87-106-15593 3/88

GEOLOGIC AND DIAMOND DRILLING REPORT

FOR

Owner/Operator CANDOL DEVELOPMENTS LTD. SECHELT CARBONATE GROUP SECHELT PENINSULA, BRITISH COLUMBIA VANCOUVER MINING DIVISION NTS 92G / 12W 49° 36.1 N. LAT., 123° 53.2 W. LONG.

BY

INGOT EXPLORATION LTD. #2470 - 609 Granville Street Vancouver, B.C. V7Y 1G5 Telephone: (604) 685-9316

AND

CAROL I. DITSON, B.SC. Consulting Geologist #202 - 1910 West 6th Avenue Vancouver, B.C. V6J 1R7 Telephone: (604) 734-2850

FILMED

MARCH, 1987

301

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUMMARY

The writer was retained by Ingot Exploration Ltd. to supervise a diamond drill programme carried out on the Sechelt Carbonate Claims of Candol Developments Ltd. Ingot Exploration Ltd. has been retained by Candol as exploration managers.

The Sechelt Carbonate Claim Group is composed of the Plain, Till, Zinc and Adit #1-4 claims, all owned by Candol Developments Ltd. The property is located on the Sechelt Peninsula, 6 kilometres north of Halfmoon Bay and 65 kilometres northwest of downtown Vancouver. Access is by gravelled logging roads.

Property Geology consists of northerly elongated pendants of highly altered Jervis Group carbonates and volcanics overlying Coast Range diorite and quartz diorite.

High grade dolomitic and calcitic marbles have been known to exist on this property since 1969 and, although extensive prospecting and several reserve estimates and preliminary feasibility studies have been done since, little has been done to promote possible or probable reserves into the "measured" or "proven" category. Open pit extraction of dolomite with on-site crushing and shipment by barge is envisioned for this property. There are no known alternate dolomite sources on the west coast with similar purity.

This diamond drill program, begun in December, 1986, was initiated to test reserves contained in one large dolomite body located on the Plain claim. A total of 583.08 metres of NQ core was drilled, in a grid pattern, along an 840 metre road constructed for that purpose.

As a result of this program 3.5 million tonnes of drill indicated geologic reserves of dolomite were calculated with an average purity of 96.7% dolomite which places it within the industrial "high purity" range.

Other dolomite bodies known to exist on the property remain relatively unexplored and unsampled. These may increase current reserve estimates. Recommendations for future work programs include preliminary geologic mapping (scale = 1:1000) and sampling of these areas in addition to further development of the present project area. To this end, detailed geologic mapping (scale = 1:500), trenching of unexposed contacts and additional drilling and sampling are recommended for further definition of the orebody.

Carol I. Ditson

TABLE OF CONTENTS

-38

Page

	LOCATION	1	
	ACCESS	1	
39	TOPOGRAPHY	2	
-36	PROPERTY	3	
	HISTORY	4	
3 8	REGIONAL GEOLOGY	7	
	PROPERTY GEOLOGY	8	
	LITHOLOGIES	10	
390	ALTERATION	15	
	MINERALIZATION	16	
3 38	STRUCTURE	17	
	1986 DIAMOND DRILLING PROGRAM	19	
	DISCUSSION OF SAMPLING RESULTS	22	
	CONCLUSIONS	22	
	RECOMMENDATIONS	23	
	ESTIMATED EXPENDITURES FOR 1987 WORK PROGRAM	23	
	BIBLIOGRAPHY	25	
1.200 000			
	APPENDICES Following	page	25
	APPENDIX A: DIAMOND DRILL LOGS		
1994	APPENDIX B: ASSAYS AND ANALYTICAL METHOD		
	APPENDIX C: PETROLOGIC REPORT, VANCOUVER PETROGRAPHICS LTD		
	APPENDIX D: 1985 DRILL LOGS AND ASSAY RESULTS (Holes 85-5, 6, 7)		
	APPENDIX E: STATEMENT OF EXPENDITURES		
2 2	APPENDIX F: CERTIFICATE		
	APPENDIX G: CONVERSION FACTORS		

FIGURES	Following Page
1. Property Location	1
2. Claims and Property Topography	3
3. Location of 1985 and 1986 exploration projects	6
 4. Cross Sections from Diamond Drill Data a. Hole #92P86-7 b. Hole #92P86-8 c. Hole #92P86-10 d. Hole #92P86-11 e. Hole #92P86-13 f. Hole #92P86-14 g. Hole #92P85-5 h. Hole #92P85-6 	
i. Hole #92P85-7	

100

5. Geology and Drill Site Locations

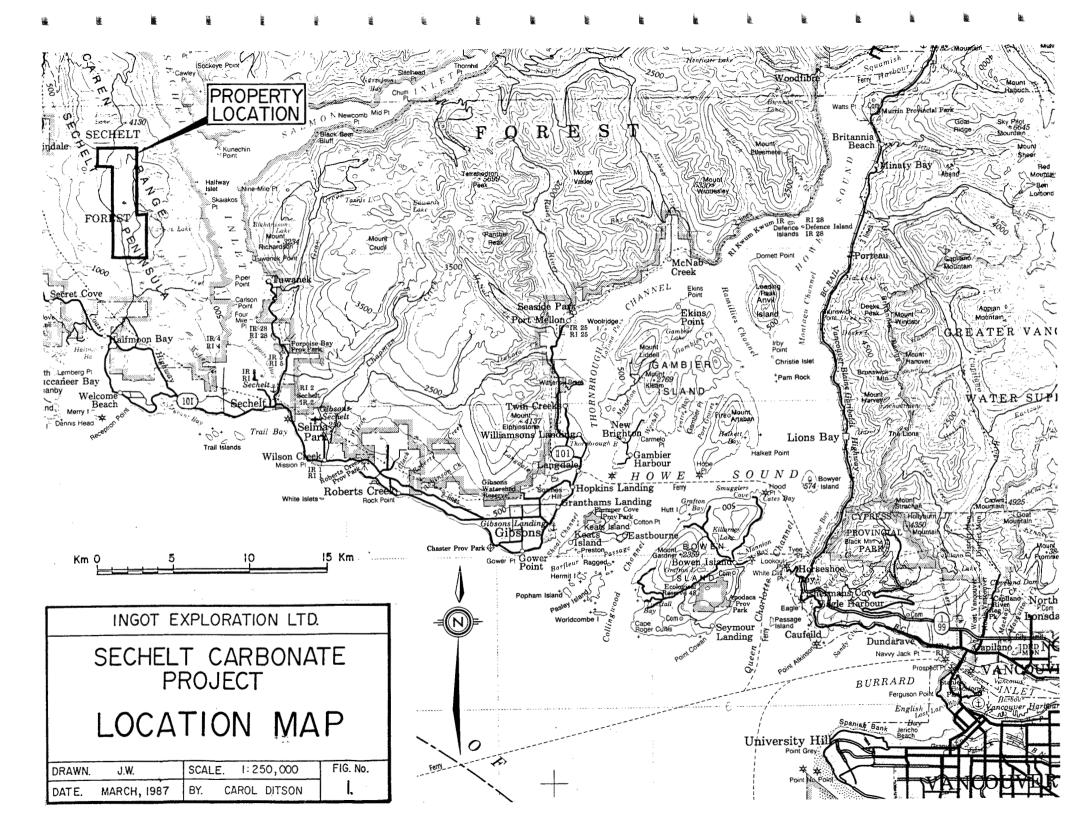
In Folder

LOCATION

The Sechelt Carbonate Group Claims are situated close to the centre of the Sechelt Peninsula at 122° 53' W longitude and 49° 36' N latitude, approximately 6 kilometres north of Halfmoon Bay and 65 kilometres northwest of downtown Vancouver.

Geographically located in the Caren Mountain Range, these three claims extend from the headwaters of Anderson Creek on the north to include the drainage system of Carlson Creek from its initiation to Carlson Lake on the southeast. The southern boundary of the claim group lies approximately 600 metres south of the southernmost tip of Carlson Lake.

The Adit #1-4 claims are located on the west shoreline of the Sechelt Inlet, four kilometres east of the Sechelt Carbonate Group. These claims are held solely to provide a means of nearby shoreline access to the Carbonate Claim Group should such become necessary or expedient at a future date.


ACCESS

Access from Vancouver is via the B.C. Ferry system from Horseshoe Bay to Langdale (a 45 minute sailing), then northwest along Highway 101 for a distance of approximately 31 kilometres to the Trout Creek Road turnoff. Trout Creek Road, located 300 metres past (west of) Trout Lake, is an improved logging road which accesses a complex system of northerly trending logging roads. This network, combined with several secondary mining roads, provides excellent access to most portions of the claim group.

Total travel time from downtown Vancouver is approximately 2.5 hours; from the town of Sechelt, approximately 25 minutes.

The claims are accessible by 4-wheel drive vehicle during most of the year as the climate is mild. Heavy accumulation of snow can pose a problem during the winter months, however, this is rare. Light to moderate snow accumulations, negotiable by 4-wheel drive vehicle, generally melt after a

- 1 -

few days preventing heavy snow build up. Road clearing equipment is readily available should snow ploughing be required.

As noted previously, the property is accessible by water with the Adit #1-4 claims providing an eastern shoreline access a scant 4 kilometres downhill from the claims. It is envisioned that quarried dolomite crushed on site, could be economically barged from Sechelt Inlet to a processing site or directly to customers and distributors.

There is an abundance of resources available in the area that serve to facilitate mining exploration and development in addition to aiding any future quarry operations.

A high voltage transmission line (230 KV) crosses the northwest corner of the Zinc claim. Timber and water are available for construction on the site; labour, materials, equipment, transport and communications are readily available at Halfmoon Bay, Sechelt or in Vancouver. Adequate accommodation is available in the area.

TOPOGRAPHY

Relief on the Sechelt Carbonate Claims Group varies from gentle to moderately rugged in a series of northerly trending ridges and gullies.

Steep to near-vertical cliffs comprise much of the western side of the Carlson Creek drainage. Elevations range from approximately 457 metres at the soutwest corner of the Till claim to slightly above 1,020 metres along the eastern edge of the Plain claim.

Karst topography is evidenced by numerous small lakes, occasional sinkholes and dykes which, when observed cutting through a limestone unit, often stand a foot or more above the surface of the limestone, attesting to differing dissolution potentials.

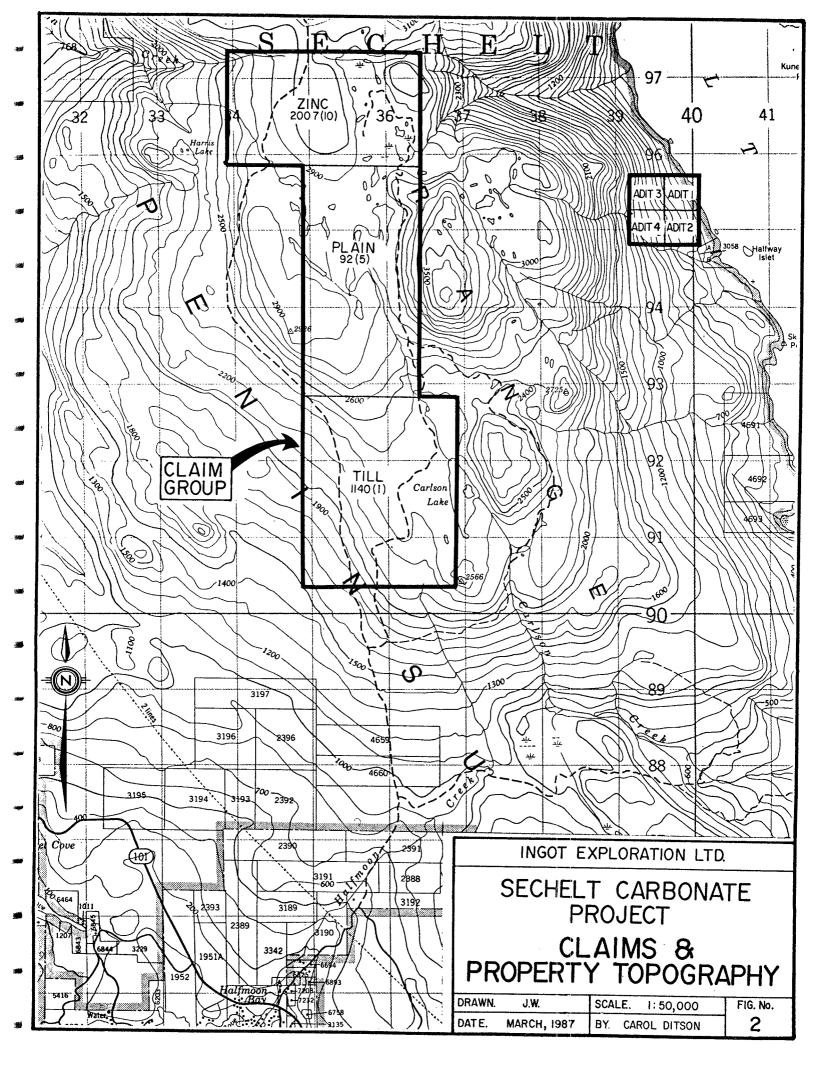
- 2 -

Much of the claim area is covered with overburden, ranging in depths to over 20 feet (Weymark, 1983), some of which is muskeg-swamp. Most of the claim area has been logged and is now covered with a dense secondary growth of coniferous and deciduous timber.

PROPERTY

The Sechelt Carbonate Group of minerals claims cover 1,359 hectares (3,358 acres) and consists of three modified grid system claims, totalling 53 units of 25 hectares (61.8 acres) each, and four 2-post claims of 20.9 hectares (51.7 acres), totalling four unit equivalents.

Claims details are itemized below. A claim map is included as Figure 2.


<u>Claim</u>	Units	Number	Record Date	Expiry Date
Plain	18	92	May 31, 1976	May 31, 1989
Till	20	1,140	January 12, 1982	January 12, 1988
Zinc	15	2,007	October 20, 1986	October 20, 1987
Adit 1	1	1,177	April 15, 1982	April 15, 1987
Adit 2	1	1,178	April 15, 1982	April 15, 1987
Adit 3	1	1,179	April 15, 1982	April 15, 1987
Adit 4	_1	1,180	April 15, 1982	April 15, 1987
Total	57 un:	its		

A Notice to Group (#1018) was filed on May 12, 1983 affecting the Adit #1-4 claims, now known as the "Adit Group".

The Adit #1 claim does not comprise a full unit as a portion of the ground staked extends into the Sechelt Inlet.

The claims, situated in the Vancouver Mining Division, are shown on B.C. Department of Mines and Petroleum Resources Mineral Claim Map 92G/12W.

- 3 -

HISTORY

The Sechelt Carbonate Property was originally explored by Rudolph C. Riepe with the first claim, the Estelle claim, being staked by him in November, 1969. Within a year, a further 24 claims were staked by Mr. Riepe (the Nad #1-7, Sad #2-7, Helga, Helga West, Sharon, Sharon West, Estelle West, Patty, Patty West, Terry, Terry West, Wendy and Wendy West claims). In August, 1970, the claim group was sold to Peninsula Lime and Magnesia Ltd. and later named the Pen Lime Group.

In September, 1970, Peninsula Lime contracted R. Darney and C. Ikona of Pamicon Developments Ltd. to perform preliminary geologic mapping and tonnage estimates. Pamicon's report covers two small areas of the property; the southeast of the present Plain claim (Peninsula's intended production area) and the central portion of the Plain claim (their intended plant site). Extrapolating from surface indications, Messrs. Darney and Ikona estimated 106,000 tons of combined probable and possible white dolomite reserves and 520,000 tons of high calcium limestone. The three samples that Pamicon had assayed revealed the carbonates to be of extreme purity, containing less than 1.6% impurities. Pamicon's subsequent report recommended magnetometer surveys, trenching and diamond drilling.

A 1970 B.C. Department of Mines and Petroleum Resources G.E.M. report indicates that, as of August, 1971, a crusher plant was in place and Peninsula Lime and Magnesia had commenced quarrying limestone and dolomite to produce stucco chips and slab stone for the building industry.

In November, 1972, Peninsula Lime forfeited ownership of a portion of the claim block. This area was subsequently restaked for Rudolph Riepe and named the MC #1-5 claims. In November, 1973, when one further intervening claim was allowed to lapse, Mr. Riepe restaked that ground also, naming this the Ruby claim.

The MC-Ruby property was subsequently explored for copper mineralization which appeared to be related to carbonate/intrusive contacts and shear zones

- 4 -

within the carbonate units. In late 1973, Rudy Riepe combined with Weymark Engineering Ltd. to perform aerial and ground geophysical, geochemical and geological surveys (assessment report #4803). Further investigation to test the extent and nature of the sulfide mineralization was recommended.

There is no further mention of activity on this property until 1976 when it appears the emphasis shifted from sulfide mineralization to the carbonates as a potential source of magnesium for industry. In May, 1976, Paul Price staked the present Plain claim for Rudy Riepe. This claim overlapped much of the area of the MC and Ruby claims which were subsequently allowed to lapse in 1978. In the interim, J.M. Ashton Associates submitted a feasibility report on dolomite processing (1977) and a proposal to establish a dolomite grinding plant on the Sechelt Peninsula as a source of magnesiumrich fertilizer (1978).

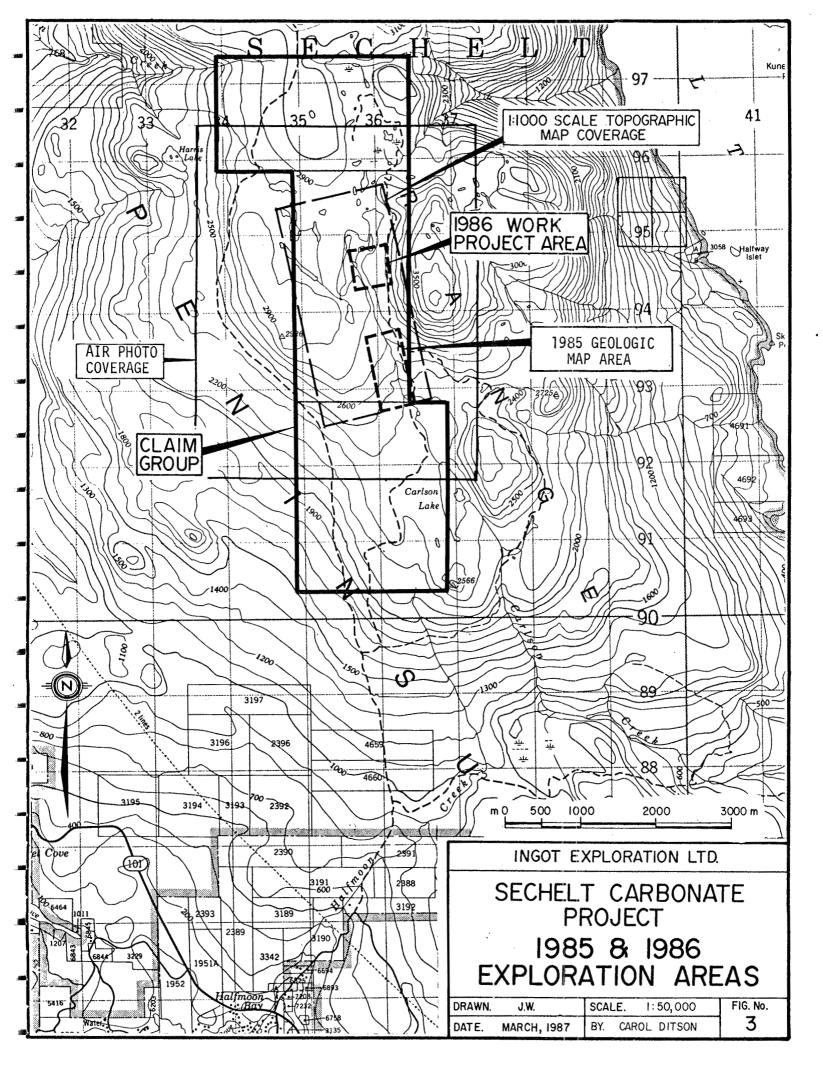
Sometime prior to November, 1980, Mr. Riepe had acquired another 21 units of ground adjoining the Plain claim on the north and west. He subsequently approached Kaiser Resources Ltd. to determine their interest in optioning the property for further exploration and development. Kaiser conducted a thorough study of the property's potential for dolomite, limestone and peat recovery, processing, marketing and transportation to industry. Pertinent conclusions from their November 3, 1980 report are outlined herewith:

- total indicated and inferred reserves
 dolomite: 117,500,000 tons
 limestone: 27,500,000 tons
- the dolomite and limestone present on the property are of exceptional purity (dolomite 98.3%, limestone 99.1% pure)
- a number of products and by-products could be produced at low enough cost to compete with, and perhaps undercut, domestic and world markets.

It was subsequently recommended that Kaiser acquire an option on the Sechelt property and a five phase program was set out for its development. On November 6, 1980, a memo sent from Kaiser Resources to R.G. Heers of British

- 5 -

Columbia Resource Investment Corporation (B.C.R.I.C.) suggesting that they proceed with the development of this property. For reasons unknown to this author, neither Kaiser nor B.C.R.I.C. proceeded with the proposed option.


During 1982, the present Till and Adit #1-4 claims were staked by R. Riepe and the 21 units to the north and west of the Plain claims (Zinc and Base claims) were restaked by Constance E. Vodden acting as agent for herself.

On March 3, 1983, a legal sale agreement affecting the Plain, Till and Adit #1-4 claims was executed between Rudolph Riepe and Candol Developments Ltd. and Candol subsequently undertook to explore and develop the Sechelt Carbonate prospect. Weymark Engineering Ltd. submitted a "Primary Report" (April 6, 1983) to Candol in which they recommended a two phase program to include 5,000 feet of diamond drilling to further test the copper-lead-zincsilver potential of the property. In May, a proposal for development of the Sechelt Industrial Mineral Project was submitted to Candol by D.R. Hjorth, P.Eng. and shortly thereafter (September, 1983), Wright Engineers Ltd. submitted a second "Primary Report" with respect to the carbonate potential of the property. Their sampling indicated the dolomites to be of high purity (average 97.28%) and having considerable lateral continuity at surface. Wright Engineers recommended a program of diamond drilling and bulk sampling combined with market research to establish current and projected demands for potential products and by-products.

In September, 1983, Candol made application to the B.C. Ministry of Lands, Parks and Housing for land leases for the purpose of quarrying limestone and dolomite and for the establishment of docking facilities to allow for barge shipping of the carbonates.

In February, 1985, Candol commenced an eight hole diamond drilling program. A total of 840 metres of NQ core was drilled and logged. Seventy-nine percent of the core was assayed and found to be relatively pure carbonate. Most of the unassayed rock consisted of intrusive dykes ranging in thickness from 0.1 to 0.6 metres (Bechtel, 1986).

- 6 -

In March, 1985, Candol amalgamated with Ingot Resources Ltd. to co-venture in further development of the Sechelt property. There is no corporate or other relationship between Ingot Resources Ltd. and Ingot Exploration Ltd. or its parent corporation, Ingot Management Ltd.

A short program of geologic mapping was commenced in September, 1985 by Carol Ditson. A small area located less than a kilometre to the south of the 1986 drill project area, in the vicinity of Peninsula Lime and Magnesia's workings, was mapped on a scale of 1:1000 to identify the boundaries of the calcite in that area.

During February, 1986, Bechtel Inc. was contracted by Candol to visit the property and review existing data in order to assist in planning the next stage of exploration and development (Bechtel, 1986). Bechtel recommended a two phase program of market evaluation and exploration ("Resource Assessment") to be conducted concurrently. The suggested exploration program consisted of detailed geologic mapping to be followed by a 1,000 metre drilling program, seismic surveying to measure overburden depth and bulk sampling for process tests.

In August, 1986, the Zinc and Base claims owned by Constance Vodden, lapsed and in October most of that area was restaked for Rudy Riepe as the Zinc claim.

The subject diamond drill program commenced December 8, 1986. The details of this program will be dealt with in another section of this report.

On December 15, 1986, a Bill of Sale was recorded in the office of the Mining Recorder, Vancouver Mining Division, transferring all interest in the Plain, Till, Zinc and Adit #1-4 claims to Candol Developments Ltd.

REGIONAL GEOLOGY

The Sechelt Peninsula is situated at the western edge of the Coast Plutonic Complex, a geologic province of the Canadian Cordillera. The Coast Plutonic

- 7 -

Complex bounded on the east by the Intermontaine Belt and on the west by the Insular Belt, is a northwesterly trending belt consisting primarily of granodiorite and quartz diorite, with diorite concentrations in the west (Roddick, 1976). As the Coast Mountains were emplaced over a long period of time as a succession of intrusions rather than as a single unit, dating of these rocks is a complex issue. Ages are generally considered to range from late Jurassic-early cretaceous in the west to Eocene in the east.

Scattered across the Complex are elongate, northwesterly trending pendants of older sedimentary and volcanic rocks of various formations which lie unconformably atop the plutonic rocks. These "pendants" have been metamorphsed and intruded by later dykes. It is thought that many of these bodies could be remnant synclinal elements, the most deeply downfolded portion of an iscoclinally folded magmatically invaded roof (Bacon, 1957).

Metamorphism in the Coast Plutonic Complex ranges from sub-greenschist to the highest Amphibolite grade (Roddick, 1976).

PROPERTY GEOLOGY

The volcanic and carbonate units present on the Sechelt Carbonate property have been considered by various authors as belonging to the Gambier Group of lower Cretaceous age (Roddick, Muller & Okulitch, 1976), the upper Triassic Karmutsen formation (Roddick & Woodworth, 1979) and the Jervis Group (Bacon, 1957), to name a few. As very little inland mapping of the Sechelt Peninsula had been accomplished, Bacon in 1957 used Jervis Group to include all rocks of pre-batholithic age. Inasmuch as subsequent correlations are contradictory and, as all previous writings on the subject property refer to Jervis Group, it is considered appropriate to continue with this usage.

Jervis group volcanics and carbonates occur as northerly trending, elongate roof pendants sandwiched between and resting unconformably over late Jurassic/early Cretaceous Coast Range diorite and quartz diorite. Later dating andesite dykes cut all of the foregoing.

- 8 -

Although geologic mapping has been performed on the property, it has been confined to very localized areas. The only detailed mapping of carbonate units was accomplished in 1985 by the writer who mapped a small area of calcitic carbonate rock approximately 2 kilometres south of the drill area reported here.

Plan view geology of the 1986 drill project area (Figure 5 of this report) is compiled primarily from information obtained from drill core. Surficial mapping will be necessary, when snow cover permits, in order to confirm surface contacts.

A large, northerly trending body of dolomite has been outlined, ranging from 30 - 80 metres in width and extending for a distance in excess of 500 metres. The dolomite is bounded on the west by a narrow, continuous band of mixed dolomite and calcite. East of the dolomite, calcite predominates.

Two narrow, discontinuous bands or pods of calcite have been identified within this dolomite body. The first, visible on surface just north of drill hole 92P86-7, is not seen in drill core. The second is present in drill core in drill hole 85-5 and may or may not outcrop on surface.

The dolomite is cut by a large northwesterly trending andesite dyke, ranging in thickness from approximately 2 to 20 metres at surface. The wider, southern portion of this dyke appears to follow the southeastern boundary of the dolomite.

Intrusions are generally more massive and closer to surface on the northerly and narrowest portion of the dolomite body, but become sparse, narrow fingers south of the large andesite dyke discussed above.

A second body of dolomite is present in the drill area, seen outcropping on surface and in fault contact with calcite at the end of drillhole 92P86-13. the extent of this body is unknown and requires further exploration.

- 9 -

LITHOLOGIES

Lithologies present on the claim group are discussed herewith. Thin section preparation and petrographic analysis was performed on most rock units by Vancouver Petrographics Ltd. whose findings are included in the following discussion. Vancouver Petrographics' report comprises Appendix "C" of this report.

Calcitic Marble

Fine to course grained marbles, varying in color from white to medium grey, are commonly finely and consistently banded. Microscopic work revealed that the presence of an opaque mineral (graphite?) along seams, combined with recrystallization of calcite along these seams, is most likely responsible for the banding seen in hand sample.

Mineralogically, these marbles were found to contain minor amounts of serpentine, dipside, olivine and talc, often present as pods within conformable banding giving the appearance of an augen gneiss. Traces of opaque minerals (pyrite, graphite?, magnetite?) are also present.

Evidence indicates that at least some of these calcitic marbles were originally ultramafic rocks, subsequently serpentinized, then later metasomatically altered to calcite with a large input of calcium at the expense of magnesium (Payne, February, 1987). The accompanying loss of magnesium may have played a role in the formation of dolomitic marbles also present on the property. An opposite opinion suggests the high graphitic content of these marbles is indicative of a depositional environment. However, no other rock units of recognizable sedimentary origin have ever been found on the property and this question may remain unresolved.

The Calcitic marbles show very little obvious response to stress. Occasionally banding is contorted to migmatitic proximal to an intrusion. Some faulting is evidenced by seams of increased to pure graphite along which motion has occurred. It is the author's belief that banding in the

- 10 -

marbles is a direct result of regional stresses. The graphitic, recrystalized seams are very likely bands along which pressure solution has occurred and fluids have subsequently migrated. Banding in calcitic marbles parallels response to regional metamorphism (i.e. lineations and foliations) observed in other rocks on the property.

Field explosures of calcite have rounded, often pitted surfaces resulting from dissolution. Weathering rind, when present, is white.

Dolomitic Marble

These fine to medium grained marbles are most often a mottled light to medium grey color, although massive white dolomite is also present on the property. The common mottled, occasionally brecciated appearance results from the presence of numerous, thin anastomosing veinlets, usually dark grey in color (graphite?) that cut the marble in many directions. Light colored stringers of dolomite and calcite are also common.

Compositionally, the magnesium content of the dolomite is variable. Assays ranged from a rare low of about 35% MgCO₃ (16.8% MgO) to a high of 41.82% MgCO₃ (20.00% MgO). Average magnesium content of the dolomite identified in this drill program was 39.09% MgCO₃ (18.68% MgO).

The dolomitic marbles, when subjected to regional stress, tend to deform cataclastically. Brecciation is common along faults; abrupt, numerous single glide surfaces with dissimilar appearing material on both sides is characteristic of faulting, as compared to wide shear zones seen in calcitic marbles.

Dolomite outcrops have an extremely rough, almost botryoidal appearance from preferential dissolution along multi-directional veining systems. Weathered surfaces are tan colored.

- 11 -

Andesite

Fine to medium grained, often cherty, greenish-grey dyke rock is often porphyritic. Phenocrysts are plagioclase laths or plagioclase hornblende combinations and vary in number and size from one exposure to another. The groundmass is also composed of plagioclase and hornblende.

Chlorite and epidote are commonly present as alteration products resulting from greenschist facies metamorphism, however, relatively unaltered grey andesites are also found on the property and most likely represent a younger intrusive event. Stringers containing calcite, epidote and minor quartz commonly cut the andesites in one to three directions.

Andesitic dykes range in thickness from a few inches to several metres. Unaltered andesites have been observed cross cutting all other lithologies on the property.

Andesite dykes generally show a great deal of linearity and lateral continuity. Where they intrude calcitic marble, they are generally concordant with banding. In addition, andesite bodies often follow dolomite/limestone contacts. Andesites for the most part, appear to have intruded passively as contacts with other lithologies are abrupt and usually devoid of thermal alteration effects.

Basalt

This dark grey massive rock is composed of plagioclase, chlorite, augite and rare olivine with tremolite scattered throughout as a result of greenschist metamorphism. Texturally, this rock is variable ranging from slightly inequigranular to porphyritic; phenocrysts, when present, are plagioclase and pyroxene. Thin, subparallel veinlets include quartz and pyrite.

Basalt, as seen in drill core, is associated only with the carbonate units, paralleling and cutting calcitic banding at an angle. Contacts measured in drill core suggest that swarms of these bodies converge at depth, indicating

- 12 -

them to be shallow dykes rather than volcanic flows. Absence of vesiculation supports this likelihood.

Basalt, in hand specimen, is extremely difficult, often impossible to distinguish from fresh andesite as olivine is seldom a constituent. If mafic phenocrysts are present and identifiable as pyroxene (augite) the rock is a basalt; if phenocrysts are amphibole (hornblende), it is an andesite. Both however, commonly contain only plagioclase phenocrysts necessitating microscopic work for identification.

Amphibolite

These dark grey, fine to medium grained rocks are composed primarily of hornblende and plagioclase with minor biotite, altering to chlorite. A vague foliation is present in hand specimen, resulting from segregations of plagioclase and hornblende/biotite in bands (Littlejohn, 1987). Fine calcite veinlets, carrying a variety of accessory minerals, tend to parallel the foliation. Narrow stringers of acicular tremolite are also present.

Sulfide composition of these rocks tends to exceed that of other lithologies on the property, varying up to 10% in drill core. The sulfides present were mainly pyrite and pyrrhotite with traces of chalcopyrite and ilmenite. Pyrrhotite and ilmenite are most likely responsible for the spotty magnetism present in hand specimen.

Amphibolites were observed only in the bottom half of drill hole #14 and have never been identified on surface, therefore, their mode of occurrence is somewhat uncertain. Vancouver Petrographics believe them to be metamorphosed volcanics but whether they were surface flows or shallow intrusions is unknown at present.

Metavolcanics

These are highly altered, often colorful assemblages of silicate minerals, found to contain variable amounts of diopside, garnet, potassium feldspar,

- 13 -

tremolite, plagioclase, chlorite, sericite, various accessory minerals and, usually, a few percent pyrite. A few sections of drill core were composed almost entirely of pinkish-brown garnet of no apparent value.

These are massive, fine grained (often cherty) rocks with no apparent texture and a mottled appearance resulting from patchy accumulations of mineral constituents.

Metavolcanics appear over a diverse scale, ranging from pods and stringers of a few centimetres dimension to veins (pods?) up to and possibly exceeding 10 metres. Contacts are generally very irregular (wavy) although seldom gradational. Often patches of calcite occur within metavolcanic assemblages. It is interesting to note that very large metavolcanic bodies are often directly adjacent or proximal to a significant fault. This may indicate that these skarn-like assemblages have been formed by the alteration of carbonates by siliceous fluids moving along fault zones.

Although this assemblage is suggestive of a skarn environment, it can also result from strong calcium-carbonate metasomatism of intermediate to mafic volcanic suites at fairly high temperatures and pressures (Littlejohn, 1987). As carbonate alteration was observed in thin section analysis of most other rocks on this property, the volcanic origin is likely and textures often appear to support this hypothesis. A small portion of the metavolcanic assemblage from drill hole 92P86-14 appears to be overprinting diorite; a few "patches" of apparent diorite were observed, fading into the diopside assemblage.

<u>Diorite</u>

Medium to course grained diorite is composed predominantly of plagioclase with tremolite, potassium feldspar and epidote. Calcite, sphene, apatite and sulfides are present as trace elements. Tremolite and calcite are believed to have replaced original hornblende; epidote and K-spar are also present as alteration products.

- 14 -

This diorite is somewhat inequigranular, indicating a possible sub-volcanic origin. It has been suggested from petrologic work that the diorite may be related to the relatively unaltered basaltic and andesitic intrusions discussed previously. Andesite/diorite cross cutting relationships indicate that andesite is younger, however, diorite and basalt could well be related to the same intrusive event. They have undergone the same type and degree of alteration and have not been observed together in field or drill core.

Quartz Diorite

Quartz diorite was not seen in drill core, although it is present on the property to the immediate south of the present drill area.

Petrologic work was not performed on quartz diorite. Hand specimen analysis showed these diorites to consist of plagioclase, potassic feldspar, quartz and biotite which has been extensively replaced by chlorite. Sulfides are present in minor amounts.

Texturally, these rocks are medium to coarse grained and often show a slight foliation or gneissosity which parallels banding in calcitic marbles. Crenulated biotite was observed at one outcrop.

ALTERATION

Alteration on the Sechelt Carbonate property is extensive and usually pervasive, with several stages of metamorphism having occurred.

Petrologic evidence indicates that the calcitic marbles examined were originally ultramafic rocks which were serpentinized and later metasomatically altered to calcite (Payne, 1987). Littlejohn indicates that the altered volcanic rocks he studied could also have resulted from calcium carbonate metasomatism of intermediate to mafic rocks under relatively high temperatures and pressures. Mineralogic assemblage and lack of fabric in these rocks suggests metamorphism to amphibolite facies under conditions of hydrostatic stress, i.e. sea floor burial. Serpentinization of the

- 15 -

ultramafic assemblage most likely occurred under the same conditions, perhaps even liberating the CaCO3 responsible for altering the volcanics.

The next stage in the alteration history of these rocks is the pervasive calcium metasomatism of both the resultant serpentine and diopside/garnet assemblages. As there exists evidence (samples 92P86-11-150 and 92P86-10-386) of later greenschist metamorphism overprinting marble, it appears likely that ca-metasomatism occurred during burial. This reaction, which requires a large input of calcium and releases magnesium to the system, may also account for dolomitization by trapped magnesium.

Greenschist metamorphism, occurring at lower temperatures and pressures than amphibolite facies, overprints the above rocks in addition to affecting most other rocks on the property. This stage of retrograde metamorphism represents mineralogic adjustment to shallowing depths of burial caused by uplift of the newly formed Coast Plutonic Complex. Epidote and calcite appear with quartz and pyrite in patches and veinlets; chlorite and tremolite replace mafic minerals.

Lastly, regional metamorphism from east-west directed stresses has resulted in a north-south trending fabric in many of the rocks present on the property, i.e. banding in calcitic marble and foliation in quartz diorite and amphibolite in addition to small scale shearing and major faulting. Dolomitization may also have occurred concurrently as a direct result of regional stress (Wanless, 1979).

MINERALIZATION

Although portions of this property have been explored for economic grades of base and precious metals (copper, lead, zinc and silver), Weymark Engineering Ltd. (1983) found such mineralization to be confined to intrusive contacts with carbonate and metavolcanic units. They should, therefore, not serve to complicate open pit mining of carbonates.

- 16 -

Sulfides observed in drill core were primarily pyrite with some pyrrhotite and very minor chalcopyrite and ilmenite. Pyrite is present throughout as fine cubic disseminations, although in both calcitic and dolomitic marbles these disseminations are very rarely more than a trace and should not pose any contamination problems. Three narrow bands, less than .3 metres in width, of high pyrite content were, however, observed within the calcite units in drill core. All were associated with high silica content and were conformable to banding. In dolomitic marble pyrite is occasionally present, in association with serpentine as blebs and stringers. The pyrite content is relatively minor (less than a few percent) except in a .5 metre section from drill hole 92P86-8 which contained up to 10%. The lateral extent of these occurrences is unknown but is not extensive as they were not correlatable between drill holes. Drill hole #92P86-13 was the only observed example of vein sulfides. Small veins and stringers cutting dolomite consisted of sphalerite, pyrite, chalcopyrite and a fine needlelike silvery mineral, possibly Jamiesonite or boulangerite. This occurrence was limited and not observed elsewhere.

STRUCTURE

Attitudes on the Sechelt property, as discovered from previous mapping, are not readily obtainable due to scarcity of outcrop. Attitudes consist of banding in calcitic, sometimes dolomitic marbles, and foliations in amphibolite, altered andesite (volcanic greenstone) and quartz diorite.

At first glance, all attitudes appear roughly parallel, averaging northsouth and dipping steeply to the east. On closer examination, marble and greenstone generally strike north to slightly northeasterly, not concordant with quartz diorite which is foliated in a northwesterly direction. Quartz diorite folia appear to parallel the trend of major faulting in the area.

Banding in calcite appears to adjust readily to stress, veering in a northwesterly direction when in contact with large intrusions. In diamond drill hole 92P86-13, the common banding at 45° (to drill core axis) is

- 17 -

overprinted with a second set of vague, spotty banding at 30° , most likely conforming to the trend of an adjacent fault.

Examination of drill core indicates that carbonate/intrusive contacts are, with little exception, near vertical. In spite of this, when seen in planar view, geologic contacts parallel carbonate banding in only the most general sense, with narrow dykes often cutting banding indiscriminantly. Calcite is sometimes seen to have a contorted, mylonitic appearance proximal to intrusive rocks, however, contacts are most often clean with marbles appearing undisturbed by the intrusion. This may be attributable to realignment of banding resulting from regional stresses following the intrusive event.

Examination of drill core indicates that faulting, at least in the drill project area, is more extensive than indicated from surface mapping to the south. Extensive overburden, which may in part result directly from faulting, does serve to hinder tracing of surface indications.

Lineaments seen in map view (interpreted as faults) combined with faults mapped to the south, indicate faulting in a predominantly northwesterly direction ($160^{\circ} - 165^{\circ}$) with a few faults directed slightly to the northeast, 30° from the first set. Surface lineaments are often seen to extend for distances exceeding 100 metres; a few faults have also been correlatable between drill holes over distances of approximately 100 metres.

Calcitic and dolomitic marbles respond differently to shear stress. Calcite, by far the more ductile, tends to form fairly wide shear zones ranging from a few inches to a few metres in thickness. Graphite can comprise up to 90% of the shear with calcite becoming "smeared out" along the direction of movement giving the appearance of veins. Shears in dolomite, by far more numerous than in calcite, exhibit a typical brittle response to stress. Clean breaks frequently place two quite visually different dolomites in contact with each other. Narrow (less than 2 centimetre) zones of brecciated dolomite and clay often accommodate movement. Inactive brecciated shears can become recemented by dolomite; in

- 18 -

drill hole 92P86-8, one such healed shear at 25° (angle to core axis) was superimposed with an uncemented breccia at 40° , indicating a change in the regional stress regime.

Shear zones often follow lithologic contacts, however, do not appear to always be the cause of such contact. One unique shear zone, containing a silica breccia, was correlatable between drill holes 8 and 11.

Direction of motion and amount of offset along faults and shears has not been resolved from drill core and can only be guessed at from topographic indications. Surficial mapping will be necessary to resolve this. One fault, which likely correlates between drill holes 10 and 13, appears to have a large rotational component as banding and contacts shallow considerably to the east of this shear.

1986 DIAMOND DRILL PROGRAM

Preparation for the drill program began in early December, 1986 with 840 metres of road building. Five drill sites were placed at 100 metre intervals along this road, the first being 38 metres from the starting point. Four large holes were also dug by excavator from which water could be readily supplied to the drill.

Drilling commenced on December 12, 1986 and continued through January 21, 1987 with a two week break for the holidays. Two drillers worked one tenhour shift per day. The drill used was a skid mounted Longyear 38 diamond drill. A total of 583.08 metres (1,913 feet) of NQ core was drilled with dip angles ranging between 40° and 45°. Details of the six drill holes are tabulated below. See Figure 5 for drill hole locations.

- 19 -

Hole	Ler	ngth	Azimuth (Corrected		
Number	(feet)	(metres)	Magnetic)	Inclination	
92P86-7	303	92.35	900	430	
92P86 - 8	348	106.07	270 ⁰	42 ⁰	
92P86-10	435	132.59	850	410	
92P86-11	230	70.10	2700	450	
92P86 - 13	372	113.39	900	400	
92P86-14	225	68.58	270°	400	
	1,913	583.08			

Although 14 drill holes, divided among the five drill sites, were initially planned and prenumbered, only six were completed in this program. The rest are scheduled for completion later in 1987.

A D-4 Caterpillar was kept on site at all times and a D-6 was readily available to clear roads of snowfall if required. The D-4 was used to apply back pressure to the drill rig as the shallow angle holes often caused the drill to back away from the direction of drilling. This Cat was also required to move the skid mounted drill from site to site in addition to hauling the drill core to the main road as the newly built one was seldom driveable due to mud conditions.

An assistant was hired to assist in drill core transport and sample splitting/bagging. Once drill core had been removed from the site, it was transported to a dry, suitably lit area for logging, usually Candol's large combination core shack/equipment storage A-frame structure located in a locked compound a few kilometres southwest of the drill project area. Some core was logged in Candol's office in Sechelt. Core logs, along with the appropriate legend of symbols and abbreviations, are included in this report as Appendix "A".

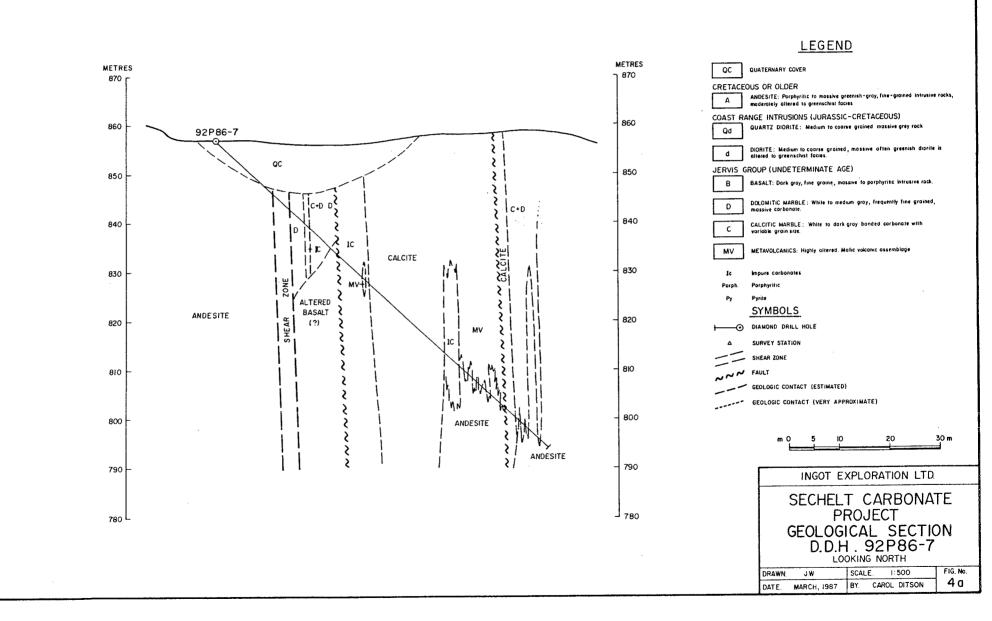
Samples for assay consisted of 10 foot (3.048 metre) intervals of carbonate rock only. Intrusive rocks and a few sections of obviously impure, pyritic carbonates were excluded from assay. Assay and exclusion intervals are noted on core logs. All core was split, then samples were bagged and taken

- 20 -

to Bondar-Clegg & Co. Ltd. in North Vancouver where they were assayed for MgCO₃ and CaCO₃. The assay results and analytical method comprise Appendix "B" of this report.

Samples from drill hole 13 were combined into composite samples consisting of 30 feet per composite. For all other drill holes, 10 foot samples were assayed separately, except hole 14 which was not assayed due to insufficient lengths of carbonate. A total of 86 samples was assayed, including the 8 composite samples.

Upon receipt of the initial assay results, a composite dolomite sample was made from three representative dolomite samples each from each of drill holes numbers 8, 11 and 13 and was then assayed for minor metals. The results of these assays are shown separately in Appendix "B".

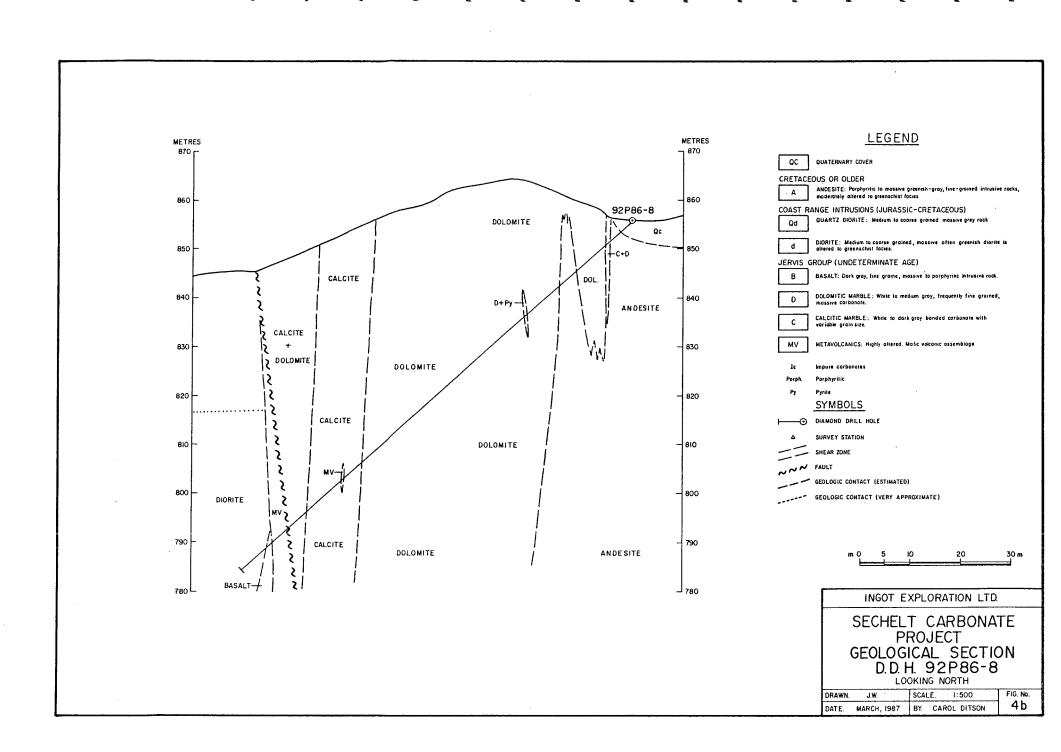

In addition to the above, fourteen samples of various lithologies were collected and sent to Vancouver Petrographics Ltd. in Fort Langley, B.C. for petrologic analyses from thin sections also prepared by them. Their reports, dated January 9, 1987 and February, 1987, constitute Appendix "C".

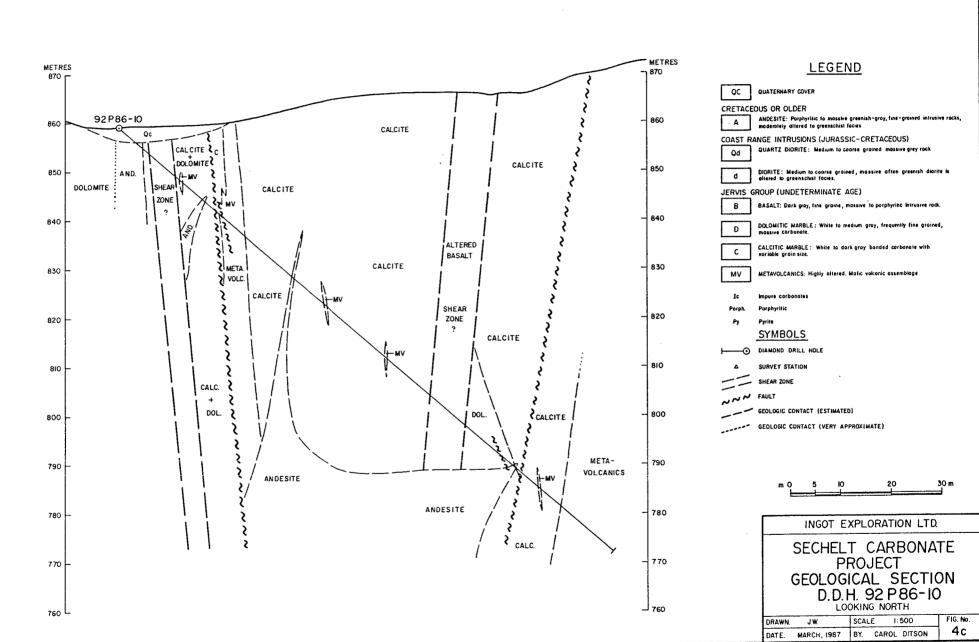
All drill core are stored in Candol's core shack, located on the property. Assay pulps and sample rejects have been retained for storage at Bondar-Clegg, North Vancouver.

In view of the fact that no surficial mapping has been done in the area presently under investigation, lithologic contacts shown in Figure 5 are a projection of the contact angle seen in drill core, correlated between drill holes and modified by topgraphic considerations. Data from this drill program was utilized in conjunction with data from the 1985 drill program to compose a planar view of geology and aid in ore reserve estimates.

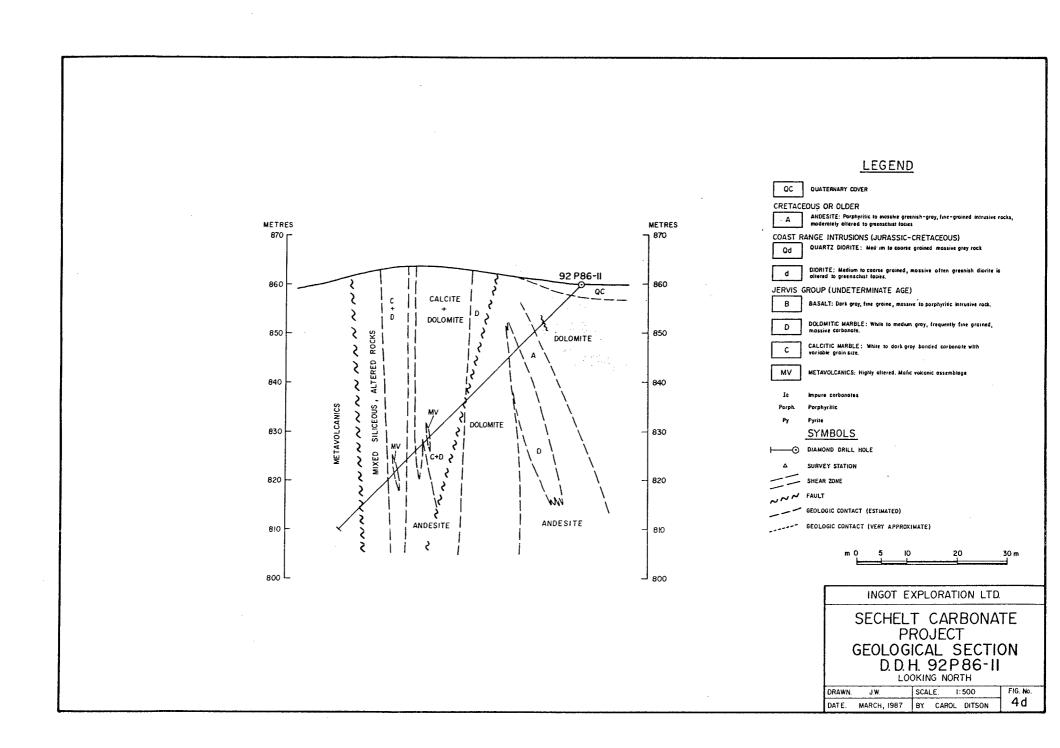
Cross sections were constructed from drill core data for all 1986 drill holes as well as for 1985 holes #85-5, 6 and 7. These sections are included herein as Figures 4a through 4i of this report.

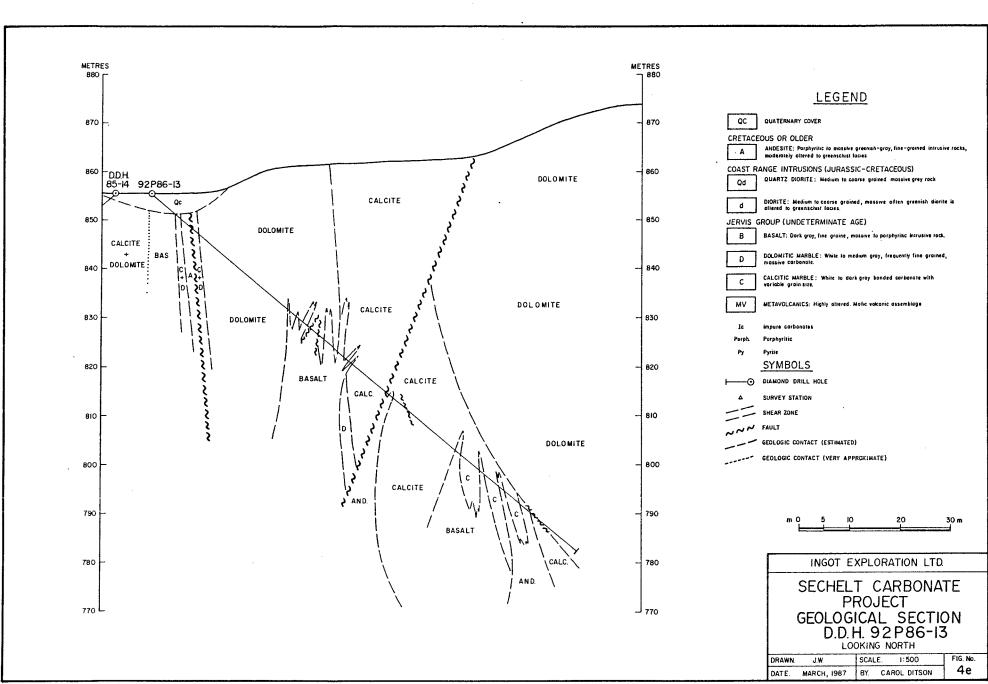
- 21 -

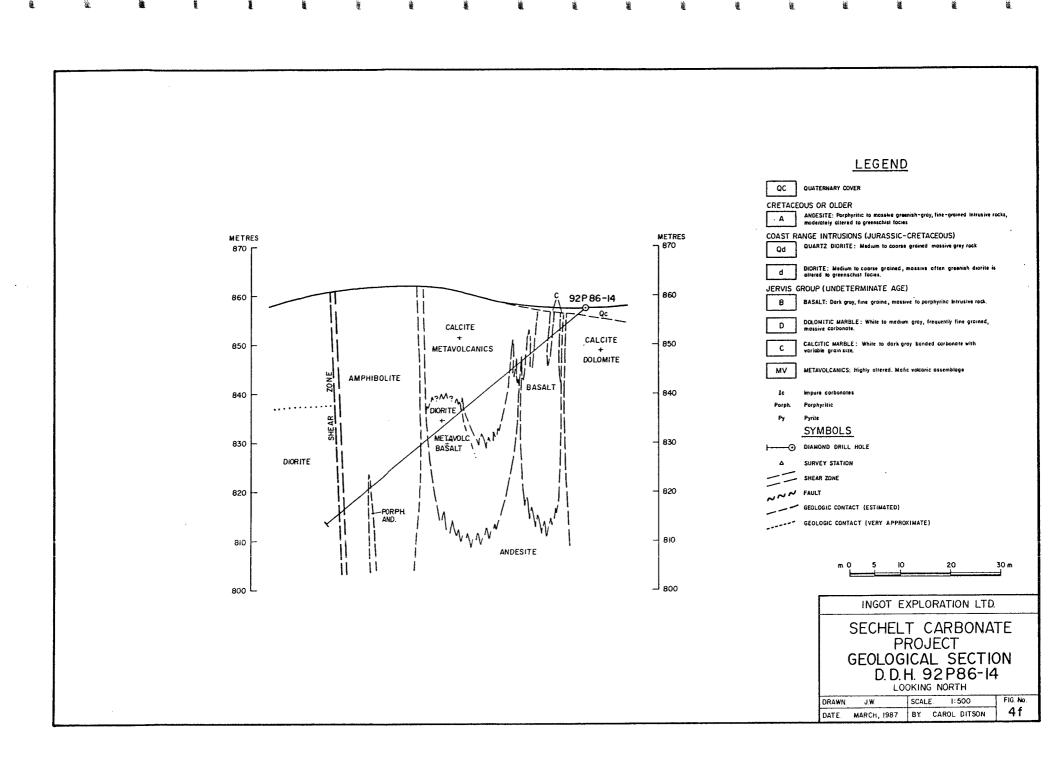


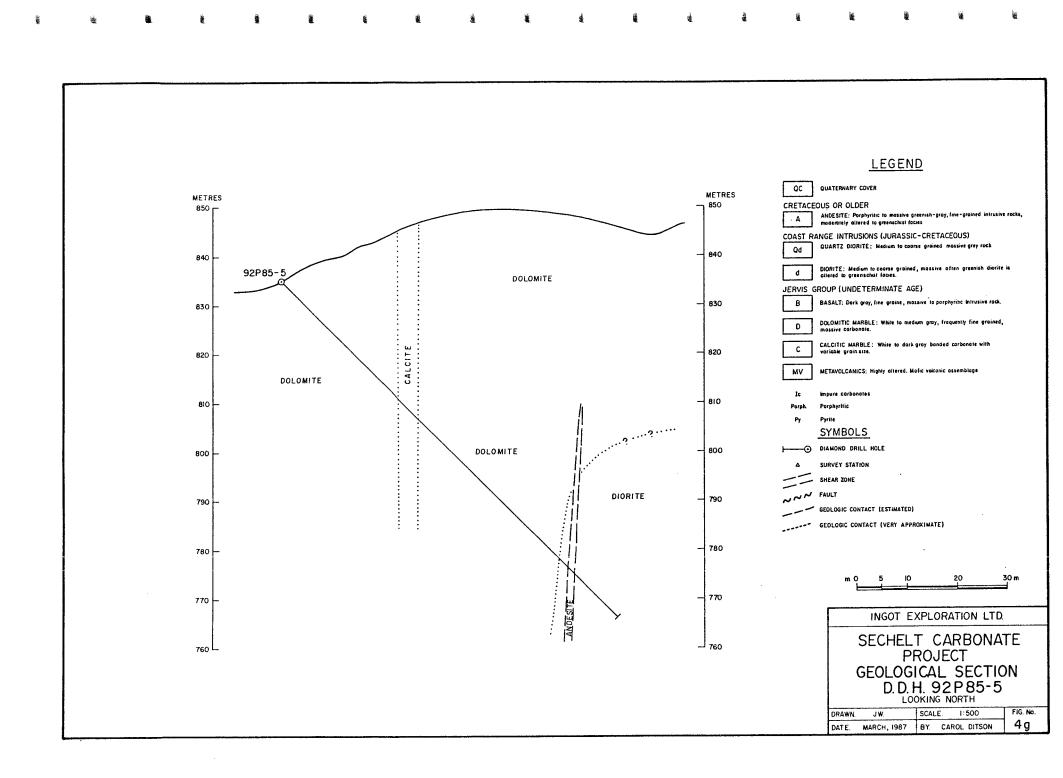

1

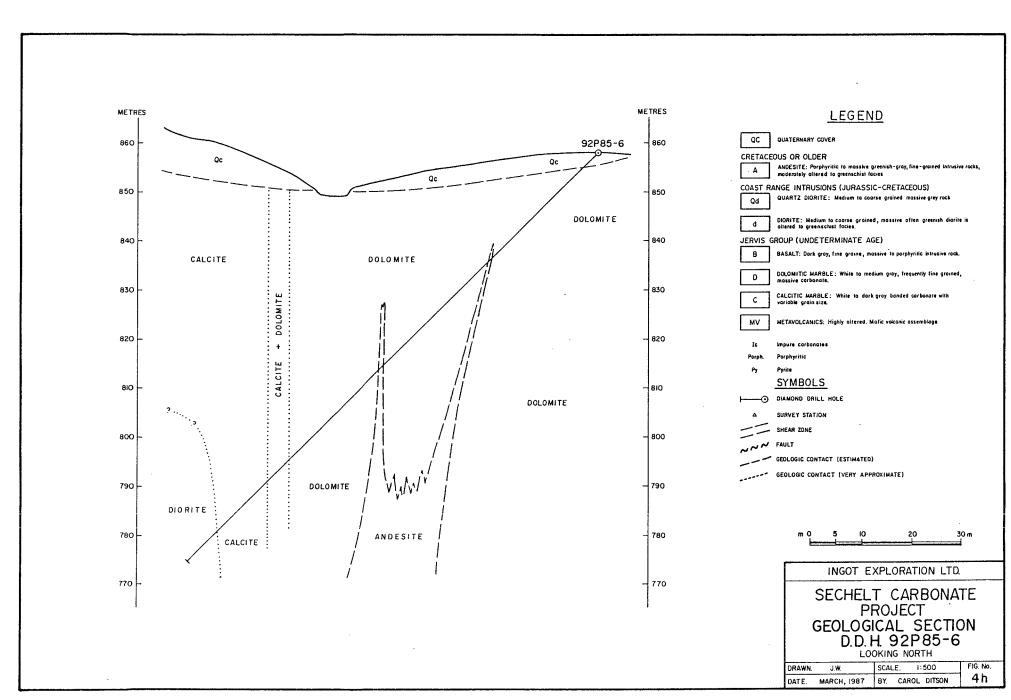
朣

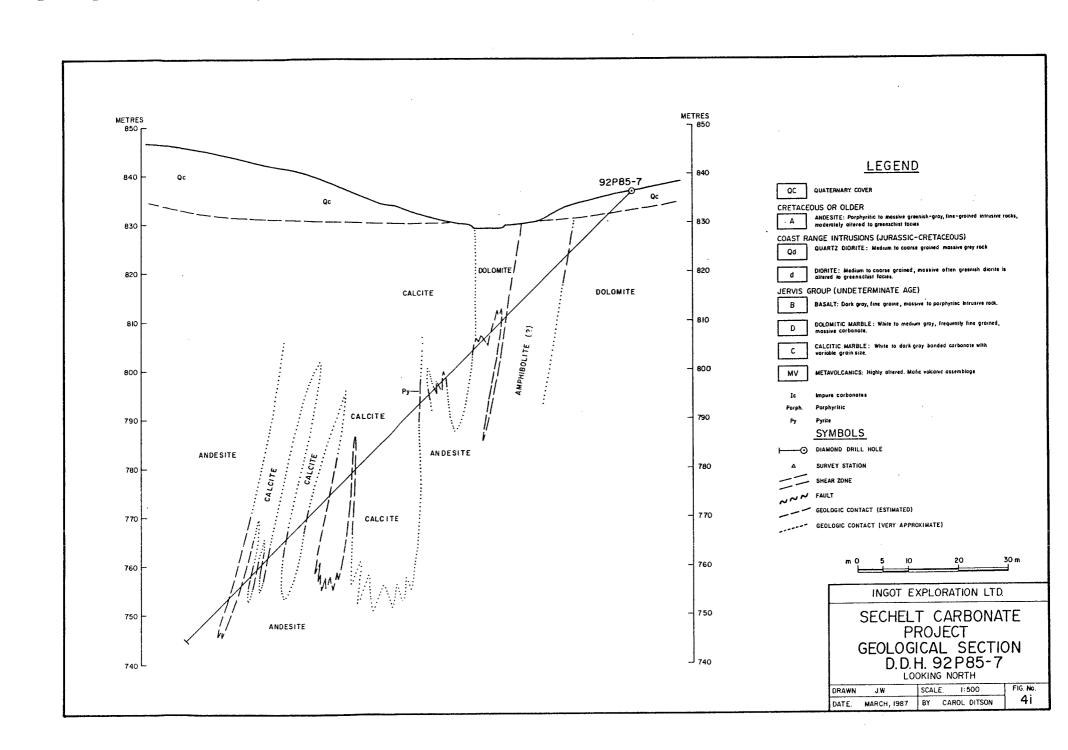

<u>ن</u>


Ш<u>а</u>




臣





薇

DISCUSSION OF SAMPLING RESULTS

Of the 86 samples assayed as a part of this program, 41 samples were dolomite from drill holes 92P86-8, 10, 11 and 13. Average MgCO₃ and dolomite purity are tabulated below for the applicable 1986 drill holes as well as for holes 85-5, 6 and 7 of the 1985 program. Results of the 1985 program are included as they are instrumental in definition of ore reserve calculations for the subject dolomite body. The applicable 1985 drill logs and assay results comprise Appendix "D".

Drill Hole	Number Dolomite	Avera	age	Average
Number	Samples	MgCO3%	Mg0%	Purity
92P86 - 8	20	40.17	19.2	96.95
92P86 - 10	5	35•30	16.9	95.73
92P86-11	8	36.96	17.7	94.16
92P86 - 13	8	39.10	18.7	98.01
92P85 - 5	24	40.61	19.4	95.52
92P85 - 6	28	41.76	20.0	97.68
92P85 - 7	6	41.07	19.6	97.76

Overall average for the 99 samples above is 40.19% MgCO₃ (19.2% MgO) content with a 96.7% purity. This exceeds the "high class" purity lower limit of 95%. The one drill hole which does not individually exceed the definition for high class purity is hole 92P86-11 which lies in a much intruded and faulted narrow neck of dolomite which is not recommended for an open pit mining operation. Drill holes 92P86-8 and 85-5, 6 and 7, which all lie within the recommended pit area, can individually and collectively be defined as being of high purity.

CONCLUSIONS

Study of the data acquired in the 1985 and 1986 drill programs have indicated the following:

- 22 -

- An elongate body of dolomitic marble, over 500 metres long and having an average width of 55 metres, has been outlined to a depth of 50 metres.
- This ore body contains approximately 1,360,000 cubic metres of dolomite, representing in excess of 3.5 million tonnes of dolomite on a drill indicated geologic reserve basis.
- Average purity of these reserves is 96.7%, well above the accepted "high class" purity lower limit of 95%. Average MgCO₃ content was 40.19%.
- North of drill hole 92P86-8, the dolomite unit narrows, is shallowly intruded and cut by faulting, making it unsuitable for an open pit mining operation.
- The wider, southern portion of this dolomite, however, contains approximately 1,000,000 cubic metres of dolomite, in excess of 2.9 million tonnes of drill indicated reserves.
- A second dolomite body is present on the northern portion of the project area, in fault contact with calcite at the end of drill hole 92P86-13. The extent of this unit is, at present, unknown. Where tested, this dolomite unit proved 90 metres of depth and of very high purity and could, very likely, provide additional reserves.
- Other dolomite bodies are known to exist on this large property but remain relatively unexplored. It is extremely likely that one or more of these will provide additional reserves.

RECOMMENDATIONS

Definition of 1986 Work Area:	<u>\$ Cost</u>
- 4,500 metres flagged, brushed lines (E-W)	
- at 50 metre intervals with 25 metre stations	4,500
- 600 metres cut baseline (N-S)	1,000
- Detailed geologic mapping (scale 1:500)	
- 20 man days, Report, Drafting	8,500

- Road building	
- minimum 400 metres along west side of dolomite	
body with 4 drill sites	5,500
- Diamond Drilling (approximately 2,200 feet)	
- fill in on east side of dolomite (planned	
holes 2, 4, 5) approximately 1,000 feet	
- drill west side of dolomite (3-4 holes)	
approximately 1,200 feet	84,000
- Trenching to define dolomite contact where covered with	
overburden and not subsequently exposed by road building.	5,000
Further Exploration:	
- Preliminary reconnaissance geologic mapping (scale 1:1000)	
to locate and define dolomite bodies on other parts of	
property (30 days).	10,000
- Sampling of dolomite from other parts of property.	3,000

- Percussion drilling of northern and southern dolomite zones for additional tonnages (20 holes). 30,000

Topographic Map Preparation:

- 1:500 scale, map sheet 4 and 6 only

153,000

1,500

Carol I. Ditson

BIBLIOGRAPHY

- B.C. Ministry of Energy, Mines & Petroleum Resources; Min. File data.
- B.C. Ministry of Energy, Mines & Petroleum Resources; Mineral Claim Records, 1969 - 1985
- B.C. Ministry of Energy, Mines & Petrolum Resources; G.E.M. 1971, 1977, 1978.
- Bacon, W.R. (1957); Geology of Lower Jervis Inlet, British Columbia, B.C. Department of Mines Bulletin #39.
- Baker, P.A. and Kastner, M. (1981); Constraints on the Formation of Sedimentary Dolomite, Science, Vol. 213, July 10, 1981, pg. 214-216.
- Beales, F.W. and Hardy, J.L. (1980); Criteria for the Recognition of Diverse Dolomite Types with an Emphasis on Studies of Host Rocks for Mississippi Valley - Type Ore Deposits, The Society of Economic Paleontologists and Mineralogists, Special Publication #28, November 1980, pg. 197-213.
- Bechtel Inc. (1986); An Exploration Program for the Development of Carbonate Resources of the Sechelt Peninsula, B.C., April 2, 1986.
- Candol Developments Ltd. (1984); Prospectus, effective July 6, 1984, dated June 1, 1984
- Darney, R.J. and Ikona, C.K. (1970); Preliminary Geology Plant Site and Intended Production Area of Peninsula Lime and Magnesia, a report by Pamicon Developments Ltd., September 8, 1970.
- Gilmore, W.F. (1983); Sechelt Mineral Claims, Primary Report by Wright Engineers Limited, September 1983.

- 25 -

- Gunatilaka, A., Saleh, A., Al-Temeeni, A. and Nassar, N. (1984); Occurrence of Subtidal Dolomite in a Hypersaline Lagoon, Kuwait, Nature Vol. 311, October 4, 1984, pg. 450-452.
- Kastner, M. (1984); Control of Dolomite Formation, Nature Vo. 311, October 4, 1984, pg. 410-411.
- Land, L.S. (1982); Dolomitization, American Association of Petroleum Geologists, Education Course Note Series #24.
- Lumsden, D.N. (1985); Secular Variations in Dolomite Abundance in Deep Marine Sediments, Geology Vol. 13, November 1985, pg. 766-769.
- Murata, K., Friedman, I., Cremer, M. (1972); Geochemistry of Diagenetic Dolomites in Miocene Marine Formations of California and Oregon, U.S. Geological Survey, Professional Paper 724-C, 1972.
- Nelson, J.L. (1976); The Origin of the Georgia Depression and the Coast Plutonic Complex/Insular Belt Province Boundary on Hardwicke and West Thurlow Islands, B.C., M.S.C. Thesis, University of British Columbia, July 1976.
- Parkes, D.M. (1980); Memorandum from Kaiser Resources to R.G. Heers, New Mines Development, B.C.R.I.C., November 6, 1980.
- Riepe, Rudy C. (1973); Aerial and Ground Geophysical-Geochemical-Geological Surveys of the M.C. 1-5 and Ruby Mineral Claims, December 14, 1973, B.C.D.M. Assessment Report #4803.
- Roddick, J.A. (1965); Vancouver, North Coquitlam and Pitt Lake Map Areas, B.C., G.S.C. Memoir 335, 1965.
- Roddick, J.A., Muller, J.E. and Okulitch, A.V. (1979); Map 1362A, Fraser River, Sheet 92, B.C. Department of Energy Mines & Resources, 1979.

- 26 -

- Roddick, J.A. and Woodsworth, G.J. (1979); Geology of Vancouver West Half and Mainland Part of Alberni, B.C. Department of Energy, Mines & Petroleum Resources Open File 611, 1979.
- Szabolcsy, S.L. (1986); Dolomite Prospect in Sechelt, B.C., a Kaiser Resources In-House Report, November 3, 1980.
- Wanless, H.R. (1979); Limestone Response to Stress: Pressure Solution and Dolomitization, Journal of Sedimentary Petrology, Vol. 49, No. 2, June 1979, pg. 437-462.
- Weymark, W.J. (1983); Primary Report, Sechelt Mineral Claims Group, April 6, 1983.

APPENDIX "A"

1986 DIAMOND DRILL LOGS

with Legend

Ň	ž			tane.		Ŵ	ġ	j,	ġ	Ĵ		ÿ	Ĵ		ġ.	Ë	ă.	ji ji	ġ	3
		P	ROJEC	<u>, S</u>	EC	HELT	- CAR	BONATE	ç drill i	DRILL	HOLE	RECORD 86 Loc	SCA	LE		PAGE NO.	OF			
EMIN	Ca		EYAZZA				ANHTI		P4 %	107	SERP.	CHERT	LOR	ROCK	Ехрия.					
) - 11 	AYED UTERVAN NO INSTA EEN EXC SOM STA SOM STA EN EN AND N EPORTED	S MARKE 4 THUV XHDED MPKE VNERUA SULTS NG ARE	D e LS For					+++++++++++++++++++++++++++++++++++++++	CALOIT DOLOMI HNDESIT BASALT DIORITE METAVOLO	E TC E DYKE DYKES ANICS IDE -GAN	S (+ FL OU		¢ cs).	

COLOR

LEGEND

TEX	TURES	STRUCTURES.	h	WHITE
Po	PORPHYRIFIC	B BANDED	L	LIGHT GRAY
Ph	PHANERITIC	S SHEARS	m	MEDIUM GRAY
A	APHANITIC	C CONTHET	\supset	DORK GRAY
C	CHERTY	F FRACTURES	B	BLACK
m	MOTTLED		6	GREEN
\mathcal{B}_{X}	BRECCIATED	NOTE: C/B HNGLE	Br	BROWN
mi	MIGMATITIC	IS THE HNGLE OF CORE	p	PINK
R	REPARCEMENT	Avis to BEDDING OR STRUCTURE	4	YELLOW.

DRILL HOLE RECORD COVER SHEET

1

Ĵ

ŝ.

Ĭ

1

ji.

1

.

Ĭ

j

INGOT EXPLORATION LTD. for CANDOL DEVELOPMENTS LTD.

claim: <u>PLAIN</u> Area: <u>Secheat Aen</u> t		N.T.S. <u>926/12W</u>
Contractor: <u>Herb</u>		Grid Ref. <u>435908 E, 549450</u> DA Elevation <u>857</u> M. B.S.L.
Туре	Size	Bearing 90°
Hole Core	NQ	Inclination At Collar $\frac{43}{3}$
Started Date	Completed	At λt
JAN 9.1987	JAN 11, 1987	At
Logged by: <u>CAROL</u>	DITSON	Total length <u>303 ft, 92.3</u> 5m

	ASSAYS	DRILL HOLE RECORD DNATE DRILL HOLE NO. <u>92786-7</u> SCALE IN FRET PAGE NO. / OF 5
LENGTH	CAUMIGO SAMPLE NO	UMBERS 2 3 3 30 LUE THE SCALE THE FEEL PAGE NO. / OF 5
10 10 10 10	NO ASSA45	
20		20 CASING
30		
40		4/0
11100		50-
60		60-
70	225 30.95 69248-	70 TR DI DOLOMITE

.

`

Inductr SECHALLY CARGONATE DRIL HOLE NO 2/2/26-2 SEALE IN FEET MORE NO 2 or 5 LUBRY Car Red Sample <	~~	ET more the Original	` / n\		s	, ?	:ori 76 ·	REC 1 PE	ле 93	L H NQ	DRIL XLE	с 1. но	DRIL.	ARBONATE C	ECHELT (NECT _5	PROJ				
80 NO ASSA4. 69.249 80 80 Address Gradies with Sto put it 90 145 13.86 69.250 100 100 100 100 100 NO ASSA4. 69.250 100 100 100 100 100 NO ASSA4. 100	2	C PAGE NO. of	<u>Ť</u>		খ	N C		15	र्र		2	3	0			SAYS	<u>ASSA</u>		<u> </u>		LENGT
80 NO 055844. 692409 80 100 <t< th=""><th></th><th></th><th></th><th>STRUE</th><th>22</th><th>chio Siire</th><th>mic</th><th>CHE</th><th>S S S</th><th>18 18 18 18</th><th>3</th><th>ž</th><th>000</th><th>NUMBERS</th><th>SAMPLE</th><th></th><th>0</th><th>2 Ma</th><th>Col</th><th><u> </u></th><th></th></t<>				STRUE	22	chio Siire	mic	CHE	S S S	18 18 18 18	3	ž	000	NUMBERS	SAMPLE		0	2 Ma	Col	<u> </u>	
NO ASSAU Reference Reference Reference 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <			>=] [ħ	Τ								1							1	
			E										4	80.	_			+		<u> </u>	80 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CANICS WITH 154 QUE	E Sm			_	4		╪	5	#	H	₽			SAU.	ASSI	NO I	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- (LMPURE)		e c	<u>ç</u> B	扫	+	\ddagger	4		+	╞	Ŧ	•	69249		9/	13.9	74.3	<u> </u>	
100 - 100		E (DOLOMITIC ?)	E C	в (1									4	Q A.							90 -
100 - 100		2011 - 3	Ě	ľ	*									70-						}	
100 - 100	REACTIVE WITH AGID.	LOMITE BUT VERY DI	Ł										1	-					<u></u>		-
10 - NO ASSAY. $10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -$			È.	C+									1		69250		8.	/3.8	81.05		
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			Ē											100-							- 00
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			Ē		"																
100 - 100	EINNETS	ITE WITH NARROW VE	F⊐	CD		1	1			_	1	ľ	扫	-	-		-}	<u> </u>	•		•
10 10 120 120 120 120 120 120 12		$T(\mathbf{Z})$	ŧ e	+	15 + 6					80 ·	1	ľ]	//^		A4.	Assa	0 /	N		/0 -
10 120 120 120 120 120 120 120 1	CHLORIFIZED SET AT 800	MINENT FRACTURE SE	ե Եን /	ľ×	$\left \right $	B	╀	$\left \right $	1-		╉┥	╋	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
120- 130- 100-	Uε	A43, THIC ESERPENTING	[] "		K,	7	\uparrow		1	┮	十	T	1								-
120- 130- 100-			E		46									-					,		
130- 140- 140-			Ξ[Te										120-							0
130- 140- 140-	CARBONATES ICD FERSIC ENTRASIVE	ND COARSE GRAINE	: 7											1							1
0 5700 8.68 69026 140 178 140 178 140 178 140 178 177 180 190 190 190 190 190 190 190 19	ECTION DENTIFIABLE	DIORITE ?) (SMALL SE	-											-							
10 178 178 178 178 178 178 178 178														130							20-
10 - 87.00 8.68 69026 45 - MIGHLY SERPENTINITIC CARBONA			-																		ļ
40 - 5700 8:68 69026 140 TR 7 45 MIGHLY SERPENTINITIC CARBONA			J	Ļ	\square		\square		H	+-	$ \downarrow$	+	R	r F							-
5700 8.68 69026 40 TR JUS MIMOR A ANDER SERPENTINITIC CARBONA		LCANICS	m£	F						5	4			4							
- BANDING ELTREMELY HADIARKE			- 1 A	₽ }	YG M		H	+-	4	_		Ť	TA	140-	69026	<u> </u>	††	8.68	7.00	5	
- CORE AXIS, SCMETIMES MODE	BLE , OFTEN PARALLELS ODERATE - HIGH ANGLE	NG EXTREMENY VARIABA	-	ľF										1							1
- BREECIATED IN PLACES - OBVIOUSAY SUBJECTED to MA		CIATED IN PLACES												4							E

R R R R R R R R R R R R R R R R R R

	PROJECT	SECHELT C.	ARBONATE DRILL	DRILL HO	92P86.	- <u>7</u> sca	LE IN	FRET PAGE NO	a. 3 of 5	
LENGTH	ASSAYS		NAMBERS 2	ALGON	ALC HERT HERT	CHLORIT Silica Terrute Color				
	CAO 1940 68-25 7.53	69027	NAMBERS	5373	1 LOE	<u>2 2 F 0</u> W	S G L L			
Lind Built	9,40 5.23	69028	// 0							
/70 	<i>43.30 3.97</i>	69029	170-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				, , , , , , , , , , , , , , , , , , ,			
/80	90.70 5.02	69030	180				لعديالهدد			
196	84.70 8.36	69031	190				ليسلمي			
200	8945 7.11	69032	200-							
210	75.45 21.45	69033	210 - TR		· · ·		TC	- 3" ANDESITE TMPURE, SILIC POCKETS	DYKE (HO-PLAG PL EOUS CARBON OF FELSIC IN	REPARA) ATES WI RENSIVE (]

•

1) 1)	ۇ ۋ	ŝ	j	ji	,	j	ŝ		ġ.	Ĭ		Ĵ	j	j	ž	\$	ġ	ġ
		.	CHELT	Capa			DRILL	HOLE	RECO	RD								
	ASSAYS		T	CIRCO	ONATE	DRILL	HOLE N		P86-	2	SC/	LE /	N FEET	PAGE N	na <u> 4</u> 0	F S		
LENDTH	CADINGO		SAMA	DLE NU	IMBER	5 6/6	2 C 2 2	BRAN	CHCRI	CH LORI	SLOR	ROCK						
4	NO ASSA	u			1111001	1	<u></u>	307.	140	25	CG	C C C C	ANDES	JE (5	(10/.)	L'TH AL	CASOF	
230 -		7			230								MQT	AVOLC.	ANICS	ANDS	ERPENT.	NiTIC
1					230	Ϋ́Ξ						1	. 917	ERATIO	N,			
-						11												
-													•					
248-					242							j j						
1						11						1						
						-						SE.						
257					250							₿.						
-						11						77						
												8						
260-						1												
					260	-												
Ē						₩-	$\left \right _{q}$	51			9 M B		SHEAR 20					
. 1										Ιľ	////0		CALCITE - WELL	BANDE	D			
270-			-		270							E						
					270	1						ĽE						
						TRV		22		77	<i>† m</i>	C:	MIXED	CALCIT	E & DOA	omite		
												σĒ	with	NHEEG	no MNU	ESITE Z	UHKES.	
280-					280.							ARRA E						
1												s E						
					-	3		╇╋	++	P		× E	ANDESIT	E				
290												<u>ﷺ</u>	- PORAHY	RITIC .	PHENOLR	4STS A	PPEAR RH	UNTED
					290-							*	(SPH) - GRADE	ERUNITE. S INTO	S ?) H ØRNBI	LENDE-PA	AG PIRP	44R4
							<u> </u>		\square	$\downarrow \downarrow$	Le	¥	- GRADE	ARD B	OTOM	OF SECT	in	
					-	3	45	┋╴╂╶╂	╉╋	10	GC		CALCITE ANDESIT					
1 6 100	1 1 1	1 1			, · ·	111						Ø¥		-				

•

	•	
3/0	-	ź
		ž
ASSA	PROJE	ji ji
3	ल <u> </u>	ÿ
-		ŝ
PLE		ÿ
Num	BONATE	j
Been 3/0	DRILL	ij
	DRILL HOLE	j
100. Da Bankic Sera.	L HOLE NG <u>위</u>	
TALC CHEAT Mire	RECO	ġ
Unica CHLORG Shica Trica	RD 6-72 19-14	si Si
	SCALE	ij
E N D 01	IN FEET	ÿ
	PAGE NO	ÿ
<u>5</u> 0	5.01	j.
<u> </u>	. 5	ġ
		ž
		ji

130 Per North ¹ Canada Phone:	r-Clegg & Com mberton Ave. Vancouver, B.C a V7P 2R5 : (604) 985-068 04-352667	.	L1d.					-	the second s	NR92			Refer for the			ertificate Analysis
								9	2 P 86-	-7						
	REPORT:	427-	0266 (COMPLE	TE)								REFERENCE I	NFO:		
	CLIENT: PROJECT:				LTD.								SUBMITTED B DATE PRINTE			
	ORD	ER	EL	EMENT		~~~~~~	NUMBE			DWER ION LIMIT	EXTRACT	ION		TETHOD		
					m Carbon ium Carb		1			I PCT 5 PCT						
	SAM	PLE	TYPES		NUMB	ER	SI	ZE FI	RACTIONS		NUMBER		SAMPLE P	REPARAT ION	s number	
	D	DR II	L CORE		1	1	2	-15	50		11		ASSAY PR	EP	11	
	kep	ORT	COP IES	TO: MS	. N. FRA	SER					I	NVOI	CE IO: MR.	N. FRASER		*******************************
							· ,			•				-		
					······································									······································		
												-				
			······											·····	- 200 al. (m. 2010), an Angel - 1	
																
				•												

Bundar-Clegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Certificate of Analysis

92 P 86-7

REPORT: 427				92180-+		
	-0266				PROJECT: NONE GIVEN	PAGE 1
Sample	ELEMENT	CaCO3	NgCD3			
NUMBER	UNITS	PCT	PCT			,
	COM TO	101	101			
D2 69026	40' 150	87.00	8.68	9568 (4.32)		****
	50 160	88.25	7.53	95,78 (4.22)		
	160 170	91.40	5.23	96.63 (3.37)		
	10 150	93.30	3.97	97.27 (2.73)		
D2 69030	190 190	90.70	5.07	95.77 (4.23)		
	190 - 200	86.70	8.36	95.06 (9.94)		
	200-210	89.65	7.11	96.71 (3.29)		
D2 69033 D2 69248	210 - 220	75.45	26.45	10119 1.9 / 96.15 (3.85)		
D2 69249	71'- 81 86' - 96	65.25 74.35	30.95 13.91	88.26 (11.74)		
		/1:00	10171			
D2 69250	96 - 100	81.05	13.38	99.43 (5.57)		
				:		
		•		•		
				· · ·		
			:			
			•			
				•		
					\sim	0
					R	Per

DRILL HOLE RECORD COVER SHEET

INGOT EXPLORATION LTD. for CANDOL DEVELOPMENTS LTD.

Project	: <u>Se</u>	CHELT	CAR	BONATE
Claim:	PLI	tin		
Area:	SECH	ELT A	VINSULA	B.C.
Contrac	tor:	HERB	ALLEN.	MERRIT, B.C.

-

巖

~

.

•

Ĺ

.

iii

Ë

籱

Hole No.	92P86-8
N.T.S	926 /12W
Grid Ref.	435907E, 5494500W.
Elevation	857M A.S.L.
Bearing	2700.

8

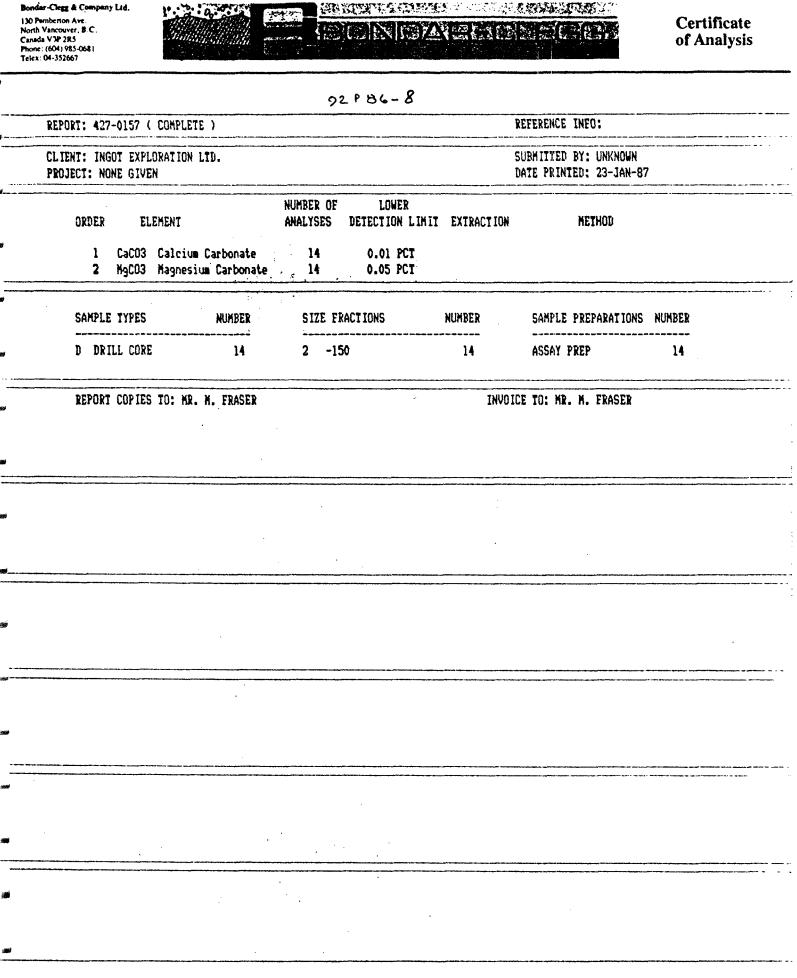
Туре	Size		
Hole Core	NQ	Inclination At Collar	420
Started	Completed	At At	
JAN. 5, 1987	JAN 8. 1987	At	
Logged by: <u>CAROL</u>	Ditson	Total length	<u>348 ft. 106.07</u> m.

COMMENTS

	C	ECHELT CARBO	DR	ILL HOLE RECO		
	ASSAYS	ECHELT LARBO				WFEET MOE NO. 1 OF 5
LENOTH	AD MOD	SAMPLE NUMB	ers 2	VAL SER.	CHLORI CHLORI Silica TLLILL Color STRUCT.	
10	NO ASSAY		****			CASING
201			10 TR 7	45	? C 6	ANDESITE
	57.35 39.73	69021		15 11	E Cr	MIXED CALCITE & DOLOMITE Some SERVEUTINE
30	57.25 40.78	69082	30 1 1 1 1		Ϋ́m M	DOLOMITE - FINE, ASTIMOZING DK GRAY VEINKETS (GROPHIT FAINT BANDING, OFTEN MOTLED -WHITE STRINGERS (DOLOMITE)
40			40-			
	59.30 37.69	69023	· · · · · · · · · · · · · · · · · · ·		R	
591	NO ASSAY.		50-7-7	55		ANDESITE ROUNDED WHITE BARBS (SPHERULITES ?)
60			60 -			
70	56.95 39.73	69024	70	45	w c D	- DOLOMITE

. .

<u> </u>			ASSA		DEC	HELT	LARBO	NATE	DRILL	HOL	E N		<u>921</u>	282	· 8 •		SCAL	.E.	IN FEEL PAGE NO. 2 OF 5
LENDTH	(h)	Mad	T		5	AMPLE	Num	BERS	0% N	CARBO	1 1 1 1 1 1	SERP	LALC	mich	THLORI	2474	20102	ROCK	
80	56.10	39.75	3		1	9025		80									m	D	
90	55.45	39.73				9226		9	المعيدالمع			¥					L M L	B D	
100	56.95		SSA	4.	6	9227		100	121211111	2		27				ħ	W K L M	10 3 D	+010%) AS BLEBS & STRINGERS DOLOMITQ - MINOR SERPENTINE - PYRITE DISSEMINATED (JR) AND AS BLEBS
110	56 85	39.73			6	9228		6 ر ر	سلسساس							Вx		ע	STRINGERS HSSOCIATED WITH TAKE S - BANDING OFFSET BY BRITTLE DEFORMAT ON ORDER OF & Amm. - A FEW SHEAR ZONES OF BREECLIM, CLA MHTRIX DOLOMITE - WHITE DELOMITE STRINGERS ARE ALSO OFFSET BY BRITTLE DEFORMATION.
120	56.95	39.23				9229		122	<u> </u>							.,			
/30	57. S	34.73			65	230		130								B _x		P	
(4)	56.10	3 <i>4.7</i> 3				231		0/40										D	


	A	SSAYS	ECHELT	<u>LARBONATE</u> DAILL	HOLE NO 921	86-8	SCALE	IN FEET MOR NO OF 5
LENGTH	had MgD		SAMPLE	Numbers 2	Cher D	Critics	Col O	
	Q.10 41.82		69232	1 K		<i>A</i>	m D	
160	56.75 41.82		69233	160-				
170	56.70 41.78		69234				L D m	
180	57.D 40.78		69235	180-	60 30		8 8 7	- BANDING STEEPENS BBRUPTLY FROM -SHEAR SURFACE NOT CHIDENT - PRIMARY DENOSITIONAL FEATURE AR FAULTING IN CALCITE LATER DISGUISED BY DOLOMITIZATION(?)
1901	56.45 39.73		6 9236	/98	r 15		× • • • • • • • • • • • • • • • • • • •	Some CAMPSE GRAINED WHITE CALEITE VE
200	56.50 40.15		69237	240 -	10			-
2/0	5650 39.73		69238	840 -	ર સ્ટ્રે સ	- Bx		ABRUPT CONTACT BETWEEN LIGHTA MET GRAY DOLOMITE IS CLAY CONTED 2 SHEARS SUPERIMPOSED, BOTH BRECCIA HEALED ONE AT 250 RECENT ONE AT 400

ji	ji ji	أف ق ال	ف ل ا	¥	ž	i i	
		project <u>Se</u>	CHELT CARBON	C ATE DRILL HO	RILL HOLE		SCALE IN FEET PAGE NO. 4 OF 5
		ASSAYS		[]3	राष्ट्रपुर्व.	11 में जून	A A A A A A A A A A A A A A A A A A A
	LENGTH	Coomao	SAMPLE NUMB	100 A 10	N. N. S.	CHCR CHLOR Silice	
	230	57.6 8.69	69240	230	<u> </u>	- <u>9694</u> 5	
	ə10	77.56 18.82	69241	240	45 4 5		D- D- HENVY CONCENTRATION (25%) of WAITE -YELLOW M D- TALE/SERPENTINE OVER 6+ SECTION LCC CALCITE
	200	65.20 7.90	69242	2570	40 X		B CONTACT ABRUPT FROM MASSIVE MEDIUM DORK GRAY DOLOMITE tO LIGHT GRAY BANDED CALCITE OFTEN HAS FRACTURED APPEARAACC OF DOLOMITE BUT FIZZES HORTILY WITH ACT
	248	NO ASSAY 89.57 6.57	69243	260 18 -		U U U M	B METAVORCANICS (PYRITIC) C CARCITE -WELL BANDED IN PLACES.
	a70	91.16 6.69	69244	۲ ۲ ۲ ۲ ۲			
	280 	91.50 5.23	69245	280-			
	200	74.60 20 91	69246	290 TR V V			C MIXED CALOITE & DOLOMITE BANDED WHERE CALCITIE + DEGREES OF DOLOMITIZATION SEEM VARIABLE D FROM ALID RESPONSE.

,

		DRILL HOLE RECORD <u>ECHELT CARBONATE DRILL HOLE NO 92886-8 SCALE IN FRET PAGE NO. 5 OF 5</u>
LENGTH	ASSAYS	STATE HOLE NO 907 06-8 SCALE IN FREE NO. OF ST
	CAO MQO 70-10 25.10	SAMPLE NUMBERS
3/0	NO ASSAY	310- 310-
320		320- 320-
330-		2 30 VV AL PHENOCRYSTS
3401		330 330 - COMRSE GRAINED HARNBLENDE DIORITE - COMRSE GRAINED HARNBLENDE DIORITE - EPIDOTE SURROUNDS SMALL STRINGEN - QUMRTZ VEINS - 4 + + + + +
350-		350 F. HOLE.
1		

Bondar-Clegg & Company Ltd.

Boodar-Clegg & Company Ltd. 130 Pymberion Ave. North Vancouver, B.C. Canada V'PP 2R5 Phone: (604) 983-0681 Telex: 04-352667

.

Certificate of Analysis

92 P 86-8

				92 P 86-8		
REPORT: 427	-0157			· · · · · · · · · · · · · · · · · · ·	PROJECT: NONE GIVEN	PAGE 1
SAMPLE	ELEMENT	CaCO3	NgC03	·····		
NUMBER	UNITS	PCT	PCT			
6%2/D2 92P 86-8	22'-32'	57.35	39.73	97.08 (2.92)		
*9022D2 92P 86-8		57.25	40.78	98.03 (1.97)		
2023 D2 92P 86-8		59.30	37.64	96.94 (306)		
67024D2 92P 86-8		56.95	39.73	96.68 (3.32)		
69-25 D2 92P 86-8	77'-87'	56.10	39.73	95.83 (4.17)		
9126 D2 92P 86-8	87'-99'	55.45	39.73	95.18 (4.82)		
9227 D2 92P 86-8		56.95	40.78	97.73 (2.27)		
9228 D2 92P 86-8	109'-119'	56.85	39.73	96 5B (3.42)		
9229 D2 92P 86-8	119'-129'	56.95	39.73	96.68 (3.32)		
9230 D2 92P 86-8	129'-139'	57.35	39.73	96.08 (3.92)		
47231 D2 92P 86-8	139/-149/	56.40	39.73	96.13 (3-57)		
69232D2 92P 86-8		56.10	41.82	97.92 (2 08)		
9 234 D2 92P 86-8		56.75	41.82	98.57 (1.43)	2 = 19.99 % MgD	
72.34 D2 92P 86-8	169'-179'	56.70	40.78	57.48 (2.52)		

		•	•			
					•	
	••••••••••••••••••••••••••••••••••••••					
			,			
	,					
				·		
					\sim	
					[] Jei	2
		- <u> </u>				2

Recistered Assaver. Province of British Columbia

130 Pemberton Ave, North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667	r Lid.		T Sector and sector			and the second	Certificate of Analysis
			¢	92 P 86-8			99 8 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
REPORT: 427	-0187 (COMPLETE)		****		REFERENCE INFO:	
CLIENT: ING PROJECT: NO		ORATION LID. N				SUEMITTED BY: UNKNOWN DATE PRINTED: 23-JAN-87)
ORDER	EL	emeni	NUMBER DF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD	
1 2		Calcium Carbonate Magnesium Carbonate	13 13	0.01 PCT 0.05 PCT			
SAMPLE	TYPES	NUNBER	SIZE FI	RACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
	LL CORE		-15 2 -15		1 13	ASSAY PREP	. 13

Bondar-Clegg & Company Ltd. 130 Pemberion Ave, North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

•

Certificate of Analysis

92 p 86-8

14.

10 17 3

					92 P 86-8		
	REPORT: 427-	-0187				PROJECT: NONE GIVEN	PAGE 1
	SANPLE	ELEMENT	CaC03	MgC03	· · · · · · · · · · · · · · · · · · ·		
	NUMBER	UNITS	PCT	PCI			
	92P 86-8 D2 69235 17		57.27	40.78	78.05 (1.95)		
	D2 69235 17		56.95	39.73	8.68 (3.32)		
	D2 69237 19		56.50	40,15	9615 (3.35)		
	D2 69238 205		56.50	39.73	36.23 (3.77)		
	P2 (0000 a)	N 0001		A1: 50	Little Contraction of the Contra		
	D2 69239 219 D2 69240 229		56.50 57.48	41.82 38.69	96.32 (168) 96.17 (3.83)		
	D2 69241 23		77.56	18.82	96.38 (362)	·	
	D2 69242 249		85.20	7.90	93.10 (6.90)		
	D2 69243 260		89.57	8.57	98.14 (1.86)		
	NO 60044 004	V/ .000/		/ / ^	mar (2		
	D2 69244 270		91.16	6.69	97.85 (2-15)		
	D2 69245 280 D2 69246 290		92.50	5.23	97.73 (2.27)		
	D2 69245 250		74.60 70.10	20.91 25.10	95.51 (4.49)		
	28 U/67/ 3V		14-16	£J.IV	95.20 (480)		
	•						
-							
		•					
		·····					

					. •		
			•				
				<u> </u>)		
		· · · · ·			t.		······································
				•	•		
	••••••••••••••••••••••••••••••••••••••						
							· · · · · · · · · · · · · · · · · · ·
		· •					
					:		
						-	-
						\frown	2
							/
						KK/EA	3
						Registered Assaver, Hov	inte of Paitick Calunki
						KENISUELEU MSSGVEL MEUVI	THE AT DUTERSH PATHOLI

Registered Assayer. Hrovince of British Columbia

DRILL HOLE RECORD COVER SHEET

INGOT EXPLORATION LTD. for CANDOL DEVELOPMENTS LTD.

Project: <u>Se</u>	CHELT	CAR	BONATE
Claim: PLI	9iN		
Area: SECH	ELT A	NINSULA	B.C.
Contractor:	HERB	ALLEN.	MERRIT, B.C.

鼜

È.

讂

1

Hole No.	921286	-10	
N.T.S.	926 110	200	
Grid Ref	435611E	5494608.5	N
Blevation	860m	A.S.L.	
Bearing	850		

Туре	•	Size		
Hole (lor	٤	NO	Inclination At Collar	410
Star Date	ted	Completed	λt λt λt	
	1987.	JAN 21, 1987.	At	
Logged by: _	CAROL	DITSON	Total length	<u>435 ft, 13 2.59 m</u>

COMMENTS

of UTB and the second s				Pl	OJECT	SE	CHELT	CARBONAT	E DRIL	HOL	ILL H	9ć	108	6-10	SC	ALE	IN FEET MOR NO. 1 OF 6
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	LEM	TH	CAD		SSAYS	1	SAMPLE	NumBER	25	UN CAL	VAL Des	SERA	CHERT	THAL	Surce P	ROCK	
$\frac{20}{75.\%} \frac{46}{46} = 69046$					sA4												FIRST CASING
40 40 40 40 40 40 40 40 40 40	L								2 2			~			R G		48' CASIA
50- 50- 50- 50- 78 v v A D C CALCITE - LOTS OF GRADHITE ON SLID SURPACES. - PODS OF UNREPLACED MATERIAL - PODS OF UNR	37							-	30								-SAND SEAM, COBBLES, PEBBLES, NO CORE
78.96 4.6 69046 78.96 4.6 69046 69046 10 10 10 10 10 10 10 10 10 10 10 10 10 1	41								40								
60 BANDING DIVERTS AROUND PODS IS A			78.96	4.6			69 046		50-1 17 - 1/0			17			R D M M B	в С 7 7	CALCITE METAVOLCADIES (RHODONITE 3) CALCITE (IMPURE).

				DRIL	L HOLE	RECO	RD				
	PROJECT 5	ECHELT CORBONA	E DRILL	. HOLE	Na 9	208	67	υ	SCA	1 F /	W FEET MOR NO. 2 OF 6
	ASSAYS		2	इर्	ৰাজন	15			41		PINE HU I OF C
LENGTH	CAD MOD	SAMPLE NUMBE	RS 2	22	Sce	23	CHLORI	1110		ROCK	
80	NCO ASS A4	69 048 ⁻	80	ř	90 2 15 -)/u (CXXX B C	ANDESITE CARCITE (IMPURE).
					(45)			Bi Mi		5	SHEAR ZONE DIRECTION OF SHEARS NOT CLEAR ~45022
90	NO ASSAY		90-TR	~	45- 30 45				G.	5 270	METAVOLCANICS WITH CALCITE - SOPT, CARBONATIZED - 4" BRECCINTED SHEAR ZONE STOPCONTACT = 450 BOTTOM " = 30"
/00 /00								re	G	1	METAVOLENNICS (CARNET, DIOPSIDE, EPIDDTE, K-SPAR + QTZ) -COMRSE, EUHEDRAL PYRITE UP to 5 % in Some Sections
****** ****	89.95 3.20	69049	101		5- V 22			A	ħ	12221240	CALCITE - UERY FAILUT BANDING ALMOST PARALAEL CO CORE AXIS IN PLAATS (5-20)
120 1 1 1 1 1	84,74 3.45	69050	1201								CORE AXIS IN PLACES (5-200)
130	92.52 2.30	69051	130-								•
140	87.64 6.48	69052	1401111							معلميما معري	

.

•

			PR	OJEC	т	Σe.	CHELT	C,	ARBO	NAT	TE. 1		1 14	DRI DRI	u.	юн	LE Q	RE JP	COF 186	80	D				IN FEET PAGE NO. 3 OF 6
LENGTH	 Par	Ma	$\hat{\mathbf{T}}$	SAYS			<u>. Sampi</u>		/1			12	No X	107	202 - 12	10.461				100	Siica				IN 1-227 PAGE NO. 3 OF 6
	 89.63	9.01 9.01	8				69053	<u> </u>	<u>_vu</u>	mBI	<u>ers</u>		3	S	7		<u>)</u> 7		25	10	ξ,	2	2	5	c .
	/												5			0-1 30	Ŧ					P₀ A		<u>С</u> 8 в (C CALCITE (IMPURE) - NARROW STRINGERS & ELONGATE DODS OF
	 83.15	11.14	╉				64054				160														UNREPLACED BASALT (? - FINE ALTERED BLACK & WHITE CRYSTALS LOOK LIKE PLAG + PYROXENE)
170											170														
	 83.25	11.71					69055																	l (l	
180		10 A	55						- 1		180									~	V	m	_		motovola onias (Theo core converse av)
	 87.64		+	${}$			69056					TR	J	╉	-33	0	r					9-11 %	57 7 1- E	3 0	METAVOLCANICS (DIOP, SERP, GARNET + P4) WITH CALCITE CONTACTS WHVER ALLOVER. CALCITE
190											190.	• • • •													-FAINT BANDING, VERY INCONSISTENT (100-800 IN SECTIONS, AVERAGE ~ 30' ??) -SMALL PODS OF SERPENTINIZED MATCRIAL
1	 87.45	9.3 - ,	,				69057				-													C	
200-											200-														
2/01	SE \$7	857	+	-			61058				-														
										C	£10 -													C	
220	 86.60	10.4k	2				69059				- • •														
]										à	320													\sim	F t

				PR	OJECT	5	ECHELT (n NRBONA	ITE DR	ILL	DRI HOL#		HOL	е п 7.0 л	NECO 084	RD	0		~		W FEET PAOR NO. 5 OF 6
LENGTH			T		SAYS		SAMALS			20	202	28	20.00	Ų	2.2.	0 e i i	C A	ব্য		5	IV I LE (PROE NO.) OF (?)
		CAO	Mg	9			SAMPLE	Num	BERS	2	<u>ב</u> ק	ζν; γ	200	5	ž.		Sii	è,		Ŷ	
1.1		1	, o	455 	<i>вч</i>				• • •											ľ× ľ	
• • •		1-	\vdash	╈			-		1	TR .	+		-	$\left \right $		╀		A M L	╢	×	DOLOMITE
310-		59.78	35.	97			69065		310									m			-MOTTLED, SOME VERY FAINT BANDING
																		,			
320-		58.36	37.6	4			69066		320-			12	0					ľ	ß		
									1												
-																		1			
330-		57,73	39.1	D			69067		330-											P	· - -
																					-
340-		61.92	<u>33.</u> 4	6			69068		340-										5		22" CARBON SEAM WITH SHEARS AT 200
1									³⁷⁰											Ē	(LATERAL MOVEMENT)
		N	0 A	551	. 94		-					35							R	Ē	•
350-				╀			-		350	R		33 25				7	-	<u> ६</u> द	C	XXX4	ANDESITE
Ē		89<i>5</i>4	8.99	1	╉		69069		Í	~		60								CF	CALCITE -WELL BANDED, ANGLE INCREASES to WARD BOTTOM OF SECTION >6" SHEAR ZONE, ALL GRAPHITE
												35							е в	E	JE SHEAR LONG, MAA ERAPHIFE
362									360-											F	
Ę		93.08	4.10	2			69000		ļ											Œ	
370												45								Ē	
1	-+		0 4	155	AY	+	-		370	1		4/5 30 45		1		1	1	6	Ē		METAVOLCANICS (DIOPSIDE) - BANDED

•

	PROJECT 5	DRILL HOLE RECORD ECHELT CARBONATE DRILL HOLE NO. 9218670 SCALE IN FEET PAGE NO. 6 OF 6
LENOTH	CaD ma D	SAMARE NUMBERS 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
380	96.22 2.30	69071 380- 380- TR 30V AMBC CALCITE -BECOMINGPURER (MORE REACTION to ACID
390-	NO ASSAYS	PETROLOGY SHIMPLE 92 PS6-10-386 390
		(DIOPSIDE, TREMOLITE, EPIDOTE, AXIWITE 2) 2-30% SULFIDES (P4, P&, GN, CP4)
400		
410		4/10
4201		4/20-
4/30-		430- END OF HONE
440		140
1		

•

•

Bondar-Cleg 130 Pemberic North Vancou Canada V7P 2 Phone: (604) Telex: 04-352	uver, B.C. 2R5 985-0681	Lid.			·····				Certificate of Analysis
					92 P	86-10			
REP	ORT: 427	-0296 (COMPLETE	;			1	EFERENCE INFO:	
	ENT: ING JECT: NO		ORATION 1 N	.TD.				UBMITTED BY: UNKNOWN WATE PRINTED: 5-FEB-8	7
	ORDER	EL	ement	* * * * * * * * * * * * * * * * *	NUMBER OF ANALYSES	LOWER DETECTION LINIT	EXTRACTION	NETHOD	
	1 2			Carbonate m Carbonate	25 26	0.01 PCT 0.05 PCT			
	SAMPLE	TYPES		NUMBER	SIZE FI	RACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
	D DRI	LL CORE		26	2 -15	50	26	ASSAY PREP	26
	REPORT	COPIES	TO: MR.	N. FRASER	·		INVOI	E TO: NR. N. FRASER	
									14, 24, 26, 26, 20, 26, 27, 26, 27, 26, 27, 28, 28, 29, 29, 29, 29, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
						-			
									· · · · · · · · · · · · · · · · · · ·
						·····			
·						<u></u>			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R3 Phone: (604) 985-0681 Telex: 04-352667

A STATEMENT MET TO PARAMANAN De Contra N.S. THE en'

Certificate of Analysis

7 2	Þ	æ	2	 0
76.	_	0	•	-

				P.84-10	
REPORT:	427-0296				PROJECT: NONE GIVEN PAGE 1
SAMPLE	ELI	EMENT	CaCO3	NgC03	
NUMBER		UNITS	PCT	PCT	
86-10 D2 6904	<u>Erem</u> 56'	Fa 66'	78.96	4.60	
» D2 6904		76'	75.62	4.08	
· D2 6904		251	74.88	3.03	
" D2 6904	111' 1	21'	89.95	3.20	
		3/	89.74	3.45	
- U2 5900			07./4	2. J. J.	
" D2 6905	13/-	141	92.52	2.30	
″ D2 6905	2 141 -,	150	87.64	6.48	
 D2 6905 	3 151 -	162	89.63	4.08	·
7 D2 6905	162-1	172	83.15	11.14	
·· B2 6905	5 172 -	186	83.25	11,71	
% B2 6905	186 -	191	87.64	8.68	
 D2 6905 			87.45	9.37	
 D2 6905 			86.81	8.57	
	216 - 2		86.60	10.46	
) 226 - 7		80.53	14.12	`
96 07V0				47140	
	239-	249	82.83	12.03	
- D2 6906 3			89.95	6.80	
// D2 6906		2 69	88.71	8.57	
- M D2 6906			65.37	30.32	
·· D2 6906	5 309 - 3	319	58.78	35.97	
" D2 6906	319-	329	58.36	37.64	
	1 329 -		57.73	39.10	
^ D2 6906			61.92	33.46	
	353 - 3	<u> </u>	89.54	8.99	
" D2 6907) 363 - 5	25	93.08	4.10	
% h2 6907	27/ 3	5<	96. 72	2.30	
	-/6-0	~	70.84	#+.JV	
				•	
			•		
		:		•••••	
			· ·		
					•
			• •		· · · · · · · · · · · · · · · · · · ·

Ou The fing Registered Assaver. Province of British Columbia

DRILL HOLE RECORD COVER SHEET

INGOT EXPLORATION LTD. for CANDOL DEVELOPMENTS LTD.

Project:	SECHELT C	ARBONATE
	LAIN	
Area: Sec	HELT PENINSU	LABC.
Contractor	: HERB ALLE	N. MERRIT, BC.

8

Type

.

2

.

謹

Ľ.

Size

N.T.S. 926/12WGrid Ref. 435606E, 5494610NElevation 860M A.S.L. Bearing 220°

Hole No. 92186-11

Hole Core	NQ
Started	Completed
Date <u>JAN 12,1987</u>	QAN 16, 1987
Logged by: CAROZ	DITSON

Inclination	-
At Collar	450.
At	
λt	
At	
At	
Total length	<u>230 ft, 70.10</u> m.

COMMENTS

		SECHELT COR	D	RILL HOLE R			
T	ASSAYS	VECHEL CIRC	<u>SONATE</u> DRILL HO	28811	N 19-11	SCALE	IN FEET PAGE NO. / OF 4
LENGTH	CHD MGD	SAMALE NU	MBERS 2	VA. Da VA. Da BANJA SERA	CHCR 71:04	POCK STRUCT	
***	NO A55A45						CASING
10	52.71 36.60	69034	10-778-1		Ê,	х т	DOLOMITC
20	56.92 39.32	69035				T	
30	57.75 35.55	69036	- 30-			L ey D	THIS SECTION BRECCIATED WITH TAN COLORED VEINLETS (SOFT, NO REACTION to ACID, DOLOMITE O OTHER CARBUNATE 2)
40	54.14 34.50	69037	40	ω		ω, 5	CLEAN BREAK BETWEEN GRAY OWNITE DOL
501111	NO ASSA4		50		r r 16	6	ANDESITE - MUCH UCINED WITH CAROLITE & APATHTE - SOPT, PROBIBLY BEING REPLACED BY CARCITE SOME 3"-Y" CARBONNTE PHTCHES ALSO PRESE.UT (WHITE, MOTTLED).
	57553769	19038-	60 - 1R v	50	17	nsc m D	CALCITE WITH MINGR ANDESITE DOLOMITE
70	<u> </u>		70- 70-	50 1	A I	n C D	ANDESITE (34 VEIN) DOLOMITE -TRACE SERPENTINE

										DRII	L H	OLE	REC	ORD				•	
			PRO	JECT _	<u>Se</u>	CHELT (NRBONA	<u>ete</u> da	HLL +	HOLE	NQ \	92	P8	6 -1	l	90	201 1	ب	N FEET PAGE NO. 2 OF 4
			A39	BAYS	_	1			T T			_	_		ि	যু	J.		PLET PARE NU & OF Y
LENGTH			Ma O			SAMPLE.	Numa	BERS	6.74	3	Vai. 18 A	SEX	13	710		22	STRUC	2 2 2	
80	57.	34	35.55			69039		80-											
90	58	07	36.8/			69 040		90											• •
1001	52	28 3	39.73			69041		/00/								L		ليتعطيهم	• •
// 0 //			4.96 A 55 A			69042	.	110 110 110	TRV		30					e A	4		NIXED CALCIFE (3040) & DOLOMITE (7040)
120 120	9,9	5 3	5.12			69043		180	TR v		50 90	V				7	в	Caleseal	CAACIFE ORNIDELY BANDED. CAACIFE WIFIT MINOR DOLOMITIC SECTIONS BANDED INCONSISTENTRY
130	\$9.4	5 5	.02			69044	·	130										مليتينان	
140 140	85.02					69045-		,40 140									(<u>ملىم برامى</u>	
1		0	ASSA	74		PETROLOGY SAMAIR			L R V						- R -	G Br L			METAVOLCANICS WITH MINOR CALCITE ERREGULAR, WAYY CONTACTS CALCITE WITH MINOR DOLOMITC

•

•

	DD0 15/77	SECHELT CARBONAT	~		L HO							AL FEST many 2 - 11
- 	ASSAYS	JELHEL CHROUNAL		इ.स.	মন্ত্র	10	5	J.A	1	SCA		IN FEET PAGE NO. 3 OF 4
LENGTH	COO MOD	SAMPLE NUMB	ERS	VYC NN	18 18 19 19	121	CHC	0747	Silic	Colo	STRUX ROCI	
	NO ASSAY				50				- A	6		ANDESITE - IRREGULAR CONTACTS AVERAGE 500. CANCITE - PODS OF UNREPLACED SERPENTINITIC SILICATES - A COMPLE PODS OF MASSIVE PURITE (Y2)
160			160 - TR		15	1		-	R	6		ANDESITE
-			R		70			╂╂	m		C D	DOLOMITE -FINE VEINS OF GREEN SERPENTINE
170-			170-17							m		- b
		PETROLOGY SAMPLE -2	15	++	++		_	╢	- 19	ω	-,	METANOLCANICS (2) - DICPSIDE SKARN (?)
		92 886-11-175			11				x		Ĕ	-LOTS OF PYRITE IN DODS & STRINGERS
180		-	180		45				A	17	C + 72 8	MIXED CAACITE & DELOMITE -SERPENTING, ENIDOTE, AURITE, FELDSPAR IN PODS & STRINGERS -BANDING IN CAACITE INCONSISTENT, AVG
/9.0			1921	7	45 45				V		B	- SILICIFIED CARBONATES ADYKES
200			200						ßx			- DIORITE BANDESITE PORPHYRY DYKES - DYKES B SILICH BRECCIM (SC MATRIX, LITHIC CLASTS)
220 111			220									- METAVOLCANICS PREDOMINANTAY GARNET - METAVOLCANICS A DYKES

.

u u u		K K	i i	Ш.	<u>k e i i i i i</u>
P R O	TET SECHELT CORBON	DRILL DATE DRILL HOLE I	HOLE RECORD	SCALE	N FEET PAGE NO. 4 OF 4.
LENGTH CAD MGD					
NO ASS		230		SAL STATE	METAVOLCANICS -GARNET + DIENSIDE
230					

Pemberton Ave. th Vancouver, B.C. ada V /P 2R5 ne: (604) 985-0681 ex: 04-352667		Martin State			i de la companya de l La companya de la comp		Certificate of Analysis
			92	P 86-11			
REPORT: 427-0	295 (COMPLETI	E)				REFERENCE INFO:	
CLIENT: INGOT PROJECT: NONE		LTD.				SUBMITTED BY: UNKNO DATE PRINTED: 5-EE	
ORDER	ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	NETHOD	
	CaCO3 Calcium NgCO3 Magnesiu		12 12	0.01 PCT 0.05 PCT			
SAMPLE T	YPES	NUMBER	SIZE F	ACTIONS	NUMBER	SAMPLE PREPARATI	ons number
D BRILL	. CORE	12	2 -15	50	12	ASSAY PREP	12
REPORT C	COPIES TO: MR.	N. FRASER			INVOI	CE TO: NR. N. FRASE	R
	· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·						
	· ·						
	· · · · · · · · · · · · · · · · · · ·						

Boodar-Clegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V 7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Certificate of Analysis

REPORT: 427-0	295		· · · · · · · · · · · · · · · · · · ·		PROJECT: NONE GIVEN	PAGE 1
	• /V					
SAMPLE	ELEMENT	CaCO3	NgCD3			
NUMBER	UNITS	PCT	PCT			
4 D2 92P86-11 9	1_10/	56.71	36.60			
35 D2 92P86-11		56.92	39.32			
6 D2 92P86-11		57.75	35.55			
37 D2 92986-11 3		56.19				
38 D2 92986-11 (57.55	37.64			
39 D2 92P86-11 7	A/_0A/	57.34	35.55			
40 D2 92P86-11 8	2 -01 1/-91/	58.07	36.81			
4 D2 92P86-11	4'-104'	57.08	39.73			
42 D2 92P86-11 1	04'-115'	72.56	21.96			
43 D2 92P86-11 1	15'-125'	91.95	5.12			
44 D2 92P86-11 1	25/_125/	89.65	5.02			
-45 D2 92P86-11 1	25/-148/	85.02	10.25			
	VF 7 VV.	00108				
				·		
•						
*****	····					

		· · · · · · · · · · · · · · · · · · ·				

					/	

DRILL HOLE RECORD COVER SHEET

邋

INGOT EXPLORATION LTD. for CANDOL DEVELOPMENTS LTD.

Project	: <u>Sec</u>	HELT	CAR	BONATE
Claim:	PLA	iN		
Area:	SECHE	AT A	NINSULA	B.C.
Contrac	tor: _	HERB	ALLEN,	MERRIT, B.C.

ê

8

•.•

•

Hole No.	92P86-13
N.T.S.	92G/12W
Grid Ref.	435884E, 5494700N
Elevation	858 m A.S.L.
Bearing	900

200

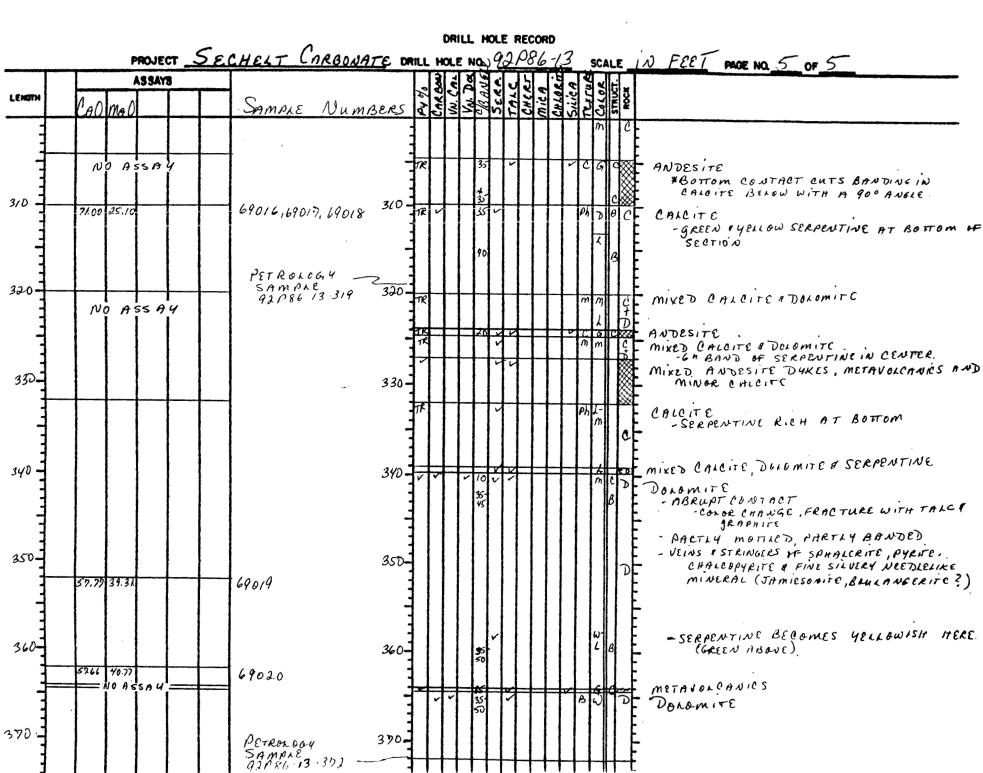
Туре	Size			
Hole (DRE)	NQ	Inclination At Collar	400	
Started Date D. pr. 18 1986	Completed Dec 21, 1986	At At At		
Logged by: CAROL	DITSON	At Total length	372 ft., 113,	39m.
	СОММЕНТ	' S		

	ASSAYS						<u>R</u>	70	Ϋ́́Τ		े. स	2	sc रा		IN FEET PAGE NO. 1 OF 5
LENGTH	CAD MQD	Τ	SAMPLE NUMBE	RS	27	LTA DA	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	N.		10	7077	11100	11	TOUR TOUR	NOCK
//	NO ASSA4S		· ·	10			0			15	2				CASING
20 30 30			PETROLOGY SMM PLC	20	TR TR	5	5 35 35						D G	B	C MIRED CHARITE PDOLOMITE CALCITE INCONSISTENTLY BANDED SERPENTINE ANDESITE -2 SETS OF CROSSING FRACTURES -FRACTURES AT 30° CONTED W
40	68.13 30.32		92186-13-30 69169,64170,6917	1	~		45 30	r					3 2 M	BF	ACICULAR TREMOLITE ACICULAR TREMOLITE DIFFAMALT GOUGE MIXED CALOITE & DOLOMITE BANDED - FRACTURES AT 30°8 450
50 60 60				50,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			30 45					13	36	ВF Т	DOLOMITC -2 FAINT SETS OF BANDING, AI ORIGINIHL SET AT 450 OVERPR SET AT 300 -GREEN SERPENTINE IN PLACCS -GRAPHITIC SEAMS 8 PODS (LAN -FRACTURES HASO 45° 300
201	58.95 39.94		69172,69173,69174	- 1											

`

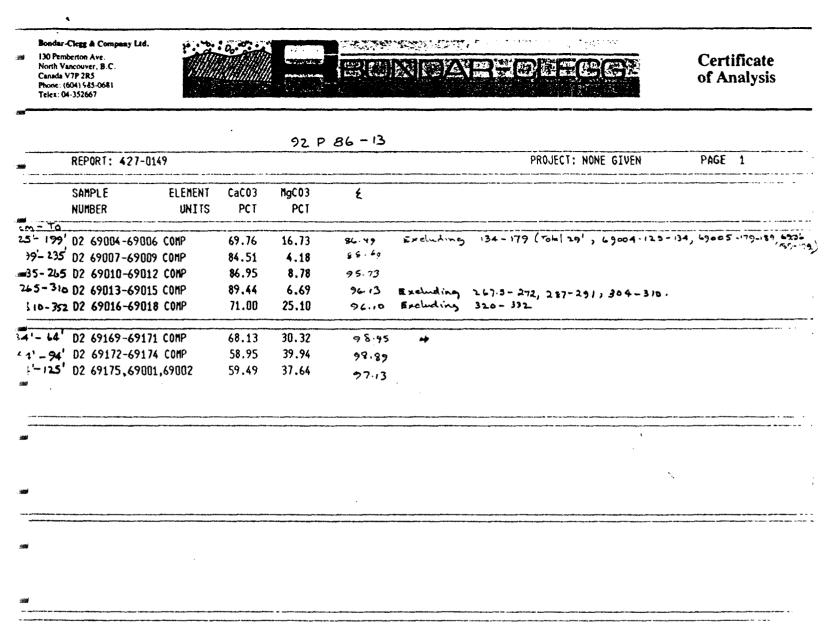
		DRILL HOLE RECORD
	PROJECT	ECHELT CARBONATE DRILL HOLE NO. 92P86-13 SCALE IN FRET PAGE NO. 2 OF 5
LENGTH	CAD MGO	SAMPLE NUMBERS & STATES
103	58.95 39.94	
40	5 9.49 37.64	90
	5 7.99 32.69	69175,69001,64002
//0		
/20	NO 85590	
	69.76 16.73	69004169005, 69006
/30		130-TR - 35 Ph CD DOLOMITE - ASTIMOZING CARBON SEMMS - Some BRUCITE
401	NO ASSAY	PETROLOGY SAMPLE 92086-13-139 140-1 25 306 PAM D. DOLOMITE SERPENTIVE + DIOPSIDE (?) PRESENT
		TRACE CHALCOPURITE - TRACE CHALCOPURITE - FAULT CONTACTS - CON BROKEN WITH FAULT GOVE BOTTOM BRECCIATEDY SRADUAL

,


•

3

	A\$54	13		CONTE		SI CI	ম শ্ব	4 U	2 -	1 I I I I	ৰ ব্যু ব্যু		E IN FEET PAGE NO. 3 OF 5
	CAD MGO		SAMPLE N	umbers	849	Cnx 6	i β β β	5e4 TAL	CHC	2410		2107	A POCI
	NO ASSA	<i>y</i>					40	2			A Z) C	D × BASALT ×
160				160									
4							30	10		~ 1	mk- h		D DOLOMITE ~ 5% TALC.
170 -													* BASALT
				170		41	45	11			ΒĽ		A BASALT BASALT
Ę					Ť	╉╉	90	╉	╉	4	A	C*	C CALCITE
180-	+		4	. 180	1 TR	1.	 80 45 		┼┤	1	B	Ċ,	** BASALT
190				. 190								<i>•</i>	C CALCITE - MOTTLED DOLOMITE FOR TOP J" - CONSISTENTLY BANDED - CHRBONACESUS SEMMI PODS up t THESE AREAS ARE ENRICHED IN SULFIDES (PY , CPY & FINE SILVER MINCROL)
200-	84.51 4.18.		69007,69008	,69009 200									
												C	cE
2/0-	NO ASSA	4			許	种	$\frac{1}{1}$	**	##		Ве Э т		SHEAR ZONE (LOTS OF GRAPHITE, BRECCIATION CALOUTE
				210.	3		30 80 30						ANDESITC, SHOT THROUGH WITH QUARTZ VEIN


			ASS	AYS	×	T			22/2:1			त्रान	8	1.1	Ĵ.	Ť	Ý	য			IN FRET PAGE NO. 4 OF 5
LENGTH	Cn0	Me		Ī		SAN	NPLE	N	итв	ERS	py of	UN.CA	<u>(</u> , <u>v</u>)	Ser	2340	mica	Silica	ערנה	STRUCT	ROCK	
230										230.	•••	V	35 40						8	Carler	2" SHEAR ZONE ORIENTED 350
240	86.95	8.7	18			6901	0,690	DII, 69	1012	240 -			4						3		
													20						в		
250										250.			30						8		
260										260.			25						в	معلمعه	
	89.44	6.	(9			6901	3,690	14,64	9015	-								e A a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ċ	BEOWNISH COLOR (FE PRESENT IN SIDER AXINITE ?)
Ø 70	r		A55	AY.						270-	TR	┦╢	40					P3	c ß	×,E. ×,E	BASALT (3) 5% PYRITE & PURCHOTITE IN VEINS & STRIM (NØ>PY) CALCITE
<i>∂-80</i>										- 280	•									لتعتملن	
										-			30						ß	c	
290	n	0	A 55	θ <u>Ψ.</u>						J90-	1/5	ľ	- 35 45					A M	C	× ×	BASALT NYRITE DISSEMINATIONS, BLEBS & STRINGE CALCITE FOINT BANDING , INCONSISTENT & VERY

تخذ و نه و و و و و و و و و و و و و و و

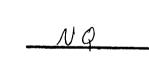
.

orth Vancouver, B.C. anada V7P 2R5 hone: (604) 985-0681 elex: 04-352667					- CE	Certificate of Analysis
		92 P	86-13			
REPORT: 427-0149	(COMPLETE)				REFERENCE INFO:	
CLIENT: INGOT EXP Project: None Giv					SUBMITTED BY: M. FRASER DATE PRINTED: 16-JAN-87	
ORDER E	LEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD	
	3 Calcium Carbonate Magnesium Carbonate	8	0.01 PCT 0.05 PCT			
SAMPLE TYPES	NUMBER	SIZE FR	ACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
D DRILL COR	8E 8	2 -15	50	8	CRUSH,PULVERIZE -150 COMPOSITE CHARGE	26 24
					, 	
			· ·			

$\Omega \Omega$
VAI
Repittored Account Province of British Columbia

Bondar-Clegg & Company Ltd. I 30 Pemberton Ave. North Vancouver, B C Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667						ertificate f Analysis
	-D149 (COMPLETE)	<i>a</i> , <i>2</i> ,	- 86- 13		REFERENCE INFO:	
	DT EXPLORATION LTD.	72 (ر · ۵۵		SUBNITTED BY: N. FRASER DATE PRINTED: 12-FEB-8	
ORDER	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT		METHOD	
	CaCO3 Calcium Carbonate MgCO3 Magnesium Carbonate	2 2	0.01 PCT 0.05 PCT			
SAMPLE	TYPES NUMBER	SIZE FR	RACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
R ROCK	COR BED ROCK 2	2 -15	50	2	CRUSH, PULVERIZE -15	3 2
REPORT	COPIES TO: NR. N. FRASER MS. CAROL DITSON			INVOIC	E TO: MR. M. FRASER	
			·			
50°		۲.				
eri						
-						
						
.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
æ				······		

Bondar-Clegg & Company Ltd. 130 Pemberica Ave. North Vancouver, B.C. Canada V7P 28:5 Phone: (604) 98:5-0681 Teles: 04:352667						Certificate of Analysis
REPORT: 527	-0149	<u>.</u>		92 P 36-13	PROJECT: NONE GIVEN	PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	CaCO3 PCT	NgC03 PCT			
sL-13 352-342 R2 69019 " 342-372 R2 69020		57.77 57.66	39.31 40.77			
		·····				
,					 (sorte	4


DRILL HOLE RECORD COVER SHEET

INGOT EXPLORATION LTD. for CANDOL DEVELOPMENTS LTD.

Projecta	<u>. Sε</u>	CHELT	CAR	BONATE
Claim:	PLI	9/N		
Area:	SECH	ELT A	NINSULA	B.C.
				MERRIT, B.C.

Hole No. 92P 86 -14 92G N.T.S. 12 W Grid Ref. <u>435877E, 54947</u>00 N. Elevation 858 M A.S.L. Bearing 2700

Hole	Λ	
	CORE	_

Completed

Size

Started

Date ec 12,1986

Type

Dec 17,1986 Logged by: CAROL DITSON

Inclination At Collar At λt At At 225ft, 68.58 m Total length

COMMENTS

			DRILL HOLE RECORD
	PROJECT 5 F	CHELT CARBONATE DAM	MILL HOLE NO. <u>12P86-14</u> SCALE (N) FEET PAGE NO. 10F 3
LENGTH	ASSAYS	-	Rada solution and a state to the me me me me me to the state of the st
	<u> </u>	SAMPLE NUMBERS	PA 76 Interior 17 12 12 12 12 12 12 12 12 12 12 12 12 12
	No ASSA45		CASING
		10 10 10 10	D- 2 30 2 30 2 30 30 30 30 30 30 30 30 30 30
-		20 -1	1 AGC ANDESITE
E		₩U TR	TR CALOITE : MIGMATITIC AT TOP.
-		PETROLOGY 3	3 TH AMBY BASALT : TRACE CAY AS BAEBS.
		SAMALE 92N86-14-26.5	
1		- 30 - TR	TR PALE CALCITE WITH DYKES & INCONSISTENT BANDING
		40	2 V 45 POMCX BASALT : SLIGHTLY PORPHYRITIC IN PLACES (PYROYENE PHENOERYSTS) SOINE EPIDDTE PODS,
		PETROLCOY	
		SHIMPLC 92 P86-14-48	TR G Fr METO VOLCANICS (DIDPSIDE + GARNET) C B Fr METO VOLCANICS (DIDPSIDE + GARNET) PY & ANC SINUERY MINERAL IN STRIAGERS RT2 VEINAETS
-		TR	R V BASALT
-		PETROLOGY 1	TR VIA BOLE META VOLCANICS (DIOPSIDE, EPIDOFE, GARNE)
. • •		SAMWLE 92126-14-55 60-00	B. F. META VOLCHNICS. B. GARNET, DISPSIDE, EPIDOTE, RHODONITE (3
4		-	A A METAVOLEANIES WITH MINOR CALCITE
1		1	1 45 -AM CX BASALT
1		-1R	1R YS PRODUCEANICS
1		70 -	RLOCE CALCITE & METHINOACANICS CALCITE IS WILL BONDED to BLOTONY COLOR VARIES, WHITE GRAY METANOACANICS IN PODS & STRINGERS

•

	 PROJE	ст <u>5</u>	ECHELT	CARBONAT	E DRILL	DRILL HOLE N	HOLE	RECOR 1P86		SCALE	IN FEET MOR NO. 2 OF 3
LENDTH	ASSAN			. Иитве	ps 3	100 YU	BAUGLE	HERT HERT	20	A LOK	8
								-96	awe		с <u>.</u>
4	n Assi	945	e e e		80 -						
Ŧ											
4					90 -						
										,,,	Ť
4][C	
1] [, , , ,	
1					100-					c	<u>k</u>
-										م م م	ŧ
1]					Ċ	E E
-			PETROKO Sitmpic 92P86-19	- C.	TR	1			~ A	172	METAVORCHNICS WITH BASALFIC STRING
1			92100017		TR	17	0		V PA V A	<u>Б. В. Т.</u>	DIORITE, CONTACT IN DISTINCT-FADES INT METAVOLEANIES
										2.2	(GARNET, DIOPSIDE, FEADSPAR).
1				,	20 202		ड	╶┼┼	- A-	- C×x	MIXED BASANT HND METAVORCANIE
										×× ××	(BASHLT ALTERING to MV ?)
-						 ≠	3-1-1	10 0	- AN	$\frac{2}{\sqrt{3}}$	DIORITE -2 CLAY -FILLED SHEARS , / WITH BREE
-					TR	11			- AC		metavolcanic (?)
3)	30-						-SIMILAR ASSEMBLAGE (DIOPSIDE +A However Appenes to BE OVERPR DIORITE HERE
Ξ] [1	- TRACE PYRRHOTITE - MINOR, DK. GRAY, NARROW DYKES
1					TR	┝┼╌╀╴	╏╏╹	╉╋	VAC	7 B	ANDESITE
-				14	IE o						- PY RRHOTITE ON SOME FROCTURE - CONTAINS INCLUSIONS OF AMPHIBOLI CONTACT

)	Ĵ)	ji ji	1	1	1	Ŭ				Ű	Ĵ	<u>j</u>	Ŭ.	ä	J.	<u>Î</u>	Ĩ
•																				
			PROJE	:cт _ <u>S</u>	ECHEL	E CAR	CONATE	DRILL	DRILL HOLE N	. HOLE 10. <i>9</i> %	E RECO	rd -14	50 A		1 ECET	-	a <u> </u>	2		
			ASSA										নিয়ন			PAGE NO	1_ <u>2</u> 0F	<u> </u>		
	ENGTH				Somp	LE NU	MBERS	Na	VAL Da	Ser	172	2.4.6	2010	N STRUC						
		NO	ASSA	45.	PETRO SAM, 92128	в. 0 в 4 о L E ~6- (4- 15	57 - Z 18 13 - 11 10 20		S <p< td=""><td>2.</td><td></td><td></td><td>15000000000000000000000000000000000000</td><td></td><td>- PRI INDESITE HAMPHIBU - P - P - F</td><td>Gouge Gouge Gouge Gouge Gouge Gouge Co</td><td>PY AT T STKY PQ CXISTIN OL (3) PH ACK -DK COSO DIVED BIG SOLE (H</td><td>O-IOYO TOP OF S D AT BO G IN CEN G IN CENT G IN CENT</td><td>5. 5. 5. 5. 5. 5. 5. 5. 5. 5.</td><td>PRTD2</td></p<>	2.			15000000000000000000000000000000000000		- PRI INDESITE HAMPHIBU - P - P - F	Gouge Gouge Gouge Gouge Gouge Gouge Co	PY AT T STKY PQ CXISTIN OL (3) PH ACK -DK COSO DIVED BIG SOLE (H	O-IOYO TOP OF S D AT BO G IN CEN G IN CENT G IN CENT	5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	PRTD2

APPENDIX "B"

ASSAYS AND ANALYTICAL METHOD

ANALYTICAL METHOD

<u>Calcium Carbonate</u> (CaCO₃)

A .5 gram sample is dissolved in hydrochloric acid, boiled, treated with ammonium hydroxide, then filtered. The filtered residue is discarded and the filtrate is boiled to remove excess ammonium hydroxide. Calcium oxylate is precipitated by addition of ammonium oxylate, then filtered. The calcium oxylate is combined with dilute sulfuric acid and titrated with potassium permanganate. Sample is dried, weighed and calculated for calcium carbonate.

Magnesium Carbonate (MgCO3)

A .2 gram sample is digested in a standard solution of hydrochloric, nitric and perchloric acids and boiled till fumes are given off. The sample is then cooled, reboiled with hydrochloric acid and tested for $MgCO_3$ using an atomic absorption spectrophotometer.

Bondar-Clegg & Company Ltd. 130 Pemberion Ave North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-5681 Telex: 04-332667					Certificate of Analysi
,		92 P 86-7			
REPORT: 427-0266	(COMPLETE)		1	REFERENCE INFO:	
CLIENT: INGOT EXP PROJECT: NONE GIV	11231			SUBMITTED BY: UNKNOW DATE PRINTED: 23-JAN	
ORDER E	element	NUMBER OF LOWER	INIT EXTRACTION	KETHOD	
1 CaCO3 2 KgCO3	3 Calcium Carbonate 3 Magnesium Carbonate	11 0.01 PCT 11 0.05 PCT	·		
SAMPLE TYPES	s number	SIZE FRACTIONS	NUKBER	SAMPLE PREPARATIO	NS NUMBER
D DRILL CON	RE 11	2 -150	11	ASSAY PREP	11
REPORT COPIL	ES TO: MR. M. FRASER		INVOIO	CE TO: MR. N. FRASER	
	1. J.				
· .		· · ·			
		······································			
			· · ·		
			· · ·		
			·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·	·	
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·	·	

Bondar-Clegg & Company Ltd. 130 Pemberion Ave North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

1

.

Certificate of Analysis

122 (5

OZ PRL-I

				92 P 86-7		
REPORT: 42	7-0266				PROJECT: NONE GIVEN	PAGE 1
SAKPLE	ELEMENI	CaC03	MgCD3			
NUMBER	UNITS	PCT	PCT			
D2 69026	140' 150	87.00	8.68	9568 (4.32)		
	150 160	88.25	7.53	95178 (4.22)		
	160 170	91.40	5.23	96.63 (3.37)		
	170 180	93.30	3.97	97.27 (2.73)		
B2 69030	180 190	90.70	5.07	95-77 (4.23)		
	190 - 200	86.70	8.36	95.06 (4.94)	۱۳۶۹ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۱۳۶۹ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ -	
D2 69032	200 - 210	89.65	7.11	96.71 (3.29)		
D2 69033	210 - 220	75.45	26.45	10119 119		
D2 69248	71 - 81	65.25	30.95	96.15 (3.25)		
B2 69249	86' - 96	74.35	13.91	88.26 (11.74)		
D2 69250	96 - 100	81.05	13.38	99.43 (5.57)	********	
				1		
				•		
•						

	· · · · · · · · · · · · · · · · · · ·		**************************************			
			**************************************			\mathcal{D}

Registered Assayer. Province of British Columbia

130 Pumberton Ave North Vancouver, B.C Canada VVP 285 Phone: (604) 985-058; Telex: 04-352667						Certificate of Analysis
		2	2 1 36-8			
REPORT: 427-0157	(COMPLETE)				REFERENCE INFO:	
CLIENT: INGOT EXP PROJECT: NONE GIV					SUBMITTED BY: UNKNOW DATE PRINTED: 23-JAN	
ORAER I	Element	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	NETHOD	
	3 Calcium Carbonate 3 Magnesium Carbonate		0.01 PCT 0.05 PCT			
SAMPLE TYPE	s number	SIZE FI	RACTIONS	NUMBER	SAMPLE PREPARATIO	NS NUMBER
D BRILL COL	RE 14	2 -1	50	14	ASSAY PREP	14
·						

92 P 86-8

REPORT: 427-0157			****	PROJECT: NONE GIVEN	PAGE 1
SAMPLE ELE	HENT Cacos I	NgCO3			
	NITS PCT	PCT			
6%2/D2 92 86-8 22'-32'	57.35	39.73	9708 (292)		
49022D2 92P 86-8 32'-42'		40.78	98:03 (1.97)		
+7023 D2 92P 86-8 42'-67'	59.30	37.64	96.94 (3 06)		
67024D2 92P 86-8 67'-77'		39.73	96.68 (3.32)		
67-25 D2 92P 86-8 77'-87'	56.10	39.73	95.83 (4-17)		
9124 D2 92P 86-8 87'-99'		39.73	95.18 (4.92)		
49227 D2 92P 86-8 99'-109		40.78	97.73 (2.27) Que 19 (3.42)		
69228 D2 92P 86-8 109'-11 69229 D2 92P 86-8 119'-12		39.73 39.73	9658 (3.42) 96.68 (3.32)		
(1) 20 02 92P 86-8 129'-13	9' 57.35	39 . 73	96.08 (3.92) 96.08 (3.92)		
47231 D2 92P 86-8 139'-14	9' 56.40	39.73	96.13 (3.57)		
69232D2 92P 86-8 149'-15		41.82			
49 234 D2 92P 86-8 159'-16	9' 56.75	41.82	97.92 (2.08) 98.57 (1.43) } = 1	J. J JO MIGU	
92.34 D2 92P 86-8 169'-17	9′ 56.70	40.78	57 48 (2.52)		
·					
				¢	
		······			
		-			
				\sim	
			· · · · · · · · · · · · · · · · · · ·		
				XXII.	
			-		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Registered Assayer. Province of British Columbia

130 Pemberion Ave North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0581 Telex: 04-352667						Certificat of Analysi
		ę	>2 P 86-8			
REPORT: 427-0187	(COMPLETE)	······································		1	REFERENCE INFO:	
CLIENT: INGOT EXP PROJECT: NONE GIV					UBMITTED BY: UNKNOWN DATE PRINTED: 23-JAN-87	
ORDEK E	LEMENI	NUKBER DE ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD	· ····
	Calcium Carbonate Kagnesium Carbonate	13 13	0.01 PCT 0.05 PCT			
SANPLE TYPES	NUMBER	SIZE FR	ACT IONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
DRILL COR D BRILL COR		-15 2 -15		1 13	ASSAY PREP	. 13

Bondar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B.C. Canada V7P 2R5 Fhone. (604) 985-0881 Telex: 04-352667

Certificate of Analysis

72 P 86-8

REPORT: 427-0187			PROJECT: NONE GIVEN	PAGE 1
SAMPLE ELEMENT	CaCO3 MgC	 N3		
NUMBER UNITS		CI		
92P 86-8 (PREFIX)				
D2 69235 179'-189'	57.27 40.	78 78.05 (1.95)		
D2 69236 189'-199' D2 69237 199'-209'	56.95 39. 56.50 40.	73 % 68 (3·32) 15 % 65 (3·35)		
D2 69238 209'-219'	56.50 39.	73 36.23 (3.77)		
D2 69239 219'-229'	56.50 41.			
D2 69240 229'-239'	57.48 38.			
D2 69241 239'-249'	77.55 18.	82 96.38 (3.62)		
D2 69242 249'-260' D2 69243 260'-270'	85.20 7. 89.57 8.			
06 07810 800 87V	07.07 0.		`	
D2 69244 270'-280'	91.16 6.	69 97.85 (2-15)		
D2 69245 280'-290'	92.50 5.			
D2 69246 290'-300'	74.60 20.1			
D2 69247 300'-306'	70.10 25.	10 95.20 (480)		
•				
		······································		
)		
			· · · · · · · · · · · · · · · · · · ·	
· · ·				
,				
· · ·				
		<i>.</i> .		
********	****			
		: .		
			\bigcap	2
				1
			4/171	
			XX 18a	2

Phone. (604) 985-0681 Telex: 04-352667				and the second sec				Certificate of Analysi
DEDADT .	27-0296 (COMPLETE	1	92 P	86-10	R	EFERENCE INFO:	
		ORATION LTI		**************************************			UBMITTED BY: UNKNOW	
PROJECT:			J.				ATE PRINTED: 5-FEE	
ORDE	R EL	.ekent		NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	KETHOD	
1		Calcium C Nagnesium	Carbonate Carbonate	26 26	0.01 PCT 0.05 PCT			
SAMP	LE TYPES		NUMBER	SIZE FI	RACT IONS	NUMBER	SAMPLE PREPARATIO	INS NUMBER
D D	RILL CORE		26	2 -15	j0	26	ASSAY PREP	26

Bondar-Clegg & Company Ltd.

130 Pemberton Ave North Vancouver, B C Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Certificate of Analysis

- 72P8: -12	-	20	84		10
-------------	---	----	----	--	----

	REPORT: 4	27-029	6		*- *- * **			PROJECT: NONE GI	VEN	PAGE 1	
	SAMPLE NUMBER		ELEMENT UNITS	CaCO3 PCT	NgCD3 PCT						
09/-0	D2 69046	<u>Erem</u> 56'		78.96	4.60						*******
	D2 69047		76'	75.62	4.08						
	D2 69048	7 8'	38'	74.88	3.03						
	D2 69049	111'	** 121'	89.95	3.20						
	D2 69050		131	89.74	3.45						
*	D6 07VJV			071/1	3.TJ						
	D2 69051		- 141	92.52	2.30						
	D2 69052		- 150	87.64	6.48						
	D2 69053			89.63	4.08	•					
	D2 69054		172	83.15	11.14						
	D2 69055	/72	- 186	83.25	11,71						
"	B2 69056	186	- 194	87.64	8.68						
	D2 69057		-206	87.45	9.37						
	D2 69058		- 216	86.81	8.57						
	D2 69059			86.60	10.46						
,,	D2 69060	226	239	80.53	14.12						
11	D2 69061	239	- 249	82.83	12.03						
	D2 69062)-259	89.95	6.80						
	D2 69063		9 - 269	88.71	8.57						
	D2 69064		9- 276	65.37	30.32						
<i>,</i> ,	D2 69065	309	- 319	58.78	35.97		<u></u>				
"	D2 69066	319	- 329	58.36	37.64						
"	D2 69067	329	_ 339	57 .7 3	39.10						
^	D2 69068		- 353	61.92	33.46						
**	D2 69069			89.54	8.99						
<i>"</i>	D2 69070	363	- 275	93.08	4.10						
4	D2 69071	376	- 385	96.22	2.30			1845-1-9			······
					×						
					•••••	• •					
					······						
				•	•	· .					
					•						
					· ·						
							•				
					2						

Ż Registered Assayer, Province of British Columbia

- Tofines

gu

-

30 Pemberion Ave lorth Vancouver, B.C. isnada V 7P 2R5 hone. (604) 985-08-81 ielex: 04-352667	y Lid.				V Marta Co		Certificate of Analysis
			92	P 84-11			
REPORT: 427	-0295 (COMPLETE)				REFERENCE INFO:	· · · · · · · · · · · · · · · · · · ·
CLIENT: ING PROJECT: NO		ORATION LTD. N				SUBMITTED BY: UNKNOWN DATE PRINTED: 5-FEB-8	7
ORDER	EL	ENENT	NUMBER OF ANALYSES	LOWER DETECTION LINIT	EXTRACT ION	NETHOD	
1 2		Calcium Carbonate Magnesium Carbonate	12 12	0.01 PCT 0.05 PCT			
SANPLE	e types	NUMBER	SIZE FI	RACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
D DRI	ILL CORE	12	2 -15	;0	12	ASSAY PREP	12

Bondar-Clegg & Company Ltd.

?*

130 Pemberion Ave North Vancouver, B C Canada V 7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Certificate of Analysis

	REPORT: 427	-0295	**·**		P 86-11	PROJECT: NONE GIVEN	PAGE 1
		· ···· ····					
	Sample NUMBER	element Units	CaCO3 PCT	NgCO3 PCT			
	B2 92P86-11		56.71	36.60			
	D2 92P86-11		56.92	39.32			
	D2 92P96-11		57.75	35.55			
	D2 92986-11 D2 92986-11		56.19 , 57.55	34.50 37.64			
000	94 74 00-11	P1 -71	J/ • JJ	3/ 101			
>39	D2 92P96-11	74'-84'	57.34	35.55			
640	D2 92P86-11	84'-94'	58.07	36.81			
% 41	D2 92P86-11	94'-104'	57.08	39.73			
042	D2 92P86-11 D2 92P86-11	104112.	72.56 91.95	21.96 5.12			
2043	D4 74r00-11	115 -165	71 • 75	J.14			
2044	D2 92P86-11	125'-135'	89.65	5.02			
9 045	D2 92P86-11	135'-148'	85.02	10.25			
				······································	***		
		·····					

						R	50
						(oy state	d l

130 Pemherion Ave North Vancruver, B C Canade V7P 2R5 Phone: (604) 985-0881 Telex: 04-352667					Certificate of Analysis	
	92 P	86-13				
REPORT: 427-0149 (COMPLETE)				REFERENCE INFO:		
CLIENT: INGOT EXPLORATION LTD. PROJECT: NONE GIVEN				SUBMITTED BY: M. FRASER DATE PRINTED: 16-JAN-87		
ORDER ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD		
1 CaCO3 Calcium Carbon 2 MgCO3 Magnesium Carb		0.01 PCT 0.05 PCT				
SAMPLE TYPES NUMB	ER SIZE F	SIZE FRACTIONS		SAMPLE PREPARATIONS	ATIONS NUMBER	
D DRILL CORE	8 2 -1	50	8	CRUSH, PULVERIZE -150 COMPOSITE CHARGE	26 24	
	•					
· · · · · · · · · · · · · · · · · · ·						

Bondar-Clegg & Company Ltd. 130 Pemberion Ave North Vancouver, B C Canade V7P 2R5 Phone: (604) 585-0683 Telex: 04-352667

i i

٩

Certificate of Analysis

į

.

			•	92 P	86 - 13		
	REPOR*: 427-014	19					PROJECT: NONE GIVEN PAGE 1
	SAMPLE NUMBER	ELEMENT	CaCO3 PCT	NgCO3 PCT	٤	<u></u>	
99'- 235' 35- 265	D2 69004-69006 D2 69007-69009 D2 69010-69012 D2 69013-69015	COMP Comp	69.76 84.51 86.95 89.44	16.73 4.18 8.78 6.69	86.49 86.69 95.73 96.13		134-179 (70+1 29' , 69004-123-134, 69005-179-184, 267-5-272, 287-291, 304-318.
	D2 69016-69018		71.00	25.10	96.10	Excluding	320-332
a' - 94'	D2 69169-69171 D2 69172-69174 D2 69175,69001	COMP	68.13 58.95 59.49	30.32 39.94 37.64	98.89 98.89 97.13	**	
							۰. ۱
					,		
						, <u></u>	
							Registered Assayer, Province of British Col

Bondar-Clegg & Company Ltd. 130 Pemberion Ave North Vencouver, B C Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667						ertificate ' Analysis
REPORT: 527	-0149 (COMPLETE)	92 P-	86-13		REFERENCE INFO:	
CLIENT: ING PROJECT: NO	OT EXPLORATION LTD. Ne given				SUBMITTED BY: N. FRASER DATE PRINTED: 12-FEB-87	
ORDER	ELEMENT	NUMBER OF Analyses	LOWER DETECTION LIMIT	EXTRACTION	METHOD	
1 2	CaCO3 Calcium Carbonate MgCO3 Magnesium Carbonate	2 2	0.01 PCT 0.05 PCT			
SAMPLE	TYPES NUMBER	SIZE FR	ACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
R ROCI	K OR BED ROCK 2	2 -15	0	2	CRUSH, PULVERIZE -150	2
REPORT	COPIES TO: NR. N. FRASER MS. CAROL DITSON			INVOI	CE TO: NR. N. FRASER	
<u></u>						

Bonder-Clegg & Company Ltd. 130 Pemberion Ave North Vancouver, B.C Canada V7P 2R5 Phone: (604) 985-0681 Telea: 04-352667					Certificate of Analysis
REPORT: 527	-0149		92 F 56-13	PROJECT: NONE GIVEN	PAGE 1
SAMPLE NUMBER	ELEMENT CaCO3 UNITS PCT	NgC03 PCT			
P. 12 - 12 352 342 R2 69019 1 362 - 372 R2 69020	57.77 57.66	39.31 40.77			
			·		
				·	
				Out A	inf

APPENDIX "C"

.

PETROLOGIC REPORTS

Vancouver Petrographics Ltd.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph. D. Geologist

Report for: Carol Ditson, 202 - 1910 West 6th Avenue, VANCOUVER, B.C., V6J 1R7

copy and invoice to:

Ingot Exploration, Box 10326, Pacific Center 2400 - 609 Granville Street VANCOUVER, B.C., V74 1G5 attn: Malcolm Fraser

Samples: 92P86 series: 10-386, 11-150, 11-175 Quarry

Summary and Discussion:

All samples (including the three from the previous study [Inv.6247]) reacted quickly with dilute, cold HCl, indicating the presence of calcite. Although some higher-relief carbonate was present in some samples, it was tested by exposure of the thin section to dilute, cold HCl under the microscope, and found to be calcite as well. The moderate Mg-content of some samples from the previous study is due to the presence of olivine and serpentine.

- 92P86-10-386 extremely fine grained marble, replaced by patches and veins of coarser grained calcite and minor epidote and chlorite
- 92P86-11-150 fine grained marble cut by vein zones and patches containing coarser grained, higher-relief calcite, and seams, patches, and veinlets of chlorite and of talc/ sericite. Opaque and calcite/aragonite occur in late veinlets along the earlier veins. Some cataclastic deformation of calcite occurred in the early vein zones.
- 92P86-11-175 diopside skarn, cut by veins of calcite-chloritetremolite-(pyrite); The rock contains patches of chlorite-(tremolite-calcite-pyrite), probably of replacement origin; the patches contain relic fragments of diopside.
- Quarry coarse to medium grained marble with prominent foliation; cut by abundant seams in which recrystallization of calcite produced an extremely fine grained aggregate. Opaque is common in some of the seams, and accounts for the color variation in the hand sample.

John G. Payne

P.O. BOX 39 8887 NASH STREET FORT LANGLEY. B.C. VOX 1JO

PHONE (604) 888-1323

Invoice 6298 February 1987 92P86-10-386

Marble replaced by coarser grained Calcite

The rock is an extremely fine grained marble composed of calcite, with minor patches of chlorite and disseminated opaque. Thin opaquechlorite seams may represent original bedding. The rock contains ragged porphyroblasts of calcite, and is cut and replaced by veins and patches of coarser grained calcite, locally with minor epidote and chlorite.

host rock	
calcite	35-40%
opaque	minor
chlorite	0.1
replacement	zones
calcite	60 ~ 65
opaque	minor
epidote	0.1
chlorite	minor

The host rock is an extremely fine grained marble dominated by anhedral, equant calcite grains averaging 0.01-0.03 mm in size. It contains patches up to 0.1 mm in size of extremely fine grained chlorite, and scattered anhedral to euhedral grains of pyrite from 0.03-0.15 mm in size. In parts of the rock are anhedral porphyroblasts up to 2 mm in size of calcite. These commonly have irregular borders against groundmass calcite. The porphyroblasts probably are related in origin to the replacement patches of calcite.

The rock is cut by irregular veins and replacement zones of medium to coarse grained calcite, with a few very coarse grained zones. Some coarse grains contain irregular dusty seams and patches of opaque, and similar opaque-rich seams commonly occur along borders of host rock and replacement patches and veins. Some of these seams also contain patches and lenses of chlorite. Chlorite also forms a few subhedral flakes up to 0.1 mm in length. Pyrite forms subhedral to euhedral cubic grains up to 0.2 mm in size. Epidote occurs in clusters of fine grained calcite as prismatic, subhedral to euhedral grains averaging 0.1-0.15 mm in length. Some of these are broken along an irregular basal parting. 92P86-11-150

Marble cut by Veins of Calcite-Talc/Sericite-Chlorite

The rock is a fine to locally medium grained marble with a granular to moderately interlocking texture. It is cut by vein zones and patches up to 5 mm wide containing recrystallized calcite, talc/ sericite, and chlorite, with local concentrations of opaque.

host rock calcite 75-78% Mineral X 0.3 opaque minor (pyrite) replacement veins, patches, seams calcite 15-17 talc/sericite 5- 7 chlorite 2- 3 opaque 0.2

The rock is dominated by equant calcite grains averaging 0.2-0.5 mm in grain size, with local coarser grained patches. Textures range from granular to moderately interlocking. Dusty opaque forms scattered patches and seams up to 0.1 mm in size. Pyrite? forms a few subhedral to euhedral grains up to 0.1 mm across.

A few patches up to 0.7 mm in size are strongly altered relic silicate grains of unknown original composition. They are replaced completely by extremely fine-grained material containing abundant dusty, light to medium brownish grey semiopaque, which masks any other minerals present.

The rock is cut by a major vein zone up to several mm wide and numerous smaller veinlets and seams. These contain lenses and seams of extremely fine grained talc/sericite and others dominated by extremely fine grained chlorite with minor dusty to extremely fine grained opaque. Irregular patches also consist of extremely fine grained talc/sericite. The major vein contains a broad core (up to 4 mm wide) dominated by medium to coarse grained calcite, showing a higher relief than normal. Some veins up to 1.5 mm wide consist of cataclastically deformed and granulated calcite. Calcite also forms replacement patches up to several mm across of grains similar to those in the core of the main vein zone.

The vein zones locally contain late veinlets up to 0.2 mm wide (averaging 0.05-0.1 mm) dominated by calcite/aragonite, in which grains are oriented perpendicular to the planar dimension of the vein. Grain size is extremely fine to very fine. Along the largest of these veinlets is a lensy zone up to a few mm long and from 0.03-0.1 mm wide of opaque. 92P86-11-175

maale

Diopside Skarn cut by Veins of Calcite-Chlorite-Tremolite; patches of Chlorite- Tremolite-Pyrite-Calcite-(Ti-oxide)

The rock is a fine to locally medium grained skarn dominated by diopside with minor apatite. It is breccfated and cut by numerous veins and veinlets of calcite-tremolite-chlorite. The hand sample contains patches up to a few cm across dominated by chlorite with lesser tremolite, pyrite, and calcite, and with minor Ti-oxide.

rock	
diopside	75-80%
apatite	minor
veins	
calcite	12-15%
chlorite	3-4
tremolite	2-3
apatite	minor
pyrite	minor
fragments?	(8-10% of hand sample, 3- 5% of thin section)
chlorite	2-3
tremolite	0.5
pyrite	0.5 (in hand sample only)
calcite	0.2 diopside 0.5%
Ti-oxide	0.1

Diopside forms a massive aggregate of grains ranging from 0.05 to 0.2 mm in size, with patches of subhedral prismatic grains up to 1 mm in length, and with a few megacrysts up to 1.7 mm in length.

Apatite forms subhedral to anhedral grains averaging 0.05-0.1 mm in size.

The rock is cut by veins averaging 0.1-0.5 mm in width. These are dominated by very fine grained calcite, with seams and patches of extremely fine grained chlorite, and with scattered grains and clusters of grains of tremolite. Tremolite locally forms ragged grains up to 0.6 mm in size.Apatite occurs with chlorite as subhedral prismatic grains up to 0.1 mm in length. Pyrite occurs in one vein with tremolite as very irregular grains averaging 0.02-0.05 mm in size.

The rock contains patches dominated by extremely fine grained chlorite, with scattered grains and aggregates of tremolite and of pyrite (in hand specimen only), and with minor patches of calcite and of Ti-oxide. Ti-oxide forms irregular grains from 0.02-0.1 mm in size. Pyrite patches are up to 2 mm across. The patches contain relic fragments of diopside, suggesting that they formed by replacement of the rock, probably at about the same time as the veins were introduced. QUARRY Defor

Deformed Marble (Calcite)

The rock is a coarse to medium grained marble showing a prominent foliation defined by slight color banding and by elongation of calcite grains. It is cut by numerous seams in which calcite was recrystallized to an extremely fine grained, granular aggregate. Opaque forms minor disseminated grains and seams; seams are associated with mcrystallized calcite seams, and probably are responsible for the color variation in hand sample.

calcite	99.88
opaque	0.2

Calcite forms elongated grains up to a few mm in length. These show a preferred orientation parallel to foliation. The rock was deformed and recrystallized along seams up to 0.1 mm in width. These seams occupy about 15-17% of the rock. In them, calcite was recrystallized to granular aggregates averaging 0.02 mm in grain size. Many of the seams are subparallel to foliation. A few prominetn seams cut moderately to steeply across the foliation.

Opaque forms disseminated grains averaging 0.03-0.07 mm in size. Some are surrounded by a thin limonitic halo, suggesting that the opaque is Fe-sulfide.

In the recrystallized seams of calcite, opaque forms discontinuous, wispy lenses from 0.1-0.5 mm in length.

Comments on sections previously described by A.L.Littlejohn, Invoice 6247

P92 86-13-272

Serpentine may in part be chlorite; these minerals are difficult to distinguish at this grain size. The rock contains clusters and single grains of apatite from 0.03-0.07 mm in size associated with patches of diopside and of serpentine/chlorite. Some of the apatite grains are subhedral prismatic in habit, and others are anhedral. Serpentine/chlorite in some patches contains abundant dusty opaque, possibly magnetite.

92P 86-13-319

I would interpret this rock differently than Al Littlejohn. The silicate mineral is dominantly olivine. This is recognized by the parallel extinction in prismatic grains and by the generally higher birefringence and poorer cleavage than in clinopyroxene (diopside). Alteration of olivine is patchy to serpentine. Patches in which serpentine occurs in tabular pseudomorphs probably are after clinopyroxene. The mineral identified as phlogopite probably is talc.

92P 86-13-139

This sample is similar to 86-13-319, with both olivine and diopside present as fresh to moderately altered grains, which can be distinguished optically. Olivine probably is moderately more abundant than diopside. More-strongly-altered grains are dominated by serpentine, and their origin is uncertain. However, probably most were olivine. The tabular to bladed pseudomorphs up to 2 mm in size probably are secondary after clinopyroxene porphyroblasts or phenocrysts. The mineral identified as phlogopite probably is talc. Some talc appears to be secondary after olivine.

The composition of 92P 86-13-319 is similar to that of pure dolomite because it contains abundant Mg-bearing silicates (olivine and serpentine, and minor diopside). Check the SiO₂ content of this rock; no quartz is present, so all the SiO₂ is in the silicates.

I would interpret the sections containing offerme and clinopyroxene as original ultramafic rocks, which were serpentinized and later altered to calcite-(talc), with a large input of Ca at the expense of Mg. An alternate hypothesis, depending on field relations, is that they are contact-metamorphosed marbles in which Mg-rich silicates were formed during metamorphism from Ca-Mg carbonates and introduced SiQ2. These silicates would then have been partly serpentinized.

As in the other samples in the suite, calcite is the only carbonate identified.

John G. Payne

Caroof / Calcute

Onv. 6247

57650 Vancouver Petrographics

JAMES VINNELL. Manager JOHN G. PAYNE, Ph. D. Geologist P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

PHONE (604) 888-1323

Invoice 6247

Report for: Carol Ditson (copy to M. Fraser - Ingot Management), Candol Developments Ltd., P.O. Box 69, Sechelt, B.C., VON 3A0.

January 9, 1987

Samples: 92P86-13-130, 139, 319, 372; 92P86-14-26.5, 48, 55, 110, 157, 208.

Summary:

A) VOLCANIC ROCKS: 92P86-14-26.5, 92P86-13-130.

and a

These are weakly altered (meatmorphosed ?) mafic volcanic rocks. The first is a basalt consisting of plagioclase and augite with chlorite and tremolite; calcite occurs in veinlets. The second is an andesite consisting mainly of plagioclase and chlorite, including plagioclase phenocrysts; calcite occurs in veinlets and is associated with pervasive epidote.

B) ALTERED VOLCANIC ROCKS: 92P86-14-48 and 55.

These samples are highly altered volcanic rocks, probabaly similar to Group A above. The sample at 55 is strongly and pervasively altered with very fine diopside and garnet, in patches. The plagioclase is altered to K-spar. Veins of tremolite cut through the rock, associated with epidote. The sample at 55 contains patches of diopside and the much of the sample consists of epidote, sericite and chlorite, occuring in patches. It is sheared and sulphides are associated with this and the epidote alteration.

C) ALTERED INTRUSIVE/SUBVOLCANIC ROCK: 92P86-14-110.

This is a dioritic rock, perhaps associated with the Group A volcanics, which has been altered with tremolite, K-spar and epidote.

D) MAFIC METAVOLCANICS (AMPHIBOLITE): P9286-14-157 and 206.

These samples consist dominantly of hornblende intergrown with plagioclase and lesser biotite. There is a vague foliation. Sulphides (mainly pyrite and pyrrhotite, minor chalcopyrite) are disseminated throughout and along the foliation and are apparently associated with very weak calcite-epidotetremolite-K-spar-quartz alteration occuring in fine stringers along the foliation. Biotite is altering to chlorite.

Summary (cont.)

E) SERPENTINE MARBLES; 92P8613-139, 319 and 372.

These samples consist mainly of calcite with large patches of dark green serpentine (vein-like) and with smaller patches of yellowish serpentine throughout. The yellowish serpentine is an alteration of diopside which is embedded in the calcite; the dark green serpentine is an alteration of tremolite (?). The carbonate is replacing the serpentine and apparently the serpentinisation occured during the addition of carbonate. These may be altered volcanic rocks (Group B) which have undergone intense replacement by calcite.

a. L. Ridlight

A. L. Littlejohn, M.Sc.

92P 86-13-130: PORPHYRITIC ANDESITE.

This sample is a fine to medium grained massive volcanic rock containing a few plagioclase phenocrysts in a fine plagioclase-chlorite groundmass; occasional hornblende phenocrysts are also present. Mild epidote alteration (greenschist metamorphism) has occured and is associated with a few fine veinlets containing calcite and quartz also. Minerals are:

63

plagioclase groundmass	66%
chlorite	16
plagioclase phenocrysts	10 (moderately sericitic)
opaques	3
epidote	3
hornblende	2
calcite	minor
quartz	trace
tremolite	trace
apatite	trace

Plagioclase phenocrysts form broad euhedral to subhedral grains 1 to 2mm in size. Moderate sericite development has occured in large diffuse patches in most of them. The groundmass plagioclase mostly forms euhedral laths 0.1 to 0.3mm in size but shapeless interstitial grains also occur between these; very fine acicular apatite grains are included in these. The groundmass laths are often "dirty" with incipient sericite. Chlorite forms very fine grains which occur in shapeless interstitial patches up to 0.3mm in size occuring between the groundmass laths and in places forming a partly interconnected around them. Hornblende forms bladed grains which are mostly about 0.3mm in size and intergrown with the groundmass plagioclase laths; there area few thin bladed phenocrysts up to 1.5mm in size. Opaque minerals (mainly magnetite/hematite) form ragged cubic grains up to 0.1mm in size which are disseminated throughout amongst the groundmass plagioclase. A few aggregates are also present.

Mild epidote alteration is associated with a few thin (less than 0.3mm) veinlets which consist mainly of epidote and calcite but with quartz occuring for short parts of the veinlet. Calcite is dominant and the epidote is embedded within it. Most of the epidote is disseminated throughout the rock amongst and partly within the groundmass plagioclase laths. It forms shapeless or rounded grains up to 0.1m in size and may occur in small clusters. Rare patches of calcite less than 0.3mm in size are associated with the disseminated epidote. Adjacent to the veinlets there are sometimes clusters of feathery tremolite grains about 0.1m in length, developing within the plagioclase.

92P 86-13-139: SERPENITINISED DIOPSIDE MARBLE.

This sample consists largely of calcite within which are embedded small diopside grains. These are partly altered to serpentine and have also been partly replaced by carbonate. Also within the calcite are patches of serpentine several millimeters in size which consist of coarse tabular or bladed pseudomorphs after tremolite (??). Minerals are:

calcite	55%	
serpentine	25 (after tremolite ?))
diopside	13	
serpentine	5 (after diopside)	
phlogopite	2	

Calcite forms an aggregate of subrounded/subrhombic grains with irregular interlocking margins which are mostly 0.5 to 2.0mm in size. Embedded within this, and often concentrated in clusters several millimeters in size, are rounded to tabular diopside grains 0.2 to 0.8mm in size. Some of these are completely or partly altered to serpentine; others have been partly or completely replaced by very fine calcite. The alteration occurs in patches one or two millimeters in size; much of the diopside is completely unaltered.

There are dark green patches, with diffuse margins, of serpentine throughout the rock. These may be be vein-like and several millimeters in size. The serpentine occurs in tabular to bladed pseudomorphs 1 to 2mm in size which could have been tremolite. A closely spaced system of fine veinlets and patches of calcite are present within the pseudomorphs.

Phlogopite forms broad flakes 0.1 to 0.5mm in length which are scattered within the calcite amongst the clusters of diopside. A few of the phlogopite flakes appear to have formed after diopside during the serpentinisation of these. 92P 86-13-319: SERPENTINISED DIOPSIDE MARBLE.

This sample is a massive coarse to medium grained rock consisting largely of calcite. Yellowish spots and patches occur within the mass of carbonate. These are serpentinised diopside grains. Minerals are:

calcite	70%
serpentine	27 (mainly after diopside)
diopside	3
phlogopite	minor
hematite	trace

Calcite forms an aggregate of subrounded/subrhombic grains with irregular interlocking margins. These are mostly 0.5 to 2.5mm in size. Embedded within this are rounded to tabular patches of serpentine which are mostly 0.2 to 0.8mm in size. These have mostly been derived from diopside, relicts of which occur in the serpentine along with a few only slightly altered grains. Distribution of the diopside grains is uneven, with clusters and small agrgegates common, although it does occur throughout. Ragged flakes of phlogopite up to 0.2mm in length are commonly associated with the altered diopsides; very fine hematite is sometimes present as well. There are a few patches one or two millimeters in size in which the serpentine occurs in tabular pseudomorphs, perhaps after tremolite (??). Calcite is replacing these.

P92 86-13-372: MARBLE (WITH SERPENTINE/DIOPSIDE).

This sample is a medium grained rock consisting largely of calcite. There is a vague foliation due to concentration of small patches of serpentine, after diopside, in widely spaced, thin diffuse streaks. Fine opaques (perhaps sulphides or Fe-oxides) are also scattered along this indistinct foliation. Yellowish fractures at the edges of the hand specimen are serpentine concentrations. Minerals are:

n

calcite	98%
serpentine	2
opaques	minor
diopside	trace

Calcite forms an aggregate of subrounded interlocking grains about 0.5mm in size. Scattered within this and concentrated in thin indistinct streaks are clusters of serpentine occuring in rounded to ovoid patches 0.1 to 0.3mm in size. Traces of relict diopside are present in these. Some of the serpentine patches are replaced by calcite and this forms a "dirty" very fine grained carbonate patch within the mass of clear calcite. Ragged, shapeless to cubic opaque grains mostly less than 0.05mm in size are also present throughout the rock between the calcite grains and tend to be concentrated in fine whisps and streaks along the vague foliation.

92P 86-14-26.5: BASALT.

This is a fine grained, slightly inequigranular, massive volcanic rock consisting mainly of plagioclase, chlorite and augite with tremolite disseminated throughout as a result of greenschist metamorphism and alteration through a few thin calcite veins. Pyrite is scattered throughout and is associated with the veining. Minerals are:

plagioclase	36%
chlorite	26
augite	18
tremolite	14
c alcite	4 (mainly veinlets)
pyrite	1
Fe-Ti oxides	1
quartz	minor (veinlets)

Plagioclase forms subhedral laths and shapeless grains 0.1 to 0.2m in size which are intimately intergrown with extremely fine chlorite occuring around and within the plagioclase grains. The plagioclase is "dirty" with incipient sericite/calcite alteration as well as with chlorite. Rare subhedral grains of plagioclase about 0.8mm in size are present and these are also partly replaced by chlorite. Development of tremolite has occured within the plagioclase and the chlorite throughout the rock. This forms ragged bladed to feathery grains mostly 0.1 to 0.4mm in length, scattered throughout and sometimes occuring in small clusters. Fe-Ti oxides (intimate mixtures of cryptocrystalline hematite and rutile) occur in ragged aggregates up to 0.1m in size which are disseminated amongst the plagioclase/chlorite/tremolite.

Augite forms tabular to subrounded grains mostly 0.2 to 0.6m in size which are intergrown with the plagioclase throughout the rock. Rare grains up to 1.2mm in size are present. The augite is altering to very fine tremolite around their edges and along cleavages and fractures. This is sometimes associated with extremely fine calcite and chlorite.

Calcite mostly occurs in a few veinlets up to lmm wide which occur in a widely spaced, generally subparallel system. They may be discontinuous and usually have rather indistinct margins. The calcite forms elongated, subrhombic grains up to 0.5mm in size along with very much finer shapeless grains. Fine quartz is sometimes present encloded within the carbonate and some parts of very thin veinlets are dominatly quartz. Highly irregularly shaped patches of very fine calcite have developed within the rock near the veins and throughout the rock, occasionally with quartz. These patches are less than lmm in size. Cubic opaque grains (pyrite from the hand specimen) up to 0.5mm in size occur in clusters and aggregates within the veins; these are also scattered throughout.

92P 86-14-48: ALTERED VOLCANIC ROCK.

This sample is a thoroughly altered rock of uncertain parentage. Thin to broad veins which are white in colour cut through pale greyish-green material with diffuse patches of reddish material. The white veinlets and veins are tremolite; the greyish-green material is an intimate mixture of felspars (both plagioclase and K-spar in patches, with veins of K-spar), diopside, epidote; the reddish patches also contain garnet. The mineral assemblage is akin to that in skarns although this has not necessarily been produced directly at an intrusive contact; strong pervasive calcium-carbonate alteration (metasomatism) at fairly high temperatures and presures in many intermediate/mafic volacanic suites results in such an assemblage; strong carbonate alteration occurs in other samples of this suite. Minerals are:

K-spar	35%
tremolite	23
plagioclase	18
clinopyroxene	14
garnet	8
epidote	6
sericite	4
ca lcite	minor
sphene	trace
opaque (sulphide?)	trace

The K-spar is an alteration of plagioclase. Veinlets 0.1 to 0.5mm in width are present throughout and consist of shapeless interlocking grains from 0.05 to 0.3mm in size. The veinlets may be discontinuous and margins gradational into the large patches of K-spar (and other minerals). These consist of finer grains than in the veinlets and are gradational into patches where plagioclase has remained. This forms subrounded interlocking grains less than 0.1mm in size. In places the potassium alteration has resulted in the development of broad ragged sericite flakes up to 0.1mm in size rather than K-spar.

Both the patches of K-spar and smaller patches of plagioclase are intimately intergrown with diopside and garnet. These form rounded to shapeless grains less than 0.1mm in size and the intergrowths consist of about equal proportions of feldspar and/or garnet; the garnet/feldspar intergrowths may be graphic-like. Garnet tends to occur within K-spar rather than with plagioclase where fine diopside is dominant. Diopside also forms tabular grains up to 1mm in size which occur in elongated patches two or three millimeters in size (clear "stripes" in the yellow-stained part of the offcut block). Relatively large garnets may be intergrown with these. Small aggregates of sphene are sometimes present amongst the large diopside grains.

(continued)

P92 86-14-48 (cont.)

Tremolite and epidote formed later than garnet and diopside in the mineralizing sequence. The main vein of tremolite is 3 to 8mm in width and consists of a compact mass of shapeless to platey grains 0.05 to 0.3mm in size grading into patches of tabular grains up to 1mm in length. Within this there are dark patches a few millimeters in size which are very turbid and extremely fine grained. This is mainly cryptocrystaline epidote intimtely intergrown with the fine tremolite and are apparently relict feldspathic patches which have been incompletely replaced by the tremolite.

The dark epidote/tremolite patches sometimes contain small aggregates of shapeless epidote grains up to 0.5mm in size and these also occur adjacent to the vein. The edge of the main vein is not sharp and there is a thin diffuse zone of cryptocrystalline epidote at the margins. A few fine shapeless opque grains (probabaly pyrite) are intimately intergrown with the relatively coarse epidote. Rounded epidote grains less than 0.05m in size are present in plagioclase patches along with diopside.

In addition to the wide tremolite vein there is a fairly closely spaced network of thin tremolite veinlets up to 0.5mm in width, but mostly less than 0.1mm. These consist of platey to bladed tremolites up to 0.3mm in size. Margins are quite sharp and they cut through the rather cloudy tremolite in the main vein, although they may pass imperceptively into the cloudy tremolite in places. A small amount of fine calcite is intergrown with the tremolite in these veinlets, and fine stringes of calcite alone also occur.

92P 86-14-55: ALTERED, SHEARED MAFIC VOLCANIC ROCK.

This sample is a thoroughly altered rock, probabaly of mafic volcanic origin but textures and mineralogy have been totally obscured by the coarse patchy alteration. The dominant alteration mineral is epidote which is pervasively replacing an intimate intergrowth of chlorite/sericite (relicts from the original volcanic ?). Vein-like patches of clinopyroxene (diopside ?) are present and these are also being replaced by epidote. There is a shear system cutting though the rock and coarser epidote, intimately intergrown with sulphides (mainly pyrite), has developed around this. The shears themselves are filled with chlorite with some K-spar and tend to cut through massive patches of epidote. Minerals are:

epidote	40%
sericite	28
chlorite	18
clinopyroxene	9
opaque (pyrite)	5
tremolite	minor
K-spar	minor
apatite	trace

The narrower part of the section (divided at the main shear) consists mainly of an intimate intergrowth of sericite and chlorite with grain size about 0.01mm. The sericite tends to be concentrated in ovoid to tabular patches 0.1 to 0.3 in size (relict plagioclase ??) and the chlorite tends to occur in fine, closely spaced, interconnected network around these. Rounded grains of epidote up to 0.1m in size are scattered within this intergrowth, sometimes coalescing into small aggregates. A few small apatite grains are scattered amongst the chlorite-sericite.

The wider part of the section consists mainly of an intimate intergrowth of epidote and sericite with grain size about 0.05mm. The intergrowth has a fine, crude graphic-like texture and this grades into massive patches of epidote a few millimeters in size. Bladed tremolite grains and chlorite flakes up to 0.2mm in length are scattered within this. The patches of fine epidote or epidote-sericite grade into larger patches near the shear zone in which the epidote occurs in aggregates of tabular to shapeless grains of variable size 0.2 to 1.2mm in size. These are closely intergrown with ragged, irregularly shaped opaque grains (apparently mainly pyrite) ranging in size from 0.1 to 1.0mm. These tend to be concentrated in clusters and aggregates one or two millimeters in size. Tremolite is occasionally intergrown with the epidote and pyrite.

(continued)

92P 86-14-55 (cont.)

C

Within the a large massive epidote patch in the wide part of the section there is a vein-like patch of clinopyroxene a few millimeters in size (the pale coloured patch on the offcut block). The pyroxene forms rounded to tabular subidiomorphic grains 0.1 to 1.0mm in size. The pyroxene is being replaced by the massive patch of epidote. Small clusters of finer clinopyroxens occur within the sericite-chlorite parts of the section and these are also being replaced by epidote. 1

The shearing appears to be later than the main epidote alteration, cutting through the coarser epidote grains and massive patches of finer material, although they are related. Shears are 0.1 to 0.5m in width and may be discontinuous. They are dominantly filled with fine streaks of chlorite with elongated patches of K-spar.

92P 86-14-110: ALTERED DIORITE.

This is a medium grained, somewhat inequigranular massive rock consisting largely of plagioclase. It is perhaps a subvolcanic dyke_rock. It has been altered by tremolite and epidote in a system of partly interconnected patches and veinlets and this is associated with development of K-spar in the plagioclase. Minerals are:

plagioclase	70%
tremolite	18
K-spar	7
epidote	5
calcite	minor
sphene	minor
apatite	trace
opaque (sulphide ?)	trace

Plagioclase forms an aggregate of broad subhedral grains mostly 0.5 to 2.0mm in size which have irregular interlocking margins. Small apatite grains are included in them, often occuring in clusters of two or three. A small amount of hornblende may have been intergrown with the plagioclase but has all been replaced by tremolite (and minor calcite). The hornblende(?) forms bladed grains about 1mm in size. These now consist of an aggregate of fine ragged pale to dark green tremolite grains intimately intergrown with a small amount of very fine calcite.

Most of the tremolite is colourless and forms broad platey grains mostly 0.2 to 1.0mm in size, which are sometimes partly skeletal, and which occur in a partly interconnected patchwork of a few grains replacing the plagioclase. Fine bladed to acicualr grains occur in small clusters within the plagioclase and these may coalesce into small patches between and within the plagioclase. The finer platey grains occur also occur in a system of veinlets (which may connect the patches) where they are closely associated with epidote. This forms shapeless to tabular grains of variable size from 0.1 to 0.5mm. The larger ones occur tend to be concentrated in a system of widely spaced, parallel vein-like patches one or two millimeters in length. The small ones are closely intergrown with finer tremolite in thin veinlets and are also scattered within the plagioclase grains. A small amount of fine calcite also occurs in the veinlets.

The introduction of tremolite and epidote is associated with the development of fine (less than 0.1mm) K-spar which has replaced the plagioclase in diffuse patches, often in a zone around the epidote and tremolite, particularly where these are intimately intergrown.

Clusters of small sphene grains are also present around epdiote-tremolite intergrowths. Rare opaque grains less than 0.2mm in size are intimately intergrown with coarser epidote.

92P 86-14-157: MAFIC METAVOLCANIC ROCK (AMPHIBOLITE).

This is a medium to fine grained meta-volcanic (regional, thermal ?) rock consisting largely of hornblende with lesser plagioclase. There is a poorly developed foliation due to concentration of the plagioclase in a system of elongated patches (with diffuse or gradational margins) one or two millimeters in length. Fine veinlets of calcite-tremolite-epidote-K-spar occur along the foliation and have resulted in the development of chlorite from biotite(?) which also occured in small aggregates. Minerals are:

hornblende	60%
plagioclase	30
chlorite	9 (after biotite)
opaque (pyrite)	1
apatite	trace
tremolite	trace
K-spar	trace
calcite	trace
epidote	trace

Hornblende forms rounded to squat idiomorphic grains mostly 0.1 to 0.3mm in size which are intergrown with similarly sized, subrounded interlocking plagioclase grains. The plagioclase tends to be concentrated in ovoid patches amongst larger patches of hornblende alone, resulting in a crude patchwork texture, although there is a gradation into patches of one or the other with fine hornblende scattered between plagioclase grains and fine plagioclase scattered between hornblende grains. Small chlorite flakes are also scattered between plagioclase in some parts. Most of the chlorite is concentrated in ovoid aggregates about 1.5mm in size occuring amongst the hornblende. Flakes are about 0.2mm in size. Small apatite grains are intergrown with the hornblende and plagioclase.

There are a few very thin veinlets along the weak foliation which consist of extremely fine calcite and tremolite. The tremolite often occurs within the chloritic aggregates. There is a thin diffuse zone of cryptocrystalline epidote at the edge of the veinlets and fine grains sometimes occur in the chlorite. A small amount of K-spar occurs in these veinlets but most is present in veinlets which cut across the foliation. The plagioclase is sometimes cloudy with incipient K-spar and sericite.

№92 86-14-206: MAFIC METAVOLCANIC ROCK (AMPHIBOLITE) WITH SULPHIDES.

This is a medium to fine grained, somewhat inequigranular rock consisting mainly of an intergrowth of hornblende and plagioclase. It is rather massive although there is a vague foliation due to concentration of hornblende (and biotite) in diffuse elongated patches. Mild alteration with calcite along veinlets is probably associated with development of sulphides (mainly pyrrhotite and pyrite. Minerals are:

nornblende	48%
plagioclase	40
piotite	8 (moderate alteration to chlorite)
pyrite	2
oyrrhotite	1
calcite	<pre>1 (mainly veinlet)</pre>
quartz	minor
apatite	trace
ilmenite	trace
K-spar/sericite	trace
piotite pyrite pyrrhotite calcite quartz apatite ilmenite	8 (moderate alteration to chlorite) 2 1 1 (mainly veinlet) minor trace trace

Hornblende forms squat idiomorphic grains 0.05 to 0.2mm in size along with bladed grains up to lmm in size. These occur in a granular intergrowth with subrounded plagioclase grains 0.1 to 0.3mm in size. The larger amphibole grains tend to be concentrated in indistinct patches a few millimeters in size and the smaller ones also grade into small concentrations. Biotite forms flakes 0.1 to 0.2mm in length which occur scattered between the plagioclase grains and are concentrated in elongated or ovoid patches one or two millimeters in size amongst the hornblende or surrounding small clusters of it. Both the biotite and hornblende concentrations are elongated along a rather indistinct foliation. Primary accessory minerals are apatite and ilmenite (perhaps pyrrhotite also ??). The apatite forms tabular/rounded grains up to 0.2m in size which are intergrown with the plagioclase; the ilmenite forms tabular grains less than 0.1m in size occuring in small clusters amongst the hornblende.

Calcite forms ragged, elongated subrhombic grains up to 0.3mm in size and very much finer shapeless grains occuring in a veinlet about 0.5mm in width. Contacts are rather diffuse and small patches have developed in the plagioclase close to the veinlet and throughout the rock. This is associated with development of incipient K-spar and sericite in some plagioclase and there is also a very fine stringer of K-spar cutting through the section. A small amount of fine quartz is intergrown with the calcite and aggregates and clusters of two or three grains about 0.2mm in size have developed in the rock amongst the plagioclase. The alteration has resulted in moderate development of chlorite from the biotite.

Sulphides are disseminated throughout between the plagioclase and hornblende, sometimes being concentrated in clusters, vaguely elongated along the vein directions. Pyrite is dominant and forms subcubic grains 0.05 to 0.2mm in size, coalescing into somewhat skeletal aggregates. Pyrrhotite forms shapeless grains 0.1 to 0.5mm in size. Small clusters and agregates tend to be associated with biotite. Fine chalcopyrite grains are scattered amongst the clusters of pyrite and pyrrhotite. DRILL HOLE RECORD COVER SHEET

. .

1

1

Ĩ

·.

به ندس

ł

ŝ.

8

籊

۰.

oject: <u>Condol Dev</u>	elorments Ltd.	Hole No. 92P-85-5
aim: <u>Plain</u>		Latitude
ea: <u>Sechett Penn</u>		Departure
ntractor: <u>Herb</u>	Allen, Merit, B.C.	Elevation <u>2746 # 834 m</u>
		Bearing <u>15° uncorrected mayn</u>
Туре	Size	
le		Inclination
Core	_Na	At Collar 45°
		At
Started	Completed	At
e		At
		At

.

•		DRILL HOLE REC	
•	PROJECT <u>Candol</u>	DRILL HOLE NO 5	SCALE IN FEET PAGE NO. 1 OF 5
LENGTH	CaD MgO SiOz SAMPLE	E. Numbers.	BIRUCT.
	CaD MgO SiOz SAMPLE 31.0 19.5 1.70 69348		
	30.50 20.0 1.50 69349		
	31.0 20.5 1.30 69350	20-	
	3 1.0 20.5 1.70 69357	30-	
	33.5 18.5 3.50 69352	40 -	
***	29.5 20.0 1.90 6935 3	50-	
	28.5 20.0 5.0 69354	60	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
	28.5 21.0 5.0 69355	70-	

APPENDIX "D"

1985 DIAMOND DRILL LOGS

with Assay Results and Legend

(Drill Holes 85-5, 85-6, 85-7)

DIAMOND DRILL- LOGGING FORMAT

竃

È

È

龖

Ĩ

Ű.

	PROJECT _LONG		DRILL HOLE NO	1985 Logs sci	ALE PAGE NO OF
•	ASSAYS	EXPLANATION		Jerp. Tole (Nert Mrca Mrca Silice Fortur Colour	
	Sir labora lars	Assoyed intervals as, (1) reported en assov lob. report or (2) as should have been reports.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		C Calcite D Dolomite M Intermediate to matin intrusive + Felsic intrusive, medium grained "Dyke" greenish grey, micro- crystolline, chert-like rock of uncertin origin.
		COMPOSITED INTER EXAMPLE Ne carbonate rock assays No carbonate rock assays No carbonate rock assays (Internals A B d C are combined into a single composite			
		semple reported as the interval 50-60. The intervals marked "No carbonate assays" are excluded from the sample.			

		, ,	UNILL HOLE	
	PROJECT <u>Cane</u> ASSAYS		DRILL HOLE NO	SCALE in feet PAGE NO. 2 OF 5
LENGTH	CaOmao S.Oz	SAMPLE NUMBERS		AOCK ACC
	U U			
****	29.5 22.0 2.20	69357. 9	0	
	36-5 16.0 3.80	69358 N		
	48.4 5.10 4.80	6935-9 1.		
ميديليديمان	47.7 6.30 3.10	69360 12	20	D Assoys show decreased MgO(6%).
· · · · · · · · · · · · · · · · · · ·	32.7 19.00 1.80	69361 I .	30-	
	327 1820 4.70	69362 14	60	

· ·

				- · ·		DRILL HOLE					
•		-		Condol	DRILL	HOLE NO	5		ADE NO. 3	or <u>5</u>	
LENG			ASSAYS					STRUCT. ROCK			
		Cal Ma	DGG_	SAMDLE / 69363	Jumbers.	++++		F, ¥			
		37.5 161	0 1.50	69363							
		32.8 19,5	57 2.60	69369	160-						
		32.1018.2	20 3.00	69365	-071						
	سبيلينيل	32.10 18.3	30 2.60	69366	180						
		3.1.10 20.	90 3.40	69367	<i>190</i>						
		33.30 /8.)		64368-	200-						
		31.7020	40 7.40	69369	2/0						
	***	37.770 20.	60 1.20	69320	220						

•		DRILL HOLE RECO	
•	PROJECT Candol	DRILL HOLE NO 5	SCALE in feet PAGE NO. 4 OF 5
LENGTH	CaO Mao SiOz SAMPLE	Numbers	C/B STRUCT. ROCK
	33.7.204 1.80 69371	230-	0
	35.6 19.6 1.70 69372	240	
	34.5 120. 3.40 69373	250-	
	No Assays	260-	++++++++++++++++++++++++++++++++++++++
		270 -	t + + + + + + + + + + + + + + + + + + +
• • • • • • • • • • • • • • • • • • •		290-	Felsic intrusive, medium onuined

DRILL HOLE RECORD PROJECT Landol DRILL HOLE NO 5 SCALE in feet PAGE NO. 5 OF 5 ASSAYS LENGTH STRUCT. ROCK 310 +¢ 317 |+|-|+|-317 E.O.H. -÷

•

Ű

į

ji ji

Ì.

ŧ.

- 100

-cost

REPORT:	125-0351					92 P 8	35-5		PRO	JECT: SI	MP	PAGE	1
AMPLE	ELENENT	Cu	Pb	A1203	CaO	Fe203#	LOI	MaO	MnO	Si02	TiO2		NOTES
WHBER	UNITS	PPN	PPH	PCT	PCT	PCT	PCT	PCT	PCT	PCT	. PCT		
69348	0-101	<2	6Ō	0.50	31.00	0.20	44.70	19.50	0.03	1.70	0.02		
D 69349	10-20	10	80	0.60	30.50	0.30	45.00	20.00	0.02	1.50	0.02		
D 69350	20'-30'	10	30	0.50	31.00	0.20	45.10	20.50	0.03	1.30	0.02		
0 69351	30'-20'	10	40	0.60	31.00	0.20	44.60	20.50	0.03	1.70	0.02		
D 69352	40'- 50'	<2	<5	0.60	33.50	0.20	42.90	18.50	0.03	3.50	0.02		
D 69353	50'- 60'	10	30	0.60	29.50	0.20	44,40	20.00	0.02	1.90	0.02		
D 69354	60'-70'	4	10	0.70	28.50	0.29	40.70	20.00	0.03	5.00	0.03		
0 69355	70' - 50'	10	10	0.60	28.50	0.20	43.00	21.00	0.03	5.00	0.02		
0 69356	80' - 90'	7	(5	0.40	28.50	0.20	45.70	22.00	0.05	1.60	0.02		
D 69357	90'-100'	<2	<5	0.50	29.50	0.20	45.00	22.00	0.05	2.20	0.02		
69358	100'-110'	9	(5	0.50	36.50	0.20	42.70	16.00	0.03	3.80	0.02		
													<u>.</u>
										·······		······	
							. •						

25

.

Bondarschege

Geochemical Lab Report

.

REPORT:	125-0378		•			92 - P-	85-5		PRO	JECT: SN	1P	PAGE 1
Sample Nunrer	ELEMENT UNITS	A1203 PCT	Ca0 PCT	LOI PCT	Fe203# PCT	Ng0 PCT	Nn0 PCT	SiO2 PCT	TiO2 PCT	Cu PPM	Pd PPM	NOTES
D 69359	110' - 120'	0.90	48.40	40.85	0.30	5.10	0.03	4.80	<0.05	15	30	
D 69360	120 - 130'	0.70	47.70	41.95	0.25	6.30	0.02	3.10	<0.05	20	5	
D 69361	130'- 140'	0.60	32.70	44.45	0.30	19.60	0.06	1.90	<0.05	10	20	
D 69362	120'- 150'	0.90	32.70	42.40	0.45	18.20	0.08	4.70	<0.05	15	30	
D 69363	150-160	0.40	37.50	44.30	0.35	16.00	0.05	1.50	<0.05	4	<5	
D 69364	160 - 1701	0,40	32.80	43.95	0.20	19.50	0.04	2.60	<0.05	6	(5	
D 69365	170- 180	0.70	32.10	43.10	0.30	18.20	0.04	3.00	<0.05	20	10	
D 69366	130- 190	0.70	32.10	43.60	0.35	18.30	0.05	2.60	<0.05	20	10	
D 69367	190'- 200'	0.40	31.10	44.40	0.25	20.00	0.04	3.40	<0.05	15	(5	
0 69368	200'- 210'	0.40	33.30	44,15	0.30	12.10	0.04	2.90	<0.05	7	5	
D 69369	210'- 220'	0.20	31.70	45.45	0.10	20.60	0.03	1.40	<0.05	20	<5	
≠ B 69370	220 - 230	0.20	31.70	44.85	0.35	20.60	0.04	1.20	<0.05	20	<5	
D 69371	230'- 240'	0.40	33.70	44.70	0.30	20.60	0.04	1.80	<0.05	20	10	
D 69372	240' - 250'	0.60	35.60	43.00	0.35	19.60	0.05	1.70	<0.05	10	10	
• D 69373	250'- 260'	0.30	34.50	44.60	0.35	17.00	0.03	3.40	<0.05	20	(5	

DRILL HOLE RECORD COVER SHEET

龖

籊

.

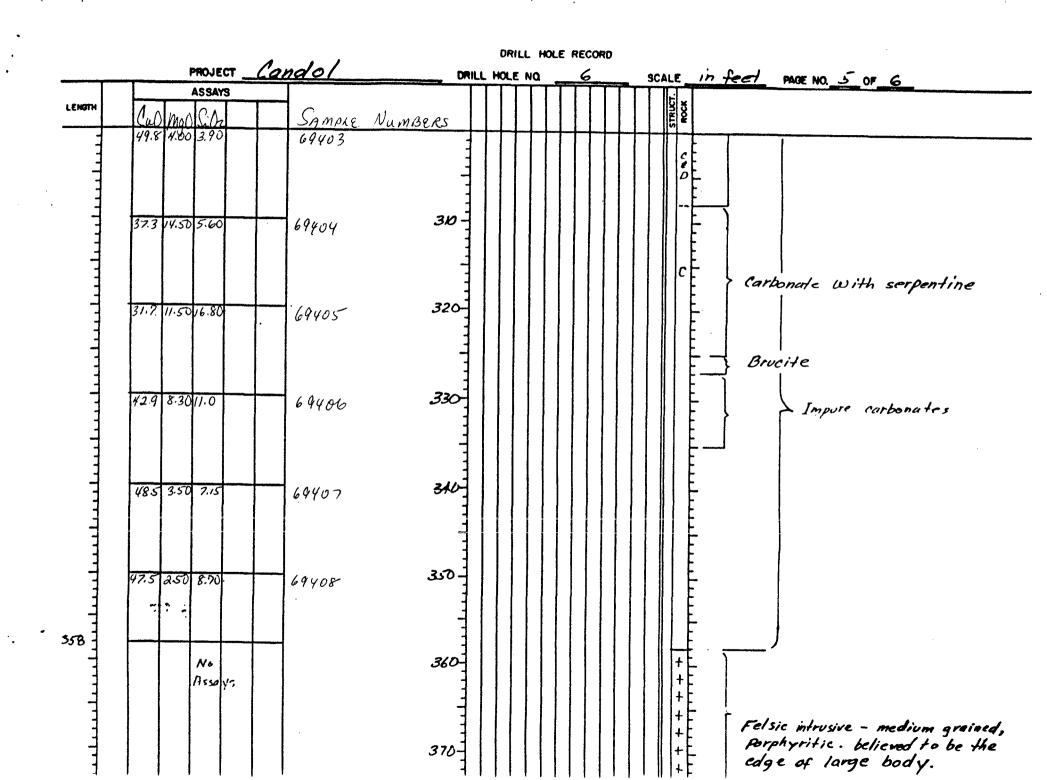
ê

Project	<u>Candol</u>	<u>Developments</u> [td.	Hole No. 2P85-6
Claim: _	Plain		Latitude
λrea: <u></u>	Sechelt Pen	insula, B.C.	Departure
Contract	tor: <u>Herb A</u>	llen Merit, B.C	Elevation <u>2746 ff 837 m</u>
		~	Bearing 275° unrerrected magnet
	Туре	Size	
Hole.			Inclination
	Core	NQ	At Collar <u>45°</u>
			At
	Started	Completed	At
Date			At
			λt
			Rignerotal length <u>385 ft 117.35 m</u>

		DRILL HOLE RECORD	
	PROJECT <u>Candol</u>	DRILL HOLE NO 6	SCALE in fect PAGE NO. / OF G
LENGTH	ASSAYS Cal MgOS:02 SAMPLE N	UMBERS	ROCK ROCK
	No Ass ays		0-12 "Overburden"
	33.0 20.5 0.80 69374		
	38-0 17.0 2.20 69375	20-	12-289 Mostly Dolomite with some silicate rock inter- cepts as indircatert.
	32.1 18.5 2.30 69376	30-	Distinct bonding is not a prorent in core from this hole.
	35.5 14.0 1.50 69377	40-	
	33.020.0 / 10 69378	50	
, , , , ,	30.5 20.6 0.90 69379		
	33.4 20.7 1.20 69380	70-	

	Α		DRILL HOLE RECORD			-
	PROJECT <u>Ca</u>	ngol	DRILL HOLE NO			PAGE NO. 2 OF 6
LENGTH	Cal mgC Silv	SAMALE NUMBER	s IIII		C/B STRUCT ROCK	
	32.1 20.7 0.60	69381	80-			
11	34.0 19.3 1.40	69382	90			
	34.5 17.5 2.10] No Curbonate rock cissivys 69383			32 c∞ } "dr*~"	- Jark green, wrtunitic, Silicears
	32.8 18.9 1.30	69384				
****	32.1 20.0 1.10 +	69385	120-			
	32.1 18.7 1.60	69386	130-			
****	31.1 20.0 1.00	69387	#0-			

• ,


· · · ·

•	DRILL HOLE RECORD									
•		PROJECT	Candol	DRILL HOLE NO	6	SCALE in fed	PAGE NO. 3 OF 6			
L	ENGTH	ASSAYS (a) MgD Sillz 32.1 20.3 0.90	SAMPLE N	UMBERS		1/B struct. rock				
		32.1 20.3 0.90	69388				,			
	يبليبينا	32.1 20.0 1.00	69389							
		31.7 20.0 0.70	69390	170-						
		31.10 20.8 0.85	69391	180-						
	•••	32.5 20.0 1.10	69392	190-			·			
.	***	31.7-20.0 0.90	No carbonate assays 69393	200 -		45 C } Dyke	"-light green, siliceous, possibly corphyritic (spotled).			
		31.7 20.0 0.95	69394	2/0-						
	- IIII	32.5 20.0 0.65	69395-	220-			र्षे 			

		a 11		HOLE RECORD		
		Condol	DRILL HOLE NO	6		page no. 4 of 6
LENGTH	ASSAYS Ca O MgO SiOz	SAMPRE	NUMBERS		STRUCT.	
	31.3 21.1 0.50	69396	230-			
	31.0 21.0 0.65	69397	240			
	30.7 21.5 0.55	64398	250 -			
	31.3 21.1 0.40	64399	260-			
	30.6 21.5 1.15	69400	270-			
مبيليبيلي	31.4 20.8 2.50	69401	280-			
	44.0 5.00 9.80	69402	290-			xed Calcite and dalomite, with

•

·. -

					<u></u>	ndo/			DRIL				LE F	RECOR	D		CAL	F	in c-				
		—	ASSA	73	—						Γ	ΤŤ	Π	T	Τ	ΤŤ			in feel	PAGE NO.	6 01	6	
╧						SAMPLE	Num	BERS		Ц							1						
]			No						1							T		Ŧ					
			Asso					380	2									+					
<u> </u> .																							
1								- 385		┼┼	+-	┟╌┠╴	┼┼		+	++			E.O.H.				
1									1														
									4										•				
									-									E					
																		ŀ					
																		E	-				
									1									Ē					
									-									F					
									1									Ē					
									11									Ē					
									-									Ē					
																		È					
	ļ		Í						11									Ę					
																		Ē					
																		Ē					
	1	-																Ē					
																		ŧ					
																		E					
						•												F				•	
								-] [F					
								-										Ē					
									11									F					

•

· · ·

Brodar-Clegg & Company Ltd.

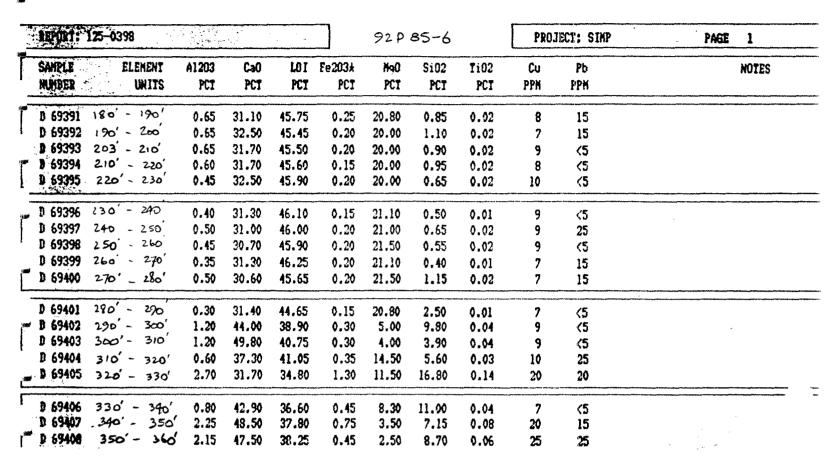
A: i

Seator Andrews States and the second BONDARECLECC

Geochemical Lab Report

130 Pemberion Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

REPORT: 1	25-0378		•			9288	5-6		PRO.	JECT: SI	(P	PAGE 1
SAMPLE NURBER	ELEMENT UNITS	A1203 PCT	Ca0 PCT	LOI PCT	Fe203# PCT	Ng0 PCT	Nn0 PCT	SiO2 PCT	TiO2 PCT	Cu PPM	Pd PPM	NOTES
D 69374	10' - 20'	0.60	33.00	43.85	0.35	20.50	0.05	0.80	<0.05	5	15	-
D 69375	20 - 30	1.10	38.00	43.75	0.40	17.00	0.03	2.20	<0.05	25	5	
D 69376	38 - 40'	1.10	32.10	45.00	0.35	18.50	0.03	2.30	<0.05	6	5	
D 69377	40' - so'	0.50	35.50	45.50	0.20	19.00	0.03	1.50	<0.05	4	<5	
D 69378	50' - 60'	0.50	33.00	45.65	0.20	20.00	0.02	1.10	<0.05	10	5	
D 69379	<i>'0 - 70'</i>	0.60	30.50	45.45	0.25	20.60	0.04	0.90	<0.05	20	(5	
D 69380	70' - 80'	0.60	33.40	46.10	0.20	20.70	0.02	1.20	<0.05	8	<5	
D 69381	8c' - 90'	0.40	32.10	44.65	0.15	20.70	0.02	0.60	<0.05	10	10	
D 69382	90' - 100'	0.90	34.00	44.55	0.35	19.30	0.03	1.40	<0.05	15	10	
0 69383	102 - 110'	0.70	34.50	45.05	0.25	17.50	0.05	2.10	<0.05	15	5	
D 69384	110' - 120'	0.70	32.80	45.35	0.25	18.90	0.03	1.30	<0.05	10	5	
D 69385	120' - 130'	0.70	32.10	45.25	0.30	20.00	0.04	1.10	<0.05	20	<5	
D 69386	130' - 140'	0.90	32.10	44.80	0.35	18.70	0.04	1.60	<0.05	15	5	
D 69387	140 - 150	0.70	31.10	45.30	0.25	20.00	0.03	1.00	<0.05	15	10	
D 69388	150' - 160'	0.50	32.10	45.60	0.25	20.30	0.03	0.90	<0.05	4	5	
D 69389	160' - 170'	0.60	32.10	45.40	0.25	20.00	0.03	1.00	<0.05	5	10	
D 69390	170' - 180'	0.50	31.70	45.70	0.25	20.00	0.04	0.70	<0.05	9	5	


i i sharita

.

• • • • ;

dar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (804) 985-0681 Telex: 04-352667

Alles Mille

Geochemical

Lab Report

DRILL HOLE RECORD COVER SHEET

Bechtel	
Freliminary	100

牆

Project:	ands 1 Develop	ments Ltd.
Claim: Pl	ain	
Area: Secha	elt Peninsula	B.C.
Contractor:	Herb Allen	Merit, B.C.

Туре

Ľ.

蠿

Size

Latitude		
 Departure		
Elevation	2743 ft	836 m
Bearing 2	200° uncorrec	ted moane

南

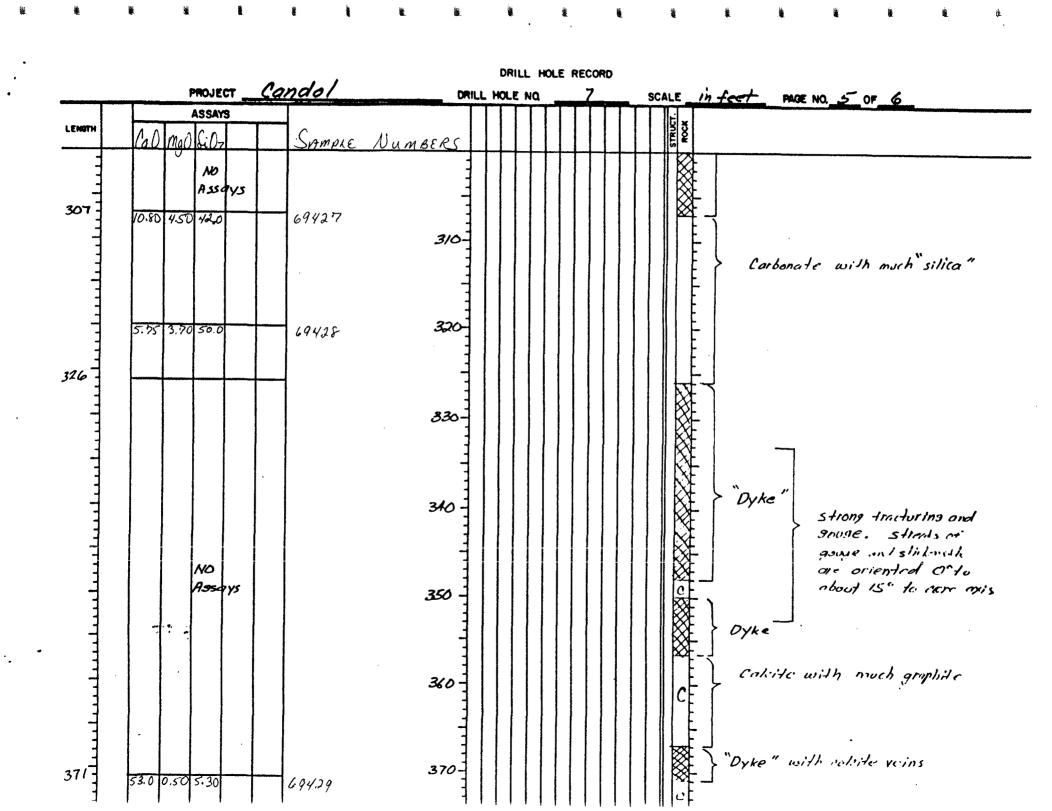
1

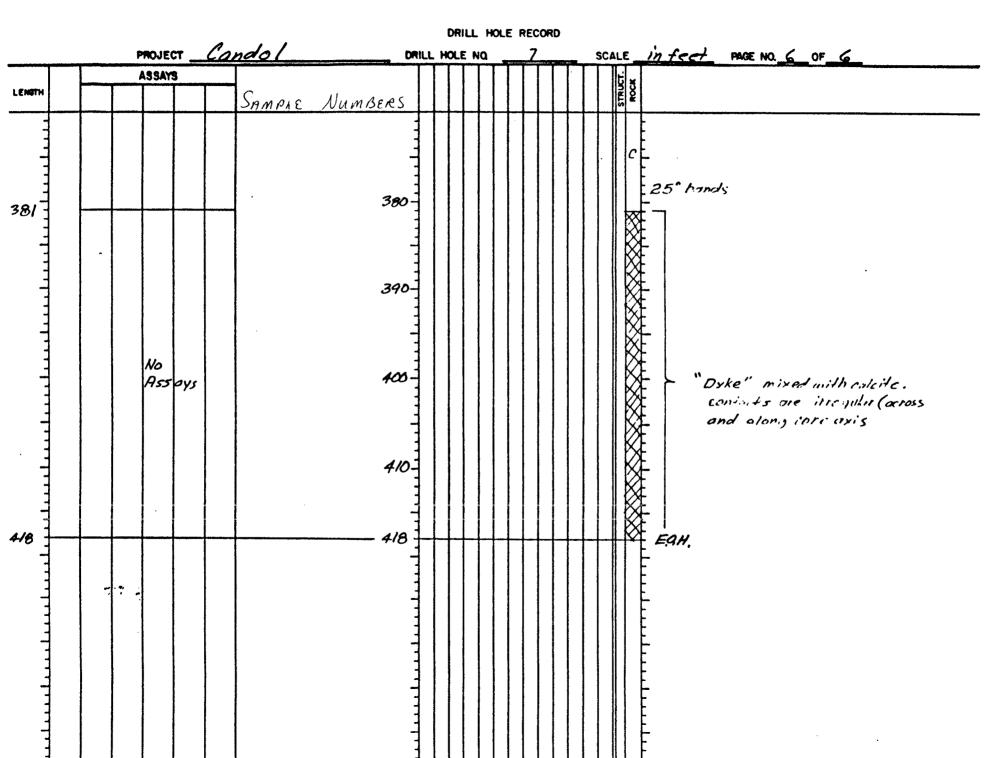
L

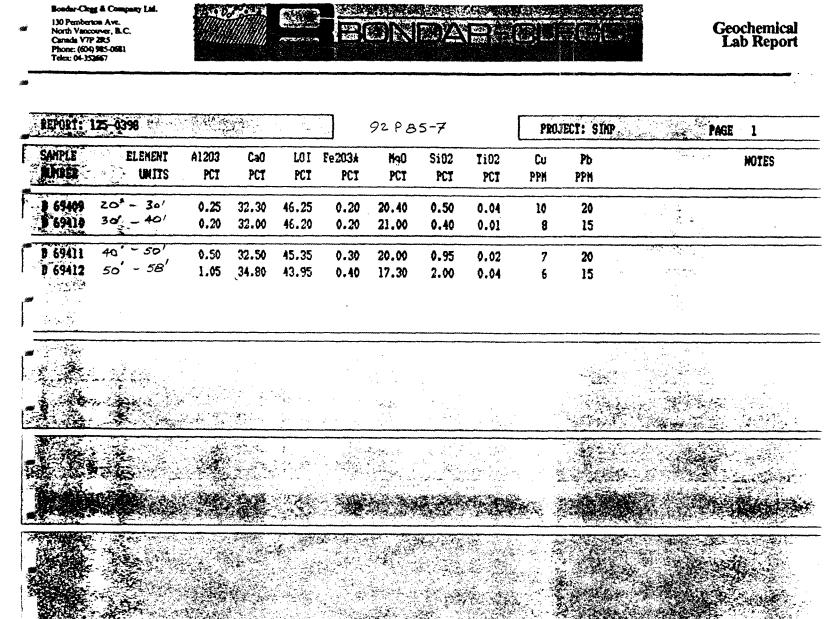
Hole	Core	NQ	Inclination At Collar	45°
	Started	Completed	At	
Date			At At	
			x	

Logged by:	<u>C.Neil</u>	Urchurch	#Ridy RI	epe _{Total}	length	418 ft 127.	4 im
relogged	Mar G,	1986	, ,		-		

COMMENTS


Ě.


				DRILL HOLE		
· •	PROJECT	and of	DRILL	HOLE NO	SCALE in fect PAGE NO. 1	or <u>6</u>
LENGTH	CaO MgO SiOz	SAMPLE	NUMBERS		ROCK	
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			
	No Assa ys		10			
1 	32.3 20.4. 0.50	69409	20-			
1	32.0 21.0 0.40	69410	30-			
1	32.5 20.0 0.95	69411	40-			
ليتتقلينيها	34.8 17.3 2.00	69412	50			
58	No Ass ays		60-			
Linitai	Ass ays		70			


	PROJECT	Candol	DRILL HOLE NO	E RECORD	SCALE 12	feet page NO. 2 OF 6
LENGTH	ASSAYS			TITT	55	
	Cal Mg Silz	SAMPLE NUM	BERS	╀╀╂╂╄	2 K 8	
			80		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	> Dyke - dark green, perphyritik (ophinitic groundmiss) intrusive of internedicate to mafie composition
	Alc	ſ				
	Assays		110			Delogite tothe second stands
144444444444444444444444444444444444444			120 -			Dolomite dark grey due to content of grantite "DYKe"
,			/30-			Strong fracturing, slicken sides gouge . Slickensides and <u>contacts</u> are oriented 0° to 10° to core axi
146 -	50.09.50 360	69413				"Oyke"

	PROJECT _	Cando I	DRILL HOLE REG	CORD Z SCALE in feet PAGE NO. 3 OF 6
LENOTH	ASSAYS			
	Cal Mg() Cilz 53.0 2.30 2.80	<u> </u>	MBERS	
	54.0 3.40 1.80	69415	160- 	
	50.0 2.80 5.80	694/6 D No Corbonate assays	170- rak	Dyke" - green, siliade rat
****	53.0 2.40 4.00	AJSAYS 694/17 No corbanate nu assays No corbanate n assays		C Drke" - green, sillingte reck "Drke" - green, sillingte reck
	54.0 1.00 0~20		n/L 200-	Zone of heavy pyrite in addite
. • • • • •	54.5 1.80 - 3.70	69419	2/0	
	54.0 2.00 2.40	69420	220-	

		Cando I		E RECORD		
	ASSAYS	Cango	DRILL HOLE NO	7	SCALE in fact PAGEN	0. <u>4</u> 0F <u>6</u>
LENGTH	CaO MOU SiDa	SAMPLE NO	IMBERS		C/B STRUCT ROCK	
	54.0 0.60 1.40	69421	230			
	56.0 0,70 2.20	69422	240-		25- 30 B C	
***	56.0. 0.65 1.40	69423	252			
	55.5 1.35 2.10	No carbona assays	260- He		40 c "Dyke"	
	54.0 2.00 2.40	69425	270-			
	45.5 4.10 10.40	69426	280-		30 CIXX 7	
	No Ass pys		290-		Dyke"	

1. 1. 1. 1.

Bondar-Clegg & Company Ltd. 130 Pernberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

٠.

	125-0418			•]	92P8	35-7		PRO	JECT: SD	P	PAGE 1
Sample Number	ELEMENT UNITS	A1203 PCT	Ca0 PCT	LO I PCT	Fe203k PCT	Ng0 PCT	Nn0 PCT	SiO2 PCT	TiO2 PCT	Cu PPM	Pb PPM	NOTES
D 69413	146'- 150'	0.60	50.00	41.30	0.65	4.50	0.04	3.60	<0.05	4	5	
D 69414	150'-160'	0.60	53.00	41.70	0.40	2.30	0.03	2.80	<0.05	3	5	
N 69412	160'-170'	0.20	54.00	42.60	0.25	3.40	0.02	1.80	<0.05	2	5	
D 69416	170' - 180'	1.70	50.00	39.00	1.10	2.80	0.05	5.80	0.05	4	5	Evel dive travel and
D 69417	180'-200'	0.60	53.00	40.80	0.65	2.40	0.04	4.00	<0.05	5		- Excluding 81-182 183-1 198-1991)
D 69418	200'-210'	0.70	54.00	41.00	0.65	1.00	0.04	0.20	<0.05	6	5	
D 69419	210' - 220'	0.70	54.50	39.80	1.25	1.80	0.05	3.70	<0.05	6	5	
D 69420	220'- 230'	0.70	54.00	41.10	0.70	2.00	0.09	2,40	<0.05	6	10	
D 69421	230' - 240'	0.40	54.00	42.50	0.30	0.60	0.04	1.40	<0.05	7	10)
D 69422	240' - 250'	0.70	56.00	42.00	0.35	0.70	0.03	2.20	<0.05	4	5	1
D 69423	250' - 260'	0.70	56.00	42.00	0.25	0.65	0.02	1.40	<0.05	7	5	
D 69424	260'- 270'	0.80	55.50	41.40	0.70	1.35	0.04	2.10	<0.05	7	5	- Excluding (2:0-264)
D 69425	270' - 280'		54.00	41.20	0.55	2.00	0.02	2.40	<0.05	5	5	
D 69426	280'-285'	0.80	45,50	36.90	0.45	4.10	0.04	10.40	<0.05	7	5	
									•			
.						-						
8 8 8 8						-					•	
						-					•	
9 91 						- -					•	
						-					•	
	· · · · · · · · · · · · · · · · · · ·										•	
5 51 52 53 54 55 55 55 55 55 55 55 55 55 55 55 55						-			• •			
						-						
						-		· · · · · · · · · · · · · · · · · · ·				
۵ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰						-						

. 18

Bondar-Clegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

ŀ.

_ REPORT: 125-0444							P85-7		PROJECT: SIMP		PAGE 1		
SANPLE MUNBER	ELEMENT	A1203 PCT	Ca0 PCT	LOI PCT	Fe203k PCT	Ng0 PCT	Nn0 PCT	SiO2 PCT	TiO2 PCT	Cu PPN	Pb PPN		NOTES
D 69427 D 69428 D 69429	307'- 320' 320'- 326' 371'- 381'	4.10 6.00 1.20	10.80 5.75 53.00	8.65 3.85 40.80	3.50	4.50 3.70 0.50	0.07 0.08 0.05	42.00 50.00 5.30	0.35 0.55 0.05	26 25 11	15 10 10		
						:							
)													
0												-	
i													
				- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1		,							
							•						
1945													
			¥										
					£.,	,			•				

Bondafrei

APPENDIX "E"

STATEMENT OF EXPENDITURES

CERTIFICATE OF EXPENDITURES

,

Drill Road and Drill Site Construction							
Diamond Drilling							
Vehicle Rentals		1,856					
Core Splitting		4,364					
Expediting and Site Supervis	sion	l			11,446		
Consulting Geologists		•	Fraser		8,750		
	-	•	Bechtel		18,205		
	-	•	Ditson		12,673		
Assaying					1,987		
Petrologic Analysis		905					
Survey					2,000		

TOTAL

in**s**i

<u>\$ 124,053</u>

CERTIFICATES

APPENDIX "F"

CERTIFICATE

CAROL I. DITSON, B.SC.

I, Carol Isobel Ditson, of #202 - 1910 West Sixth Avenue, Vancouver, British Columbia, do hereby certify that:

- 1. I hold a B.Sc. Degree in Geology from the University of British Columbia (1985).
- 2. I have been involved in mineral exploration in British Columbia since 1979.
- 3. I have no direct or indirect interest in the property or securities of either Ingot Exploration Ltd. or Candol Developments Ltd., nor do I expect to receive any.
- 4. I have based this report on work performed on the subject property in September, 1985 and between December 8, 1986 and January 24, 1987 in addition to a review of privately and publicly held data.
- 5. I consent to the use of this report by Ingot Exploration Ltd. for whatever purposes they deem necessary.

CAROL I. DITSON, B.SC. March <u>23</u>, 1987

APPENDIX "G"

-39

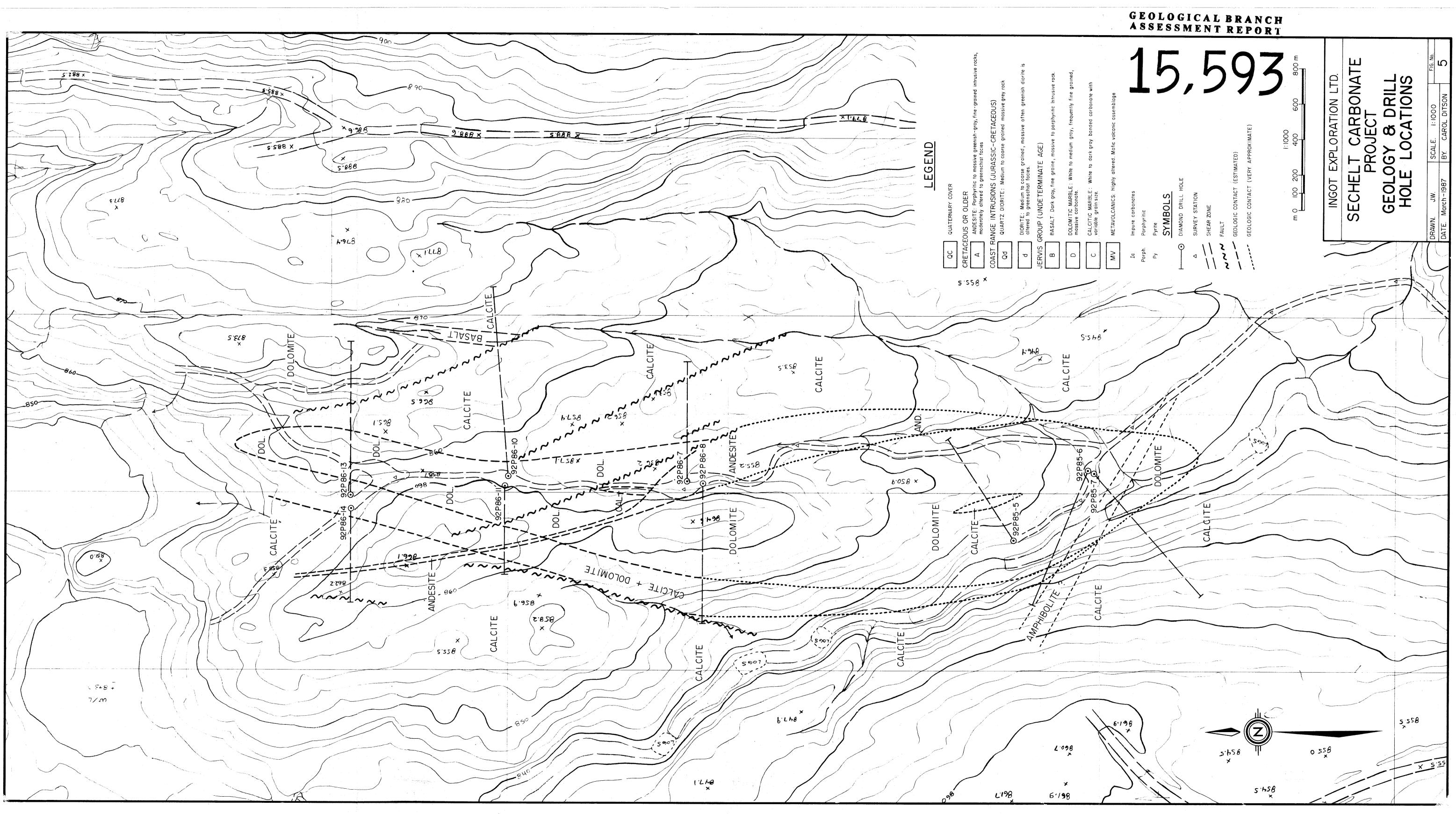
CONVERSION FACTORS

.

•

CANDOL DEVELOPMENTS LTD.

CONVERSION FACTORS


 $CaCO_3$ to CaO (x by 0.5603) CaCO_3 to Ca (x by 0.4004)

MgCO₃ to MgO (x by 0.47807) MgCO₃ to Mg (x by 0.2883)

 $39\% \text{ MgCO}_3 = 18.6$ $40\% \text{ MgCO}_3 = 19.1\% \text{ MgO}$ $41 \text{ MgCO}_3 = 19.6$

As provided by:

A. Basham Manager Bondar-Clegg & Co. Ltd. Analytical Chemists Vancouver, B.C.

· · · · ·