.8	-5.5
2862.5	2600.0	-9.5	-8.2
2875.0	2600.0	-10.5	-10.7
2887.5	2600.0	-13.9	-12.3
2900.0	2600.0	-13.9	-13.4
2912.5	2600.0	-13.9	-14.3
2925.0	2600.0	-14.7	-14.5
2937.5	2600.0	-15.2	-15.0
2950.0	2600.0	-15.0	-15.4
2962.5	2600.0	-16.1	-15.8
2975.0	2600.0	-16.0	-16.1
2987.5	2600.0	-16.6	-16.5
3000.0	2600.0	-17.0	-16.5
3012.5	2600.0	-16.6	-16.5
3025.0	2600.0	-16.5	-16.4
3037.5	2600.0	-16.0	-16.2
3050.0	2600.0	-15.8	-16.0
3062.5	2600.0	-16.3	-15.5
3075.0	2600.0	-15.5	-14.6
3087.5	2600.0	-13.8	-14.1
3100.0	2600.0	-11.7	-13.4
3112.5	2600.0	-13.3	-12.7
3125.0	2600.0	-12.9	-12.0

3137.5	2600.0	-11.8	-11.7
3150.0	2600.0	-10.5	-10.9
3162.5	2600.0	-9.8	-10.0
3175.0	2600.0	-9.6	-7.8
3187.5	2600.0	-8.1	-5.5
3200.0	2600.0	-1.1	-3.2
3212.5	2600.0	1.3	-.7
3225.0	2600.0	1.7	1.4
3237.5	2600.0	2.8	2.3
3250.0	2600.0	2.4	2.8
3262.5	2600.0	3.3	3.8
3275.0	2600.0	3.6	5.0
3287.5	2600.0	7.0	6.4
3300.0	2600.0	8.5	8.0
3312.5	2600.0	9.7	9.9
3325.0	2600.0	11.4	11.2
3337.5	2600.0	13.0	12.9
3350.0	2600.0	13.3	14.0
3362.5	2600.0	17.2	15.6
3375.0	2600.0	15.3	17.6
3387.5	2600.0	19.4	18.7
3400.0	2600.0	22.8	19.2

2.11 Line

2700E

3400.0	2700.0	27.8	28.9
3387.5	2700.0	28.4	29.0
3375.0	2700.0	30.5	29.0
3362.5	2700.0	29.5	29.1
3350.0	2700.0	28.8	28.3
3337.5	2700.0	28.5	27.1
3325.0	2700.0	24.4	27.4
3312.5	2700.0	24.2	29.2
3300.0	2700.0	31.0	31.3
3287.5	2700.0	37.8	33.3
3275.0	2700.0	39.0	34.1
3262.5	2700.0	34.5	32.4
3250.0	2700.0	28.1	28.5
3237.5	2700.0	22.8	23.5
3225.0	2700.0	18.0	19.4
3212.5	2700.0	14.2	16.0
3200.0	2700.0	13.8	13.4
3187.5	2700.0	11.3	11.6
3175.0	2700.0	9.8	10.5
3162.5	2700.0	8.9	8.8
3150.0	2700.0	8.5	6.8
3137.5	2700.0	5.4	5.1
3125.0	2700.0	1.6	2.9
3112.5	2700.0	.9	.6
3100.0	2700.0	-2.1	-1.9
3087.5	2700.0	-2.6	-3.9
3075.0	2700.0	-7.2	-6.1

3062.5	2700.0	-8.3	-8.3
3050.0	2700.0	-10.5	-11.0
3037.5	2700.0	-12.7	-13.1
3025.0	2700.0	-16.4	-15.0
3012.5	2700.0	-17.4	-16.6
3000.0	2700.0	-18.0	-17.7
2987.5	2700.0	-18.3	-18.5
2975.0	2700.0	-18.6	-19.1
2962.5	2700.0	-20.1	-19.5
2950.0	2700.0	-20.4	-19.6
2937.5	2700.0	-19.9	-19.5
2925.0	2700.0	-18.9	-19.4
2912.5	2700.0	-18.1	-19.8
2900.0	2700.0	-19.8	-20.5
2887.5	2700.0	-22.1	-21.2
2875.0	2700.0	-23.4	-22.2
2862.5	2700.0	-22.6	-23.6
2850.0	2700.0	-23.3	-24.7
2837.5	2700.0	-26.7	-26.0
2825.0	2700.0	-27.5	-27.5
2812.5	2700.0	-30.1	-28.2
2800.0	2700.0	-29.7	-28.0
2787.5	2700.0	-26.8	-28.1
2775.0	2700.0	-25.9	-29.5
2762.5	2700.0	-28.1	-32.1
2750.0	2700.0	-37.0	-35.7
2737.5	2700.0	-42.8	-39.4
2725.0	2700.0	-44.9	-43.4
2712.5	2700.0	-44.3	-45.7
2700.0	2700.0	-48.1	-46.6
2687.5	2700.0	-48.6	-46.0
2675.0	2700.0	-47.0	-45.4
2662.5	2700.0	-42.1	-42.9
2650.0	2700.0	-41.2	-40.6
2637.5	2700.0	-35.8	-38.8
2625.0	2700.0	-36.7	-37.9
2612.5	2700.0	-38.3	-36.4
2600.0	2700.0	-37.7	-36.3
2587.5	2700.0	-33.4	-36.6
2575.0	2700.0	-35.2	-38.0
2562.5	2700.0	-38.2	-39.4
2550.0	2700.0	-45.4	-40.6
2537.5	2700.0	-44.9	-41.1
2525.0	2700.0	-39.5	-40.8
2512.5	2700.0	-37.4	-38.7
2500.0	2700.0	-36.7	-33.7
2487.5	2700.0	-35.1	-24.2
2475.0	2700.0	-20.0	-19.7
2462.5	2700.0	8.4	-17.5
2450.0	2700.0	-14.9	-4.7
2437.5	2700.0	-25.8	-.1
2425.0	2700.0	28.9	-12.8
2412.5	2700.0	3.0	-20.4

2400.0	2700.0	-55.3	-19.7
2387.5	2700.0	-53.0	-27.2
2375.0	2700.0	-22.0	-33.8
2362.5	2700.0	-8.5	-38.4
2350.0	2700.0	-30.2	-47.9
2337.5	2700.0	-78.5	-56.5
2325.0	2700.0	-100.4	-62.6
2312.5	2700.0	-64.7	-48.3
2300.0	2700.0	-39.0	-27.5
2287.5	2700.0	41.3	-3.9
2275.0	2700.0	25.4	13.8
2262.5	2700.0	17.5	29.0
2250.0	2700.0	23.6	26.6
2237.5	2700.0	37.2	25.7
2225.0	2700.0	29.3	25.4
2212.5	2700.0	20.7	25.8
2200.0	2700.0	16.1	22.0

2.12 Line 2800 E

3400.0	2800.0	-24.6	-20.7
3387.5	2800.0	-21.6	-19.4
3375.0	2800.0	-15.9	-18.6
3362.5	2800.0	-15.4	-17.8
3350.0	2800.0	-15.5	-17.6
3337.5	2800.0	-20.6	-15.8
3325.0	2800.0	-20.4	-6.3
3312.5	2800.0	-7.2	8.8
3300.0	2800.0	32.2	24.5
3287.5	2800.0	60.1	39.3
3275.0	2800.0	57.6	51.0
3262.5	2800.0	54.0	52.7
3250.0	2800.0	51.0	47.9
3237.5	2800.0	41.0	42.5
3225.0	2800.0	35.7	38.0
3212.5	2800.0	30.6	34.3
3200.0	2800.0	31.9	32.2
3187.5	2800.0	32.2	31.6
3175.0	2800.0	30.6	30.3
3162.5	2800.0	32.6	27.6
3150.0	2800.0	24.0	24.3
3137.5	2800.0	18.8	20.6
3125.0	2800.0	15.7	16.0
3112.5	2800.0	12.1	12.3
3100.0	2800.0	9.5	8.9
3087.5	2800.0	5.5	5.6
3075.0	2800.0	1.6	2.7
3062.5	2800.0	-.5	-.2
3050.0	2800.0	-2.4	-3.1
3037.5	2800.0	-5.2	-5.3
3025.0	2800.0	-9.2	-7.0

3012.5	2800.0	-9.1	-9.6
3000.0	2800.0	-9.2	-12.0
2987.5	2800.0	-15.1	-14.9
2975.0	2800.0	-17.5	-18.4
2962.5	2800.0	-23.6	-22.3
2950.0	2800.0	-26.8	-25.5
2937.5	2800.0	-28.5	-27.4
2925.0	2800.0	-30.9	-27.6
2912.5	2800.0	-27.2	-28.5
2900.0	2800.0	-24.8	-29.3
2887.5	2800.0	-31.3	-29.9
2875.0	2800.0	-32.3	-30.8
2862.5	2800.0	-34.0	-31.0
2850.0	2800.0	-31.7	-28.3
2837.5	2800.0	-25.8	-26.2
2825.0	2800.0	-17.8	-23.6
2812.5	2800.0	-21.8	-22.0
2800.0	2800.0	-20.7	-22.6
2787.5	2800.0	-24.1	-23.3
2775.0	2800.0	-28.8	-22.6
2762.5	2800.0	-21.1	-23.1
2750.0	2800.0	-18.2	-23.5
2737.5	2800.0	-23.2	-23.4
2725.0	2800.0	-26.3	-26.2
2712.5	2800.0	-28.1	-30.7
2700.0	2800.0	-35.2	-35.1
2687.5	2800.0	-40.5	-39.8
2675.0	2800.0	-45.4	-43.8
2662.5	2800.0	-49.8	-46.9
2650.0	2800.0	-48.0	-49.4
2637.5	2800.0	-50.7	-50.1
2625.0	2800.0	-53.0	-52.3
2612.5	2800.0	-49.2	-51.6
2600.0	2800.0	-60.5	-38.3
2587.5	2800.0	-44.6	-21.2
2575.0	2800.0	15.6	-14.8
2562.5	2800.0	32.6	.3
2550.0	2800.0	-17.1	10.5
2537.5	2800.0	15.2	13.3
2525.0	2800.0	6.3	17.1
2512.5	2800.0	29.3	24.9
2500.0	2800.0	51.9	27.8
2487.5	2800.0	21.8	35.8
2475.0	2800.0	29.9	31.8
2462.5	2800.0	46.0	20.1
2450.0	2800.0	9.3	12.0
2437.5	2800.0	-6.4	15.8
2425.0	2800.0	-18.7	14.5
2412.5	2800.0	49.0	18.5
2400.0	2800.0	39.2	25.3
2387.5	2800.0	29.5	34.9
2375.0	2800.0	27.5	32.2
2362.5	2800.0	29.5	23.7

2350.0	2800.0	35.2	12.3
2337.5	2800.0	-3.3	-2.4
2325.0	2800.0	-27.6	-17.7
2312.5	2800.0	-45.7	-30.8
2300.0	2800.0	-47.2	-43.7
2287.5	2800.0	-30.1	-49.8
2275.0	2800.0	-68.0	-51.1
2262.5	2800.0	-58.0	-53.6
2250.0	2800.0	-52.1	-59.2
2237.5	2800.0	-59.6	-60.0
2225.0	2800.0	-58.4	-64.0
2212.5	2800.0	-71.7	-67.0
2200.0	2800.0	-78.4	-69.5

2.13 Line 2900 E

2300.0	2900.0	30.9	11.8
2312.5	2900.0	32.4	-2.8
2325.0	2900.0	-27.9	-7.9
2337.5	2900.0	-46.5	-18.3
2350.0	2900.0	-28.2	-39.3
2362.5	2900.0	-21.2	-47.7
2375.0	2900.0	-72.7	-47.4
2387.5	2900.0	-69.9	-42.4
2400.0	2900.0	-45.1	-37.8
2412.5	2900.0	-3.2	-27.8
2425.0	2900.0	1.9	-14.5
2437.5	2900.0	-22.9	-5.9
2450.0	2900.0	-3.1	-3.1
2462.5	2900.0	-2.0	-5.4
2475.0	2900.0	10.6	-5.4
2487.5	2900.0	-9.6	-9.1
2500.0	2900.0	-22.9	-11.9
2512.5	2900.0	-21.7	-15.8
2525.0	2900.0	-15.7	-5.9
2537.5	2900.0	-9.2	-3.4
2550.0	2900.0	39.9	-6.9
2562.5	2900.0	-10.4	-14.5
2575.0	2900.0	-39.2	-18.0
2587.5	2900.0	-53.6	-38.5
2600.0	2900.0	-26.6	-46.3
2612.5	2900.0	-62.5	-44.7
2625.0	2900.0	-49.4	-44.9
2637.5	2900.0	-31.3	-50.7
2650.0	2900.0	-54.7	-49.4
2662.5	2900.0	-55.6	-50.8
2675.0	2900.0	-55.8	-54.7
2687.5	2900.0	-56.7	-52.9
2700.0	2900.0	-50.9	-50.3
2712.5	2900.0	-45.5	-43.1
2725.0	2900.0	-42.6	-37.8

2737.5	2900.0	-19.6	-34.7
2750.0	2900.0	-30.4	-32.7
2762.5	2900.0	-35.6	-31.5
2775.0	2900.0	-35.2	-34.2
2787.5	2900.0	-36.9	-30.9
2800.0	2900.0	-32.7	-29.6
2812.5	2900.0	-14.2	-28.5
2825.0	2900.0	-29.2	-27.1
2837.5	2900.0	-29.4	-27.6
2850.0	2900.0	-29.8	-31.3
2862.5	2900.0	-35.2	-30.5
2875.0	2900.0	-32.7	-29.4
2887.5	2900.0	-25.3	-27.1
2900.0	2900.0	-23.8	-22.8
2912.5	2900.0	-18.5	-18.7
2925.0	2900.0	-13.8	-16.0
2937.5	2900.0	-11.9	-13.5
2950.0	2900.0	-11.8	-11.9
2962.5	2900.0	-11.5	-9.8
2975.0	2900.0	-10.3	-9.3
2987.5	2900.0	-3.7	-10.2
3000.0	2900.0	-9.4	-5.8
3012.5	2900.0	-16.1	30.5
3025.0	2900.0	10.4	133.3
3037.5	2900.0	171.3	95.7
3050.0	2900.0	510.3	75.5
3062.5	2900.0	-197.5	65.6
3075.0	2900.0	-117.1	27.7
3087.5	2900.0	-38.9	-73.2
3100.0	2900.0	-18.4	-1.9
3112.5	2900.0	5.7	17.9
3125.0	2900.0	159.1	21.4
3137.5	2900.0	-18.1	21.5
3150.0	2900.0	-21.1	16.3
3162.5	2900.0	-18.3	-19.8
3175.0	2900.0	-19.9	-20.4
3187.5	2900.0	-21.7	-19.3
3200.0	2900.0	-21.1	-18.8
3212.5	2900.0	-15.7	-16.9
3225.0	2900.0	-15.6	-14.3
3237.5	2900.0	-10.3	-11.5
3250.0	2900.0	-8.7	-8.4
3262.5	2900.0	-7.3	-4.6
3275.0	2900.0	.0	-1.3
3287.5	2900.0	3.5	1.8
3300.0	2900.0	6.2	4.8
3312.5	2900.0	6.7	6.7
3325.0	2900.0	7.8	9.4
3337.5	2900.0	9.5	11.6
3350.0	2900.0	16.6	14.3
3362.5	2900.0	17.4	16.9
3375.0	2900.0	20.0	19.5
3387.5	2900.0	21.2	20.3
3400.0	2900.0	22.4	21.2

2.14 Line 3000 E

3400.0	3000.0	176.9	198.1
3387.5	3000.0	188.2	206.9
3375.0	3000.0	229.1	210.8
3362.5	3000.0	233.4	221.4
3350.0	3000.0	226.2	217.6
3337.5	3000.0	230.0	199.4
3325.0	3000.0	169.2	178.6
3312.5	3000.0	138.0	160.8
3300.0	3000.0	129.4	135.1
3287.5	3000.0	137.6	117.3
3275.0	3000.0	101.5	102.6
3262.5	3000.0	80.1	88.9
3250.0	3000.0	64.6	71.3
3237.5	3000.0	60.5	58.5
3225.0	3000.0	50.0	48.7
3212.5	3000.0	37.1	41.6
3200.0	3000.0	31.5	35.1
3187.5	3000.0	28.7	28.5
3175.0	3000.0	28.1	24.8
3162.5	3000.0	16.9	21.3
3150.0	3000.0	19.0	15.3
3137.5	3000.0	14.0	8.9
3125.0	3000.0	-1.5	5.1
3112.5	3000.0	-3.8	.9
3100.0	3000.0	-2.4	-2.1
3087.5	3000.0	-2.7	-3.0
3075.0	3000.0	-.1	-4.9
3062.5	3000.0	-6.4	-6.6
3050.0	3000.0	-13.1	-8.3
3037.5	3000.0	-11.1	-10.4
3025.0	3000.0	-11.0	-9.7
3012.5	3000.0	-10.3	-8.5
3000.0	3000.0	-3.1	-9.2
2987.5	3000.0	-7.2	-11.3
2975.0	3000.0	-14.5	-13.3
2962.5	3000.0	-21.5	-16.3
2950.0	3000.0	-20.1	-19.0
2937.5	3000.0	-18.0	-20.4
2925.0	3000.0	-21.1	-20.4
2912.5	3000.0	-21.1	-22.2
2900.0	3000.0	-21.7	-26.7
2887.5	3000.0	-29.2	-29.5
2875.0	3000.0	-40.3	-31.9
2862.5	3000.0	-35.4	-37.5
2850.0	3000.0	-33.1	-40.8
2837.5	3000.0	-49.7	-41.8
2825.0	3000.0	-45.3	-43.8
2812.5	3000.0	-45.6	-45.8
2800.0	3000.0	-45.1	-44.2
2787.5	3000.0	-43.3	-42.9
2775.0	3000.0	-41.7	-41.1

2762.5	3000.0	-38.9	-39.4
2750.0	3000.0	-36.4	-37.0
2737.5	3000.0	-36.9	-33.8
2725.0	3000.0	-31.0	-31.7
2712.5	3000.0	-25.9	-30.3
2700.0	3000.0	-28.3	-21.0
2687.5	3000.0	-29.3	-6.9
2675.0	3000.0	9.7	7.3
2662.5	3000.0	39.3	20.8
2650.0	3000.0	45.1	34.2
2637.5	3000.0	39.1	43.7
2625.0	3000.0	37.6	49.8
2612.5	3000.0	57.6	55.5
2600.0	3000.0	69.8	59.5
2587.5	3000.0	73.5	59.4
2575.0	3000.0	58.9	50.9
2562.5	3000.0	37.0	40.5
2550.0	3000.0	15.5	26.2
2537.5	3000.0	17.5	14.0
2525.0	3000.0	2.3	4.8
2512.5	3000.0	-2.3	-2.6
2500.0	3000.0	-9.2	-2.0
2487.5	3000.0	-21.2	-8.2
2475.0	3000.0	20.3	-17.6
2462.5	3000.0	-28.4	-24.9
2450.0	3000.0	-49.6	-24.7
2437.5	3000.0	-45.6	-26.6
2425.0	3000.0	-20.3	-25.0
2412.5	3000.0	10.7	-20.0
2400.0	3000.0	-20.3	-14.5
2387.5	3000.0	-24.5	-10.8
2375.0	3000.0	-18.2	-10.8
2362.5	3000.0	-1.7	-2.7
2350.0	3000.0	10.8	6.4
2337.5	3000.0	19.9	7.8
2325.0	3000.0	21.0	6.2
2312.5	3000.0	-10.8	5.0
2300.0	3000.0	-10.1	.0

2.15 Line 3100 E

2400.0	3100.0	-47.0	-43.6
2412.5	3100.0	-44.3	-41.3
2425.0	3100.0	-39.4	-39.4
2437.5	3100.0	-34.5	-34.5
2450.0	3100.0	-31.9	-28.0
2462.5	3100.0	-22.4	-20.4
2475.0	3100.0	-12.0	-14.9
2487.5	3100.0	-1.0	-11.0
2500.0	3100.0	-7.1	-9.4
2512.5	3100.0	-12.3	-10.2

2525.0	3100.0	-14.5	-13.3
2537.5	3100.0	-16.0	-14.2
2550.0	3100.0	-16.5	-14.5
2562.5	3100.0	-11.5	-14.0
2575.0	3100.0	-13.8	-13.1
2587.5	3100.0	-12.4	-13.0
2600.0	3100.0	-11.2	-15.5
2612.5	3100.0	-16.0	-17.8
2625.0	3100.0	-24.2	-20.0
2637.5	3100.0	-25.2	-21.3
2650.0	3100.0	-23.6	-19.8
2662.5	3100.0	-17.4	-16.5
2675.0	3100.0	-8.8	-14.3
2687.5	3100.0	-7.3	-13.1
2700.0	3100.0	-14.5	-12.5
2712.5	3100.0	-17.3	-11.4
2725.0	3100.0	-14.4	-12.4
2737.5	3100.0	-3.5	-12.7
2750.0	3100.0	-12.5	-11.4
2762.5	3100.0	-16.0	-12.6
2775.0	3100.0	-10.5	-18.2
2787.5	3100.0	-20.6	-17.0
2800.0	3100.0	-31.2	-14.6
2812.5	3100.0	-6.8	-15.8
2825.0	3100.0	-4.0	-13.0
2837.5	3100.0	-16.3	-12.2
2850.0	3100.0	-6.8	-15.7
2862.5	3100.0	-27.2	-24.8
2875.0	3100.0	-24.0	-32.0
2887.5	3100.0	-49.7	-36.0
2900.0	3100.0	-52.3	-32.7
2912.5	3100.0	-26.9	-30.6
2925.0	3100.0	-10.4	-19.6
2937.5	3100.0	-13.9	-7.2
2950.0	3100.0	5.7	3.4
2962.5	3100.0	9.6	14.2
2975.0	3100.0	26.0	26.6
2987.5	3100.0	43.5	33.4
3000.0	3100.0	48.0	40.2
3012.5	3100.0	39.7	45.5
3025.0	3100.0	43.8	50.1
3037.5	3100.0	52.5	60.4
3050.0	3100.0	66.7	78.3
3062.5	3100.0	99.4	103.5
3075.0	3100.0	129.2	133.7
3087.5	3100.0	169.9	178.1
3100.0	3100.0	203.3	206.0
3112.5	3100.0	288.8	218.3
3125.0	3100.0	238.6	226.0
3137.5	3100.0	190.7	235.2
3150.0	3100.0	208.5	215.7
3162.5	3100.0	249.4	175.5
3175.0	3100.0	191.4	133.2

3187.5	3100.0	37.3	84.2
3200.0	3100.0	-20.4	33.2
3212.5	3100.0	-36.8	-6.6
3225.0	3100.0	-5.5	-19.8
3237.5	3100.0	-7.7	-21.3
3250.0	3100.0	-28.8	-18.3
3262.5	3100.0	-27.8	-21.1
3275.0	3100.0	-21.5	-24.3
3287.5	3100.0	-19.5	-25.5
3300.0	3100.0	-23.9	-29.5
3312.5	3100.0	-34.8	-35.2
3325.0	3100.0	-48.0	-41.1
3337.5	3100.0	-49.7	-45.8
3350.0	3100.0	-48.9	-45.0
3362.5	3100.0	-47.5	-39.1
3375.0	3100.0	-31.0	-25.0
3387.5	3100.0	-18.4	-19.0
3400.0	3100.0	21.0	-9.5

2.16 Line 3200 E

3400.0	3200.0	50.2	57.9
3387.5	3200.0	75.9	60.6
3375.0	3200.0	47.6	80.9
3362.5	3200.0	68.7	97.8
3350.0	3200.0	161.9	90.7
3337.5	3200.0	135.1	92.3
3325.0	3200.0	40.0	86.5
3312.5	3200.0	55.7	54.6
3300.0	3200.0	39.6	24.2
3287.5	3200.0	2.7	11.9
3275.0	3200.0	-16.8	-3.3
3262.5	3200.0	-21.7	-15.5
3250.0	3200.0	-20.1	-20.3
3237.5	3200.0	-21.4	-23.4
3225.0	3200.0	-21.3	-25.4
3212.5	3200.0	-32.3	-28.1
3200.0	3200.0	-32.0	-28.7
3187.5	3200.0	-33.4	-30.6
3175.0	3200.0	-24.7	-30.0
3162.5	3200.0	-30.7	-29.4
3150.0	3200.0	-29.2	-29.1
3137.5	3200.0	-29.0	-32.3
3125.0	3200.0	-31.7	-33.9
3112.5	3200.0	-41.1	-33.8
3100.0	3200.0	-38.5	-34.2
3087.5	3200.0	-28.8	-33.5
3075.0	3200.0	-30.9	-29.7
3062.5	3200.0	-28.2	-19.8
3050.0	3200.0	-22.2	-7.4
3037.5	3200.0	11.2	16.1

3025.0	3200.0	33.1	56.9
3012.5	3200.0	86.5	126.0
3000.0	3200.0	175.7	216.2
2987.5	3200.0	323.6	309.1
2975.0	3200.0	462.0	376.7
2962.5	3200.0	497.8	392.9
2950.0	3200.0	424.2	357.7
2937.5	3200.0	256.8	291.8
2925.0	3200.0	147.6	229.9
2912.5	3200.0	132.6	176.8
2900.0	3200.0	188.3	155.6
2887.5	3200.0	158.6	155.2
2875.0	3200.0	150.9	153.1
2862.5	3200.0	145.7	134.3
2850.0	3200.0	122.1	120.0
2837.5	3200.0	94.4	101.2
2825.0	3200.0	87.0	81.5
2812.5	3200.0	56.7	65.2
2800.0	3200.0	47.4	52.2
2787.5	3200.0	40.5	38.3
2775.0	3200.0	29.6	30.0
2762.5	3200.0	17.2	23.5
2750.0	3200.0	15.5	17.0
2737.5	3200.0	14.8	11.6
2725.0	3200.0	7.8	8.0
2712.5	3200.0	2.5	3.5
2700.0	3200.0	-.5	-2.2
2687.5	3200.0	-7.0	-7.5
2675.0	3200.0	-13.8	-12.5
2662.5	3200.0	-18.7	-17.3
2650.0	3200.0	-22.5	-20.8
2637.5	3200.0	-24.6	-22.8
2625.0	3200.0	-24.4	-23.9
2612.5	3200.0	-23.7	-24.9
2600.0	3200.0	-24.5	-24.8
2587.5	3200.0	-27.2	-24.1
2575.0	3200.0	-24.3	-22.1
2562.5	3200.0	-20.9	-19.4
2550.0	3200.0	-13.7	-17.1
2537.5	3200.0	-10.7	-17.4
2525.0	3200.0	-15.7	-19.9
2512.5	3200.0	-26.2	-24.5
2500.0	3200.0	-33.0	-30.6
2487.5	3200.0	-37.0	-35.8
2475.0	3200.0	-41.1	-38.4
2462.5	3200.0	-41.5	-39.7
2450.0	3200.0	-39.6	-40.5
2437.5	3200.0	-39.4	-40.4
2425.0	3200.0	-40.7	-40.8
2412.5	3200.0	-41.0	-41.1
2400.0	3200.0	-43.3	-41.7

2.17 Line 3300 E

2400.0	3300.0	-1.7	6.9
2412.5	3300.0	6.8	10.8
2425.0	3300.0	15.7	14.4
2437.5	3300.0	22.4	13.2
2450.0	3300.0	28.7	7.1
2462.5	3300.0	-7.5	-1.1
2475.0	3300.0	-23.8	-11.0
2487.5	3300.0	-25.5	-22.5
2500.0	3300.0	-26.9	-26.2
2512.5	3300.0	-29.0	-25.9
2525.0	3300.0	-25.6	-24.9
2537.5	3300.0	-22.5	-23.0
2550.0	3300.0	-20.3	-21.1
2562.5	3300.0	-17.7	-19.5
2575.0	3300.0	-19.6	-18.2
2587.5	3300.0	-17.4	-16.9
2600.0	3300.0	-16.1	-15.7
2612.5	3300.0	-13.8	-13.9
2625.0	3300.0	-11.6	-11.7
2637.5	3300.0	-10.5	-8.2
2650.0	3300.0	-6.3	-3.7
2662.5	3300.0	1.3	2.0
2675.0	3300.0	8.5	9.6
2687.5	3300.0	16.9	18.7
2700.0	3300.0	27.7	29.9
2712.5	3300.0	39.2	43.8
2725.0	3300.0	57.4	59.0
2737.5	3300.0	77.6	73.0
2750.0	3300.0	93.2	85.5
2762.5	3300.0	97.7	92.2
2775.0	3300.0	101.7	90.0
2787.5	3300.0	90.8	80.9
2800.0	3300.0	66.4	67.9
2812.5	3300.0	47.9	54.3
2825.0	3300.0	32.5	43.4
2837.5	3300.0	33.9	40.3
2850.0	3300.0	36.5	40.6
2862.5	3300.0	50.6	39.4
2875.0	3300.0	49.5	33.3
2887.5	3300.0	26.3	23.9
2900.0	3300.0	3.4	10.6
2912.5	3300.0	-10.3	-3.9
2925.0	3300.0	-16.0	-15.7
2937.5	3300.0	-22.8	-23.9
2950.0	3300.0	-32.7	-29.5
2962.5	3300.0	-37.9	-34.8
2975.0	3300.0	-38.0	-41.0
2987.5	3300.0	-42.6	-45.9
3000.0	3300.0	-53.9	-51.3
3012.5	3300.0	-57.2	-55.8
3025.0	3300.0	-64.9	-54.8
2			

3037.5	3300.0	-60.2	-49.0
3050.0	3300.0	-37.7	-35.6
3062.5	3300.0	-24.9	-26.4
3075.0	3300.0	9.6	-10.6
3087.5	3300.0	-18.9	3.6
3100.0	3300.0	18.9	14.1
3112.5	3300.0	33.4	7.6
3125.0	3300.0	27.7	2.5
3137.5	3300.0	-22.9	-8.2
3150.0	3300.0	-44.6	-19.1
3162.5	3300.0	-34.7	-27.5
3175.0	3300.0	-20.8	-21.8
3187.5	3300.0	-14.5	-8.4
3200.0	3300.0	5.5	19.6
3212.5	3300.0	22.5	89.2
3225.0	3300.0	105.4	186.9
3237.5	3300.0	327.3	224.8
3250.0	3300.0	474.0	204.7
3262.5	3300.0	194.7	163.5
3275.0	3300.0	-77.9	80.6
3287.5	3300.0	-100.5	-29.7
3300.0	3300.0	-87.3	-80.1
3312.5	3300.0	-77.7	-75.7
3325.0	3300.0	-57.0	-64.6
3337.5	3300.0	-56.1	-55.5
3350.0	3300.0	-45.0	-49.4
3362.5	3300.0	-41.9	-45.6
3375.0	3300.0	-46.9	-41.7
3387.5	3300.0	-38.1	-40.8
3400.0	3300.0	-36.4	-40.5

2.18 Line 3400 E

3400.0	3400.0	-44.7	-44.5
3387.5	3400.0	-45.9	-43.6
3375.0	3400.0	-43.0	-43.5
3362.5	3400.0	-40.9	-43.4
3350.0	3400.0	-42.9	-45.5
3337.5	3400.0	-44.1	-47.4
3325.0	3400.0	-56.5	-51.2
3312.5	3400.0	-52.7	-55.6
3300.0	3400.0	-59.7	-61.2
3287.5	3400.0	-64.8	-59.7
3275.0	3400.0	-72.3	-67.8
3262.5	3400.0	-49.1	-69.9
3250.0	3400.0	-93.0	-71.2
3237.5	3400.0	-70.2	-69.6
3225.0	3400.0	-71.2	-72.2
3212.5	3400.0	-64.5	-66.9
3200.0	3400.0	-61.9	-64.8
3187.5	3400.0	-66.9	-63.9

3175.0	3400.0	-59.6	-64.8
3162.5	3400.0	-66.8	-66.3
3150.0	3400.0	-68.8	-64.7
3137.5	3400.0	-69.5	-57.3
3125.0	3400.0	-58.9	-35.6
3112.5	3400.0	-22.7	-.2
3100.0	3400.0	41.8	41.3
3087.5	3400.0	108.4	76.0
3075.0	3400.0	138.1	95.4
3062.5	3400.0	114.2	100.5
3050.0	3400.0	74.4	88.1
3037.5	3400.0	67.2	75.9
3025.0	3400.0	46.8	57.4
3012.5	3400.0	76.8	41.6
3000.0	3400.0	22.0	28.8
2987.5	3400.0	-4.6	27.8
2975.0	3400.0	3.2	16.6
2962.5	3400.0	41.6	9.4
2950.0	3400.0	20.6	6.4
2937.5	3400.0	-14.0	2.8
2925.0	3400.0	-19.3	-5.7
2912.5	3400.0	-14.9	-6.0
2900.0	3400.0	-.9	.9
2887.5	3400.0	19.0	7.7
2875.0	3400.0	20.4	12.0
2862.5	3400.0	14.9	12.0
2850.0	3400.0	6.6	7.0
2837.5	3400.0	-.8	2.5
2825.0	3400.0	-6.0	.5
2812.5	3400.0	-2.0	2.7
2800.0	3400.0	4.5	10.2
2787.5	3400.0	17.8	20.1
2775.0	3400.0	36.8	25.0
2762.5	3400.0	43.5	29.6
2750.0	3400.0	22.2	31.7
2737.5	3400.0	27.6	25.3
2725.0	3400.0	28.5	16.4
2712.5	3400.0	4.6	10.0
2700.0	3400.0	-1.0	1.7
2687.5	3400.0	-9.5	-6.8
2675.0	3400.0	-14.2	-10.5
2662.5	3400.0	-13.9	-13.2
2650.0	3400.0	-14.0	-14.3
2637.5	3400.0	-14.5	-14.0
2625.0	3400.0	-15.1	-13.0
2612.5	3400.0	-12.7	-12.1
2600.0	3400.0	-8.5	-11.2
2587.5	3400.0	-9.8	-10.6
2575.0	3400.0	-9.9	-9.9
2562.5	3400.0	-12.0	-10.1
2550.0	3400.0	-9.1	-10.3
2537.5	3400.0	-9.8	-10.9
2525.0	3400.0	-10.7	-11.2

2512.5	3400.0	-12.7	-12.2
2500.0	3400.0	-13.8	-13.2
2487.5	3400.0	-14.2	-15.0
2475.0	3400.0	-14.5	-16.4
2462.5	3400.0	-19.7	-17.0
2450.0	3400.0	-19.9	-17.6
2437.5	3400.0	-16.5	-18.2
2425.0	3400.0	-17.4	-17.9
2412.5	3400.0	-17.4	-17.4
2400.0	3400.0	-18.2	-17.7

2.19 Line 3500 E

2500.0	3500.0	-5.3	-1.9
2512.5	3500.0	-2.2	.1
2525.0	3500.0	1.7	1.5
2537.5	3500.0	6.4	3.9
2550.0	3500.0	6.9	6.1
2562.5	3500.0	6.8	8.0
2575.0	3500.0	8.8	8.9
2587.5	3500.0	10.9	9.4
2600.0	3500.0	11.1	10.6
2612.5	3500.0	9.6	11.8
2625.0	3500.0	12.4	14.7
2637.5	3500.0	15.0	20.3
2650.0	3500.0	25.4	27.9
2662.5	3500.0	38.9	36.2
2675.0	3500.0	47.7	43.6
2687.5	3500.0	54.2	49.9
2700.0	3500.0	51.7	53.9
2712.5	3500.0	56.9	63.8
2725.0	3500.0	58.9	89.5
2737.5	3500.0	97.2	119.4
2750.0	3500.0	182.8	114.8
2762.5	3500.0	201.2	102.3
2775.0	3500.0	33.7	80.1
2787.5	3500.0	-3.3	39.2
2800.0	3500.0	-13.7	-6.0
2812.5	3500.0	-22.0	-17.8
2825.0	3500.0	-24.9	-21.9
2837.5	3500.0	-24.9	-23.3
2850.0	3500.0	-24.0	-23.1
2862.5	3500.0	-20.8	-22.8
2875.0	3500.0	-20.8	-19.5
2887.5	3500.0	-23.6	-17.3
2900.0	3500.0	-8.4	-18.3
2912.5	3500.0	-12.8	-17.7
2925.0	3500.0	-25.7	-16.2
2937.5	3500.0	-18.1	-16.9
2950.0	3500.0	-16.2	-15.7
2962.5	3500.0	-11.8	-9.1

2975.0	3500.0	-6.8	-6.2
2987.5	3500.0	7.4	-3.7
3000.0	3500.0	-3.7	-2.7
3012.5	3500.0	-3.8	.4
3025.0	3500.0	-6.5	21.8
3037.5	3500.0	8.8	36.0
3050.0	3500.0	114.1	29.5
3062.5	3500.0	67.5	22.2
3075.0	3500.0	-36.3	14.8
3087.5	3500.0	-43.0	-12.1
3100.0	3500.0	-28.3	-29.5
3112.5	3500.0	-20.5	-28.8
3125.0	3500.0	-19.6	-29.5
3137.5	3500.0	-32.6	-34.2
3150.0	3500.0	-46.5	-32.9
3162.5	3500.0	-51.7	-42.3
3175.0	3500.0	-14.2	-45.8
3187.5	3500.0	-66.7	-49.6
3200.0	3500.0	-50.0	-53.6
3212.5	3500.0	-65.6	-63.6
3225.0	3500.0	-71.3	-60.6
3237.5	3500.0	-64.5	-61.8
3250.0	3500.0	-51.8	-59.5
3262.5	3500.0	-56.0	-51.4
3275.0	3500.0	-53.8	-45.6
3287.5	3500.0	-31.1	-44.7
3300.0	3500.0	-35.2	-43.7
3312.5	3500.0	-47.4	-49.5
3325.0	3500.0	-50.8	-52.4
3337.5	3500.0	-83.2	-41.4
3350.0	3500.0	-45.2	-37.4
3362.5	3500.0	19.4	-28.3
3375.0	3500.0	-27.1	-1.9
3387.5	3500.0	-5.2	9.0
3400.0	3500.0	48.8	5.5

2.20 Line 3600 E

3400.0	3600.0	-9.5	-18.6
3387.5	3600.0	-19.1	-19.9
3375.0	3600.0	-27.1	-13.4
3362.5	3600.0	-23.9	-4.6
3350.0	3600.0	12.7	-6.1
3337.5	3600.0	34.2	-2.7
3325.0	3600.0	-26.3	-4.2
3312.5	3600.0	-10.3	-11.6
3300.0	3600.0	-31.5	-25.0
3287.5	3600.0	-24.3	-17.5
3275.0	3600.0	-32.7	27.4
3262.5	3600.0	11.1	46.5
3250.0	3600.0	214.5	57.2

3237.5	3600.0	63.9	68.8
3225.0	3600.0	29.0	90.1
3212.5	3600.0	25.3	76.6
3200.0	3600.0	117.9	77.4
3187.5	3600.0	146.7	74.3
3175.0	3600.0	68.3	64.5
3162.5	3600.0	13.3	38.3
3150.0	3600.0	-23.7	6.8
3137.5	3600.0	-13.2	-8.7
3125.0	3600.0	-10.9	-5.9
3112.5	3600.0	-8.8	19.4
3100.0	3600.0	27.2	32.7
3087.5	3600.0	102.9	37.8
3075.0	3600.0	53.0	41.6
3062.5	3600.0	14.6	37.0
3050.0	3600.0	10.2	17.9
3037.5	3600.0	4.2	8.6
3025.0	3600.0	7.6	5.7
3012.5	3600.0	6.6	-.8
3000.0	3600.0	-14.1	-2.9
2987.5	3600.0	-14.1	-5.3
2975.0	3600.0	-14.4	-8.6
2962.5	3600.0	-4.7	-11.7
2950.0	3600.0	-9.8	-10.6
2937.5	3600.0	-15.5	-9.0
2925.0	3600.0	-8.6	-9.9
2912.5	3600.0	-6.3	-10.7
2900.0	3600.0	-9.4	-11.0
2887.5	3600.0	-13.7	-12.0
2875.0	3600.0	-17.2	-14.0
2862.5	3600.0	-13.4	-15.5
2850.0	3600.0	-16.2	-15.9
2837.5	3600.0	-17.0	-15.4
2825.0	3600.0	-15.9	-14.9
2812.5	3600.0	-14.4	-13.1
2800.0	3600.0	-11.0	-9.7
2787.5	3600.0	-7.2	-5.0
2775.0	3600.0	.1	.0
2762.5	3600.0	7.3	8.8
2750.0	3600.0	14.3	18.2
2737.5	3600.0	29.3	25.1
2725.0	3600.0	39.9	34.6
2712.5	3600.0	34.8	43.8
2700.0	3600.0	54.9	48.8
2687.5	3600.0	60.0	48.8
2675.0	3600.0	54.2	48.4
2662.5	3600.0	40.1	43.4
2650.0	3600.0	32.9	36.6
2637.5	3600.0	29.6	29.7
2625.0	3600.0	26.0	24.5
2612.5	3600.0	20.0	22.4
2600.0	3600.0	14.0	20.0

2800.0	3700.0	-5.4	-5.2
2812.5	3700.0	-5.1	-5.2
2825.0	3700.0	-5.2	-4.8
2837.5	3700.0	-5.2	-4.2
2850.0	3700.0	-3.1	-3.2
2862.5	3700.0	-2.2	-1.9
2875.0	3700.0	-.2	-.6
2887.5	3700.0	1.0	1.1
2900.0	3700.0	1.6	3.3
2912.5	3700.0	5.3	6.2
2925.0	3700.0	9.0	9.0
2937.5	3700.0	14.1	13.4
2950.0	3700.0	15.1	19.5
2962.5	3700.0	23.7	26.3
2975.0	3700.0	35.5	34.9
2987.5	3700.0	43.3	46.1
3000.0	3700.0	57.1	59.5
3012.5	3700.0	70.8	85.5
3025.0	3700.0	90.8	111.3
3037.5	3700.0	165.5	98.4
3050.0	3700.0	172.4	82.8
3062.5	3700.0	-7.7	64.0
3075.0	3700.0	-7.1	31.7
3087.5	3700.0	-2.9	-1.6
3100.0	3700.0	4.0	1.5
3112.5	3700.0	5.6	3.9
3125.0	3700.0	8.1	6.0
3137.5	3700.0	4.5	8.7
3150.0	3700.0	8.0	10.8
3162.5	3700.0	17.3	18.5
3175.0	3700.0	16.3	39.5
3187.5	3700.0	46.4	41.5
3200.0	3700.0	109.7	39.1
3212.5	3700.0	17.6	36.6
3225.0	3700.0	5.7	31.8
3237.5	3700.0	3.7	21.4
3250.0	3700.0	22.1	46.1
3262.5	3700.0	57.9	83.5
3275.0	3700.0	141.1	93.5
3287.5	3700.0	192.9	86.0
3300.0	3700.0	53.6	67.6
3312.5	3700.0	-15.6	34.5
3325.0	3700.0	-34.0	-9.6
3337.5	3700.0	-24.3	-23.2
3350.0	3700.0	-27.6	-24.5
3362.5	3700.0	-14.4	-20.6
3375.0	3700.0	-22.2	-16.8
3387.5	3700.0	-14.3	-14.1
3400.0	3700.0	-5.4	-14.0

3400.0	3800.0	5.1	68.9
3387.5	3800.0	19.6	74.7
3375.0	3800.0	181.9	71.3
3362.5	3800.0	92.3	80.8
3350.0	3800.0	57.7	92.9
3337.5	3800.0	52.6	69.0
3325.0	3800.0	79.9	62.3
3312.5	3800.0	62.4	89.0
3300.0	3800.0	59.1	101.3
3287.5	3800.0	190.9	95.7
3275.0	3800.0	114.3	97.2
3262.5	3800.0	51.7	92.9
3250.0	3800.0	70.2	64.3
3237.5	3800.0	37.5	49.6
3225.0	3800.0	48.0	45.2
3212.5	3800.0	40.4	36.5
3200.0	3800.0	29.9	30.7
3187.5	3800.0	26.5	23.4
3175.0	3800.0	8.9	16.0
3162.5	3800.0	11.1	11.4
3150.0	3800.0	3.8	7.9
3137.5	3800.0	6.9	7.4
3125.0	3800.0	8.6	5.9
3112.5	3800.0	6.5	5.3
3100.0	3800.0	3.6	4.2
3087.5	3800.0	1.1	4.1
3075.0	3800.0	1.1	4.7
3062.5	3800.0	8.0	5.3
3050.0	3800.0	9.7	6.0
3037.5	3800.0	6.5	6.7
3025.0	3800.0	4.8	6.4
3012.5	3800.0	4.3	6.4
3000.0	3800.0	6.7	7.0
2987.5	3800.0	9.7	7.4
2975.0	3800.0	9.3	7.0
2962.5	3800.0	7.0	5.9
2950.0	3800.0	2.2	4.3
2937.5	3800.0	1.2	2.6
2925.0	3800.0	1.7	1.5
2912.5	3800.0	.8	1.2
2900.0	3800.0	1.8	1.3
2887.5	3800.0	.6	1.7
2875.0	3800.0	1.7	2.4
2862.5	3800.0	3.4	2.6
2850.0	3800.0	4.6	2.9
2837.5	3800.0	2.9	3.0
2825.0	3800.0	2.0	2.6
2812.5	3800.0	2.0	2.1
2800.0	3800.0	1.5	1.8

2.23 Line 3900 E

2800.0	3900.0	5.8	6.2
2812.5	3900.0	6.7	6.4
2825.0	3900.0	6.2	6.7
2837.5	3900.0	6.9	7.0
2850.0	3900.0	7.7	7.3
2862.5	3900.0	7.6	7.8
2875.0	3900.0	8.3	7.9
2887.5	3900.0	8.3	8.3
2900.0	3900.0	7.8	8.6
2912.5	3900.0	9.3	9.2
2925.0	3900.0	9.2	10.0
2937.5	3900.0	11.5	10.7
2950.0	3900.0	12.3	11.4
2962.5	3900.0	11.4	12.1
2975.0	3900.0	12.6	12.8
2987.5	3900.0	12.7	13.1
3000.0	3900.0	14.9	13.2
3012.5	3900.0	14.1	13.3
3025.0	3900.0	11.9	13.4
3037.5	3900.0	13.1	13.3
3050.0	3900.0	13.2	13.0
3062.5	3900.0	14.0	13.4
3075.0	3900.0	13.0	13.2
3087.5	3900.0	13.9	13.4
3100.0	3900.0	11.7	12.4
3112.5	3900.0	14.3	11.7
3125.0	3900.0	9.0	12.4
3137.5	3900.0	9.5	12.7
3150.0	3900.0	17.3	13.4
3162.5	3900.0	13.6	14.1
3175.0	3900.0	17.7	17.8
3187.5	3900.0	12.6	30.3
3200.0	3900.0	27.7	35.8
3212.5	3900.0	79.7	39.3
3225.0	3900.0	41.4	41.0
3237.5	3900.0	34.9	43.8
3250.0	3900.0	21.3	57.3
3262.5	3900.0	41.6	59.2
3275.0	3900.0	147.5	69.4
3287.5	3900.0	50.6	79.5
3300.0	3900.0	85.8	77.5
3312.5	3900.0	71.8	58.4
3325.0	3900.0	31.7	59.8
3337.5	3900.0	51.9	53.2
3350.0	3900.0	58.0	52.2
3362.5	3900.0	52.8	60.8
3375.0	3900.0	66.5	63.9
3387.5	3900.0	75.0	65.3
3400.0	3900.0	67.0	69.5

2.24 Line 4000E

3400.0	4000.0	-20.1	11.9
3387.5	4000.0	-29.9	22.8
3375.0	4000.0	85.7	24.5
3362.5	4000.0	55.6	38.3
3350.0	4000.0	31.1	54.9
3337.5	4000.0	49.0	49.7
3325.0	4000.0	52.9	53.3
3312.5	4000.0	60.0	66.7
3300.0	4000.0	73.6	70.0
3287.5	4000.0	97.9	69.5
3275.0	4000.0	65.8	63.0
3262.5	4000.0	50.1	55.4
3250.0	4000.0	27.4	40.0
3237.5	4000.0	36.0	35.3
3225.0	4000.0	20.5	30.2
3212.5	4000.0	42.6	29.3
3200.0	4000.0	24.4	26.4
3187.5	4000.0	23.0	26.1
3175.0	4000.0	21.7	20.4
3162.5	4000.0	18.9	19.6
3150.0	4000.0	14.1	18.6
3137.5	4000.0	20.4	17.1
3125.0	4000.0	17.8	16.1
3112.5	4000.0	14.5	16.4
3100.0	4000.0	13.9	15.6
3087.5	4000.0	15.2	15.8
3075.0	4000.0	16.8	16.8
3062.5	4000.0	18.4	18.0
3050.0	4000.0	19.9	19.0
3037.5	4000.0	19.5	19.6
3025.0	4000.0	20.3	19.9
3012.5	4000.0	19.7	19.9
3000.0	4000.0	20.1	19.8
2987.5	4000.0	19.8	19.3
2975.0	4000.0	19.2	18.5
2962.5	4000.0	17.8	17.3
2950.0	4000.0	15.7	15.8
2937.5	4000.0	13.9	14.1
2925.0	4000.0	12.5	12.3
2912.5	4000.0	10.5	10.7
2900.0	4000.0	9.0	9.6
2887.5	4000.0	7.8	8.6
2875.0	4000.0	8.3	7.7
2862.5	4000.0	7.4	6.8
2850.0	4000.0	5.8	6.8
2837.5	4000.0	4.5	6.3
2825.0	4000.0	8.1	6.3
2812.5	4000.0	5.7	6.5
2800.0	4000.0	7.6	7.1

2.25 Line	4100E		
2700.0	4100.0		
2712.5	4100.0	11.9	10.9
2725.0	4100.0	11.7	11.3
2737.5	4100.0	12.3	11.8
2750.0	4100.0	12.9	12.1
2762.5	4100.0	11.1	12.4
2775.0	4100.0	12.4	12.6
2787.5	4100.0	13.2	12.8
2800.0	4100.0	13.4	13.7
2812.5	4100.0	14.1	14.5
2825.0	4100.0	15.4	15.3
2837.5	4100.0	16.4	16.5
2850.0	4100.0	17.3	17.8
2862.5	4100.0	19.1	19.1
2875.0	4100.0	20.9	20.5
2887.5	4100.0	22.0	21.7
2900.0	4100.0	23.2	22.6
2912.5	4100.0	23.1	23.0
2925.0	4100.0	23.8	23.4
2937.5	4100.0	23.1	23.8
2950.0	4100.0	23.8	24.4
2962.5	4100.0	25.3	25.3
2975.0	4100.0	26.2	26.4
2987.5	4100.0	28.0	27.7
3000.0	4100.0	28.5	28.9
3012.5	4100.0	30.4	29.9
3025.0	4100.0	31.6	30.8
3037.5	4100.0	31.2	31.6
3050.0	4100.0	32.4	31.9
3062.5	4100.0	32.5	32.1
3075.0	4100.0	32.0	31.7
3087.5	4100.0	32.3	31.2
3100.0	4100.0	29.4	30.7
3112.5	4100.0	29.6	31.7
3125.0	4100.0	30.1	33.3
3137.5	4100.0	37.1	35.7
3150.0	4100.0	40.3	38.1
3162.5	4100.0	41.2	40.6
3175.0	4100.0	41.8	42.9
3187.5	4100.0	42.8	58.2
3200.0	4100.0	48.3	100.2
3212.5	4100.0	117.1	126.0
3225.0	4100.0	251.1	163.8
3237.5	4100.0	170.7	163.8
3250.0	4100.0	231.7	143.8
3262.5	4100.0	48.3	106.7
3275.0	4100.0	17.2	86.0
3287.5	4100.0	65.6	46.5
3300.0	4100.0	67.1	43.1
3312.5	4100.0	34.1	42.4
3325.0	4100.0	31.6	38.4

3337.5	4100.0	13.5	18.6
3350.0	4100.0	45.8	14.2
3362.5	4100.0	-32.1	4.0
3375.0	4100.0	12.0	.2
3387.5	4100.0	-19.0	-11.3
3400.0	4100.0	-5.9	-4.3

2.26 Line 4200E

3400.0	4200.0	5.4	-5.9
3387.5	4200.0	-16.7	-1.7
3375.0	4200.0	-6.5	4.0
3362.5	4200.0	11.1	-.8
3350.0	4200.0	26.6	-2.6
3337.5	4200.0	-18.4	-4.2
3325.0	4200.0	-26.0	-8.9
3312.5	4200.0	-14.4	-16.1
3300.0	4200.0	-12.4	-13.9
3287.5	4200.0	-9.2	-13.9
3275.0	4200.0	-7.4	6.3
3262.5	4200.0	-26.2	9.2
3250.0	4200.0	86.6	11.6
3237.5	4200.0	2.0	11.1
3225.0	4200.0	3.1	16.4
3212.5	4200.0	-10.0	2.2
3200.0	4200.0	.5	1.8
3187.5	4200.0	15.2	4.2
3175.0	4200.0	.4	16.8
3162.5	4200.0	14.9	33.5
3150.0	4200.0	52.9	52.1
3137.5	4200.0	84.1	68.5
3125.0	4200.0	108.4	81.0
3112.5	4200.0	82.4	86.3
3100.0	4200.0	77.4	83.4
3087.5	4200.0	79.4	77.8
3075.0	4200.0	69.4	74.9
3062.5	4200.0	80.5	75.5
3050.0	4200.0	67.9	71.6
3037.5	4200.0	80.4	68.5
3025.0	4200.0	59.6	63.2
3012.5	4200.0	54.3	60.8
3000.0	4200.0	53.7	55.2
2987.5	4200.0	56.0	52.1
2975.0	4200.0	52.6	49.6
2962.5	4200.0	43.9	47.6
2950.0	4200.0	42.0	43.3
2937.5	4200.0	43.5	38.3
2925.0	4200.0	34.3	35.9
2912.5	4200.0	27.7	33.6
2900.0	4200.0	31.9	29.9
2887.5	4200.0	30.6	27.8

2875.0	4200.0	24.9	26.5
2862.5	4200.0	24.0	24.8
2850.0	4200.0	21.0	22.6
2837.5	4200.0	23.3	21.4
2825.0	4200.0	19.7	19.4
2812.5	4200.0	19.0	17.2
2800.0	4200.0	14.2	13.9
2787.5	4200.0	9.8	10.4
2775.0	4200.0	6.6	6.3
2762.5	4200.0	2.3	3.8
2750.0	4200.0	-1.3	2.3
2737.5	4200.0	1.5	3.0
2725.0	4200.0	2.3	4.7
2712.5	4200.0	10.1	6.5
2700.0	4200.0	11.1	5.9
2687.5	4200.0	7.4	4.3
2675.0	4200.0	-1.2	4.2
2662.5	4200.0	-6.1	63.8
2650.0	4200.0	10.0	97.0
2637.5	4200.0	308.8	115.3
2625.0	4200.0	173.7	128.9
2612.5	4200.0	90.3	158.6
2600.0	4200.0	61.5	108.5

2.27 Line 4300E

3100.0	4300.0	1.4	1.8
3112.5	4300.0	3.3	-1.2
3125.0	4300.0	.8	-4.5
3137.5	4300.0	-10.4	-3.6
3150.0	4300.0	-17.8	-6.0
3162.5	4300.0	6.3	-7.2
3175.0	4300.0	-8.9	-3.3
3187.5	4300.0	-5.1	-1.4
3200.0	4300.0	9.2	-5.6
3212.5	4300.0	-8.5	3.7
3225.0	4300.0	-14.5	-.4
3237.5	4300.0	37.2	-9.5
3250.0	4300.0	-25.3	-13.8
3262.5	4300.0	-36.5	-9.4
3275.0	4300.0	-29.8	-20.5
3287.5	4300.0	7.2	2.0
3300.0	4300.0	-17.9	27.4
3312.5	4300.0	87.1	40.6
3325.0	4300.0	90.3	38.8
3337.5	4300.0	36.4	41.3
3350.0	4300.0	-2.1	28.2
3362.5	4300.0	-5.0	13.4
3375.0	4300.0	21.3	7.7
3387.5	4300.0	16.3	10.1
3400.0	4300.0	8.0	15.2

3400.0	4400.0	37.9	25.6
3387.5	4400.0	14.1	24.3
3375.0	4400.0	24.9	18.8
3362.5	4400.0	20.3	9.5
3350.0	4400.0	-3.2	5.0
3337.5	4400.0	-8.7	-3.0
3325.0	4400.0	-8.1	-10.3
3312.5	4400.0	-15.5	-6.5
3300.0	4400.0	-16.1	-1.8
3287.5	4400.0	16.0	-.5
3275.0	4400.0	14.9	1.8
3262.5	4400.0	-1.7	8.5
3250.0	4400.0	-4.3	.5
3237.5	4400.0	17.4	-2.6
3225.0	4400.0	-23.6	-6.9
3212.5	4400.0	-1.0	-4.8
3200.0	4400.0	-22.9	-5.0
3187.5	4400.0	6.3	-.5
3175.0	4400.0	16.1	-5.3
3162.5	4400.0	-1.0	3.1
3150.0	4400.0	-25.2	2.8
3137.5	4400.0	19.3	7.3
3125.0	4400.0	4.9	9.1
3112.5	4400.0	38.4	17.7
3100.0	4400.0	8.3	17.2

2.29 Line 4500E

3100.0	4500.0	-2.0	3.4
3112.5	4500.0	5.8	6.1
3125.0	4500.0	6.4	5.1
3137.5	4500.0	14.3	11.0
3150.0	4500.0	1.2	13.1
3162.5	4500.0	27.4	17.2
3175.0	4500.0	16.2	17.9
3187.5	4500.0	26.9	19.8
3200.0	4500.0	17.9	17.6
3212.5	4500.0	10.7	15.6
3225.0	4500.0	16.2	15.8
3237.5	4500.0	6.2	14.3
3250.0	4500.0	28.0	17.5
3262.5	4500.0	10.4	21.1
3275.0	4500.0	26.6	24.9
3287.5	4500.0	34.2	24.6
3300.0	4500.0	25.5	24.6
3312.5	4500.0	26.3	24.6
3325.0	4500.0	10.2	23.9
3337.5	4500.0	26.8	19.2
3350.0	4500.0	30.6	12.7

3362.5	4500.0	2.3	13.3
3375.0	4500.0	-6.4	18.1
3387.5	4500.0	13.2	14.9
3400.0	4500.0	50.6	19.1

2.30 Line 4600 E

3400.0	4600.0	45.8	24.7
3387.5	4600.0	31.6	20.5
3375.0	4600.0	-3.3	15.1
3362.5	4600.0	8.1	4.9
3350.0	4600.0	-6.5	-1.7
3337.5	4600.0	-5.3	5.1
3325.0	4600.0	-1.5	16.1
3312.5	4600.0	30.9	22.3
3300.0	4600.0	63.0	26.0
3287.5	4600.0	24.6	30.0
3275.0	4600.0	12.8	30.1
3262.5	4600.0	18.6	12.9
3250.0	4600.0	31.5	9.8
3237.5	4600.0	-22.8	11.2
3225.0	4600.0	9.1	12.3
3212.5	4600.0	19.7	10.9
3200.0	4600.0	23.8	23.3
3187.5	4600.0	24.5	18.6
3175.0	4600.0	39.4	15.0
3162.5	4600.0	-14.2	11.5
3150.0	4600.0	1.6	6.7
3137.5	4600.0	6.3	-.8
3125.0	4600.0	.6	4.0
3112.5	4600.0	1.8	4.6
3100.0	4600.0	9.7	4.0

3100.0	4700.0	37.6	9.2
3112.5	4700.0	-11.6	8.1
3125.0	4700.0	1.7	7.9
3137.5	4700.0	4.6	3.8
3150.0	4700.0	7.2	4.2
3162.5	4700.0	17.1	14.4
3175.0	4700.0	-9.8	14.1
3187.5	4700.0	52.9	14.3
3200.0	4700.0	3.1	13.2
3212.5	4700.0	8.0	18.4
3225.0	4700.0	11.8	10.8
3237.5	4700.0	16.1	21.8
3250.0	4700.0	15.0	28.2
3262.5	4700.0	58.1	26.3

3275.0	4700.0	40.1	24.1
3287.5	4700.0	2.4	20.7
3300.0	4700.0	4.7	15.6
3312.5	4700.0	-1.8	7.7
3325.0	4700.0	32.4	3.3
3337.5	4700.0	.6	8.9
3350.0	4700.0	-19.4	10.1
3362.5	4700.0	32.6	5.3
3375.0	4700.0	4.2	7.3
3387.5	4700.0	8.6	14.0
3400.0	4700.0	10.7	7.8

2.32 Line 4800E

3400.0	4800.0	20.0	6.9
3387.5	4800.0	-1.6	2.0
3375.0	4800.0	2.2	6.0
3362.5	4800.0	-12.5	5.9
3350.0	4800.0	21.9	8.4
3337.5	4800.0	19.6	11.0
3325.0	4800.0	10.9	15.2
3312.5	4800.0	15.2	15.2
3300.0	4800.0	8.2	14.1
3287.5	4800.0	22.0	16.1
3275.0	4800.0	14.0	19.5
3262.5	4800.0	21.2	27.6
3250.0	4800.0	32.0	39.1
3237.5	4800.0	49.0	51.4
3225.0	4800.0	79.3	51.5
3212.5	4800.0	75.4	56.1
3200.0	4800.0	22.0	53.9
3187.5	4800.0	54.6	42.4
3175.0	4800.0	38.0	30.8
3162.5	4800.0	22.0	28.7
3150.0	4800.0	17.2	17.7
3137.5	4800.0	11.5	15.7
3125.0	4800.0	-.4	21.7
3112.5	4800.0	28.4	22.8
3100.0	4800.0	51.6	26.5

END OF MAGNETOMETER DATA, DONEGAL MOUNTAIN GRID

APPENDIX "C"

DIAMOND DRILL CORE

 LOGGING FORMAT
DIAMOND DRILL CORE LOGGING FORMAT

INTRODUCTION

All the diamond drill core from the Regional Resources Ltd. - Canamax Resources Inc. Midway Property has been logged using coded logging forms to aid in the rapid recording and retrieval of information. The following is a short guide to the coding format.

"DIAMOND DRILL RECORD" (Form DDR-82-1)

The first page of each drill hole log is a summary page and is generally selfexplanatory.

- Survey Co-ordinates:	UTM co-ordinates tied to the Universal Transverse Mercator (UTM) grid.
- Elevation:	In metres above sea level.
- Stick Up:	Height of casing above ground.
- Scale:	Of Diamond Drill Record graphic logs.
- Symmetry statement:	Refers to the recording of structural information.

GEOLOGY:

Unit As per the mineralization and major rock unit codes explained below.

Int.
Drill core length of intercept.
T.W.

Thickness of unit corrected for plunge of drill hole and dip of regional stratigraphy.

THE MAJOR STRATIGRAPHIC SUBDIVISIONS

LOWER SYLVESTER GROUP: Upper Devonian-Mississippian

2B	SANDSTONE	- Light grey, medium to coarse grained, massive to bedded.
	CONGLOMERATE	- Light grey, fine to medium grained, massive - generally Bouma A and lesser B sequences.
2A	SUBDIVIDED BELOW	
2AP	SLUMP BRECCIA	- Light grey sandstone clasts in a dark grey siltstone/sandstone matrix.
2AS	SILTSTONE	- Dark to medium grey, variably carbonaceous, variably siliceous, variably pyritic, noncalcareous.
	CALCARENITE	- Light grey, laminated to massive; present toward top of unit.
2AC	SILTSTONE	- Dark to medium grey, slightly to moderately carbonaceous, non-siliceous, slightly to moderately pyritic, generally non-calcareous.
	CALCARENITE	- Light grey, laminated to massive.
	SANDSTONE	- Light grey, laminated to massive; only locally present.
2AA	SILTSTONE	- Dark grey to black, moderately to very carbonaceous non-siliceous, locally pyritic, non-calcareous; may contain abundant chert and/or calcareous nodules.
1B	SA: ${ }^{\text {d }}$ STONE	- Light grey, laminated to massive
	SILTSTONE	- Dark to medium grey, slightly to moderately carbonaceous, non-siliceous, slightly pyritic, non-calcareous.
	CONGLOMERATE	- Light grey, fine to locally medium grained, massive. - Coarser grained Bouma A and B sequences generally occur toward the upper portion of the unit while finer grained Bouma D sequences occur toward the lower portion of the unit.
1 BA		- This is the basal transition zone of unit lB dominated by siltstones with $5-25$ sandstone.

IA This unit is transitional with the lBA unit above and is defined as containing $<5 \%$ sandstone beds.

- Dark grey to black, moderately to very carbonaceous, locally siliceous, locally pyritic, generally non-calcareous.

IAC CALCAREOUS SILTSTONE/CALCARENITE

- Medium to dark grey, usually non-carbonaceous, non-siliceous, non-pyritic, moderately to very calcareous. This is a local calcareous "wash" occasionally immediately overlying the McDame Group carbonates.

ALTERATION

In the Lower Sylvester Group there are zones of siltstone and/or sandstone and/or calcarenite which have been altered to phyllite (Ph) and/or siliceous chert-like rocks with or without pyrrhotite \pm pyrite \pm chalcopyrite. These altered rocks are placed in the Lower Sylvester Group under their respective unit names with a precursor letter "A", (e.g., AlB is altered Unit lB).

MCDAME GROUP: Middle Devonian

:cDame Lithostratigraphic Units

	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{c} \\ \underline{c} \\ \underline{0} \end{array}\right\|$	Thickness	Major	Components	Lesser Components	Minor Components	
1 SIT	\cdots	\cdots	Facies	Lithologies	Facies	Facies	Notes
$x:-1$	A	$28+$	Dense Aephipora	Packstone to Mudstone Rudstone to floatstone	-	Massive Stromatoporoid	
	E	5.4	Thamopora	Rudstone E Floatstone	Massive Stronatoporoid	Asphipora	
	$こ$	16.8	Densc Anphípora Massive. Stromatoporoid	Packstone to Mudstone Rudstone \bar{c} FIoatstone Floatstone		stromatoporoj̄ ε Dense	Upper Lower
	0	2.5-4.3	Crinoidal	Packstone C Hackestone			
	E	4-10	Anphipora Dense	```Floatstone Bioclastic-peloj\overline{al} Packstone to Mudstone```		Massive Stromatoporoid	
' ${ }^{\prime}$-2		up to 23	Massive Stronatoporoid	Rudstone to Floatstone, local chert, Framestone	Hixed Asphipora © Stromatoporoid	Rugosan Euryanphipora Ihannopora	

THE MAJOR STRATIGRAPHIC SUBDIVISIONS
McDame Group: Middle Devonian (cont'd)
McDame Lithostratigraphic Units

INTRUSIVE ROCKS

㒸:I工
YBR
DIKES AND ALTERED ROCKS OF UNCERTAIN PARENTAGE

- Greenstone dikes are found mainly in the McDame Group but also occur locally in the Lower Sylvester Group.
- Variably altered rocks are usually associated with the dikes but are much more extensive than the greenstones themselves. The altered rocks probably represent, for the most part; highly altered dikes.

MINERALIZATION

"EXHALITES" These are light brown to light grey cherty units found in Unit 2 A of the Lower Sylvester Group. They are generally composed of quartz, sericite, and pyrite but locally grade to massive sulphides (pyrite-sphalerite-galena). Different "exhalite" horizons have been given letter designations to distinguish them.
e.g., FZ $=F$-Zone "exhalite"

FZP $=F$-Zone "exhalite" package - usually used when thin
"exhalites" believed to be related are interbedded with other lithologies.

The major rock type designation (e.g., XQ (siliceous exhalite) is used in the unit column when the identification of the "exhalite" horizon is uncertain.

LOWER ZONE MINERALIZATION

The carbonate-hosted Lower Zones have been designated LZ1, LZ2, LZ 3, etc., as they were encountered down the drillhole.

OTHER SYMBOLS USED

$O B$	-	Overburden
$N R$	-	No recovery
$G M$	-	Gouge Zone

APPENDIX "D"

DIAMOND DRILL S UMMARY LOGS

MW-86-274
MW-86-275
MW-86-276
MW-86-279
MW-86-280
MW-86-281
MW-86-282
MW-86-283
MW-86-284
MW-86-293
MW-86-294

inıGluival REsulUnu'Es lTu.

REGIUNAL RESOURCES LTD.

DIAMOND DRILL RECORD

ktGIUIval RESOURCES LTU.

DIAMOND DRILL . .ECORD

PROPERTY
MIDWAY
D.D.H.MW $8 G-E 79 \cdots$

PAGE 1
OF 1

AREA:__NW OISCO	DIP: - 70 A \quad AIMUTH (t : $\quad 180 \%$
CLAIM: FULIL 5	NORTHING:_ EE45619.E7
SECTION:_ 24500	EASTING: 4 24493. 5
CORE SIZE: ___ HQ	ELEVATION: 1156. 9 m
CORE RECOVERY:	AT: RACK 10 EAYS FG

DEPTH: EG9. 40 m
DATE STARTED
DATE FINISHED:
SEPT. $4 D 1786$
SEPT 18 D 1986
CONTRACTOR: CARIN DIAMOND DRILLING LTU. LOGGED BY: In.J. H. $/ H_{\text {. Th. }}$

COMMENTS: HOLE DRILLED TO TEST PROJECTED EASTWARD EXTENSION OF REG RESOURCES MINERALIZED STRUCTURE
HOLE AEPNDONED WHEN RODS DROPPED WHILE TRYING TO REDUCE TO NO
REG STRICTURE NOT FOND; NO ECONOMIC SURFIDES FOUND

SURVEY DATA			GEOLOGY AND ASSAY RECORD															
Depth	Dip	Az (t)	From (a)	To (m)	Int. (m)	T.W. (m)	Geology	Sample No.	Rec. \%	S.G.	Ag oz/h	Pb \%		$\mathrm{Zn} \%$	Au oz/t	Fe \%	Ag $\mathrm{Mm} / \mathrm{MT}$	Au gm/mT
0.00	-70.009	$180.00{ }^{+}$	0.00	14.20	14.20		08											
36.73	-70.000	183.00%	14.20	56.30	42.10		STMB											
67.21	-73.200	181.004	56.30	62.70	6.60		Q7CA											
97.69	-76.009	188.50\%	62.90	88.20	25,30		STME											
-128.17	-76.300	195.009	88.20	94.50	6.30		ST											
158,65	-77.709	200.009	94.50	128.60	34.10		STME											
189.13	-76.00°	210.00%	128.60	134.10	5.50		ST											
219.61	-78.00°	220.009	134.10	163.70	29.60		STME											
250.09	-78.00°	230.00°	163.70	186.20	22.50		ST											
			186.20	225.10	38.70		STMA											
			225.10	225.50	0.40		02 VN											
			225.50	227.90	2.40		ST											
			227.90	236.00	8.10		STMB											
			236.00	250.60	14.60		ST											
			250.60	255.60	5.00		STME											
			255.60	269.40	13.80		ST											
											Cu	Pt	Zn	A ${ }^{\text {a }}$	As	Au	P3	
								ASSAYS			PPM	PPM	PPM	PPM	PPM	PPS	PPM	
			43.42	44.10	0.68		STME	13728	100		23	24	107	60.2	300	15	830	
			57.90	58.80	0.70		Q2-CA	13729	100		24	4	33	0.2	60	10	<20	
			225.10	225.50	0.40		QZ VN	13730	100		44	4	22	<0.2	2	<	150	
			225.10	244.80	19.70		ST	13731	100		18	5	18	<0.2	2	<	1200	
			255.60	264.40	8.80		ST	13732	100		26	6	38	<0.2	2	< 5	1000	

REGIONAL RESOURCES LTD.

DIAMOND DRILL RECORD

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	Az (t)	From (I)	To (1)	Int. (\mathbf{l})	T.W. (E)	Gealogy	Sample No.	Rec. \%	s.G.	Ag oz/t	Pb \%	Zn \%	Au oz/t	Fe \%	Ag ge/MT	Au ga/MT
0.00	-70.009	270.00	0.00	15.25	15.25		NR										
172.67	-72.00°	260.50	15.25	39.30	24.05		OB										
203.15	-72.80	256.50	39.30	69.95	30.65		2 AC										
233.68	-72.50°	258.00	69.95	71.90	1.95		$\mathrm{UZ}+\mathrm{CH}$										
265.94	-74.009	255.00	71.90	72.90	1.00		2 AC										
			72.90	77.72	4.82		GH										
			7.72	78.70	0.98		XO+GH										
			78.70	101.65	22.95		2AC										
			101.65	109.15	7.50		GH										
			109.15	118.00	8.85		1 B										
			118.00	121.90	3.90		GH										
			121.90	125.50	3.60		18										
			125.50	128.95	3.45		GH										
			128.95	151.20	22.25		18										
			151.20	154.00	2.80		G										
			154.00	166.00	12.00		18										
			166.00	179.00	13.00		1BA										
			179.00	190.00	11.00		1 AA										
			190.00	196.90	6.90		1AC										
			196.90	202.10	5.20		MLICR										
			202.10	202.65	0.55		12										
			202.65	203.88	1.23		HLICR										
			203.88	210.75	6.87		12										
			210.75	216.10	5.35		MLICR										
			216.10	218.55	2.45		12										
			218.55	220.04	1.49		MLICR										
			220.04	222.30	2.26		12										
			222.30	224.55	2.25		MLI?										
			224.55	225.90	1.35		GOUGE										
			225.90	-226.90	1.00		MLIRB										
								CONTINUED									

PROPERTY MIDWAY
MIDWAY D.D.H._MW 86-280-

AREA:

 CLAIM: SECTION:\qquad :
\qquad COVERY: CORE RECOVERY: COMMENTS: \qquad NORTHING EASTING: ELEVATION: AT:

DEPTH:

DATE STARTED:
date finished
CONTRACTOR
LOGGED BY:

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depin	Dip	Az (1)	From (n)	To (n)	Int (n)	T.W. (I)	Geology	Sample No.	Rec. \%	s.g.	Ag oz/t	Pb \%	2n \%	Au 0z/t	Fe \%	AR gn/ $/ 15$	AU SIMIT
			226.90	232.60	5.70		MLICR										
			232.60	233.80	1.20		MLIRB										
			233.80	236.40	2.60		MLICR										
			236.40	237.25	0.85		HL1?										
			237.25	255.70	18.45		HL2										
			255.70	258.25	2.55		M12CR										
			258.25	260.30	2.05		HL3										
			260.30	268.83	8.53		H13CR										
								ASSAYS									
			201.10	202.10	1.00		ML1?	13733	85	2.8	< 0.02	0.08	0.10	0.002		1 0.69	0.07
			202.10	202.65	0.55		L2	13734	100	3.9	1.15	0.05	0.82	co.002		39.63	- 0.07
			202.65	203.88	1.23		MLI?	13735	95	2.8	- 0.02	0.03	0.06	0.004		- 0.69	0.14
			203.88	204.88	1.00		L	13736	-80	3.9	1.88	0.16	12.00	c 0.002		64.46	10.07
			204.88	205.70	0.82		12	13737	95	4.3	4.76	0.22	0.12	0.002		163.20	0.07
			205.70	206.90	1.20		12	13738	95	4.1	1.35	0.10	2.80	- 0.002		46.29	1 0.07
			206.20	207.90	1.00		12	13739	95	4.1	1.75	0.11	3.00	10.002		60.00	1.0 .07
			207.90	208.90	1.00		12	13740	100	3.9	0.82	0.16	5.10	- 0002		28.11	1 0.07
			208.90	209.90	1.00		12	13741	100	3.9	1.51	0.34	8.20	- 0,002		51.77	10.07
			209.90	210.75	0.85		L2	13742	95	3.8	1.60	0.26	12.00	10.002		54.86	1.07
			210.75	211.75	1.00		ML1?	13743	100	2.8	- 0.02	10.01	0.11	c 0.002		10.69	1 0.07
			215.10	216.10	1.00		ML1?	13744	100	2.8	0.03	0.01	0.12	-0.002		1.03	1 0.07
			216.10	217.10	1.00		12	13745	100	4	1.90	0.14	12.00	- 0.002		65.14	10.07
			217.10	217.80	0.70		12	13746	-95	4.1	1.77	0.40	7.55	- 0.002		60.69	10.07
			217.80	218.55	0.75		12	13747	100	3.9	12.96	8. 20	-15.40	c 0.002		444.34	, 0.07
			218.55	220.04	1.49		ML1?	13748	100	2.8	0.17	. 0.11	0.24	¢0.002		5.83	-1 0.07
			220.06	221.40	1.36		12	13749	100	4.2	1.27	0.36	3.60	0.002		43.54	0.07
			221.40	222.30	0.90		12	13750	100	4.2	4.98	1.49	7.23	- 0.002		170.74	1. 0.07
			222.30	223.30	1.00		ML1?	13751	100	2.8	0.96	0.07	0.34	c 0.002		32.91	, 0.07
								NTI									

REGIUNAL RESOURCES LTU.

keGIUnil RESOURCES LTU.

DIAMOND DRILL . ECCORD

REGIOFAL RESOURCES LTD.

DIAMOND DRILL , iECORD

PROPERTY	MIDWAY		H. MW 9		PAGE	\pm OF	3
AREA:		DIP:	AZIMUTH (t):	DEPTH:			
CLAIM:		NOR		DATE STARTED:			
SECTION:		EAS		DATE FINISHED:			
CORE SIZE:		ELEV		CONTRACTOR:			
CORE RECOVERY: COMMENTS.		D AT:		LOGGED BY:			

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	Az (t)	From (in)	To (m)	Int. (m)	T.W. (m)	Geology	Sample No.	Rec. \%	S.G.	Ag oz/t	Pb \%	2n \%	Au oz/t	$\mathrm{Fe} \%$	An $\mathrm{Bm} / \mathrm{MT}$	Ald $\mathrm{nm} / \mathrm{MT}$
			151.50	151.80	0.30		MLSCR										
			151.80	152.00	0.20		MLSR8										
			152.00	153.20	1.20		YRR										
			153.20	159.85	6.65		DYKE										
			153.85	169.40	9.55		YER										
			169.40	-169.30	0.50		MLS										
			169.90	170.30	Q. 40		YR8										
			170.30	172.15	1.85		MLTRE										
			172.15	173.70	1.55		ML7										
			173.70	174.00	0.30		MLIR8										
			174.00	174.25	0.35		1 LL 7										
			174.25	174.80	0.55		ML.7R8										
			174.80	175,00	0.20		ML7										
			175.00	175.40	0.40		M 7 IMS										
			175.40	175.60	0.20		ML 7										
			175.60	181.40	5.80		MLTCR										
			181.40	181.60	0,20		M27										
			181.60	182.10	0.50		MLBCR										
			182.10	182.80	0.70		M ML_{6}										
			182.80	183.20	0.40		MLPMS										
			183.20	184.30	1.10		MLA										
			184.30	184.65	0.35	,	MLBMS										
			184.65	191.40	6.75		M 4										
			191.40	191.80	0.40		MLECR										
			191.80	195.10	3.30		M. 8										
			195.10	195.40	0.30		MLACR										
			195.40	197.90	2.50		M 8 B										
			197.90	198.10	0.20		MLBMS										
			198.10	200.50	2.40		ML8										
			200.50	200.80	0.30		MLOMS										
			200.80	201.30	0.50		MLB	CONTINUED								

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	Az (t)	From (田)	To (m)	Int. (m)	T.W. (m)	Geology	Sample No.	Rec. \%	S.G.	Ag oz/t	Pb \%	2n \%	Av oz/t	Fe \%	Aq, $\mathrm{gm} / \mathrm{mT}$	A4 9 m/MT
0.00	-45.00°	170.00	0.00	2.30	2.30		N. F .										
48.98	$-52.50{ }^{\circ}$	169.00	2.30	24.40	22.10		STMB										
97,96	-60.00°	168.00	24.49	29.40	5.00		CST										
143.41	-64.00°	175.50	29.40	92.40	63.00		STME										
			92.40	95.30	2.90		ST										
			95.30	126.00	30.70		STME										
			126.00	131.00	5.610		ST										
			131.00	147.20	16.20		STME										
			147.20	152.04	4.84		PBLST										
													--				

ktGIUNAL RESOURCES LTi.

DIAMOND DRILL RECORD

PROPERTY
MIDWAY
AREA:_NW DISCOVERY
CLAIM: BULL 5
SECTION: $\quad 45300 \mathrm{~N}$
CORE SIZE: HQ:62.48:NQ:140.51:B
CORE RECOVERY: $\quad \mathrm{S}-59 \mathrm{KM}$ - 94% CORE STORED
RACK 10 BAY K
\ldots PAGE 1 OF 2 DEPTH: $\quad 177.39 \mathrm{~m}$
DATE STARTED: SEPT. 26D 1986
DATE FINISHED:-OCT. 3 N 1986
CONTRACTOR:- CARON DIAMOND DRILLING LTD.

Hinor pyrite occurs disseninated in unit 1AMT. No significant mineralization intersected.
Plastic pipe installed and renoved

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	$\mathrm{Az}^{\text {(}}$)	From (m)	To (\mathbf{I})	Int. ($\mathbf{I}^{\text {a }}$	T.W.(1)	Geology	Sample No.	Rec. \%	S.a	Ag oz/t	Pb \%	2n \%	Au ozt	Fe \%	Ag gil/M	Au ga/MT
0.00	-90.00 ${ }^{\circ}$	0.00°	0.00	36.00	36.00		0 B										
174.50	-88.00°	335.00°	36.00	45.50	9.50		18										
			45.50	53.20	7.70		GM										
			53.20	117.00	63.80		18										
			117.00	123.50	6.50		1BA										
			123.50	128.50	5.00		GM										
			128.50	131.35	2.85		1AMT										
			131.35	133.35	2.00		MLSRB										
			133.35	134.00	0.65		ML.SMS										
			134.00	135.90	1.90		MLSST										
			135.90	136.80	0.90		MLSCR										
			136.80	137.90	1.10		MLSMS										
			137.90	138.65	0.75		MLSST										
			138.65	142.40	3.75		MLSMS										
			142.40	142.60	0.20		MLS										
			142.60	143.00	0.40		MLSST										
			143.00	144.70	1.70		MLS										
			144.70	145.05	0.35		MLSMS										
			145.05	146.35	1.30		MLSCR										
			146.35	146.80	0.45		MLSMS										
			146.80	147.50	0.70		MLSCR										
			147.50	148.00	0.50		MLSMS										
			148.00	154.90	6.90		HLS										
			154.90	160.15	5.25		MLSCR										
			160.15	163.00	2.85		MLS										
			163.00	163.70	0.70		MLSCR										
			163.70	164.40	0.70		MLS										
			164.40	165.90	1.50		MLSCR										
			165.90	167.15	1.25		MLS										
			167.15	167.80	0.65		MLSCR										
								CONTINUED				-- -					

keGIUNiAl RESUURCES lTu.

UIAMUND URILL , iELORD

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	Az (t)	From (m)	To (m)	Int. (m)	T.W. (m)	Geology	Sample No.	Rec. \%	s.g.	Ag oz/f	Pb \%	2n\%	Au oz/t	Fe\%	A3 5 aim	As $\mathrm{cm} / \mathrm{mT}$
0.00	-70.000	270.00°	0.00	12.80	12.80		Of										
30.48	-71.50°	270.009	12.80	18.90	5.10		2 AC										
60.96	-71.500^{6}	270.00°	18.50	31.10	12.20		U3P										
91.44	-72.00°	287.009	31.10	43,60	12.50		anc										
121.92	-71.70°	262.001	43.60	44.30	0.70		$\times 0$										
243,84	-72.00°	248.00	44.30	130.00	55.70		EAC										
			130.00	134.00	4.00		GM										
			134.00	135.40	1.40		18?										
			135.40	141.50	E. 10		5 M										
			141.50	144.50	3.00		15										
			144.50	147, ${ }^{20}$	2,70		5										
			147.20	183.48	36. 38		18										
			183.48	195.00	11.52		6 m										
			195.00	210.00	15.00		1ARGM										
			210.00	211.25	1.25		1RC										
			21.25	215.50	4.25		MLSCR										
			215,50	216, 晈	1.35		ML5MS										
			216.85	217.00	2.15		ML5RE										
			219.00	221.28	2.28		MLSMS										
			22128	22.55	0.57		YER										
			221.85	223.77	1.92		ML5\%										
			E23.77	234.30	10.53		YER										
			234,30	234.80	0.50		MLS										
			234.80	235.40	0.60		YER										
			235.40	239.45	4.06		MLS										
			239.46	239.75	0.29		MLSMS										
			239.75	243.84	4.09		MLS										
			243.84	244.75	0.91		M. 5 M 5										
			244.75	245.10	0.35		MLS										
			245.10	245.40	0.30		MLSCR										
								COMTEMED									

keGlunil resuurces lTu.

DIÄMOND DRILL , ,ECORD

ktGIUNAL RESUURCES LTU.

DIAMOND DRILL RECORD

kEGIUIN.AL RESOURCES LTU.

DIAMUND DRILL . E ECORD

ktGlunAl RESUUUrces lTu.

DIAMOND DRILL RECORD

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	Az (1)	From (${ }^{\text {a }}$	To (n)	Int. (1)	T.W. ($\mathbf{I}^{\text {a }}$	Geology	Sampie No.	Rec. \%	s.G.	Ag oz/t	Pb \%	2 m	Au oz/t	$\mathrm{Fe} \%$	Ag gimm	Au gm/MT
0.00	-85.00°	50.00	0.00	12.30	12.30		NR										
36.70	-84.00°	50.00°	12.30	12.50	0.20		OB										
67.20	-84.00°	60.00	12.50	21.95	9.45		2AC										
97.70	-86.00°	42.00°	21.95	22.70	0.75		XQ										
122.70	-88.00°	$70.00{ }^{\circ}$	22.70	24.80	2.10		2 AC										
153.20	-89.00°	80.000	24.80	27.43	2.63		CAVE										
275.10	-88.00°	220.00°	27.43	31.80	4.37		SAND										
317.80	-87.50°	250.00°	31.80	157.60	125.80		2AC										
			157.60	170.70	13.10		GH										
			170.70	171.30	0.60		18										
			171.30	173.60	2.30		GM										
			173.60	205.44	31.84		18										
			205.44	208.80	3.36		NR										
			208.80	214.00	5.20		1B										
			214.00	214.90	0.90		NR										
			214.90	257.00	42.10		18										
			257.00	271.90	14.90		1BA										
			271.90	278.30	6.40		1 AA										
			278.30	280.10	1.80		IAC										
			280.10	288.20	8.10		MLI										
			288.20	289.70	1.50		ML2										
			289.70	290.20	0.50		ML2MS										
			290.20	291.10	0.90		ML2CR										
			291.10	291.80	0.70		ML2MS										
			291.80	293.60	1.80		ML2										
			293.60	294.20	0.60		M L 2 CR										
			294.20	295.90	1.70		ML2										
			295.90	296.40	0.50		12										
			296.40	298.80	2.40		ML2										
			298.80	299.00	0.20		ML2CR										
				--..				Continued			---						

keGIunAl RESUURCES LTu.

DIAMOND DRILL RECORD

APPENDIX "E"

ASSAY \& ANALSIS RECORDS CORE

NOTE: The first three digits of the sample number are the drill hole number i.e., 275-13701 denotes DDH MW-86-275.

AMPLE	ELENENT	Aq	AU	Pb	Zn
IMBEER	UNITS	OPI	OPI	PCI	PCI
$2275-13701$		0.02	<0.002	0.01	0.01

\qquad

PROJECT: MIDUAY
PAGE 1

SAMPLE NUMPEER	ELEMENT	Cu PPM	P4, PPM	Zn PPM	AP9	As PPM	Au PFS	Ph Pra
NLMEER	UNITS	PPM	PPM	PPM	PPP		PFS	PPM
$102279-13728$		23	24	107	0.2	300	15	830
12 279-13729		24	4	33	0.2	60	10	<20

Geochemical Lab Report

REPORT: 126-5531

SAMPLE	ELEMENI	Cu	Pb	Zn	Ag	Fe	A5	Au	Ba	
NUMRER	UNITS	PPM	PPM	PPM	PPH	PCI	PPM	PPB	PPM	
\because										
12 279-13730		44	4	22	<0.2		2	<	150	
D2 279-13731		18	5	18	<0.2		2	<	1200	
D2 279-13732		26	8	38	<0.2		2	<	1000	
[12 283-13752			10	52	0.4			10		
D2 293-13753			<2	12	<0.2	0.30		<		
D2 293-13754			<2	145	<0.2	0.80		< 5		
D2 293-13755			260	3000	1.4	7.00		<		
D2 293-13756			50	1000	0.2	3.45		<		
D2 293-13757			9	264	<0.2	1.35		<		
D2 293-13758			<2	81	<0.2	0.45		<		
D2 293-13759			77	2200	0.6	8.00		5		
D2 293-13760			<2	60	<0.2	0.80		(5)		
02 293-13761			<2	140	<0.2	0.75		< 5		
12 293-13762			11	700	<0.2	5.00		<		
D2 293-13763			42	950	<0.2	>10.00		<		
D2 293-13764			<2	530	<0.2	0.75		<5		

REPORT: 426-4947						PROJECT: MIDUAY	PAGE 1
SAMPLE NUMBER	$\begin{array}{cc} \text { ELEMENI } & \text { Au } \\ \text { UNITS } & \text { OPI } \\ \hline \end{array}$	$\begin{gathered} \text { Ag } \\ \text { OPI } \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PCD} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PCI} \end{array}$	SG		
12 280-13733	0.002	<0.02	0.08	0.10	2.8		
D2 280-13734	<0.002	1.15	0.05	0.82	3.9		
D2 280-13735	0.004	<0.02	0.03	0.06	2.8		
12280-13736	<0.002	1.88	0.16	12.00	3.9		
D2 280-13737	0.002	4.76	0.22	0.12	4.3		
D2 280-13738	<0.002	1.35	0.10	2.80	4.1		
D2 280-13739	<0.002	1.75	0.11	3.00	4.1		
D2 280-13740	<0.002	0.82	0.16	5.10	3.9		
12 280-13741	<0.002	1.51	0.34	8.20	3.9		
D2 280-13742	<0.002	1.60	0.26	12.00	3.8		
12 280-13743	<0.002	<0.02	<0.01	0.11	2.8		
D2 280-13744	<0.002	0.03	0.01	0.12	2.8		
D2 280-13745	<0.002	1.90	0.14	12.00	4.0		
D2 280-13746	<0.002	1.77	0.40	7.55	4.1		
D2 280-13747	<0.002	12.96	8.20	15.40	3.9		
D2 280-13748	<0.002	0.17	0.11	0.24	2.8		
D2 280-13749	0.002	1.27	0.36	3.60	4.2		
B2 280-13750	<0.002	4.98	1.49	7.23	4.2		
D2 280-13751	<0.002	0.96	0.07	0.34	2.8		

Certificate of Analysis

 Tex: 04-352667
\qquad
\qquad
\qquad
\qquad
[

Registered Assayer, Province of British Columbia

APPENDIX F

REVERSECIRCULATION DRILL S UMMARY LOGS

MW-86-285
MW-86-286
MW-86-287
MW-86-288
MW-86-289
MW-86-290
MW-86-291
MW-86-292
MW-86-295

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	Az (1)	From (m)	To (th)	Int. (m)	T.W. (m)	Geology	Sample No.	Rec. \%	s.G.	Ag ozf	Pb \%	2n \%	Au ozn	Fe\%	Ag ¢1M/AT	Au gu/RT
0.80	-32.00°	0.00	0.00	禹玨	3.23		NS										
			8.83	18.30	-0.07		08?										
			20.30	13.81	1.51		$0 \times+6$										
			17.81	79.85	60.05		MLS					,					
			73.86	82.30	2.44		CA UN										
			82, 30	35.63	14.3 3		MLS										
											Pb	Zn	A9	Av	Ba		
								ASSAYS			PPM	PPK	PPM	PPB	PPH		
			8.23	3.75	1.52		08?	13851	0		280	2500	0.4	5	1700=		
			9.75	11.28	1.53		08?	13852	0		330	4600	0.4	10	2200		
			11.28	13.80	2. 52		CE?	13653	0		1280	9200	1.1	15	2700		
			12.80	14.33	1.53		09 ?	13854	0		760	6900	1.0	<5	1500		
			14.33	15.65	:. 52		08?	13855	0		560	5000	0.9	5	2300		
			15.85	17.37	1. 52		08?	13856	0		440	6400	0.8	10	3300		
			17.37	16.90	:. 53		$08+\mathrm{M}$	13857	0		270	4800	0.4	5	1800		
			18.90	19.81	0.91			13856	0		149	4000	0.2	<5	4200		
			19.81	21.95	2.14		MLS	13859	0		28	830	<0.2	5	820		
			21.35	23.50	1.55		M	13860	0		16	440	<0.2	$\stackrel{5}{5}$	330		
			23.50	25.00	1.50		M	13861	0		6	224	<0.2	< 5	640		
			25.00	25.59	1.52		MLS	13862	0		60	1200	<0.2	<5	1900		
			35.66	37.13	1.53		MLS	13863	0		32	540	<0.2	<	490		
			43.28	44,81	1.53		MLS	13864	0		74	860	<0.2	<5	840		
			46.33	47, 85	1.58		MLS	13865	0		24	320	<0.2	<	260		
			73.76	75.23	1.53		M	13865	0		4	200	<0.2	5	980		
			75.29	76.8:	1.52		MLS	13867	0		3	140	<0.2	< 5	790		
			76.81	78.33	1.5		MLS	13868	0		<2	95	<0.2	<	800		
			26.58	3E.6E	3.14		CO:MPO	13897	0		23	520	<0.2	<	630		
			37.19	43.29	6.09		CCMPO	13898	0		15	352	<0.2	< 5	160		
								CONTINUED									

hcàlGryL REsullkleS LTL.

Finalcial ineülhues lTL.

La

SURVEY DATA			GEOLOGY AND ASSAY RECORD															
Depth	Dip	A_{2} (i)	From (m)	To ini	[mt (m)	T.W. (m)	Geology	Sample No.	Rec. \%	s.G.	Ag oz/	Pb		2n \%	Au ozt	Fe \%	Ag. $\mathrm{cm} / \mathrm{ht}$	Au gn/Mt
0.00	-90.090	0.00	0.00	5	5.15		NS											
			5.18	E0.00	i5.8t		LSY											
			25.00	37.30	2. 30		LStox											
			67,30	26.09	0.73		M + ax											
			28.19	$3: 09$	3.4		MLS											
			31.09	41.75	-10.67		M $2+0 \mathrm{C}$											
			4.76	55.47	13.71		MLS											
			55.47	57.00	1.53		ML+0x											
			57.061	58.52	1.5		M. 5											
			56.59	65.09	4.57		M $2+0 \mathrm{C}$											
			63.09	36.30	23.21		MLS											
			85.30	37.00	10.70		CA VN:											
			97.00	105.75	8.75		M, 5											
													2n	Ag	A	B2		
													PPM	PPr	PPB	PPM		
								ASSAYS										
			18.50	20.48	2.5E		LSY	13869	0				500	<0.2	5	4300		
			20.42	21.35	1.53		LSY	13870	0				188	<0.2	<5	3900		
			21.55	23.47	:. 5 E		LSY	13871	0				220	<0.2	<5	3400		
			23.47	23. 00	1. 53		LSY	13872	0				160	<0.2	10	4200		
			25.00	25.5E	1.52		LS+ $\mathrm{D}^{\text {X }}$	13873	O				350	<0.2	5	5400		
			66.52	38.63	2.57		LStox	13874	0				860	0.2	10	4100		
			28.15	23.57	2.40		MLS	13875	0				145	<0.2	10	960		
			29.57	$3: 109$	1.53		MLS	13876	0				324	<0.2	10	2400		
			3i.09	32.61	1.5E		M2+5X	13877	0				820	<0.2	< 5	2900		
			$3 \mathrm{E} .6!$	34.14	1.53		0x+mic	13878	-				1080	<0.2	5	2000		
			34.14	$35.6 E$	i. 3.5		mictox	13879	0				770	<0.2	<5	1200		
			35.65	37.13	1.53		mitox	13880	0				880	<0.2	5	1400		
			37.19	36.71	. $5 \times$		$0 \times+x_{2}$	13881	0				1360	<0.2	<	1400		
								CONTINED										

ReùlGril reSullkuēS lTL.

[ıaMuND uRILL : itcoku

PROPE	TY		MIDWA					D.H. ${ }^{\text {IVWh }}$	96	Eg	-			- PA	E E	- ${ }^{\text {a }}$	E
AREA:						DIP:		Azimut	(t):			DEPT					
CLAIM:						NOR	THING:					date	TARTED:				
SECTIO						EAS	ING:					DATE	NISHED:				
CORE						ELE	Vation:					CO	ACTOR:				
CORE	COVE				. CORE S	ORED AT						LOG	BY:				
COM	S																
	VEY							GEO	LOGY A	ND A	Say re po	Zn	Ag	Au	Ba		
Depth	Dip	A_{2} (1)	From (n)	To in	mitim	TW. (m)	Geology	Sample No.	Rec. \%	s.G.	$\mathrm{Ag} \mathrm{oz}^{\text {O2 }}$ PPM	PPM	PPK	PPB	PPK	qum/MT	Au gu/MT
			38.71	40.35			M $+0 \times$	13988	0		95	1260	<0.2	<	1600		
			40.23	4.76	-1.65		Mi, CO	13863	0		92	1900	<0.2		1200		
			4 4 .76	43.25	:. 5 ?		M ${ }^{\text {S }}$	13894	0		34	880	<0.2	5	640		
			43, 20.	44.8.	:. 53		MS	13885	0		8	280	<0.2	<	150		
			53.93	55.47	1.52		MLS	13885	0		14	232	<0.2	<5	370		
			55.47	57.00	1.5		M $\mathrm{m}_{2}+\mathrm{CX}$	13887	0		27	640	<0.2	<	400		
			57.00	53.5	: \% \%		M. 5	13888	0		7	279	<0.2	<	290		
			58.53	60. 6.4	1.5		Mitox	13889	0		42	920	<0.2	<	520		
			60.04	61.60	- 1.55		mi $+0 x$	13890	0		22	490	<0.2	10	210		
			6. 612	6 C .95	1.49		M 4 +0x	13891	0		19	470	<0.2	<5	160		
			63.92	64.62	L. 5		M LS_{5}	13992	0		23	480	<0.2	<	220		
			54.62	-6E. 14	L.5e		MLS	13893	0		9	96	<0.2	<	110		
			78.33	73.36	-		4.5	13894	0		4	168	<0.2	<	40		
			79,66	-8.30	1.52		W2.	:3995	0		4	200	<0.2	5	90		
			101.19	10.72	1.53		MLS	13836	0		12	200	<0.2	<5	410		
			5.18	18. 50	13.72		COMPJ	13501	0		46	82	<0.2	<	2800		
			44.8:	53.5	3.14		COMPC	13902	0		3	-136	<0.2	<	150		
			E5. 14	78.35	12.6		caipo	13903	0		5	152	<0.2	<	380		
			31. 39	101. 19	19.81		COMPC	133014	0		<2	50	<0.2	< 5	370		
			:00. 72	105.75	-3.04		compl	13905	0		6	45	<0.2	<	830		

Feùlural resullkles lTU．

［IAMUND URILL $A E C O R D$

SURVEY DATA			GEOLOGY AND ASSAY RECORD																
Depth	Dip	$A z$（1）	From（ia）	To（in）	Int（ n ）	T．W．（m）	Geology	Sample No．	Rec．\％	S．G．	Ag 02f		Pb \％		Zn \％	Au ozth	Fe\％	Ag $\mathrm{gm} / \mathrm{MT}$	Au gm／Mt
0.00	$-50,000$	0.009	0.00	36	3.65		NS												
			3.65	58.59	54.85		His												
			58.52	63.03	4． 57		OX＋${ }^{\text {and }}$												
			63.19	67．E？	4.58		NS												
			67.67	69.13	$\therefore 52$		Mis												
			69.19	37.48	18.23		NS												
			87.48	89.00	1．5		$0 \times+$ W												
								AS5AYS				Pb		Zn	Ag	Au	Ba		
	．				，							PPM		PPK	PPM	PP8	PPY		
			3.65	Fin	1．5E		禹S	：3905	0			290		6600	<0.2	5	740		
	．		5.18	6.71	1.33		N： 5	13907	0			67		2500	<0.2	＜	720		
			11.28	12.86	－ 1.5 FE		HLS	13908	0			86		1210	＜0．2	5	530		
	：		17.37	18．70	11.33		MiS	13909	0			75		560	<0.2	＜5	280		
			18.50	20.4	！ 1.5		\％LS	13910	0			40		570	＜0．2	＜ 5	320		
r			20， 42	21.95	：，5j		M ${ }_{\text {L }}$	13911	0	．		134		520	＜0．2	く5	530		
			55.47	57.00	$1 . \mathrm{E}$		MLS	13912	0			＜2		144	＜0．2	く	350		
			57.00	55.5	1.58		MLS	13913	0			18		156	＜0．2	＜5	370		
			58.32	60.65	－1．53		M $x^{2}+0 \times$	13914	0			26		780	＜0．2	＜	470		
			60.05	61.57	1.59		$0 \times+8$	13915	0			40		1100	<0.2	5	560		
			6：． 57	63.05	1 ¢．5E		OX＋M	13916	0			57		1520	く0．2	5	500		
			67.67	59.15	1． E $_{\text {E }}$		MLS	13917	0			56		720	<0.2	5	350		
	，		87.48	53.6	－ 1.5		$\mathrm{CX}_{2} \mathrm{M}_{-}$	13919	0			71		900	＜0．2	＜ 5	1000		
			6.71	1.29	4.57		Carpo	13919	0			47		540	＜0．2	＜	760		
			12.80	［17．37	1－4．57		Cowip	13920	0			25		400	＜0．2	＜ 5	300		
			21． 35	5.47	35．5		［ampo	13921	0			31		250	<0.2	＜	790		
					！														

heùluril resuulkuES lTL.

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	$\mathrm{A}_{2}(1)$	From ! \%)	10 in)	Int (m)	T.W. (x)	Geology	Sample No.	Rec. \%	S.G.	Ag oz/t	Pb \%	Zn \%	Au ozll	$\mathrm{Fe} \%$	Ag $\mathrm{gm} / \mathrm{MT}$	Au gm/xT
0.00	-70.80	0.009	0,00	E, 5	E. 28		15										
			5.10	2.5	;6.7?		ML3										
			2: 95	24.93	3.64		M y + + X										
			24. 39	65.14	40.35		MS										
			55.34	E6. 75	0.91		CRVE										
			66.73.	77.73	0.37		YiS										
			77.72	76.15	2, 45		CRVE										
			70.:8	59.5	:9. 97		Mis										
			58.15	95. 67			Hitix										
			33.57	:10,36	0.57		M C S										
			110.35	2insis	0.57		Fincx										
			$121.0 \pm$	159.77	43.76		\% ${ }_{2}$										
												Pb	\%	Ag	Ba		
								ASSAYS				PPM	PPK	PPM	PPK		
			9.75	:1, 20	2. 53		MS	13929	0			13	\%	<0.2	280		
			11.28	S2.80	i. $\mathrm{E}^{\text {2 }}$		\%	13323	0			61	176	<0.2	200		
			57.37		$\therefore .55$		MLS	13924	0			44	322	<0.2	450		
			15.90	60.43	1.32		MLS	13935	0			31	285	<0.2	300		
			20.42	2., 35	2.55		Pitax	13926	0			83	1410	<0.2	520		
			83.95	83.47	1.28		\% $2+0 x$	13987	0			94	1300	<0.2	350		
			E3. 47	24.95	- 5.5		PiL $+0 \times$	13928	0			75	930	<0.2	270		
			24.39	E.EE	1.5		MLS	13923	0			24	368	<0.2	180		
			6530	\% 28	1.5		MS	13730	0			24	260	<0.2	220		
			41.75	$4{ }_{4} 5$	湤		MS	13331	0			30	460	<0.2	150		
			6.. 57	63. 0	$\therefore 2$		YLS	13922	0			18	206	<0.2	310		
		.	63.03	64.63	$\underline{1.53}$		MLS	13933	0			21	170	<0.2	270		
			64.5	E6. 14	1.5		MLS	13934	0			16	224	<0.2	120		
			65.14	67.67	. 5.5		MLS	13935	0			34	273	<0.2	260		
								CONTINUSD									

SURVEY DATA			GEOLOGY AND ASSAY RECORI									$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPH} \\ 15 \end{array}$	$\begin{aligned} & \mathrm{Zn} \\ & \mathrm{PPH} \\ & 150 \end{aligned}$	$\begin{array}{r} \text { Ag } \\ \text { PPH } \\ <0.2 \end{array}$		a	
Depth	Dip	$A z(1)$	From (m)	To imi	Int（io）	T．W．（n）	Geology	Sample No．	Rec．\％	S．G．	Ag oz／t					An Em／MT	Au gn／mT
			67.67	53.3	1，3		7tis	13936	0								
			63.2	72.75	$\therefore 52$		Mis	13937	0			545	480	0.2	710		
			70．71	75.24	1.53		颜	13938	0			29	158	<0.2	430		
			72． 24	72．75	－河		\＃5	13929	0			31	112	<0.2	220		
			73.75	7 7	1.53		0×5	13940	0			13	100	＜0．2	280		
			75． 27	－ 75.8	$\therefore \mathrm{E}$		4.5	13941	0			12	72	<0.2	200		
			76.61	75.33	1.5		$\underline{4}$	13942	0			10	77	<0.2	280		
			$7 \mathrm{C}, ~ 3{ }^{3}$	79.8	－i．55		KLS	13943	0			27	104	<0.2	580		
			73.85	51．35	1．5：		75	13344	0			66	160	<0.2	270		
			81.35	953：	$\therefore 53$		，	13545	0			34	92	<0.2	240		
			93， 10	95 5	1． 5		H5	13346	0			37	450	＜0．2	730		
			56，65		－ 5		Y，	13347	0			29	350	＜0．2	770		
			98． 15	95．${ }^{1}$	\therefore ¢		M $+2 X$	13948	0			52	260	＜0．2	1000		
			93.67	101． 3	\therefore－ 5		Mis	13943	0			18	210	＜0．2	720		
			101.13	： 03.75	－ 1.5		Y－S	13350	0			31	390	＜0．2	950		
			10， 72	104.54	：E\％		4， 5	1395］	0			42	520	＜0．2	3000		
			104．24	105.77	$\therefore 53$		MS	1395	0			28	260	<0.2	720		
			$10 \mathrm{E}, 77$	：07，$=5$	¢ E		MES	13953	0			23	324	<0.2	890		
			107.29	16E．E	1．55		M，S	13954	0			15	170	＜0．2	860		
			：09， 8 ¢	101035	\therefore		MES	13955	0			29	248	＜0．2	1500		
			$: 10.34$	211.85	$\therefore \mathrm{Cz}$			13956	0			21	296.	＜0．2	800		
			112．Ė	＂运	湤它		$0 \times$	13957	0			32	300	0.3	7100		
			113.35	：14．5．	$\bigcirc 5$		Ex＋x_{2}	13358	0			49	520	0.2	4000		
			1：4．9：	\therefore ¢ 48	$\therefore 5$		$\cdots \mathrm{M}+0 \mathrm{X}$	13957	0			33	420	0.2	1600		
			116.43	$\because 17.95$	2.5		\cdots	13350	0			58	700	0.2	2600		
			1：7，9\％	¢ ${ }^{2}$	：58		\cdots	13361	0			51	720	0.2	720		
			$\pm: 7.48$	1500	$\therefore 53$		M $2+ \pm X$	13582	0			27	392	＜0．2	360		
		．	－E\％． 01	\％	－ 5.5		MS	13363	0			24	336	＜0．2	730		
			：E2， 5		，号		MS	13364	0			13	110	<0.2	760		
			5.18	3，${ }^{\text {I }}$	4.57		CCOFO	13365	0			30	304	<0.2	230		
			12.36	17．3\％	4．：37		COYPD	13956	0			11	360	<0.2	90		
								CONTINUED									

Ficullunl riebulukles lTL.

LIAMUND uRILL 子̇ECOKD

kealorial resuurces ltu.

RlùlGiqL reSullfuēs lTL.

DiaMund urill ©ecoku

SURVEY DATA			GEOLOGY AND ASSAY RECORD															
Depth	Dip	$A_{2}(1)$	From (m)	To (ix)	1 nm [;in)	T.W. (m)	Geology	Sample No.	Hec. \%	S.G.	Ag ozil	Pb \%		2n \%	Au ozh	Fe \%	Ag gm/MT	Au gu/h
0.00	$-20.00{ }^{\circ}$	0.00	0.00	$3.6 \div$. 3.56		N											
			3.65	28.04	-34,38.		LSY											
			28.04	44.812	. 8.77		15+0x											
			44.8:	53.80	13.79		LSY											
			54.80	59.50	0.70		GU16E											
			59.50	53.05	3.53		LSY											
			63,03	54.62	: 53.		LStox											
			64.62	67.67.	3.25		M CO											
			67.67	305	1_30.86		WH.											
			22.53	3545	$3{ }^{3}$		NS											
																.		
								ASSAYS			MEMI	Pb	2 n			8		
											MIIS	PPM	PPM			PPM		
			28.04	34.14	6.10		LStix	14201	0			${ }^{1} 43$	272			2900		
			34. 14	40.23	5.69		LStox	18202	0			57	100			1900		
			40.23	4.5	5.:0		LStiox	18203	0			36	94			2000		
			$4{ }^{4} .33$	52.45	5.10		LSY	18204	0			25	98			2100		
			52.43	5.5	1 E.03		LSY	18205	0			19	174			3500		
			50.53	63.05	4, 57		LSY	18205	0			24	180			3700		
			63.05	64.60	1.55		LS+DX	18207	0			43	460			5000		
			64.52	66.94	1.92		mi +0 x	18208	0			. 164	480			1900		
			66.14	67.67	: 5.5		PL $2+0 \mathrm{~L}$	18209	0			34	-335			860		
			57.67	69.3			kLS	18210	0			12	114			330		
			82.00	90. 5	, 55		\% 15	18211	0			53	290			80		
			26	25, 㐱	34.38		compo	18212	0			18	170			2200		
			69.9.	72.84	3.6		C0, 9	16213	0			22.	182			110		

ReùlGin? reSullfuēS lTL.

CiaMund urill atcokd

SURVEY DATA			GEOLOGY AND AS								$\begin{aligned} & \text { EMEXIEI } \\ & \text { UNITS } \end{aligned}$	Pb PPY	$\begin{array}{r} \mathbf{Z n} \\ \text { PPM } \end{array}$		$\begin{gathered} \text { Ba } \\ \text { PPM } \end{gathered}$		
Depth	Dip	A2 (1)	From 18i	10	Int. O	T.W. $\{n\}$	Geology	Sample No.	Rec. \%	S.G.						AO Qm/MT	Au 03/MT
			73.75	3, 5	3-5		EExpo	18331	0			18	153	<0.2	210		
			E0\%		-7.57		corod	18.35	0			10	115	<0.2	590		
			.														
															,		
		.															
					I												

kealumen REsuUkleS LTU.
PROPERTY
rIDWAY

PAGE_1
DEPTH:- 10е. 7 Em
DATE STARTED:- DCTOEER 131986 DATE FINISHED:- UCTOEER 141986 CONTRACTOR: MIDNSGHT SUN IRLNG CO.LTD. LOGGED BY: P. DONKERSLDOT
CORE STORED AT:

COMMENTS: OHE D-CORE STORE品

SURVEY DATA

Depth	Dip	\wedge_{2} (1)	Fromi (0)	in	Int in	T.W. (m)	Geology	Sample No.	Rec. \%	s.G.	Ag oz/h	Pb \%	Zn \%	Au ozf	Fe\%	Ag_gu/mT	Au gm/RT
0.00	-30,00\%	0.00	0.00	E.15.	5.15		13										
			5		20, 43		LSY										
			55.55	47.85	¢ 3.9		LStox										
			-- 47.EE	43.30	...		1.5Y										
			49.38	8.3)	1.E		-Stcx										
			50.90	$5 \mathrm{E}, 5$	- Fi		cx										
			53.42	E5. ${ }^{\text {E }}$	1_		$\mathrm{rax}_{\sim}+3 \mathrm{x}$										
			58.56	16.iE	1-4.20		H_{3}										
											-						
								ASSAYS			HLEXENI	Pb	7n	Ag	B3		
											WNITS	PPK	PPM	PPM	PPY		
			E5.56	4.0	E. 10		:S+DX	18933	0			23	105.	<0.2	1200		
			4.75	47.35	8. 03		LStDX	18234	0			67	220	<0.2	3200		
			47.85	43.10	$\underline{15}$		LSY	18235	0			26	398	<0.2	4800		
			49.35	E, 2	1. 3		$0 \times+25$	18236	0			50	395	<0.2	4900		
			E0, 00	1-EE.43	$\therefore .5$		DX	18237	0			152	780	0.3	3900		
			52.43	E, 5	$\therefore .53$		M2 + UX	18238	0			66	1400	0.5	1600		
			53. E® 4	! E2, 47	: 2.		$x+0 x$	10399	0			62	1000	0.2	1500		
			E3.67	57.90	1 $\therefore 35$		$0 x+$ Y	18340	0			75	1560	0.4	2000		
			67.00	55.5	1.5		OXPM M	18241	0			50	640	<0.2	1900		
			58.5	O, 2	$\therefore 2$		M, 5	18:42	0			15	245	<0.2	740		
			5.15	TE, 6			CGYEO	18543	0			45	145	<0.2	1600		
			60,04	E1. 3	2i.5i		cexpe	$18: 44$	0			15	80	<0.2	710		
			5:23	Cintis	$\because 5$		CMPT	18e. ${ }^{5}$	0			13	65	0.2	910		
	.																
:		.															
-																	

GEOLOGY AND ASSAY RECORD

SURVEY DATA			GEOLOGY AND ASSAY RECORD														
Depth	Dip	A_{2} (i)	Fromi ${ }^{\text {jol }}$	70 \%	Wer	T.W. (f)	Geology	Sample No.	Rec. \%	s.g.	Ag ozh	Pb \%	2n \%	Av 02/	Fe\%	Ag om/MT	Au gm/MT
0.00	$-72,609$	0.008	0.00	4.51	4.75		Ns										
			5.57.	2.20	-7a3		L.5Y										
			21.23	24.6)	二景		$15+5 \times$										
			24.00	$\therefore 00$	$\therefore 0$		$x+0 x$										
			25010	53.4	- -34.44		Mis										
			-53.44	-. 78.64	-520		NS										
								ASSAYS			EIEMENI	Pb	Zn	Ag	Ba		
											LNITS	PPM	PPM	PPM	PPM		
			14.5	2.42	6.02		L. 59	18246	0			34	110	<0.2	4500		
			2.42	2 Ca	..53		LSY	18247	0			38	140	<0.2	4700		
			3.55	20.47	:. 5 2		OX+LS	18248	0			195	1300	0.2	9700		
			23.47	24.93	1 1.E2		M 2 +0x	18249	0			570	17000	1.9	4200=		
			24.95	EE	$\underline{.65}$		YLS	18250	0			172	8800	0.5	1400		
			8	36.4	¢ ${ }^{5}$		YLS	1825:	0			62	3100	0.5	550		
			4.57	443	2.5		camio	18252	0			36	108	0.2	2500		
			23.04	76.56			caryen	19253	0			65	1100	0.3	670		
					I												
					!												
	-																

APPENDIX "G"

ASSAY AND ANALYSIS RECORDS SHEETS- CHIPS
CERTIEICATES Of ANALYSIS - CHIPS
NOTE: The first three digits of the samplenumber are the drill hole numberi.e., 285-13851 denotes RCD MW-86-285.

	SAMPLE NUMBER	$\begin{gathered} \text { ELEMENT } \\ \text { UNITS } \end{gathered}$	Pb PPM	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPK} \end{array}$	$\begin{aligned} & \text { Ag } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { AU } \\ & \text { PPB } \end{aligned}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{PPM} \end{gathered}$
	R2 285-13851		280	2500	0.4	5	$1700=$
	R2 285-13852		330	4600	0.4	10	2200
	R2 285-13853		1280	9200	1.1	15	2700
	R2 285-13854		760	6900	1.0	<5	1500
	R2 285-13855		560	5000	0.9	5	2300
	R2 285-13856		440	6400	0.8	10	3300
	R2 285-13857		270	4800	0.4	5	1800
	R2 285-13858		149	4000	0.2	<5	4200
	R2 285-13859		28	830	<0.2	5	820
	R2 285-13860		16	440	<0.2	<	330
	R2 285-13861		6	224	<0.2	<	640
	R2 285-13862		60	1200	$\langle 0.2$	<	1900
	R2 285-13863		32	540	<0.2	<	490
	R2 285-13864		74	860	<0.2	<5	840
	R2 285-13865		24	320	<0.2	く5	260
	R2 285-13866		4	200	<0.2	5	980
	R2 285-13867		3	140	<0.2	< 5	790
	R2 285-13868		<2	95	<0.2	<	800
	R2 286-13869.		34	500	<0.2	5	4300
	R2 286-13870		21	188	<0.2	<	3900
	R2 286-13871		18	220	<0.2	<5	3400
	R2 286-13872		32	160	<0.2	10	4200
	R2 286-13873		57	350	<0.2	5	5400
	R2 286-13874		78	860	0.2	10	4100
	R2 286-13875		10	145	<0.2	10	960
	R2 286-13876		29	324	<0.2	10	2400
	R2 286-13877		85	820	<0.2	<	2900
	R2 286-13878		75	1080	<0.2	5	2000
	R2 286-13879		34	770	<0.2	<5	1200
	R2 286-13880		35	880	<0.2	5	1400
	R2 286-13881		112	1360	<0.2	<	1400
	82 286-13882		95	1260	<0.2	<	1600
	R2 286-13883		92	1900	<0.2	5	1200
	R2 286-13884		34	880	<0.2	5	640
	R2 286-13885		,	280	<0.2	<	150
	R2 286-13886		14	232	<0.2	<5	370
	R2 286-13887		27	640	<0.2	< 5	400
	R2 286-13888		7	279	<0.2	<	290
	R2 286-13889		42	920	<0.2	<	520
	R2 286-13890		22	490	<0.2	10	210

SAMPLE NUKBER	ELETENT UNITS	$\begin{gathered} \text { Pb } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPK} \end{array}$	$\begin{array}{r} \text { Ag } \\ \text { PPK } \end{array}$	$\begin{array}{r} \text { AU } \\ \text { PPB } \end{array}$	$\begin{gathered} \text { Ba } \\ \text { PPY } \end{gathered}$
R2 286-13891		19	470	<0.2	<	160
R2 286-13892		23	480	<0.2	<5	220
R2 286-13893		9	96	<0.2	<5	110
R2 286-13894		4	168	<0.2	<5	40
22 286-13895		4	200	<0.2	5	90
R2 286-13896		12	200	<0.2	<5	410
R2 285-13897		23	520	<0.2	く5	630
R2 285-13898		15	352	<0.2	<5	160
R2 285-13899		82	124	<0.2	く5	290
12 285-13900		32	36	<0.2	<	1200
R2 286-13901		46	82	<0.2	<	2800
R2 286-13902		3	136	6.2	< 5	150
		5	152	<0.2	<	380
L2 286-13904		<2	50	<0.2	<5	370
R2 286-13905		6	45	<0.2	<	830
22 287-13906		290	16600	<0.2	5	740
R2 287-13907		67	2500	<0.2	<5	720
R2 287-13908		86	1210	<0.2	5	530
R2 287-13909		75	560	<0.2	<	280
R2 287-13910		40	570	<0.2	<	320
R2 287-13911		134	520	<0.2	< 5	530
R2 287-13912		<2	144	<0.2	<	350
R2 287-13913		18	156	<0.2	<5	370
R2 287-13914		26	780	<0.2	<	470
R2 287-13915		40	1100	<0.2	5	560
R2 287-13916		57	1520	<0.2	5	500
R2 287-13917		56	720	<0.2	5	350
R2 287-13918		71	900	<0.2	< 5	1000
R2 287-13919		47	540	<0.2	<	760
R2 287-13920		25	400	<0.2	<	300
R2 287-13921	,	31	250	<0.2	< 5	790

Geochemical

Lab Report
Tclex: 04-352667

Geochemical
 Lab Report

REPORT: 126-5677

PROJECI: HIDUAY
PAGE 1

SAKPLE	ELEYENI	Pb	Z_{n}	Ag	AU	Ba	Ba
NUKBER	UNITS	PPH	PPH	PPM	PPB	PPH	PCI

R2 289-13976	43	1930	0.2	960
R2 289-13977	50	7000	0.4	1400
R2 289-13978	43	3400	0.4	910
R2 289-13979	29	1260	<0.2	1200
R2 289-13980	22	640	<0.2	1100

R2 289-13981	19	230
R2 289-13982	14	152
R2 289-13983	17	194
R2 289-13984	19	296
R2 289-13985	11	203

R2 289-13986	24	460
R2 298-13987	5	150
R2 299-13988	15	90
R2 289-15331	5840	410
R2 289-15332	5910	6800

R2 289-15333	>10000	15800	14.0	240	>20000
R2 289-15334	>10000	11600	15.0	260	>20000
R2 290-18201	430	272	0.3		2900
R2 290-18202	57	100	<0.2		1900
R2 290-18203	36	94	<0.2		2000
R2 290-18204					
R2 290-12805	25	98	<0.2		2100
R2 290-18206	19	174	<0.2	3500	
R2 290-18207	24	180	<0.2	3700	
R2 290-18208	43	460	<0.2	5000	
R2 290-18209	164	480	<0.2	1900	
R2 290-18210					
R2 290-18211	34	335	<0.2	860	
R2 290-18212	12	114	<0.2	330	
R2 290-18213	53	290	<0.2	80	
	18	170	<0.2		2200
	22	182	<0.2	110	

59
109
21
24
$14 \quad 1780$
780

| 550 | 2.4 | 6000 |
| :--- | :--- | :--- |510

$2.8 \quad 680$
$0.9 \quad 1900$
0.91900
0.21000
-

0.2	110
<0.2	60
<0.2	90
<0.2	130
0.2	70

530

0.2	530
<0.2	210
<0.2	270

5.6	780	>20000	5.3

14.0
$760>20000$17.0
10.0
12.0
PROJECT: MIDWAY

גEPORT: 126-5858						PROJECT: MIDUAY	PAGE
2AMPLE HAMBER	ELEXENI WIIS	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPH} \end{array}$	Ag PPM	$\begin{array}{r} \text { Ba } \\ \text { PPM } \end{array}$		
R2 291-18214		16	75	0.2	2200		
22 291-18215		20	60	<0.2	1900		
R2 291-18216		19	180	<0.2	2600		
R2 291-18217		22	440	<0.2	4200		
22 291-18218		24	490	<0.2	3900		
22 291-18219		23	420	<0.2	3900		
12 291-18220		66	520	0.2	4300		
22 291-18221		85	840	0.4	1500		
R2 291-18222		42	640	0.2	800		
2291-18223		21	180	<0.2	320		
R2 291-18224		37	530	0.5	350		
R2 291-18225		19	240	0.2	170		
R2 291-18226		64	980	0.5	720		
$2291-18227$		47	670	0.3	490		
R2 291-18228		27	315	0.2	220		
12 291-18229		29	170	0.3	1900		
R2 291-18230		31	85	<0.2	2000		
22 291-18231		18	153	<0.2	210		
32 291-18232		10	115	<0.2	590		
K2 292-18233		23	105	<0.2	1200	.	
12 292-18234		67	220	<0.2	3200		
.12 292-18235		26	398	<0.2	4800		
R2 292-18236		50	395	<0.2	4900		
12 292-18237		152	780	0.3	3900		
12 292-18238		66	1400	0.5	1600		
22 292-18239		62	1000	0.2	1500		
R2 292-18240		75	1560	0.4	2000		
R2 292-18241		50	640	<0.2	1900		
R2 292-18242		15	245	<0.2	740		
$\times 2$ 292-18243		45	145	<0.2	1600		
R2 292-18244		15	80	<0.2	710		
2 292-18245		13	65	0.2	910		
12 295-18246		34	110	<0.2	4500		
R2 295-18247		38	140	<0.2	4700		
92 295-18248		195	1300	0.2	9700		
$\times 2$ 295-18249		570	17000	1.9	$4200=$		
R2 295-18250		172	8800	0.5	1400		
12 295-18251		62	3100	0.5	550		
.2 295-18252		36	108	0.2	2500		
R2 295-18253		65	1100	0.3	670		

SAAPLE MMFBER	ELEMENI UNITS	Pb PCI
R2 289-15333		4.12
R2 289-15334		2.50

\qquad

