$86-982-15642$


```
TREATY ..... 2006(1)
    TR 2 .... 4958(9)
```


located
 80 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 35 minutes latitude
130 degrees 07 minutes longitude
N.T.S. $104 B / 9 E$

PROJECT PERIOD: Aug. 27 - Oct. 4 .

Date: Feb. 4, 1987

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
A. Property, Location, Access and Physiography 1
B. Status of Property 1
C. History 1
D. References 3
E. Summary of Work Done 3
2. TECHNICAL DATA AND INTERPRETATION 4
A. Regional Geology 4
B. Property Geology 5
C. Geochemistry 5
D. Conclusions - 7

APPENDICES

I Work Cost Statement
II Certificate
III Assay Certificates

ILLUSTRATIONS

Fig. Location Map Report Body

Fig. 2 Claims Map Report Body
Fig. 2A Geology Map (Showing Grid Location) Map Pocket
Fig.-3_Sample Location Map__ Map Pockot_OMit ${ }^{*}$
Fig. 4 Gold (apb)
Fig. 5 Silver (ppm)
Fig. 6 Arsenic (ppm)
Fig. 7 Barium (ppm)

Map Pocket
Map Pocket
Map Pocket
Map Pocket

* No extra mifotan Fig. $4-7$

1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 80 km north-northwest of Stewart, British Columbia. Nearest road is the Cassiar-Stewart Highway about 17 km to the east. Access is presently limited to helicopter, either from the base at Stewart or at Bob Quinn Lake (during the 1986 program helicopter service was provided by Okanagan Helicopters directly from the Scottie/Granduc airstrip approximately 35 km to the south). Should the proposed road into the Sulphurets gold-silver prospect near Brucejack Lake be constructed (10 km to the south) it would cut flying time into the property considerably).

The claims cover part of a precipitous nunatak between the Treaty Creek Glacier (to the west) and the South Treaty Glacier (to the east). Elevations vary from approximately 1400 m to 2100 m . Vegetation in the area is limited to low-lying shrubs, mountain grasses and heather.

The best rock exposure occurs along the flanks of the nunatak and in areas of glacial ablation. Upper levels feature more moderate slopes (especially in the vicinity of the two tarns) and extensive zones covered by glacial debris. A significant section of the claim area is underlain by permanent snow or icefields.

B. Status of Property

The Treaty claim consists of 12 units and is owned by Teuton Resources Corp. of Vancouver, British Columbia. Record No. is 2006, and date of recording, January 9, 1980.

The TR 2 claim consists of 18 units and is owned by Teuton Resources Corp. of Vancouver. British Columbia. Record No. is 4958, and date of recording. Sept. 30., 1985.

Claim locations are shown on Fig. 2 after government N.T.S. map 104B/9E.

C. History

Two, brief isolated accounts in the B.C. Department of Mines Annual Reports mention that the Consolidated Mining and Smelting Company of Canada Ltd. (now Cominco) explored a large mineraiized zone, parts of which are now covered by the Treaty claim, during 1929 and 1930. Although Consolidated located 57 surveyed Crown-grant mineral claims in the area, exploration ended abruptly in 1931 and the claims were abandoned. Results of their

exploration efforts were not published.
The author was able to locate another reference to the property in the British Columbia Miner (now The Western Miner). It is excerpted here in its entirety:

Abstract

"What is believed to be the largest mineral zone yet discovered in British Columbia has been secured by the Consolidated Mining \& Smelting Co. in this recording district. It consists of a belt between 700 and 800 feet wide and $41 / 2$ miles long, and is located one hundred miles or more inland from Stewart, between the headwaters of Twenty-Mile Creek and the Unak River, and on the Nass River slope. It is reached by a prospector's trail that goes from Stewart to Meziadin Lake, and thence to Bowser Lake, a distance of roughly, 70 miles. From there on there is no trail. This zone has been known for a number of years to trappers and a few prospectors, and last summer Tim Williams and Chas. Knipple, oldtimers in the district, went in to prospect it. They decided on account of its inaccessability it was not a proposition for private individuals to handle, and accordingly submitted that information to the Consolidated M. \& S. Co. As a result a party was sent in last month with an engineer to investigate and if favorable to locate ground. Under the guidance of Tim Williams this party, which was composed of some of the most experienced prospectors in the camp, visited the area last month and located 57 claims.

What the Consolidated intend doing with this is not known here. The party brought out no samples, but pieces of the ore that Williams and Knipple knocked off assayed $\$ 3.50$ in gold and silver and showed a heavy arsenic content. An interesting feature of the zone is that in all parts it shows a pronounced cobalt bloom."

It is also reported that several prospecting syndicates explared the general Treaty Creek area during the 1950's (Ref. 1). In 1953, prospectors Charles Knipple and Tim Williams reported a small silver sulfide vein south of the Treaty Claim. Large boulders of tetrahedrite were also reported on the ice surface (source remains unlocated). Further work in 1967 ostensibly located a significant magnetic anomaly at the junction of Treaty Creek and South Treaty Glaciers.

A prospecting effort mounted in 1981 for $E \& B$ Explorations Ltd. on the Treaty claim failed to discover any important mineralization. Teuton Resources in 1984 carried out a prospecting program on the then adjacent Electrum claims (to the west) and was also unable to detect precious metal bearing mineralization in place. However, gold bearing float and anomalous (in gold) stream sediment samples were obtained.

A heavy sediment stream sampling program by Teuton Resources Corp. in 1985 disclosed one highly anomalous stream (see Fig. 2A, Sample S-007); it returned a value of 4240 ppb in gold. The 1986 rock geochem program was initiated in order to follow up the source of this anomaly.

D. References

1. GROVE, E.W., P.ENG., PH.D. (1983): Private Report for Teuton Resources Corp, on the Treaty Claim.
2. GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
3. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
4. ANNUAL REPORTS, MINISTER OF MINES, B.C.: 1929 -- p. C102; 1930 -- p. A110.
5. BRITISH COLUMBIA MINER (1928): "Portland Canal Notes" by W.R. Hull, p. 36, December 1, 1928.
6. KRUCHKOWSKI, E.R. (1981): Geological Report Treaty Claim --Bowser-Unuk Project, NTS 104B/9E, for E \& B Explorations Ltd.
7. CREMONESE, P.ENG. (1984): Assessment Report on Prospecting Work on the Electrum 1 and Electrum 6 Claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
8. CREMONESE, P.ENG. (1985): Assessment Report on Geological and Geochemical Work on the Treaty Claim, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
E. Summary of Work Done.

Geochemical work on the Treaty and TR 2 claims was carried out by contractor Quest Canada Exploration Services Inc. as part of a five week program on certain of Teuton's claims In the Stewart area. This project spanned the period Aug. 27 Oct. 4. 1986 (including mobilization and demobilization of crews from and to Vancouver). Base camp was established on the Alpha claim (about 25 km south of the Treaty and TR 2 claims) on Sept. 1, consisting of four tents (wooden frame) with all materials and supplies brought in by helicopter from the Tide Flats strip. Helicopter support was provided by an Okanagan Helicopters Hughes 500 which was stationed at the Brucejack Lake camp, 12 km to the north-northwest.

Field supervision was the responsibility of geologist Ralph Shearing. Crew size varied from five to seven men during the project period. On Sept. 21. 1986, two men were flown from base camp into the property to carry out a rock geochemical survey over a partially gossanized area drained by a small stream which yielded anomalous gold values during a heavy sediment stream sampling survey carried out the preceding year. On Sept. 24, 1986 the crew was flown out after having been weathered in for two days by a storm.

The crew took 111 samples during the survey. Samples were shipped to Min-En Labs in North Vancouver and analysed for gold content to ppb tolerance. A 28 element (Ag, Al, As, B, Ba, Be, $\mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{K}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Sr}$, Th, U, V, Zn, Ag) scan was also run using ICP. Of the elements measured by ICP, only Ag, As and Ba (Figs. 5-7) have been represented pictorially in this report, the other elements showing too flat of a distribution to be of assistance as pathfinders for gold.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The following capsule description of the geology in the vicinity of the Treaty claim has been excerpted from a private report (Ref. 1) by E.W. Grove, Ph.D., P.Eng.:
"The contact between thick Upper Jurassic Nass Formation sediments and the underlying Lower Jurassic Unuk River Formation volcanic assemblage lies along the toe of Treaty Creek Glacier and Treaty Creek. In this area the Nass Formation (old Bowser Assemblage) comprises cyclically banded dark siltstone beds generally from 0.3 to 2 meters thick intercalated within greywacke beds one to six m thick which form up to 75 per cent of the north dipping, complexly folded sequence in this area. This sequence unconformably overlies middle Lower Jurassic thinly banded siltstones (east of South Treaty Glacier), volcanic conglomerates, volcanic breccias, mixed cherty volcanic breccias, volcanic sandstones, andesitic flows, and minor rhyo-dacite flows. Thin siltstone and sandstone members intercalated within the dominantly epiclastic volcanic sequence provides evidence for the complexly folded nature of the country rocks in this area. Augite porphyry sills are found throughout this sequence and are well exposed along both flanks of the Treaty Creek Glacier.

All the country rocks in the area exhibit evidence of folding. The main feature in the Lower Jurassic sequence is a northeasterly trending anticlinal warp. This is overlain unconformably by the tightly folded northeasterly dipping Upper Jurassic sedimentary sequence.

The country rocks in this area have been cut by numerous steep northeast trending faults which show left hand offsets of from several tens of meters to 150 meters, or right hand motion of a few tens of meters.

No major plutons have yet been uncovered in the area, but various small granitic to dioritic dikes cut across the Lower Jurassic sequence."

B. Property Geology

Geological mapping on the Treaty claim was conducted on a regional scale during the 1985 [previous year's] program by field geologist C. Hrkac (Ref. 8). For reference, the results are reproduced in this report as Figure 2A, which also serves to locate the grid relative to claim and contour lines.
C. Geochemistry
a. Introduction

A reconnaissance rock geochemical survey was conducted in the area immediately east of a small stream draining flood Lake (see Fig. 3) on the Treaty claim. General grid location in relation to claim lines is presented in this report in Figure 2 A .

The survey was undertaken in an attempt to locate the source of anomalous gold values from heavy sediment stream sample S-007 taken the previous year (4240 ppb in gold). A grid was constructed on lines oriented $W 25 \mathrm{~N}$ and separated by 25 m intervals. Samples were taken every 25 m along the lines. Gaps in sampling were due to heavy talus cover.

Sample locations are presented in Fig. 3. NOTE: Samples taken from sites $3+00 \mathrm{~N}$ to $4+75 \mathrm{~N}$ were misplaced.
b. Field procedure and analytical procedure

Rock chips were taken with a prospector's pick and placed in a standard kraft bag. The samples were flown out of the property by helicopter and shipped to Min-En Laboratories in North Vancouver.

Rock samples were crushed in a jaw crusher and then pulverized using a ceramic plated pulverizer.

For the 28 element ICP analysis, a 1.0 gram sub-sample was taken from each field sample and digested for 6 hours with a mixture of HNO and HClO . After cooling, samples were diluted
to standard volume. The solutions were then analysed by Computer operated Jarell Ash $9000 I C P$ (Inductively Coupled Plasma Analyser). Reports were then formatted by routing computer dotline printout (see Appendix - Assay Certificates).

Gold values to 1 ppb tolerance were measured using a a combination of standard wet and fire assay techniques. A description of Min-En's technique follows: a 500 grab sub-sample is obtained from the pulverized field sample by standard splitting techniques, which is then mixed, rolled and quartered. The fire assay is carried out on a a one half assay ton sub-sample at 1750 degrees Centigrade using appropriate fluxes. The lead button obtained is then cupelled resulting in a small bead which is then dissolved in aqua regia, the solution thereafter analysed by atomic absorption spectrophotometry for gold content.
c. Treatment of data

Geochemical data were plotted on a base map prepared on a scale of 1:1000. Samples sites are identified on the maps by an "x" with the appropriate values written in above the "x".

Separate maps were prepared for gold, silver, arsenic and barium (Figs. 4-7, respectively). The other elements registered by ICP were not pictorially represented because of their flat distributions and consequent limited utility as pathfinders for gold.

Contour intervals were chosen in order to best express the distribution of the higher range of values.
d. Discussion

A glance at the contours on Fig. 4, "Gold in ppb", shows a definite two point anomaly running between lines $0+00 \mathrm{~N}$ and $0+25 \mathrm{~N}$ at $2+00 E$. Values registered were 925 and 990 ppb, or approximately 0.03 oz gold per ton. Two sub-highs of 294 ppb and 290 ppb were recorded on line $1+00 \mathrm{~N}$ at sample sites $1+00 \mathrm{E}$ and $2+00 \mathrm{E}$.

These four highs stand out in a background of relatively uniformly low gold values. Based on a number of rock geochem surveys in the general region, the author considers values above 200 ppb as "anomalous" (although certain studies reckon that 100 ppb is closer to the mark). (Author's note: It is doubtful whether application of any of a number of standard statistical techniques on the data set would provide greater certainty in defining areas worthy of follow-upl.

The silver map, Fig. 5, is quite interesting: silver righs show a very good correlation with gold highs, but a very tenuous correlation with barium highs. A possible conclusion is that
since the silver appears related to gold rather than barium, the gold in the system may be occurring in the form of electrum.

Arsenic. Fig. 6, shows muted values with a somewhat indefinite correlation to both gold and silver. The barium plot, Fig. 7, is more lively. Barium values range from a low of 39 ppm to a high of $4,406 \mathrm{ppm}$, the latter at station $0+75 \mathrm{~N}, 0+25 \mathrm{E}$. However, there is no obvious correlation with either gold or silver, nor is there a definite zonation to the higher barium values obtained. Comparisons to other rock geochem surveys in the Stewart area with which the author is familiar suggests that the barium values obtained are significantly higher than the expected background range for country rock -- this may possibly be indicative of the presence of a hydrothermal system (for which there is other supporting evidence: e.g., native orpiment and sulfur discovered by previous prospecting parties).
D. Conclusions

The rock geochemical survey was successful in outlining a two station gold anomaly in the southeastern portion of the grid area. These anomalous values were quite high for a reconnaissance survey and may represent the first indications of a previously undetected gold-bearing structure.

Although the best results obtained -- ira 0.03 o\%/ton in gold -- are low in terms of economic value, they still represent the highest in situ values yet obtained from the large Treaty alteration zone. In the past, attempts in the Treaty area to identify anomalous gold in rock outcrops by prospecting alone were unfruitful. notwithstanding favourable indications from float and stream sediment samples.

Results of this year's assessment program have confirmed the utility of systematic rock geochemical sampling in the search for gold-bearing structures of the type now under exploration at the Sulphurets property, about 10 kilometers to the south. This program should be expanded in 1987 to cover all of the untested ground within the Treaty alteration zone. Experience at Sulphurefts suggests that many of the prime gold-bearing structures are discrete and occur in areas which, at first glance, do not appear geologically promising.

As well as expanding the present grid, follow-up work should be undertaken on all sample sites located in 1986 that registered in excess of 200 ppb gold. This work would include high density rock geochemical sampling, minor geological mapping and some blasting and trenching.

Respectfully submitted:

D. Cremonese, P. Eng.

Feb. 4, 1987
APPENDIX I -- WORK COST STATEMENT
Field Personnel:
T. Bell, Prospector -- Sept. 21-24, 1986 4 days 0 \$165/day 660
A. Hoppenrath, Assistant -- Sept. 21-24, 1986 4 days @ \$137.50/day 550
Supervision - R. Shearing, Geologist Allocate 1 day supervision for 5 man-days (crew) 1.6 days @ $\$ 220 /$ day 352
Helicopter -- Okanagan Hel. (Sulphurets Base)
Sept. 21 \& 24 ---- $1.1 \mathrm{hrs} @ 516 / \mathrm{hr}$. 568
Food -- 9.6 man-days a $\$ 30 / m a n-d a y$ 288
Assays
Rock geochem - Min-En Laboratories
Rock geochem-fire Au: Unit - \$6.50
Rock geochem-28 elem trace ICP: Unit - $\$ 7.50$Rock sample preparation: Unit - \$2.50Total: 111 samples $\mathbb{C} \$ 16.50$ 1.831
Plus contractor's 10\% management fee 183
Share of Project Support Costs:
(Share $=9.6$ man-days/192 man-days, or 5.0%)
Personnel: mob/demob, base camp set-up 5.0\% of $\$ 6,050$ 302Supplies, transportation, equipment rental, truckrental, radio, wood frames, helicopter mob/demob,accommodation, etc.
5.0\% of $\$ 18.464$ 923
Report Costs
Report and map preparation, compilation and research D. Cremonese, P.Eng.. $11 / 2$ days e $\$ 300 /$ day 450
Draughting -- F. Chong/J. Rhodes 320
Word Processor - 4 hrs @ $\$ 25 / \mathrm{hr}$. 100
Copies, report, jackets, maps. etc. 70

APPENDIX II - CERTIFICATE

I. Dino M. Cremonese, do hereby certify that:

1. I am a mineral property consultant with an office at Suite 200-675 W. Hastings, Vancouver, B.C.
2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, \#13876.
4. I have practiced my profession since 1979.
5. This report is based upon work carried out on the Treaty and TR 2 mineral claims, Skeena Mining Division in Sept. 1986.
6. I am a principal of Teuton Resources Corp., beneficial owner of the Treaty and TR 2 claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 4 th day of February, 1987.

D. Cremonese, P.Eng.

APPENDIX III

ASSAY CERTIFICATES

SOWPAY：TEUTH SETDIFCE／VIEST GAKADA EXPA．MIN－EA LAES IOP FEOST
（ACT：GED27）PAEE ：OF J TRUEC：NO：

CILE NE：$b-9 \mathrm{~B} 3 / \mathrm{P} 1+2$
ATTENIION：D．CEEMOMESE／R．SHEARING
（604）980－5814 0R（604）980－4524
OTE OCT 32 ， 10 C

WMLLES P PM	$4{ }^{4}$	AL	AS	B	BA	碞	BI	Ca	CD	C0	［i］	FE
$10+000400$	1.4	27220	52	32	452	5.6	4	5710	4.7	11	2 J	138170
L0＋0000259	． 7	2120	12	24	776	5.2	6	10790	4.4	10	29	64860
$10+000+509$	1.6	29400	！	26	371	1.9	5	17100	1．${ }^{\text {P }}$	14	43	196150
$10+000+755$	1.6	38880	27	35	1231	5.4	8	12830	5.2	23	75	211700
$\underline{10+00)}+1005$	2.9	38980	13	4	$9 ?$	1.1	3	31400	． 8	21	7	375900
L0＋00 1＋25？	． 9	45630	70	44	161	10.7	13	7620	9.1	19	68	76020
$16+001+507$	． 9	43640	6	43	$9!$	10.6	13	26570	9.0	17	72	69650
10＋00 $1+751$	． 9	40110	E4	35	232	9.6	13	：7450	日． 1	16	64	50150
$10+002+005$	2.8	8420	if	b	1！ 6	2.6	4	2150	1.6	10	71	17470
$\underline{10+002+25 T}$	． 9	37620	59	31	653	9.0	11	13230	6.0	17	60	6830
$10+002+509$	1.1	33500	5	38	76	0.0	12	54350	6.9	if	65	59160
10＋25 0＋00！	1．1	20230	4	28	143	5.0	6	29300	4.7	9	9	29630
L0．25 0＋25T	． 9	34730	24	3 J	445	5.5	3	13280	5.1	$!5$	18	101780
$10+250+505$	2.0	25740	10	23	282	1.5	4	24940	1.1	14	36	191470
10＋25 $0+757$	1.4	44129	69	43	245	10．8	11	13360	8.2	19	$7!$	70930
$10+25-1+007$	1.	19808	45	25	527	6.1	7	19280	7.5	12	40	63500
10＋25 1＋25	． 9	42340	57	43	336	$9 .!$	12	29：60	6.8	17	45	80150
30425 $1+50 T$	1.0	$4!710$	60	41	164	9.9	？	31840	6.2	17	66	78960
10425 ！ 475 T	． 7	41660	53	47	$6!6$	9.5	± 1	$3: 400$	7.9	20	74	76340
1029 $2+005$	2.4	8？ 20	日	9	785	2.7	3	33990	9.1	日	55	22830
L0＋25 2＋257	1.5	17230	52	20	431	5.7	－	59550	7.1	12	54	50190
L0＋25 2＋507	1.4	34930	49	28	195	9.6	9	50960	7.7	16	95	68260
L015000＋007	1.1	23760	1	10	78	3.3	2	46400	\＄， 9	11	20	109160
$10+500+25 T$	． 6	12690	13	3	939	5.2	7	67320	6.0	8	25	37100
10＋50 0＋50T	1．1	30240	2	29	115	3.9	2	18110	4.1	15	33	135330
$10+5004757$	．？	33530	11	32	107	6.8	10	27950	5.3	13	33	53750
10＋50 ！＋00	1.9	42500	4	45	261	2.2	4	27430	2.4	23	76	370780
L0＋50 ！＋25T	1.0	33509	$5!$	18	150	8.6	12	34430	8.3	15	$6!$	76340
L $1+50$ ！+50 MT	． 9	38770	46	36	1084	9.0	13	36190	6.4	17	59	73970
10＋50	1：	47120	64	48	347	11．1	16	30700	7.8	19	72	82530
10＋50 2＋009	1.7	31800	42	39	634	8.3	13	66980	6.7	14	52	65320
$10+502+255$	2.9	3095n	53	47	129	9.5	12	32150	6.6	17	64	97780
$10+502+507$	1．8	38370	44	44	355	3.2	14	39220	7.4	14	56	58200
10475 $0+007$	¢．9	！7790	43	21	241	6.2	9	30460	6.2	：	15	44798
20475 $0+25 T$	1.4	2980	42	¢ 1	4096	5.3	9	85730	4.1	\％	22	40490
L0475 0．509	1.7	22960	1	23	346	2.2	5	37600	2.3	！！	3	14290
100 $+750+751$	4.9	Espo	22	$!5$	240	4.9	5	1250	2.9	4	9	29210
$10+751+007$	2.3	39349	36	40	150	7.2	8	28500	6.6	17	49	：47680
L0＋75！＋25T	1.3	42610	56	44	184	10．5	15	20000	5.0	18	64	92080
$10+75$	1.5	29140	56	33	913	8.7	$1!$	44130	＋． 9	14	39	67700
L0＋75 1＋75i	1.3	39440	53	43	238	9.9	11	26574	6.8	17	58	6864
L0＋75 2＋00T	1.6	27990	41	30	239	7.4	10	100550	4.6	12	47	60340
10＋75 $2+25 \mathrm{~T}$	1.2	41240	34	40	311	9.6	！2	39790	8.3	： 5	6！	69806
L0 $475 \mathrm{~F}+50 \mathrm{~T}$	1.4	45780	42	47	319	9.9	13	35780	7.2	！	62	72970
$\underline{1}+0000+009$	1.3	21960	23	23	1020	5.7	6	7420	5.3	9	34	63870
$11+000+257$	8.7	10870	105	19	238	7.6	8	2850	3.3	11	$2{ }^{2}$	！28090
Lt＋00 $0+505$	1.7	25640	5	27	215	2.9	5	11529	2.7	15	$: 4$	173109
$11+000+75 T$	1.5	25980	17	28	575	4.8	7	15850	4.5	12	35	107450
L1＋00 $1+00 \mathrm{~T}$	5.6	1：198	9！	16	$!24$	7.1	7	14900	16．6	18	47	53960
$31+001+75$	1.5	42520	69	44	140	10.0	12	28590	6.2	18	$5 ?$	77820
：1＋06 1＊50T	1.3	50¢30	27	31	$2!3$	3.6	7	101600	6.2	12	\％	5090
L！ $4001+75$	1.5	34160	35	38	3169	8.6	11	61570	6.0	14	58	79208
$1:+002+00 T$	2.5	27090	？	35	254	7.8	B	34240	6.7	15	Of	55090
L！＋000 $2+255$	1.3	4954	49	52	290	9.7	11	42160	8.0	$1 ?$	63	77550
$11+002+50\}$	1.3	970	48	3	1552	1.8	5	480	.1	8	！	14520
L1＋35 $0+30 \mathrm{~T}$	1.6	26690	2	2	155	5.7	8	21770	4.4	12	29	4885
1 $4+250+25]$	1.4	27750	12	25	310	T． 6	6	17310	2.8	14	36	120360
$11+250+507$	1.5	30780	4	32	208	3.8	4	17450	4.0	14	27	126920
L？ 200400	．	18230	30	22	$4!5$	5.2	5	8860	3.7	9	36	58350
$21+530 \pm 75$	1.2	27230	15	30	78	4.9	3	25240	4.1	15	24	81780

ATTENT：ON：D．ARETONEEER．SHERRTNG
1604！ $780-5914$ QR（604！988－4524

Malues in PMa	K	II	留	M	M	缶	Mi	P	P9	59	SR	T
	437	25	3055	91	12	230	74	1070	97	16	21	1
10＋00 $0+255$	1990	13	15030	762	9	310	24	98	\％	8	45	！
$10+600.5809$	860	17	29760	718	3	890	78	990	5	6	24	1
$10+1008455$	300	35	35570	1567	7	260	$3!$	1490	78	12	32	1
16＋60 +1005	290	27	37870	1063	1	870	16	1130	34	11	19	1
1060 $1+250$	740	41	39160	15t	15	50	52	1990	142	16	49	1
L0＋60 $1+505$	560	39	37060	1029	16	300	52	2030	136	15	69	1
10＋69 1＋755	1180	$4!$	31950	$111!$	16	120	47	1860	125	$!3$	5	1
L0＋00 $2+105$	1：50	b	5450	366	19	30	31	800	504	8	13	1
10＋09 $2+255$	910	37	3000	1036	15	70	$4 ?$	1710	126	13	48	1
［0＋00 $2+579$	1359	39	26060	！ 523	14	50	45	1880	125	14	6	1
L0＋25 04009	4370	33	13560	425	7	150	86	1440	69		34	！
60＋25 0＋251	550	38	37890	1190	9	300	9	1269	85	$?$	36	！
10＋25 0＋599	390	19	29980	643	3	350	71	860	44	¢	20	1
20425 $1+75$	369	37	3740	1200	16	360	56	2100	4，42	17	47	！
（19＋25	99	22	1860	394	14	140	35	150	168	17	152	1
$10+25!+25 T$	600	78	3476	1740	18	370	53	1810	135	13	60	1
19425 1＋597	360	34	39260	1046	19	380	$5!$	1900	133	15	67	1
10425 $4+75$	2630	34	29.65	1546	19	550	54	2210	！31	13	56	1
L0＋25 2＋009	990	5	3980	661	5	30	28	630	222	6	66	1
10， 25 2 $2+259$	1240	17	13390	1634	12	30	35	890	117	13	72	1
L0＋25 $2+50$ ？	2200	34	27860	1173	：5	60	42	（560	136	33	74	$!$
Lio 50 0 $0+009$	440	14	29280	912	9	210	70	930	72	，	76	！
L0＋50 0＋25？	590	9	38490	827	10	110	56	959	78	12	286	1
$\underline{6}+550$ 0 595	120	18	39480	323	9	280	98	1160	80	7	32	1
－0，50 $0+75$	43^{3}	30	41549	1088	12	230	108	1300	96	10	56	1
L0＋50 ：+0.04	230	5	42449	1079	6	310	14	1300	58	11	3	1
10450 ： 4 257	340	30	26580	1342	16	230	41	1580	109	14	43	！
10＋50 $!+50 \mathrm{~T}$	230	3	85290	！297	16	230	48	1810	117	14	67	1
L0 $50.1+75$	790	5	3390	1279	18	158	5	2060	137	15	71	1
－ 4 50 $2+009$	1590	26	15750	1349	15	40	45	1780	102	14	50	－
（0＋50 $2+255$	1200	29	36450	967	17	70	44	！930	（197	15	60	$!$
10， $502+595$	2689	31	26230	！523	17	3π	51	1700	124	13	94	1
L0＋75 0＋605	630	14	27420	1245	！2	180	88	！240	129	13	119	$!$
10775 $0+251$	530	1	3560	1183	11	馹	51	520	㫛	18	309	1
T075 $0+5$	350	15	27750	729	8	240	34	80	79	5	52	1
10．75 04757	$32!0$	，	1650	135	$!4$	63	24	500	85	16	15	1
20475 $1+095$	390	31	34516	1143	$!4$	190	38	1709	116	13	55	！
1047514251	220	29	40330	1153	17	220	52	1890	136	14	5	！
10＋75 $1+507$	770	34	27870	2656	17	130	46	1856	133	21	59	1
6－759 1＋757	1620	46	21106	1229	17	80	5	1860	121	14	$5{ }^{-1}$	1
20775 $2+405$	2060	29	15610	：483	14	30	36	1389	100	13	198	1
（1075 $2+255$	1880	35	28740	［262	17	40	46	1640	116	！	91	1
$10+75$	2410	33	29880	1124	17	3	47	1490	139	13	89	1
L $4+000+909$	2330	13	13869	946	16	210	22	1050	89	0	41	1
Ti＋60 5125	940	8	19260	$4!$	\％	\％	48	－70	113	24	17	－
$4+600+509$	530	$!8$	3070	883	6	320	75	976	59	a	23	t
11＋000 0．759	1590	$!4$	1827\％	$76!$	7	545	29	940	80	g	55	1
L1＋00 $1+0 \mathrm{~T}$	！57\％	8	8640	718	10	190	47	930	923	26	\％	！
$51+09$	540.	32	35749	1788	19	120	5	1750	133	14	54	－
11＋i0］ $1+509$	330	2	2760	！39	13	110	37	1270	103	！	45	－
$11+001+75$	100	31	4014	$2: 95$	！	70	43	1390	123	16	4	
1 $1+1002+005$	2440	19	1556？	1096	\％	60	41	1654	14.	¢	5	：
$15+102+255$	1670	53	3850	145：	19	36	53	1620	128	12	5	$!$
1 $1+002+50$	320	L	330	67	6	20	35	530	45	！ 0	12	！
Titas 0 ＋00	40	21	30	96	！！	270	104	1450	！ 13	－	－	－
11425 04255	570	20	3076	830	E	240	87	170	69	7	30	1
$12+250+505$	590	20	3406	829	？	570	97	1170	73	3	41	1
［ $4+5008+697$	1400	！	［2810	702	10	240	24	9， 9	76	60	34	1
Li＋54 $9+25$	． 330	17	3008	809	10	300	99	1190	76	a	42	1

 P90IECTME:
 ATTENTIDA: D CFEHOKESER SHEARINE
 FILE ND: $6-48 j ; P 1+2$
(604)900-5814 0n $6041988-4524$

* TYPE ROCX GEOCHEN *

MATE: 3C 22: 198 E

IAET：GED2T！PGGE ：OF 3
 ATTENTIO：D．CREMGMEELS SHEASIME （6014） 980 －5814 08 （ 604 ） $988-4524$ 4 TYPE ROCK GEDCHEF －P4TE：OCT 22．1996

Matuse	A^{4}	A：	45	B	誰	EE	1	［4	0	6	C	FE
－ $1+506+505$	1.3	17140	－	19	1114	2.6	3	65710	3.2	，	55	67940
$01+5004757$	1.1	24340	12	$2!$	40	4.7	b	34629	5.1	$!1$	26	25998
$11+50$ 1＋09T	1.0	25760	1	23	82	2.1	，	31950	3.4	\％	31	79720
（1＋50 $1+255$	1.1	23120	1	24	103	2.4	5	19：70	4.9	$?$	48	8346
1！ $1+501+50 \mathrm{~T}$	1.3	28610	1	28	34	2.1	5	24950	3.3	：	42.	121040
－1＋75 $0+607$	． 9	20800	32	2	45^{9}	6.3	\％	32 C	5.8	！	\％	70450
L $1+750+255$	． 7	27770	20	28	209	5.5	8	26770	4.9	12	31	45890
	1.3	31380	！	3	71	4.0	4	2772	3.8	14	24	144520
14，7500759	1.5	32050	$?$	30	169	4.1	3	25460	4.3	14	38	148090
L $4+75$ ）+609	fid	2820	17	24	31	51	5	25940	5	12	41	81190
－1475	1.3	3710	－	W1	36	9．8	4	38070	2.6	$!$	过	12960
11475 $1+509$	1.0	24519	7	22	1522	4.8	$?$	65400	4.6	9	29	4669
12＋040 $0+255$	1.1	9370	$: 9$	8	38	4.2	4	1670	2.7	5	21	29180
（2＋00） 0.559	． 7	18554	38	13	335	6.1	5	410	4.1	，	44	42420
12＋09 0．775	1.1	17250	E？	－ 5	157	6． 3	\leqslant	5：660	4.8	11	IV	54.34
－2t06 ！	1.2	构高	－	－	90	4.5		－no	4.4	5	3	119840
12＋06） $1+25 T$	1.3	3196	：	30	132	2.0	4	！5750	2.4	$1!$	$4!$	129510
12＋06 ！ 12505	． 8	24380	？	23	378	5.2	5	1800	4.9	$1!$	35	38620
$12+001+755$	1.9	4446）	55	45	85	10.3	$1!$	41709	8.9	17	73	78290
$12+002+00 \mathrm{~T}$	！ 1.1	29540	71	3	222	8.9	10	360	64	－16	73	68969
－2 $2+002+509$	－1．2	4810	4	15	122	5.1	6	10330	4.8	13	27	$5413 n$
12＋250＋257	． 8	10000	2	a	780	3.2	3	940	2.4	2	10	22310
12＋250505	． 9	25150	$!7$	24	396	1.9	5	10640	5.4	0	30	83850
L2＋25 $9+757$	1.3	15430	$2!$	16	253	5.6	6	41760	5.4	a	44	43590
－ $22+25$ ， $1+009$	10	40980．	43	37	266	9.3	11	24870	6.3	15	34	70790
－ $2+2591+257$	9	22476	！！	23	622	4.9	4	6269	5.1		39	83510
12＋25！＋509	． 7	11570	10	11	19.	4.3	J	1476	2.6	3	20	29180
12＋25 $1+755$	1.0	12350	1	12	：47	3.2	2	36210	5.2	3	29	24190
L2＋25 2＋009	． 9	42040	54	40	275	9.9	9	26539	8.7	16	45	69960
$\underline{12+25} 2+251$	1.0	2778	7	34	274	E6	4	6670	4.8	10	58	70980
	． 9	2304	2	3	$3{ }^{3} 9$	5.5	5	65%	5.6	？	\％	79410
L2＋25 3＋009	． 5	14：5\％	1	16	1276	3.8	2	！6669	3.2	$\stackrel{5}{5}$	4	30900
12＋25 3＋259	． 5	！3170	2	$1 ?$	322	5.2	t	$165!0$	2.5	？	4	41110
$\underline{12+25} 3+505$	． 9	51200	41	50	221	9.1	12	22110	8.2	15	45	72888
$12+50 \mathrm{BL}$	31	$10^{0} 9$	－	1	39	：	2	546	1.9	－	－	7049
－2＋50－0＋259	1.6		！2	16	311	3.8	1	Scio	4.6	亏	！	2599
12＋50 $8+507$	1.1	29450	27	28	448	5.5	6	12894	5.1	2	$4:$	54890
12250 0＋759	． 4	8190	！	9	363	3.2	！	7389	1.9	4	\because	23280
：2＋50 $1+005$	1.3	28950	28	29	799	5.4		14890	5.7	14	$4 ?$	25140
L2＋50 1 $1+50 \mathrm{~T}$	＋1．2	10840	74	39	62	9.4	18	．3045	74	3	15	29340
－22050－1＋75t	1.3	34990	59	3	83	9．0	6	5170	7.4	$!$	4	6510
$12+503+007$	． 4	8050	13	8	$3{ }^{3}$	3.6	3	1260	2.0	，	1	25510
22＋50 3＋259	． 5	19040	18	$2!$	655	5.2	5	355	3.2	－	末	3e90
$12+503+509$	． 7	14290	17	$!5$	$3{ }^{3}$	4.8		1710	3.5	：	三	29200
－2＋750 $0+005$	1．3	16659	1	12	835	b	2	289	1．6		1	190
－7275 $0+259$	\％ 0	3200	1		418	T．	2	$4{ }^{4}$	． 8	3	\％	40
12＋75 $0+507$	． 7	15680	1	3	137	2.5	$!$	1290	2.3	？	6	13940
12＋75 ！+0097	1.1	21540	！	19	？ 69	5.9	？	1429	4.6	\％	$:$	21520
$12+753+009$	． 5	11600	2	：	10：9	4.8	4	： 2	2.3	2	－	3510
L2＋75 $3+59$	1.4	5362	5	IS	54	15	13	6559	12	！		51440
	1.6	3184		\％	109	2.6	2	\％969	4.9	－	48	11120
	2.8	29129	\％	\because	133	3.8	1	1500	2.0	！	12	$319: 90$
10tatiot $50+704$	2.7	38450	4	\％	116	3.2	？	：7710	2.5	8	\because	50184
10t 20 es $00+204$	1.6	\＄3510	5	2	92	5.1	s	3210	4.9	！？	：	123040
191＋20E！ $06+494$	2.6	36159	\％	\％	51	E1	3	87a	5.9	2	S	69649
	9	4213	\because	4	19	¢゙¢	5	5140	6.6	－	S	
	1.6	25.40		24	9	1.5	4	219040	2.6	＋	57	14589
102＋$+6 \times 100+6$ ¢ 4	1.6	3790	！	27	89	3.8	4	50440	3.3	$\stackrel{\square}{9}$	： 94	130659
$102+605100+304$	1.3	20486	4	2	4	5.5	4	4619	4.5	！	！ 23	14：10

WALUSE IN PEK	，	$1!$	MG	0 N	MO	NA	H！	P	PB	SB	98	TH
－11＋50－3＋507	150	15	21130	1207	7	90	56	540	85	5	43	1
ใ $1+50$（4，757	210	19	33420	957	9	150	22	1030	86	\％	34	！
L1＋50 1＋00\％	220	9	15940	393	5	180	5	760	5	$!$	22	！
11＋50 1＋25？	290	9	19240	315	¢	410	63	720	51	2	23	1
$\underline{L}+501+507$	440	13	21240	430	5	760	45	950	53	$!$	34	1
［1＋75 0＋007	1490	12	13440	743	10	300	2 B	1150	78	！	37	1
L $4+750+25 \mathrm{~T}$	1700	25	26410	899	12	109	101	1370	84	？	48	$!$
21475 04509	450	20	40100	760	日	300	87	1：20	79	？	$3{ }^{3}$	$!$
U1475 0.75	370	33	41610	45 ！	E	280	88	1200	79	？	40	1
11＋75 1－00T	380	25	3344	1193	10	160	82	990	120	］	35	$!$
－1－75 1＋25T	500	14	2320	393	6	700	66	840	57	－	53	！
： $1+75:+509$	690	19	26240	1406	10	300	79	1160	73	6	50	$!$
L2＋000 $0+255$	2500	2	36	182	T	70	10	520	96	8	16	1
22＋00 0 0 50T	2980	b	5006	144	$1!$	9	！	560	70	15	2	$!$
12＋69 $3+75$	390	10	17960	151	$1!$	20	33	1059	88	！ 4	3	1
［2＋00 $1+005$	60	31	36080	71	10	550	\％ 9	110	84	6	\％	1
L2＋00 $1+25 T$	910	12	2380	347	t	2440	66	1070	$4 t$	2	9	1
$12+80!+505$	960	19	2240	75	11	290	96	1410	76	日	88	！
$12+001+75$	1530	37	3300	1051	18	90	54	1600	124	13	79	1
$12+002+009$	680	26	20800		15	240	46	1280	102	16	82	$!$
12＋00 $2+501$	1060	12	9680	1412	11	140	31	99	80	15	$\underline{200}$	－
（2＋25 0425T	2470	4	4800	160	b	240	6	690	45	6	23	1
12＋25 0450T	1649	14	17420	676	？	570	31	898	73	7	46	1
12＋25 0475T	3100	\square	8280	909	12	90	14	850	90	12	41	1
$\underline{12+25} 1+00 \mathrm{~T}$	！ 960	15	$3!250$	136	16	150	46	1470	123	12	62	1
L2＋25 1425T	2190	12	44080	669	－	480	$2!$	890	72		36	－
12＋25 1＋50T	2250	3	4900	127	10	100	22	520	58	日	$!5$	1
L2＋25 $\mathrm{L}+755$	3020	5	4540	443	8	80	22	55	39	5	40	！
12＋25 2＋007	1430	31	36490	910	16	140	64	1230	127	13	5 ？	$!$
$\underline{L 2+25} 2+25!$	1640	14	16120	740	10	430	29	1190	79	！	$3!$	$!$
－2＋25 2＋503	1590	18	15420	756	$1!$	300	28	140	80	$1!$	4	$!$
L2 255 3＋00\％	2440	7	4480	1876	6	200	！	840	46	6	5	$!$
$12+253+25$	2680	8	340	！ 0	8	360	7	1190	49	\bigcirc	？	1
L2＋25 3＋50！	1270	45	35460	1509	19	420	38	1480	127	10	\％	：
12＋59 91	330	2	810	75	2	60	5	70	b	5	1	$!$
2 $2+50$ di 25	2930	11	8849	347	26	70	10	80	！1！	7	：	！
L2＋50 $0+567$	2480	17	17390	947	11	490	3	1200	36	0	4	！
12＋50 $0+759$	3410	1	1190	158	6	240	5	570	31	t	－－	$!$
12＋5才 1＋00T	3390	16	16490	936	10	$4!6$	2 E	1280	95	9	\because	！
12＋50 14505	330	34	31140	115	17	220	5	1660	137	1 1e		1
$12+501+751$	550	24	27110	1252	15	350	5	1230	109	12	．	1
L2450 3＋10	2310	3	1450	59	5	340	5	5030	36	？	\pm	$!$
（2＋50） $3+25 T$	4140	8	26.10	761	？	419	8	1240	52	＊	－	！
$12+503+505$	2690	10	3300	995	\％	410	日	1130	5	e	\because	$!$
$12+750+009$	2590	1	200	36	，	1910	，	30	67	5		$!$
－2＋750 $0+25$	810	$!$	310	25	3	70	\checkmark	100	5	T	1	！
12＋75 0 （ +507	4190	\square	6300	225	5	400	7	660	45	2	－	！
1－2＋75 ！+009	5270	14	13570	402	7	！50	14	760	160	？		！
$1.24753+609$	3870	3	749	64	7	440	4	5170	45	$=$	1	！
$\underline{12+75} 3+50$	1550	34	24700	1344	14	150	4	1160	115	15	3	1
191＋005100＋50H	2440	24	11090	1752	6	300	9	F90	65	2	－	！
101－6015100＋60\％	500	16	152 ki	1102	b	470	9	1000	57	： 3	：	．
1014005100 +700	500	20	2076	1324	3	10%	6	600	$7!$	\therefore	E	！
101＋20E1004204	1319	39	22.60	2780	！	320	17	1800	92	\therefore	$\because!$	！
10120510040\％	2210	36	2235	2105	$!1$	10	9	1750	100	$1!$	4	！
102＋00Et01＋90＊	990	30	21310	1997	10	50	10	1970	83	9		！
$102+60 E 100+40 \mathrm{H}$	1260	12	9850	535	3	650	5	980	36	2	\because	1
$102+605106+60 \mathrm{~N}$	1340	23	12340	Sibl	b	1120	4	1040	58	3	2	！
10246051094304	630	31	18470	！ 528	10	550	10	1060	36	13	$2 ?$	！

