GEOLOGICAL REPORT

on the
WALLY III, and WALLY III ZONES
Vancouver Mining Division - British Columbia Lat. $49^{\circ} 44^{\prime}$

Long. $123^{\circ} \frac{85}{87} \mathrm{~W}$
N.T.S. 92G/12W Ahoctat
for
FILMED
EUROVENTURES LTD.
Owner/ Operator. Chalice Mining Inc.

by
James Weick, B. Sc., Geology
Douglas J. Brownie, B. Sc., Geology
and
Donald G. Allen, P. Eng. (B.C.)

Vancouver, B. C.
SUMMARY 1
CONCLUSION 2
RECOMMENDATION 3
ESTIMATED COSTS OF RECOMMENDATION 4
INTRODUCTION 5
LOCATION AND ACCESS 5
CLAIM DATA 6
HISTORY 6
GEOLOGY 6
Regional Geology 6
Property Geology 7
Structure 7
Alteration 8
Mineralization 9
DESCRIPTION OF SHOWINGS 9
Wally III Zone 9
Wally IIIa Zone 9
Rock Sampling 10
INDUCED POLARIZATION SURVEY 10
DIAMOND DRILLING 11
GEOCHEMICAL SURVEYS 13
MAGNETIC SURVEY 13
DISCUSSION OF RESULTS 15
REFERENCES
CERTIFICATES

FIGURES

Figure 1	Location Map	1:10,000,000	After p. 5
Figure 2	Access Map	1:250,000	After p.
Figure 3	Claim Map	1:50,000	After p .
Figure 4	Geological Map, Sechelt Inlet Area	1:125,000	After p .
Figure 5	Geology and Mineral Occurrences	1:50,000	After p .
Figure 6a	Compilation Map, Wally III Area	1:5,000	After p .
Figure 6b	Compilation Map, Bacon III Grid	1:15,000	After p .
Figure 7	Geology and Geophysics Wally III and IIIa Zones	$\begin{aligned} & 1: 1,000 \\ & \text { (Reduced } 65 \% \text {) } \end{aligned}$	After p. 10
Figure 8	Geology and Sample Sites, Wally III	1:1,000	After p. 10
Figure 9a	Drill Section	1:150	After p. 11
Figure 9b	Drill Section	1:150	After p. 11
Figure 9c	Drill Section	$\begin{aligned} & 1: 150 \\ & \text { (Reduced } 65 \% \text {) } \end{aligned}$	After p. 11
Figure 10a	Geochemical Map, Wally III	1:1,000	In pocket
Figure 10b	Geochemical Map, Bacon III	1:1,000	In pocket
Figure 11	Magnetic Profiles - Bacon Grid	1:5,000	In pocket

TABLE
Table 1 Sample Descriptions
After p. 10

APPENDICES

Appendix I Drill Logs
Appendix II 1986 Analytical Results
Appendix III Affidavit of Expenses

SUMMARY

Euroventures Ltd. holds the Wally III, Bacon III and Skookum claims comprising 42 claim units near Egmont, B.C. The property is situated 80 kilometres northwest of Vancouver at the northern end of the Sechelt Peninsula and is accessible by paved and logging roads. The claims cover the Wally III and IIIa gold-copper-molybdenum showings. These showings are two of a number of gold occurrences near Egmont. Gold mineralization in the area occurs in quartz pyrite \pm chalcopyrite \pm molybdenite veins and in adjacent altered and pyritized wallrock (up to 3 metres wide). Very high grade gold values have been obtained locally on these occurrences.

The Egmont property is underlain by granodiorite and diorite of the Coast Plutonic Complex which contains roof pendants of volcanic and volcaniclastic rocks. Dikes of andesite, diorite and quartz-feldspar porphyry are locally abundant.

The Wally III vein is one of the wider (up to 1.4 metres) of the known veins in the Egmont area. Values obtained on the Wally III vein range up to 0.19 ounces per ton gold, although assays of grab samples have been reported to grade as high as 0.3 ounces per ton. It has been stripped for a length of 15 metres and is unexplored along strike. The Wally IIIa veins range from 10 to 30 centimetres wide with a similar range of gold values. Very high grade assays (up to 8.8 ounces per ton) have been obtained in veins in the Egmont area. Good potential exists to find high grade shoots within the Wally III vein.

In 1985 and 1986 , a program of geochemical soil sampling, trenching, induced polarization surveys and diamond drilling were carried out over the Wally III vein and surrounding area. Reconnaissance mapping, geological mapping and magnetic surveys were carried out on the Bacon III claim. An exploration program is proposed to further define the Wally III vein along strike and at depth by trenching and drilling, and to follow-up and evaluate the gold anomalies in the Wally III claim area.

The gold-bearing quartz veins in the Egmont area are vein shears with an alteration envelope containing pervasive silicification, K-feldspar flooding, and development of clay minerals, epidote and chlorite. The nature and type of mineralization and alteration indicate that the veins are "mesothermal" although some epithermal features such as widespread pyritization and clay mineral development have been reported but not mapped.

Although the veins generally are narrow ($1-100$ centimetres) they are locally very high grade (up to 8.8 ounces per ton) and gold values also occur in altered wallrock. Because they are widespread, potential exists for finding a locallized stockwork or vein system which may be mineable by bulk methods, as well as finding high grade shoots within the Wally III vein.

The widespread vein distribution and their shear characteristics suggest that they may have developed adjacent to a yet unidentified fault (\pm vein) structure. Intersections of lineaments (possible fault structures) may be important exploration targets.

A follow-up exploration program should be directed toward investigating:

1) the potential for bulk tonnage mineralization possibly at fault intersections or in vein systems;
2) the Wally veins along strike, beyond their known limits, and;
3) the untested soil geochemical anomalies.

The wide range of assay results obtained from outcrops and drill core suggests that gold is irregularly distributed i.e., a "nugget" or particle effect should be taken into consideration. Bulk sampling and possibly metallurgical testing of the vein exposures should be undertaken.

RECOMMENDATION

A program of geological mapping, geophysical surveying, prospecting, backhoe trenching and diamond drilling is recommended to further evaluate the Egmont property.

Routine geological mapping should be conducted over the entire claim group to look for features such as alteration and pyritization in host rocks which might establish broad target areas. Prospecting and detailed geochemical sampling should be concentrated in areas along and adjacent to lineaments and in the vicinity of soil geochemical anomalies. To facilitate this work, existing lines should be reflagged and a grid established over the entire claim group.

Backhoe trenching, with follow-up diamond drilling should be undertaken to define the Wally III zone along strike.

Estimated costs of this work are $\$ 112,000$. Should results be favorable then a second phase program comprising additional drilling and trenching on known targets will be warranted.

ESTIMATED COSTS OF RECOMMENDATION

INTRODUCTION

Euroventures Ltd. holds the Wally III, Bacon III and Skookum claims totalling 44 claim units near Egmont, British Columbia. The claims cover the Wally III and IIIa showings which are gold-copper-molybdenum bearing quartz veins in which interesting gold values have been obtained.

The showings are two of about 30 known gold-bearing quartz veins on the northern end of the Sechelt Peninsula. Chalice Mining Inc. on their adjacent Chalice claims have recently obtained very high grade gold values (up to 8.8 ounces per ton) and silver values (up to 10.5 ounces per ton) locally in these veins.

This report summarizes results of detailed mapping on the Wally III showing, reconnaissance mapping, magnetic surveys and geochemical sampling on the Bacon III claim. Fieldwork was carried out during April and November, 1986. Also summarized are the results of geochemical surveys, induced polarization surveys and 93 metres of diamond drilling carried out in 1985.

LOCATION AND ACCESS

The Egmont property is situated at the northern end of the Sechelt Peninsula, between Earls Cove and Egmont, B.C. (Figures 1 and 2). The area of work is centred approximately at latitude $49^{\circ} 45^{\prime} \mathrm{N}$ and longitude $123^{\circ} 571 \mathrm{~W}$ and is covered by map sheet $92 \mathrm{G} / 13 \mathrm{~W}$.

Access to the property is via Highway 101 from the Langdale Ferry Terminal, a distance of 82 kilometres; thence approximately 5 kilometres east along the Egmont road; thence by logging road and cat trails to the various showings.

N.T.S. 92 F, G

EUROVENTURES LTD.
ACCESS MAP
EGMONT PROPERTY

The property consists of the following modified grid mineral claims (Figure 3):

Claim Name	No. of Units	Record No.	Record Date	Expiry Date
Wally III	18	1163	Mar. 11, 1982	1988*
Bacon III	20	1168	Mar. 23, 1982	1988*
Skookum	4	2017	Nov. 26, 1986	1988*

HISTORY

Gold mineralization near Egmont was initially discovered around 1952, when it was reported in the Minister of Mines Annual Report as the Skookum. The first showing was located on the shore of Agamemnon Channel and was reported to be a "massive sulphide", with assays up to 6.21 ounces per ton gold and 6.4 ounces per ton silver (pyritic material).

In 1965 Abacon Minerals Exploration Ltd. shipped 106 tons of the "massive sulphide" from the Skookum to Tacoma and recovered 34 ounces of gold, 45 ounces of silver and 170 pounds of copper.

Chalice Mining Inc. staked the property in 1982. Prospecting, geochemical and geophysical surveys, geological mapping, trenching and diamond drilling by Chalice, subsequently resulted in the discovery of numerous other gold-bearing veins including the Wally III and IIIa. A total of 572 metres of diamond drilling in 21 holes has been undertaken of which three holes were drilled on the Wally III showing.

GEOLOGY

Regional Geology

The property lies on the western margin of the Coast Plutonic Complex (Figure 4).

The Sechelt Peninsula is primarily underlain by batholitic rocks,

> *Assuming that work represented in this report is accepted for assessment purposes.

N.T.S. 92GG/12, 13

EUROVENTURES LTD.
CLAIM MAP
EGMONT PROPERTY

mainly quartz diorite with minor granodiorite and diorite, all of Cretaceous or earlier age. Forming roof pendants are northwesterly trending bodies of basic to intermediate volcanic and sedimentary rocks. These roof pendants were initially called the Jervis group and have since been tentatively correlated with the Karmutsen Formation of Upper Triassic age (Bacon, 1957; Roddick and Woodsworth, 1979). This sequence of rocks are intruded by numerous feldspar porphyry, diorite and andesite dikes.

Property Geology

The following description of the property geology was taken in part from Grove's (1983, 1984, 1985) work in the claim area and modified in this study.

The claim area is underlain by a hornblende biotite quartz diorite, which locally grades into a diorite or granodiorite. The quartz diorite weathers a greyish white, with iron staining occurring in patches around the fracture zones. This iron staining has been noted to a depth of 1 to 2 metres in diamond drill holes.

The quartz diorite is intruded by feldspar porphyry, rhyodacite, diorite and andesite dikes. The feldspar porphyry is a buff pinkish grey weathering hornblende feldspar porphyry which occurs in the DF zone and has been reported elsewhere. The fine-grained green weathering andesite dikes are widespread. They are of variable widths up to 1 metre and have no preferred orientation. The diorite dike noted on Chalice's JR zone is a medium-grained bluish-black hornblende biotite diorite; the relationship to the main body of quartz diorite is unknown except for its "younger" age. The rhyodacite dikes are fine-grained almost sugary textured and light to medium green in colour. Rhyodacite dikes were noted on surface at the TY zone and on the Bacon III claim. The greenish "rhyolite" dikes noted in the JR zone drilling may be related. The relative age relationship of the dikes is unknown.

Structure

A fault trending west northwest from North Lake to Earls Cove is the major structural element in the area (Figure 5). Also of possible

importance are a number of prominent linear features visible on air photographs and topographic maps.

A series of fracture zones trending east-west (260-280) are the host structures for the gold-bearing quartz veins in the area. These zones consist of echelon fractures up to several 10's of metres long in a 1 to 2 metre wide zone and are separated by 10 's to 100 's of metres of competent quartz diorite.

Three main fracture sets have been mapped; these are orientated at 270° moderate $N-S$ dips, 310° near vertical dips.

The quartz diorite has a moderately strong vertical foliation which trends northwest.

Alteration

Mapping of the showings in the area by Allen and Brownlee (1986), along with drill core examinations conclusively shows that the alteration and mineralization assemblages are intimately associated with, and controlled by the fracture systems and rock type.

The alteration assemblage includes quartz and K-feldspar flooding with clay minerals, epidote, chlorite and minor amounts of sericite. The epidote, \pm chlorite, \pm k-feldspar alteration forms an envelope 1 mm to 1 metre thick around the fractures. Argillic alteration of the feldspars may form an envelope several metres thick along the fractures and silicification is present in all areas of the alteration assemblage.

The alteration envelope is best developed within the quartz diorite, up to several metres, in the medium-grained diorite it is restricted to 10 's of centimetres at most, while in the andesite dikes it is confined to within millimetres of the fractures.

The Wally IIIa zone exhibits this alteration assemblage in its entirety, with an envelope of silicification being predominant. The alteration assemblage at the Wally III zone consists of minor argillization and silicification along the contact with the quartz vein, with the envelope being only a few ($2-8 \mathrm{~cm}$) centimetres wide.

Mineralization

Mineralization in the area consists of pyrite, and/or marcasite, chalcopyrite and molybdenite which occur in quartz veins and fracture coatings. Molybdenite has been noted only in the Wally veins. Sulfides also occur as fracture coatings and disseminations throughout the alteration envelope adjacent to quartz veins. Silicification appears to be closely associated with sulphide mineralization. The mineralization was noted wherever the silicification was present, however, it was not always present in nonsilicified alteration zones.

Grove (1985) has described the presence of native gold, electrum and some gold-silver-lead-bismuth tellurides which occur as disseminations through the pyrite/marcasite.

DESCRIPTION OF SHOWINGS

Wally III Zone

The Wally III zone is situated on the north side of Waugh Lake and is underlain by a competent hornblende biotite quartz diorite (Figures 5 and 6a).

The main structural element at the Wally III zone is a fracture or fault trending 310° dipping 53° southwest (Figure 7). This fracture hosts a quartz vein or lens. Gouge zones up to 3 centimetres wide occur along both the hangingwall and footwall. This quartz vein has been exposed for a length of 15 metres and at the southeast end is 1.4 metres wide and pinches to 0.65 meters in width at the northwest end. Examination of the diamond drill logs and core indicates that the quartz vein or lens pinches out down dip and along strike, however the alteration envelope is proportionately wider. The vein and wallrock is mineralized with disseminated pyrite, chalcopyrite, local molybdenite and blebs of potassium feldspar.

Wally IIIa Zone
The Wally IIIa zone is located on the west side of the bulldozer trail leading from the Egmont road to the Wally III zone, approximately

50 metres up from the Egmont road (Figures 6a and 7).
Host rock is a competent hornblende biotite quartz diorite. A quartz vein oriented approximately 310° and dipping 30° to 50° southwest cuts the quartz diorite. This quartz vein pinches and swells to a maximum recorded width of 0.3 metres. The associated cross fractures exhibit narrow alteration envelopes comprised primarily of silicification with associated fracture coatings and irregularly disseminated grains of pyrite, molybdenite and chalcopyrite.

Rock Sampling

A total of 7 rock chip samples were taken during the course of this work program - four from the Wally III and three from the IIIa showing.

Samples B39 to 42 are channel samples assayed by fire assay and samples 606701-3 are grab samples of sulfide-rich material and assayed by atomic absorption methods. Sample descriptions are presented in Table I and sample sites plotted on Figures 7 and 8.

These results compare with assay values of up to 0.194 ounces per ton gold and 3.86 ounces per ton silver obtained by Grove (1985) and grab samples as high as 0.3 ounces per ton gold reported by Chalice Mining Inc. personnel. Of significance is that sampling by the writers (Allen and Brownlee, 1986) on other veins in the area has yielded highly variable assays, even from a single outcrop. This indicates a possible "nugget" effect, i.e. gold values are unevenly distributed and that bulk sampling is warranted.

INDUCED POLARIZATION SURVEY

In March 1985, an induced polarization survey comprising 65 stations was conducted over the Wally showing. The induced polarization equipment used was of the frequency domain type, manufactured by Sabre Electronics Instruments of Burnaby B.C. A flagged baseline with cross lines spaced at 30 metre intervals was established, and an electrode spacing of 25 metres was used. Induced polarization and apparent resistivity maps are presented in a separate report by D. R. MacQuarrie, B. Sc. (1985) and anomalous responses summarized on Figure 7 of this

Table 1

SAMPLE DESCRIPTIONS

Sample No.	Zone	Width (m)	Description	$\begin{aligned} & \text { Gold } \\ & \text { oz/ton } \\ & \hline \end{aligned}$
B039	Wally III	0.65	Hangingwall to footwall, qtz vein, 1 cm gouge contact, pyrite 3% along footwall.	0.106
B040	Wally III	1.50	HW to FW disseminated pyrite overall 1% - 7% in patches, patches of K-feldspar and molybdenum 0.5\% total.	0.016
B041	Wally IIIa	1.60	Perpendicular to qtz vein (3 cm) , 0.6 m above and 0.7 m below; silicified qtz diorite along fractures.	0.012
B042	Wally IIIa	1.50	Perpendicular to qtz vein (1 cm), vein pinches out, 0.3 m above and 1.1 m below; silicified qtz diorite.	0.002
603701	Wally IIIa		Grab sample of chalcopyrite and molybdenite-bearing quartz vein 5 to 10 cm wide.	0.013
603702	Wally III		Grab sample of chalcopyriterich central core of vein.	0.037
603703	Wally III		Molybdenite-rich vein material.	0.005

report. According to MacQuarrie:
"A linear, induced polarization high lying to the south of the Wally III vein was outlined by the survey. The zone trends at an azimuth of 150°, has a strike length exceeding 170 metres and an apparent width of 10 to 20 metres. Anomalous values range from 6 to 8 percent frequency effect (PFE) in a background of 5 PFE. These values are generally co-incident with high apparent resistivities (ranging between 10,000 to 30,000 ohm mentres). Background resistivities of 1,000 to 5,000 ohm metres indicated very thin overburden conditions."

A second, weaker anomaly delineates the known showing with a 7.5 PFE response, flanked to the southwest by a 10,000 ohm-metre apparent resistivity anomaly.

DIAMOND DRILLING

In 1985, a total of 93.0 metres of diamond drilling in three holes was undertaken on the Wally III showing to test the induced polarization anomalies. Drill holes are plotted on Figure 7 and sections presented in Figure 9a to 9c. Drill logs, along with analytical results are presented in Appendix I.

Low but interesting results were obtained from the drill intersections as follows:

DDH	Footage 15	$27.0-3.5$		Length (feet)
	$39.0-40.0$		Au ppb	Ag ppm
	$42.0-43.0$	1.0	210	10.5
	$43.0-48.0$	5.0	210	0.8
16	$40.0-58.0$	18.0	110	1.7
17	$43.5-44.5$	1.0	75	1.2
	$110.0-115.0$	5.0	225	0.6
			230	10.4
			$0.032 \mathrm{oz} / \mathrm{t}$	$0.011 \mathrm{oz} / \mathrm{t}$

Section plone Az. 40°

LEGEND

Rhyolite, dacite dikes
Andesite-basalt
Diorite
Granodiorite; $2 a$ hornblende; $2 b$ biotite.
Karmutsen group volcanic rocks
Assay sections; oz/ton Ag,Au.
Geological contact; fault
Overburden

CROSS SECTION DDH-15

WALLY III ZONE EUROVENTURES LTD.

(
(

A comparison of the drilling results with induced polarization data indicates that the PFE high is caused by fracture controlled pyrite in altered granodiorite near the contact with a medium to fine-grained diorite dike. Quartz, epidote and chlorite with variable amounts of pyrite, chalcopyrite, molybdenite and magnetite were observed at depths from 23 to 35.2 metres (25 to 115 feet, end of hole 16). The strong resistivity high is related to the fine grained diorite intersected by drill hole 17. Sulfide mineralization in the underlying, older, granodiorite appears intimately associated with this contact. (At the contact, the diorite is medium green in colour with a micro-granitic texture.)

The geophysical data also suggests that the sulfide mineralization noted in drill hole 17 is continuous from $0+65 \mathrm{~S}$ on L30E to $0+15 \mathrm{~S}$ on L60W and possibly as far as $0+15 \mathrm{~N}$ on L 90 W , and based on positive assay results from drill holes 16 and 17 , should be further tested by diamond drilling.

The Wally III mineralization, appears to be continuous between $L 0$ and L30W.

Drill hole 16, which was spotted to test the Wally III showing along strike and down dip, intersected 15 metres of fine grained diorite that graded over 60 centimetres into a green andesitic contact zone containing sub angular inclusions of granodiorite. A 15 centimetre wide quartz carbonate vein containing minor chalcopyrite, epidote and gypsum was noted at a depth of 23.4 metres, which probably represents the extension of the Wally III showing to the northwest. This data suggests that the observed weak I.P. response is related to the generally weak sulfide mineralization noted, and the high resistivities to a dike of sill-like body of diorite subparalleling the baseline. The Wally III showing exposed on surface appears to have much lower tonnage potential than the mineralized zone tested by drill hole 17.

GEOCHEMICAL SURVEYS

In 1986 soil geochemical sampling was undertaken adjacent to the Wally III showing in an attempt to further define some of the anomalous areas outlined in 1985 surveys. A total of 1.5 kilometres of flagged line was established. Cross lines were spaced 50 metres apart. Soil samples were collected from the B horizon at depth of at least 25 centimetres. The 1985 samples were analyzed for gold at Chemex Laboratories and the 1986 samples analyzed for gold at Rossbacher Laboratory Ltd. and 31 elements at Acme Analytical Ltd. by standard atomic absorption and I.C.P. spectrometry technique. Sample sites and gold geochemical anomalies are plotted on Figure 10 a and 1986 results are included in Appendix II. Geochemical anomaliess are also summarized on Figure 6a.

Two reconnaisance contour soil lines were established on and 200 metres to the south of the baseline and tied to cross lines on the geophysical grid on the Bacon III claim. A total of 76 soil, 3 silt and one rock samples were collected and treated as described above. No gold anomalies were obtained, however lines and sample intervals were widely spaced. The most interesting results are a cluster of molybdenum anomalies obtained in an area of no outcrop on the baseline (Figures $10 b$ and $6 b$). The anomaly is considered significant because of the known association of gold values in the molybdenite-bearing wally III prospect. Also of interest is one antimony anomaly (Sample 633044 67 ppm Sb ; with an associated weak arsenic anomaly 18 ppm). Both are pathfinder elements commonly associated with gold. Additional soil geochemical sampling is warranted to fully delineate these anomalous areas.

MAGNETIC SURVEY

A reconnaissance magnetic survey was undertaken on the Bacon III grid. Mark (1984) noted a correlation of magnetic highs with some of the gold occurrences on adjacent claims and noted that the survey was
useful for mapping both geology and structures. A total of 5.5 kilometres of flagged grid was established and 5.3 kilometres of magnetic survey data was acquired.

A Scintrex MP-2 proton magnetometer was used for the survey. Data was collected at 25 metre intervals, corrected for diurnal variation, and is presented in profile form on Figure 11 and selected magnetic highs and lows are plotted on the compilation map (Figure 6b).

In general magnetic relief over the grid area varies from 56,000 to 57,200 gammas. Magnetic surveying on the nearby Chalice I claim gave similar responses in areas underlain by massive granodiorite. Magnetic highs greater than 57,200 gammas such as from $0+40 \mathrm{~N}$ to $2+25 \mathrm{~N}$ on Line 32 E and from $2+00 S$ to $0+50 S$ and from $2+50 \mathrm{~N}$ to $2+90 \mathrm{~N}$ on $L 40 \mathrm{E}$ are probably related to dioritic intrusions or dioritic dike swarms. The extreme magnetic high readings located at $2+200 \mathrm{~N}$ on L 32 E (59,051 gammas) and at $2+75 \mathrm{~N}$ on L 40 E (59,387 gammas) appear to be related to contact zones between high susceptibility diorite and lower susceptibility granodiorite, and having amplitudes 2,000 gammas above background, are most likely caused by magnetite mineralization. Given the relation of gold mineralization to quartz and magnetite, at the contact between the diorite intrusion and granodiorite as noted at the Wally III showing, these magnetic anomalies may be of economic significance. As a result of the 25 metre station separation, each of these anomalies is only represented by one anomalous reading. Fill-in magnetic observations on say 5 metre intervals will be required to fully delineate them.

The data suggests the presence of two converging 25 to 125 metre wide magnetic high anomalies; perhaps major diorite dikes. The first originates near station $2+25 N$ on L28E and carries on to $2+00 N$ on L32E and $2+75 \mathrm{~N}$ on L40E. The second high zone again commences at $2+00 \mathrm{~N}$ on L24E and carries onto $0+50$ to $2+00 S$ on L4OE. These magnetic features will require detailed prospecting and/or induced polarization profiling to determine the presence of sulfide \pm gold mineralization.

Magnetic lows located at $1+25$ to $1+50 \mathrm{~S}$, and $2+50$ to $3+50 \mathrm{~N}$ on L28E and at $4+00 N$ on $L 32 E$ are probably related to deep overburden conditions.

DISCUSSION OF RESULTS

Results of work to date indicates that the vein systems in the Egmont area are widespread and may have considerable strike length. Gold values occur in pyrite-rich quartz veins with or without molybdenite and chalcopyrite and in adjacent silicified and pyritized wallrock. Veins in general are narrow but the Wally III vein is up to 1.4 metres wide and the mineralization zone intersected in hole 16 is up to 5.5 metres wide. A plot of 1 lineaments and distribution of known gold occurrences (Figure 5) shows a general spatial relationship between them. Others are likely to be found to the southeast, in the Bacon III claim area.

Sampling to date has revealed a wide range of gold values (trace to 8.8 ounces per ton in previous work) even from the same outcrop and in samples with variable amounts of sulfides, indicating a possible "nugget" effect, ie., gold values are unevenly distributed. Therefore low values obtained from channel sampling (this study) and from drill hole intercepts cannot be discounted. Bulk sampling of the Wally III veins from surface exposures and in trenches should be undertaken.

Isolated gold geochemical anomalies have been found to be significant, because follow-up of such anomalies has led to the discovery of the Wally III, II Ia and other veins. Induced polarization surveys have been useful in locating and outlining mineralization. The area containing the scattered gold anomalies north of Waugh Lake should be covered with an I.P. survey.

REFERENCES

Allen, D. G. and Brownlee, D. J. (1986). Geological and Lithochemical Report on the JR, Trench 2, $3 V$, DF, Ty, Wally III and Wally IIIa Zones. Private Report for Chalice Mining Inc. dated July 31, 1986.

Bacon, W. R. (1957). Geology of Lower Jervis Inlet, British Columbia. Bull. 39, B.C. Dept of Mines.

Brownlee, D. J. (1986). Geological and Lithogeochemical Report on the Wally III and Wally IIIa Zones of the Egmont Property of Chalice Mining Inc. Private Report dated May, 1986.

Grove, E. W. (1982). Report and Work Proposed on the Chalice Claims in the Lower Jervis Inlet Area, Southwestern, B.C. Private Report dated June 28, 1982.

Grove, E. W. (1983). Report and Work Proposed on the Chalice Claims in the Lower Jervis Inlet Area, Southwestern B.C. Private Report dated October 1, 1984.

Grove, E. W. (1985). Geological Report and Work Proposal on the Chalice Mining Inc. Egmont Property in the Lower Jervis Inlet Area, Southwestern B.C. Private Report dated July, 1985.

Mark, D. G. (1984). Soil Geochemistry and Geophysics Survey, Chalice Claims. Private Memorandum Report dated October 1, 1984.

MacQuarrie, D. R. (1983). Geophysical Report on Induced Polarization, Magnetometer and VLF-EM Surveys on the Chalice I Claim. Private Report dated April 14, 1983.

MacQuarrie, D. R. (1984). Soil Geochemistry and Geophysical Surveys Chalice Claims. Private Report dated October 1, 1984.

MacQuarrie, D. R. (1985). Geophysical Report on Induced Polarization, Magnetometer, and VLF-EM Surveys on the Chalice I Claim, Sechelt Peninsula Area. Private Report dated April, 1985.

Roddick, J. A. and Woodsworth, G. J. (1979). Geology of Vancouver West Half and Mainland Part of Alberni. Geol. Survey of Canada, Open File 611.

I, Donald G. Allen, certify that:

1. I am a Consulting Geological Engineer, at A \& M Exploration Ltd., with offices at 614-850 West Hastings Street, Vancouver, British Columbia.
2. I am a graduate of the University of British Columbia with degrees in Geological Engineering (B.A.Sc., 1964; M.A.Sc., 1966).
3. I have been practising my profession since 1964 to the present in British Columbia, the Yukon, Alaska and various parts of the Western United States.
4. I am a member in good standing of the Association of Professional Engineers of British Columbia.
5. This report is based on fieldwork carried out by J. Weick and D. Brownie; on property visits carried out personally on May 4, June 13, and November 24, 1986; and on information listed under References. I have also worked on adjacent claims held by Chalice Mining Inc.
6. I hold no interest, nor do I expect to receive any, in the Wally III or Skookum claims, in Euroventures Ltd., or in any other claims in the Egmont area.
7. I consent to the use of this report in a Statement of Material Facts or in a Prospectus in connection with the raising of funds for the project covered by this report.

Donald G. Allen, P. Eng. (B.C.)

STATEMENT OF QUALIFICATIONS

I, Douglas J. Brownie, do hereby certify that:

1. I am a Consulting Geologist residing at 206-161 West th Street, North Vancouver, British Columbia.
2. I am a graduate in Geology Specialization from the University of Alberta, year of 1980 .
3. I have practised my profession in B.C. since January 1980.
4. I personally carried out the work presented in this report from April 3rd to May ind, 1986. I have also worked on adjacent claims held by Chalice Mining Inc.
5. I hold no interest, nor do I expect to receive any, in the Wally III, Bacon III or Skookum claims, in Euroventures Ltd., or in any other claims in the Egmont area.
6. I consent to the use of this report in a Statement of Material Facts or in a Prospectus in connection with the raising of funds for the project covered by this report.

CERTIFICATE

I, James Weick, certify that:

1. I am a Consulting Geologist, associated with A \& M Exploration Ltd., with offices at Suite 614 - 850 West Hastings Street, Vancouver, B.C.
2. I am a graduate of Carleton University with a degree in Geology (B. Sc., 1985).
3. I have been practising my profession since 1982 in the Provinces of British Columbia, Ontario and Manitoba.
4. This report is based in part on fieldwork conducted personally during November, 1986 and on information listed under References.
5. I hold no interest, nor do I expect to receive any, in the property described in this report nor in Euroventures Ltd.
6. I consent to the use of this report in a Statement of Material Facts or in a Prospectus in connection with the raising of funds for the project covered by this report.

January 9, 1987
Vancouver, B.C.

R. James Weick, Geologist

APPENDIX I

DRILL LOGS

CHALICE MINING IMC.
P. O. Don 2240. Sochelt. Oritish Colurnbia VON $3 \wedge 0$

IOCATION: Intally Tle 12
aIIMUTH: 240°

OP: $\quad-65^{\circ}$

CORE SIZE:

OIP TESTS:

PROPERTI:
CLAIM N8:
SECTION:
LOCQEO BY: \mathcal{C}.
JURPOSE.

OCATION:
I21MUTH: \qquad

JRPOSE,

F JBEBACHER LABOFATOFY LTD. CERTIFICATE DF ANALYBIG
 2225 S. SPRINGER AVENUE BURNABY, 8.C. U5B 3N TEL (604) $299-691$

PROJECT: 348
TYPE OF ANALYSIS: GEOCHEMICAL
FILE NAME: A\&M86689

GEGCHEMICAL ICF AMALYEIS

- SAMPIE TYEE: Pulp

A \& M EXPLDRATION FFOJECT - 42 E FILE \# 86--88 1

SAMPLEA	$\begin{gathered} \mathrm{HC} \\ P P H \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{Pt} \\ \mathrm{PPH} \end{gathered}$	$\begin{aligned} & \text { In } \\ & P P M \end{aligned}$	$\begin{gathered} A g \\ P P x^{\prime} \end{gathered}$	$\begin{gathered} N i \\ P P M \end{gathered}$	$\begin{aligned} & \text { Co } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { Mn } \\ \hline P_{n} \end{gathered}$	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{i} \end{array}$	$\begin{gathered} A 5 \\ \text { APM } \end{gathered}$	$\begin{gathered} V \\ P P K \end{gathered}$	$\begin{aligned} & A U \\ & P P M \end{aligned}$	$\begin{gathered} \text { Th } \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { Sp } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Cd } \\ P P M \end{gathered}$	$\begin{aligned} & 5 b \\ & P P M \end{aligned}$	$\begin{gathered} B i \\ \text { PPM } \end{gathered}$	$\begin{array}{r} V \\ P P H \end{array}$	$\begin{gathered} C_{a} \\ 2 \end{gathered}$	\%	$\begin{aligned} & 12 \\ & P P M \end{aligned}$	$\begin{gathered} C_{r} \\ P P M \end{gathered}$	$\stackrel{H}{i}$	$\begin{gathered} \text { Ez } \\ \text { PPM } \end{gathered}$	$\begin{gathered} i j \\ 2 \end{gathered}$	$\begin{array}{r} B \\ P P M \end{array}$	$\begin{gathered} A 1 \\ Z \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \\ 2 \end{gathered}$	y	$\begin{array}{r} H \\ P P M \end{array}$
632001	1	11	7	50	. 1	5	5	359	3.11	3	5	no	2	15	1	2	2	65	. 15	. 038	4	11	. 14	35	. 12	2	1.97	. 01	. 02	2
632002	2	12	3	73	. 2	10	7	551	2.78	3	5	ND	3	14	1	2	2	55	. 14	. 056	13	14	. 23	95	. 16	3	2.76	. 02	. 04	1
632003	4	16	10	40	. 4	9	5	160	2.74	1	5	ND	1	22	1	2	2	62	. 35	. 029	6	16	. 22	75	. 18	?	2.08	. 01	. $0 t$	1
632004	1	12	6	44	. 1	7	5	218	2.55	2	5	ND	2	14	1	2	2	54	. 16	. 035	6	12	. 14	46	. 14	2	1.90	. 01	. 03	1
632005	1	20	29	63	. 1	6	37	1987	2.70	6	5	ND	1	30	1	2	2	41	. 22	. 198	5	7	. 11	75	. 05	3	1.29	. 01	. 04	$!$
632006	,	7	7	16	.1	1	2	94	2.14	2	5	ND	1	20	1	2	2	44	. 14	. 022	3	4	. 03	29	. 04	5	. 35	. 01	. 02	1
632007	3	27	10	41	. 1	3	6	631	2.69	6	7	NO	,	13	,	2	2	47	. 10	. 624	4	7	. 10	46	. 07	3	3.18	. 01	. 03	
632008	1	8	8	19	. 1	1	2	174	2.17	2	5	ND	1	13	1	2	2	46	. 13	. 028	2	4	. 03	28	. 03	2	. 27	. 01	. 02	2
632009	1	2	4	15	. 2	. 1	1	115	1.63	2	5	ND	1	11	1	2	2	37	. 11	. 015	3	4	. 02	15	. 06	4	. 22	. 01	. 02	3
632010	1	6	1	25	. 1	2	3	120	1.57	2	5	ND	1	17	1	2	3	41	. 15	. 030	3	6	. 13	17	. 10	2	. 80	. 01	. 02	1
632011	1	8	7	64	. 2	7	5	1371	1.70	3	5	ND	1	29	1	2	2	39	. 36	. 050	4	12	. 28	86	. 12	4	. 88	. 02	. 05	1
632012	1	15	14	79	. 1	5	8	323	2.64	2	5	ND	2	31	1	2	2	61	. 23	. 045	5	10	. 28	61	. 08	7	1.72	. 01	. 04	1
632013	1	2	7	20	. 1	1	2	109	1.89	2	5	ND	1	14	1	2	2	47	. 11	. 030	4	3	. 05	15	. 07	2	. 72	. 01	. 02	,
632014	1	2	5	30	. 1	1	3	133	2.19	2	5	ND	,	11	,	2	2	48	. 11	. 048	3	3	. 05	25	. 06	3	. 53	. 01	. 02	1
632015	1	5	10	33	. 1	2	2	263	2.04	2	5	ND	1	25	1	2	2	46	. 22	. 020	3	5	. 05	21	. 05	2	. 37	. 01	. 02	1
632016	1	11	3	76	. 1	9	1	377	2.35	2	5	ND	,	22	1	2	2	54	. 22	. 037	6	16	. 28	83	. 14	8	1.51	. 02	. 05	1
632017	1	11	6	70	. 1	9	5	376	2.16	2	5	ND	,	25	,	2	2	51	. 23	. 036	6	14	. 26	93	. 13	3	1.28	. 02	. 04	1
632018	1	11	3	39	. 3	11	5	265	1.68	4	5	ND	1	35	1	,	2	42	. 17	. 021	5	14	. 34	154	. 13	2	2.38	. 02	. 08	1
632019	8	32	4	65	1.1	13	12	1376	2.28	12	15	ND	1	43	1	2	2	63	. 37	. 061	35	19	. 36	128	. 11	6	3.56	. 02	. 10	1
632020	1	13	10	62	. 2	4	1	403	3.30	3	5	ND	2	14	,	2	2	55	. 14	. 239	4	6	. 11	39	. 08	2	2.54	. 01	. 04	1
632021	2	23	12	68	.1	9	10	717	2.37	5	5	N	,	31	$!$	2	2	52	. 27	. 085	14	14	. 28	71	. 12		2.69	. 02	. 06	1
632022	1	37	19	87	. 4	4	14	1750	2.79	6	5	ND	1	37	,	2	2	47	. 26	. 196	-	6	. 15	105	. 04	3	1.47	. 01	. 08	1
632023	6	27	3	62	. 3	J	5	180	5.02	20	5	* 0	5	14		49	$?$	48	. 14	2.325	7	16	. 11	45	.13		8.99	. 01	. 03	$!$
632024	1	10	10	85	. 2		5	486	2.44	4	5	ND		20	,	2	3	47	. 19	. 171	5	11	. 24	49	. 10	2	1.84	. 01	. 04	,
632025	1	9	11	53	.1	10	5	561	1.93	2	5	ND	1	16	,	2	2	43	. 19	. 029	6	13	. 31	62	. 12	5	1.42	. 02	. $0 t$	1
632026	2	13	8	34	. 1	2	3	178	1.87	2	J	ND	1	20	,	2	2	50	. 17	. 028	\checkmark	11	. 11	51	. 10	2	. 92	. 01	. 03	1
632027	3	24	11	92	. 1	9	6	1817	3.07	7	5	ND	3	35	1	2	2	51	. 34	. 385	8	16	. 30	81	. 11		5.42	. 02	. 0	,
632028	1	,	7	69	. 1	4	3	391	2.32	2	5	ND	2	31	,	2	2	44	. 17	. 074	4	5	. 08	42	. 03	5	1.86	. 01	. 02	,
632029	1	13	13	41	. 1	4	4	285	1.89	2	5	N	1	26	1	2	2	42	. 17	. 045	4	9	. 16	53	. 06	5	1.15	. 01	. 04	1
632030	3	18	7	45	. 1	10	7	209	2.71	5	5	ND	1	14	1	2	2	64	. 13	. 051	7	15	. 31	40	. 18	3	2.47	. 01	. 04	1
632031	2	13	16	69	. 2	1	16	932	4.78	3	5	N0	3	14	1	2	2	59	. 09	. 429	8	-	. 09	35	. 11	4	5.69	. 01	. 03	$!$
632032	1	5	3	16	. 1	2	3	111	2.41	2	5	ND	1	8	1	2	2	51	. 09	. 023	2	4	. 04	12	. 05	2	. 46	. 01	. 01	1
632033	1	12	8	55	. 1	5	4	197	2.99	2	5	$N \mathrm{~N}$	2	12	$!$	2	2	66	. 13	. 067	4	15	. 18	28	. 12	2	2.13	. 01	. 0	$!$
632034	,	6	9	40	. 1	4	3	586	1.44	3	5	ND	,	20	1	2	2	38	. 27	. 035	1	10	. 18	37	. 12	2	. 81	. 02	. 02	1
632035	1	11	10	50	. 1	6	4	849	2.30	2	5	No	1	12	1	2	2	48	. 11	. 068	3	,	. 12	38	. 08	2	1.37	. 01	. 03	1
632036	1	2	9	12	. 1	1	3	125	2.17	2	5	N0	1	10	1	2	2	54	. 13	. 012	3	5	. 04	10	. 09	4	. 25	. 01	. 01	1
STD C	22	62	42	139	7.3	70	30	1040	3.97	41	17	8	35	51	17	14	19	65	. 48	. 104	37	62	. 88	186	. 08	37	1.72	. 07	. 14	15

$$
\text { A \& M EXFLORATION FROJECT - - } 48 \text { FILE \# 巳E--98! }
$$

SAMELE	No	Cu	3	In	A0	Ni	fe	\%	Fe	As	4	fis	in	5 r	cd	Sb	5	v	Ca	p	La	Cr	Mc	$5:$	11	1	4.	Nz	r	*
	20.4	P9\%	PPF	PPM	PPM	PP\%	PPM	PPH	2	PPH	PP\%	PPY	PPM	PPM	PPM	PPM	P9 ${ }^{\text {M }}$	PPM	\pm	$\%$	PPM	PPM	t	PPM	\%	P9M	\%	2	:	PPM
632037	1	:	4	20	. 2	1	!	75	1.07	2	5	No	1	25	!	2	2	25	. 20	. 014	4	2	. 05	$2 t$. 06	2	. 78	. 02	. 0 ?	1
632038	!	8	17	113	. 1	1	4	605	2.49	2	5	No	1	37	1	3	2	44	. 26	. 197	5	8	. 09	67	. 06	?	1.47	. 03	. 03	1
632039	1	$!$	6	! 7	.	:	$!$	240	1.34	2	5	N0	1	15	1	2	2	32	. 11	. 030	2	2	. 04	27	. 06	2	. 38	. 02	. 02	1
532540	1	4	10	43	. 1	?	?	201	2.11	2	5	ND	2	34	1	2	2	51	. 25	. 036	4	9	. 12	26	. 08	2	1.21	. 03	. 03	1
63204:	1	27	13	81	. 2	10	6	707	2.31	2	5	ND	!	27	1	2	2	46	. 30	. 076	t	15	. 32	87	. 15	?	2.61	. 04	. 06	$!$
332042	2	25	12	85	. 2	13	11	691	3.85	2	5	ND	3	19	1	2	2	74	. 19	. 086	10	22	. 31	117	. 20	3	4.38	. 05	. 09	1
$63300:$	1	15	10	89	.	8	9	881	3.06	4	5	ND	3	33	1	2	2	$t 1$. 24	. 138	7	16	. 34	74	. 15	2	2.78	. 04	. 04	1
633002	!	8	?	113	. 1	\%	6	2206	2.58	2	5	N0	1	41	1	2	2	51.	. 31	. 169	5	12	. 22	121	. 11	2	2.03	. 04	. 04	1
633003	3	29	15	99	. 2	8	12	1308	3.76	2	J	ND	4	75	1	2	2	64	. 36	. 174	10	14	. 41	88	. 19	2	4.83	. 05	. 06	2
633004	1	10	8	61	. 1	7	7	462	2.90	2	5	N0	2	25	1	2	2	71	.21	. 028	6	20	. 23	59	. 15	3	1.77	. 04	. 04	1
633005	1	17	9	84	.	. 9	9	531	2.91	2	5	ND	5	20	1	2	2	84	. 23	. 088	10	18	. 35	70	. 14	3	2.99	. 05	. 06	!
633006	1	21	8	85	. 1	10	9	496	3.12	2	5	ND	3	20	1	2	2	56	. 23	. 086	7	21	. 51	63	. 17	2	2.82	. 05	. 07	$!$
63300?	1	17	8	4	.	9	7	238	3.04	3	5	ND	2	21	$!$	2	2	71	. 18	. 029	5	18	. 37	47	. 15	2	2.51	. 04	. 05	:
533008	2	9	6	54	. 1	6	5	299	2.75	5	5	*D	2	21	1	2		72	. 20	. 034	5	16	. 24	19	. 17	2	1.25	. 04	. 05	1
633009	2	16	13	137	. 1	5	8	1139	3.44	2	5	MD	2	33	1	2	2	53	. 25	. 213	7	7	. 38	86	. 14	2	4.47	. 05	. 03	1
633010	1	7	5	51	. 1	5	5	383	2.67	b	5	ND	4	27	1	2	2	65	. 21	. 027	5	14	. 19	46	. 17	2	1.34	. 04	. 03	1
633011	2	18	7	42	.	8	6	301	2.68	2	5	ND	3	18	1	2	2	65	. 17	. 033	5	16	. 31	57	. 16	2	1.99	. 04	. 04	1
633012	5	14	5	38	. 1	6	7	238	3.04	2	5	Nin	2	15	1	2	2	81	. 15	. 028		15	. 27	45	. 20	2	2.23	. 04	. 04	1
633013	J	14	12	76	. 1	9	10	469	4.13	5	5	MD	3	28	1	2	3	73	. 26	. 124	6	25	. 44	64	. 16	2	4.81	. 05	. 05	1
633014	3	21	18	88	. 1	13	11	579	3.72	5	5	ND	4	41	1	2	2	75	. 25	. 073	9	19	. 34	95	. 20	2	6.26	. 05	. 06	4
633015	4	11	11	78	. 1	9	8	289	3.88	2	5	ND	2	35	1	2	2	88	. 22	. 032	6	24	. 11	92	. 23	2	2.55	. 04	. 05	1
333016	4	15	7	53	.	8	7	245	3.94	2	5	ND	4	25	1	2	2	87	. 20	. 047	7	24	. 34	58	. 16	2	3.92	. 05	. 03	1
633017	1	33	7	75	. 1	13	12	390	3.52	6	5	ND	4	23	1	2	2	78	. 26	. 033	12	23	. 36	83	. 20	2	3.88	. 0	. 05	2
633018	9	23	10	49	. 2	8	7	269	3.70	3	5	ND	3	21	1	2	2	90	. 20	. 025	13	18	. 30	48	. 20	2	2.46	. 04	. 05	2
833019	8	22	9	50	. 2	6	6	713	2.57	7	5	N0	1	35	1	2	2	70	. 47	. 035	10	15	. 27	56	. 15	2	1.79	. 05	. 03	1
533020	11	20	12	89	. 1	10	8	562	3.77	2	5	ND	,	32	1	2	2	92	. 25	. 033	d	22	. 38	82	. 20	2	2.14	. 05	. 05	1
633024	8	14	11	58	. 2	10	8	383	4.57	4	5	ND	,	27	1	2	2	111	. 22	. 027	8	23	. 35	78	. 20	2	2.66	. 05	. 06	2
553022	18	22	13	58	. 3	10	14	494	4.42	4	5	ND	3	31	1	2	2	132	. 28	. 022	26	20	. 36	63	. 25	2	2.59	. 05	. 07	1
633023	30	35	7	36	. 3	6	5	219	3.01	2	5	ND	2	29	1	2	2	92	. 31	. 048	14	18	. 27	38	. 14	2	3.43	. 05	. 04	2
533024	12	16	5	47	. 1	6	6	319	2.32	3	5	ND	1	30	1	2	2	74	. 11	. 018	8	14	. 30	28	. 13	2	1.39	. 05	. 04	1
633025	9	16	6	52	. 7	8	6	217	4.57	2	5	ND	4	27	1	2	2	107	. 20	. 030		25	. 39	41	. 20	3	3.94	. 05	. 05	1
633026	5	12	9	61	. 2	10	7	195	4.59	2	5	No	3	24	1	2	2	108	. 16	. 033	d	23	. 35	51	. 25	2	2.55	. 05	. 04	1
633027	?	16	5	56	. 3	6	6	392	2.95	3	5	ND	2	32	1	2	2	71	. 27	. 037	1	13	. 26	41	. 20	2	2.03	. 04	. 04	1
633028	2	23	8	51	. 2	9	5	269	2.75	7	5	ND	3	12	1	2	2	59	. 14	. 066	6	22	. 29	40	. 16	2	2.77	. 04	. 05	1
633029	2	30	12	144	. 1	7	26	667	4.28	2	5	ND	2	66	!	2	2	88	. 28	. 067	S	9	. 26	106	. 20	2	?.50	. 05	. 02	1
333030	,	14	9	86	. 2	4	i	370	4.42	2	5	MD	3	41	1	2	2	94	. 23	. 070	5	11	. 20	39	. 15	2	2.64	. 04	. 02	1
STE C	$2!$	60	40	174	7.2	69	29	1029	3.98	42	18	7	35	49	18	16	$2!$	65	. 48	. 106	36	60	. 88	18?	.	35	1.72	.:	. 14	13

SAMPLE	M	Cu	Pt	2 2r	Ao	Ni	Co	Mn	f_{f}	4s	$!$	Au	in	¢r	cd	55	81	v	cid	F	!a	Cr	\%	82	Yi	E	R1	Nz	1	*
	PPM	$\%$	PPM	4	$\%$	PPM	PPM	2	PPM	7	PPM	2	:	\%	PPM															
633031	2	16	2	78	. 1	8	6	177	4.26	3	5	No	$?$	12	$!$	2	2	79	. 13	. 070	6	24	. 30	54	. 18	1	3.45	.0:	. 05	1
633032	1	13	7	58	. 1	5	7	592	1.48	4	6	ND	1	32	1	2	3	33	. 64	. 050	9	8	. 29	52	. 07	2	1.22	. 02	. 02	1
63303:	6	10	9	40	. 1	4	4	147	2.41	5	5	ND	1	27	1	2	2	56	. 20	. 020	5	$!1$. 24	35	. 18	2	1.52	. 01	. 02	2
633034	2	26	9	130	. 2	7	30	420	4.64	2	5	N0	2	30	1	,	2	98	. 21	. 074	8	11	. 16	53	. 15	2	3.67	. 01	. 03	1
633035	1	18	7	61	. 1	10	6	193	3.42	4	5	N0	2	21	1	2	2	76	. 17	. 055	4	18	. 31	46	. 18	2	2.22	. 02	. 03	1
633036	1	38	6	89	. 1	3	27	480	4.77	8	5	ND	2	34	1	2	2	128	. 27	. 100	6	14	. 21	34	. 16	3	4.46	. 02	. 02	1
633037	!	?	8	22	. 1	1	2	157	2.05	2	5	N0	1	101	1	2	2	80	. 83	. 015	4	10	. 12	10	. 14	!	1.11	. 02	. 01	1
633038	1	23	9	58	. 1	1	6	326	6.04	10	5	ND	3	23	1	,	2	91	. 16	. 905	5	26	. 14	32	. 12	2	5.89	. 01	. 04	4
633039	1	10	7	31	. 1	1	?	113	2.63	3	5	ND	1	22	1	2	2	67	. 21	. 040	4	8	. 11	17	. 13	2	1.73	. 01	. 01	2
633040	1	17	12	81	. 1	3	9	318	4.37	2	5	ND	2	27	1	2	2	88	. 19	. 087	5	9	. 21	52	. 13	2	2.85	. 02	. 03	1
633041	5	38	10	67	. 2	14	7	276	4.33	7	5	N0	1	18	1	3	2	94	. 14	. 130	5	34	. 35	46	. 20	2	7.93	. 01	. 04	1
633042	1	10	10	40	. 1	. 1	2	219	2.76	2	5	ND	3	16	1	2	2	66	. 14	. 091	6	14	. 09	27	. 12	3	1.59	. 01	. 02	
633043	1	16	5	68	. 1	8	7	477	2.74	6	5	NI	2	27	1	2	2	54	. 19	. 085	6	19	. 33	73	. 12	3	3.66	. 02	. 03	2
633044	2	19	5	59	. 2	3	5	390	3.88	18	5	VD	2	22	1	67	2	57	. 19	. 397	8	16	. 09	47	. 08	2	9.29	. 01	. 03	5
633045	1	10	10	27	. 1	6	3	200	2.46	4	5	ND	1	35	1	2	2	59	. 31	. 055	1	16	. 26	17	. 13	1	1.53	. 0 !	. 01	1
633046	1	10	12	145	. 1	2	4	215	2.68	2	5	ND	2	14	$!$	2	2	53	. 14	. 050	5	12	. 15	28	. 15	2	1.38	. 01	. 03	1
633047	1	11	5	48	. 2	4	5	266	2.21	2	5	ND	1	25	1	,	3	52	. 24	. 023	4	12	. 23	37	. 16	2	. 88	. 01	. 03	1
633048	1	8	3	30	. 1	,	1	162	2.55	2	5	ND	1	15	1	2	2	88	. 20	. 017	3	15	. 16	26	. 19	2	. 78	. 02	. 02	1
633049	1	15	9	46	. 2	6	6	361	2.89	8	5	ND	3	16	1	,	2	66	. 14	. 040	5	15	. 26	36	. 16	3	2.36	. 01	. 04	3
633050	1	22	3	69	. 1	3	5	309	2.45	2	5	N0	1	35	1	2	2	51	. 22	. 043	4	7	. 16	45	. 11	2	1.58	. 01	. 02	1
633051	2	11	6	37	. 2	5	5	235	2.79	5	5	ND	1	25	1	2	2	76	. 21	. 022	5	15	. 27	62	. 19	2	1.69	. 01	. 03	1
633052	2	14	10	50	. 2	7	7	456	3.28	5	5	ND	1	35	1	2	2	73	. 35	. 052	11	12	. 18	65	. 15	2	2.39	. 01	. 03	3
633053	$!$	13	9	70	. 1	5	5	242	2.90	2	5	ND	2	18	1		2	61	. 15	. 087		14	. 19	43	. 16	2	1.91	. 02	. 0 ?	$!$
633054	1	11	5	60	. 1	4	4	203	2.76	5	5	nd	2	18	1	2	2	59	. 18	. 045	5	12	. 18	44	. 16	3	1.39	. 01	. 04	1
633055	2	6	10	58	. 1	1	19	868	2.29	2	5	NO	1	22	1	2	2	43	. 16	. 035	5	8	. 11	36	. 10	2	1.06	. 01	. 02	1
633056	1	6	5	38	. 2	1	2	92	2.04	3	5	ND	1	20	1	2	2	47	. 15	. 079	4	6	. 07	21	. 12	2	. 96	. $\hat{0}$. 02	1
633057	1	20	11	62	. 1	1	14	498	2.11	2	5	ND	1	58	1	2	2	44	. 18	. 028	4	12	. 13	65	. 11	2	1.08	. 01	. 02	1
633058	4	21	9	81	. 1	8	11	507	3.03	11	5	ND	1	35	1	2	2	66	. 35	. 050	9	13	. 34	68	. 16	2	2.76	. 02	. 04	1
633059	5	21	14	80	. 2	9	7	1282	1.83	9	5	ND	1	57	,	2	2	41	. 88	. 077	12	10	. 28	97	. 07	2	1.64	. 0	. 04	1
633050	3	11	9	44	. 1	6	7	243	3.25	4	5	ND	1	25	1	2	2	81	. 23	. 032	8	15	. 23	57	. 17	2	1.75	. 02	. 03	2
633061	2	10	11	61	. 2	4	12	1057	2.59	2	5	N0	1	24	$!$	2	2	54	. 25	. 045	6	10	. 11	55	. 15	3	. 90	. 01	. 03	$!$
633062	1	9	2	42	. 1	7	5	258	2.79	2	5	ND	2	20	1	2	2	66	. 20	. 014	7	15	. 24	82	. 17	2	1.61	. 02	. 05	2
633063	1	10	6	57	. 2	6	5	685	2.51	5	5	ND	1	19	1	2	2	57	. 19	. 047	1	14	. 23	79	. 14	4	1.57	. 02	. 04	1
633064	1	13	6	94	. 1	5	6	724	2.40	5	5	ND	1	38	1	2	2	46	. 31	. 102	5	11	. 22	71	. 11	2	1.80	. 01	. 04	1
633065	1	9	9	97	. 1	2	8	859	3.09	4	6	ND	1	33	1	2	2	65	. 28	. 086	5	8	. 30	93	. 21	1	1.38	. 01	. 04	1
633066	1	19	2	81	. 1	3	9	450	3.37	4	5	MD	1	32	1	2	2	75	. 22	. 080	5	7	. 33	71	. 23	2	2.81	. 02	. 03	1
STD C	21	62	35	137	7.0	66	30	1030	3.97	41	16	8	35	49	17	18	20	64	. 48	. 104	37	59	. 88	185	. 08	35	1.72	. 07	. 14	$1 ?$

S6mbet	H:	$\begin{array}{r} 5 i \\ \text { Pr } \end{array}$	$\begin{aligned} & \text { It } \\ & \text { opH } \end{aligned}$	$\begin{aligned} & \ln \\ & P P M \end{aligned}$	$\begin{gathered} \text { An } \\ P P M \end{gathered}$	$\begin{gathered} N: \\ P P K \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { DPM } \end{gathered}$	A Mr PPM	$M$$F$	EXPLORATION								Flle 4 80-790:					\because	Fa	\because	E	$4!$	rate		
										As	!	Au	ith	c.	cd	5	F	V	Co	-	:d	:						${ }^{1}$	1	k
										PPM	PPN	PPM	PPM	PPM	PPM	PPM	PPM	PP品	2	:	PPM	Pf\%	:	P9M	:	OPN	*	:	:	PPM
6T04	i	\because	?	59	. 2	$?$	e	302	3.20	2	t	NE	1	69	$!$	2	2	68	. 26	.620	4	9	. \therefore	$1 \times$. 4	?	1.59	\therefore :	. 4	:
323068	!	12	10	58	. 1	5	7	570	2.57	2	5	ND	1	49	1	2	2	57	. 32	. 139	4	11	. 38	48	.13	?	1.62	. ${ }^{1}$. 02	1
633065	$!$?	11	67	.	4	5	\$40	2.50	2	5	ND	1	36	1	\%	1	$4 E$. 26	. 042	4	:	.2:	ti	. 09	2	¢. 62	. ${ }^{\text {! }}$. 01	1
\$35070	1	t	9	85	. 1	3	5	300	2.40	2	5	N0	1	49	1	2	2	4	. 19	. 046	5	-	. 20	72	. 06	2	2.23	. 01	. 24	1
33:071	2	8	17	98	. 1	7	$1!$	577	3.10	2	7	ND	2	55	1	2	?	5	. 27	.040	t	11	. 26	84	. 14	?	2.27	. 6	. 68	!
633072	1	10	13	65	. 1	11	13	1027	3.38	2	. 7	N0	2	29	1	2	2	13	. 26	. 081	9	19	. 23	66	. 16	2	2.75	. i 2	. 03	1
633072	?	7	15	50	. 1	2	4	412	3.25	2	5	ND	2	17	1	2	2	50	. 14	. $26:$	7	12	. 12	29	. 09	?	3.52	. $\hat{*}$!	. 0	!
633074	4	$1!$	11	81	. 1	10	10	281	3.40	2	5	ND	1	27	1	2	1	69	. 21	. 062	5	20	. 38	64	. 19	2	2.48	. 11	. 03	1
633075	7	7	10	39	. 1	6	4	185	2.83	2	5	ND	2	19	1	,	2	64	. 15	. 030	5	15	. 19	33	. 14	3	1.59	.6:	. 0	2
633076	16	10	8	19	. 1	9	5	251	3.46	2	5	ND	2	20	1	2	2	76	. 17	. 047	5	18	. 38	39	. 19	2	2.29	. 01	. 04	1
633077	3	7	10	72	. 2	5	8	562	3.21	2	6	No	2	35	1	2	1	$6!$.23	. 063	5	12	. 24	57	. 18	2	1.84	. 0	. 02	1
633078	2	12	11	90	. 1	8	6	336	3.51	2	5	ND	2	47	1	2	3	75	. 32	. 073	6	11	. 33	55	. 23	3	1.86	. 01	. 04	1
633079	$!$	11	15	72	. 1	6	9	650	3.25	3	5	No	1	31	1	2	3	63	. 24	. 099	t	14	. 23	68	. 18	B	1.78	.0!	. 03	$!$
633080	1	20	5	102	. 3	4	7	443	3.29	2	5	ND	2	12	1	2	2	51	. 14	. 096	4	11	. 15	53	. 16	2	1.66	. 01	. 04	2
633081	1	18	13	53	. 1	12	9	310	2.54	2	5	N0	1	:5	1	2	2	52	. 16	. 031	5	15	. 43	78	. 16	4	2.77	. 01	. 07	1
633082	1	1	6	30	. 1	1	2	95	1.78	2	5	ND	1	11	1	2	2	40	. 13	. 018	4	9	. 06	21	. 11	2	. 74	. 01	. 02	1
633083	1	17	10	64	. 1	6	5	733	1.92	3	5	N0	2	17	1	2	2	10	. 17	. 069	6	10	. 15	41	. 12	5	1.56	. 01	. 04	$!$
633084	1	8	15	38	. 1	1	7	343	2.76	2	5	ND	2	11	1	2	2	43	. 08	. 182	1	8	. 07	19	. 08	2	2.31	. 01	. 02	1
633085	1	4	10	49	. 1	1	3	104	2.36	4	5	ND	1	22	1	2	2	46	. 15	. 095	4	4	. 09	33	. 0 ?	2	1.79	. 01	. 02	1
633086	1	9	9	114	. 1	4	10	448	2.35	2	5	ND	1	27	1	2	3	46	. 19	. 042	5	9	. 22	58	. 11	2	1.51	. 01	. 03	1
633087	1	13	8	68	. 1	7	6	447	2.37	2	5	N0	$!$	15	1	2	2	52	.1t	. $04!$	4	13	. 29	62	. 14	4	1.91	. 01	. 23	1
b33088	1	6	11	32	. 3	1	3	153	1.92	3	5	N0	1	20	1	2	2	47	. 16	. 054	4	8	. 11	21	. 14	2	. 72	. 01	. 02	2
633089	$!$	16	12	84	. 1	5	7	360	2.98	2	5	N0	1	19	1	2	2	60	. 17	. 086	4	15	. 28	50	. 12	3	2.48	. 01	. 04	1
633090	1	6	2	62	. 1	3	3	303	2.67	2	5	N0	1	21	1	2	2	49	. 18	. 122	J	6	. 13	27	. 06	2	1.88	. 01	. 02	!
633091	:	27	11	100	. 3	15	11	510	3.04	4	5	ND	2	31	1	2	1	57	. 37	. 033	8	21	. 78	167	. 21	3	3.71	. 62	. 15	$!$
633092	:	12	9	46	. 1	10	5	344	2.17	2	5	ND	1	26	1	2	2	48	. 25	. 022	8	11	. 24	82	. 15	2	1.70	. Cl	. 05	1
633094	$?$	23	17	426	. 1	4	7	455	5.26	8	5	ND	3	30	1	2	2	78	. 18	. 327	4	12	. 21	58	. 14	2	4.69	. 04	. 03	2
633095	3	18	9	172	. 1	6	11	780	2.74	3	5	N0	2	31	1	2	2	50	. 15	. 048	3	7	. 24	54	. 16	2	2.14	. 01	. 02	1
633096	2	13	10	41	. 1	4	4	273	2.47	2	5	NO	1	12	1	2	2	52	. 14	. 041	1	10	. 19	34	. 17	5	2.00	. $0:$. 03	1
633097	1	5	9	87	. 1	3	5	1538	3.28	2	5	N1	1	11	1	2	2	50	. 10	. 395	4	5	. 14	85	. 09	2	2.31	. 01	. 03	1
11+00E 11+00\%	1	22	20	191	. 1	17	16	2381	3.20	5	5	N0	1	128	1	2	3	70	. 64	. 088	7	29	.67	130	. 21	7	3.0 !	. 01	. 04	1
STD C	20	60	40	133	6.7	69	29	999	3.96	37	15	8	33	49	17	17	21	62	. 48	. 100	36	58	. 88	179	. 08	39	1.72	. 07	. 14	13

A \& M EXPLORATION FROJECT -- こaG FILE \# Q\&--ER1
PASE:
SAMPLEt

APPENDIX III

Affidavit of Expenses

AFFIDAVIT OF EXPENSES

This will certify that geological mapping, geochemical sampling and magnetic surveys were carried out on the Wally III and Bacon III claims, Egmont area, Vancouver Mining Division, to the value of the following:

Fieldwork \& Mob/Demob

Salaries

Don Allen	3 days @ $\$ 400 /$ day	$\$ 1,200.00$
James Weick	15 days @ $\$ 250 /$ day	$3,750.00$
Mark Hiltz	8 days @ $\$ 200 /$ day	$1,600.00$
Norm St. Clair	8 days @ $\$ 200 /$ day	$1,600.00$

Assays
1,783.92
Field Supplies 202.15

Room and Board 1,242.13
Transportation
840.00

Report Writing

Salaries
Don Allen $\quad 1$ day @ \$400/day $\quad \$ 400.00$

James Weick 3 days @ \$200/day 600.00

Drafting/maps $\quad 1,783.92$
Stationery 1.84
Typing, photocopying, compilation $\quad 250.00$
TOTAL
$15,253.96$

D. G. Allen, P. Eng., (B.C.)

