1986 FAME REPORT
 SULLIVAN MINE AREA
 KIMBERLEY, B.C.
 N.T.S. 82F/9; 82F/16

LAT: $49^{\circ} 45^{\circ} \mathrm{N}$

LONG: $116^{\circ} \mathrm{W}$

1986 FAME REPORT
 SULLIVAN MINE AREA

PART A: GEOLOGY AND GEOCHEMISTRY

```
OWNER:
COMINCO LTD.
BOX 2000
KIMBERLEY, B.C.
V1A 2G3
```

Work Peifformed during 1986

Report by: P.W. Ransom Project Geologist

TABLE OF CONTENTS

Page
1.00 INTRODUCTION

1. 10 Specific Location 1
1.20 Property Description 1
1.30 Geological Mapping and Geochemistry 1
1.40 Glaims Explored 1
2.00 DETAILED TECHNICAL DATA AND INTERPRETATION 2.10 Geological Mapping 2
2.11 Objective. 2
2.12 (a) NE Fork of Matthew Ck - Results. 2

- Interpretation 2
2.12 (b) West of Matthew Ck - Results 2
- Interpretation 3
2.12 (c) Northwest Mark Ck - Results 4
- Interpretation 4
2.13 Conclusions 5
FIGURES 2.1-1 Geology - NE Fork of Matthew Ck. . . In Pocket
NE Fork of Mathew Creek
FIGURE 2.1-2 Poles to Bedding 6
FIGURE 2.1-3 Poles to Cleavage. 7
FIGURE 2.1-4 Bedding/Cleavage Intersections 8
FIGURE 2.1-5 Geology - West of Matthew Creek. . . In Pocket
FIGURE 2.1-6 Matthew Ck Thrust Zone - Structural Data 9
FIGURE 2.1-8 Geology - Northwest Mark Creek In Pocket
Northwest Mark Creek
FIGURE 2.1-9 Poles to Bedding 10
FIGURE 2.1-10 Poles to Cleavage. 11
FIGURE 2.1-11 Bedding/Cleavage Intersections 12
INDEX MAP - Part A. 13
2.20 Geochemiatry. 14

2. 21 Objective. 14
2.22 Results 14
2.23 Interpretation 14
2.24 Conclusion 14
FIGURE 2.2-1 Location Map - NE Fork of Mathew Creek - Soil Sampling 15
TABLE 2.2-1 Assay Results. 16

Appendices

A - Sullivan Mine Group of Mineral Claims
B - Statement of Expenditures
C - Affidavit
D - Statement of Dualifications

1986 FAME REPORT
 PART A
 GEOLOGY AND GEOCHEMISTRY

Fort Steele Mining Division
January, 1987
P.W. Ransom

1.00 INTRODUCTION

1.10 Specific Location

The work being reported on was done in the Mark and Matthew Creek areas west and northwest of Kimberley. B.C. Access to these areas is by logging and exploration roads.
1.20 Property Description

The property being investigated forms part of the Sullivan Mine claim group, owned by Cominco Ltd. Cominco has operated the mine for about 75 years. The Sullivan stratiform Ag-Pb-Zn-Fe sulphide deposit is one of the most important of its type worldwide and has contributed significantly to the mineral wealth generated in the province of British Columbia.
1.30 Mapping and Soil Sampling

Geological mapping, primarily structural, was done in three separate areas, the northeast fork of Matthew creek, west of Matthew Creek, and northwest of Mark Creek. Soil sampling was done in the northeast fork of Matthew Creek.
1.40 Claims Explored

Claims in portions of the Late, Mat, Clair and Bad groups, parts of the Sullivan Mine claim group, were explored.

2.00 DETAILED TECHNICAL DATA AND INTERPRETATION

2.10 Geological Mapping

2.11 Objective

Geological mapping, in particular for structural information, was collected in the northeast fork of Matthew Creek, west of the main fork of Matthew Creek and in the northwest fork of Mark Creek (See Index Map - Page 13). Work in the first two areas was done to define geometric properties of regional scale folds prior to drilling. Work in the latter area was done to test a theory that a major west-dipping thrust fault was present there.

2.12 (a) Northeast Fork of Matthew Creek - Results

Possible broken rock in the fold core in the northeast fork of Matthew Creek was considered to be a potential source of drilling trouble. Detailed structural measurements were collected predominantly from the west side of the structure and near where the drill hole was planned (Fig. 2.1-1). The data are plotted on equal area stereonets, Figures 2.1-2, 2.1-3, and 2.1-4. The fold is a relatively upright and open structure, in contrast to most folds in the region; the axial plane dips 80° toward 2650 and the axis plunges 200 toward 3450. The fold axial plane, where crush zones and broken rock would be most likely, was deemed to be east of the planned 650 m long hole. As is turned out no serious drilling problems were encountered.

- Interpretation

This fold is relatively open and plunges gently NNW compared with overturned folds that have gentle N to NNE plunges that are typical regionally. This structure is interpreted to be a hangingwall anticline developed over an inclined "ramp" to "flat" inflection in a fault surface; the "ramp" being the west-dipping Matthew Creek Thrust and the "flat" being the northdipping Kimberley Fault.
2.12 (b) West of Matthew Creek - Results

Mapping west of the main (south flowing) part of Mathew Creek identified a major west-dipping thrust zone, predicted by theory based on past mapping. This fault is named the Mathew Creek Thrust (Fig. 2.1-5). The thickest, continuous interval of sheared rock is 60
meters wide.
Measurements of shearing and associated lineations (slickenside and crenulation) along the northern 5 km of the Matthew Creek Thrust are summarized on an equal area stereo net (Fig. 2.1-6). Rocks in the thrust zone are mylonitic and display good S/C fabrics $5 / 6$ fabrie is in outcrop and hand specimen (Fig. 2.1-7). The intersection of two shears which blend in a characteristic fashion.

Figure 2.1-7 S/C fabric in sawn specimen from the Matthew Creek Thrust. (Two shear directions.)

- Interpretation

The mylonitic rocks mapped at several localities west of the main fork of Mathew Creek are interpreted to represent a west-dipping thrust zone. Steepening of an initial shallow dip by underthrusting may explain the present apparently steep (600) dip; alternatively this part of the fault may be a steep ramp. At the northern end this fault swings to the east and merges with the Kimberley Fault on Mark Hill. To the south the fault disappears into the St. Mary River valley and is inferred to link with the St. Mary Fault.

2.12 (c) Northwest Mark Creek - Results

Mapping in a part of the northwest Mark Creek area was undertaken to develop an understanding of structures that might project southerly into areas where drilling is being considered. Rocks in the area mapped (Fig. 2.1-8) belong primarily to the Upper Aldridge Formation. The dominant rock types are argillite and subwacke to wacke that is rust weathering; the argillite is medium grey, the subwacke-wacke is genrally dark grey to black, rarely white; the argillite is uniform or massive, the subwacke-wacke is usually very finely internally laminated; the subwacke-wacke contains very fine silt grains in an argillaceous matrix; these lithotypes are laminated to very-thin bedded with respect to each other, bed contacts are sharp and flat; pyrrhotite and pyrite sabout 1 or 2% of the rock in places) is restricted to the subwacke-wacke lithotypes.

Folds were observed in Upper Aldridge strata only. Adjacent formations were not sufficiently exposed to reveal structures in the area mapped. The folds observed are developed on the limbs of larger structures. Folds are overturned with axial planes that dip moderately (+410) west and axes that plunge gently north (Figures 2.1-9,-10 and -11). The folds have gentle east-dipping limbs and steep, overturned, west-dipping limbs. The largest steep limb containing numerous small folds) has a veritical extent greater than 250 m . Assymmetry of small folds in this limb indicates a major anticline axial plane is to the west and a corresponding syncline axial plane is to the east (small folds are " S " when viewer faces down plunge).

- Interpretation

Outcrop distribution is poor but it is apparent that major overturned fold limbs occur no more than one kilometer apart. It should be possible to position drill sites a kilometer or two south so that the hole is collared in the desired part of a structure. however because the axial planes dip about 410 west, any hole more than 700 metres long will drill through major folds.

2.13 Conclusions

The anomalous fold in the northeast fork of Mathew Creek is a hangingwall anticline developed above the inclined surface of the Mathhew Creek Thrust-Kimberley Fault system. A west dipping fault west of the main fork of Matthew Creek is a thrust of regional significance. Folding in the northwest fork of Mark Creek is extensive and will likely result in drilling problems in that area.

This pattern indicates
little variation in the fold limbs.

FIGURE 2.1-2
NE Fork of Matthew Creek Poles to Bedding Equal Area Net

3 Mid-Range Point $80^{\circ} \longrightarrow 265^{\circ}$ Approximation of Fold Axial Plane.

FIGURE 2.1-3
NE Fork of Matthew Creek
Poles to Cleavage Equal Area Net

(3) Mid-Range Point $20^{\circ} \longrightarrow 345^{\circ}$
Approximation of
Fold Plunge.

FIGURE 2.1-4
NE Fork of Matthew Creek Bedding/Cleavage Intersections Equal Area Net

Great circle drawn perpendicular to bedding/cleavage intersection of 07° toward 359°.

FIGURE 2.1-9
Northwest Mark Creek Poles to Bedding Equal Area Net

It Mid-Range Point indicates approximate dip of cleavage and fold axial planes to be 41° toward 2630.

FIGURE 2.1-10
Northwest Mark Creek
Poles to Cleavage Equal Area Net

Northwest Mark
Creek Mapping

West of Matthew
Creek Mapping
2.21 Ojective

The objective of this work was to lacate exploration targets.
2.22 Results

Ninety soil samples collected at 50 m intervals along parts of both sides of the northeast fork of Mathew Creek were analyzed for copper, lead and zinc. Sampled lines and start and end point sample numbers are shown in Figure 2.2-1: The data is shown in Table 2.2-1. Material sampled was B Horizon, 15 to 25 cm deep, overburden material is glacially transported only a very short distance, as most rock fragments are angular.

2.23 Interpretation

Results are about what would be expected as background for this area. The highest values for the three elements are considered to be elevated but not anomalous and it is inferred that these higher values represent statistical variation only.
2.24 Conclusion

There are no anomalies in this survey that require follow-up.

 Remant note le wow tera

	Fablit mbmbet	$\begin{aligned} & \mathrm{E} \in \mathrm{c}+ \\ & \text { Wes? } \end{aligned}$	Mastat Sourr－	$\begin{array}{r} \text { Ro! } \\ \text { gom } \end{array}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{~g} \boldsymbol{P} \end{aligned}$	$\begin{array}{r} 7 \mathrm{~B} \\ \text { FgM } \end{array}$
624ta30	TRSE－！	21570	18055＋	22	25	48
OQchatet	5cce－？	210ヶ5	102104	21	17	74
82．tato	mas－3	214\％\％－	13600t	1.7	17	50
B86 5 907	Tr．es－4	2t400－	3 c \％0t	7	19	62
89694294	75，	21475－	12AROt	12	17	5.3
306t430	7¢¢\％－	21479－	19820t	As	20	77
3n4t4206	15．6－7	214\％	18985	21	± 8	6.
50¢14207	ग¢\％\％－	21470	192354	1．4	19	0
SEAta00	156\％－7	21479－	19290t	28	15	45
56tikery	T6， 6 － 0	2147\％－	$19450+$	34	12	8
50\％14210	5r．s－31	21．475－	19605t	24	16	θ
Etctucte	गrec－1？	21475	19765	5	27	77
88414212	$\operatorname{mog}-17$	21475－	$17715+$	87	17	72
S0614．ti	T0\％4－14	21480－	$20060 t$	26	12	48
39644214	518．86－15	21480－	20215t	35	13	5
364142t5	ग¢¢\％－1 6	2ta95－	208704	24	2t．	B0
9981421\％	nça－17	$21570-$	$2050+$	2%	22	103
SE64297	TCBe－t8	21560－	20705	1.4	15	at
30614318	mbex－19	21545	$20800+$	10	13	105
SRectat9	mbet－2a	2450－	$20830 t$	1． 1.	17	$\therefore 7$
35444290	ח¢FA－21	71595－	21096	11.	21	8 8．
S061429：	70et－2？	2tson－	212584	1.2	16	74
68414222	D086－2\％	$21620-$	$21400+$	A0	32	95
Etcta？2x	T19\％－24	21．60－	$21560+$	27	24	77
38¢14224	m68 -25	21465	$21715+$	35	48	11.7
E8ty 52 s	П¢E4－26	$2 \pm 700-$	$2 \pm$ 2eot	30	37	74
38614226	ग1586－27	$21780-$	$29060+$	20	16	31
58614227	7084－20	2185	221704	15	26	9%
S日6t4278	5п．86－29	21965－	$22290+$	17	28	88
56414279	$5186-30$	22040－	$22430+$	1.0	19	80
58614200	mene－31	22080－	$22590+$	12	13	39
53ctu2\％1	П196－72	22140－	227254	12	1.4	74
G8A14232	Mc8e－ 3	22185－	22890＋	1.7	9	47
6E4t42？	T1M 6 ¢ -34	22320－	$28000 t$	1.4	1.8	49
58614234	1metor 101	$21695-$	$14020+$	1.9	19	53
S6ctunx	7cra－10？	21650	$1.4170+$	11.	12	42
5月土1423t	510．6－103	$21600-$	14355＋	1.5	19	$4!$
5日ctu2\％7	110．86－104	21560－	14480．4	15	1．7	95
6861423\％	गС86－105	21565－	$14640+$	7	1.3	5
56614．69	7п¢G－106	21590－	14800t	1.3	15	3 C
SExta 240	9ח．66－107	2156－	149854	20	3	52
58614241	TnCst－100	21595	14130＋	11.	13	40
39614\％4？	15．86－105	21675－	15290＋	15	9	39
E8¢0．4\％等	M086－110	21665－	15409＋	1.6	39	11.5
85\％14244	nc．ax－111	21700－	15615t	20	24	73
586t4245	71\％64－112	$21760-$	15775＋	1． 4	2）	11.8
6861424\％	TrRA－11？	21750－	15935t	11.	21.	37
S86x4247	10．8s－114	2179%	1．60754	1.7	1.3	42
58\％14248	nc．matis5	$21895-$	$16205+$	1.7	17	77.
S6414249	Tratic－116	$21020-$	$16320+$	36	32	47
584， 4750	ת¢．8．c－117	22145	$1.6 .440+$	1.9	$1 \times$	37

1. 6 B N0	FIFIM Whmber	F.6.574 Wたs?	Nofthit grarth-	$\begin{array}{r} \text { a, } \\ \text { PFM } \end{array}$	$\begin{aligned} & \text { Fis } \\ & \text { PFM } \end{aligned}$	7 FPM
$5 \operatorname{sen} 4251$	ncma-118	22250-	$12560+$	11	13	32
sectaze?	mrec-119	22220-	$16710+$	22	73	81
886142¢?	ncte- 120	2a385-	$16270+$	15	15	49
Sectatis	noce-121	22360-	$1.7070+$	10	1.7	73
58614255	MCR6-122	22380-	$17150+$	17	48	94
5861425i6	5CAE-123	22790-	17595	32	54	100
Se614257	9096-124	$22410-$	175954	t	29	4\%
Stckase	Thet-125	22425-	17685	20	2%	60
68614259	T0 $54-126$	22485	17850+	20	27	67
53634260	m¢86-127	22480-	$18010+$	1.1	17	4 l
886.14261	nmet-128	22465-	$16170+$	11.	14	6.6
58614242	70.34-129	22as5-	18345+	29	$3!$	8.
88644263	80.86-170	29455-	18505	29	29	69
S8614244	mest-15	22450-	$18670+$	12	19	64
88614265	ncta-132	$22450-$	15830+	14	15	40
S10614246	mCet-133	22465-	18995	8	17	45
886.14247	n¢86-134	22505-	19155	13	15	37
596142s8	mobe-t55	22565	$19715+$	10	1.6	52
98614269	$\operatorname{mos} 6-182$	22560-	$1.9480+$	23	12	70
Setain70	nces- 178	22570-	19645	22	25	39
68614271	$\operatorname{mos}-138$	22595-	19810+	29	18	50
sectap72	mCes-139	22590-	19975	13	13	42
886.4273	nces-340	22590-	$20140+$	22	17	96
58614274	$\operatorname{mose}-14 x$	22600-	203054	10	1.7	62
S8614275	mCe6-142	224.10-	$20470+$	11.	16	58
58414276	70.6e-143	22625	206804	30	16	11.9
58614277	mcse-14.4	22\%40-	$20790+$	7	17	7 F
S84ta278	70.06-1.45	22685-	20955	12	22	80
S8614279	$\operatorname{most-146}$	22490-	$21115+$	10	17	104
58614290	nce6-147	$22720-$	212004	1.1	1.9	60
58814281.	n088-148	22755	$21435+$	9	18	60
SR614282	19064-149	22795-	$21595+$	1.2	24	103
38434283	$\operatorname{ncs} 6-150$	22e35-	$21760+$	15	15	49
58614284	macte-151	$22990-$	- 21925	1.0	23	107
58614295	$\sin 6-152$	$22930-$	$20070+$	15	19	49
S3614286	m¢86-153	22980-	$22240+$	1.4	27	88
S8614287	$\operatorname{mcs6}-154$	23025-	$22405+$	16	23	89
58614298	ncec-155	$23070-$	$22500+$	1.6	26	91.
68614289	1096-156	27115	$32720+$	17	61	111
S8614290	11586-157	23170-	22875	1.5	22	60
s8614291.	nce6-158	23210-	23025+	12	18	66

GHM MTICA. HETHODS
Cu 20: inal heromphition / AAS

1. Crown-Granted M.C. 680
2. Held by Assessment:
2(a) TWO POST CLAIMS
Luke Group 75
Rho Group 20
Med Group 15
Donna, Etc. Group 15
Uke Group 11
Mar Group 17
Bad Group 35
Late Group 91
Mat Group 268
Jackpot 1549
2(b) REVERTED CROWN GRANTED MINERAL CLAIMS
Tip 4-12 9
Hope 2-12 11
Sun 2-12 11
Cue 2-12 11
B.C., Silver Bell, Tarrant 3
Black Hills, Yankee Girl, Wasp Fr.
Blue Dragon 49
2(c) MINERAL CLAIMS (54)
Dip 1-8 56
Fal 1-14 84
Golf 1-3 17
Quark 182 12
Fin 1-3 18
Mead 1-3 36
Gin 1-9 110
C7air 24-32 56
Mark 1-3 17406
3. Greenhorn Mineral Lease 1
GRAND TOTAL $(1+2+3)$ 1,685

APPENDIX B

1986 FAME REPORT PART A - GEOLOGY AND GEOCHEMISTRY

STATEMENT OF EXPENDITURES

```
Mapping
Plotting
37 field days
19 days estimate (1/2 day per field day)
Draw Nets
Prepare Report
    Total
    6 4 \text { days}
```


Costs:

```
/ 64 days 0 s255/day
37 truck days © s40/day
Soil Sampling
Analyses
```

```
$16.320.00
```

\$16.320.00
1.480.00
1.480.00
297.50
297.50
455.40
455.40
Total
\$18,552.90

```


Project Geologist
in the Fort Steele Mining Division of the Province of British Columbia More Particularily N.T.S. 82F/9 \& 82F/16
\(A F F I D A V I T\)

I, P.W. Ransom, of the rural district of Wycliffe, in the Province of British Columbia, make Oath and say:
1. That I am employed as a Geologist by Cominco Ltd. and as such, have a personal knowledge of the facts to which I hereinafter depose:
2. That annexed hereto and marked as Appendix \(B\) to this my Affidavit is a true copy of expenditures incurred on a Geology and Geochemistry programme, on parts of the Sullivan group of mineral claims.
3. That the said expenditures were incurred between the 1 st day of May, 1986 and the 31 st day of October, 1986 for the purpose of mineral exploration on the above mentioned claim group.


PROJECT GEOLOGIST

\section*{APPENDIX D}

\section*{STATEMENT OF QUALIFICATIONS}

As author of this report, I, Paul W. Ransom, certify that:
I am a geologist active in minerals exploration.
I am a graduate of McGill University with a degree of Bachelor of Science.

I have been continuously engaged in mining and exploration since 1966.

I am a member of the Geological Association of Canada.

I supervised Cominco Ltd.'s Sullivan Mine area exploration program in 1986.


\section*{COMINCO LTD.}

\section*{1986 FAME REPORT}

\section*{SULLIVAN MINE AREA}

\section*{PART B: DIAMOND DRILLING REPORT}

OWNER:

\section*{COMINCO LTD.}

BOX 2000
KIMBERLEY, B.C. V1A 2G3

Work performed during June and July, 1986

Report by:
P.W. Ransom

Project Geologist

\section*{TABLE OF CONTENTS}Page
1.00 INTRODUCTION ..... 1
1.10 Specific Location ..... 1
1.20 Property Description ..... 1
1.30 Drilling ..... 1
1.40 Claims Explored ..... 1
INDEX MAP ..... 2
DRILLING SURFACE PLAN ..... 3
2.00 DETAILED TECHNICAL DATA AND INTERPRETATION ..... 4
2.10 Drilling
2.11 Objective ..... 4
2.12 Results. ..... 4
2.13 Interpretation ..... 4
2.14 Conclusion ..... 4
APPENDICES:

A Drill Log and Analytical Data
B Sullivan Mine Group of Mineral Claims
C Statement of Expenditures
D Affidavit
E Statement of Qualifications

2.00 DETAILED TECHNICAL DATA AND INTERPRETATION
2.10 Drilling

\subsection*{2.11 Objective}

The objective of drilling DDH 6459 was to locate stratiform \(\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Fe}\) sulphide ore.

\subsection*{2.12 Results}

DDH 6459 intersected siliciclastic sedimentary rocks typical of the area. Pyrrhotite was noted locally, disseminated as an accessory mineral. Argillite with sparse weakly laminated and disseminated pyrrhotite was noted from 600 to 607 metres.
2.13 Interpretation
\begin{tabular}{ll}
\(0.0-12.5 \mathrm{~m}\) & Overburden \\
\(12.5-650.0 \mathrm{~m}\) & \begin{tabular}{l} 
Siliciclastic sedimentary \\
rocks, Aldridge Formation.
\end{tabular}
\end{tabular}
2.14 Conclusion

DDH 6459 intersected siliciclastic sediments of turbidite and related origin, typical of the Middle Proterozoic Aldridge Formation.





Page 8 48.
\begin{tabular}{|c|c|c|c|c|}
\hline & Property MAT 71 (Sullivan) & Dlstrict Hestern & Hole No. 6459 & \multirow[b]{2}{*}{Hor. Comp.} \\
\hline \multirow[t]{2}{*}{\[
\|\|
\]} & Commenced & Location & Tests at & \\
\hline & Completed & Core Size & Corr. Dip & Vert. Comp. \\
\hline & Co-ordinates & & True Brg. & Logged by \\
\hline ] & Objective & & \% Recov. & Date \\
\hline
\end{tabular}
\begin{tabular}{l} 
Foolage \\
\hline From \\
\hline
\end{tabular}
acke (70\%), subwacke and argillite (30x); mediun greyt medium bedded. some of argilifte and subwacke is irregularly laminated, probably very low angle erose laminae within a bod top.
to 1220 (372.0) Wacke (BOK) plus subwacke and argillites light medium greyg thick bedded with some medium beds; some beds (or portions) are internally laminated; bed contacts and laminae are sharp and flat: crosm laminae noted in a mingle oA bed at 1209 ' bedding to core \(77^{\circ}\) 1215*.
to 1226.5 (373.9) Wacke, subwacke and argiliite (85k), quartzitic wacke (15k) medium grey; thin bedded with some very thin beds and laminations plus two medium bedst bed contacts Eharp and Ilat: two xip-up clasts noteds bedding to core \(70^{\circ} \mathrm{e}\) 1224".
to 1287.5 (392.5) Quartz arenite and quartzitic wacke (60\%), wacke (25k), subwacke and argillite as bed tops (15x): light medium greys thick bedded with clusters of medium and thin beds over 1 or 2 feet, bed contacts are sharp and genereliy flatz beds usually massive, rare internal laminaes badding to core \(78^{\circ}\) 1233\% \(73^{\circ}\). \(1252^{\circ}\). \(69^{\circ}\) -1262'. 650 1286"。
to 1303 (397.3) Subwacke and argiliite (85\%), single thick bad of wacke 1299 - 13018 vary thin and thin bedded with lominated intervalss bed contacts sharp and fiats beding to core \(75^{\circ}\)-1292'. \(69^{\circ}\) e \(1303^{\circ}\).
tp 1314 (400.6) Single 3.1 meter true thicknese bed from quartzitic wacke to quartz arenita composition: light grey; medium grained; mildy calcareous.
to 1335.7 (407.2) Quartz arenite with legeer quartzitic wacke and wacke, all with tops of waeke, subwacke and ergililites medium greys thick bedded with few medium and thin beds: beds massives bed contacts sharp and generally flat; aubwacke/argiliite interlaminations in tops of some beds: bedding to core 690 1314'.




Drill Hole Record


Page 11
\begin{tabular}{lllll}
\hline Property MAT 71 (Sullivan) & District Hestern & Hole No. 6459 & \\
\hline Commenced & Location & Tests at & Hor. Comp. \\
\hline Completed & Core Size & Corr. Dip & Vert. Comp. \\
\hline Co-ordinates & & True Brg. & Logged by \\
\hline Objective & & \% Recov. & Date \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Footage & Descript \\
\hline rom 10 & \\
\hline to \(1705(529.8)\) \\
\hline
\end{tabular}

Argillita, minor aubwacke and wackes medium grey; thing very thin bedded and faintly laminated; bed contacte and laminae generally sharp and flat but variably deformed by low angle cleavage and cranulation cleavage; bedding to core 600 1701..
to 1714 (522.6) Wacke, minor subwacke and argillite: medium greys medium (mome thick) bodeds bed contacts sharp and flat to vague; some bed thickness and contacts not woll defined; some beds or zones very faintly laminated; bedding to core \(74^{\circ}\) 1712'.
to 1767.8 ( 539 , 0 ) Quartz arenite, minor quartzitic wacke (70x), wacke, abwacke and argillite in graded tops and clusters of medium, thin. very thin and laminated beds up to 4 feat long; medium to light medium grey; thick and medium bedded; bed contacte sharp. flat to wavy. possible tiny cross laminae but wak sharing present in many argilife and subwacke laminated zones: bedding to core \(65^{\circ}\) i720'. 650 © 1744 \({ }^{\circ}\). \(75^{\circ}\) 1758 .
to 1772.5 (540.4) Wacke, subwacke and argillites dark medium greys medium and thin bedded with a fow faint very thin bedss bed contacts gradational. flat to wavys faint lamination in argillite disturbed by sub-parallel cleavage; bedding to core \(66^{\circ}\) 1769'.
to 1814.5 ( 553.2 ) Quartz arenite. minor quartzitic wacke and wacke, minor wacke, subwacke and argillite as graded tops and in clusters of thin and very thin to laminated beds: medium and light medium grey; thick bedded with a few medium bedss some wacke units are laminated throughouts bed contacts and laminations art sharp and flat; most beds massive, some have very weak disseminated pyrrhotites bedding to core \(71^{\circ}\) 1795'. \(71^{\circ}\) at \(1814.5^{\prime}\).
to 1834.5 (559.3) Wacke ( \(60 \%\) ), quartzitic wacke and quartz arenite (20\%), subwacke and argillite (20x): dark medium greys primarily medium budded, the wacke is in thick zores that may or may not consist of several beds. within these zones the wacke is either massive. vaguely laminated or faintly but well lasinated; the argilijite and subwacke are generally falntly thin and very thin bedded; bedding to core \(75^{\circ}\). \(1833^{\circ}\).



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{LAB NO} & & \multicolumn{2}{|c|}{FEET} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\mathrm{PG} \\
\mathrm{PPM}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\mathrm{ZN} \\
\mathrm{PPM}
\end{array}
\]} \\
\hline & & From & To & & \\
\hline FR609851 & 14801 & 1939.3 & 1939.9 & 12 & 42 \\
\hline F8609857 & 14807. & 1941.5 & 1944.5 & 1.6 & 81. \\
\hline R8609853 & 14803 & 1944.5 & 1949.0 & 14 & 518 \\
\hline F8609854 & 1.4804 & 1949.0 & 1953.5 & <4 & 55 \\
\hline FR609855 & 14805 & 1953.5 & 1957.5 & <4 & 54 \\
\hline F8609856 & 14806 & 1957.5 & 1960.0 & <4 & 54 \\
\hline F8860985 5 & 14807 & 1960.0 & 1963.0 & <4 & 52 \\
\hline K8609859 & 1.4808 & 1963.0 & 1970.0 & 31 & 55 \\
\hline FR609859 & 14809 & 1970.0 & 1971.3 & 25 & 78 \\
\hline F8609860 & 14810 & 1971.3 & 1972.5 & 206 & 234 \\
\hline R8609861 & 14811 & 1972.5 & 1974.0 & 4 & 57 \\
\hline F8609862 & 1481.7 & 1974.0 & 1974.3 & 404 & 904 \\
\hline F8609863 & 1481.3 & 1974.3 & 1976.0 & B & 94 \\
\hline R8609864 & 1481.4 & 1976.0 & 1978.1 & 37 & 1.61 \\
\hline RE609865 & 14815 & 1978.1 & 1980.0 & 102 & 298 \\
\hline FR609R66 & 1.4816 & 1980.0 & 1982.0 & 1.44 & 480 \\
\hline RR609867 & 14817 & 1982.0 & 1983.3 & 130 & 40.3 \\
\hline R8609868 & 1.4818 & 1983.3 & 1984.7 & B7 & 141 \\
\hline RR609869 & 14815 & 1984.7 & 1985.8 & 71 & 220 \\
\hline F8609870 & 1.4820 & 1985.8 & 1986.7 & R1 & 263 \\
\hline FR609871 & 14821 & 1986.7 & 1987.6 & 55 & 131 \\
\hline R8609872 & 1.4827 & 1987.6 & 1988.5 & 66 & 1.37 \\
\hline RE609873 & 14823 & 1988.5 & 1989.3 & 67 & 112 \\
\hline RR609874 & 14874 & 1989.3 & 1990.6 & 32 & 99 \\
\hline R8609875 & 14825 & 1990.6 & 1991.8 & 21 & 171 \\
\hline FRA09876 & 14826. & 1991.8 & 1992.8 & 7 & 175 \\
\hline RRA099877 & 14827 & 1992.8 & 1993.7 & 31 & 69 \\
\hline F8609878 & 1.482\% & 1993.7 & 1995.0 & 42 & 73 \\
\hline FR6098879 & 148.39 & 1995.0 & 1997.0 & 17 & 58 \\
\hline KR609880 & 14830 & 1997.0 & 1998.1 & 4 & 38 \\
\hline
\end{tabular}

I=insuffitient sample X=shall sample E=excefis califhbation C=beint chechen R=revisea If regested ahneyses are mot shohn aresidts are to follou

\section*{ANALYTICAL METHODS}

Pa Agun pegin heramposition / AAS
Zh Agun regin secomposition / AAS

Number of Units
1. Crown-Granted M.C. ..... 680
2. Held by Assessment:
2(a) TWO POST CLAIMS
Luke Group ..... 75
Rho Group ..... 20
Med Group ..... 15
Donna, Etc. Group ..... 15 ..... 15
Uke Group ..... 11
Mar Group ..... 17 ..... 17
Bad Group ..... 36 ..... 36
Late Group ..... 91 ..... 91
Mat Group ..... 268 ..... 268
Jackpot549
2(b) REVERTED CROWN GRANTED MINERAL CLAIMS
Tip 4-12 ..... 9
Hope 2-12 ..... 11
Sun 2-12 ..... 11
Cue 2-12 ..... 11
B.C., Silver Bell, Tarrant ..... 3
Black Hills, Yankee Girl, Wasp Fr. ..... 3
Blue Dragon ..... 1 ..... 149
2(c) MINERAL CLAIMS (54)
Dip 1-8 ..... 56
Fal 1-14 ..... 84
Golf 1-3 ..... 17
Quark 1\&2 ..... 12
Fin 1-3 ..... 18
Mead 1-3 ..... 36
Gin 1-9 ..... 110
Clair 24-32 ..... 56
Mark 1-3 ..... 17406
3. Greenhorn Mineral Lease1GRAND TOTAL \((1+2+3)\)1,685

\section*{STATEMENT OF EXPENDITURES}

\section*{DIRECT COSTS}


\section*{INDIRECT COSTS}

\section*{Salaries}
\begin{tabular}{rl} 
P.W. Ransom - Geologist - Supervision, core logging. \\
report writing & 36 days a \(\$ 250 / \mathrm{day} \quad 9,000.00\)
\end{tabular}

Mobilization


\section*{APPENDIX D}

IN THE MATTER OF THE
B.C. MINERAL ACT

AND
IN THE MATTER OF A DIAMOND DRILL PROGRAMME

CARRIED OUT ON THE MAT 71 CLAIM GROUP
MATTHEW CREEK AREA
in the Fort Steele Mining Diviaion of the Province of British Columbia

More Particularily N.T.S. 82F/9

AFFIDAVIT
I. P.W. Ransom, of the rural district of Wycliffe, in the Province of British Columbia, make Oath and say:
1. That \(I\) am employed as a Geologist by Cominco Ltd. and as such, have a personal knowledge of the facts to which I hereinafter depose:
2. That annexed hereto and marked as Appendix \(C\) to this my Affidavit is a true copy of expenditures incurred on a Diamond Drill programme, on the Mat 71 mineral claim group.
3. That the said expenditures were incurred between the 27 th day of June, 1986 and the loth day of October, 1986 for the purpose of mineral exploration on the above noted claim group.


PROJECT GEOLOGIST

\section*{APPENDIX E}

\section*{STATEMENT OF QUALIFICATIONS}

As author of this report, I, Paul \(W\). Ransom, certify that:
I am a geologist active in minerals exploration.
I am a graduate of McGill University with a degree of Bachelor of Science.

I have been continuously engaged in mining and exploration since 1966.

I am a member of the Geological Association of Canada.
I supervised Cominco Ltd.'s Sullivan Mine area exploration drilling program in 1986.


\section*{1986 FAME REPORT SULLIVAN MINE AREA}

\section*{PART C: GEOPHYSICS REPORT}

OWNER:
COMINCO LTD.
BOX 2000
KIMBERLEY, B.C.
V1A 2G3

Work performed between July and September, 1986

Work performed by:
S.J. Visser
J. Vyselaar
J.J. Lajoie

COMINCO LTD.

\section*{TABLE OF CONTENTS}
LIST OF CLAIMS ..... 1
INTRODUCTION ..... 1
DESCRIPTION OF UTEM SYSTEM ..... 1
FIELD WORK ..... 2
DATA PRESENTATION ..... 3
INTERPRETATION ..... 5
CONCLUSIONS ..... 6
REFERENCES ..... 7
\begin{tabular}{ll} 
APPENDIX I & LEGEND - UTEM DATA SECTIONS \\
& LEGEND - UTEM COMPILATION MAPS \\
APPENDIX II & DATA SECTIONS \\
APPENDIX III & STATEMENT \\
& EXHIBIT "A" - STATEMENT OF EXPENDITURES \\
APPENDIX IV & CERTIFICATION
\end{tabular}
PLATE 313-86-1 DDCH 6459 and UTEM Grid Location Map Scale - 1:125,000
313-86-2 MAT 71 Group (Claims)DDCH 6459 and UTEM Grid Location MapScale 1:24,000
313-86-3 DDCH 6459 Borehole UTEM Survey Loop Location MapScale 1:24,000
313-86-4 DDCH 6459 Vertical Section on Azimuth 292 Scale 1:4,800
313-86-5 UTEM Survey Grid and Compilation Map

NTS: 82F/9

> GEOPHYSICAL REPORT
> ON A
> UTEM SURVEY ON THE MAT 71 GROUP OF CLAIMS FORT STEELE MINING DIVISION, B.C.

\section*{LIST OF CLAIMS}

Claims as shown in accompanying report by P. W. Ransom.

\section*{INTRODUCTION}

The Borehole (DDCH 6459) and UTEM grid, on the Mat 71 Group of Claims, are located approximately 7 km west of the Sullivan Mine at Kimberley, B.C. Access to the grid from Kimberley, B.C. is via St. Marys River road, to Matthew Creek, then by logging road to the grid (Plate 313-86-1).

The Mat 71 Group of Claims are underlain by the clastic sediments of the Middle and Lower Aldridge formation of Proterozoic age. The sediments of the Aldridge formation are known to host the Sullivan orebody.

The purpose of the UTEM survey, which includes a borehole survey, grid survey, and reconnaissance road survey, is to explore for massive sulphide deposits.

\section*{DESCRIPTION OF UTEM SYSTEM}

UTEM is an acronym for "University of Toronto ElectroMagnetometer". The system was developed by Dr. Y. Lamontagne (1975) while he was a graduate student of that University.

The field procedure consists of first laying out a large loop of single strand insulated wire and energizing it with current from a transmitter which is powered by a 1.7 kW motor generator. Survey lines are generally oriented perpendicular to one side of the loop and surveying can be performed both inside and outside the loop. The field procedure is similar to Turam, a better known electromagnetic surveying method.

The transmitter loop is energized with a precise triangular current waveform at a carefully controlled frequency \((30.974 \mathrm{~Hz}\) for this survey). The receiver system includes a sensor coil and backpack portable receiver module which has a digital recording facility on cassette magnetic tape. The time synchronization between transmitter and receiver is achieved through quartz crystal clocks in both units which must be accurate to about one second in 50 years.

The receiver sensor coil measures the vertical magnetic component of the electromagnetic field and responds to its time derivative. Since the transmitter current waveform is triangular, the receiver coil will sense a perfect square wave in the absence of geologic conductors. Deviations from a perfect square wave are caused by electrical conductors which may be geologic or cultural in origin. The receiver stacks any pre-set number of cycles in order to increase the signal to noise ratio.

The UTEM receiver gathers and records 9 channels of data at each station. The higher number channels ( \(7-8-9\) ) correspond to short time or high frequency while the lower number channels (1-2-3) correspond to long time or low frequency. Therefore, poor or weak conductors will respond on channels 9, 8, 7 and 6. Progressively better conductors will give responses on progressively lower number channels as well. For example, massive, highly conducting sulphides or graphite will produce a response on all nine channels.

It was mentioned above that the UTEM receiver records data digitally on a cassette. This tape is played back into a computer at the base camp. The computer processes the data and controls the plotting on an \(11^{\prime \prime} \times 15^{\prime \prime}\) graphics plotter. Data are portrayed on data sections (D.S.) as profiles of each of the nine channels, one section for each survey line.

The UTEM Borehole system uses the same transmitter, receiver and loop layout as the surface survey, and a downhole sensor probe linked by fibre optic cable to a surface controller unit. The controller unit operates the winch, for lowering and raising the borehole coil, and converts the incoming digital signal to the analog form required by the receiver. The data is plotted similar to the surface system.

\section*{FIELD MORK}

A borehole survey was completed from Loop \#1 (Plate 313-86-3) in late July. The borehole was surveyed from the remaining 3 loops at the end of August. The HQ drill rods were left in the borehole. down to approx. 320 m , to prevent caving of the borehole. The borehole was then surveyed down to approx. 620 m with a station spacing of 10 metres and 5 metres for detailing. Because of the high sensitivity of the borehole coil and associated electronics, many hours of surveying time was lost due to sferic noise produced by electrical storms.

A UTEM grid (Plate 313-86-2), which consists of four lines each 3 km in length, with line spacing of 500 m and station spacing of 50 m , was cut by B. Read in early August. This grid was surveyed with UTEM, from two separate loops (Plate 313-86-5) in the latter part of August and early part of September.

In addition to the Borehole and Grid surveys, approx. 11 km , using a station spacing varying from 50 m to 200 m , was surveyed along roads from three separate loops (313-86-5).

\section*{DATA PRESENTATION}

The results of the survey are presented on one location map, one claim, grid and borehole location map, one borehole loop location map, one borehole section, one compilation map and 32 data sections.

The maps are listed as follows:-
\begin{tabular}{cl} 
Plate 313-86-1 & \begin{tabular}{l} 
DDCH 6459 and UTEM Grid Location Map \\
Scale \(1: 125,000\)
\end{tabular} \\
\(313-86-2\) & \\
& MAT 71 Group (Claims) \\
& DDCH 6459 and UTEM Grid Location Map \\
& SCale \(1: 24,000\)
\end{tabular}

Legends for both UTEM compilation map and the data sections are also attached.
In order to reduce the field data, the theoretical primary field of the loop is calculated at each station. The normalization of the data is as follows:-
\[
\% \text { Ch.n anomaly }=\left(\underset{\mathrm{Ni}}{\left(\mathrm{Ch} . \mathrm{n}_{1}-\mathrm{P}\right)} \times 100\right.
\]
where \(\mathrm{Ch} . \mathrm{n}=\) the observed amplitude of the \(n\)th channel
```

P = I) Total Field
P=0

```
II) Secondary Field
1) Channel 1 reduced:
\(P=\) Ch. 1 for channels > 1
(Channel 1 is primary field reduced)
2) Primary Field reduced:
a) Surface System
\(P=\) the calculated primary field (same component as the observed field from the loop at the observed station)
b) Borehole System
\(P=\) the axial component of the calculated primary field from the loop at the observed station
\(N=\) I) Ch. 1 normalized
\(\mathrm{Ni}=\) Ch. 1 for Channel > 1
(Channel 1 is primary field normalized)
II) Primary field normalized
\(\mathrm{Ni}=\) absolute value of the total calculated primary field
1) continuous normalized
i = observed station (each reading normalized by a different primary field)
2) point normalized \(\mathbf{i}=\) station below the arrow on the data section (each reading is normalized by the primary field at that one station)

All the data normalized as above is plotted as profiles on data sections, using the symbols as shown in the legend. Profiles plotted with no symbols for:
I) Surface data:
a) on bottom axis = elevation
II) Borehole data;
a) on bottom axis \(=(\mathrm{Ch} .1 / \mathrm{N}) \times 100 / 5\)
b) on top axis \(=(P / N) \times 100 / 5\)
where \(\begin{aligned} \text { Ch. } 1 & =\text { Channel } 1 \text { data } \\ P & =\text { calculated component of primary field } \\ N & =\text { absolute value of total calculated primary field }\end{aligned}\)

\section*{INTERPRETATION}

\section*{Borehole}

The Borehole data shows a weak conductor at a depth of approx. 595 m (D.S. 1-4 and la-4a). This correlates fairly closely to the weakly laminated and disseminated pyrrhotite noted at \(600-607 \mathrm{~m}\) in the drill core (P.W. Ransom). The apparent slight difference in depth is possibly due to two different methods used in measuring this depth; one with drill rods and the other with the downhole UTEM system.

\section*{Surface Data}

There is a feature that can be correlated from line to line in the data from Loop 2 (D.S. 5-8, 5a-8a) at approx. 6500E. This feature is probably a contact or conductive fault with the west side being more conductive. A flat-lying conductor is noticed on Line 5500N between 6350E and 6650E (D.S. 8, 8a). This same feature can be seen at the beginning of the recce survey on Road 65 (D.S. 16 \& 16a) and Trail R2 (D.S. 15 \& 15a).

\section*{CONCLUSIONS}

A weak conductor that correlates with a thin, laminated pyrrhotite zone is recognized in the borehole data.

In the surface data a lineation crosses the grid at approx. 6500 E with an associated shallow, flat-lying conductor on Line 5500 N .


Approved for
Release:


\section*{REFERENCES}

Lamontagne, Y., 1985
Application of Wideband, Time Domain EM Measurements in Mineral Exploration: Doctoral Thesis, University of Toronto

Ransom, P.W., 1986
Accompanying Report

\section*{UTEM DATA SECTIONS}
```

ORDINATE:
ABSCISSA:
Amplitude scale is given in %
Station or Picket Numbers in Hundreds of Meters

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{CHANNEL} & \multicolumn{2}{|l|}{MEAN DELAY TIME} \\
\hline & & 15 Hz & 30 Hz \\
\hline 1 & 1 & 25.6 ms & 12.8 ms \\
\hline \(\gamma\) & 2 & 12.8 & 6.4 \\
\hline & 3 & 6.4 & 3.2 \\
\hline \(\square\) & 4 & 3.2 & 1.6 \\
\hline 5 & 5 & 1.6 & 0.8 \\
\hline \(\Delta\) & 6 & 0.8 & 0.4 \\
\hline 7 & 7 & 0.4 & 0.2 \\
\hline Z & 8 & 0.2 & 0.1 \\
\hline \(\Delta\) & 9. & 0.1 & 0.05 \\
\hline  & 10 & 0.05 & 0.025 \\
\hline
\end{tabular}


Axis of a crossover anomaly. The number indicates the latest anomalous channel.

Area where conductivity is higher than average background.
\[
\begin{array}{lll}
\text { Depth indicated by: } & S \text { - Shallow } & (<50 \mathrm{~m}) \\
& \text { M - Moderate } & (50-100 \mathrm{~m}) \\
& \text { D - Deep } & (>100 \mathrm{~m})
\end{array}
\]


Outline of a transmitter loop.


Conductor axis located by crossover anomalies with a conductance determination. The conductance is the interpreted conductivity \(x\) thickness of the conductor in mhos (same as Siemens).

Only the principal crossovers are indicated.

DATA SECTIONS


Area Matthew CK Cominco operotor JUL freqChz) 30.974
Leopne I DDH 6459 componant AxIal encondory
ABSctoiol fiold) conTINuaus normalized CH 1 reduoed

```

Aree Motthew Ck Cominco oparotor JلL freq(hz) 30.974
Loopno I DDH }6459\mathrm{ component Axial mecondory
ABS(latal fleld) POINT normallxed OH I reduoed

```


\footnotetext{
Area Matthew CK Cominco operator SJV freq(hz) 30.974
Loopne 2 DDH 6459 eomponent Axial esoondary
NBS(tolal fleld CONTINUOUS normollyed OH 1 reduoed
}


Area Matthew CK Cominco operator SJV freaChz) 30.974 Loopen 2 DOH 6459 eomponent Axlal eecondary aBS(iotal flald) POINT nornalized OH 1 reduced

```

Aras Matthew Ck ComInco oporalor SJV freq(hz) 30.974
Leopme 3 DOH 6459 component Axial eecondory
ABS(tatal fleld) continuous normollmed CH 1 reduaed

```


Area Matthew CK Cominco oparator SJV freaChx) 38.974 Loopne 3 DDH 6459 component Axial escondory
ABSCtetal field) POINT nornallized \(H 1\) reduoed



Area Matthew CK Cominco oporator SJV frealha) 30.974
Loopno 4 DDH 6459 componant Axlal eecondory
absctalal field) POINT mormalized








DS 8


ar-o MATTHEW CREEK 1986
Cominco oparalor SJV \& JV freq(hz) 30.974 Loopno 3 Line 4000N cumponarl Hz \(z\) excondary Ch 1 normalixed

Ch 1 reducod


Arøo MATTHEW CREEK 1986 Comlnco oparotor SJV \& JV freq(hz) 30.974 Loopns 3 Line 40EEN componmit \(\mathrm{Hz}_{\text {escondary }}\) Ch 1 mormulizud Ch 1 reduced


DS 10

```

Argo MATTHEW CREEK 1986
Cominco operator SJV \& JV freq(hz) 38.974
Loopno 3 LIne 450 CN component
Hz Ch 1 normalizad Ch 1 reduced

```
-


Area MATTHEW CREEK 1986 Cominco oporalor SJV \& JV frea(hx) 30.974 Loopno 3 Line 5000N componant Hz secondory Ch imormallzed chiraduaed






Area MATTHEW CREEK RECCE 1988 Comlnco opercitor SUV \&UV freq(ha) 30.974 Loopne 2 Line Fire Break RI oomporsent Hz eecondery Ch I normallaed Ch 1 redooed






Arac MATTHEW CREEK RECCE 1888
Cominco operotor SJV \& JV frea(hx) 30.974
Loopne 4 Line Trall R2 omponent Hz esoondery

Ch 1 normalized
Ch I reduoed


aree MATTHEW CREEK RECCE 1986 Cominco oporator SJV \& JV freaChz) 30.974 Loopne 4 Lime Road 65 somponent Hz esoondary Ch 1 mormalized Ch 1 reduoed

\section*{APPENDIX III}

IN THE MATTER OF THE B.C. MINERAL ACT
AND IN THE MATTER OF A GEOPHYSICAL PROGRAMME
CARRIED OUT ON MAT 71 GROUP OF CLAIMS
LOCATED 7 KM WEST OF KIMBERLEY, B.C.
in the fort steele mining division of PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY

> N.T.S.: 82F/9

\section*{STATEMENT}

I, SYD J. VISSER, OF THE MUNICIPALITY OF DELTA, IN THE PROVINCE OF BRITISH COLUMBIA, MAKE OATH AND SAY:-
1) THAT I am employed as a geophysicist by S.J.V. Consultants Ltd., on contract with Cominco Ltd. and as such have a personal knowledge of the facts to which I hereinafter depose;
2) THAT annexed hereto and marked as "EXHIBIT "A" to this statement is a true copy of expenditures incurred on a geophysical survey on the MAT 71 group of mineral claims;
3) THAT the said expenditures were incurred for the purpose of mineral exploration of the above-noted claims in the period between the 24th day of July and 6th day of September, 1986.


DECEMBER 1986

\section*{UTEM SURVEY (SURFACE)}
(1) SALARIES
a) S.J. Visser, geophysicist 10 days @ \(\$ 240 /\) day \(\$ 2,400.00\)
b) J. Vyselaar, geophysicist 15 days a \(\$ 240 /\) day \(3,600.00\)
c) M.J. Davies, technician

10 days © \(\$ 115 /\) day \(\quad 1,150.00\)
d) N. Murphy, assistant

4 days e \(\$ 70 /\) day 280.00
e) S. Kemp, assistant 9 days © \(\$ 80 /\) day 720.00
f) D. Askey, assistant

2 days @ \$75/day 150.00 \$ 8,300.00
(2) OPERATING DAY CHARGES Note: This charge is applied for those days on which useful data are acquired, to cover cost of data compilation, drafting, interpretation and report

10 days \(2,250 /\) day 2,00
(3) EQUIPMENT RENTAL

UTEM 10 operating days @ \(\$ 150 /\) day \(1,500.00\)
(4) EXPENSE ACCOUNTS
\begin{tabular}{lr} 
S.J. Visser & 560.00 \\
J. Vyselaar & 450.00 \\
M.J. Davies & 310.00 \\
\hline
\end{tabular}
\(1,320.00\)
(5) MISCELLANEOUS
\begin{tabular}{|c|c|c|}
\hline Accommodation 12 days @ \$50/day & 600.00 & \\
\hline Truck Rental \(2 \times \$ 40 /\) day \(\times 12\) days & 960.00 & \\
\hline Demobilization Cost & 240.00 & \\
\hline Wire Usage & 100.00 & 1,900.00 \\
\hline & Total & 15,520.00 \\
\hline - Less: Reduction for Work Done on 3 & C.G. claims & 355.00 \\
\hline Total of UTEM & Survey (Surface) & \$ 15,165.00 \\
\hline
\end{tabular}

\section*{DOHNHOLE BOREHOLE SURVEY}
(1) SALARIES
a) J.J. Lajoie, geophysicist 4 days @ \$280/day \$ 1,120.00
b) S.J. Visser, geophysicist 7 days @ \$240/day 1,680.00
c) M.J. Davies, technician 5 days @ \$115/day 575.00
d). N. Murphy, assistant
. 4 days @ \(\$ 70 /\) day 280.00
e) S. Kemp, assistant 9 days @ \(\$ 80 /\) day 720.00
f) G. Allen, assistant 4 days @ \$75/day \(\quad 280.00\) \$ \(\$ 655.00\)
(2) OPERATING DAY CHARGES Note: This charge is applied for those days on which useful data are acquired, to cover cost of data compilation, drafting, interpretation and report

4 days @ \(\$ 250 /\) day

1,000.00
Carried Forward
(3) EQUIPMENT RENTAL

Downhole UTEM 4 operating days © \(\$ 150 /\) day 900.00
(4) EXPENSE ACCOUNTS
\begin{tabular}{ll} 
J.J. Lajoie & 255.00 \\
S.J. Visser & 260.00 \\
M.J. Davies & 200.00
\end{tabular}
715.00
(5) MISCELLANEOUS
\begin{tabular}{lrrr} 
Accommodation 6 days @ \(\$ 50 /\) day & \(\$ 300.00\) & \\
Truck Renta1 6 days @ \(\$ 40 /\) day & 240.00 & \\
Shipping Downhole Equipment & 370.00 & \\
Wire Usage & & 75.00 & 985.00 \\
\hline
\end{tabular}

Total of Downhole UTEM Survey
\(\$ 8,255.00\)

TOTAL OF UTEM SURVEY (SURFACE) \& DOWNHOLE UTEM SURVEY \$ 23,420.00

LINECUTTING CHARGES \(\$ 4,950.00\)
Less: Work Done on 3 C.G. Claims
350.00

Total Linecutting Charges

TOTAL EXPENDITURES
\(\frac{\$ 4,600.00}{\$ 28,020.00}\)

I certify this to be a true Statement of Expenditures for the geophysical surveys on the Mat 71 Group of Claims in 1986.


DECEMBER 1986

\section*{CERTIFICATION}

I, SYD J. VISSER, of 8081 - 112th Street, in the Municipality of Delta, in the Province of British Columbia, do hereby certify:-
1) THAT I graduated from Haileybury School of Mines in 1971 as a Mining Technician and from the University of British Columbia in 1981 with Honours B.Sc. in Geophysics and Geology.
2) THAT I have worked in mineral exploration. since 1968.

DECEMBER 1986

Distribution:
Kootenay Exploration
Western District
Exploration Administration
Victoria

WESTERN DISTRICT

\section*{EXPLORATION}

\section*{NTS: 82F/9}

\section*{1986 NORTH STAR HILL DETAIL UTEM EURVEY}
```

Latitude: 49* 40'N
Longitude: 116**00'W
Work Performed by: SYD VISEER and JIM VYSELAAR
Claim Dwner and Operator: COMINCD LTD.

```

\section*{TABLE OF CONTENTS}
INTRODUCTION ..... 2
FIELD WORK ..... 2
DESCRIPTION OF THE UTEM SYSTEM ..... 2
DATA PRESENTATION ..... 4
INTERPRETATION ..... 5
CONCLUSIONS AND RECOMMENDATIONS ..... 7
REFERENCES ..... 8
FIGURE 1 ..... 9
FIGURE 2 ..... 10
PLATE 316-86-1: LOCATION MAP ..... 11
LEGEND ..... 12
dATA SECTIONS ..... in text
PLATE 31G-86-2: LITEM DETAIL COMPILATIONGRID MAP in envelope

\author{
COMINCO LTD.
}

WESTERN DISTRICT

\section*{INTRODUCTION}

The 1986 North Star Hill Utem detail survey grid is located immediately southwest of Kimberley, B.C., as shown in the Location map (Plate 316-86-1). The grid on a topographic base map is shown in Plate 316-B6-2. Access to the grid is via a road from the Kimberley ski hill which is north of the survey area.

The detail grid is underlain by rocks of the Lower Aldridge Formation. The North Star deposit occurs 500 metres directly north of the northern boundary of the detail grid. The latter is along the North Star corridor mineralized trend.

The objective of the detail Utem survey described herein is to outline a Utem anomaly discovered in the 1985 Sullivan Ski Hill Utem survey (Lajoie, 1986), called conductor 3.
6.25 line kilometres of inside loop Utem surveying were completed, mostly at a station interval of 25 metres and line spacing of 50 metres.

FIELD WORK
The field work was performed by geophysicists Syd Visser and Jim Vyselaar during the period Oct 14 to 1日, 1986. As shown in the Compilation Map (Plate 316-8b-2), eight lines were surveyed inside the loop.

Unfortunately, chainage on each of the detail lines was not started from tie line 1500E, and so station 1500E does not correspond always to tie line 1500E.

\section*{DESCRIPTION OF THE UTEM SYSTEM}

UTEM is an acronym for "University of Toronto ElectroMagnetometer". The system was developped by Dr.
Y. Lamontagne (1975) while he was a graduate student of that university.

The field procedure consists of first laying out a large loop of single strand insulated wire and energizing it with current from a transmitter which is powered by a motor generator. Survey lines are generally oriented perpendicular to one side of the loop and surveying can be performed both inside and outside the loop.

The transmitter \(100 p\) is energized with a precise triangular waveform at a carefully controlled frequency ( 30.974 Hz for this survey). The receiver system includes a sensor coil and backpack portable receiver module which has a digital recording facility on cassette magnetic tape. The time synchronization between transmitter and receiver is achieved through quartz crystal clocks in both units which must be accurata to about one second in fifty years.

The receiver sensor coil measures the vertical component of the electromagnetic field and responds to its time derivative. Since the transmitter current waveform is rectangular, the receiver coil will sense a perfect square wave in the absence of geologic conductors. Deviations from a perfect square wave are caused by electrical conductore which may be geologic or culturial in origin. The receiver stacks any premet number of cycles in order to increase the signal to noise ratio.

The UTEM receiver gathers and records 9 channels of information at mach station. The higher number channels (7-8-9) correspond to short time or high frequency while the lower number channels (1-2-3) correspond to 1 ong time or low frequency. Therefore, poor or weak conductors will respond on channels 9, \(日, 7\), and 6 . Progressively better conductors will give responses on progressively lower number channels as well. For example, massive; highly conducting sulphides or graphite will produce a response on all nine channels.

It was mentioned above that the UTEM receiver records data digitally on a cassette. This tape is played back into a computer at the base camp. The computer processes the data and controls the plotting on an 11" \(\times\) 15" graphics plotter. Data are portrayed on Data Sections as profiles of each of the nine channels, one section for each survey line.

\section*{dATA PRESENTATION}

The results of this survey are presented in one compilation map (Plate 316-86-2) and 8 Data Sections which all face \(N\), plus two Data Sections from the previous survey (Lajoie, 1986).

The maps are listed as follows:
Plate 316-86-1 Location Map
(in text) Scale 1:50,000
Flate 316-86-2 Compilations Map
(in envelope) Scale 1 " \(=400\).
A legend for the compilation map and data sections is included. The data sections are arranged in order of line number from 10005 to 14005.

The magnetic field amplitudes from both the transmitter loop (primary field) and from the electric currents induced in the ground (secondary field) vary considerably from the beginning of a line near the transmitter loop wire, to the middle of the transmitter loop. To present such data, a normalizing scheme must be used. In this survey, the primary field from the loop is used for normalizing and presenting the data according to the following schemes:
1. Continuously normalized plots.

This is the standard normalization scheme.
a) For channel 1:

Ch. 1 - P
\(\%\) Ch. 1 anomaly \(=--\infty\)
where \(P\) is the primary field from the loop at the station and Ch. 1 is the observed amplitude for channel 1.
b) The remaining channels ( \(n=2\) to 9 ) are channel 1 reduced and channel 1 normalized:
\(\%\) Ch.n anomaly \(=-\mathrm{Ch} . \mathrm{n}-\mathrm{Ch} .1\)
Ch .1
where Ch.n is the observed amplitude of Channel \(n\) ( \(n=2\) to 9).
2. Point normalized plots.

These plots display an arrow at the top of the section indicating the station to which all data on the line are normalized. The purpose of point normalized plots is to display only the relative amplitude variation of the secondary field along the line, that is, only that magnetic field from the currents induced in the ground.
a) For Channel 1:
\(\% \mathrm{Ch} .1\) anomaly \(=\frac{\mathrm{Ch} .1-\mathrm{Ppn}}{\mathrm{Ppn}} \times 100 \%\)
where Ppn is the primary field from the loop at the point norm station and Ch. 1 is the observed amplitude for Channel 1.
b) The remaining channels ( \(n=2\) to 9) are channel 1 reduced and channel 1 normalized:
\[
\% \text { Ch.n anomaly }=\frac{\text { Ch.n - Ch. 1pn }}{\text { Ch. } 1 \mathrm{pn}} \times 100 \%
\]
where Ch.n is the observed amplitude of Channel \(n\) and Ch. 1 pn is the observed channel 1 amplitude at the point norm station.

Point normalized plots are usually produced on data sections containing anomalies to help interpretation by providing a different perspective to the data.

The above normalizing procedures result in chaining errors displayed in Channel 1 only.

\section*{INTERPRETATION}

The data from this detail survey are shown in Data Sections 1 to 8 at the back of this report. Data Sections 9 and 11 are the respective Data Sections from the 1985 work and are included for discussion. The location of the transmitter loop and detail survey grid are shown in Plate 316-86-2. In Data Sections 1 to 8 , the tie-line \(1500 E\) intersection with the grid line is shown on each Section; clearly, it does not occur at "station" 1500E on every line. Therefore, in the data compilations of Plate 316-86-2 and Figures 1 and 2, the anomaly locations are plotted with respect to TIE-LINE 1500E, assuming the latter is straight.

Conductor \(J\) which was discovered in the 1985 field work (Lajoie, 1986), shows up as a clear positive inside loop anomaly on all detail lines except for line 14005. The extent of the anomaly is shown by a bar at the bottom of each Data Section, with channel 2 being the latest anomalous channel on most Sections. Figure 1 shows a computer contour plot of the residual channel 4 anomaly amplitude after removal of an estimated regional component. It clearly outlines the anomalous zone.

Line 12005 was chosen for model fitting using the Plate program. The results are shown in Figure 2, with an overlay containing the residual channel 2 to 5 field data. The model is a 325 by 162 metre plate with a conductance of 100 mhos, dip of 33 deg. \(E\), and a depth to top at its shallowest of 78 metres. It is shown in section in Figure 2 under the Plate model results. The overlay to Figure 2 shows the residual field data which is seen to fit the model data very well. The overlay to Figure 1 shows the horizontal projection of the model, and the dashed oval shows the interpreted outline of the geologic source causing this anomaly. Looking at the contour plot of Figure 1 again, the sharpness of the southern edge of the anomaly compared to the broader northern tail suggests a plunge to the north.

A vertical drill hole is recommended to intersect the conductor near its center. It should be collared on line 12005, 40 metres WEST of tie line 1500E, at picket 1525E. The estimated depth of intersection is 100 metres, but the hole should be planned for 160 metres, since the plate model may not be an accurate representation of the gealogic source.

The results of the 1985 work on line 1000 are re-interpreted in light of this detail survey. In Data Section 9 , the anomalous feature at 1500 E was previously interpreted as a contact-type anomaly with less resistive rocks to the west. It is now recognized that a sloping background can be put through this feature das shown in channel 5) producing a negative response similar to the response observed on line 1250s, thus agreeing with the detail results. Note that a flat body produces a negative anomaly outside the loop and a positive anomaly inside the loop with our present plotting convention.

The eastern edge of an anomaly is now recognized at the western end of lines 11505 to 1300s, in Data Sections 3 to 6. It is clearest in the point normalized sections (3a to ba). It appears to be anomalous to channel 4. Returning to the 1985 work on this line,
shown in Data Section 11, we can see in the vicinity of stations \(1000 E\) to \(1100 E\) a negative response in the early time channels on the top graph, and a lower than normal amplitude in the channel 1 to 5 data. This response explains the anomalous results observed in the detail data. Unfortunately, this was not picked up as an anomaly in the 1985 work, probably because it was not clearly defined and attention was focussed on conductor J further east. It nevertheless should be followed up.

Interpretation of the 1985 outside loop data (Lajoie, 1986) had given a \(150 \times 150\) metre plate at a depth to top of 5 metres. This differs from the present interpretation because only one line of data was available, and so strike length could not be determined. A greater strike length results in a larger anomaly on surface and so the body must be deeper to produce the same amplitude, hence the present depth interpretation of 78 metres.

\section*{CONCLUSIONS AND RECOMMENDATIONS}

Conductor J of the 1985 Sullivan Ski Hill Survey was detailed with 6.25 km of inside loop surveying. \(A\) conductor with dimensions of about 300 by 150 metres was outlined, with a conductance of 100 mhos, dip 33 deg. \(E\), and depth to top of 78 metres. A 160 metre vertical drill hole is recommended at picket \(1525 E\) on 1 ine 12005, 40 metres west of tie line \(1500 E\), to intersect the center of the conductor at an estimated depth of 100 metres.

The edge of a second anomaly was recognized at the western edge of the detail survey area, and it is recommended to extend the detail survey further west to outline this new zone.
cc: Victoria
Cominco Exploration: Cranbrook Western District Administration

\section*{REFERENCES}

Lajoie, J. J., 1986, 1985 Sullivan Ski Hill Utem Survey: Cominco internal report.

Lamontagne, Y., 1975, Applications of wideband, time-domain EM measurements in mineral exploration: Ph.D. thesis, \(U\). of Toronto.


FIGURE 1
CONTOUR PLOT OF RESIDUAL CHANNEL 4 UTEM AMPLITUDE - CONDUCTOR J
Oramn by: d.d.L. Traced by: a. m. . . 1986 NORTH STAR HILL DETAIL UTEM SUAVEY
\begin{tabular}{|l|l|l|l|}
\hline Anviod by & Dever & Perved by & Dow \\
\hline & & & \\
\hline
\end{tabular}

\begin{tabular}{ll}
\(1 / 4\) &
\end{tabular}

\section*{LEGEND}

\section*{UTEM COMPILATION MAP AND DATA SECTIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{CHANNEL} & MEAN DELAY TIME \\
\hline & & 30 Hz \\
\hline & 1 & 12.8 ms \\
\hline ／ & 2 & 6.4 \\
\hline & 3 & 3.2 \\
\hline & 4 & 1.6 \\
\hline & 5 & 0.8 \\
\hline \[
\Delta
\] & 6 & 0.4 \\
\hline & 7 & 0.2 \\
\hline \[
\Sigma
\] & 8 & 0.1 \\
\hline \(\triangle\) & 9 & 0.05 \\
\hline \[
\rangle
\] & 10 & 0.025 \\
\hline
\end{tabular}

In the data sections，the upper graph contains Channels 9 to 5， the centre graph contains Channels 5 to 2，and the lower graph contains Channel 1．Station numbers are indicated along the abscissa．Elevations along the survey line are shown by the solid profile in the lower graph，the scale for which is the ordinate

里为为on the right hand side of the graph．

Axis of a crossover anomaly．The right superscript indicates the latest anomalous channel．The left superscript indicates depth to current axis in metres，or \(S=\) shallow depth，\(M=\) moderate depth and \(D=\) deep．

Indicates a negative anomaly of width shown by the dash．The latest anomalous channel is shown．Can sometimes be confused with the negative part of a crossover anomaly．

Indicates contact between two regions of differing resistivity．Arrow points to low resistivity zone．


\section*{DATA SECTIONS}

\section*{}


Areo NORTH STAR HILL DETAIL 1986 Comlnco operator SJV \& JV freq(hz) 30.97 Loopno 1 Line \(1000 S\) omponent \(H z\) eecondary primary fleld normolized Ch 1 reduced


Areo NORTH STAR HILL DETAIL 1986 Cominco operator SJV \& JV freq(hz) 30.97 Loopno 1 Line \(1000 S\) oomponent Hz eecondery primary field normalized Ch 1 reduoed


Area NORTH STAR HILL DETAIL 1986 Cominco operator SJV \& JV frea(hz) 30.97 Loopno 1 Line \(\mid l 00 S\) component Hz eecondary primary field normalized \(C h 1\) reduced


Areo NORTH STAR HILL DETAIL 1986 Cominco oparator SJV \& JV frea(hz) 30.97 Loopno 1 Lire \(1100 S\) component \(H z\) escondary primary flald mormolized Ch 1 reduced



Area NORTH STAR HILL DETAIL 1986 Loopno I LIne 11505 component Hz



\footnotetext{
Area NORTH STAR HILL DETAIL 1986 Cominco oparator SJV \& JV freq(hz) 30.97 Loopno 1 Line \(1200 S\) component Hz eecondary primary field mormolized Ch 1 reduced
}



Area NORTH STAR HILL DETAIL 1986 Cominco oporator SUV \& JV froq(hz) 30.97 Loopno 1 Line \(1250 S\) component Hz eecondary primory field normolized Ch 1 reduced


Area NORTH STAR HILL DETAIL 1986 Cominco oparator SUV \& JV freaChz) 30.97
Loopno I Line \(1300 S\) componant Hz eecondary primary field normalized Ch 1 reduced


Area NORTH STAR HILL DETAIL 1986 Cominco operator SJV \& JV frea(ha) 30.97 Loopno I Line 13005 component Hz eecondary prlmary fiold normalizod ch 1 roduood


Araa NORTH STAR HILL DETAIL 1986 Cominco oparator SUV \& JV frea(hz) 30.97 Loopno 1 Line 13505 component \(H z\) eecondary primary fleld normalized ch 1 reduced


Araa NORTH STAR HILL DETAIL 1986 Cominco oporator SJV \(\&\) JV freq(hz) 30.97 Loopno 1 Line \(1400 S\) component \(H z\) secondary primary fleld normalized Ch 1 raduced


Areo NORTH STAR HILL DETAIL 1986 Cominco oparator SUV \& JV frea(hz) 30.97 Loopno 1 Line 1400 s component \(H z\) eecondary primary fleld normalized ch 1 reduced


Area SULLIVAN:SKI HILL 85 Cominco operotor JUL\&AOH freaChzs 30.974
Loopno 2 Line \(1000 S\) component \(H z\) secondary Ch 1 normalized Ch 1 reduced REINTERPRETATION OF 1985 OUTSIDE LOOP SURVEY DATA DS 9



Areo SULLIVAN:SKI HILL 85 Cominco operotor JJL\&AOH freq(hz) 30.974
Loopno 3 Lime component Hz eqoondery Ch 1 normallzed Ch 1 reduoed
REINTERPRETATION OF 1985 OUTSIDE LOOP SURVEY DATA









```

