87-73-15569 3/88

DIAMOND DRILL REPORT

ON THE

ZE GROUP

Cariboo Mining Division 93 B/9W(Latitude 52 357, Longitude 122 477) 37.4' $IB \cdot I'$

> OWNER AND OPERATOR GIBRALTAR MINES LIMITED

FILMED

2

McLEESE LAKE, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

15,569

Submitted: February 25, 1987

Author: G. D. Bysouth

TABLE OF CONTENTS

1	INTRODUCTION	1
2	MINERAL CLAIMS	2
3	DRILL PROGRAM	3
	3.1 Objectives	3
	3.2 Results	3
	3.3 Interpretation	4
4	STATEMENT OF EXPENDITURES	õ
5	CONCLUSIONS	6
FI	GURES	
	Figure 1. Area Location Map)
	Figure 2. Ze Group Claim Map and Drill Location Map(In Pocket))
AP	PENDICES	
	APPENDIX I. Statement of Qualifications	
	APPENDIX II. List of Abbreviations	
	APPENDIX III. Drill Logs	
	Drill Log: Hole 86-63	
	Drill Log: Hole 86-64	

Drill Log: Hole 86-65

e' J

: .

Ĵ,

1 INTRODUCTION

The Ze Group lies about 6.5 km. north of the Gibraltar Mines plantsite at an elevation of 1100 to 1500 meters. The claims cover a series of low rocky hills separated by broad tracts of poorly drained ground. Access is via a network of logging and exploration roads which link up with the Gibraltar Mines tailings pond road just north of the pond. General location of the claims is shown in Figure 1.

The original claims of the Ze Group were first staked in 1977 to cover a large I.P. anomaly. Drilling in 1978, 1981, and 1985 revealed the anomaly was caused by a graphitic argillite unit which also contained abundant pyrite mineralization of possible syngenetic origin. Widespread gold anomalies developed in soils overlying the graphitic rocks, large zones of zinc enrichment associated with the syngenetic pyrite and pervasive quartz-ankerite veining developed in the argillite and adjacent rocks, provided the chief impetus for continued exploration. These drilling programs have been covered in four assessment reports.*

This report deals with a 1986 drill program aimed at testing a strong E.M. conductor. Three short vertical N.Q. diamond drill holes totalling 1048-feet (320-meters) were completed during the period August 30 to September 5 by J. T. Thomas Diamond Drilling Ltd. of Smithers, B.C. The core is stored at Gibraltar Mines Limited.

* Assessment Reports by G. D. Bysouth

- 1. Percussion Drilling Report, Ze Mineral Claims, July 1978
- 2. Diamond Drill Report, Ze Group, 1981
- 3. Diamond Drill Report, Ze Group, 1985
- 4. Diamond Drill Report, Ze Group, 1986

ŧ

2 MINERAL CLAIMS

e de sante e es

The Ze 1 Group mineral claims are shown in Figure 2. Claim details are provided below:

CLAIM NAME	RECORD NO.	NO. OF UNITS	ANNIVERSARY DATE
Ze 1	458	15	July 22
Ze 2	6621	20	Nov. 01
Ze 3	3927	20	Aug. 17
Ze 4	6620	10	Nov. Ol
Ze 5	07101	6	Aug. 16
Ze 6	07099	10	Aug. 16
Ze 7	07100	2	Aug. 16
Ze 8	07190	12	Oct. 25

3 DRILL PROGRAM I ft = 30.5 cm

3.1 Objectives

The purpose of this program was to explore a strong E.M. conductor located upstream from a large copper-zinc drainage anomaly. The geochemical anomaly was of particular interest because it appeared to be down stream from a pyritiferous zinc-bearing argillite. It was hoped the anomaly was a reflection of a copper-rich phase of the argillite sequence. Hole locations are shown in Figure 2.

3.2 Results

Drill hole 86-63 was cased to 171-feet. From 171-feet to the bottom of the hole at 305-feet, a medium grained quartz diorite was intersected which, in both composition and general appearance, resembled the quartz diorite host rock of the Gibraltar ore bodies. The rock was totally barren. The only structure of interest was an eight-foot quartz-ankerite zone which contained about one percent specularite. The core was not assayed.

Drill hole 86-64 was cased to 147-feet. From 147- to 184feet, a limonite stained fault zone was intersected. Rock fragments within the fault appeared to have been acid leached; this plus the abundant limonite suggested the presence of From 148-feet to the bottom of the hole at oxidized sulphides. 439-feet, a quartz diorite identical to that of 86-63 was encountered. This hole was also barren but did contain several leucocratic zones, which in the mine area, are indications of mineralized systems. The zones have gradational boundaries and consist essentially of quartz, ankerite, white feldspar and about one percent specularite. They appear to be alteration zones rather than intrusive dykes. The core was not assayed.

Drill hole 86-65 was cased to 60 feet. From 60-feet to 111-feet, a guartz diorite was intersected which was similar to that of holes 86-63 and 86-64. This hole however, appeared silicified, and at about 80- to 96-feet showed a gradual transformation to a molybdenite-bearing leucocratic zone. A well-defined leucocratic zone was encountered from 111to 209-feet which contained significant molybdenite also mineralization, associated with guartz veining. From 209-feet to the end of the hole at 304-feet a silicified guartz diorite was intersected which also showed several gradations to again leucocratic zones. The leucocratic zones in all cases appeared to consist essentially of quartz. white feldspar and ankerite. The core was assayed down to 160-feet which gave 100-feet of 0.051% molybdenite but only negligible copper.

3.3 Interpretation

The results obtained in this program were totally The E.M. anomaly and the copper-zinc drainage unexpected. anomaly were originally interpreted as being caused by the sulfide-bearing black argillite unit. The relationship between the argillite and quartz diorite is at this point unknown. The argillite is interpreted to be the basal member of a Jurassic(?) sequence of sedimentary and volcanic rocks, and is also interpreted to stratigraphically overlie metavolcanic rocks of the Cache Creek Group. The guartz diorite appears correlative with the Gibraltar host rock, and may therefore be of Upper If this is so, these quartz diorites may also be Triassic age. overlain by the argillite. The lack of any hornfelsic alteration in nearby argillite exposures adds some support to this idea.

The quartz diorite has obviously undergone some sort of silica-carbonate alteration which was also responsible for the molybdenite and specularite mineralization. Trenches several hundred feet south of hole 86-65 have shown similar alteration patterns but with abundant pyrite and chalcopyrite rather than A significant mineralized system has therefore, molybdenite. been indicated but the amount of sulfide seen does not account for the E.M. anomaly. The fault zone intersected in hole 86-64 may have acted as a conductor, but since it was intersected in only one hole, this is not a satisfactory explanation.

4 STATEMENT OF EXPENDITURES

(1) Drilling Costs

Direct Footage Charges Hole 86-63 305' @ \$13.50/foot = \$ 4,041.25 Hole 86-64 433' @ \$13.50/foot = \$ 5,737.25 <u>498'</u> @ \$13.50/foot = <u>\$ 4,028.00</u> Hole 86-65 1,042' \$13,806.50 Man and Machine Hours 33 man hours @ \$21.00/hr. = \$ 693.00 11 machine hours @ \$40.00/hr. = \$ 440.00 Water Truck Ξ \$ 4,500.00 \$ 5,633.00 Lost Equipment \$ 1,570.00 = Total Drilling \$21,009.50 (2) Supplies Core boxes: 50 boxes @ \$6.00/box \$ 300.00 (3) Vehicle Costs Rental 4x4, 1986 pick-up 4 days @ \$35.40/day \$ 141.60 (4) Assay Costs 10 Cu-MoS2 assays at \$4.40/assay \$ 44.00 (5) Personnel Costs Core Logging and Supervision G. D. Bysouth

Dec 4 8 hrs. Dec 11 8 hrs. Feb 10 <u>8 hrs.</u> 24 hrs. @ \$31.00/hr. = \$ 744.00

Field Work and Core Preparation

B. Locke Sep 2 8 hrs. Sep 4 <u>4 hrs.</u> 12 hrs. @ \$14.29/hr. = <u>\$ 171.48</u> Total Personnel Costs

TOTAL EXPENDITURE

<u>\$ 915.48</u>

\$22,410.58

5 CONCLUSIONS

This drill program has not adequately explained the E.M. conductor, but it has raised the possibility of there being a porphyry-type mineralized system within the Ze Group. This possibility must be investigated further.

S. D. Byrouth

G. D. Bysouth Senior Geologist Gibraltar Mines Limited

APPENDIX I. Statement of Qualifications

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally logged the core and assessed the results of this drill program.

Sarry N. Rysouth Garry D. Bysouth

alt'daltered
calcalcite
carbcarbonate
chlchlorite
cpchalcopyrite
crencrenulated
dissemdisseminated
folnfoliation
grngrained
hhardness
pypyrite
qtzquartz
rxrock
sphalsphalerite
strstrong
stkwkstockwork
wkweak
x-cuttingcross-cutting

--.-.

)	140	rot	= 30.	5 cm	\cdot				9					5 2 2	9		
	GRID		-			G	IBRALT	AR MINES	LTD.			HOLE SHEET	No	<u>6-63</u> 101.	3			
LOCATION	Ze GROUP		- •	[ARM8	· · · · ·		LATITUSE	-		CORE SIZE	N. 0	.w.		L0	«««» m	G.D.	B	
DATE COLLAR	10 30 - Aug - 86	<u>.</u>	 	· <u> </u>	°		ELEVATIO	×			•	= 10			··· <u>···</u>	<u></u>	10.00	
CK TYPES	ALTERATION	7	GRAPI	10	· · ·			FRACTURE	•	BOTTOM DEPTHS	7	T	T	1	AS	SAY RES	ULTS	
<u> </u>		13 2		1 101		tis ett		ANGLE TO	AATE	LEACH CAP 0	-	Core	ROD	Sample	1%.	%		-
		- 7	Alleren		2.2	Ularre		-FREQUENCY-		SUPERGENE O AEMARKS		*******		Nomber	Cu	Mo	1.1	Cred
	Casing To		Π	1				0							1			
								30 40 50									-	
								60 70							-			
	· · ·		071	<u> </u>				90 0			-							
	QUARTZ DIORITE		11				ŀ	70 20 30		very barren core with	173							
	_(171'-305)	ND .						10 50 50	σ	of shearing.	177	95						.°1
	- poss. Mine Phase		180					20 20 20		-geol appear ident. to that of 86-84	'							ĺ
	1/20 - 1/8 , ava 1/10"	Π						0				98						1
	~ 15 % ragged chi	СИ					15121	0 0	0									ol
	~ 30 of qts - tends to be intervitual to sugar and not reach		190	/ 15	1/3	qq-hem	361×167				187							
	~ soo/, sous plag			,			4	2				100						
	yrisns.	ND.		12 4 3	N16+3	N v. x 3	1314	2	0									01
				407	1/1	Inversation and	14				197							
1 1	.		1200 1		1/4	att-caria and c	aria - Spec.	<u>}</u>				.		1	1			

Į.

(

وليرور الأوولي ووار

DCK TYPES & AL	GRID_	L la Core Follation		1 -		GIR										
DCK TYPES & AL	TERATION	L to core Follottoa	GRAPHIC LOG	1		0.01	RALTAR MIN	ES LTD.		ł	HOLE N	10. <u>86-</u> 7 No. <u>2</u>	uz. of	3		
	<u></u>			4 10 Cor	widin of Vola		FRACTUR ANGLE T CORE A) -FREQUE		BOTTOM DEPTHS LLACH CAP LIM. ZONE SUPERGENE		C C R	ROP	Sample Number	ASSA 7. Cu	Me Me	TS Latinete Croix
		AD					0 10 20 30 40 50 60 70 80 80	*	MEMMANS	217	45					اه
		нЪ	220	f5 ?	8 ' Yu	qtz-ank (spec.) zo to be a leveoentie well-mineralized w brown carbo, qtz metallic hem.) hem	90 10 10 10 10 10 10 10 10 10 1			224	95					.01
		мр	230	60	3"	qts-cp	20 20 20 20 50 50 50 10 20 50 10 20 50 10 20 50 10 50 10 50 10 50 10 50 10 50 10 50 10 10 10 10 10 10 10 10 10 1	٥ •		-336 237	98					. 01
		КB		50	Yio	chi	40 - 0 - 10 10 40 50 60 10 10 10 10 10 10 10 10 10 1	υ υ		247	100					,01
		aly	250				20 10 20 30 40 50 60 70	0		257	100					.01

£

6.2

											· <u>····································</u>						
	\bigcirc															3	
	GRID)	-				GIBRALT	AR MINES	LTD.		}	IOLE IHEET	No. <u>86-</u> No. <u>3</u>	<u>63.</u> of	3		
OCK TYPE	S & ALTERATION	L la Cora Fallation	GRAPH	<u>Blertive</u> Vilni L 16 Core Auti			Hlastan.	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED ", PLRITE	BOTTOM DEPTHS LLACH CAP LIM. ZONE SUPERGENE REMARAS	7.11131 7.11131 010111	C	ROD	Sample Number	455 7. Cu	Mo	Estine
		NP		5	1 Y2 Y20	broken carb-hem	Core	0 10 20 50 50 50 50 50 50 50 50 50 5			275	85			•		01 00 100 100 100 100 100 100 100 100 10
		ND	280	· · · ·	-			90 0 20 20 30 40 50 60 50	. 0		285	100			-		.01
		ND	290	45	Y4	qt3-ch1.		50 90 10 10 20 20 20 40 50 50	o		295	100					. 01
	504 305'		300					10 φC φC φO φO φO φO φO			305	90				•	
_	B. D. B.																

and the second secon

te la traditional de la <u>constance</u> de la constance 1.08

			1	Carit	t = 30	.5cm	-)					\supset						<u>)</u>		
		GRID_		-				GIBRALT	AR MINES	LTD.				HOLE SHEET	No. 86	- <u>64</u> o! .				
100 041 041		<u>ce GROUP</u> 10 <u>01 - Sep -8</u> 110 <u>03 - Sep -8</u>	<u>6</u> 36		алие			LATITUDE DE MATU ELEVATH	RC		······	CORE SUE	N. Q. 1	w. '= 10'			cc.co m_ ntDe	G.D .c. 11,	.B. 1986	
OCK	TYPES	B ALTERATION	1	GRAPH	nc	•	1		FRACTURE	0 4	BOTTOM	DEPTHS	-	E alimata	1	1	ASS	AY RES	SULTS	
T	•				All All				ANGLE TO CORE AXIS	PYRIT	LIM. ZONE	220'	1	Cara	ROD	Sample	%	%	<u> </u>	- Estis
· • [17		214	3	Whee		-FREQUENCY-	23	SH PERGEN AEA	E -	- 201	7.		Number	Cu	Mo		0
-+									0		1	- <u>An - Hungo</u> Ann <u>a</u> - <u>An - A</u> n - An	1	1	1	1			1	
		<u>Casing To</u>							20 30 40											
_			 			<u> </u>	ļ		50 60 70				147	<u> </u>	<u> </u>				 	<u> </u>
_		FAULT ZONE	<u> </u>	1150	1 · · · · · · · · · · · · · · · · · · ·	3'	gg-lim		90 90		ļ								ļ	┣
		(147'- 184')							10 20					10						
		fragments are both disritic and leucocratic rxs - both appear			10	10'	gg-bx-liv	n-hem	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	۵	· · ·		.155	40	-					
+		and clayer - some lim. stained gts.	}{	160	2 4				90 0			<u></u>	161							
		veins are also present							20 30					50						
						10	gg-bx-lim	(~6' loctcore)	40 50 60	D			166				ŀ			,01
				170.			-		70 20 20					5						
Τ									0 10				171	[
			3		7	10'	(gg)-bx-hem	(~ 8' list	0	0				10						,o1
				-				core)	0				-177							·
+				180					2				180	40						
					40?	4'	bx(gg)-hen	n 12	0					10			1			

GRID	GIBRALTAR MINE	S LTD.	HOLE NO. <u>B6-64</u> SHEET NO. <u>2</u> of <u>6</u>
GRAPHIC GRAPHIC	: FRACTURI	BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO CORE ANI -FREQUEA	Y-	Core ROD Semple 7. 10 Accounty Number Cu Mo Core
this ra resembles Mine Phase ~ 15 % ch, usually as ragged cite. ~ 30 % gtz-generally ~ 30 % gtz-generally ~ 35 1"	Lim-spec x2 qt3-lim-vug carb-spec (carb-spec) (carb-sp		<u>194</u>
Aran but is save 200 Section forms large (X*) clots ~ 300% save plag as Subhedral prisms	ank-spec leucocratic 10 ank-spec leucocratic 10 ank-spec leucocratic 10 30	deep brown weathering o carb.	204
- avg grn 5:3e 15 about Yw" (range yeo-Yo) - rx is mineralized with two types of hem - 9 wider them and) core 00 90 40 90 90 40 20 50 40 50 40 50		214
a metallic hen which is often spec in this log the powdery var. will be refored to ac hem. and the metallic var. as spec.	$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$		95
	30: 40: 10: 10: 10: 10: 10: 10: 10: 1		98
234 LEUCOCRATIC ZOME (234-251) 240 240	9 t3-carb 9 t3-carb 9 t3-corb x 2 60 70 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 7		98
this appears to be an alteration in which play and cill have been tobility replaced or particility replay by gls 4 carb Clight branch des present is disson. Wataking have care 1/0	10 20 30 40 50 60 70 70 70 70 70 70 70 70 70 7	24	98

ter hele same de la la desta de la companya de la c

GRID	HOLE No. <u>86-64</u> SHEET No. <u>3</u> of correct R O D Sampl record 70 1	ASSAY RESULTS	
GRIDGRAPHIC C TYPES B ALTERATION Stages of alth - The end product is a pale gray the Consisting of while plag and gray U 45 1/2 38-CM	HOLE No. <u>86-64</u> SHEET No. <u>3</u> of	ASSAY RESULTS	
TYPES B ALTERATION GRAPHIC LOG Image: Stages of alth - The ena product is a pale grey rx consisting eP while plag and grey GRAPHIC LOG Image: Stages of alth - The stages of alth - The ena product is a pale grey rx consisting eP while plag and grey Borrom DEPTMS LARCH CAP 45 1	Corro Corro Recourty 7, Corro Recourty Recourty Recourts	ASSAY RESULTS	
TYPES B ALICANTION LOG Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the Image: Stages of alth - the <t< td=""><td>Coro ROD Sampi Recorry Nombe</td><td>e 7. 10 Catin</td><td></td></t<>	Coro ROD Sampi Recorry Nombe	e 7. 10 Catin	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cu mo	uted II.
ena product is a pale grey rx consisting of white plag and grey of (r socio) which 0 257 20 30 30 30 30 30 30 30 30 30 3	1 1		
hem stand to the	90	10,	
gtz-carb veinlets / 260 / 20	95		
QUARTZ 10 45 K2 YIO X2 hem- carbxz 10 20<	7 100	.01	•
$\begin{array}{c} \hline & & \\ \hline \\ \hline$			
10 3"? 93-bx-hem hem 20 stained 20 core 40 0 276	98	.01	1 A.A.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95		
0 286			
	98		
0 // 5×3 // with // carb-hum-spec.xx 20 30 40 50 50 50 0		10,	
	1 1 1		

3	\mathbb{R}^{2}	\mathbf{i}		Э
GRID	GIBRALT	AR MINES LTD.	HOLE No. 86-64 SHEET No. 4	. of
GRAPHIC		ERACTURE O BOTTOM DEPTHS		ASSAY RESULTS
ROCK TYPES & ALTERATION LOG		ANGLE TO	Care ROD San	note 7. %
		CORE AXIS S LIM. ZONE	= = R.com	aber C Ma Croix
	7. × •••	-FREQUENCY-	2	Cu no
		<u>aj</u>		
the carb spee veins	15-20 3 913-carb-ser	10	98	
dust in a carb. (ar ats-			315.6	01
inagnification the veins NO		30 60		
appear as a d'a grey		70 80		
Po Slotter 3:01 320 0	20 2" Carb-spec		98	
		20 30		01
ND		50	326	
	- and - 1 - and spec	70		
330	3-20×2 /4+1 Calo-5FC	90,		
	45x2 6+2 Carb-spec x2	10	100	
		20		
60		jo jo	336	
338' Nod	20140 V2.2 Carb. Spec	0		
	20 2* qt3-ep		100	
(338 - 139)	• VA ata carb	0		
same as 251-297 ND		0	346	
		0		
	7	0		
			100	
		>		
	/20 /2 0015 -1100	o o	Fr	10.
	54			
	70			
360				
	20		10	
	32			.01
	50		**	
	70			
1 370 1	I	the second s	<mark>, I., J., L., L., L., L., L., L., L., L., L., L</mark>	

a series a A series a s

. . .

•

		a se an anna an a		.		·· = ·											~	
								\sim									3	:
		G	RID		_			GIBRALI	AR MINES	LTD.			HOLE SHEET	No. <u>86-</u> No. <u>5</u>	<u>64</u> of	6		
				r	GRAP	нісі	1.		FRACTURE	۰. ۱	BOTTOM DEPTHS	·	e			A55/	AY RESULT	s
оск	TYPES	B ALTERATIC		L to Corr	LO	Vilia Vilia Z la Cora	wtein af Vain	la e transferencia	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATE " PYRITI	LLACH CAP LIM. ZONE SUPERCENE REMARS		C+++ R++C+++++ 74	ROD	Sample Number	7. Cu	 Mo	Croic
						<u></u>			0	<u> </u>								
									20				98					.01
	•			ND	-:	45	3	qtz.carb-spec	10 60] .		דנכ		-				
				-	380				80 90	1				 		┠───┨		
-†			1						0 10 20	1			95					
				¢ч		11.			30 40 50	6		386						,
			·						60 70	1								
\square					390	ļ			90				98					
						20 *2	1/20 *2	carb. nem x2	10 20 50									_01
				MD		10	10 14 - 420	Carb-hemx2	-10 50 60 -	σ		396		+				
									10 20 90		-							
+					11100	5.1013	1/2013	carb-hem x3	0: 10:				98					
				N0		3-1013	120-3	-	30	٥								,01
						1002013	Y	carb-hemx3	50 60 70			407						
					410	1	/20 2 3		90 90							†		
T		×				40 * 2	Y ₂ +1	epxs	10 20 30				100					01
				10					40 50 60	0		+17_						
						ļ .			70 60									<u> </u> ·
+				†	1920								100			1		
						30	6"	q+3(ep)	30 40	0								١٥
	ĺ			°					50 60 70	-		427						.

a far hanna a shekara a shekara a bar a shekara a s and the second secon

3)		
GRID	GIBRALTAR MI	NES LTD. S	OLE NO. <u>86-64</u> HEET NO. <u>6</u> of <u>6</u>
OCK TYPES & ALTERATION GRAPHIC	FRACTU	RE BOTTOM DEPTHS	Construct R O D Sample 7/2 1/2 Cationed
Z 10 Control 2 L 10 C 10 Control 2 L 10 C 10 Control 2 L 10 C 10	Core A	XIS E LIM. ZONE ENCY- SUPERCENE AEMARAS	Accessing Number Cu Mo Crede
	0 10 20 20 40 30 50 50 50 50 50 50 50 50 50 5		.01
b. O. B.	20 0 10 20 30 30		
	50 60 70 90 90		
	0 10 20 50 50 50		
	20 30 40 50 60 70 10 10 10 10 10 10 10 10 10 1		
	50 63 70 00 60 60		
	10 20 30 40 50 50		

المحافد المتحاف والمتحاف والمتحول والمحاف والمحاف والمحاف والمحافي والمحاف والمحافي والمحاف والمحاف والمحاف وال

														nd Santa Mare da A					3	
		*			1 1													\mathbf{O}		
		GRID.		-	fool =	. 30.5	em	GIBRALT	TAR	MINES	LTD.			HOLE SHEET	No8(<u>- 65</u> 	5			
6		Ze GROUP			CANK8			LATITUD	·			COAE SIZE	N.Q.V	J ·				G.D.	в.	
04	TE COLLA	10 03 - Sep-	86	·	ENGTH	304'	<u> </u>		AC			SCALE OF L	oc″	= 10'	<u> </u>	P	71_31	ec 4	1986	
04	ine court	100 04 - Sep -	86	<u> </u>	·*	90	·	ELEVAT	юж <u></u>			REWARKS								
BOCK	TYPE	S & ALTERATION	1	GRAP	ніс	•			FA	RACTURE	a	BOTTOM DEPTHS			T	1	AS	SAY RE	SULTS	
		T		Loi					A.	GLE TO	KITE	LEACH CAP 0		Core	ROD	Sample	1%.	1%		Talianted
			2 :- 7 :- 1:	Ville Ville	31.r.c.		Minere		- F)	REQUENCY-	41123 14 %	SU PERGENE AEMARKS		Rocovery 70		Number	Cu	Mo		Crule
		Casing To							0 10 20 30	· · · · · ·										
·		<u> </u>							40 00								-			
				60	<u> </u>		·		80 90				60							
		MEDIUM GRN			1 20.00	Y+×3	qt3-carb x3)		010 20 30			weak lim. to 69'	64	70						
		QUARTZ DIDELLE this is a hard compace rx - appears altered,	нь			Yio	qtz(ma) {	Fine dissem py(G) mainly along citle	200 20		< 0.3			95		96562	. 36	.024		.01
		possibly silicified in the the grain boundaries are	ð	70	1842	Y8-Y4	qt3(carb)")	116 + rac.s	00 90			* Carb is pale prove	. 70					ļ		
		indistinct - qtz. cannot be distinguished from spa without magnification	y.		1 20	Y4	9ts		0			weathering - all other co reported is also brownis	leb .h.	95						
		Chl. occurs as ragged clots with Fuzzy boundaries - under mag.	ND		50×3	74-78×2 Y3	qt3-corb-chl. qt3	((mag)) * 3	40		≺0.5		-77			96563	.05	.002		,01
		the chi. appears corrodd and embayed by qtz. and in part replaced by		80		1.	9tz-cul-carb-py	(m)	70 801 90											
		some pale pink mineral a pale mica (sericite?) and pyrite or chalropyrite.	1		* 5 1 30 80 + 10	1/6 1/0	qt3-gg-(mo)(cp) qt3-carb (mo)		0 10 20				24	95						
		In places, the re is obviously silicified and grade to various leuropric	ND			2Y2 1/4	high broken za ate-chi-curb	ne + some gg .	10 40 50		40.5	[81	60		96564	.03	.otA		.01
		zones. General comp. of least alt'd nx is :		90	4	hlexz	More		70 80 90			Leusocratic your -	39	[
		30 % chi 60-70 % combined gts and spir which form a hard ba's great (2017) matrix for its cit.	50 Wik. Mod		80 30; 10	1/3 1/20 3 /	qt3-carb. qt3-carb. qt3-carb-be 3. with Wo ((cp)) Mo	one h <u>e</u> aled	0 10 20 30 30 50 60		<0.5	alter and ration tors a dyle - chi has com almost totally lost an remains only as crass relict sorts - some pale brown carbs his	A. 4. - 9's 	90		96565	68	1248		.08 (10 Mo)
		(60-111')		100	90 + 70	hie xt.	Moxi		70		ſ	been added wong man fracis - ats-carb-alth	100	90						

10

in ter

		9											~			.)		
		GRID		-			GIBRALT	AR MINES	LTD.		1	HOLE SHEET	No	of _	5			
ROCK	TYPES	S & ALTERATION	1.	GRA	PHIC			FRACTURE	۵ "	BOTTOM DEPTHS	-			T	AS	SAY RES	ULTS	
		Γ	133	1.			i sett	ANGLE TO	RITE	LEACH CAP	-	Care	ROD	Sample	1%.	%		Caliented
		[11011	1. V 1. V	w ta		-FREQUENCY-	N1 12	SUPERGENE		A.c	'	Number	Cu	Mo		Crole
			ļ	22 .	- 1			01	1	REMARKS				+				
					20	3'	913-carb zone	10	7					ŀ		1		
			~		1.	5	qts.carb-chi	30 40	< 0.5			46	91.514		· ·			.01
					1	Ую	qts. py	60	1		107				,01		· · ·	
	· · · ·	e da esta de la composición de la compo				4	highly broken some	80 90		Contain the set	103	70				1.00		
				HF	4	- <u>·</u>		0			-	85						
1		ZONE (111-209)			1 20	hie .	Mo	30	1		113		1					.01
	-	a pale hard rx	ан		170 +00	1= 1/2	913-4400)	50	< 0.3		1.17	60	96367		10.	000		
		composed of 973 and white 'spar + ~10-1506			10 30	2	98-bx, (70	1							1.5		
		- assumed to be an		1120	120	1/3	atser (HoV et)	90			+							
		alt/d Q.D relict ch1 patches as evident			13 +5	1/2 + 2"	qts (40) + qts *	10 20		+ two gen. of gts are		10						
	K	(brownish ragged clots)	NS		70 12	1/4 + YB	gts. Moxa	30 40	40.5	present - & grey qt3-10 veins cut by white boll	125		96568		<01	.088		(.10#10?)
	-	ets-carb veins			1.0	6" V1	gt3-Ho] (shattered gts healed	50 60 70		gts this reln. is		90						
	- 1	prob. the chl. has been largely replaced by Carb.		130	70	2"	at3	eo 90		seen Throughout the Ulo 30ne	130	14						
		3' some of Q.D.		11				0										
		4			40	2"	qts (carb) vus	20 30				85						.01
			N)		70	1/2?	9+3-10-93	50	<0,5				96569		< 01	.034		D2 Min
					Π.	1/4-13	975 (#a)) **	70			-121							
+				140		11.	ee-chi-her-n.	90 0				90						
					70		qt3-1%0	20			143				1		1	
			N0			74+2	973.42	0	< 0.5			85	96570		4.01	. 024	1	10
						3.	nighly broken some	0			147							
				150	5+ 60	Y3×3	91542	0				90						<u>·</u>
	1						gra(m.)	2 0			153							
		3' zone of QD.				1/20	w	0										.01
		(^{mb}		4		5	0	- 0.5			80	46571		.01	,110		02 His
					45	, ^y 2'	9ts(No)											
				104.1	1			21			i v ui							

a de la constante de la constantigada constante e constante de la constante de la constante de la constante de

.

.

							\sim)		
		GRID		_			GIBRALT	AR MINES	LTD.			HOLE SHEET	No86-	<u>.65</u> of _	5	-		
ROCK	TYPE	S & ALTERATION		GRAF	G G		د • -	FRACTURE		BOTTOM DEPTHS	$\overline{1}$			1	ASS	SAY RE	SULTS	
	•			4		4		ANGLE TO CORE AXIS	MATI	LIM. ZONE	┥.	C+**	ROD	Sample	7.	%		(Ilian
:			122	Alle	7	*	119.1	-FREQUENCY-		SU PERGENE REMARKS		7.		Number	Cu	Mo		Gredi
		4' some of Q.D.	{[2'	broken zone	0 10 20			1	80	1		1		1	
•			HO		4.	104		30 40 50	<0.5		164		4					01
					80	2"	ats.	50 60 70	-			95				1 ×		
·				111120	70	24	lats .	80 90	<u> </u>		169				1. 	$(1 - \frac{d^2}{d^2})$		
			ŀ		BOX2	z"+1/2	qt3-py-u.	0]					" ;	
			HD		77	2"	973	30			1							
			· .			2%	413	50 60				90						<u>_</u> o(
				180	80 80	"" 2"	413 413	2001 2001			179_							1
				11		2'	broken zonc	0		**************************************	182	40						
					?	6 1 ¥±'	qt3((Wo)) qt3	20 30			183	95						
			GN		80	4.	93	40 50	<0.5					. [,°1
					- 10 - 80	1	913 413	10 i 20 i				45						
		- <u> </u>	<u>├</u> ─-†	110	2 2	A"	h h	90			{	-				{		
					43	s'	ati	20			193							
			CM					0	<0.5			85						.01
		2' zone of QD			7 3 2	2"	gts-carb 7	0		-	197							
				2.02								Ļ						
					<i>:</i>	2 ⁹ 1'	qt3-chl-carb 2	0				95						
			ИЪ		2	7 ["]	at at	0	<0.5									.01
		2.09			80 4 2	1/212	gt322 7	0			207							
				<u> 676</u>	?	4"	atz			······································		85						
		QUARTZ				į	20			Ŀ	212							
		209-304)	·		12.2	10'	34	>										
						10	100 - 100 Ken 2000 - 50 2000 - 100 Ken 2000 - 50 60					90						
		same as 60-111		10			70 BO			2,	19				1		1.	

الرابات فترتجر بتجابي مطبوه بتصبيه فالتواف

)		\rightarrow	
GRID	GIBRALTAR N	AINES LTD.	IOLE No. <u>86-65</u> SHEET No. <u>4</u> of <u>5</u>
BOCK TYPES & ALTERATION	\$ FRAC	TURE O BOTTOM DEPTHS	ASSAY RESULTS
	ANGL	E TO	Core RQD Sample % % Catineted
2	-FREC	QUENCY-	7. Number Cu Mo Croie
	0		90
	10 steep fracture zone 40	0 125	85
	50 60		80
230	<u>80</u> 90	230	
	1" 9 ¹ 3 0		
ND S	Y2 973-carb 30	。	15
	300 60 70		
240	<u>50</u> 90		95
43	X4 qt3 20		
י פא	50 50	o	
	$\frac{60}{70}$		
250 4 60	1/2 qtj-chi 90		
10	6 q13 10 20	2.53	
NU // 10	Yeo red hem 30	D	98
4' leucocratic	60 76 80		
3 one (260 / 2.0	YA corb 0		
s' leucocratic	20		23
zone (ND / +5	Y4 cNib 50	<u> </u>	
	70 80		
30-40 < 3	Yioxa chi-cp-py Ka 10		90
40	γ_{0} q_{13} γ_{0} γ_{0}	373	
	50 60		93
2.82	80 190	230	

Sec.

Ween's

HOLE No. 86-65 SHEET No. 5 of 5 GRID____ GIBRALTAR MINES LTD. GRAPHIC BOTTOM DEPTHS ROCK TYPES & ALTERATION FRACTURE ASSAY RESULTS LOG ESTIMATED % PYRITE L to Core Fallation Allocation Frontario C LEACH CAP Velia .2 10 Corr Aula 7 ANGLE TO RQD somple % % WIdlh . Vala C CORE AXIS LIM. ZONE Feeleg. Biecer. Estimete Rac -FREQUENCY-S4 PERGENE Number Cu Mo Crade ٣. -AEMARKS a partial leucocratic zone - that is, an incomplete silicification 95 ND D 01 of Q.D. 287 qt3-carbx 5 qt3 5+6014 YAXS 0 90 60 1" 20 **Y**4 3+3 70 ND ٥ .01 296 **٦** " 973 60 60 70 00 Sor 90 96 0 10 1/2 9t3 - carb 15 1/4 913 10 304 EOH 304 6 A. D. B. 101 0 10 20 30 1 0 0 120 30

. .

nisht-

15,569

GEOLOGICAL BRANCH ASSESSMENT REPORT . .

