SUB-NETTORDER
RECEIVED
FIB 1 1987
MAR A S
VANCOUVER, B.C.

ASSESSMENT REPORT
ON
DIAMOND DRILLING WORK
ON THE FOLLOWING

DELTA....#3622(11)

located

45 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 22 minutes latitude 130 degrees 07 minutes longitude

N.T.S. 104B/8E

PROJECT PERIOD: Aug. 27 - Oct. 4, 1986

ON BEHALF OF
TEUTON RESOURCES CORP.
TERRITORIAL PETROLEUM VENTURES INC.
VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 200-675 W. Hastings Vancouver, B.C.

Date: Feb. 12, 1987

ASSESSMENT REPORT

Breke Jan. Almania.

TABLE OF CONTENTS

	Page
1. INTRODUCTION	1
A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 2 3
2. TECHNICAL DATA AND INTERPRETATION	4
A. Regional Geology B. Property Geology C. Drill Hole Data and Core Geochemistry D. Discussion and Conclusions	4 5 6 7
APPENDICES	
 I. Work Cost Statement II. Certificates – D. Cremonese, P.Eng. – R. Shearing, F.G.A.C. III. Diamond Drill Hole Core Logs IV. Assay Certificaes 	
ILLUSTRATIONS	
Fig. 1 Location Map Fig. 2 Claims Map Fig. 2A Drill Area Location Relative to Topography and Claim Lines Fig. 2B Regional Geology After page 4 Fig. 3 Geological Plan Showing Drill Hole Locations	Report body Report body Map Pocket Map Pocket

1. INTRODUCTION

A. Property, Location, Access and Physiography

The Delta claim is situated approximately 6 km north of the airstrip at Tide Lake Flats (just north of the old Granduc concentrator). Access from Stewart, 45 air-kilometers to the south, is by helicopter; alternative access is via the Granduc road to the aforementioned air strip and thence by helicopter. Access by foot is possible from the terminus of the Granduc Road system near the old East Gold mine, however this would entail a hazardous crossing over a highly crevassed glacier.

The claim is bisected by the west-east trending "Little Canoe" Glacier, the first valley glacier north of the giant Frankmackie Glacier, from which a small stream drains eastward into Toe Lake. An extensive icefield encroaches on the western and northern margins of the claim.

Terrain is steep throughout except on the topland near the 1,600 m level just below the icecap on the Delta claim, an area marked by gently sloping eskers and patches of glacially scoured rock. From the upland, sharply incised creeks drain southward into the valley glacier. Vegetation, consisting of mountain balsam and hemlock, thickens gradually downslope from treeline at the 1,300 m mark. Above this, alpine grass, dwarf bushes and mountain flowers gradually thin until only lichens grow.

B. Status of Property

Relevant claim information is summarized below:

Name	Record No.	No. of Units	Record	Date
Delta	3622	16	Nov. 1.	1982

The claim is shown on Fig. 2 and is owned by Teuton Resources Corp. At the time the work was being carried out on the claim, it was under option to Territorial Petroleum Ventures Inc.

C. History

Very little is known of the history of the claim during the early periods of exploration of the Stewart Complex, that is, during the span from 1900 to 1940. It is likely that the claims were just beyond the ambit of convenient exploration from the supply center of Stewart. Also, extensive snow and ice cover in the area, which is marked by large ice and snow fields, was probably much more extensive then than now.

In 1966/67 the claims area formed part of a regional study the B.C. Department of Mines under the direction of E.W. Grove, P.Eng (Ref. 3). The area remained dormant until the early 1980's when rising precious metal values prompted many exploration companies to initiate new reconnaissance programs. Teuton Resources Corp. staked the ground in 1982 under the presumption that geology similar to that occurring at Sulphurets property 15 km to the north would be exposed by The assumption was partly confirmed by a retreating ice. prospecting expedition in 1983 (attended by the author) which uncovered a large alteration zone made up, among other units, of sericite schists and pyritized sediments.

Geochemical stream sediment and rock character sampling during a reconnaissance program carried out in 1985 by Teuton Resources Corp. (Ref. 7) resulted in the discovery of a number of samples highly anomalous in gold and silver.

D. References

- 1. ALLDRICK, D.J.(1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. GROVE, E.W. ET AL (1982); Unuk River-Salmon River-Anyox Area. Geological Mapping 1:1000000 B.C.M.E.M.P.R.
- 3. GROVE, E.W.(1982); The Frankmackie Glacier Property, A Summary Report Compiled for Teuton Resources Corp. (Private).
- 4. GROVE, E.W. (1971); Geology of Mineral Deposits of the Stewart Area. Bulletin 58, B.C.M.E.M.P.R.
- 5. CREMONESE, D. (1983); Assessment Report on Prospecting Work on the Following Claims, Alpha #3619(112) and Delta #3622(11). NTS 104B/8E.
- 6. GROVES, W.D. & SHELDRAKE, R.(1984); Assessment Report on Geophysical Work (Airborne EM and Mag) on the Bowser River Properties of Teuton Resources Corp. NTS 104B/8E
- 7. CREMONESE, D., P.ENG. (1985); Assessment Report on Geological and Geochemical Work on the Alpha and Delta Claims, NTS 104B/8E.
- 8. SHEARING, RALPH (1986); Verbal communications and access to field notes and field maps.
- 9. GROVES, W.D., PHD, P.ENG. (1986); Verbal communications and field notes.

E. Summary of Work Done

Base camp preparation, core logging, core splitting, core sampling and field supervision of the Delta drilling program was carried out by contractor Quest Canada Exploration Services Inc. as part of a five week program on certain of Teuton's claims in the Stewart area. This project spanned the period Aug. 27 - Oct. 4, 1986 (including mobilization and demobilization of crews from and to Vancouver). Base camp was established on the Alpha claim (adjoining directly to the east) on Sept. 1, consisting of four tents (wooden frame) with all materials and supplies brought in by helicopter from the Tide Flats strip. Helicopter support was provided by an Okanagan Helicopters Hughes 500 which was stationed at the Brucejack Lake camp, 12 km to the north-northwest.

Field supervision and drill logistics were the responsibility of geologist Ralph Shearing.

On Sept. 10, 1986, the author examined the Delta claim in the company of consultant W.D. Groves, Ph.D., P.Eng. Mr. Groves had been directed by Territorial Petroleum Ventures Inc., optionee of the claim at that time, to select drill targets based on the data collected to date. Targets were isolated in a zone of structural crumpling and faulting-feathering off a cross fault discovered in 1985 (which yielded several hand samples carrying free gold and tetrahedrite in a small quartz vein). On Sept. 13, 1986 Ralph Shearing escorted diamond drill contractor, Sylvain Leduc, over the proposed drill sites.

On Sept. 19, 1986 (after a contract had been signed between Adanac Drilling and Territorial), drill camp, drill crew and drilling equipment were mobilized by helicopter from the Tide Lake air strip to the property. The contract called for a minimum of 1,000 feet of drilling. After five short NQ holes were completed, totalling 300.2 m, the drill crew and portions of the drilling equipment were demobilized on Sept. 26 and 27. Thereafter Ralph Shearing and five assistants demobilized the base camp, with the last helicopter trip occurring on Sept. 30, 1986.

Because of the prospect of winter setting in, the entire drill core was flown out and transported to Stewart for logging and splitting. The core was logged, split and sampled in a large garage appended to a house owned by Hans Foerster (at 4th and Brightwell in Stewart). [The unsampled core is scheduled to be reflown into the property and stored in a proper core shack during the 1987 field season.]

Core samples, 267 in all, were analysed by Min-En Laboratories of North Vancouver, B.C., for gold (ppb tolerance) and silver (ppm tolerance) by fire assay and spectrophotometry.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The Delta claim lies in the Stewart area east of the Coast Crystalline Complex and within the western onlap boundary of the Bowser Basin. Rocks exposed in the area belong to the Mesozoic Hazelton Group and have been folded on regional NW-SE axes, cut by faults and selective tectonism, locally hydrothermalized and intruded by plugs of both Cenozoic and Mesozoic age.

Locally, within the Hazelton Group, Lower Jurassic volcanic and sedimentary rocks of the Unuk River Formation are unconformably overlain by the Middle Jurassic marine and non-marine volcanics and sediments of the Betty Creek Formation, the volcano-sedimentary Upper Jurassic Salmon River Formation, and the post-accretion fine clastic basinal Nass Formation.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the study area the Unuk River Formation is overlain by Lower Middle and Middle Jurassic rocks from the Betty Creek and Salmon River Formations, respectively. A variable to high angle unconformity is in places traceable between the underlying (steeper) Unuk River cycle of volcanics and overlying (flatter) cycle of often similar-looking Betty Creek volcanics. Geometry of the interface between the Betty Creek and overlying Salmon River is, at most, somewhat disconformable: the Nass Formation overlies as a sedimentary quiet basin-filling onlap with only a relatively minor erosional component from the island-arc and/or accreted terrane.

The Betty Creek Formation consists of submarine pillow lavas, broken pillow breccias, andesitic and basaltic flows, plus (emergent) green, red and purple volcanic breccia, conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

According to Grove (Ref. 2 & 3), the majority of the rocks from the Hazelton Group were derived from the Hazelton age andesitic volcanoes subsequently rapidly eroding to form overlapping lenticular sedimentary wedges varying laterally in grain size from breccia to siltstone.

Intrusives in the region are dominated by the granodiorite

of the Coast Plutonic Complex (to the west). Some of the smaller intrusive plugs in the study area range from quartz monzonite to granite and are likely related outlyer processes associated with the Coast Plutonic Complex.

It is currently believed that subvolcanic, Mesozoic, K-feldspar rich stocks of the andesite volcano age, plus associated hydrothermal emanations, were the main gold mineralizers in the study area. Small Cenozoic feldspar porphyry dykes, sills and small plugs and related quartz-sulphide and epithermal pheonomena (e.g., gossans, silica/precious metal and Buchanan Funnel effects), reworking deeper metalliferous units, also appear to be of economic importance.

Regional geology after Grove (Ref. 2) is presented in this report as Fig. 2B.

B. Property Geology

In general, the western margin of the property is underlain by Lower Jurassic volcanics and sediments of the Unuk River Formation. These rocks are unconformably overlain to the east by Middle Jurassic sediments of the Salmon River Formation. The sediments have been folded into synclines and anticlines with northerly trending fold axes. Small Eocene feldspar porphyry intrusions, important as mineralizers in the region, outcrop in the northwest quadrant of the Delta claim.

The area of drilling detailed in Fig. 3 is referenced to claim lines and topography in Fig. 2A. W. D. Groves, P.Eng., Ph.D. has described the local geology of the Fig. 3 area as follows:

"A calcareous rhyolite tuff bed ["crystal tuffs" -- Fig. 3], flat to shallow dips into the hill, is cross-cut by a N30W/steep It is probably orinally a reverse fault as the cross fault. section is end crumple-inflected for several hundred meters on each side. Below the tuff bed is a dark carbonaceous argillite ["black shales and argillites" -- Fig. 3] containing some lime sections: these are fossiliferous. Where the topography planes gently across the tuff bed in the drill area, a variety of mineralized minor steep dragfold nose dilations, 45 degree tension faults, etc., bear either pyritic sulphides (the fold noses) or tetrahedrite-rich mineralization (also in one location containing visible gold) in the minor faults. These appear to be minor structural "feathers" off the main cross fault. fault plane itself does not appear to be mineralized."

C. Drill Hole Data and Core Geochemistry

Five NQ holes were drilled from two collars for a total depth of 300.2 meters. A geological plan showing drill locations is presented in this report as Fig. 3. Relevant information follows:

<u>Hole</u>	<u>Inclination</u> (degrees)	<u>Azimuth</u> (degrees)	<u>Length</u> (meters)
86-1	-45	048	56.5
86-2	-45	077	56.7
86-3	-45	097.5	55.5
86-4	-45	120	71.0
86-5	-45	144	60.5

The core logs were prepared by Ralph Shearing, field geologist (see Appendix III). Sulphide mineralization noted was predominantly pyrite, ranging from less than 1% to as much as 15% in places. Minor, occasional tetrahedrite(?) mineralization was also noted. Mr. Shearing also spotted what he believed to be electrum in Hole 86-1 at a few locations. The author had the opportunity to observe the same sections -- mineralization present was more in the character of chalcopyrite than electrum.

Most of the core was analyzed by rock geochemistry for gold and silver. In order to avoid duplication, upper sections of certain holes were not assayed because virtually identical sections were available (holes drilled from the same collar). Assay results are presented in Appendix IV: Assay Certificates. Sample numbers are keyed to sample hole and sampling interval in meters. Almost all of the sample intervals were over one meter.

Only 3 intervals can be characterized as anomalous (and they are only "weakly" anomalous) based on a 200 ppb gold threshhold — a somewhat arbitrary number chosen by reference to a number of rock geochemistry studies in the general area. They are:

In	terval		Gold (ppb)
	21-22		294
86-4	25-26	(m)	233
86-5	21-22	(m)	375

It appears that the 21-22m intervals in holes 86-4 and 86-5 may originate in the same mineralized horizon. No anomalous silver values were obtained.

Min-En's rock sample treatment (preparation) is as follows: samples are dried at 60 degrees C, crushed on a primary crusher, then crushed on a primary crusher to minus 10 mesh before being

split on a Jones' riffle. After splitting a 500 gram subsample is obtained which is then pulverized to minus 100 mesh. After that the sample is mixed, rolled and quartered.

The assay for gold is carried out on a one half assay ton sample, fire assay temperature 1750 degrees C using standard fluxes. The resulting lead button is cupelled, leaving a small bead which is then dissolved in aqua regia and analysed by AA for gold content.

The assay for silver proceeds on a 5.00 gram subsample, where the subsample is dissolved in aqua regia followed by chemical separation and filtering. The amount of silver is determined by AA.

D. Discussion and Conclusions

The drilling results were uniformly disappointing; none of the five holes encountered high-grade gold and silver mineralization of the type noted on surface during the previous year's program [Note: during a 1986 surface examination abundant tetrahedrite mineralization was visible in minor feather faults in the drill zone.]

A possible explanation is given by W.D. Groves, Ph.D., P.Eng., as follows: "The drilling indicates that the tetrahedrite (plus gold and silver) mineralization sampled on surface attenuates downward (that is, upgrades upward). The upper contact of the tuff was not inspected in 1986: it should definitely be looked at during the upcoming field season.

Soil geochemistry studies conducted along the strike of the tuff bed to the west-southwest (results received after the drilling was completed) indicate several areas of anomalous gold content. More surface work is required to understand the local geological setting."

Respectfully submitted,

D. Cremonese, P.Eng.

Feb. 12, 1987

D. Jenne

APPENDIX I -- WORK COST STATEMENT

Field Personnel Period Sept. 19 to Oct. 2, 1986	
R. Shearing, Geologist (Supervision and logging)	
11 days @ \$220/day T. Bell, Assistant (core splitting/sampling)	2,420
3 days @ \$165/day	495
I. Clark, Assistant (splitting/sample transport) 2 days @ \$137.50/day	275
R. Turner, Assistant (splitting/sampling)	
<pre>1 day @ \$137.50/day A. Hoppenrath, Assistant (sample transport)</pre>	137
1 day @ \$137.50/day	137
Helicopter Vancouver Island Hel. (Stewart Base)	
Drill gear, camp, personnel, moves 19.3 hours total & \$516/hr.	9,959
Food 18 man-days (excl. drillers) @ \$30/man-day	540
Diamond drilling contract - Adanac Drilling	05 000
1000 ft. minimum: NQ	25,000
Rock geochem - Min-En Laboratories Rock geochem - Ag, fire Au Unit - \$8.50 Rock sample preparation: Unit - \$3.00 Total: 267 samples @ \$11.50	3,070
Share of Project Support Costs (Field crew): (Share = 18 man-days/192 man-days, or 9.4%) Personnel: mob/demob, base camp set-up	
9.4% of \$6,050 Supplies, transportation, equipment rental, truck rental, radio, wood frames, helicopter mob/demob, accommodation, etc.	569
9.4% of \$18,464	1,736
Report Costs	
Report and map preparation, compilation and research	
D. Cremonese, P.Eng., 2 days @ \$300/day	600
R. Shearing 1 day @ \$220/day	220
Draughting F. Chong/J. Rhodes	120
Word Processor - 4 hrs. @ \$25/hr.	100
Typing logs	180
Copies, report, jackets, maps, etc.	70

TOTAL....\$45,628

APPENDIX II - CERTIFICATES

- I, Dino M. Cremonese, do hereby certify that:
- I am a mineral property consultant with an office at Suite 200-675 W. Hastings, Vancouver, B.C.
- I am a graduate of the University of British Columbia 2. (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- I am a Professional Engineer registered with the Association Э. Professional Engineers of the Province of British Columbia as a resident member, #13876.
- I have practiced my profession since 1979. 4.
- 5. This report is based upon work carried out on the Delta mineral claim, Skeena Mining Division in Sept. 1986.
- I am a principal of Teuton Resources Corp., beneficial owner 6. of the Delta claim: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 12 day of February, 1987.

D. CREMONESE, 2. ENG.

CERTIFICATE

- I, Ralph Edward Shearing, of 3433 West 12th Ave., Vancouver, B.C., DO HEREBY CERTIFY THAT:
- 1. I am a Fellow of the Geological Association of Canada. Membership #F4366.
- I am Professional Geologist registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta. Membership #40288.
- 3. I am President of Quest Canada Exploration Services Inc., a geological consulting and services company, with business office at 302-119 West Pender St., Vancouver, B.C.
- 4. I am a graduate of the University of British Columbia with a degree of B.Sc., Geology, 1981.
- 5. I have been active in mineral exploration since 1979 as follows:
 - a. 1979 Summer employee with St. Joseph Explorations Limited; Pb, Zn, Au, Ag and U exploration in the Yukon and B.C.
 - b. 1980 Summer employee with Sulpetro Minerals Limited; Pb, Zn, Au, Ag and U exploration in the Yukon and Northern B.C.
 - c. 1981-82 Permanent employee with Sulpetro Minerals; Pb, Zn, Au and Ag exploration in the Yukon and northern B.C.. Geological and geophysical exploration for Au, Ag, Cu, Pb and Zn in northwestern Quebec and northern Ontario.
 - d. 1983 present Independent consulting geologist with Quest Canada Exploration Services Inc. Geological and geophysical exploration for Au, Ag, Pb and Zn in central B.C.
- 6. I managed the exploration (drilling) program conducted during Sept. 1986 on the Delta claim located north of Stewart, B.C. I also logged the core (see Appendix III Drill Logs) obtained during the drill program on the Delta claim.

Dated this 12th day of February, 1987

Ralph Shearing, F.G.A.C., P. Geol.(Alta.)

CERTIFICATE

- I, Ralph Edward Shearing, of 3433 West 12th Ave., Vancouver, B.C., DO HEREBY CERTIFY THAT:
- I am a Fellow of the Geological Association of Canada. Membership #F4366.
- I am Professional Geologist registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta. Membership #40288.
- 3. I am President of Quest Canada Exploration Services Inc., a geological consulting and services company, with business office at 302-119 West Pender St., Vancouver, B.C.
- 4. I am a graduate of the University of British Columbia with a degree of B.Sc., Geology, 1981.
- 5. I have been active in mineral exploration since 1979 as follows:
 - a. 1979 Summer employee with St. Joseph Explorations Limited; Pb, Zn, Au, Ag and U exploration in the Yukon and B.C.
 - b. 1980 Summer employee with Sulpetro Minerals Limited; Pb, Zn, Au, Ag and U exploration in the Yukon and Northern B.C.
 - c. 1981-82 Permanent employee with Sulpetro Minerals; Pb, Zn, Au and Ag exploration in the Yukon and northern B.C.. Geological and geophysical exploration for Au, Ag, Cu, Pb and Zn in northwestern Quebec and northern Ontario.
 - d. 1983 present Independent consulting geologist with Quest Canada Exploration Services Inc. Geological and geophysical exploration for Au, Ag, Pb and Zn in central B.C.
- 6. I managed the exploration (drilling) program conducted during Sept. 1986 on the Delta claim located north of Stewart, B.C. I also logged the core (see Appendix III Drill Logs) obtained during the drill program on the Delta claim.

Dated this 12th day of February, 1987

APPENDIX III

DIAMOND DRILL HOLE CORE LOGS

DU	4 SEK	VICES LTL	ノ. 			DR			LO	G	HOLE NO. D 86-1
INTE	RVAL		Ì			RIPTION				STRUCTURE	REMARKS
FROM	TO	ROCK TYPE	COLCUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
)	0.33 m	Casing									
.33	0.44 m	xtl tuff	Cream minor gy	micro &		Adularia		6	1-2%	1-2% py in astomizing dark net	work of rock, also, finely
			,	shards,						disseminated but mostly confin	ned to dark areas. Poorly
				vfg.						developed foliation at 20° to	core axis.
.44	0.60	mylonite fault	ļ ·		·					Black carbonaceous zone. Main	to
	0.00	zone	black	vfg-coar	se	limonite		 	1%	with a small coarser brxx zone	
	 							 		Fracture at 45° to core axis.	
	 		 			····					
	0.00			micro-	· · · · · · · · · · · · · · · · · · ·	C 1 O		35	2 28	Central section has extensive Very similar to 0.33-0.44. S1	
0,60	0.88	xtl tuff	Cream gy	clast like		si0 ₂	 	3.7	2-3% py		
			 	adularia		· ·	 		·	Limonite or fractures. Py vei	triets up to 2 mm wide.
		 	 					ļ			
).88	0.96	fracture zone in xtl tuff	br-cream			S10 ₂		-			<u> </u>
		III XLL CUIT	∤	· · · · · · · · · · · · · · · · · · ·		limonite			2%	Broken core, limonite fracture	e zone in xtl tuff.
0.96	2.90	xtl tuff	dk gy			SiO ₂ (le	s s)		1% pv	50% mafics, 40% fsp (Ad) less	s qtz fractures 30-40%
			to cream	· — - — — — — ·		Adularia	·	1	, <u> </u>	to core axis - fractures have	
						· ·		1		envelope. Good xtl tuff with	heavy mafic content and
				<u> </u>						well developed Ad and moderate	e SiO ₂ . Ore fracture
										opposite to majority (update)	at20° to axis.
2.90	2.94	Clay	mud bn.	Clay		Clay				Clay seam, hard packed. Conta	act sharp 10^{0} to core axis.
.94	3.66	xtl tuff	dk. gy to crean			Si0 ₂			1% py	As 0.96 - 2.90 - 5-10% cream c	qtz stringers.
		<u> </u>	* ====================================	· -	•	Ad Z	1	1			

PAGE 1 OF x 7

DRILL HOLE NO _____

BO	4 SEF	RVICES LTD). 			DR	╏╚╴╚	<u> </u>	LO	6	HOLE NO. 86-1
INTER	RVAL	ROCK TYPE				RIPTION		-1		STRUCTURE	REMARKS
FROM	τo	HOCK TIPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
3.66	3.77	Clay & brxx	red-br			limonite			?	lst 6 cm is red brown clay wi	th small brxx fragments,
	<u> </u>	fault zone				clay		-		last 5 is brxx with minor cla	у,
	L				i			·			
3.77	4.26	Massive xtl tuff	cream	Micro	·	Ad	Tr tet?		1-2% py	Disseminated fractures @ 450	to core axis. Py mostly
			lt. gy.			ļ			Tr tet?	occurs as disseminated blebs	✓ 1 mm in size. Ad
	ļ	 ,								is more massive and slightly	gy-cream in color. Strong
	 -			ļ.	· · · · · · -	_				SiO ₂ flooding.	
	ļ -					ļ 	<u> </u>	<u> </u>			
.26	4.74	Broken limonite		micro	ļ	limonite	1	<u> </u>	2% py	Broken limonitic xtl tuff - f	
	 	xtl tuff	to cream	to vfg		Si02	vfg		Tr tet.	@ ~ 60° to core axis - some	
	 	<u> </u>	·		-		 		ļ. 	with trace tet.	
1.74	6.00	Massive xtl-tuff		<u></u>		S10 ₂			2-3% ру	Massive xtl tuff - 2-3% py	veinlets. Strong SiO ₂
					_		ļ	<u> </u>		flooding - fractures @ 55° to	core. @ 55°
· · · ·	 									to core axis.	
.00	6.30	Silicified xtl	white-gy			SiO ₂			2-3% py	Mineral segretation @ 65° to	core axis. SiO ₂ flooding
		tuff	minor			strong				and irregular blob type "vein	₩
			limonite			limonite					
 5.30	6.66	xtl tuff			 	SiO ₂			2-3 % pv	Broken and limonitic, less qt	z than previous section.
		1			•	moderate			<u> </u>	strongly fractured.	
		- 		•	<u> </u>	limonite	<u> </u>				
.66	6.91	xtl tuff	gy-cream		Massive	SiO ₂	Electrum		8-10% Py	Small specks of electrum seer	n mostly on fracture
	 	 		÷	†	į	† · ·		<u>'</u>	surface with abundant vfg py	

BOA SERVICES LTD.							= · · · · ·	LO	L O G HOLE NO. D 86-1			
INTER	IVAL				S C R I P T I O			%	STRUCTURE	REMARKS		
FROM	10	ROCK TYPE	COLOUR	GRAIN TEXTUR	E ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS		
									electrum seen in py .	Py veinlets 50° to core		
						<u> </u>		, 	axis.			
		L				<u> </u>						
.91	7.36	xtl tuff	gy-cream	massi	ve S10 ₂	<u> </u>			Similar to electrum section b	out no veins		
						ļ						
.36	7.74	xtl tuff	gy-pink cream	1	S10 ₂	Strong			Fractured and strongly silici			
			 	1		ļ			(1.5 mm speck) Fractures @ 3 to 60° lower end of section.	00 to core axis increasing		
				!		ļ	ļ					
.74	8.87	xtl tuff	cream-py	1	Sio ₂	ļ	ļ	5-10% Py	8.13 3 cm qtz vein @ 40° to			
				ļ		<u> </u>			in veinlets and dissem. Turq core near beginning of section			
			1			 	ļ		@ 50-60° to core axis. Section			
		_			.		· · · · · · · · · · · · · · · · · · ·			on is moderately fractured		
		<u></u>	ļ			· 	 		@ 2-4 fractures in 8 cm.			
		<u> </u>	limonite	ŀ								
.87	9.42	Fracture zone	bn-cream		limonite		 	3% Py	Badly broken, silicified ore			
<u> </u>			 		-	. .	 	20% 7				
.42	9.67	xtl tuff	Cream-				 	3% Py	Broken ore			
. 67	10.16	Xtl tuff	Cream- White		SiO ₂ (St	rong)	†	5 8% D.,	Moderately fractured, py vein	lete 0 450 increasing		
0.16	11,41	Xtl tuff	Cream-gn White		<u> </u>	1	@ 11.12	J-V	green color to core. (likely			
2152	<u> </u>	1	1						of core. Electrum on slip pl			
1.4i	12.00	Xtl tuff	pale-crea grey w/ greenish	m varied	SiO ₂ flo	dded sive		10% Py	10% astomizing qtz veins, py	occurs in 2 mm wide		
	1	†	greenish tinge				•	[py veinlets, disseminated and	blobs, minor fracturing,		
	<u> </u>	Ţ		Ī					greenish tinge is likely talo	·		

PAGE _____3 OF ___7___

DRILL HOLE NO _____

BOA	4 SER	VICES LT	D.			DR	ILL		LO	G	HOLE NO. D 86-1
INTER	VAL	T	I			HIPTION			Z	STRUCTURE	REMARKS
FROM	1.0	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDOING,	MINERALIZATION, TYPE, AGE RELATION
12.00	13.45	xtl tuff	increasi green co			Less SiQ ₂			52 Py	Very similar as above; howeve	그림, 그림, 얼마나 그 그 전에 가는 그를 살아 내려면 다른 살아 있다.
		555000	Breen co			-				Green color strong in tops of	
										tringers. Bottom 1/2 section	
										Company of the same of the sam	lets. Fractures minor
										and at different angles - mos	tly 35° to core axis. Some
										stringers 80°.	
13.45	13.90	xtl tuff		-					1% Py	Strongly fractured core,sligh	tly limonitic py mostly in
										veinlets.	
13.90	16.66	xtl tuff	-						10%	Very boring- similar. 2 cm	qtz vein @ 14.08 at 50°
								60° to a	xis	to core axis, 15.5565 bro	Andrew Control of the
						1				limonitic. Qtz vein 1.5 cm w	ide @ 50° barren - 15.95-
			1							16.00 small zone of open sapc	es, limonitic very
										siliceous.	
16.66	17.18		10000						10% Py	Zone of fracturing ~ 100 to	axis. Core split and
										in chunks. Py mostly dissemi	nated.
16.66	17.37	qtz vein.	white	micro						Relatively barren qtz vein sl	ightly lim.
17.37	17.45	Clay gouge	Dark Gre	y						Clay fault gouge.	
		1					-	(40)			
17.45	17.72	xtl tuff	Cream-gr grey	een		S10,	Strong			Abundant py stringers up to .	5 cm @ 30° to axis and
alatination of the state of	hadaley 1.		100			Ad				qtz stringers up to 1 cm gree	n color is in Ad?

PAGE 4 OF 7

BOY	4 SEF	PVICES LTL).			DR	ILL		LO	6	HOLE NO. D 86-1
INTER	RVAL				- 100	RIPTION		and the second second	2	STRUCTURE	REMARKS
FROM	10	HOCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
17.72	20.42	xtl tuff	Cream- green			SiO ₂ mode	erate		5-8% Py	Py occurring mostly as dissem	
						Ad				stringers. Scattered 1-2 cm	
							-			near 20 m mark. 20.30 m 40	to axis small py
						-				stringer and SiO ₂ string zone	
20.42	21.25	andesite tuff	green-gy fg.		massive	minor			1%	Massive andesite? Tuff, mino	r SiO ₂ flooding
					Water Street	S102		1 = 1/2×2×2×40	-1-20	SiO ₂ stringer with fg-mg cubi	c py envelope near 21 m.
									0.000	becomes progressively more bl	eached near bottom of
	-3-2			romer						section.	
21.25	23.91	xtl tuff	cream-gy green	-	4000-00	Si0 ₂		-	10% Py	Altered xtl tuff - well devel	oped py stringers and
			Secon			Ad				blobs + dissem. Well develo	
										color throughout section: str	
										around SiO2 stringers. Also	flooding unrelated to
										stringers. (Good looking sec	tion) 6 cm gouge seam
										(sand size) at 21.61 m.	
23.91	26.00	Andesite tuff moderately alter	pale ed green			minor SiO ₂	-		17	Pale green-gray moderately al	tered andesite 1%
		moderatery arter	green		1102	5102	_	-	***	dissem py, 1 cm bull qtz @ 24	.60 m5 m SiO ₂ stringer
										~ 0-5° to core axis @ 25 m.	Strong SiO, flooding from
										25.35 m to 26.00. Fracturing	
26,00	28,75	sti tuti	gy=tir			limonite 810 ₂			102	Zone of broken and strongly f	
						Ad				blobs and veinlets - badly br 28 m - 10 cm wide sand-pebble	

INTER		T		DES	CRIPTION				STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR GR		ALTERATION		FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
28.75	29.37	Mafic dyke	gy-br(dk)						Bottom etc. @ 35° to core axi	s.
9.37	32.61	Andesite	gr-gy	<u> </u>	S10 ₂	Strong		3-5% Py	Moderately altered andesite -	host xtls present.
					Ad	Weak			Strongly silicified with asto	mizing fg veinlets.
2.61	36.10	xtl tuff	Greamy & gy		S10 ₂			10% Py	The usual Ad SiO ₂ Py.	
· · · · · · · · · · · · · · · · · · ·					Ad				Py mostly diss. and - 3-5% From 33.70 to end of section	
			- 						diss. blobs and dissem. xtls.	
									clay zone vfg py in clay.	
			Greamy		ļ					
6.10	37.19	xtl tuff	White-gr		SiO ₂	Moderate		3-5% Py	Relatively massive Ad with gr	een tinge. Py mostly
		<u> </u>			ļ		 		finely diss. Some small vein	lets. Small 3 cm clay
		·- 		-	ļ				seam at 36.90.	
37.19	47.60	xtl tuff	Cream-white green tinge		SiO ₂ Stro	ng		5-10% Py	Broken core @ 39 m, strongly	fractured to 40.60 m.
					Ad Stro	ng			Fault gougel @ 40.23.	
						ļ			Py mostly dissem. blobs - som	
		!							Section is consistent in alte	
		 	+		 				Last 2 m has increasing strin	ger of mafics and py.
7.60	50.00	Andesite tuff	green		SiO ₂ weal			2% Py	Relatively fresh andesite tuf	f - chloritic green.
50.00	51.60	Andesite tuff	Cream-	+				1%		
	1 31.00		Pale	†	1	1	İ			

PAGE 6 OF 7

DRILL HOLE NO._____

BO	4 SEF	RVICES LTE	<u> </u>			DR	ILL		LO	G	HOLE NO. 86-1
INTE	RVAL		Ī	<u> :: </u>	DESCRIPTION					STRUCTURE	REMARKS
FROM	10	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
51.60	52.43	Black shale and				S10 ₂				Abundant astomising qtz veini	ng in a dirty tuff.
		andesite tuff	[I		<u> </u>				
		mixed.		L							
52.43	56.50	Black shale &	[ļ <u>.</u> .							
		argillite					ļ				
						ļ	_				
	<u> </u>	END OF HOLE	ļ ,					_	ļ		
	<u> </u>						ļ				
	<u> </u>					ļ <u>-</u>	ļ	L			
	<u>L</u>		<u> </u>			ļ		<u> </u>	 		
			<u></u>			ļ	ļ	ļ <u></u>			
						<u> </u>	L		<u> </u>		
								<u> </u>			
			<u> </u>		l	ļ		.			
]			ļ <u> </u>		
				<u> </u>	l	ļ'	<u> </u>	<u> </u>		·	
			Ī	[<u> </u>				
			I					<u> </u>			·
1]								
	†	1]	_	Ī - · · ·		[
	1		Ī								
	T	1									· · · · · · · · · · · · · · · · · · ·
]	I				1			
			1		<u> </u>		1	<u> </u>	<u> </u>		

BUF	1 SEF	RVICES LT	U.	<u></u>		DR			LO		HOLE NO. 86-2
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	τo	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
)	1.66	OVB collar	ļ					<u> </u>	· · · · · · · · · · · · · · · · · · ·		
1.66	2.43	xtl tuff	Creamy White & Grey		·	S10 ₂			1% Py	Streaky mafic network surroun	nding Ad places and
			- Grey		·	Ad	 			SiO ₂ patches.	
2.43	2.78	Carbonaceous Zone, xtl tuff	Black & Cream			Limonite		 			
			with red	-br					· ·		
2,78	7.80	xtl tuff			- · · · · · ·					As 1.66-2.43, broken limonito	
			+	<u>-</u>				 		Strong fracturing with limon at 5.7 to 5.9 m, and at 7.1.	
				- · · · · · · · · · · · · · · · · · · ·				†		at 7.8 to 7.9.	
7.80	10.46	xtl tuff	drk gy			SiO ₂		<u> </u>	5-8% Py	8.3 - 9.1 strongly fractured	and broken core black and
			cream			Ad				limonitic br colour. Coarse	fault gouge material
										for 20 cm @ 8.8. 9.15 to entuff with 5 to 88 py occurs	-
]	<u> </u>	ļ <u></u>		stringers. Strong S102 floo	ding in this section.
			ļ .	*** - · · · · · ·						Section is noticably more ma	fic than usual.
10.46	14.70	xtl toff	Creamy W/little grey			SiO ₂ stro	1		5-8% Py	Py mostly dissem. and blebs. 11.55 to 11.72 mafic zone.	
										1/2 of section. Distinct so Mineral. Qtz. veinlets in	

PAGE _____ OF ___________

BOA	4 SER	PVICES LTL) .			DR			LO	G	HOLE NO. 86-2
INTER	VAL					RIPTION				STRUCTURE	REMARKS
FROM	10	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	MINERALS	FRACTURES PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
14.70	15.10	broken à						limonite	5-10% Py		
		fractured									
15.10	20.5	xtl tuff	creamy v	ith			Ad)				
			grey				S102 }	Strong	10% Py	Streaky mafics with py. Dis	
										-py stringers. Moderate SiO2	
										green talc @ 17.88 - 18 m. F	Fault zone @ 17.20-
										17.38 broken limonitic core.	
20.5	21.2	Andesite	Creamy- grey	(fg)		Ad modera SiO ₂ str			2-4% Py	Fairly massive core with mode	erate Ad alt. Ghost fsp
			6,						diss.	xtls seen. Greenish tinge no	ot like talc green.
									only	Low % of mafics.	
									0.0000000000000000000000000000000000000		
21.2	21.85	Broken xt1				Limonite					
		tuff				Ad					
						SiO ₂					
21.85	23.47	as 15.10 -20.5								Broken from 23-23.15.	
		xtl tuff									
23.47	27.90	as 20.5-21.2	Creamy- gy-fg							Strongly silicified - 3 cm.	Qtz vein at 26.95.
			1000	1			-			Very few mafic py stringers.	Some ghost trags.
				1		Ad very	atrone				
27.90	29.56	xtl tuff	Creamy	vfg	massive	Sio ₂ mo	derate	1-1		Quite massive Ad. and very lovery hard clay. Some green	ow mafic content. Resembles talc like material.
-	-	1	1	t					1	However, much harder than use	A STATE OF THE PARTY OF THE PAR

PAGE ___ 2 or __ #__

BO	4 SER	VICES LT	D.			DR	ILL		LO	G	HOLE NO. 86-2
INTER	RVAL		1		DES	RIPTION			*	STRUCTURE	REMARKS
FROM	TO	HOCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDOING,	MINERALIZATION, TYPE, AGE RELATIONS
29.56	30.38	xtl tuff	Creamy- w/gy-bla	ck						Very streaky light-dark grey	in creamy rock.
			layers							Cream portion is as 27.90 - 2	
										possible sedimentary layering	
30.38	31.45	Andesite	Creamy g		-	SiO ₂	-	-	1% Pv	Alteration decreases towards	end of section into good
			to stron	-		0102	-			andesite tuff - SiO, flooded	
			green							bottom.	
			1								
31.45	32.23	Andesite	Green-	fg		Limonite				Unaltered equivalent of 20.5	
			brown			near end				near small fault gouge zone a	nd end of section.
32.23	33.1	xtl tuff				limonite		Strong			
32.23	33.1	xti turr				limonice		Fractur	ing 5% P	y Streaky mafic-py. Strong li	monitic fracturing
	-						-	-		SiO ₂ flooding/	
33.1	37.19	xtl tuff	Creamy- gy-white			Ad -mode SiO ₂ - m	rate		5-10% Py	Mostly streaky mafic - py vei	nlets in a med-gr matrix
			- Sy white			S102 - m	derace			of grey tuff.	
37.19	39.80	xtl tuff				S10 ₂			5-10% Py	Distinct talc green, mostly 5	% diss xtls and blobs py
						Ad		-		increasing to 10% py dissem b	lobs, xtls & stringers.
39,80	40.4	xtl tuff	-						5% Py	Strong SiO ₂ flooding py blobs	
			1								
40.4	51.67	xtl tuff				S10 ₂) St (Ad)	tong		10% Py	Blobs stringers dissem. py. near 41 m.	Some green talc color
			1								

PAGE 3 of 4

DRILL HOLE NO _____

			 _	_ :::::::::::::::::::::::::::::::::::::						T	T
INTER	RVAL	ROCK TYPE				RIPTION		150,57,,050	r%	STRUCTURE	REMARKS
FROM	ro	NOCK IVIE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	MINERALS	PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
41.67	43.00	xtl tuff	Cream -w						10% Py	Broken limonitic core, open	spaces, fault gouge near 43 m.
			gy - 1im br.	bnitic							
43,00	47.00	xtl tuff	Creamy-g white	y					5-10% Py	44.23 m fault gouge and at 4 and xtls. Some py stringers	
7.00	47.20	broken xtl tuff	limoniti	c -						Core broken	
7.20	52.43	xtl tuff	creamy w	hite		S10 ₂) sti Ad)	ong		10% Py	The usual dissem. blobs with gouge.	lesser py veinlets. Fault
52.43	55.00	andesite tuff				SiO ₂ stro Ad - mode chlorite	rate			Silicified chlorite tuff , 1	-3% Py.
55.00	56.69	Black shale				SiO ₂				Abundant qtz veinlets in bla	ck shale.
END OF HO	OLE.					,					
			 								
	1	- 	†	-	†	·	<u> </u>	†	 	<u> </u>	

	4 SEF					<u> </u>	LO		
INTE	RVAL	- ROCK TYPE		DESCRIPT				STRUCTURE	REMARKS
FROM	70	NOCK TVICE	COLOUR GRAIN SIZE	TEXTURE ALTERA	ION MINERALS	PER METRE		(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
)	1.52	OVB			 	 			
1.52	2.90	xtl tuff	Creamy white	SiO ₂			₹ 1%	Pale green to patchy dark gre Less than 1% dissem. py. Str	
2.90	3.44	Carbonaceous XII tuff.	Black to	S10 ₂ (Md	lower section	ion)-frac	tures	Top 1/2 section extremely car siliceous. Bottom section is much less carbonaceous materi	light gray cream with
3.44	4.00	xtl tuff	light bn grey	Limon	te		3~5% Py	Broken & fractured core, limo fractures @ ~ 45 - 550 to axi	nite bn color. Py dissem
4.00	8.65	xtl tuff	pale creamy 8y	SiO ₂ n	oderate to	stronger	5% Py	-5% py mostly dissem. in smal and xtls. Minor Py veinlets silicified fractures and vein -5 m @ 30° to axis fractures. @ 60-80° to axis fractures.	& stringers. Strongly
								6 m fractures @ 50° to axis	
	1							& SiO ₂ veinlets. 7 m frac	ture at 60°.
				T		T		@ 5.18, 5 cm section of stron	gly limonitic core with small
								open spaces. Fractures are g	enerally limonitic.
8.65	9.00	xtl tuff fractio	h rd-br	limon	te			Strongly broken and fractured	zone.
9.00	9.70		dk gy to	sio ₂			10% Py	10% Py in veinlets mostly with	
		 	It. gy.					is layery with dark mafic py SiO ₂ veinlets creamy white an green talc? color. Py is als	d Ad bands sometimes with

PAGE _____ OF ______

DRILL HOLE NO.____

BOA	4 SER	RVICES LT	D		DR	LL		LO	<u> </u>	HOLE NO. 86-3
INTER	IVAL				CRIPTION			. %	STRUCTURE	REMARKS
FROM	ro	- ROCK TYPE	COLOUR GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDOING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
									slightly diss. py in SiO2 band	ds. Bands at $\sim 50 - 40^{\circ}$ to
	i	1		1			1		core axis.	
	†			<u> </u>	†		†··			
70	10.10	xtl tuff	creamy-	† -	S10 ₂		1	5% Pv	5% py in 1 mm sized veinlets	& dissem. Strong SiQ.
	<u> </u>	- 	white green		Ad				flooding and veinlets. Disti	2
	1		1	· - ·			 		ALVOSTING ON VEHICLES. PISTE	ALL SALVEY CAME OF THE SALVEY CONTRACTOR OF THE SALVEY CAME OF THE SAL
0.10	10.35	as 9.00-9.70	i	†				10%	Moderately fractured 10% Py.	
					†		†	· · 		
10.35	11.28	xtl tuff	Creamy- white less	1	SiO ₂		 	10%	Strongly pyritized - mostly i	n blobs and diss. Less
	<u> </u>		grey	† · · · · · · · ·					veinlets. Very strongly silif	
	 		- 		1	 	†	·	near 11.28.	
		 	- -	† · · ·	ļ	 	† -			
11.28	12.30	xtl tuff	dk, grey to	 	1			10-15% P	y - Strong py stockwork veinle	ts $@ \sim 40^\circ$ to axis.
		 	lt. gy	· 			<u> </u>		Veinlets contain abundant py	
	 		minor gn		† - · · · - · · · - ·	<u> </u>	†			
	 		1	1		 	+		Creamy areas Ad and SiO ₂ cont green talc? tinge. Strong fr	acture at 12.25.
	 		 	+		·	 	 		
12.30	13,55	xtl tuff	Cream	†	SiO ₂		<u> </u>	5-10% Py	Minor py-mafic bands (veinlet	s) mostly Ad and SiO ₂
			white	T	Ad	1	†		with diss. and blobs of py.	
	 	- 	loss-gy	†- ·-	, and	t	†	·	near 13 m. 3 cm of white qtz	
		 	 	† · · · · · ·			†			
13.55	14.00	xtl tuff	Dk gy	•	S10 ₂		-	5-10° Pv	Banded stockwork py-mafic in	creamy Ad SiQ banding
			gr cream	•	Ad	1	†	10%17	at \sim 60° to axis. Some Py (m	
		†	† †	†		†	†			
4.00	15.70	as 12.30-13.55	- † ·	1		Tr tet	†	5% Py	One small piece of tet in whi	te qtz veinlet, several
.4.00	1.12.70	xtl tuff	1 1	1	1	@ 4.90		T.E. Z	more tet vfg in qtz at 15.35.	

PAGE 2 OF 6

DRILL HOLE NO._____

A L 10			<u></u>				LO		HOLE NO 86-3
10				RIPTION		· ·		STRUCTURE	REMARKS
	ROCK TYPE	COLOUR GRAI	N TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDOING, ETC.)	MINERALIZATION, TYPE, AGE RELATIONS
15.95	Broken fractured	Creamy-gy		sio ₂			5% Py	Zone of moderate fracture and	strong SiO ₂ .
_ · 1	Xtl tuff				Tet.		5% Py	Highly SiO ₂ flooded traces of	tet.
16.74	as 12.30-13.55					 	5-10% Py	Banded mafic py and Ad-SiO ₂	
17.76	xtl tuff- creamy	j · · · · · · · · · · · · · · · ·		\$102			4-8% Pv	Non-banded -"Massive" Ad with	dissem. blobs and xtls
	white			Ad				of py. Minor bands of mafic	
18.90	xtl tuff	gy-cream		-			18-10% F	y Banded mafic py and Ad SiO ₂ .	Strong SiO ₂ flooded.
				ļ				18.30 -18.35 limonitic gouge	zone
					L . <u></u>			18.50-18.58 limonitic gouge z	one
19.35	broken xtl tuff			<u></u>	<u> </u>	 	5% py	Broken & fractured core - som	e sericite
20.14	xtl tuff	Py pale		S102		Strong -		Fracturing @ 30° to axis - mo	derately fractured and
		creamy-gr		Ad		1	, 10% Py	limonitic. Strong Py veinlets	up to 1 cm wide . Py
				limonite		-		occurs in bands and minor dis	sem.
23.00	Andesite tuff	Light to		Minor		 	19 Pu	Moderately altered tuff. Med	ium. Some individual
		 -	Ť	Ad &	 	† -		grains can be seen. Section	contains modeate limonite
				SiO ₂		1		fractures and moderate SiO2 v	einlets. Fracturing
			<u> </u>	2		1		crosses qtz vein 1% dissem p	
				1	<u> </u>	1		sub to core axis. Str	ongly limonitic with
		! !	<u> </u>	1	1		_	some open spaces. No sharp	contact will lower
	•	1	İ	1	1		1	next section. is gradual	•
1 1 1 2	18.90	.6.74 as 12.30-13.55 17.76 xtl tuff- creamy white 18.90 xtl tuff 19.35 broken xtl tuff 20.14 xtl tuff 23.00 Andesite tuff	.6.74 as 12.30-13.55 17.76 xtl tuff- creamy white 18.90 xtl tuff gy-cream 19.35 broken xtl tuff 20.14 xtl tuff Py pale creamy-gr 23.00 Andesite tuff Light to dark gy	17.76 xtl tuff- creamy white 18.90 xtl tuff gy-cream 19.35 broken xtl tuff 20.14 xtl tuff Py pale creamy-gr	17.76 xtl tuff- creamy SiO2	17.76 xtl tuff- creamy S102 white Ad Ad 18.90 xtl tuff gy-cream Si02 Si02 Creamy-gr Ad limonite Si02 Ad 6 Si02 Ad 6	17.76 xtl tuff	18-10% 1	Single S

PAGE _____ OF _____

	PVICES LTI	•			DR			LO		HOLE NO. 86-3
VAL	[T						9/	STRUCTURE	REMARKS
τo	AOCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
26.00	bleached	creamy		Minor	SiO ₂			4 1% P	Bleached tuff. Minor py as	dissem. Ghost fsp
	andesite? tuff	white-gy		Minor	Ad				xlls in matrix of bleached ver	y slightly green
		slight							material. Minor fracturing va	rious angles. Patches
		gn tinge	not tale						spots of mafics. Moderate qta	stringers and flooding.
									25.15 3 cm limonitic gouge s	seam (fracture zone)
									coarse frags.	
26.52	bleached	slightly	darker t	han above	section	(23-26 m			Distinctly more andesite. (le	ess altered)
	tuff	-								
28.80	as 23-26	Cream-wh	ite							
		green								
29.57	xtl tuff	cream			SiO ₂				Chlorite stringers ~ 5 cm w	ide @ 30° to axis.
		green			! -	te			Ghost fsp xtls, qtz flooded an	nd veinlets @ 30° and
									\sim 15 to core axis.	
	<u> </u>									
30.46		light ev			S i O ₂			<1% Py	Relatively massive Ad. some	green stringers
					Ad	ļ 			80° to axis. Moderate SiO	flooding.
31.06		light gy to black			SiO ₂	Strong		Section	Color ranges from lt. gy at to Top section contains abundant veinlets. Bottom of section	qtz stringers and
						 			tuff?	
	26.00 26.00 26.52 28.80 29.57	AOCK TYPE 26.00 bleached andesite? tuff 26.52 bleached tuff 28.80 as 23-26 29.57 xtl tuff	AOCK TYPE COLOUR 26.00 bleached creamy andesite? tuff white-gy slight gn tinge 26.52 bleached slightly tuff 28.80 as 23-26 Cream-wh green 29.57 xtl tuff cream white green 30.46 light gy 31.06 light gy	TO ROCK TYPE COLOUR GRAIN SIZE 26.00 bleached creamy andesite? tuff white-gy slight gn tinge not talc 26.52 bleached slightly darker to tuff 28.80 as 23-26 Cream-white green 29.57 xtl tuff cream white green 30.46 light gy	TO ROCK TYPE COLOUR GRAIN TEXTURE 26.00 bleached creamy Minor andesite? tuff white-gy Minor slight gn tinge not talc 26.52 bleached slightly darker than above tuff 28.80 as 23-26 Cream-white green 29.57 xtl tuff cream white green 30.46 light gy	TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION SIZE MINOT SIO2 26.00 bleached creamy Minor SIO2 andesite? tuff white-gy Minor Ad slight gn tinge not talc 26.52 bleached slightly darker than above section tuff 28.80 as 23-26 Cream-white green 29.57 xtl tuff cream white green Ad chloring green 30.46 light gy SiO2 Ad	TO BOCK TYPE COLOUR SIZE TEXTURE ALTERATION MINERALS 26.00 bleached creamy Minor SiO ₂ andesite? tuff white-gy Minor Ad Slight gn tinge not talc 26.52 bleached slightly darker than above section (23-26 m) tuff 28.80 as 23-26 Cream-white green 29.57 xtl tuff cream white green SiO ₂ Ad chlor te 30.46 light gy SiO ₂ Strong	TO	TO ROCK TYPE COLOUR GRAIN TEXTURE ALTERATION ORE MINERALS PERMETRE Sulphide 26.00 bleached creamy andesite? tuff white-gy Minor Ad Slight gn tinge not talc 26.52 bleached slightly darker than above section (23-26 m) tuff 28.80 as 23-26 Cream-white green 29.57 xtl tuff cream white green 29.57 xtl tuff cream white green 21.06 light gy SiO2 Strong Section Slight gy SiO2 Strong Section	TO ROCK TYPE COLOR SIZE TEXTURE ALTERATION UNDER FRACTURES SUIDING FRACTURES, FAULTS, FOLDING, BEDONG, FIG. 100 bleached creamy Minor Ad XIIs in matrix of bleached ver material. Minor py as xils in matrix of bleached ver material. Minor fracturing versions, Bedong, and sight general sight grant fractures, and the coarse frags. 26.52 bleached slightly darker than above section (23-26 m) Distinctly more and site. (16 tuff green green Ad chlor te Ghost fap xils, qtz flooded at with the green Ad chlor te Ghost fap xils, qtz flooded at a coarse from It. gy at to black to black and a coarse from It. gy at to black to black and a coarse from It. gy at to black to black and a coarse from It. gy at to floor from the coarse from It. gy at to floor from the coarse from It. gy at to floor from the coarse from It. gy at to floor for coarse from It. gy at to floor for coarse from It. gy at to floor for coarse from It. gy at to floor for coarse from It. gy at to floor for coarse and coarse from It. gy at to floor for coarse from It. gy at to floor for coarse and coarse from It. gy at to floor for coarse and coarse from It. gy at to floor coarse from It. gy at to floor coarse and coarse from It. gy at to floor coarse and coarse from It. gy at to floor coarse and coarse from It. gy at to floor coa

PAGE _____4 OF ___6__

BO	4 SER	RVICES LTI	D.			DR	ILL		LO	G	HOLE NO. 86-3
INTE	RVAL				DES	RIPTIO	٧.	-	9/	STRUCTURE	REMARKS
FROM	10	- ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
31.06	31.75	xtl tuff				SiO, Str	ng	Tr Tel	< 1% Py	31.1 - 31.3 is fracture zone,	
				ļ		Ad		one spec	k)	Lower portion of section stro	ng Ad similar to
31.75	34.00	Andesite tuff	Gr-gy	c.g-f.g.		Moderate	<u> </u>		71 % D		
				<u>-</u>		S102 Minor Ad	 	<u> </u>	17 Py	Good cg-fg (variable) andesit tuffaceous fragments and xtls	
	<u> </u>					MINOI AG	1			varying degrees of alteration	· · · · · · · · · · · · · · · · · · ·
34.00	35.20	xtl tuff	cream-wh	ite		S102			10% Py	Well altered xtl tuff, Py occ	
					<u></u>	Ad			ļ	blobs and dissem. to 34.5 is	strong veinlets, below
		<u> </u>	- 	ļ		<u> </u>				34.5 is strong blobs and diss	em.
35.20	36.36	xtl tuff	creamy-1			SiO ₂ -St	rong		5% Py	Py mostly blobs and dissem.	Some veinlets at bottom
20120	30.30	ACT COLL	green			Ad -St				of section. Ad has slight gr	een color. Section
	1					T				contacts dyke. sharp. I	ncrease in py near ,
								<u> </u>		possibly related to dyke.	
36.36	37,95	Mafic dyke	mud gy	<u> </u>		ļ				Some xenolith of gneissic mat	erial ~ 2 cm wide.
			bn			ļ					
37.95	42.16	xtl tuff	cream-wh	ite		S10 ₂	<u> </u>	<u> </u>	5-10% Py	SiO ₂ and Ad alterati	on. Py mostly as blobs
37.73	12,110	TACE COLL			† ·	Ad	1	†	† <u>-</u>		oughout 39.4 is 5 cm
			 	†		<u> </u>		†		fracture zone. Moderate/vein	lets .41 m broken core
		<u> </u>						ļ		(fracture zone)?	
42.16	42.45	Fracture zone	İ			limonite				Broken core.	
	+		 	-	ł				 		
42.45	42.80	xtl tuff		· -	1	1	†··	1	3-5% Py		

PAGE _ 5 OF _ 6

DRILL HOLE NO _____

BOA	4 SER	VICES LTD) .			DR	ILL		LO	G	HOLE NO. 86-3
INTER	IVAL					RIPTION			%	STRUCTURE	REMARKS
FROM	т о	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
42.80	43.28	Fracture Zone xtl tuff				Limonite			5% Py.	Broken ore - some good xtl tu open spaces.	ff - core with large
43.28	48.70	xtl tuff				S10 ₂			5-10% Py	Mostly diss. and blobs of py.	Green tinge throughout.
					_	Ad				Pyrite-mafic veinlets at 44.7	-44.8 and at
						talc				48.3-48.5	
48.70	50.00	Andesite tuff	green(pa	le)		S10 ₂ -Mod	erate		∢ 1% Py	"relatively" unaltered andesi	te.
50.00	50.86	xtl tuff				SiO ₂			5% Py	Blobs and dissem.	
50.86	52.00	Andesite tuff	Pale Gre	en		ļ			<1% Py	as 48.7 - 50.0.	
52.00	52.70	xtl tuff		vfg (mic	ro)	SiO ₂		 		Pale cream (slight green ting	
						Ad (stro	(g)		< 1% Py	Ad with astomizing "green" Si	iO ₂ veinlet.
52.70	54.45	xtl tuff	pale cre	am	. 	\$i0 ₂ -st	rong		<1% Py	Strong SiO ₂ flooding moderate	e fracturing.
			green			Ad	<u> </u>			Fract are limonitic. Broken	core at 54 m.
54.45	54.70	carbonaceous zon	e Black			·					
54.70	55.47	dyke									
	END OF H	DLE .									
									. <u></u> <u>-</u>		

PAGE 6 OF 6

DRILL HOLE NO._____

BOA	1 SER	RVICES LTD) .			DR	ILL		LO	G	HOLE NO. 86-4
INTER	VAL	Ī	T			RIPTION			9/	STRUCTURE	REMARKS
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
)	1.99	collared at 1.88	3								
1.99	6.00	Andesite	limonite	mg	tuff	Limonite			1%	10 cm orange-bn clay gouge at	3 m. 5 cm red-bn
	· · · ·	1	green	1		S102- mod	erate		_	fault gouge at 4.45 m.	
			bn								
6.00	11.46	gy-gr andesite	†	mg		SiO, mod	rate		1% Py	relatively fresh andesite - s	lightly bleached at
			†		1				·	end of section.	
			İ		†	1	·				
11.46	12.10	fracture zone	limonite		···					Broken and fractured core wit	h gouge material at 11.80.
			bn		ļ						
12.10	16.16		11							Moderately altered, pale grey	
12.10	16.16	andesite tuff	drk gy	md-g	<u> </u>	S10 ₂	 -			Becomes much darker from 13.5	
				to black	{ 			ļ		This darker material is unalt	
			ļ			ļ <u></u>				stringers.	ered turr. Strong qtz
		<u> </u>	 			ļ	<u> </u>	 		Sti ingers.	
16.16	16.50	xtl tuff	pale cre	am fe		Ad	-	+	3-5% Py		100
	 -		gr-m		<u> </u>	SiO ₂		†	3 3% 19		
			<u> </u>		<u> </u>	<u> </u>	İ	†	· · · · · · · ·		
16.50	17.27	Fracture zone	limonite			<u> </u>	1			Strongly fractured, vfg xtl t	ouff.
10150	1,12	Tracedre Bone	bn								
			1	•		-					
17.27	17.50	xtl tuff	lcream-gy 1	vfg	•	Ad			2% Py		
	18.95	Fracture zone	1	1		Limonite		†		Strongly fractured, vfg xtl t	uff
		-	1	İ	†	1					
<u> </u>		- 	†	†	1	1	†	·		T	

PAGE __1 __ OF __3

DRILL HOLE NO. _____

BO	4 SEF	RVICES LTE) .			DR	ILL		LO	G	HOLE NO. 86-4
INTE	RVAL		T			RIPTION			~	STRUCTURE	REMARKS
FROM	10	ROCK TYPE	COLOUR	GRAIN	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
18.95	25.00	Xtl tuff	creamy	vfg		Ad			3-5% Py	Pale creamy grey with greeny	tinge. Section is
	Ī		grey		I	SiO ₂ -mod	erate			sometimes pinkish-br-orange w	ith 1-2 mm sized patches
					I					of greenish material. Equival	ent section logged in
					ļ					86-5 hole. Py is all dissem.	Broken core at 24.8 to 25.
25.00	28.00	Xtl tuff	gr-green	vfg		Ad)Mode	ate			Generally similar to above bu	t far less patches of
	-		ļ <u>.</u>			S10 ₂)				greenish material.	
28.00	33.17	Mafic Dyke									
33.17	42.28	xtl tuff	grey			Ad) Mode: S10 ₂)	ate		3-8% Py	Large section of very similar chlorite? 1-2 mm. Moderat to weakly fractured shallow dissem.	ely altered core, moderately
42.28	46.90	xtl tuff	grey	vfg	massive	Ad	<u> </u>				
						SiO ₂ str	ng		5% Py	Dissem. Strong silicified xt - some py stringers.	1 tuff. Py mostly dissem
46.90	52.40	xtl tuff	green	vfg		SiO ₂ mod	erate)			Strong SiO ₂ flooding - 47 m. 49.30 - 2 cm gouge.	Fairly massive tuff.
52,40	52,70	<u>bro</u> ken limonite									
52.70	54.40	xtl tuff	creamy-g	y		SiO ₂ mod	1	-	5% Py		
		<u> </u>	† ·		ļ	Ad - mod	rate				
	l	2	<u> </u>	L	L	L	J	 		L	

PAGE 2 OF 3

BOA	4 SER	VICES LTL) .			DR			LO	G	HOLE NO. 86-4
INTER	RVAL		<u> </u>			RIPTION				STRUCTURE	REMARKS
FROM	τo	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	OR E MINERALS	FRACTURES PER METRE	% Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATION
64.40	54.80	Broken xtl tuff							<u></u>	Fracture zone - broken pieces	of core. More andesite.
54.80	57.00	Andesite tuff	gr-gy			SiO ₂ mode	rate			Relatively fresh andesite.	
57.00	58.52	Andesite	gr-gy	c.g.		SiO ₂)mode	rate		3-5% Py Diss.	Mottled dark-light green patc	ney andesite.
58.52	64.00	Andesite	gr-gy	fg-ng					5% Py		
64.00	70.20	xtl tuff	Cream white-gy			SiO ₂			5-10% Py	Moderately fractured xtl tuff @ 65 m and @ 65.5 m and 60 ⁰ m. and minor py stringers. Mino	Py as diss. xtls blebs
0.20	71.00	Black shale								Moderate qtz. stringer	
	END OF H	DLE									
						'					
 - : -			[
			<u> </u>		†						
				†	1		 	 			

PAGE ____3 OF __3_

DRILL HOLE NO.

BOA	4 SER	PVICES LT	D.			DR			LO	G	HOLE NO. 86-5	
INTER	IVAL		T			RIPTION				STRUCTURE	REMARKS	
FROM	то	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	Sulphid	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS	
0	1.70	Collar										
	1					ļ						
1.70	6.00	Andesite	limonite			SiO ₂ - we	ak		<1% Py	Relatively fresh andesite stai	ned limonite bn.	
	l	İ	br-gr	fn-nd-gr		Ad - mind	r			Moderate fracturing. Weak to moderate qtz stringers		
										broken and gouged core @ 5.1 m	1.	
		 	<u> </u>			a.c			41 W D	0.00 11 1 1 5	C	
6.00	6.62	gy andesite	1t gy	fn-nd gi		SiO ₂ weal	ļ		<1% Py	SiO ₂ blobs minor fracturing.	Some original texture	
	ļ		ļ		! 	 				remaining.		
6.62	7.60	Andesite	rd-bn	 	ļ	limonite		zone of	mildly b	oken limonitic core.		
7.60	14.23	andesite tuff	gn-gy-bl			SiO ₂ weal			1% Py	Section of "fresh" lapilli tui	f. Some zones of strong	
	-	diadesire carr	6 67 55				I			SiO ₂ flooding - @ 7.8 m,		
			<u> </u>							12.3 -13.5 m. Color varies fr	om green-gy to black.	
										Some fracturing at various ang	gles.	
			ļ			-			·			
14.23	18.40	xtl tuff	creamy			S10 ₂		abundani		Zone of strong fracturing. Al		
		<u> </u>	white			Ad		fractur	ng	Strong Ad - moderate SiO2. Fi	cacturing very strong	
			limonte	bn		limonite				@ 14.33 to 15.3. Again at 17.	.8 to 18.1.	
18.40	19,10	xtl tuff	creamy-g	v		Ad		moderate	3-5% P	Ore 2 cm blobs of PY and SiO	· · · · · · · · · · · · · · · · · · ·	
			green			SiO ₂		†	ing diss			
								I				
19.10	23.00	xtl tuff	gy-gn					 	. <u> </u>	Core is moderately broken and		
			some ora	nge		Ad		fractur	d diss	irregular shaped patches or bl		
			alterati	on		SiO ₂ -mod				green mineral. In area of par		
			1							orange color. Some S102 strip	igers & flooding, not string.	

PAGE ______ 0F ____ 3

DRILL HOLE NO.

INTE	INTERVAL			DESC	RIPTION	•			STRUCTURE	REMARKS	
FROM	10	ROCK TYPE	COLOUR	GRAIN SIZE				FRACTURES PER METRE	% Sulphide	(FRACTURES, FAULTS, FOLDING, BEDDING, ETC)	MINERALIZATION, TYPE, AGE RELATIONS
23.00	25,20	mafic dyke	dr by-gy		1	<u> </u>				Mafic dyke. Gouge seam with cl	ay 2 cm at bottom of
		1						1		section.	·
		 			† — — —						·····
25.20	25.35	xtl tuff	cream-gy								
25.35	27.10	Mafic dyke			ļ					Gouge seam 3 cm at 26.90.	
						ļ					
27.10	29,50	xtl tuff	<u> </u>		ļ 	ļ	<u></u>			Similar to 19.1 - 23. Less pa	tchey material.
			 		ļ						
29.50	35,45	Massive xtl	creamy-			Ad			5% Py	Moderate to strong SiO ₂ floodi	
	<u> </u>	tuff	white		ļ	SiO ₂				xtls & blobs. Good solid core	: .
35.45	36.00	40% recovery	<u> </u>							,	
36.00	37.00	10% recovery								Zone of highly broken core and	gouge.
37.00	38.00	30% recovery								Seams. Some 3-6 cm pieces of	solid xtl.
38.00	40.00	5% recovery				<u> </u>				tuff- 5% py. Mostly limonitic	fragments and gouge
40.00	41.00	50% recovery								recovered.	
41.00	42.00	15% recovery								Small 4 cm section at 47 m wit	h 1% tet.
42.00	43.00	15% recovery				<u> </u>				10-15% Py - Tr Sp.	
43.00	44.00	20% recovery									
44.00	45.00	50% recovery									
45.00	46.00	10% recovery									
46.00	47,00	60% recovery									***************************************
47.00	49.70	xtl tuff								Broken limonitic core.	
		50% recovery									

PAGE _____2 OF ____3___

INTER	VAL		T		DESC	RIPTION	v			STRUCTURE	REMARKS
FROM	T O	ROCK TYPE	COLOUR	GRAIN SIZE	TEXTURE	ALTERATION	ORE MINERALS	FRACTURES PER METRE	% Sulphide	I .	MINERALIZATION, TYPE, AGE RELATION
49.70	55.50	xtl tuff	creamy-			SiO ₂ -st	ľ	weakly		Py as diss xtls and blobs with	mafic-py stringers.
			white			Ad – s	rong	fractur	ed	Strongly silicified at 52.12 m	to 53.7 and 54.40-54.80.
			grey								
					<u> </u>	<u> </u>					
55.50	57.90	xtl tuff	 		<u> </u>	<u> </u>		<u></u>		xtl tuff grading into andesite	
		andesite tuff	<u> </u>					ļ <u>.</u>		compared to xtl tuff. Near end	l of section good lapilli
								ļ		sized volume frags seen.	
					<u> </u>		<u> </u>				
57.90	60.5	black shale	black	vfg						Black shale and argillite with	abundant qtz stringers.
	END OF	BOLE									
			ļ								
								ļ			
							ļ				
					<u> </u>		ļ				
							<u> </u>				
<u>.</u>											
		ļ									

PAGE ____3 OF __3

APPENDIX IV

ASSAY CERTIFICATES

Specialists in Mineral Environments 705 West 15th Street Worth Vancouver, B.C. Canada V7M 172

PHONE: (604) 980-5814 GR (604) 988-4324

TELEX: VIA USA 7601067 UC

rtificate of GEOCHEM

Company: TEUTON RESEARP./QUEST CANADA Project:
Attention: D. CREMONESE/R. SHEARING

File:6-983/P1 Date:OCT 17/86 Type:ROCK GEOCHEM

<u>We hereby certify</u> the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	PPM	PPB	
86-1 11-12	6.7	90	
86-1 12-13	1.9	26	
86-1 13-14	1.8	25	
86-1 14-15	3.2	9	
86-1 15-16	2.4	34	
86-1 16-17	3.2	49	
86-1 17-18	1.9		
		8	
86-1 18-19	1.7	24	•
86-1 19-20	2.6	60	
86-1 20-21	1.7	5	
86-1 21-22	3.3	53	
86-1 22-23	4.6	175	
86-1 23-24	2.2	70	
86-1 24-25	0.9	4	
86-1 25-26	1.0	i	
86-1 26.75	1.9	1	
86-1 26-27	1.2	18	
86-1 27-28	2.8	16	
86-1 28-29	0.9	80	
86-1 29-30	1.8	160	

86-1 30-31	1.1	59	
86-1 31-32	1.2	53	
86-1 32-33	1.5	56	
86-1 33-34	2.1	8	
86-1 34-35	6.3	110	
7/ 4 7E 7/			
86-1 35-36	8.7	105	
86-1 36-37	4.0	3 <u>6</u>	
86-1 37-38	3.2	7	
86-1 38-39	0.8	2	
86-1 39-40	1.0	1	

Certified by_

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

rtificate of GEOCHEM

Company: TEUTON RES.CORP./QUEST CANADA Project: Attention: D. CREMONESE/R. SHEARING

File:6-983/P2 Date:OCT 17/86 Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	PPM	PPB	
86-1 40-41	1.4	8	·
86-1 41-42	1.5	16	
86-1 42-43	2.0	2	
86-1 43-44	3.1	23	
86-1 44-45	2.8	1	
86-1 45-46	2.2	4	
86-1 46-47	1.7	19	
86-1 47-48	1.9	54	
86-1 48-49	0.6	1	
86-1 49-50	0.6	2	
86-1 50-51	0.4	1	
86-1 51-52	0.5	3	
86-1 52-53	0.9	3	
86-1 53-54	1.1	2	•
86-2 1.75-3.0	1.0	20	
	4 0		
86-2 3-4	1.0	72	
86-2 4-5	1.1	61	
86-2 5-6	1.5	177	
86-2 6-7	1.0	18	
86-2 7-8	1.4	12	
~/ ¬ ¬ ¬		~ 	
86-2 8-9	1.7	31	
86-2 9-10	1.9	17 9	
86-2 10-11	3.0		
86-2 11-12	2.0	16	
86-2 12-13	1.8	24	
86-2 13-14	2.4	19	*
86-2 14-15	3.6	3	
86-2 15-16	2.1	42	
86-2 15-16	2.7	82	
86-2 17-18	2.9	80	
00 2 1/-10	ن		

Certified by

Specialists in Mineral Environments 705 West 15th Street North Vancouver. B.C. Canada V7M 172

PHONE: (604) 980-5814 OR (604)

TELEX: VIA USA 7601067 UC

rtificate of GEOCHEM

Company: TEUTON RESOURCES/QUEST CANADA EXPL. Project:

Attention: D. CREMONESE/R. SHEARING

File:6-983/P3
Date:OCT 17/86
Type:ROCK GEOCHEM

We hereby certify the following results for samples submitted.

		; ± ± ± ± ± ± ± ± ± + + + + + + + + + +
Sample	AG	AU-FIRE
Number	PPM	PFB
86-2 18-19	5.2	40
86-2 19-20		65
86-2 20-21	1.4	30
		44
86-2 21-22		
86-2 22-23	3.1	80
86-2 23-24	1.2	49
86-2 24-25	1.0	22
86-2 25-26	0.7	4
86-2 26-27	0.7	30
86-2 27-28	0.5	7
		······································
86-2 28-2 9	0.4	8
86-2 29-30	0.3	- 6
86-2 30-31	0.5	7
		5
86-2 31-32	1.1	
86-2 32-33	2.0	50

86-2 33-34	1.7	20
86-2 34-35	2.1	32
86-3 0-2	1.0	9
86-3 2-3	1.1	14
86-3 3-4	0.8	27
86-3 4-5	0.7	26
86-3 5-6	0.8	40
86-3 6-7	1.0	32
The state of the s	0.8	
86-3 7-8		15
86-3 8-9	1.2	17
86-3 9-10	1.9	<u>35</u>
86-3 10-11	1.7	30
86-3 11-12	2.3	28
86-3 12-13	2.6	25
86-3 13-14	1.7	22

Certified by___

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

PHONE: (604) 980-5814 OR (604)

GEOCHEM

tificate of

Company: TEUTON RESOURCES/QUEST CANADA EXPL. Project: Attention: D. CREMONESE/R. SHEARING

File:6-983/P4 Date: OCT 20/86 Type:ROCK GEOCHEM

TELEX: VIA USA 7601067 UC

He hereby certify the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	PPM	PPB	

86-3 14-15	2.8	25	
86-3 15-16	3.0	45	
86-3 16-17	3.7	33	
86-3 17-18	1.8	24	
86-3 18-19	1.8	52	
86-3 19-20	1.4	122	
86-3 20-21	1.0	9	
86-3 21-22	0.5	5	
86-3 22-23	0.4	4	
86-3 23-24	0.4	6	♣ ·
86-3 24-25	0.4	4	
86- 3 25-26	0.6	4	
86-3 26-27	0.6	7	
86-3 27-28	0.5	6	
86-3 28-29	0.5	6	
			·····
86-3 29-30	0.6	5	
86-3 30-31	0.6	7	
86-3 31-32	0.8	8	·
86-3 32-33	0.7	10	
86-3 33-34	0.8	8	
86-3 34 -35	5. 2	26	
86-3 3 5-36	1.4	25	
86-3 36-36.5	1.5	10	
86-3 37-38	1.7	5	
86-3 38-3 9	1.6	12	•,
86-3 39-40	1.8	26	**************************************
86-3 40-41	1.4	18	
86-3 41-42	2.8	25	
86-3 42-43	7.6	30	
86-3 43-44	3.4	27	

Certified by

Specialists in Mineral Environments 705 West 15th Street Worth Vancouver, B.C. Canada 97H 172

PHONE: (604) 980-5814 DR (604)

TELEX: VIA USA 7601067 UC

tificate of GEOCHEM

Company: TEUTON RESOURCES/QUEST CANADA EXPL. Project:

Attention: D. CREMONESE/R. SHEARING

File:6-983/P5
Date:DCT 20/86
Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	PPM	FPB	
86-3 44-45	3.0	36	
86-3 45-46	1.9	54	
86-3 46-47	3.8	99	
86-3 47-48	1.6	39	
86-3 48-49	0.8	51	
86-3 49-50	0.6	10	
86-3 50-51	0.8	25	
86-3 51-52	0.8	10	
86-3 52-53	0.6	10	
86-3 53-54	1.0	7	
86-3 54-54.5 86-5 1-2 86-5 2-3 86-5 3-4 86-5 4-5	1.0 1.3 1.4 1.0	12 13 10 8 10	
86-5 5-6	1.1	19	
86-5 6-7	1.2	10	
86-5 7-8	1.0	15	
86-5 8-9	1.2	12	
86-5 9-10	1.6	14	
86-5 10-11	1,4	15	
86-5 11-12	1.6	5	
86-5 12-13	0.8	8	
86-5 13-14	0.9	4	
86-5 14-15	0.8	33	
86-5 15-16	0.8	63	
86-5 16-17	0.9	85	
86-5 17-18	1.4	65	
86-5 18-19	1.2	80	
86-5 19-20	1.6	67	

Certified by_

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 172

PHONE: (604) 980-5814 OR (604)

TELEX: VIA USA 7601067 UC

tificate of GEOCHEM

Company: TEUTON RESOURCES/QUEST CANADA EXPL. Project:

. Attention: D. CREMONESE/R. SHEARING

File:6-983/P6
Date:OCT 20/86
Type:ROCK GEOCHEM

We hereby certify the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	PPM	PPB	
86-5 20-21	1.6	100	
86-5 21-22	2.0	375	
86-5 22-23	1.4	106	
86-5 27-28	0.9	94	
86-5 28-29	1.2	104	
86-5 29-30	1.0	85	
86-5 30-31	0.8	58	
86-5 31-32	1.3	118	
86-5 32-33	1.0	108	
86-5 33-34	1.4	61	
86-5 34-35	1.2	70	
86-5 35-36	1.2	62	
86-5 36-40	1.3	25	
86-5 40-41	1.6	50	
86-5 41-45	1.2	35	
86-5 45-47	2.6	50	
86-5 48.5-50	2.2	45	
86-5 50-51	2.0	36	
86-5 51-52	2.8	45	
86-5 52-54	2.4	54	
86-5 54-55 86-5 55-56 86-5 56-57 86-5 57-58 86-5 58-59	1.8 3.0 1.4 1.0 1.0	59 120 20 15	·
86-5 59-60 86-5 60-60.5	1.4	13 10	

Certified by

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

PHONE: (604) 980-5814 DR (604)

TELEX: VIA USA 7601067 UC

tificate of GEOCHEM

Company: TEUTON RESOURCES/QUEST CANADA EXPL.

Project:

Attention: D. CREMONESE/R. SHEARING

File:6-993/P1
Date:OCT 20/86

Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample	AG	AU-FIR	
Number	PPM	PPB	

86-2 35 - 3 6	3.6	65	
86-2 36-37	5.4	93	
86-2 37-38	1.8	35	
86-2 38-39	i.2	19	
86-2 39-40	1.8	23	
C1	1.8	30	
86-2 40-41		- -	
86-2 41-42	1.5	40	
86-2 42-43	1.2	38	
86-2 43-44	1.4	47	
86-2 44-45	1.6	34	
86-2 45-46	1.8	1.2	
86-2 46-47	2.0	18	
86-2 47-48	1.7	70	
86-2 48-49	2.4	67	
86-2 49-50	3.2	105	
DD 2 77 DV	~		
86-2 50-51	1.6	71	
86-2 51-52	1.5	146	
86-2 52-53	1.0	63	
86-2 53-54	0.9	6	
86-2 54-55	0.6	9	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, 	
86-2 <b>55-56</b>	0.9	7	
86-2 56- <b>56.69</b>	0.8	5	
86-4 0-3	0.9	12	
86-4 3-4	1.4	10	
86-4 4-5	1.0	14	
		~ ·	
86-4 5-6	0.8	8	
86-4 6-7	1.2	5	
86-4 7-8	1.2	9	
86-4 8-9	1.8	3	
86-4 9-10	1.8	7	

Certified by

Specialists in Mineral Environments
705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 DR (6041)

TELEX: VIA USA 7601067 UC

# tificate of GEOCHEM

Company: TEUTON RESOURCES/QUEST CANADA EXPL. Project:

Attention: D. CREMONESE/R. SHEARING

File:6-993/P2 Date:OCT 20/86 Type:ROCK GEOCHEM

We hereby certify the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	FPM	PPE	
86-4 10-11	1.3	20	
86-4 11-12	1.4	15	
86-4 12-13	1.0	21	
·			
86-4 13-14	1.2	16	
86-4 14-15	1.6	22	
			. 222024 727-7-444 2640 W0000 24444 27 I 000 42 47 7 <b>4 48 2640 255 724 24</b> 79 24 1
86-4 15-16	1.2	24	
86-4 16-17	0.8	55	<i>_</i>
86-4 17-18	1.4	80	
86-4 18-19	1.0	54	
86-4 19-20	1.0	50	
86-4 20-21	1.0	67	
86-4 21-22	2.2	294	
86-4 22-23	1.4	109	
86-4 23-24	1.3	101	
86-4 24-25	2.2	100	
00**7 27 20	£ 1 £	# W.W.	
86-4 25-26	2.0	233	
86-4 26-27	1.0	50	
86-4 27-28	1.1	65	
86-4 28-29	0.8	20	
86-4 29-30	0.9	16	
86-4 30-31	1.2	20	
86-4 31-32	0.6	22	
86-4 32-33	0.8	23	
86-4 33-34	*O.B.	25	
86-4 34-35	0.9	80	4 <b>-</b>
86-4 35-36	1.2	60	
86-4 36-37	1.6	74	
86-4 37-38	0.6	40	
86-4 38-39	0,9	75	
86-4 39-40	1.0	50	
00-4 37-40	1.0	77/1	

Certified by_

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

# Certificate of GEOCHEM

Company: TEUTON RESOURCES/QUEST CANADA EXPL. Project:
Attention: D. CREMONESE/R. SHEARING

File:6-993/P3 Date:OCT 20/86 Type:ROCK GEOCHEM

We hereby certify the following results for samples submitted.

Sample	AG	AU-FIRE	
Number	PPM	PPB	
86-4 40-41	1.4	50	
86-4 41-42	1.2	76	
86-4 42-43	1.2	44	
86-4 44-45	1.0	70	
86-4 45-46	2.0	98	20/14
86-4 46-47	1.6	94	
86-4 47-48	1.4	93	
86-4 48-49	1.2	80	2 - 41 0 30
86-4 49-50	1.6	75	
86-4 50-51	1.8	92	at the same
86-4 51-52	1.0	50	
86-4 52-53	2.0	85	
86-4 53-54	1.2	65	
86-4 54-55	1.6	55	
86-4 55-56	2.1	110	
86-4 56-57	1.2	146	
86-4 57-58	1.6	131	
86-4 58-59	1.1	54	
86-4 59-60	1.4	100	
86-4 60-61	1.8	137	
86-4 61-62	1.2	85	
86-4 62-63	1.2	78	
86-4 63-64	2.6	60	
86-4 65-66	1.0	29	
86-4 66-67	1.1	30	-
86-4 67-68	1.0	25	
86-4 68-69	1.0	27	
86-4 69-70	1.8	58	
86-4 70-71	1.0	30	
86-4 84-85	1.9	34	

Certified by

