

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TYPE OF REPORT/SURVEY(S)	TOTAL COST
DIAMOND DRILLING PROGRAM - BELL COPPER MINE	\$123.598.32
AUTHORIS D.R. McArthur, A.Sc.T. SIGNATUREIS	mapp
KVK M	William of
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILED	TALL YEAR OF WORK OD
Bell Copper Mine, Granisle, B.C. VOJ	ING Division IWO
COMMODITIES PRESENT Cu, trace Au & Ag	· · · · · · · · · · · · · · · · · · ·
B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN	х (тала с тала с с с бола с тала с т
MINING DIVISION Omineca M.D. NTS	93M/1E, 93L/16E 14'W
NAMES and NUMBERS of all mineral tenures in good standing (when work was done) that form the form the standing (When Work was done) that form the standard provide the standard stand standard standard stand	he property [Examples: TAX 1-4, FIRE 2 ims involved)]:
Mineral leases M134 & M135, located mineral clai	.ms
······································	· · · · · · · · · · · · · · · · · · ·
······	· · · · · · · · · · · · · · · · · · ·
OWNER(S)	FILMED
(1) Noranda Minerals Inc. (2)	A
······································	
MAILING ADDRESS P.O. Box 45 Toronto, Ont., M5L 1B6 GEOLOGI ASSESSM	CAL BRANCH LENT REPORT
OPERATOR(S) (that is, Company paying for the work)	
(1) Maclaren, Forest, Products, Inc	
Babine Mining Division	/11
Bell Mine P.O. Box 2000	/ ala ala
Granisle, B.C. VOJ IWO	· · · · · · · · · · · · · · · · · · ·
SUMMARY GEOLOGY (lithology, sge, structure, alteration, mineralization, size, and attitude):	
The Bell orebody is horseshoe shaped in plan, dips	steeply to NW, is 150
to 300 meters wide by 1000 meters long and dated at 48	m. years. The ore body
follows and overlaps the west and north edges of a eoc blende-plagioclase porphyry. The ore body is enclosed	ene plug of biotite-horn . in a halo of hydro
thermal alteration and is in a zone of hydro-thermal b rite, the main copper mineral, is finely disseminated	iotitization. Chalcopy- or occurs as fracture
REFERENCES ings and stringers.	
······································	· · · · · · · · · · · · · · · · · · ·
	(over)

Accelerated Mine Exploration Program

24

Number 10963 M-21

DIAMOND DRILLING PROGRAM

BELL MINE - PERIPHERY OF 2A PIT

JUNE 1986

Noranda Minerals Inc. MACLAREN FOREST PRODUCTS INC. Babine Mining Division BELL MINE

GRANISLE, B. C.

by

D. R. McArthur, A.Sc.T. Senior Mine Engineer

January 21, 1987

TABLE OF CONTENTS

.

1.Ø	INTRODUCTION	page	1
2.Ø	DIAMOND DRILLING	page	3
3.Ø	RESULTS	page	4
4.Ø	GEOLOGICAL INTERPRETATION	page	4
5.Ø	COST STATEMENT	page	5
6 <i>.</i> Ø	DRILLING REPORTS	page	6
7.Ø	AUTHOR'S QUALIFICATIONS	page	7

Ņ

APPENDIX I	SURFACE LOCATION PLAN
APPENDIX II	PROPERTY GEOLOGICAL DESCRIPTION
APPENDIX III	DRILL HOLE LOG SHEETS
APPENDIX IV	DRILL HOLE LOG SUMMARY
APPENDIX V	GEOLOGIST'S QUALIFICATIONS STATEMENT

.

1.Ø INTRODUCTION

The Bell Copper Mine, owned and operated by Noranda Inc., is located on the Newman Peninsula, in Babine Lake, British Columbia. This open pit mine-mill complex is approximately 55 degrees North Latitude and 126.23 degrees West Longitude (NTS 93M/1E - 93L/16E) at an elevation of 2390 feet (728 m) A.S.L. Babine Lake is located on the Nechako Plateau which is part of the Interior Plateau physiographic region of the province. Climatic conditions are typical of the interior of British Columbia despite the moderating effects of Babine Lake.

The minesite is located approximately 8 miles (13 km) north-east of the Village of Granisle which is at the north end of Highway 118. This highway is a 30 mile (48 km) paved road travelling north from Highway 16 (Yellowhead Route) at Topley, B. C. Access from Granisle to the minesite is by an 8 mile (13 km) all season gravel road along the west shore of and a 2.5 mile (4 km) tug-barge route across Babine Lake (see Map 1.1.)

The Bell Mine mineral deposit was originally examined by C. during the mid 1920's. After years of intermittent Newman prospecting the property was staked by Noranda Mines Ltd. in 1962. Geochemical and geophysical surveys established anomalous targets for drilling. Drilling results provided sufficient reserves to justify the construction of the Bell mine and mill. Pre-production stripping commenced in 1970 and milling started in 1972 at 10,000 Short Tons per Day. In 1979 and 1980 Bell expanded the dimensions of the original open pit limits and upgraded milling capacity to what exists today. Milling tonnages at this time were increased to 16,500 Short Tons per Day which continued regularily until the mine closure in October 1982. At this closure approximately 38 million tons of sub-economic mineralized material, with a near equal amount of waste material, were available for mining.

The mine-mill operations resumed in August 1985 using a restricted ore reserves which reduced the mine life to three calendar years. This ore reserve optimized the amount of readily available ore and minimized the amount of associated waste material. This limited ore reserve and short term mining plan allowed for an expansion phase after the first year of operations.

In order to properly evaluate this potential expansion within the pit limits a drilling program was initiated. A series of sixteen (16) size NQ diamond drill holes totalling 7494 feet (2285 m) were completed by J. T. Thomas Ltd. of Smithers, B. C. However, of the sixteen (16) holes collared, only fourteen (14) holes totalling 6550 feet (1997 m) are included in this <u>Accelerated Mine Exploration Program</u> grant application. This diamond drilling was all completed within the open pit limits on Mineral Leases M-134 and M-135 during June of 1986.

2.Ø DIAMOND DRILLING

purpose of the drilling program was to accurately outline The reserves on the west periphery of the open pit for a the ore ore reserves and resulting extension of possible increase of operations at the Bell Mine. When operations resumed in September of 1985, a three year mine life was planned using an optimized pit design called '2A'. The ore reserves for this pit design were calculated at 19.2 million tons compared to 38 million tons when operations ceased in 1982. A second plan, to be activated within of start up, was considered which would expand on the one year '2A' pit design and possibly extend the mine life by up to two years. This extension involved the mining of deferred material on the west periphery of the original '2A' pit design but within the 1979-80 expansion limits. The limited three year mine life and reasonably sucessful operating results after start-up were the reasons that the decision was made to further investigate this extension of operations. The drilling program was possible initiated to gain more sound information which could justify the extended mining and solve some other operations problems.

After operations resumed in September 1985 the mining of the '2A' expected ore reserves conflicted with actual ore extraction due to deficiencies in the Mineral Inventory File (MIF) calculations. Since this geological reserve was to be used for the possible expansion on the west periphery of the pit and because of these volume losses the drilling program proceeded to firm up information and to develop a more accurate ore reserve in the expansion area.

The somewhat unreliable ore reserve information was partly due to random diamond drill hole spacing which resulted in some mis-interpretation in the MIF. Consequently, the drill hole locations were selected where areas could be best filled in on the drilling grid on the west periphery of the '2A' pit design.

As stated above, the south, west and north edges of the open pit were targeted for expansion. In the '2A' mining plan a fixed reserve of tons and grade was calculated for this area using a Ø.300% Copper cut-off grade. However, two items reduced this reserve which also warranted the drilling program. First, when '2A' mining commenced and with the operating sucess very the sensitive to the price of copper, the cut-off grade was adjusted upwards from Ø.350% to Ø.400% Copper to be economic and thus reduced the ore reserve. Secondly, while mining using the most up-to-date MIF, some predicted ore was not available in specific areas or the grade was not accurate which further reduced the ore reserve. Although the mined grades were higher than predicted in the MIF a sharp cutoff rather than gradational trending to waste increased the stripping ratio.

Since Bell was losing this gradational material using the current MIF and since the outer periphery of the pit is not structurally similar to the center of the pit the drilling program

10963 M 21

was necessary to redefine the expansion potential on the south, west and north walls of the '2A' pit. The geological profile of this area trending down from the surface indicated waste to low grade to high grade mineralization. The drilling results were also used to define the grade change by elevation for mine planning, stripping ratios and overall extraction sequences.

All the drilling was targeted to fill in suspected gradational areas where there was no previous drilling or to vertically extend information where previous work was limited by insufficient depth. This additional information reduced three dimensional block parameters used to develop the MIF and more accurately determined the ore reserves of the Bell Mine.

A surface location plan showing drill hole collars in relation to the property, mineral leases and geography is attached (see APPENDIX I).

3.Ø <u>RESULTS</u>

This diamond drilling program yielded results which proved that a portion rather than all of the expected pit expansion is economically viable. The information from this diamond drilling program, including the assays, dip tests and coded rock types, were added to the MIF and a new ore reserve was generated. The new ore reserve showed that the south wall of the '2A' pit was uneconomical to mine but that the west and north walls contained more mineralization than originally predicted. The west and north walls of the expansion area are included in a new pit design designated as '2C'. The geological reserve of the '2C' area increased from an estimated 7 million tons to 8.2 million tons at a cutoff grade greater than 0.300 % copper. This increase resulted in an complementary reduction of waste tons for the same areas and a more attractive stripping ratio.

Although the ore reserve increased by the stated amount, and approval has been received from upper management to extend the mine life, economics applied to budgetting have shown that approximately 5.8 million tons will be mined at a grade cutoff of $\emptyset.350\%$ copper or greater. The remainder of this reserve, approximately 1.6 million tons of gradational material, will be stockpiled for later utilization if prices warrant. This tonnage will extend the Bell Mine operations by fourteen (14) months after the completion of the '2A' pit. Closure of operations is now predicted for December 1989 rather than September 1988.

4.Ø <u>GEOLOGICAL INTERPRETATION</u>

Similar rock types were encountered in the recent core drilling that have been reported by previous drilling. This indicates that the expansion area is either in the pit core at depth or on the fringe of the vertically structured ore body. The rock types, with stratigraphic and lithologic information, can be

1Ø963 M 21

Page 4

found on the attached paper, titled:

.

"Bell Copper: Geology, Geochemistry and Genesis Of A Supergene-Enriched, Biotitized Porphyry Copper Deposit With A Superimposed Phyllic Zone"

in that section sub-titled "Local Rock Types". This paper, authored by David J. T. Carson; John L. Jambor; Peter L. Ogryzlo; and Tom A. Richards can be found in the CANADIAN INSTITUTE OF MINING AND METALLURGY, Special Volume 15, titled "PORPHYRY DEPOSITS OF THE CANADIAN CORDILLERA, Part B, pages 245 to 263, 1976" (see APPENDIX II).

Drill core evaluation commenced immediately after the drilling program was completed. The geological logging was completed by a consulting geologist, Mr. Anthony L'Orsa, of Smither, B. C.

Copies of all the drill hole logs are attached to this report in APPENDIX III. Although hole numbers 86-9 and 86-10 were drilled within the '2A' pit limits and that footage is not included in this grant application the logs are included in the report. A summary of the drill hole core logging by the consultant is also attached to this report in APPENDIX IV.

5.0 COST_STATEMENT

The following costs were incurred by the Bell Mine from June 12, 1986 to present. The costs include the diamond drilling by contractor, being J. T. Thomas of Smithers; consultative core logging; in-house core splitting, pulverizing and assaying; and the final evaluation of results. The sixteen (16) diamond drill holes were all collared within the open pit boundary. However, two (2) of these holes have not been included in the costs because the holes were drilled in the existing '2A' pit or proven reserved ore rather than on the periphery and are not applicable to the grant parameters. Therefore, a portion of the total footage is used for this grant application. The factor for the grant application, which is 87.4 percent of the total costs, has been calculated into the listing below.

Cost Summary

a) WAGES

Drilling-Core Logging-Core Crushing-Core Pulverizing-Core Assaying-Moving Drill-Drillingincluded in consultants invoice included in consultants invoi

sub-total \$ 3331.94

10963 M 21

Page 5

	b)	FOOD 8	& ACCO	MMODA	TION		0 1									
	Dril Core Rema	lling- e Loggi ainder-	ing- - "In-	house	9 a. (24 - a) 4 11			ir ir	ncluded ncluded	l in l in	cont cons no	tract sulta char	ors nts ges	inv inv app	oice oice lied	e 1
											sub	-tota	1	\$		ØØ
	c)	TRANSE	PORTAT	ION	,		•		. *							
	Dril Core Rema	lling- e Loggi ainder-	ing- - "In-	house	u -			ir ir	ncludeo	l in l in	cons cons no	tract sulta char	ors nts ges	inv inv app	oice oice lie	e e 1
											sub	-tota	1	\$.ØØ
	d)	INSTRU	JMENT	RENTA	L											
								т. 1. 1. м.			no	char	ges	app	lie	đ
	e)	SURVEY	(S			, н — * х					no	char	ges	app	lie	đ
	f)	ANALYS	SES												-	
	Core	e Assay Reserv	vs- 70 ves- N	4 det orand	ermin a Com	atio pute	ns; (r; 60	Coppe 5.5 h	er; \$5 nours;	Ø5	per;			\$3 3	555 Ø33	. 2Ø . ØØ
•											sub	-tota	1	\$ 6	588	. 20
kv i s	g)	REPORT	PREP	ARATI	ON	- 4., 278 				ja sjera k				1990 - A		
	Engi	ineerir	ng Dep	artme	nt- "	In-h	ouse'	•						\$ 2	.øøø	.øø
											sub	-tota	1	\$ 2	ØØØ	. ØØ
	h)	OTHER					•	:								
	Dri Fuel Geol	lling- l- 18 d logist-	18 da lays; - 10 d	ys; J June ays;	une 1 11 to \$4Ø/h	1 to 3Ø; our;	3Ø; \$Ø.2 June	\$16. 278 p 16	15 per per lit to Ju	r fo tre; ly 1	ot; 1;		\$	1Ø5, 2, 3,	782 12Ø 775	.5Ø .ØØ .68
										S	ub-t	otal	\$	111,	678	. 18
										\mathbf{T}	OTAL		\$	123,	598	. 32

6.Ø DRILLING REPORTS

The required information to complete this assessment report including a location map and the drill logs are enclosed in the appendix. The location map shows the drill hole collar location by co-ordinate on the mine grid system. The grid system is tied

1Ø963 M 21

Page 6

「「「「「「「「「」」」」」

والمراجعة والمحافظة والمحافظة

The process of the second

to common longitude and latitude as shown on the location map. The drill logs include inclination, azimuth, dip tests, core diameter and collar elevation of each drill hole. The drill logs also include all the assay results for copper, other mineral identification, rock type coding for computer analysis and geological description on 10 foot (3 m) increments.

All the drill core was crushed in 10 foot sections for assay after the geological logging was completed. One-half portions of every section were bagged; identified by hole number and footage; and stored in wooden enclosed pallets. These pallets are stored, with other drill cuttings and core boxes, near the minesite explosives storage magazine area.

7.Ø AUTHOR'S QUALIFICATIONS

The author, D. R. McARTHUR, is Senior Mine Engineer of the Bell Mine, Granisle, B. C. The author is a graduate of the B. C. Institute of Technology, Mining, 1972. Since 1972 the author has been actively employed by Granby and Noranda in all aspects of mine engineering positions including exploration duties, surveying, pit engineer, mine engineer and, presently, is the head of the Engineering Department at the Bell Mine. The author is also a registered Applied Science Technologist of B. C., member Nr. 7621.

A resume of qualifications submitted by Mr. A. L'Orsa, the consulting geologist, is attached to this report in APPENDIX V.

的话题,这些"你们是我们的这些"的问题,我就能能能

1Ø963 M 21

Page 7

APPENDIX I

1. V. 1. 200 E. 10

SURFACE LOCATION PLAN

APPENDIX II

PROPERTY GEOLOGICAL DESCRIPTION

Bell Copper: Geology, Geochemistry and Genesis Of A Supergene-Enriched, Biotitized Porphyry Copper Deposit With A Superimposed Phyllic Zone

David J. T. Carson, Noranda Exploration Co. Ltd., Toronto John L. Jambor, Geological Survey of Canada, Ottawa Peter L. Ogryzlo, Noranda Mines Limited, Bell Copper Division, Granisle Tom A. Richards,

Geological Survey of Canada, Vancouver

Abstract

Bell Copper was discovered in 1965 and was put into production in 1972. The Bell orebody is horseshoe-shaped production in 1972. The Bell decody is horseshoeshaped in plan, dips steeply, and is 150 to 300 meters wide by 1000 meters long. The orebody follows and overlaps the western and northern edges of a typical Babine-type, Eocene, plug of biotite-hornblende-plagioclass porphyry. This plug, which was emplaced along a major block-fault, the Newman fault, intruded Jurassic and Cretaceous volcanic and sedimentary rocks and Eocene rhyodacite. Chalcopyrite and minor bornite are the main ore minerals; abundant pyrite occurs in a peripheral 300-meter-wide halo. Before mining commenced, geological reserves were 116 million tonnes averaging 0.48 per cent copper, about about 0.35 ppm gold and less than 0.005 per cent copyed and Enclosing the Bell orebody is a halo of hydrothermal alteration that is approximately \$500 by \$500 meters at surface. The orebody is in a zone of strong hydrothermal biotification which biotitization which changes outward progressively to sporadic weak biotitization. Rocks peripheral to the biotite zons are strongly chloritized. This concentric biotite and zone are strongly chloritized. This concentric biotics and chlorite zoning is common to all Babine porphyry copper deposits. However, the Bell deposit also has a concentric zone of sericite-carbonate alteration which coincides with the pyrite halo, and an irregularly shaped zone of intense quartz-sericite-pyrite-chalcopyrite that was superimposed on part of the earlier biotite-chalcopyrite ore. The superimposed alteration and sulphide mineralization were probably caused by an influx of meteoric or connate water into the upper part of the hydrothermal system during late-stage structural adjustments on the Newman and subsidiary faults. Copper in the superimposed assemblage seems to have been derived, by leaching, from the biotitechalcopyrite ore which underlies the quartz-scricite-pyritcchalcopyrite ore. Similar leaching processes may have occurred in many of the numerous other porphyry copper deposits of the world that exhibit late-stage, superimposed

quartz-sericile-pyrite-copper mineralization. Dispersion of copper laterally outward from the orebody during the mineralizing process was very limited. In contrast, zinc and lead were very mobile and both metals occur in anomalous amounts at the outer edge of the pyrite halo.

Moderate supergene chalcocite enrichment occurred in the upper 50 to 70 meters of the quartz-sericite-pyriterich segment of the orebody during pre-Pleistocene time.

Location, Topography and History

THE BELL COPPER DEPOSIT, owned and operated by Noranda Mines Limited, is at latitude 54°59'N, longitude 125°14'W (NTS 93M/1E) on Newman Peninsula in Babine Lake, British Columbia (Fig. 1). Originally referred to as the Newman prospect, it was named to honour Archie M. Bell, former manager of Noranda Exploration Company, Limited. Bell Copper is one of several porphyry copper deposits of both economic and sub-economic grade, including Granisle and Morrison, that occur in the Babine Lake area (Carson and Jambor, 1974). All are related to small Eocene intrusions of biotite-hornblende-plagioclase porphyry, known locally as BFP, which were emplaced during the latter part of a major period of block-faulting.

The Bell orebody is in the center of a large, relatively flat area that is 2500 to 2550 feet in elevation and approximately 50 meters above the level of Babine Lake (Fig. 2). This area of subdued topography coincides with the alteration halo surrounding the Bell deposit (Fig. 3). The original surface of the orebody was irregular, but sloped gently southward. Before exposure in the open pit, the orebody was covered completely by 3 to 30 meters of glacial clay and drift.

In 1962, Noranda Exploration Company, Limited staked several claims on Newman Peninsula over an area that included and extended to the east of some small lead-zinc veins which are exposed in three old adits on the eastern shore of Babine Lake opposite Newman Island (Fig. 3). Pyrite-bearing porphyry, similar to that at the known Granisle deposit, was found on the shore of Babine Lake and northeast of the lead-zinc veins.

A soil survey done in late 1962 and early 1963 gave anomalous copper values in some samples from about 800 meters northeast of the lead-zinc veins and near the southwestern edge of the orebody. A very strong electromagnetic anomaly that extended several thousand meters northeast of the lead-zinc veins was later found to be coincident with the southwestern part of the pyrite halo and the pyrite-rich western segment of the orebody.

On the basis of the above work, three holes were drilled in the summer of 1963. The first was about 100 meters northeast of the lead-zinc veins, the second was at the southwestern edge of the orebody and the third was in its highest-grade western part. However, because it penetrated a narrow vertical zone of oxidized and leached rocks, the third hole gave only random high copper values, and the drilling results, therefore, were not as encouraging as they should have been. Nevertheless, drilling was resumed in 1964 and the first hole, about 70 meters from the original third, averaged 0.9 per cent copper over its length of 70

FIGURE 1 — Geology of the Northern Babine Lake Area and Location of the Bell Copper Porphyry Deposit. K-Ar age determinations are after Carter (1974) and the Geological Survey of Canada.

meters. In the next few years, about 100 vertical holes were drilled to delimit the Bell orebody. A similar number of exploration holes were drilled throughout Newman Peninsula, and one very small porphyry copper deposit of sub-economic grade was discovered about 3 km north of the Bell orebody (North Newman deposit — see Carson and Jambor, 1974).

Feasibility studies completed in 1967 showed that the Bell orebody had geological reserves of 116 million tonnes averaging 0.48 per cent copper, and mineable reserves of 42 million tonnes grading 0.50 per cent copper (Hall and Kraft, 1969). Both were calculated to the 1540-foot elevation level (300 meters depth) and at a cutoff of 0.3 per cent copper. The stripping ratio for the life of the pit was calculated to be 0.50. Molybdenum in the Bell ore averages much less than 0.01 per cent. Gold and silver average about 0.35 and 1.0 ppm, respectively.

Production of a gold-bearing copper concentrate began in October, 1972. As of January 1975, 17,150,000 tonnes of material had been removed and the pit was 80 meters deep by 800 meters in diameter. Current extraction is scheduled at 17,700 tonnes per day, of which 11,350 is ore. About one-sixth of the mined material grades 0.3-0.45 per cent copper and is stockpiled. Waste material is used for the construction of tailings-impoundment dams in the Workburn Lake basin (Fig. 2).

Regional Geology

The regional geological setting (Fig. 1) has been outlined by Carter (1966, 1973, this volume), Tipper (1972), Richards (1974), and Tipper and Richards (1976). Volcanic and sedimentary rocks belong to five major groups: the Triassic Takla Group, the Jurassic Hazelton and Bowser Lake groups, the Cretaceous Skeena Group and the Late Cretaceous - Early Tertiary Sustut Group. Oldest intrusive rocks are the Early Jurassic Topley intrusions. Eocene intrusive bodies and their extrusive equivalents collectively are referred to as the Babine Igneous Suite. Exposure in the area is generally poor.

The Takla Group consists of black shale, siltstone, augite porphyry and limestone, which are exposed in a large block west of Babine Lake. The Hazelton Group on Newman Peninsula comprises a suite of eugeosynclinal volcanic and sedimentary rocks. The oldest rocks known on the peninsula, at least 1000 meters thick, are greenish marine calc-alkaline volcanics and sediments of the Sinemurian Telkwa Formation (Tipper and Richards, 1976). In fault contact with the Telkwa Formation are non-marine pyroclastics of the upper part of the Lower Jurassic Nilkitkwa Formation (Red Tuff member). These are overlain by shallow-water marine greywackes of the Bajocian Smithers Formation.

The Middle to Upper Jurassic Bowser Lake Group is not exposed on the peninsula, but underlies much of the area between Babine and Morrison lakes. It comprises a lower, fine-grained, clastic, distal siltstoneargillite facies (the Ashman Formation, Tipper and Richards, 1976) and an upper, coarse-grained clastic marine and non-marine deltaic assemblage. The mid-Cretaceous Skeena Group consists of both marine and non-marine volcanic and sedimentary rocks of varied lithology. Along Babine Lake, most are shallow-water, silty argillite and sandstone intercalated with basic and intermediate flows and coarse breccias. The Sustut Group is exposed mainly to the north of Babine

FIGURE 2 — Topography of Central Newman Peninsula and Location of the Bell Ore Zone, Mine Buildings and Tailings-Impoundment Basin.

Lake and consists of muscovite-bearing sandstone and conglomerate. The upper members of this group contain locally derived angular clasts of rhyodacite and dacite, the source of which may have been the nearby Babine Igneous Suite. The Topley intrusions are probably coeval with the Hazelton Group. Compositionally, they vary from quartz diorite to quartz monzonite.

Eocene intrusions and their extrusive equivalents form numerous small bodies and isolated, downfaulted volcanic outliers. Rhyodacitic bodies are the most common, but these have little economic significance. Stocks, plugs and dykes of biotite-hornblendeplagioclase porphyry (BFP) are hosts for the Eocene porphyry copper mineralization, including the Bell Copper deposit. K-Ar ages of several BFP and rhyodacite bodies overlap (Fig. 1), suggesting that they were emplaced during the same event, but at different times at different localities. At Bell Copper, however, most BFP appears to be younger than the rhyodacites. The extrusive rocks, equivalent to the intrusions, now form piles isolated by later block faulting, and are cut by dykes of both rhyodacite and BFP. The Babine Igneous Suite was emplaced during the latter stages of major block-fault tectonism, which, in part, formed the prominent north-northwest structural grain in the region. The BFP intrusions and their genetically related copper deposits appear to have been emplaced along faults which have the greatest vertical displacement. Movement on some of

these faults, such as the Newman fault at Bell Copper (Figs. 1, 3), ceased after BFP emplacement. However, movement continued on some other faults after the igneous event, as is evident from the juxtaposition of the BFP-related volcanics against older rock units, and from the major offset of the Morrison porphyry copper deposit (Carson and Jambor, this volume).

FIGURE 3 - Geology and Cross Section of Central Newman Peninsula.

A THE A CHARTER AND

Local Rock Units

Most of the volcanic, sedimentary and intrusive rocks near Bell Copper have been altered intensely. The hydrothermal alterations are described fully in a subsequent section. The stratigraphic and primary lithological features which identify the rocks are outlined here.

HAZELTON GROUP

The oldest rocks at Bell Copper belong to the lower part of the Hazelton Group (Telkwa Formation) and are exposed east of Newman fault (Fig. 3). The oldest facies are light green flows, aquagene tuff, lapilli tuff and breccia that contain clasts of chilled, microporphyritic and amygdaloidal basalt and minor pink and buff rhyolite. These rocks have a fine, green, dense aphanitic matrix of chlorite, epidote, calcite and prehnite. Few flows are amygdaloidal and bedding is massive except in the finer tuffaceous units. Green tuffaceous argillite and siltstone of probable mid-Lower Jurassic age overlie the volcanic rocks. All have been metamorphosed to subgreenschist facies and contain variable amounts of epidote, chlorite, prehnite, albite, calcite and actinolite.

Subaerial red, maroon and purple andesitic to dacitic lapilli tuffs belonging to the Red Tuff member of the Lower Jurassic Nilkitkwa Formation occur near the northern end of the peninsula and are thought to overlie the green volcanic and volcano-sedimentary rocks of the Telkwa Formation. Age relationships were not found in the area shown in Figure 3, but these rocks appear to be Toarcian in the Hazelton map-area to the north (Richards, 1973). Overlying the red tuffs are fossiliferous lithic-feldspathic greywackes and wackes of the Bajocian Smithers Formation, some with a glauconite matrix.

SKEENA GROUP

West of the Hazelton Group and in fault contact with it are interbedded, fine-grained sedimentary and pyroclastic rocks of the Skeena Group. An ammonite fragment from shales west of the Bell orebody was tentatively identified by H. W. Tipper of the Geological Survey of Canada as Cleoniceras, indicating an Albian age. The Skeena sedimentary rocks are fine-grained gritty shales with common 0.16- to 2.5-cm lenses and laminations of fine sand. Their minor scour marks, bioturbation features and small-scale crossbedding indicate a tidal or pro-deltaic depositional environment. Highly contorted feldspathic greywackes and fine tuff along the west shore of the peninsula are tentatively correlated with rocks of the Skeena Group, but may be older. The shoreline rocks contain the original lead-zinc showings.

BABINE IGNEOUS SUITE

Volcanic Rocks

Two types of coarse pyroclastic rocks of lahar or mudflow origin are preserved along the western side of the peninsula. These are most plausibly the extrusive equivalents of the rhyodacite and BFP intrusions. One type is dominated by angular, light-coloured, flow-banded, dense, massive quartz-albite porphyry clasts, 0.6 to 1.2 cm in diameter. The other type contains a chaotic mixture of unaltered mauve, purple and light green, fine-grained biotite-hornblende-plagioclase porphyry clasts up to 0.6 m in diameter. In places, clasts of both types of volcanic rocks occur with rare

Porohyry Deposits of the Canadian Cordillera

sandstone, argillite, green volcanic and charred wood fragments. Massive rhyodacite and BFP dykes and small sills, such as occur on Newman Island, have intruded the volcanic pile.

Rhyodacite Intrusions

The large rhyodacite intrusions exposed near Bell Copper are white, light brown, pale greyish-green or buff-coloured. Some are coarsely to finely porphyritic, with phenocrysts of quartz and albite; others are dense, massive or flow-banded, and many are, in part, breccia bodies.

Most rhyodacites at Bell are probably coeval with BFP. Both are closely associated throughout the Babine Lake area and both yield similar K-Ar ages (Fig. 1). In many localities, including Bell and Morrison (Carson and Jambor, this volume), the BFP intrusions are central to the rhyodacites. At Bell, BFP intrudes rhyodacite at several localities and, in addition, many bodies mapped as rhyodacite appear to have been much more extensively affected by Eocene faulting than the BFP. However, it is possible that some of the acidic intrusive and volcanic rocks shown as Eocene rhyodacite on Figure 3 are actually Mesozoic.

Biotite-Hornblende-Plagioclase-Porphyry (BFP)

The main BFP intrusion at Bell (Fig. 3) is a plug that is pear-shaped in plan. Although only 200 meters wide at its western end, the plug mushrooms to 600 meters in diameter in its eastern part. Several contacts observed in the western part of the plug dip steeply and have numerous small apophyses intruded along joints between jostled blocks of country rock.

The western lobe of the BFP plug has intense quartz-sericite alteration and therefore has a bleached appearance (Fig. 16). This type of alteration is absent or only minor at other Babine deposits. Except for this local but important effect of superimposed sericitic alteration, BFP at Bell and other Babine porphyry deposits are similar. A detailed description of BFP, including chemical and microprobe analyses, is given by Carson and Jambor (1974).

As at Morrison and Granisle (Kirkham, 1971), many phases of BFP are present in the Bell plug. Most predate the copper ore zone and associated hydrothermal alterations. A large northwesterly trending apophysis of the BFP plug cuts the Skeena shales and rhyodacite and is the locus of the narrow, northwesterly extension

FIGURE 4—Biotitized BFP. All hornblende is replaced by dark brown, sucrose, hydrothermal biotite.

FIGURE 5 — Photomicrograph of Unaltered BFP. Phenocrysts of biotite, hornblende and plagioclase are unaltered.

FIGURE 6 — Breccia Pipe in the BFP Plug. Note the vertical, sheeted contacts (arrows).

FIGURE 7 — Hand Specimen of Breccia from Breccia Pipe Near the Southwestern Edge of the BFP Plug.

of the orebody (Figs. 3, 9, 13). Other, smaller BFP intrusions occur on Newman Peninsula to the north and south of the Bell plug.

Unaltered BFP south of the Bell alteration zone is medium grey, with abundant $\frac{1}{1-1}$ to 5-mm phenocrysts of zoned oligoclase-andesine, biotite and hornblende in a fine-grained to aphanitic matrix of the same minerals plus quartz and K-feldspar (Fig. 5).

Unaltered BFP is megascopically very similar to biotitized BFP from the central part of the biotite zone (Fig. 4). The only major difference is that in the biotitized variety all hornblende has been converted to sucrose hydrothermal biotite and the rock is dark grey to black. In the chlorite-carbonate zone, BFP is light, medium or greenish-grey. In intensely altered BFP of the quartz-sericite zone, the mafic minerals and matrix have been completely obliterated, and only highly sericitized plagioclase phenocrysts are distinguishable (Fig. 16). In some places, the quartzsulphide stringers are unusually wide and, because they are randomly oriented, the BFP between the stringers has the appearance of breccia fragments.

Breccia Pipes

A cluster of small breccia pipes occurs in the western part of the BFP plug (Fig. 9). Nearly all are adjacent to the concave perimeter of the orebody, in rock very low in copper. Most are aligned along the projected trace of the Newman fault, but one is near the western edge of the plug and another is well within the orebody.

FIGURE 8 — Poles to Fractures in the Bell Open Pit. Plotted are 991 fracture attitudes adjusted by Terzaghi's method. The fractures include mineralized and unmineralized joints and faults traceable vertically for at least one bench (10 meters). The inset relates the diagram to the pit geology shown in Figure 9. Group "A" is related to pre-ore fault A; group "B" is related to the northwestern regional structural trend, including the Newman fault; groups "C" and "D" are related to pre(?)- and post-ore faults C and D.

CIM Special Volume No. 15

The breccia pipes are 2 to 10 meters in diameter and have very sharp, vertical contacts (Fig. 6). Most contain angular to subrounded fragments that are less than 1 cm to 10 cm in diameter. Fragments in each pipe reflect the character of the adjacent host rocks. Therefore, most fragments are predominantly bleached, silicified and sericitized BFP, but pipes near the edge of the BFP plug contain a variety of rock fragments (Fig. 7). Several pipes have a compact matrix of grey to brownish clay; the matrix in others is a porous mixture of quartz and well-crystallized pyrite. In a few pipes, fragments are welded together with little cement and voids are numerous.

The Bell breccia pipes appear to have been localized along a major conduit, the Newman fault, and along smaller subsidiary joints or fractures. The pipes are post-ore, but adjacent rocks seem to have been depleted in copper. This depletion is particularly evident around the small pipe about 50 meters to the northwest of the main cluster (Figs. 9, 10).

Local Structures

.....

Three normal faults dissect the rocks of Newman Peninsula into four northwesterly trending blocks (Figs. 3, 26). The block on the western side of each fault has been dropped relative to the eastern side. The copper-bearing BFP plug at Bell was localized by one of these major faults, the Newman fault. Juxtaposition of the lower parts of the Hazelton and Skeena groups across the Newman fault indicates a stratigraphic separation of 700 to 1300 meters. This is the greatest known vertical displacement on faults of the immediate area.

Other faults in the vicinity of the Bell pit include an east-northeasterly fault that terminates at the western edge of the BFP, but appears to offset rhyodacite, and some north-northeasterly faults that extend into the BFP plug and are therefore at least partly younger than the BFP. Attitudes of the fracture systems related to all major faults in the Bell open pit are plotted on Figure 8.

Because the Bell orebody lacks appreciable offset along the projected strike of the Newman fault, and because faulting at the appropriate position is not visible in the pit, post-ore movement on the Newman fault must have been small or negligible. Most of its movement, and probably that of the other two major block-faults, seems to have been pre-Eocene. However, although fault contacts have not been observed, some movement apparently occurred after the Eocene igneous activity, because in many places BFP

FIGURE 9 - Geology of the Bell Copper Pit. The projection of the Newman fault across the pit is shown as a dashed line.

FIGURE 10 — Copper Grade-Zoning of the Bell Orebody. The contours are based on average assays of blast holes drilled on a maximum of four levels in the open pit. The same or similar samples were used for Mo and Au of Figures 11 and 12.

FIGURE 11 -- Molybdenum Content of Rocks In the Bell Pit.

and rhyodacitic porphyries and their coeval volcanic rocks appear to be in fault contact with older rocks (Fig. 3). Some of this apparent offset may reflect Eocene structure and topography; edges of some rhyodacitic intrusions may have been fault contacts, and some of the volcanic rocks may have been deposited in fault-bounded valleys.

The Newman fault has not appreciably offset the copper zone, but it and others appear to have controlled the localization and shape of the BFP plug and the distribution of copper and some hydrothermal alteration. In Hazelton rocks east of the Newman fault, the BFP plug is much-wider than it is in the Skeena rocks west of the fault. As neither the BFP nor the ore zone shows offset, this widening must be an original feature. Enlargement of the BFP may have been easier in Hazelton than in Skeena rocks. On the inner southeastern perimeter of the orebody, copper grades fall off sharply along the trace of the Newman fault (Fig. 10). The fault may have acted as a barrier to copper mineralization at this locality. The fairly distinct saddle of copper values of less than 0.4 per cent that crosses the orebody in a northwesterly direction along the trace of the Newman fault may reflect a similar influence during mineralization. That the Newman fault was a major conduit which traversed the BFP immediately after its consolidation is strongly suggested by the distribution of small breccia pipes (Fig. 9).

Biotitic and chloritic alterations are concentric about the orebody and do not exhibit structural control. In contrast, the quartz-sericite zone exhibits strong structural control along its eastern and northeastern edges. The Newman fault and others shown on Figure 9 (faults C and D on Fig. 8) may have acted as barriers during this late-stage alteration (see Evolution). Postore movement on faults C and D may have accentuated the northeasterly extension of quartz-sericite alteration.

Although orientations of mineralized stockwork fractures in the Bell orebody vary widely, stringers of quartz-sericite-pyrite-chalcopyrite in the upper, western segment of the orebody tend to be vertical, with north-northwesterly and northeasterly strikes. Major fractures, some of which are mineralized, parallel the main faults of the pit area.

Major folds have not been observed near Bell Copper and, except for local contortion of incompetent beds near faults, the bedding of all strata dips moderately to steeply westward.

Bell	Copper orebo	dy			
The sa from 5	imple consists o drill holes	f 115 kg r	epresenting 3	70 meters of s	plit core
Cu	.95%	Zn	.07%	FeO	9.90%
Mo	.006%	Pb	.02%	- CaO	0.79%
Aσ	2.1 ppm	Co	.04%	SiQ-	68.2%
	cit ppin	Š	6.66%	Al ₂ 0 ₃	8.94%

CIM Special Volume No. 15

State State State

Copper Deposit

The Bell orebody is crescent-shaped in plan (Figs. 10, 13). Approximately three-fifths of the ore is within the BFP plug. The orebody plunges inward at about 70 degrees toward a focal point at a depth of about 800 meters. The arc-shaped southwestern limb terminates abruptly near the Newman fault; the northeastern limb extends 500 meters to the east of the Newman fault. A very low-grade gap, 70 meters wide and 100 meters deep, occurs in the central part of the northeastern limb (cross section X-Y of Fig. 3; Fig. 13). This gap coincides with a very weakly altered and mineralized BFP dyke(?). Because the northeastern limb is narrow and is low grade in much of its uppermost portion, the present open pit is largely in the southwestern segment, west of the Newman fault. However, the northeastern limb widens at depth and by the 1500-foot level comprises half of the ore zone. A few drill holes indicate that the ore zone extends deeper than 700 meters below surface, but probably narrows and its grade declines.

Zoning of copper grades in the Bell orebody is shown in Figure 10. Along most of the inner southern and eastern edges of the orebody, grades decline sharply to less than 0.2 per cent copper. However, along the western, northwestern and northern edges, grades decline outward more gradually and a northwesterly extension of 0.2-0.4 per cent copper follows along the large dyke-like offshoot of the BFP plug (Figs. 9, 10, 13). The orebody contains two internal high-grade zones that are 80 to 100 meters in diameter and average approximately 0.9 per cent copper.

Molybdenum at Bell probably averages about 0.005 per cent. Although molybdenite is closely associated with copper sulphides, the highest values of up to 0.015 per cent molybdenum are peripheral to the inner edge of the higher-grade copper zone (Fig. 11). This lack of coincidence is in striking contrast to the strong spatial relationship between gold and copper (Fig. 12). In the portion of the ore zone which has + 0.3 per cent copper, gold and silver average approximately 0.45 and 1.5 ppm respectively. Zinc and lead both average less than 0.01 per cent. Table 1 gives the composition of high-grade quartz-sericite-pyritechalcopyrite ore from the center of the southwestern limb of the orebody.

FIGURE 13 — Schematic Block Diagram of the Bell Orebody (courtesy of J. E. Kraft).

The major part of the ore zone in the open pit consists of very intense quartz-sericite-pyrite-chalcopyrite mineralization in BFP and rhyodacite (Figs. 15, 16, 17). Chalcopyrite is the main copper mineral. More than half of it is finely disseminated and the remainder occurs as fracture coatings and in 2-8-mm quartz stringers with pyrite. Pyrite is largely in fractures and in quartz stringers.

Minor to moderate amounts of bornite occur throughout the orebody, but a well-formed zone of bornite is not apparent. The mineral is present in biotitic and quartz-sericite alteration assemblages, and does not vary systematically with depth. However, a crude lateral zonation is present in that bornite/chalcopyrite is highest in the area of + 0.3 per cent copper.

Among minor sulphides present in the ore zone, sparse primary marcasite persists to the bottoms of the deepest holes drilled. However, the mineral was common in the supergene zone. Pyrrhotite blebs in pyrite extend from surface to a depth of at least 300 meters. The absence of such blebs at greater depth may merely be a reflection of the decline in abundance of the pyrite host. Supergene chalcocite, as coatings on pyrite and

TABLE 2 — Copper grades of the four sulphide-silicate zones in the western segment of the Bell Copper orebody as determined from assays in vertical drill holes (see Fig. 14).

Holes 113, 115 and 58 are more than 600 meters deep and intersect all four zones; grades in these holes and 111 show that the copper content of the quartz-sericite-pyrite-chalcopyrite zone is 15 per cent higher than the copper content of the biotite-chalcopyrite \pm pyrite zone, and 30 per cent higher than the transitional zone. The upper limit of the sericite-quartz-chalcopyrite-pyrite zone was taken at 300-ft depth in order to eliminate any effects of supergene enrichment.

	UPPER (PHY	LLIC) GE	TRANSITIO	NAL	POTASSIC (BIOTITIC) ASSEMBLAGES								
Hale No.	Sericite-Qu Chalcopyrite-F	artz- Pyrite	ZONE Phyllic-Pota	ssic	Biotite-Cha pyrite ± P)	lco- rite	Biotite-Chalco- pyrite-Magnetite						
	Interval in Hole	Av. Cu	Interval in Hole	Av. Cu	Interval in Hole	Av. Cu	Interval in Hote	Av. Cu					
113 115 58 111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(750' - 1300') (800' - 1200') (700' - 1300') (600' - 1030')	.59 .56 .66 .53	(1300' 1800') (1200' 1800') (1300' 1650') (1030' 1053')	.64 .70 .68 .54	(1800 [°] — 2000 [°]) (1800 [°] — 2001 [°]) (1650 [°] — 2016 [°])	.41 .59 .68 					
Average				.59/1980		.67/1473		.58/767					

Porphyry Deposits of the Canadian Cordillera

as replacements of chalcopyrite, occurred to depths of 50 to 70 meters and enriched copper grades by 12 to 15 per cent (Fig. 22). Primary chalcocite, digenite and covellite occur in trace quantities to the bottom of the known part of the ore zone. Owens (1974) found that the ore concentrate contains grains of tennantite, tetrahedrite with about 11 wt. per cent silver, and native gold. Minor galena and sphalerite, accompanied by very minor chalcopyrite and pyrite, occur in sparse but widespread quartz-carbonate veins 1 cm to 30 cm wide by up to 10 m long. These veins cut all other mineralized fractures.

As shown in Figure 14, sulphide mineralization and alteration facies change with depth in the high-grade, central part of the southwestern segment of the ore zone. Light grey BFP with quartz-sericite-pyritechalcopyrite extends to depths of about 250 meters. From approximately 250 to 400 meters depth, this assemblage occurs in diminishing quantities as veins and irregular patches in darker BFP containing biotite-chalcopyrite \pm pyrite. The latter assemblage persists to 600 meters, below which it changes to biotitechalcopyrite-anhydrite \pm traces of pyrite. The ratio of disseminated to veinlet chalcopyrite is higher in the biotite-bearing, low-pyrite zones than in the quartzsericite zone. In some cases, it is clear that pyrite and pyrite-sericite stringers have cut through, i.e. have been superimposed on, the biotite-chalcopyriteanhydrite assemblage.

As shown in Figure 14 and Table 2, the copper

FIGURE 14 — Vertical and Lateral Mineralogical Zoning at Bell Copper (section lines c-d and e-f of Fig. 9). Note the close relationship between quartz-sericite alteration and high-pyrite ore, and between biotitization and low-pyrite ore. Kaolinite dominance below approximately 300 meters in the western segment of the orebody marks the mid-point of the transitional zone between the upper, quartz-sericite-pyrite-chalcopyrite zone and the biotite-chalcopyrite \pm pyrite zone underlying it. The four mineralogical zones are defined best in section c-d, because these zones are best developed in the western segment of the orebody and because all holes in this section are within ore. Copper grades of the four zones are shown on the section and are given in detail in Table 2. The eastern segment of the ore zone (section e-f) is composed mainly of ores of biotite-chalcopyrite + subordinate pyrite and of biotite-chalcopyrite \pm very minor pyrite. Because certain holes had to be projected considerable distances onto the section, zone limits in section e-f are approximate.

content of the quartz-sericite-pyrite-chalcopyrite ore is about 15 per cent higher than that of the deeper biotite-chalcopyrite \pm pyrite ore, and the transitional zone between the two shows a significant depletion in copper. The deepest biotite-chalcopyrite-anhydrite assemblage is the lowest grade of all four types of ore.

In the northeastern limb of the ore zone, east of the Newman fault, the quartz-sericite-pyrite-chalcopyrite assemblage is not abundant (Figs. 14, 15) and biotite-chalcopyrite \pm pyrite predominates.

Origin of the vertical and lateral changes in mineralogy and copper content of the Bell orebody are discussed in the section on Geological Evolution.

Pyrite Halo

ŝ

The Bell orebody is surrounded by a prominent annular pyrite halo about 2200 meters in diameter (Figs. 3, 15). All rocks within the halo contain abundant disseminated pyrite and abundant stringers, 1/2 to 2 cm wide, which are generally accompanied by subordinate sericite, chlorite, carbonate and quartz. The halo averages approximately 10 per cent pyrite by volume, but the pyrite ranges from 5 to 25 per cent. The outer boundary of the halo is well within the outer limits of hydrothermal alteration and is marked by a decrease in pyrite from greater than 5 per cent to less than 2 per cent. The inner boundary of the halo encloses an area about 800 meters in diameter that includes the orebody. This central area is relatively low in pyrite, except for the zone of superimposed quartz-sericite-pyrite-chalcopyrite.

Hydrothermal Alteration

GENERAL STATEMENT

The halo of hydrothermal alteration surrounding the Bell Copper orebody is approximately 3500 by 2500 meters in surface dimensions (Figs. 3, 15). The halo has concentric zones of biotite and chlorite typical of all Babine deposits (Carson and Jambor, 1974). In addition, however, the Bell halo has an irregularly shaped zone of moderate to very intense quartz-sericite and a concentric zone of sericite-carbonate alteration. In plan, the quartz-sericite alteration envelopes much of the orebody and the sericite-carbonate alteration extends outward into the pyrite halo. The quartz-sericite alteration, and possibly also the peripheral sericitecarbonate alteration, appears to have been superimposed upon the earlier biotite and chlorite alterations in the upper part of the porphyry system.

BIOTITE ZONE

The biotite zone shown in Figure 15 includes all the hydrothermal biotite observed during detailed thin-section studies. In the peripheral part of the zone, pale green and brown fine-grained hydrothermal biotites, accompanied by chlorite, replaced primary mafic minerals in BFP dykes and in sedimentary and volcanic rocks. As the orebody is approached, chlorite diminishes and hydrothermal biotite becomes deeper brown and coarser. A sub-zone of "good-quality" hydrothermal biotite (see Table 2 in Morrison by Carson and Jambor, this volume) corresponds closely in plan with the orebody (Fig. 15, inset). Hydrothermal biotite occurs at surface, except where the

FIGURE 15—Hydrothermal Alteration Zones at Bell Copper. Hydrothermal blotite is abundant only within the sparsepyrite central area enclosed by the line P₁, but the blotite zone has been enlarged to include sporadic peripheral occurrences in otherwise strongly chloritized rocks. The inset shows a much smaller area enclosing the orebody in which hydrothermal blotite is not only abundant, but is of good quality. The quartz-sericite and sericite-carbonate alteration have been superimposed on the earlier blotitic and chloritic alterations. Only areas of very intense sericite-carbonate alteration are shown.

ore zone consists of quartz-sericite-pyrite-chalcopyrite (Fig. 14). Hydrothermal K-feldspar is present in very minor quantities in some quartz-biotite-sulphide veinlets within the better-quality part of the biotite zone.

A very weakly altered postmineral BFP dyke(?) transects the northeastern limb of the Bell orebody in the east-central part of the biotite zone.

CHLORITE-CARBONATE ZONE

The chlorite-carbonate zone at Bell is characterized by the replacement of original mafic minerals in all rocks by chlorite and carbonate. Their first appearance, together with that of minor but anomalous quantities of pyrite, marks the perimeter of the chlorite-carbonate zone. The inner boundary of the zone is delimited by the appearance of hydrothermal biotite. Epidote, common throughout the chlorite-carbonate zone, is particularly abundant in the outer fringes, where it imparts an apple-green colour to many rocks. BFP in the chlorite-carbonate zone is typically greenish grey, in contrast to its dark grey colour in the biotite zone.

For detailed petrographic descriptions of rocks typical of the biotite and chlorite-carbonate zones, see Carson and Jambor (1974) and Carson and Jambor (this volume, Morrison deposit).

OUARTZ-SERICITE ZONE

Minor amounts of sericite are present throughout the biotite and chlorite-carbonate zones. However, intense quartz-sericite alteration, accompanied by considerable pyrite and some chalcopyrite, has obliterated the biotite zone in the upper western part of the orebody (Figs. 14, 15). Parts of the BFP plug and the rhyodacites are cut by closely spaced quartz-sulphide stringers, and flooded with silica and sericite (Figs. 16, 17). Quartz in many of the veinlets is pale purple. Except for scattered chalky feldspar phenocrysts, the original rock textures have been destroyed by the quartz-sericite alteration. However, intensely altered BFP has larger and more abundant remnant plagioclase phenocrysts which serve to distinguish it from rhyodacite.

The quartz-sericite-pyrite zone extends to a depth of about 250 meters in the west-central part of the orebody. Between 250 and 400 meters is a transitional zone in which textural features indicate that the quartz-sericite-sulphide veins and irregularly shaped bleached zones have been superimposed on dark grey BFP which contains biotite-chalcopyrite. Below 400

FIGURE 16 --- BFP With Intense Ouartz-Sericite-Pyrite Alteration and Veining.

FIGURE 17 — Rhyodacite With Intense Ouartz-Sericite-Pyrite Alteration and Veining.

meters, the quartz-sericite-sulphide assemblage is absent. A somewhat similar, but sharper, transition occurs laterally to the east, both at surface and at depth (Figs. 14, 15). The eastern extension of the orebody is almost entirely of the sparse pyrite, biotite-chalcopyrite type.

The concentric biotite, chlorite and sericite-carbonate zones are centered on the Bell ore zone, whereas the superimposed quartz-sericite alteration overlaps the orebody and shows strong structural control. The quartz-sericite alteration is in a highly fractured zone within the western nose of the BFP plug, and the eastern and northeastern limits of the alteration coincide with the Newman fault and subsidiary northeasterly faults (Figs. 3, 8, 9, 15).

SERICITE-CARBONATE ZONE

To the west, south and north, the quartz-sericitepyrite-chalcopyrite assemblage changes relatively sharply to sericite-carbonate-pyrite. Although data for the southeast are sparse, the sericite-carbonate alteration appears to ring and overlap the contact of the BFP plug and coincide with much of the pyrite halo. This alteration formed most intensely in salic to intermediate rocks, particularly rhyodacites, and is weakest in shales and siltstone.

Because of their high quartz content and coarser sericite, rocks of the quartz-sericite zone generally have a more compact, vitreous appearance than those of the peripheral sericite-carbonate zone, which seem chalky.

SUSCEPTIBILITY OF HOST ROCKS TO ALTERATION

At Bell, abundances of all three major alteration types, biotitization, sericitization and chloritization, were affected by original rock compositions. Biotitization and chloritization were developed best in maficbearing rocks, such as BFP and andesites, whereas sericitization is most pronounced in siliceous feld= spathic rocks, particularly rhyodacite. However, it should be emphasized that although the different susceptibilities have affected the abundance of specific alteration minerals, the susceptibilities have not significantly affected the mineralogy. For example, siltstones in the sericite-carbonate zone, although distinctly less reactive than adjacent rhyodacites, are generally mildly bleached and contain minor sericite and carbonate.

Biotitization and chloritization are restricted largely to hornblende phenocrysts and matrix hornblende in BFP, and to amphibole and chlorite in volcanic and sedimentary rocks. As at other Babine deposits, primary biotite was largely stable in all alteration zones; only where sericitization was intense was biotite totally replaced. Thus, unaltered books of biotite are common in BFP throughout all but the quartzsericite and sericite-carbonate zones. In contrast, hornblende has been observed at only two localities within the entire alteration zone; incompletely biotitized phenocrysts were found in BFP at the southwestern edge of the biotite zone, and unaltered hornblende occurs in the late-stage, weakly altered BFP dyke (?) in the northeastern extension of the orebody.

Destruction of plagioclase phenocrysts in BFP shows a systematic concentric variation if the superimposed effects of quartz-sericite alteration are disregarded. Plagioclase in the center of the biotite zone is largely unaltered, but replacement of plagioclase by sericite,

carbonate and minor kaolin increases outward and is most intense in the sericite-carbonate zone and the central part of the chlorite-carbonate zone. This area of maximum alteration of plagioclase coincides with the strongest part of the pyrite halo. Alteration of plagioclase decreases outward to the edge of the chlorite-carbonate zone.

CLAY MINERAL ZONING

Clay minerals other than illite are not abundant at Bell Copper. Jambor and Delabio (1975) have shown that minor to moderate amounts of kaolinite are present in most of the Bell alteration zone, whereas montmorillonite is restricted to the orebody. No "classic" argillic zone peripheral to the sericitic (phyllic) alteration ring has been defined.

Primary clay minerals in the western, quartz-sericite segment of the orebody are zoned vertically (Fig. 14). Kaolinite dominates in the deep biotite-chalcopyrite \pm pyrite zone, whereas montmorillonite occurs in both this and the zone transitional to sericite-quartz-pyritechalcopyrite. Sericite (= illite) is present through the entire vertical range, but is most abundant in the upper 400 meters as a result of its late-stage superimposition on pre-existing biotitic alteration.

Although the clay mineral zonation is obviously a primary feature, the upper 50 to 70 meters of the orebody have undergone supergene enrichment and alteration, as described later.

OTHER ALTERATION MINERALS

Dolomite, calcite and some siderite are common in all rocks in the chlorite-carbonate and sericite-carbonate zones. The carbonates are also fairly common in the Bell orebody, but are least abundant in the highly biotitized parts. The disappearance of carbonates clearly marks the outer edge of alteration at Bell.

Veinlets of gypsum have been observed in the upper part of the orebody. Anhydrite is apparently a significant component in the biotite-chalcopyrite assemblage, but has not been observed in other alteration facies, including pyrite-bearing biotitized rocks (Fig. 14). Monomineralic veinlets of anhydrite are rare. The mineral is typically disseminated in BFP and is also a minor constituent in quartz veinlets. The anhydrite in both characteristically occurs along grain boundaries.

Tourmaline occurs predominantly as microscopic sunbursts in the western part of the ore zone, but is also present in the middle part of the pyrite halo. Although most occurrences are in rocks with intense sericitic alteration, the association is not considered to be significant because of alteration superimposition and because the mineral has also been noted in biotitized BFP. However, no tourmaline has been observed in the biotite-chalcopyrite-anhydrite assemblage.

Hydrothermal amphibole is common at the Morrison deposit (Carson and Jambor, this volume), but has been observed only in one thin section of BFP at Bell.

Magnetite is a primary disseminated constituent of fresh BFP and is also a stable component in the biotite-chalcopyrite \pm anhydrite alteration assemblage. Most magnetite in other assemblages has been altered to hematite, with sieve-textured pseudomorphs being very common. Specularite plates and hematite veinlets also occur locally, generally where magnetite oxidation is at an advanced stage. Some iron oxides are in contact with sulphides, and hematite veinlets are cut

FIGURE 18 - Copper Distribution in Rocks at Bell Copper.

locally by pyrite and chalcopyrite. There are rare indications that magnetite also may have formed in veinlets and was subsequently converted to hematite.

Microprobe analyses of a few grains of primary magnetite indicate that its TiO_1 content is variable and averages about 0.5%. Thus, most of the microscopic rutile crystals, and turbid granular aggregates of rutile which are common in the non-potassic alteration zones, have apparently been derived by the release of titanium from amphibole and both primary and hydrothermal biotites. Altered mica phenocrysts are accompanied by rutile granules and some are sagenitic.

Primary Dispersion Haloes

Samples of diverse rock types from the Bell copper zone, the alteration halo and the unaltered peripheral rocks were analyzed for copper, zinc, lead and mercury (Figs. 18-21). Because only the outermost parts of the alteration halo and the unaltered rocks beyond the halo are exposed, most samples are of drill core. The samples were carefully chosen to avoid leached material and prominent veins.

Dispersion of copper outward from the ore zone, which was the focal part of the hydrothermal system, was remarkably limited. Copper values diminish outward very regularly to the 200-ppm contour, beyond which all analyses are at background level. The area with copper greater than 200 ppm coincides closely with the biotite zone (Fig. 16), whereas the area of background values includes most of the pyrite halo surrounding the ore zone, and virtually all of the

FIGURE 20 - Lead Distribution in Rocks at Bell Copper.

chlorite-carbonate zone. Except for the quartz-sericite zone, which overlaps the orebody, copper values show no relationship to sericite distribution.

The geochemical analyses for copper agree well with blast-hole assays (Fig. 10) and diamond drill assay results. All show a very sharp cutoff of copper along the south and southeastern edge of the orebody and a more gradual decline to the north and northwest, particularly along the northwestern apophysis of the BFP plug (Figs. 3, 13).

Blast-hole assays and diamond drill results show that both zinc and lead average less than 100 ppm in the Bell orebody, but are slightly higher in the adjacent periphery. Rock geochemistry likewise shows that contents of both metals are distinctly low in the orebody, but increase outward to maximum abundance near the outer edge of the pyrite halo (Figs. 19, 20). The lead and zinc values are unrelated to lithology. The largest veins of lead and zinc found to date are the original showings at the southwestern edge of the pyrite halo on the shore of Babine Lake. The distribution of zinc at Bell is remarkably similar to that at Granisle (Carson and Jambor, 1974).

Mercury is erratic; some high values are in the Bell orebody and others are in the alteration zone. Only very low values occur in unaltered rocks.

Additional data on the primary dispersion haloes at Bell and other Babine deposits are given in Jambor (1974).

Supergene Enrichment and Oxidation

Beneath the thin mantle of glacial debris, 5 to 30 meters thick, the western quartz-sericite-pyrite-rich segment of the Bell Copper deposit had an enriched

FIGURE 21 — Mercury Distribution in Rocks at Bell Copper.

CIM Special Volume No. 15

cap containing supergene chalcocite which extended from bedrock surface to depths of about 50 to 70 meters. Within the enriched capping, now mined out, an elongate oxide zone striking N 40°E was characterized by abundant dark brown iron oxides. In the center of the pit, the oxide zone was very irregular in profile, but extended to a maximum depth of about 40 meters from bedrock surface (Fig. 22).

The Bell Copper supergene-enriched zone apparently was formed after Eocene BFP intrusion and mineralization, but prior to Pleistocene glaciation. The development of the Bell chalcocite blanket may have been interrupted by minor uplift. The uplift resulted in a new level of oxidation, as represented by the zone of dark brown iron oxides, which penetrated the chalcocite blanket.

In the enriched and oxidized zone, average primary copper grades were increased by as much as 10 to 15 per cent (Fig. 22). Maximum enrichment occurred 20 to 35 meters below present ground surface in the quartz-sericite-pyrite-rich western part of the ore zone, where primary copper grades were highest. Primary sulphides were supplemented principally by sooty chalcocite, with common covellite and minor digenite. The supergene sulphides were deposited in small pits and as coatings on chalcopyrite, pyrite and marcasite. In most cases, chalcocite coated and replaced chalcopyrite, leaving the associated pyrite untouched (Fig. 25). In many cases, however, chalcocite was deposited directly on pyrite, or on thin rinds of marcasite which coated pyrite (Fig. 24).

Principally in the oxidized part of the enriched zone, supergene chalcocite was in turn coated with very thin layers of brochantite and malachite. These coatings were not readily evident megascopically, but they were abundant nevertheless. This abundance was evident both from detailed mineralogical studies of the oxidized material and from assays for oxide copper, as shown in Figure 23.

In plan, the area of +0.05 per cent assay CuO on the 2420 bench, which was approximately 30 meters below bedrock surface, occurred as a northeasterly zone approximately 315 meters long and 30 meters wide. This zone is shown in cross section in Figure 23 and is between drill holes 22 and 40. The zone consisted of two parts, a smaller northeastern one of approximately 25 by 60 meters, and a larger zone trending N 40°E which was 30 by 190 meters. Both disappeared rapidly with depth --- on the 2380 bench (only 13 meters deeper), the area of 0.05 per cent CuO was negligible, and the area of 0.30 per cent CuO was only about a fifth of that on the higher bench. The contours of 0.03 per cent CuO on the 2380 bench enclosed only one fairly large northerly striking zone. approximately 30 meters wide and 120 meters long. This zone was roughly in the same plan area as the overlying southwesterly part of the zone of 0.05 per cent CuO.

A comparison of the grade contours for CuO and total copper indicates that, during oxidation and enrichment, copper apparently did not move laterally for any significant distance. Thus, the largest area of 0.05 per cent CuO coincided approximately with that of highest-grade primary copper. Oxidation and enrichment may have been enhanced because this area contained intense quartz-sericite alteration, was particularly rich in both pyrite and chalcopyrite, and was locally more porous and permeable than strongly biotitized rocks.

In the paleo-oxidation zone, in addition to the iron

FIGURE 22 --- Effects of Oxidation and Supergene Enrichment at Bell Copper. The effects are shown as vertical coppergrade profiles and with geological reserves to the 2060-foot level calculated as +0.2% Cu (91 million tons), as +0.3%Cu (55 million tons) and as +0.5% Cu (17 million tons). The increase in hypogene grade below 2340 ft is an apparent increase only and is due to the fact that only high-grade holes were continued to depth - thus this apparent increase is most pronounced in the + 0.2% Cu profile. Dashed vertical lines give the mean grades of the three classes of hypogene ore below the 2340-ft elevation. The sections show that: (1) maximum enrichment occurred at about 2460 ft (27 m below bedrock surface); (2) oxidation and enrichment were limited to the upper 50 to 70 meters of the deposit; (3) maximum grades attained in the enriched zone are roughly proportional to the mean grade of the hypogene ore — the higher the grade of the hypogene ore, the higher the grade of the - the higher the enriched ore. From this relationship, it may be inferred that migration of copper in the supergene zone was essentially vertical.

oxides, the sulphides, and the brochantite and malachite mentioned previously, traces of intergrown devilline, Cu.Ca(SO.):(OH).·3H.O, and serpierite, Ca(Cu,Zn).-(OH).(SO.): 3H:O, occurred as minute flaky coatings on brochantite-coated pyrite and chalcocite. Associated with some devilline and serpierite were coatings and aggregates of poorly formed crystals, averaging 0.2 mm in length, of deep blue posnjakite, Cu.(SO.) (OH).. H₂O. Other supergene minerals identified are kaolinite, thin coatings of montmorillonite on chalcocite, minute yellow clusters of framboidal siderite and clear calcite crystals up to 0.5 mm in width. Green to chocolatebrown mitridatite, Ca,Fe(OH).(H1O),(PO.)., was found as millimeter-thick microcrystalline coatings on one specimen from the pit. White barite prisms, averaging 1 mm in length, were present in limonite-coated fractures, and centimeter-wide pockets of ocherous jarosite occurred in leached, porous quartz-sericite rocks near the top of the oxidized zone. In such rocks, quartz stringers provided a rigid framework on which supergene minerals, including new quartz growths, were deposited. One of the last minerals precipitated as coatings in this porous environment was white to cream-coloured gibbsite, Al(OH), which represented the residuum of aluminum-bearing minerals leached above the paleo water table.

Less certain in origin, but probably formed during recent weathering, are small amounts of hematite, malachite and jarosite, abundant goethite and limonite,

FIGURE 23 — Profiles of Oxidation and Supergene Enrichment Across the Western Segment of the Bell Copper Orebody (see Fig. 9, line a-b, for location). Contours of 5%, 10% and 15% Cu oxide/total Cu are shown.

FIGURE 24 — Photomicrograph of Grain-Mount of Supergene Ore. Pyrite (py) is rimmed by supergene marcasite (mc), which is in turn rimmed by supergene chalcocite (cc).

FIGURE 25 — Photomicrograph of Polished Section of Supergene Ore. Selective replacement of chalcopyrite (cp) by rims of chalcocite, with pyrite (py) unaffected.

and traces of wad. Smithsonite, ZnCO₂, is present as pulverulent white coatings on sphalerite at the leadzinc showings on the lake shore west of the deposit. Several supergene minerals on the pit walls obviously have been precipitated since mining began. Among these are pale green and pale blue water-soluble sulphates, chiefly chalcanthite, CuSO. 5H.O. Greenish ferroan varieties are common, and some cuprian siderotil, (Fe,Cu)SO. 5H.O, has been found. Also present on the walls are prismatic crystals, averaging 1 mm in length, of cuprian melanterite, (Fe,Cu)SO. 7H2O. In areas where such sulphates are common, the rocks are permeated with brick-red hematitic stains and are soft and friable because of destruction of the feldspars and pyrite. Gypsum is present and ocherous coatings of geothite and other iron oxides are common; yellowish patches usually indicate that jarosite is present.

Geological Evolution

The geological evolution of Newman Peninsula and Bell Copper during the early Eocene is depicted in Figure 26. By earliest Eocene, the major block-fault units were established and most of the observable displacement on the bounding faults had already occurred. The Bell orebody, which is related to a BFP plug, shows little, if any, offset along the trace of the Newman fault. It seems, therefore, that although block faulting at Bell continued well into the Eocene, subsequent movement on the Newman fault waned and was at most only minor after the emplacement of the BFP and deposition of the orebody had begun.

The BFP plug at Bell Copper was emplaced along the Newman fault and may have been localized at its intersection with a composite pre-ore fault (Fig. 8, fault A; Fig. 9). The plug widens east of the Newman fault, but its northern contact does not show a sharp offset along the fault trace. Widening of the plug may be related to the lithological change across the Newman fault - Hazelton rocks to its east may have been less constrictive than the Skeena rocks and rhyodacites to the west. Although primary textures in the western part of the plug were largely obliterated by quartzsericite alteration, indications are that the Bell plug is multi-phase. As at Morrison (Carson and Jambor, this volume), the porphyry system at Bell was established after nearly all phases of the BFP plug had crystallized.

のないないで、こので、そうないというというというで

FIGURE 26 — Schematic Cross Sections Illustrating the Geological Evolution of Newman Peninsula and the Bell Copper During the Early Eccene.

Copper mineralization and hydrothermal alteration at Bell Copper seem to have occurred in the following sequence.

1 — Main-Stage Sulphide Deposition and Biotite-Chlorite Alteration Zoning. The Bell orebody formed along the western and northwestern edges of the BFP plug, and along a northwestern apophysis of the plug. Copper was accompanied by roughly proportional quantities of potassic alteration; the total area of anomalous copper coincided with biotitization, and highest copper grades coincided with the most intense biotitization. Sulphides were distributed zonally, with chalcopyrite and minor bornite in the orebody, and pyrite peripheral. Copper is most abundant to depths of about 600 meters below the present surface, below which grades gradually decline, residual primary magnetite is present in BFP, and the assemblage is biotitechalcopyrite \pm anhydrite.

Chloritization of mafic minerals occurred in the cooler, peripheral parts of the system and at this stage, therefore, Bell Copper was a typical concentrically zoned porphyry copper deposit. A central copper zone was enclosed in a potassic zone of biotite and K-feldspar surrounded by propylitic alteration, and there was a concentric, zonal distribution of copper and pyrite. This main stage of development at Bell was the only one developed at Morrison.

2 — Initial Cooling and Retrograde Sericitization. The formation at Bell of sericite-carbonate alteration at the same position as the phyllic zone of many other porphyry copper deposits probably occurred as the system began to cool, as discussed by Carson and Jambor (1974). Potassic minerals (biotite and Kfeldspar) of the main stage were stable, and sericite subsequently formed at their boundary with the propylitic zone. Reactions at this stage were still principally magmatic hydrothermal. Minor influx of nonmagmatic water may have intensified sericitization and pyritization. Lead and zinc may have been deposited at the outer edge of the pyrite halo. At the end of this stage, the Bell deposit had all the main characteristics of Granisle (Carson and Jambor, 1974).

3 - Continued Cooling and Major Influx of Non-Magmatic Water. The western nose of the altered BFP plug was extensively shattered, conceivably as a consequence of adjustments on the Newman and subsidiary faults. The shattering may have facilitated the infusion of connate and/or meteoric waters, thus abruptly changing both the hydrothermal milieu and the environment. Initially, the hydrothermal mix was probably largely barren of copper, but the solutions appear to have derived copper by reaction with the existing biotite-chalcopyrite zone. Redeposition of the copper was accompanied by intense quartz-sericitepyrite alteration in the upper part of the highly shattered zone. Thus, the upper western part of the biotitized orebody was completely altered to a quartzsericite assemblage, and copper grades were increased by about 15 per cent. A concomitant depletion of copper by about 15 per cent occurred in the leached transitional zone which underlies the stockwork of intense quartz-sericite-pyrite alteration.

The superimposition of quartz-sericite alteration on earlier potassic alteration has been noted at many deposits, including Butte (Miller, 1973; Roberts, 1973). Bingham (Moore and Nash, 1974), Chuquicamata (Sillitoe, 1973) and El Salvador (Gustafson and Hunt, 1975). Data from the Bell deposit given in this paper may indicate that the copper which accompanies quartzsericite alteration at many porphyry copper deposits was derived by interaction with pre-existing copperpotassic zones. Although such interaction may occur under quiescent conditions, it is probably spurred by structural events.

4 — Late-Stage Intrusion of Breccia Pipes. Numerous small breccia pipes were bored along the Newman fault and subsidiary fractures. The main cluster of pipes occurs in a zone that is very low in copper, and one isolated pipe within the orebody is surrounded by a distinct zone of copper depletion. This feature may indicate that the pipes formed while the porphyry system was still active and copper was still relatively mobile. Copper in rocks surrounding the pipes may have migrated into the pipes and transferred to a higher part of the system.

Although negligible displacement occurred on the Newman fault after the Bell orebody formed, movement on the east-southeasterly and northeasterly faults may have slightly offset the western segment of the ore zone. The major block fault along the western side of Newman Peninsula appears to have offset BFPrelated volcanic rocks, but the displacement may not have been very great.

Post-Eocene erosion exposed the copper deposit, and mid-Tertiary(?) supergene enrichment occurred in the western, pyrite-rich half of the orebody. Chalcocite deposition, to depths of 50-70 meters, resulted in an enrichment of copper by 12 to 15 per cent.

Indications are that the supergene enrichment was pre-Pleistocene, because part of the orebody is overlain by interglacial material that contains fossil wood dated at 42,900-43,800 years BP, and mammoth bones dated at 34,000 years BP (Harrington, Tipper and Mott, 1974). Therefore, late Pleistocene and Recent erosion did not greatly affect the orebody. Additional oxidation of part of the western segment of the orebody may have occurred in the Tertiary or at a later time.

Environmental Considerations

The objective is to return the disturbed land to the ecological condition which existed prior to mining. The rehabilitation will include contouring of disturbed areas where possible and, where practicable, the stimulation of vegetation. Although no disturbed areas have reached the stage at which final reclamation can be started, a program of testing and research is establishing the best types of natural vegetation and fertilizers, the best methods of site preparation, and field procedures required to attain optimum results.

Concentrator tailings are pumped to the Workburn Lake tailing-impoundment basin (Fig. 2). The capacity of the basin is continuously enlarged by the construction of rock-fill dams and dykes at low points around its periphery. All streams flowing into the basin have been diverted, and all seepage from the basin is reclaimed for use in the mill. Water from Babine Lake and Hagan Arm is systematically sampled and analyzed to determine whether the metal content of these waters is changing due to mining operations.

Acknowledgments

For aid, advice and encouragement, and for analyses and other basic data required for this paper, the authors wish to express their appreciation to A. M. Bell, D. A. Lowrie, G. E. Dirom, G. C. Camsell, J. E. Kraft, Y. Khan (who drafted the diagrams) and J. Staniszewski of Noranda Exploration Company, Limited, W. A. Allan of Bell Copper Limited, N. C. Carter of the B.C. Department of Mines and Petroleum Resources, A. G. Plant, R. V. Kirkham, G. R. Lachance, R. N. Delabio, A. Whitehead, A. C. Roberts and H. W. Tipper of the Geological Survey of Canada, and Y. Bourgoin and D. R. Owens of CANMET, Ottawa.

References

Bell, A. M. (1970): The Newman Project, Western Miner, Vol. 43, No. 11, pp. 22-26.
Carson, D. J. T. (1969): Hydrothermal Alteration and

Δ

- Carson, D. J. T. (1969): Hydrothermal Alteration and Copper Mineralization at Newman Peninsula, unpublished report of Noranda Exploration Company, Limited, March, 1939.
- Carson, D. J. T., and Jambor, J. L. (1974): Mineralogy, Zonal Relationships and Economic Significance of Hydrothermal Alteration at Porphyry Copper Deposits, Babine Lake Area, British Columbia, CIM Bulletin, Vol. 67, No. 742, pp. 110-133.
 Carter, N. C. (1966): North Babine Lake Area, B.C.
- Carter, N. C. (1966): North Babine Lake Area, B.C. Minister of Mines and Petroleum Resources, Ann. Rept. 1965, pp. 90-102.
- Carter, N. C. (1973): Geology of the Northern Babine Lake Area, B.C. Dept. of Mines and Petroleum Resources, Prel. Map No. 12.
- sources, Prel. Map No. 12. Carter, N. C. (1974): Geology and Geochronology of Porphyry Copper-Molybdenum Deposits, West-Central British Columbia, unpub. PhD thesis, UBC.
- Dirom, G. E. (1963): Report on the Newman Property, Babine Lake (Smithers), B.C., unpublished report of Noranda Exploration Company, Limited.
- Noranda Exploration Company, Limited. Hall, J. A., and Kraft, J. E. (1969): A Production Feasibility Study of the Newman Copper Property, unpublished report of Noranda Exploration Company,

CIM Special Volume No. 15

è

Тź

Limited, May, 1969.
Harrington, C. R., Tipper, H. W., and Mott, R. J. (1974): Mammoth From Babine Lake, British Columbia, Can. Jour. Earth Sciences, Vol. 11, pp. 285-303.
Jambor, J. L. (1974): Trace Element Variations in Porphyry Copper Deposits, Babine Lake Area, B.C., Geol. Surv. Canada, Paper 74-9.
Jambor, J. L., and Delabio, R. N. (1975): Clay Mineral Variations in the Bell Copper Porphyry Copper De-posit, Babine Lake Area, B.C., Geol. Surv. Canada, Paper 75-1, Part B, pp. 67-70.
Kirkham, R. V. (1971): Intermineral Intrusions and Their Bearing on the Origin of Porphyry Copper and Molyb-denum Deposits, Econ. Geol., Vol. 66, pp. 1244-1249.
Miller, R. N., (1973): Production History of the Butte District and Geological Function, Past and Present, Guidebook for the Butte Field Meeting of Soc. Econ. Geol., pp. F1-F11.

Geol., pp. FI-FI1. Moore, W. J., and Nash, J. T. (1974): Alteration and Fluid

Inclusion Studies of the Porphyry Copper Ore Body at Bingham, Utah, Econ. Geol., Vol. 69, pp. 631-645. Owens, D. R. (1974): Mineralogical Examination of Porphyry Copper Ore from the Bell Copper Deposit, Babine Lake, British Columbia, Dept. Energy, Mines & Resources, Mines Branch Investigation Rept. 1R74-24 21

24.
Richards, T. A. (1974): Hazelton East-Half, Geol. Surv. Canada, Paper 74-1, Part A, pp. 35-37.
Roberts, S. A. (1973): Pervasive Early Alteration in the Butte District, Montana; Guidebook for the Butte Field Meeting of Soc. Econ. Geol., pp. HH1-HH8.
Sillitoe, R. H. (1973): Tops and Bottoms of Porphyry Copper Deposits, Econ. Geol., Vol. 68, pp. 799-815.
Tipper, H. W. (1973): Smithers Map-Area, British Co-lumbia, Geol. Surv. Canada, Paper 72-1A, pp. 39-41.
Tipper, H. W., and Richards, T. A. (1976): Jurassic Stratigraphy and History of North-Central B.C.; Geol. Surv. Canada, in press.

Surv. Canada, in press.

APPENDIX III

7

DRILL HOLE LOG SHEETS

NORANGA MINES LIMITED BELL COPPER DIVISION

Collared	JUNE	T 16	Completed June	F 18	Core Size		Logged by \mathbf{A}	L'O	rs.	1		Pr	oject No		D	a te 22/4	11986
			FIELD COOR	DINATES	1				SUR	EYED	COORDI	NATES		······································	s	heet /	of 5
Lat. /7:	5.10 1	v .	Elev. 2150	Ş	Dip -55	0	Lat. 17517.	14	Elev.	230	2.73	D	ip	58°	H	lole No.	
Dep. 21	4000	E	Depth 72	5'	Bearing DUE	south	Dep. 21400	.13	Dept	h 72	27**	В	earing S	1-56-1	3.E	86-	1
Footage	Rec'y		Rock	Type/Alter	ration		Mineralization	n ⁱ k -		% Suip.	Est. Grade	Sample No	5. Lt.	% Cu	OPT A	\u	
0 14		Cad	ing			prit	t chalcop	mite	in	1045 tum 5%	MIF CODE						
20	50°	Fels	sic Tuff	(rhy	odacite?)	frai	tune fill i	yst.	Lejo-	, "	31						
30	100	d	are grey.	Lucal	bleaching to	em	in Tion	(+11.d	<u>.</u>	4:	••	7928	z	.154			
40	4	\$ -4	aterbedded	ctions <u>cedi</u>	ments	Hagnet	tite - Minor	- + 10	<u>c</u> l	*	4	8	/	•/34			
50	•	В	FP dyle	, dark	gray, et:	Hemat	eti - veinl.	1-1-5		<u> 4</u>	••		<u> </u>	./37			
60	•,		15' 0	45 %	3 cm wide	Cp+	guerty sto py + Cale	ite ve	2 <u>il s</u>	•	4	7'	9	•119		-	Ϋ.
- 70	•		34' @	104	(Covell	iti - Hun	······································		٩.	.,	71	r 📃	.178			
80	• • • • • • • • • • • • • • • • • • •		42.5-4	- 6		Felder Ender	South (•	"	7	7	1096			
10	4					-20 v with 87'-2	Ep. Dy i	cp velo	r .	7	"	76	5	.134			
100	•					Hemo	tite + py	<u>veintel</u>	-	•4	~	75	5	.168			
110	y	Br.	eccia dy	ce @ (15°, 4 cm di	6	by my	27 180			"	7	4	.189			
120	•		5 " aus	, <i>с</i> ча	copy.	116-118	poorly def	ined b	16 CCC	-	(1	73		,259			
130		17-1	P/ 750	.+	- A) / 5 °	126-12	-7			4	6	72		.178	!		
140	•	1371 9	- quain	size qu	v, Lo dum	Hema	Til + Ki. Ke	juitite	, ent	1*	41	1/	, 	.164			
150		BFP	end 150	e 7	0° to core	×eno	co vein littles, elar	E green	٧٠٠	•,	41	70	,	.036			
SEE-MO	ORE PRINT	. SMITHER	S FORM #103			- fü	a graine	1.)								

5

...**.**

:::::

) **NOTANDA** MINES LIMITED BELL COPPER DIVISION

Collared		Completed	Core Size		Logged by	Proj	Project No			Date				
		FIELD COORDINATES				SUR	EYED	COORDI	NATES			She	et 2	of 5
Lat.		Elev.	Dip		Lat.	Elev.			Dip			Hole	No.	1
Dep.		Depth	Bearing		Dep.	Dept	 ה		Bea	ring			86.	/
Footage	Rec'y	Rock Type/Alter	ration		Mineralization		% Sulp.	Est. Grade	Sample No.	Lt.	% Cu	OPT Au		
	•/				1		iers than	MIE		1				
160	1001.	Sediments (i) que	enish gray	pyrit	a fraction filli	7	37.	61	69		.091			-
174	۲,			Few	carbonate veins	`	*1	61	64		470			
(78		BFP - 1172' @ 25° .7	Biotito Some	Cert.	- quartz - cp bree	,cia			08		10/9			
180	1	(177 @ 50° ig	At Olive green	Hinor	- humatite fi	دانس	<i>t</i> ,	41	67		.087			
	٩,	BFP 179' @ 45° -	an to det				٤.*	1						-
190		Biotite gone to 124	t'et base,					41	66		·032			-
2/11	۰.	up to 8 mm.	Serieite	Faul	the states	د ما	••	41	45		.6/11			
200		207 Lower BFP cont	14 ct 80°		prog questo verous + In	<u>жрч,</u>					.041		· · · · · · · · · · · · · · · · · · ·	
210	;	Sodiments? Breceistic	d. Soricity				••	8(64		.083			
220	-,	BFP stat 214' & a	Probably				5%	41	63		./89		3	
	4.	continues to end	of hole.				upto al							
-130		Locally alteration	n is so	ep -	diss. & free. fill	•	5%	4	62		·246			
240	*1	identification in	inal voce	PY - M	otting", early & "fine	grain	۰. ۱	4	6/		•3/2			
		with hand less.		Local	quartz stockwork	>	10		_					-
250	••	Colour: life oli	wh grace h	with	cp & py (py>c	<u>e)</u>	4	4	60		·327			_
260	٠.	to 228' Medium light	- grey below	hven	hematics proc. fil	<i>•</i> •	¢1	4	59		.431			_
270	•	Alteration : Serie	ite & questo				*1	٩	58		1295			
240		Local places class	"choste"				si	4	57		,343			
290	14	Fredrag obliter	rated in				-1	n	56		·417			
300	••			quat.	stockworks ervet developend.	sic-	5	4	55		•337			

NOTANDA MINES LIMITED BELL COPPER DIVISION

Sec. Sec. Sec.

Collared		Completed	Core Size		Logged by			Pro	Project No			Date		
sing and a second s		FIELD COORDINATES				SURV	EYED	COORDI	NATES			St	ieet 3	of 5
Lat.		Elev.	Dip		Lat.	Elev.			Dip	1		н	ole No.	
Dep.	:	Depth	Bearing		Dep.	Depti	<u>ו</u>		Bea	ring			86-	·./
Footage	Rec'y	Rock Type/Alte	ration		Mineralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT A	u	
310	100%	BFP. Altered : Seri	• 6.	Local	White early. Veris		υρτο 5%	HIE CODG 41	54		,294			
320		queenish gran to	is in the second	Quert	y veius generally su.	el	. "	•,	53		•348			77
330	•,	BFP obvious 338	- 344 -				4	•,	51		1403			
340	1. 	10° basel east	aret. No bio.	Hemi	its appears to be gon	<u> </u>	4	•	5/		.258			
350		abrium BEP +	eder into	Xenol	ith : grey quests vein +	cp.	1	•	50		·247			
340	•	(mi-grams à m	ready of Pour	Hottle	· early py continu	in star	*1	7	49		,223			
370	••				·.		<u> </u>	,	48		,33/			
380	· •,			<u>cp +</u>	Py		"	••	47		,354			
390					· · · · · · · · · · · · · · · · · · ·		1	4	46		•225			
400				Hinor	- calcite		1	4	<u>45</u>		-192			
410	,	Sericitized	389	Approv	. end "mottled" py		4	*	44		.32/			
420		Tectonie breccia	- snen quet	Hany	quart, veins, Som = 2	5 cm	"	4	43		·29/			
430		BFP - 430', euts	breezing 150	Hema	When me Py + c	р Ц.	_ا ،	\$	4z		•254			
440	- 19	Sericitized rocks -	435, prob.	1			,	•	4		·238			
450	*•	challey white local	k				*	\$	40		.286			

SEE-MOORE PRINT - SMITHERS FORM #103

Alta - A

13 12

NORANDA MINES LIMITED BELL COPPER DIVISION

Collared Completed			Core Size	ore Size Logged by					Pro	ect No		Date		
177 177		FIELD COORDINATES				SURVE	EYED	COORDI	NATES	······		She	et 1	y 5
Lat.		Elev.	Dip	-	Lat.	Elev.		<u></u>	Dip		······································	Hol	e No	<u> </u>
Dep.		Depth	Bearing		Dep.	Depth			Bea	ring			EL.	•
Footage	Rec'y	Rock Type/Alter	ation	1	Mineralization	T	% Sulp	Est	Sample No.	Lt.	% Cu		1	1
- hr.	i.l.		•				ipto	HIF			70 CU			
460	100	BET, proverly, Auguly	<u>serceilized</u>	Cheley	py. + py, diss. f free	c .	5	41	39		.327			77
470	•,	1.2. Questy - Serie	itezan	with	White calcite & dolo	pite.	4	۰.	38		.436			
480	4	· · · · · · · · · · · · · · · · · · ·)	Dissem	inited cp up to t	1%	4	•.	37		•437			
490	1						•,	,	36		,353			
500	4						4	•7	35		•355			
510	. y	Highly servicitized,	Unverog-	co in	massive frac. fill		4	•,	34		•272			
520	•	chay alteration. Ch.	chude elley in part	tocal	gring questo ve in a more calcite of	<u>ج</u> ،	••	4	53		236			
530	•	Light alive green gr	may to very	brown Cp>	py	ט	7 7	4	32		.444			
540	••	Hay include bre	iceia 1	Local " h	quests stockwor m. Veins; red & spec	les u	5 5	•	3/		•439			
550	4	•		w.	The cp in quitz	•	4	۲	30		.33/			
560	•	Relist green are	ras, =	quest.	silica flood ing	2	"	•	29		.348			
570		andesite ?		Braccia	specularite. Ted = questy fill.	+	•		28		,348			
580	2. • •			ep <u>3 mm e</u>	· Day, "here. p veius @ 15" to c	one	4	•	27		1385			
590	an Bay	Probably attered T	13FP	Mottled Local U	1° early py again ups: py, cp & go x l	5	и	,	26		•376			
600	14				U 1997 CS		4		25		• 417			

SEE-MOORE PRINT - SMITHERS FORM #103

......

÷ 3

NORANDA MINES LIMITED BELL COPPER DIVISION

ollared			Completed	Core Size		Logged by					Proj	ect No		(Date		
			FIELD COORDINAT	TES			SI	URVE	EYED C	COORDI	NATES				Sheet	5 of	E S
			Elev.	Dip		Lat.	E	lev.			Dip				Hole N	0.	
p.	K je	i sa sa	Depth	Bearing		Dep.)epth			Bea	ring				8Ç.	1.
ootage	Rec'y		Rock Type/	Alteration		Mineralizatio	on _{er}		% Sulp.	Estrade	Sample No.	Lt.	% Cu	OPT	Au		
610	1001.	BFF	, breccit	d	Grey	questo f	looding	(5	HIF Code 41	24		•317				
620	1,	BFF	D. Sorieitij.	el + quety	Diso	. py = 2	1/2 plus		٩	4	23_		,389				
30				~ · · ·	pin.	. fill . Fesu hem stite	cart in	-	4	•	22		• 373				
40	•,					······	2		4	•	21		•475				
650	. 4		•		Local	"mothed" e	all py		<i>u</i>	`	20		.453				
660				•••••••••••••••••••••••••••••••••••••••	Que	tz flood in	1 cutin		*	••			•577				
670	•			·····	Specul	enter + p	proce hil	:	•	\$	18	 	.593				
680	•				Lote :	stage brown	carb. Ver	شم	4	4	17		.730				
690	4	<u>sili</u>	cified BFP.	Includes	cp di	semination	ut > frace. 1	ie	<u>'</u>	·,	16		.695				
700	1999 199 9 - 199	5. br	lica flood my	r & guertz	Few la	ever (42 a	-) quartz	<u>v.</u>	4	•,	15		1600				
710	*		Colour: medin	in gray	Short	"gant" for	45° or 4	5	1	<i>י</i> ,	14		.850				
20	1 2 2 2 2 2	BEP	- less altered	Serieitized-	"Hottle	d" early f	any + lessen	┙	4	"	13	 	.720				
730		727	'End of hole	MINOR DISSE	sis MINAT	а, ср. сой ЕД <i>Мо</i> су (TO ENHITE	,	<u>.</u> ،	•	79212		1.00				
			• 	WITH CP IN	QUAN	72	·										

)

NORANDA MINES LIMITED BELL COPPER DIVISION

 $\phi = -\frac{1}{2}\phi^2 + \frac{1}{2}\phi^2 + \frac{1}{2}\phi^2$

Collared	JUNZ	- 19 C	ompleted Jerry	= 20	Core Size N		Logged by	Δ.	LORS	A		Pr	oject No		Da	te 27 J	une 198
			FIELD COORDI	NATES					SURV	EYED	COORDI	NATES			SI	neet /	of 4
Lat. 17	300	۵ مر ۴	lev. 2300		Dip - 30	, <i>o</i>	Lat. 172	99.06	Elev.	220	78.58	D	p	81°	н	ole No.	
Dep. 21	1030	<i>⊆</i> [□]	epth 455'		Bearing Due	South	Dep. 2/1	27.87	Depti	n 4	'87'	Be	aring S	2-02-3	SaW	86-	2
Footage	Rec'y		Rock Ty	pe/Altera	ation		Minera	lization		% Sulp.	Est	Sample No	. Lt.	% Cu	ΟΡΤ Α	u	
} 2010 - 2010 2010 - 2010										Up	MIF			1			
		CASI	NG			Pyri	te & c	halcop.	prite	To:	CODE		_				
20	95	RED		A 0 T 7	SEALATE		frious a	mounts	· m	5%	1	-0.7-					
		<u>13 F (</u>	<u> </u>	Z	ONE	with	puesty	E diase	minat-	· .	41	19115		•230			
30	100	BF	P to eu	nd o	1 hole	ions	to end	d ho	le .	4	4	174	/	.223			
	е	_ \			0	First	= + 100 0	includes					-				
40		<u> </u>	euse serie	Tight	on Quartz	Very	fine grai	ned early	pyria	•	4	/73		.270			
50		E / /	is to Micro	Verinu L. 4	Norics		· · ·	••••••		4							
		Feldip	ir Shos	π		Vugs	local, W	Hy Calcu	Li 5 cm		7	172	. 	.158			
60	4	Rock 1	ooks like 8	36-3	below 60'	Level	red	henret	1.	r.	7	171		1705			
•				· · ·	1						<u> </u>	///					
70		Colou	r: light g	mey	40					7	7	176		.300			
Q ^				• ,	1					~							
			yellow light b	rounial	grey to		······································					/69		.185			
90	4	81- 87	- crushed	breed	inted amo	Late	eL	carlos t	States	+	81	11.9		.210			
	2.4		quests	field	my.		<u> </u>					190					
100	''				<u> </u>		يرد الا ركي	1		4	4.1	167		•/32			
	4	1031 9	st niveral	, 5484r , , ,	1 2 cm @ 16°												
<u> </u>		106-14	<u>D Breccia</u> Varta Liu	ted Line	with	Lacal	VILLEL CA	with a du	Coniti	-1	8(.219			
120	4	.		2	•		P66		vaine.	¢,	4	. 165		.161			
				<u> </u>	······································	Holybe	enite, .	iga , Jerry	minor		Ч.	/•>		186			
130	Y .	Reliel	- feldipa	us a	verye	with	ep + F	y, Hem	+ 10	•	- (1)	164		1245			
,) ,	4		v ,	4			•			`							
140			: 3 mm	in l	ength		- <u></u>			÷		163		·285	· · · · · · · · · · · · · · · · · · ·		
150	•				Х.,	1	he TT	1.4	0'10	•	41	167		.286			
	•					MUCAL.	namaicu	- tractor	e queril		Ťl	· · · ·					

1.1.1.1.5

and a start

1.00

ý

Collared		Completed	Core Size		Logged by				Proj	ect No		Da	ate	
14. 		FIELD COORDINATES				SURV	EYED	COORDI	NATES			s	heet 2	of 👍
Lat.		Elev.	Dip		Lət.	Elev.			Dip			н	lole No.	
Dep.		Depth	Bearing		Dep.	Dept	1		Bea	ring			86-	2
Footage	Rec'y	Rock Type/Alte	ration		Mineralization		% Sulp.	Es. Orade	Sample No.	Lt.	% Cu	OPT A	u l	
150	%			Local	breccia		upto .	MIF						
_160	100	BFT, Sereclized	& silici -	C6>	py, at least local	<u>1</u> -	5	41	161		•2/0			
	41	fied . Los	ally "chalky"				. "	ц	160		.704			
180	••	Local quartz 5	tockworks	Local	breccia with gre.	1 82	61	•			-220			
190	4			Hemat	its locally abundan	.+	4	ų	/58		-2(5			
200	4			· ·			4	n			,300			
210	7	colour : locally a	larle gray	Hem. V	ein ± lun dia, in grey	42	y	*	156		-181			
220		to lýlet greenis	h gren	·			4	٩	155		•/92			
230	4	Orange aven elte	ration				1	Ţ	154		•193			
240	1. 1. 1.	238-243 Breecin Vue	(carb. fiel.	Calei	I cryduls.		١	•	153		•195			
250	95	Derker: Secondary bi					•	4	152		•170	• <u>••</u> ••		
260	100	Dark graonish gray to	greziata	- -	.:		1	4	[5]		•272			
270	ų	Relict fildspars aver	uge 2 to 3		·		1	•	150		•152			
_280	- 4	Madium grey predou	inates	Home	Tile cartinues		•	•	149		•136			
290	ų	Includes bracein with .	sver q2. fill.	- <u></u>			•	、	149		•24/			
300	•	Q2 vein sheating @	70°		<u>.</u>		N	4	147		•/55			
SEE-MOX	DRE PRINT	• SMITHERS FORM #103		· .	2 2		werken in						ix	

and the second secon

Carl State of Second

Collared		Completed	Core Size		Logged by					Pro	ject No		Dat	e	
		FIELD COORDINATES	-:				SURVE	YED C	OORDI	NATES		.	Shi	et 7 (of A
Lat.	· . · ·	Elev.	Dip		Lat.		Elev.			Di	 D		Но	le No.	
Dep.		Depth	Bearing		Dep.		Depth			Be	aring			86 - 2	
Footage	Rec'y	Rock Type/Alto	eration		Mineralization			%	Est	Sample No	. Lt.	% Си	OPT AU	1	1
300 <u>3/0</u>	"/" 150	punts flood BFP : Sericitized of	silicified		1		- -	\$ to 3	MJF 41	146		.175			
320		Hedium gren, mel. go	eziste olive	Hagnet	ile vein = 1cm	<u>e</u> 60	2 • .	4	4	145		•214			
330	- 4	Includes quarty - flood	ind brecein	4	and the day	<i>.</i>		4	L(144		•/74			
310	· 4 .	with gray of frach, f.	Serieitized frog.	Hemat	ite frac, fill.	count	x	•	81	143		.253			
ە35				10 cm	carbonate VEG	. e 4	50	5	41	<u> </u>		•177			
360	<i>"</i>			Local V	us with ep	er stel	5	4	41	141		•235			
370	4	Breccia; quarta y	llovding	with	ep - hem vein	5		(ı	81	140	<u> </u>	·500			
380	· 11	" incl. 10 cm silie 382 - 15 cm fault	ic fragment.	Heme	the verie can	men_		3	4	139		•292			
350	<u>.</u> h	" Many highly serie	itized freese	1				••	r	138		.375			, ,
400	4	" Hed guy to dark go	cernish grey					4	•,	137		.298			
410	h	Rockes locally braceiate	d of shittend	Few c	anti mate vei			4	41	136		·200			
420	4	413 Bx, < 3 cm and	ular lugs	horal .	Lis. specule. il	<u> </u>		<u> </u>		135		·220			
430	- -	serieitijid, pz f	Looding .	к.,				٩	<u>ر</u>	134		.200			
440	••	Quartz veins common	;"Hiero"			<u> </u>		٤,	4	133		·230	•		
450	4	Vendets to Serviral	cm.	442 2 with	cp @ 15 .	14.73 v4		•	,,	132		•316	_		

SEE-MOORE PRINT . SMITHERS FORM #103

5. S. S.

2**25** 5.13

ollared		C	ompleted		Core Size		Logged by					Pro	ject No		Date	>	
	· · ·	_	FIELD COOF	DINATES	`	· ·		• ••••••••••••••••••••••••••••••••••••	sui	RVEYED	COORDI				She	et 🖌	of 🖌
nt. 1		E	lev.	······	Dip		Lat.		Ele	v.		Dip			Hol	e No.	,
ep.		D	epth		Bearing		Dep.		De	pth		Be	aring			86-	2
ootage	Rec'y	[Rock	Type/Alt	eration		Miner	ralization	LL	% Sulp.	Est Grade	Sample No.	. Lt.	% Cu	OPT Au		T
0 460	100%	BEP	Serie	tized	+ Silicities					- 3	MIF 41	/3/		.330			
470	11	Hed, 8 487)	very to to mod	alm , redde	ish brown	7-				ŧ,	11	130		·286			
480	1.	chelk.	y betwe	ren oc	Letto Veins					41		129		.397			
487	<i>,</i> ••	Quart	- increa	. 0 im, b	10W 460',	Hinor	- Lisse	minete	1	11	11	79128		.245			
END			S	8		Holy	bdau te	with	cp t								
sen di Santari Santari								2 									
a in the second se						• ••		1.1									
•.																	-
								`.									
						:											
- -																	
							, <u> </u>										

SEE-MOORE PRINT - SMITHERS FORM #103

A.S.

•

.

(1,1,2) , the second second

. . . .

4.500

and the second

Collared	TUNE	15	Completed JUNE19	Core Size	н Х.	Logged by	A.L	ORS	AZ		Pro	ject No		D	ate 27	Jun	'86
			FIELD COORDINATES				5 (.	SURV	/EYED	COORDI	NATES			s	Sheet (of	3
Lat. 17	400	N	Elev. 2300	Dip -45	•	Lat. 173	398,86	Elev.	2300	.98	Dip	· _	45 °	+	tole No.		······································
Dep. 2	1170) E	Depth 360'	Bearing OUE	SOUTH	Dep. 2/1	69.61	Dept	h 3	65'	Bea	iring S	1-44-15	W	86.	ک -	5
Footage	Rec′y		Rock Type/Alte	ration		Minera	lization		% Sulp.	Est. Grade	Sample No.	Lt.	% Cu	OPT A	Au		
0		Ca.			0	· (1 .		UP	MIF							
20	40	Cas	Local epid	ste	- tyrele	t chi	have	<u> </u>	10	CUDE							
30	95	Tut	1- chloritized	1, silicie	fra	c. piel.	t disse	in the s	.3	31	79/26		.145				
1	1 4 4		1 in part, On:	· QZ Stockells	Dus. P	sy + cp	Very fine	40.1mm	u			1					
40	100	52'-	Breecing (Bx) -20	ght clive grey	Hemali	le frac. f	<u>il (5 2m</u>	<u>n) Common</u>			125		•136				
50	۴ (Hu	O 50. Monitized sulphides.	Carbonate.					٦	4	17.0		1200				
			Post-mineral die	tensides.	· .					4			~~~				;
60		.R.F.L	(60) Sericit	und + Qz	Have."	Server (D)	7 Verias	+	ļ		123	. 	•/3/				
70	·4	Ser	icite of oz ; vory	altered	10	cm. lo	cally very	54.0	5	41	177		.149				
On		Fam	1 fildspar "Shosts]	" to 3mm .	Cp t	sest in	grey QZ	Veins				1					
		RYAC	cia 15 cm @ t		= = 1	% diss. i	n host l	scally		4	12/		•143				
90	n. ¶	ρ	ourly defined. O	z filsing	co di	a. in Br	Lilin		7	7	170		110				
						<u>, </u>	Junit	<u> </u>	· · · ·	,	100		•/40				,
100	. 4	800	ck highly altere	<u>ل ال ال</u>	Fewl	ate car	6. veins;	45-10°	5	/	119		•/32				
110	٤,	62 \	iein distribution	te sine			+	·	7	4	ud		170				
		2	watic. Size a	enerally	eri	alize d	A WELLY M				<u>///</u>		•(75				
120		2	mm to "micro. in	dia metion		5	·			•7	117		.164				
120	્યું		pcally " microfract.	unci about	an an an An An An An		* 		ч	ı,	. 1.						
			min april					· · · · · · · · · · · · · · · · · · ·			//6		1200				
140	4								ų	ч	1 15		.187				
150	4				Heni	tite fin	at hut	·d.			,						
	,				, Fan	frac.	felling		- "		/ /4	<u> </u>	1204				;
160	•	2.5 0	m Qz. vein @ 4	50			n €Deres		4		113		.182				:

allander !

......

N....

Collared			Completed	Core Size		Logged by				1	Pro	ject No		Dat	e 27-6	- K-
	A.9- - 14		FIELD COORDINATES	94 -			in de de	SURV	EYED (COORDI	NATES			She	eet Z	of 3
Lat.			Elev.	Dip		Lat.		Elev.			Dip)		Но	le No.	
Dep.	eru 1910 tus		Depth	Bearing		Dep.		Depth		*********	Bea	aring			86 - 1	3
Footage	Rec'y		Rock Type/Alte	ration		Mineralization		I	% Sulp.	Est	Sample No.	Lt.	% Cu	OPT Au		1
/60 170	4	RFP	, sericityed &	· silicified	24	t cp cat	tinu	_	Gen	hif Al	//2		.147			
180	4	L	sit gray ; local gr	ezich green	Hend	ite come	<u>~</u>		eval	٠,	(1)		•226			
190	•		a to and the state of the state		Few	orown early.	vein	ets	2 4	4	(10		.209			
200	4	Feld.	phenocuysti av. = 2"	in: upto 4 mm					e t	4	109		•252			
210	14	Good	Øz veining &	Stockwar	Py >	cp			5%	۰,	108		.300			
220	1.1	Local	l Gz flooding			·	· · ·		•	4	107		.363			
230	27	10 (10	Con Verin + CA B	- 					Lock	4	106		•270	Walter		
240	~	. 237	Sample: Ground Su	apport test					Ln-	7	105		·334			
250	1	+ 10	Can OB Veine G	20-309					È	7	/64		.253			
260	× ···	C	vbonate centr.	es, Tournalmi	Him	fine grained	bruit	<u>;</u> ?	2	•	103		•457			
270	4				Harsin	py ventets	cut	-	29	۲	102		.308			
280	4	Hen.	Dz veining,	including.		eus with m		-	at.	L ₁	10	1	- 255			
290	4	e	50° or less. No q	2 flooding					Te	4	100		- 388			
300	N N	-> S	culphide mylaite	@ 50° (296')			.9x		1	ι,	99		• 343			
310	4	visit	Ce. Avenage 2mm.	upto 6mm		······				?	98		-255			
SEE-MC	ORE PRINT	SOB SMITHER	5 FORM #103			· · · · ·	4 4		х.							

Collared			Completed	Core Size		Logged by A	, 10	A25		Proj	ect No		D	ate 27	1/181
			FIELD COORDINATES				SU	RVEYE	COORDI	NATES			s	theet ?	of 7
Lat.			Elev.	Dip	·····	Lat.	EI	ev.		Dip	<u>-</u>	,			<u> </u>
Dep.			Depth	Bearing		Dep.		epth		Bea	ring		[·]	86 -	3
Footage	Rec'y		Rock Type/Alter	ation		Mineralization	enner de la composition de la	% Suin	Est	Sample No.	Lt.	% Cu	L OPT A		
310	4	BES	: Serielind	4	2.	6 (2)	+		HIF	0.1		. 724			
330	ų		Filicili	(-1-7	t cp cm	<u>, mene</u>		<u> </u>	- 17		• 3 50			
		Q2 V	eins ± 1 mm in	dis mitter-						96		1378			
_340	4	00	cur generally less	than 5/ft.	at in the				4	95		.401			
350	N	Loca	l parvasive si	hicitication					4	94		•445			
360	ų		Qz studen	rovles	a .	· · · · · · · · · · · · · · · · · · ·			e,	93		•472			
365	с. р	harce	v Qz. Veins	cut core	Pv >	Co in h	race fi	Q.	17	79007		.427		-	
END	-	e	30° or 683.	-	t t	as dis.	along			1046		- 401			
المريحة والمراجعة المراجعة ال		Driu	stopped b.	la of		eine. Very	min	-							
				fame, .	6	utrix.	m m		_						
						······································			-						
			?				стана 1977 — Полона 1977 — По		-						
and The second s			: •											-	
		· · ·			- - - -								*******		
al se traj Carlos	v					······································									
				من ا			<u></u>	-						•	
	I						<u></u>								

SEE-MOORE PRINT . SMITHERS FORM #103

. (**1**1.)

14

Collared	Jun	っき 27	Completed June 29	Core Size N		Logged	by A	LOR	2.57			Pri	oject No		Date	11 July	1586
			FIELD COORDINATES					States -	SURV	EYED	COORDI	NATES			She	et /	of 4
Lat. 170	020	~	Elev. 2150	Dip -90	•	Lat.	17018	20	Elev.	2	188.6	6 Di	ρ	90°	Hol	e No.	4
Dep. 20	980	تي ا	Depth 480'	Bearing NA		Dep.	2097	8.03	Depti)	496	/ Be	aring			36- 4	₽-
Footage	Rec'y		Rock Type/Alte	ration	1	Mi	ineralization			% Sulp.	Estade	Sample No	. Lt.	% Cu	OPT Au		1
)			·							Up	MIF					-	-
20	0	Casi	mg. Unmar	lead	Pyita	<u>-</u> f-	<u>chale</u>	pyit	ς	40	CODE						
30	100%	BF	P to end of	e hole	dus	fract	time fo	i and of	hole.	. 7	41	79729		• 378			
16		5	ilicitied & ser	Deitignet	D .+		. (۲	.,			.7/17			
<u> </u>	· ·	D . 41 - 1	41 Dio looks free	ly 2 mm felde ~)	Fynd	L gen	exally + H	more	66.00	<u>ر</u>		2	8	.346			
50	.9	hess	Qz than above	33'	27	ite (<u>()</u>		~~~~	11	۰,	27	,	. 432			
60	14	Domi	ant colour: ligh	I olive grey	Cpra	ie; di	ss. A fre	c. fill,+	24	4	7	26		.427			
70	•1	- 60-	75 Fault zone:	30-55		·	• •	0	• /	· •	51	25		1395			
			<u>,</u>								51/						
80	4	QZ	ucreasing		Host su	lephike	i in clea	v Qz V	lein-	•1	41	24	/	.497			
C.L		Good	QZ Stuck work	cs. Few Carb. V.	lets.	Very	little de	is semi	hite.	ι,		,					
		Large	r Q2 veins et low	angles to core						7	41	27	<u>.</u>	.425			
100	4	Hadius	a light to light enou	Hi dive						ς.	4	, - ,	,	. 294			
		Bx t1	60 - 138 Well al	tared .	· · · · · ·							:C	<u> </u>				
110	7	Ģz	filling. Locally	indistinct						4	81	21		.454			
120		Gue	d' stockworks. F	ew Q2 veius				•		۱,				7			
		Loi	al carbout ver	<u></u>			·····					26	>				
130	14	B	× intermittent		Oz vai		t b. 1	hassing	<u>.</u>	4	4	19		.279			
				······································	Vei	nets			P)								
140	5,	1:	38 end Bx							۱	· · ·	/8	·	.439			
	1	Highly	altered BF	F (?)				路。 12 13			A .						
150		. 144 -	149 - 1.5 cm Qz-	Sulph. Upin				-		. * ,	41			,205			
160	•	silie	fication predou	mates over	Very me	nor Cf	. Local	Calcit	- -	5		/6	,	.399			
· · · · · · · · · · · · · · · · · · ·			" sovicition	atton.		•		4			-						

)

NOTANDA MINES LIMITED BELL COPPER DIVISION

1. Company

)

Collared			Completed	Core Size		Logged by					Pro	ject No		Date		
· · ·			FIELD COORDINATES	· · · · · · · · · · · · · · · · · · ·			99 - 10 s. 4	SURV	EYED	COORDI	NATES			Shee	" 2 0	>1 <u>4</u>
Lat.			Elev.	Dip		Lat.		Elev.			Dip			Hole	e No.	
Dep.			Depth	Bearing		Dep.	×	Depth	1		Bea	ring			86-4	Ĺ
Footage	Rec'y		Rock Type/Alte	ration		Mineralization			% Sulp.	Est.	Sample No.	Lt.	% Cu	OPT Au		
'60	1.1	T3x Z	one start + 16	4'			· ·		_	MIF						
170	100	. In	places vague or inte	whitent,	Py	Kunn	-cp		5	81			.485			
180	11	φ2	, voce grout m						4	•.	<i>. . . .</i>		, 487			
<u> </u>	<u> </u>	con	nposition - i.e. pro	ib. altand			а. Чайца Х						10-			
190	ļ	BF	P with rave grey QZ	vein frags.	Ry> M	i cp in trai	tures	¢	10	•.	13	ļ	-517			
240	1	Fru	gs. augular to s	abrounded .	'diss	, Dus, aver	-se : 0.	2	τ	1 1			107			
	1.	Go	od Q2 Stuckworks	E Veining	Loca	uy = 5/ d	essen in	J.A	<u> </u>		10	+	.603			
210	1.4	. 210.	-226 intere siliciti	ation					17	١,			.675			
		hoc	al myconite (not vein track, + mi	Souge)+ Q2												o.
220	, 'ı	Loc	I chalky sericity	et rock					_/	`,	10		•459			
230	1	.226	end Bx Zone	·		:			17	-	09		.475			
n Ju	',	BEF	> light dive gray	to greyin		. t			c	4.1						
240	/ <u>/</u>	- B	10. books + fine.gran	ed date biotite	Pyr	<u>m cp in cle</u>	ar Q2	Veins	<u>_ر</u>	41	05		.3/0			
250	4		davle greenish cre	y. Rio. show ho	8 44	us an frace	surfa	cere ,	11	۰,	07		.266			
	1	Local	cert. venin to	5 cm.					4							
260		Good	to mod. Q2 yeini	y to 257'					' 	_``	86		1279			
270	4	15(0)	celly to Zq1, Lor	to give -	CAN	Du local			4	-	20		./20			
		34		2 (0 ·	SPZ	77	7		4							
280	4	Silica	ucreasing - gov	d stuckwales			· · · · · · · · · · · · · · · · · · · ·			<u>ч</u>	04	·	•218			
290	7		•						ų	, ,	63		.677			
		1296.	- 298 - few magnet	its reinlets		·····				1	*				1	1
300	· '	High	ly silicified			t 	·			·,	50		.770			
310	9.	Colo	my: generally we	dium gray	Pro	1pto 5%	deis	•	4	- N	[0		1520			
SEE-M	OORE PRIN	т	S FORM #103	4		`.	· · · · · · · · · · · · · · · · · · ·									
	· .		~			۰۰۰ ۳ ۰. ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	X	Â								

Sugar and and the	201	-367	1077-yi	ed e
Sector States				
	4			
1				$\boldsymbol{\nu}$
				·

)

Collared			Completed	Core Size		Logged by				Proj	ect No		Dat	te	
	· · ·		FIELD COORDINATES			1	SURV	EYED	COORDI	NATES			Sh	eet 3	of 4
Lat.			Elev.	Dip		Lat.	Elev.			Dip			Нс	ole No.	,
Dep.			Depth	Bearing		Dep.	Deptl	h		Bear	ring			80	5-4
Footage	Rec'y		Rock Type/Alt	eration		Mineralization	· ·	% Sulp.	Est	Sample No.	Lt.	% Cu	OPT AL	1	
310	160	BFP	Hill silicities	4. 317.5	2.	> < D		7	MIF 41	79700		1626			
320	1	Gve	enish black be	ow 317.5'		C. Church Mar	- T=0. +	3	',	99		.3//			
340	- - Y	· 33	1-336 med. ="	licitication retworker	54	y QZ Veuis		4	•,	98		.278			
350	4	Se	condary dark, fin	e-grained	Moly	sdenite min	or dies.	41 	'1	97		.236			
360	1	• 355	- BEP, lighter	in colour	Wit	h cp. in grey	Q2 V.	5	۰,	96		,355			
370	١,	str.	Med. to dark green	vencing.				+1	•,	95		.630			
380	· •,			. 0	. 370-	400 - lucal Hay	putite vut	i.	`1	94		.645			
390	1	G 600	d stockworks		Locally His Sp	y ± 5% diss. a ecularita. Av. de	р Р Р У <u>ла. ± 0, Зыш</u>	10	.,	93		.850			
A00	4	нi,	coarse black t	piotite	6.4	Trange to less	Hen Colum	5	4	91		.940			
A10	4	Loce	al challen ce	ricite				1,	•,	91		· 520	, . .		
420	. 67	- 416 - 4 Fva	- 427 BEP laye.	pud bio .	Grey	Qz veins +	spt py	<i>u</i>	•,	90		.840			
A30	•	BFP	- dark Olive gro	inning chear	+ Uni Spece	. magnetile	Ľ.	61	14	89		· 820			
440	,	G.	enerelly bio, is a	cericity 1	+ diss	, & frac. fill.	cp+py	*	••	88		.950			
<u>A50</u>	U.	. 444	1.5 becoming ligh	tar in estour	Local	ca, 6.		7	•	87		·215			<u>.</u>
460	u	Stro	my Qz Veinst =	tuckworks	Local	olaquetile +	hem,	,)	••	86		, 475			
SEE-M	OORE PRINT	- SMITHE	R5 FORM #103	· · · · · · · · · · · · · · · · · · ·	••• ••	Ve in	فسفت ،		.						

an an an Anna an Air an Air

Collared			Complet	ed		Core	Size		Logg	ed by	۰.						Proje	ect No			Date		
			FIEL	D COORD	INATES								SUR	EYED	COORDI	NATES					Sheet	4	of 4
Lat.			Elev.			Dip			Lat.				Elev.				Dip				Hole	No.	1
Dep.		1. ·	Depth			Bear	ing		Dep.		54		Dept	h			Bear	ing				86	-4
Footage	Rec'y			Rock T	ype/Alte	eration				Minerali	zation			% Sulp.	Est Grade	Sampl	e No.	Lt,	% Cu	OP-	r Au		
60 470	100	BÈ	P	sili	cifi	e d	+ seri	, 2.	<u> + </u>	(p				5	141F		85		.765				×
480			ocal	Chearil	with <u>Lie (?</u>	sran) se	q2: <u>time</u>	1	•					!!	<i>''</i>		84		•719				
490	1	. 493	Note:	<u>v</u> end	i bla	ete i	coarse	Loca	l ma	<u></u> +	hem	. Vem	<u>4</u> Cm	11	1		83		1.20				
496	'	Dia Col	14 vi	t Ka	edium	oli	re grey	42	PY	<u>, In</u>	elu de	<u>n dei</u>	•	10	4	796	82		.699				
END								ave ran	rage -	J tou	0.2 m	un un balon	£										
								د،	ر در در ا	^ .								2					
. '																							
							<u></u>			,													
•				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				+	1			-											
										1. A. J.	,1 X ; 			1									,
											a an												
																					•		
									•														
								1															

SEE-MOORE PRINT - SMITHERS FORM #103

9.

----)

Còllare	Jewa	- 14	Comple	eted Ju	we 16	Core Size	N	Logge	ed by A.L	'ORS	:Å			Pro	ject No		Da	te 7 . /	1141
			FIE	LD COO	RDINATES						SURV	/EYED	COORD	INATES			sh	~ 10/	6/86
Lat.	1664	ON	Elev.	24	20	Dip _	-55°	Lat.	1664%	.20	Elev.	21	172:5	a Dir)	1,0			01 4
Dep.	2053	5 E	Depth	60	0'	Bearing	DUE EA	T Dep.	2054	1.89	Depti	<u>^</u> 7 h	607'	Bea	aring	<u>БО</u> Е		86	- 5
Footage	Rec'y			Roci	k Type/Alte	ration			Mineralization			% Sula	Est	Sample No		Facult			
0		~	,							· · · ·		υp	MIF		+	7e CU	UPT AL	1	
22		Cas	mg				- Pyr	<u>itti</u>	domin	ant		+0	CODE						
30	0 100	$\overline{1}$	F F	(?)	1:11	squirit	-: 10	Sulf	shite.	Local	<p.< td=""><td>F</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></p.<>	F						-	
		ŧ	1000	ily e	ilicitie	d. Origi	in ty	frac. 1	LL E	Lun		ر د	51	79407		·064			
4	2 '	ć	ou pos	ition	uncer	tain,	c p	DY44	ent in	r, de	· ·	4	<u>ц</u>	06					
5	4	с (-	alour.	: Or	ange gr	~~	, .	•		-1						000			
		P	rol.	TUE	- tu en	ed of h	ole					2	4	05		.059			
60) 4	Local	dolo	mite	trac. t	ic. ente	0. 8	.0	1.70 ·	۷.		4							
	4				1		7	War .	100,	- Zulu	<u>~ dia</u>			04		.069			
C		Local	VUC	in	62 + 6	-0-:5						4	4	03		. 091			
80) 4	Orana	8- 6-0-0-	+0								٦				I.:			
	4	8	- 911		<u> </u>	(02		1053			
- 90	2			4 /			×			· . ·		``	ч	<u>۸</u> /		·199			
100	.4	Server	u 55	4 Q Z	40%	0						,		01					
		JEE I	PEIR	OGK	APHIC	REPO	RT Local	cep 1	rac. fill	Hi kz	mid	4		79400		.07/			
110		3 cm .	wide a	4 Q Z	- Py Ve	in @ 4	fo°		ý			5	•1	00					
120	9.	1 .	Ċ	, , , ,	· (97_		.055			
120		Local	Carl	bong	li							10	•,	98		.069			
130	4									1			ч	0.4					
, 1.								-								• 101			
/40							Such	l, Sulp	kide - 6.	earing		••	17	96		./23			
150		Crei	c .'	1			l f	ractur	in sui	merou	2								
		y ram	- side	of a	+ 2 4	i may						4	"	95		-109			
160										:		4	-	94		·079			

SEE-MOORE PRINT . SMITHERS FORM #103

Collared			Complete	d	Core	Size		Logged by					Pro	oject No			ate		
			FIELD	COORDINAT	ES	÷.:				SURV	EYED	COORDI	NATES				Sheet	2	of \mathcal{A}
Lat.			Elev.		Dip	· .		Lat.	X	Elev.			Dij	o		1	Hole N	lo.	
Dep.			Depth		Bear	ing		Dep.		Depth)		Be	aring			Ê	36 -	5
Footage	Rec'y			Rock Type//	Alteration			Mineraliza	tion		% Sulp.	Est. Grade	Sample No	. Lt.	% Cu	OPT .	Au	,	
160	4	- 11	2 01	range gr	۲ ,	• • • •		1 • .			~	MIF							
//0		1 ufb	. 50	evicitized	- Seli	cifud	φ_{2+}	Sulplude	fractu	ren	_5	31	93		•647				
180	4	Carbo	nate	includ	ling c	alcite	1 in a Nen	us or belater,	+ 3/f	t. c. ·		1,	97		·065				
190	4	white	dolo	mite ver	ins £	10 mm	Py				4	~	9/	,	·076				
200	v	Grun	Øz	vens c	onno	~					4	·/ 1	96		.063				
210	4)		40	242			Vfg	hemalite -	? with p.	1-4z	4	LĮ	89		.101				
220	95	Light	- quez	in hear	1 QZ		Hassi	re 2 cm py	vein @	25°	4	4	চ্য	1	.072				
230	160								·		4	4	87		.080				
240	4	Oran	je greg	to read	. light	prey					ι,	U.	86		-148				
250	4	• 242-	256 F	= ault zo	ne, Bx	+ gouge	5mm	Py Vein	<u>@ 60°</u>		1,	51	85		.049				
_260		QZ	veins	less ab	unda	t	Py. A	cassine fra	c. fil.		1,	31	89	,	.013				
270	4	Fault	- Bx a	t 270, 1.	2 cm, (@ 30°	<u> </u>	ns qz.			<i>۱</i> ۱	и	83	,	.094				
280	્ય	•273 •276 •	qz ve - Rock	change	- Med	suin. . lýkt			•		L	ц	82		.676				
290	· 4		ly vith	very light	silie.	+ Seri.	= 24	ac./1+. 24	$-\varphi_z \pm 2$	les en	۱.	×	81		.043				
300	<u>ر،</u>	Local	Carl	in py	γ - Q7	- Veria	2 Cm	Py vein a	ents @	140	3	4	86		•077				
30	ı	Grez	ish e	range p	redoui	natis			· .		•1	٩	79		· 089				

SEE-MOORE PRINT . SMITHERS FORM #103

L

a fear of the second second

Collared			Completed	Core Size		Logged by				Р	roject No		Dat	е	
1997 - 1997 -			FIELD COORDINATE	S			SUR	VEYED	COORDI	NATES		<u></u>	She	et 3	of 4
Lat.			Elev.	Dip		Lat.	Elev.			C	lip		Но	le No.	
Dep.			Depth	Bearing		Dep.	Dept	h		В	earing			86	- 5
Footage	Rec'y		Rock Type/A	Iteration		Mineralization		% Sulp.	Est Grade	Sample N	o. Lt.	% Cu	OPT Au		
310	160		?		0	± .•/		7	MIF						
		. 04	mitic seriet.	Gradual	14	= 1 (duss.		ر	51	7	7	•/04			
_ 330	ć į	کر	dour change to a	tark yellow green	1,	ew large - erei 10	5° .	4	10	1	7	.098			
340	۰,	Lou	Ily breccisted +	- grey Q2		0 8	;	4	4	7	6	./37			
350	ų	Anda	- 3x + 9z, +	5.5 the	0		· ·	ч	4		~	175			
314	L	Ha.	, be a dyke.	Massine, fine.g.	Py-	cp - local con-	ecite	6		[<u>></u>	•755			
		Low Tull?	to. Sum Serieil	45 I reota	<u>Hi</u>	celete in has. p.	veins		•{	7	4	•151		·	-
370	L4	,368	Andesite ?, as	above				ч	4	7	3	·/28			
380	4	de Cl	the grayion 'Sree	n de services de la companya de la c Companya de la companya				2	4	1	,	.167			
204	с. С	_	<u> </u>			· · · · · · · · · · · · · · · · · · ·					<u> </u>	./0/			
		, 387	-lower cartact	Q 25°	Local	hanality		\$		7/		.089		ļ	
400	્રામ	Tuff	? Qz vein much	more abundant	<u>(</u>	carbonate		4	ч	7	0	·/07			
410	4	Ande	site ? dark gree	nigh grey	Cavey	Q2 Veins + py 5	1.5 cm	4	<u>м.</u>	6	9	.152			
420	<u> </u>		ine - grained; vel 0 458,5	its 214m	•			ų	۷	6	8	•175			
430	ч				Py to co? v	ac. fillings.	4.3 . · ·	z	١	6	7	·/77			-
440	4				1			٠	۲	6	6	./67			
450	1				Ry-c	Place lil @ 2	<u>^</u>	3	`		~	. 7 /			
460	٦	. 458	.5 cutait @ 4	5°, and Audint	CP+F Specul	by in grey QZ vei		(,		64	,	•211			
SEE-MOC	RE PRINT	• SMITHERS	FORM #103		-+-	duer Q2.	- 7 -				k	+		·	

and the second second

)

NOTANA MINES LIMITED BELL COPPER DIVISION

Collared	<u></u>		Completed		Core Size		Logged by					Pr	oject No		1	Date		
			FIELD COO	RDINATES			i i i i i i i i i i i i i i i i i i i		SURV	EYED	COORDI	NATES				Sheet	4 .	of 4
Lat.			Elev.		Dip		Lat.		Elev.			D	ip			Hole N	Jo.	
Dep.			Depth		Bearing		Dep.		Depth	1		Be	earing				86	-5
Footage	Rec'y		Roc	k Type/Alter	ation		Mineralizati	on		% Sulp.	Est	Sample No	5. Lt.	% Cu	OPT	Au		T
460		_	2		7					-	HIF							
.470	100	Tull	· Low for	laspar	Lyte !	Py-	+ cp in g	yey Q2	Vém	3	31	6	3	•179				
480	1,	À	udesitie?	I with Varying	q'à veins amounts	Hem.	+ Kaque	Teti ne	in	6	1	62		·/14				
490	1)	y c	chloritiz	atin;	Serieitization		D	-		۲	~	6	,	-/37				
560	:4	24	ed a th	in sect	biotitized!		•	2 ⁹⁰		1.	ч	60		•[7]				
_ 510	'1	Grey	Gz veins	eanno	, but					4	`1	59	,	•189				
520	- 11	No	t abun	-dant	•		• :	Ŷ		S	4	58	i l	·226				
_530	Ļ							2 2		۰.	۹	57	7	·2/0				
540	۱,	•537 Q-	3 - cartact 2 voin, Crr	en green	by gray	Local	hem .	•		۲r	i	56		·252				
550		· 548 Hod.	- 549 Fail Sericite	- QZ				•		ſ	4	55		.272				
560	4	• 555 " B	5 Bx - 3 Ix dylee, I	cm heid uchuches	4. @ 120 Grob. BFP.	Hinn	r cheith			•	۲۲	54	/	:3/6				
570	- 11	· 562.	- 565.5 Bx - BFP, Some	tounded	+ py-Qz frega	Bx .	atrix carri	es = 3' di	Py	v		53	3	.342				
_580	, Li	• 570. elso	5 contact vet chlui	e 450	sevicitized					+,	•,	51	2	-327				
_ 590	()	Da	ve sreen	alteration 8	n, not ex.	Cp	frac. fill			٩,	.,	51		•432				
600		.594 6-	contact.	che, ab	ne; seri.	ori. or	agnetite 'at	autoct	-	3	•,	50		. 372				
.607	•1	Tuth	(?) enti	nuez_	•	Py> C	p. unidentil	ud radia	ting	5	-	79349	7	./35				
END SEE.MO	ORE PRINT	SMITHER	5 FORM #103		n de la companya de l La companya de la comp	tran	Juscent er	ystals.							Pargamente deva			

Sugar

· Charles and the second

Collared	JUNE	, 27	Complet	ed JUNE27	Core Size		Logged by	L'OR	<u> 425</u>	•		Pro	ject No		Da	te 11/7	186
			FIEL	D COORDINATES					SURVE	EYED	COORDI	NATES	········		SI	neet /	of 3
Lat. 16	420	λ	Elev.	2180	Dip - 90	, •	Lat. 16422.3	32	Elev.	2186	• 30	Dip	ı (70 °	н	ole No.	
Dep. 20	855	- E	Depth	360'	Bearing NA		Dep. 20883-6	68	Depth	36	56	Bea	iring			86 -	6
Footage	Rec'y	<u>`</u>		Rock Type/Alt	eration		Mineralization	s 1. 2.1.		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT A	u	
0									ľ	9 q	MIF						
14		Ca	ing					······		+ 0	CODE						
20	80	BRE	CCIA	Hilly	silicities t	3-13	a: He	mont	-	10	81	70091		· A/2			
		2	ericit	ized . Orige	and rock	13.0						11011	-	070			
30	100	<u></u>	mident	Tipied, ho	cel gourge	al	undant s	ulphi.	(c	<i>'</i> ,	"	90		.018			
10	1,		olour A	: 'Scherall-	1 1.200- 8.27		k. E			5	٠.						
40			advent	d grey Q2	verus +	- 5-	7 Jar. FVa	-CTrank		_ر		<u> </u>		./28			
50	1 N.	So	me alt	·BFP? from	3. Gran QZ matrice	fi	chines et d	kissen	in -	4	4	84		.099			
		c.	rbouz	te prescht			1						1				
66		2	oricity	i chilly	in places	as	tract. Su	all and	unt		''	87		•154			
70	Ц	. 65' Savi	t en	d of sx	cified rocks	d	chelcopin	te los		4	11	86		-/62			
M •		to e	nd. L	Juidant ifie.	1. Most are	6				4			1				
80		prob	ably is	queous but	hay mel. seds.	i in	holes				61?	85		-132			
90	4	Hum	works		e the between the company					۹	•1			171			
		Few	Vague	frage. sug	seat Bx			iling mangananan P						•126			
100	ļ	i	<u>n pe</u>	~t.	·		· · · · · · · · · · · · · · · · · · ·			''	ч	83		./26			
	7	Donin	ant col	low. light	or ango brown						4						
110	<u> </u>	.104 -	108	broken co	re.							82		·080			
120	7.	Alter	ed s	ediments	`						۱,	51		•/26			
120	4									۰,	t į	d'r		110			
		-132-	136.5	Bx dyke	Inchastes BFP								+	•110			
140	<u> </u>	11/4 A	<u>45,50</u>	incitized, v	ounded to					΄,	ч	79		.065			
1. 1. 1	1,	an	Jular.	· grey Q2	matrix +			1.1			.,			12.0			
<u> 1 30</u>	L	Sun	all ro	Local Vu	due py	·						78	<u> </u>	•139			
SEE-MO	ORE PRINT	- SMITHER	5 FORM #1	03	a - / - / /												

....

Collared		Completed	Core Size		Logged by					Pro	ect No		Da	ite	
		FIELD COORDINATES				1. 12	SURV	EYED	COORDI	NATES			SI	neet Z	of 3
Lat.		Elev.	Dip		Lat.		Elev.			Dip			н	ole No.	
Dep.		Depth	Bearing		Dep.		Depth			Bea	ring			80	5-6
Footage	Rec'y	Rock Type/Alte	eration <u>v</u>		Mineraliz	zation		% Sulp.	Est. Grade	Sample No.	Lt.	% Cu	OPT A	u	
50					<u> </u>	10 • • •			N(F						
<u> </u>	100	Altered Sedencerts.	· 166-68 broke		ryaci	per. F		5	61:	77		·/4Z			
170	·	1 cm grey Q z vei	. @ 10°	Spec.	en des	+ diss	•	١	٤,	76		.044			
180	: e ₁							11	4	75		.197			
190		181-186- grey QZ + F EICH wide perallel	s core					'I	Ly.	74		.2/7			
200	•	Rucks darker in c local dark green	sh grey					4	31?	72		.163			
210	24	hod. to good go books like alt, int	y QZ verie	1				4	- 4			.212			
220	1,	than BEP.	****					Ņ	1			214			
230	.'1	here QZ veine Hedi dela	L			· · ·		. <i>ک</i>	 (1	{		• 48			
220	- L.	And want frey. Al	(, VOLCAULC.	V	mi aggi	<u></u>				16		-/ 10			
<u>~~~</u>		Good Q2 stockword	<s< td=""><td>pieur</td><td>dinami</td><td>and ch</td><td>5</td><td></td><td></td><td>67</td><td></td><td>•/69</td><td></td><td></td><td></td></s<>	pieur	dinami	and ch	5			67		•/69			
250	. 4	Gregish dive gree	Len	Avera	41 ± 0.14	m. Up to U.	3444	5	4	68		./77			
260	ч	· 254-257'4" Fald . for greyich dive green . ± 11	ph. Dyles, 20° mm filed. in	sui. di → ± 1'	of explore	wite in Bx est	i.e.d.	*1	t,	67		.156			
270	14	P.g. matrix. Feld. = More Oz veing \$ 02	+ 10% of rock Stuck works	below PU >	been of dy	ke. Ind. BF	24.00	16	-1			./69			
280	4	than above dyke.	15. h . + * ?	· 271-2	77 12 cu	- going Q:	-	16		1 -		107			
290	· ·	Greenich gray		0	- Julpurd	in peralul	·	ς ι ζ	h	•5		•131			
300		194 Fault @ 200		545	-γ φ2.	p. dus. Veine.	m	ر ،،		<u> </u>		•126		_	
<u> </u>	l	In the second second second second second	. DFF	L					,		I	180			

يە. مەر

THE STATE AND A STATE OF STATE

SEE-MOORE PRINT . SMITHERS FORM #103

الأحادية المراجع المناجع المحاجب والمحاجب

3

Collared			Completed	Core Size		Logged by		·······		Project No		Dat		
	-		FIELD COORDINATES	3			SURVEY	ED COORI						· •
Lat.	• .		Elev.	Dip		Lat.	Flev		1			Sn	et >	or S
Dep.	4	·	Depth	Bearing		Dep	Deeth					Но	le No.	1
Footage	Rec'y	l	Rock Type/All	teration	1			K Eet	<u> </u>	Bearing		<u> </u>		~ \o
36.0	· .						Su	Ilp. Grade	Sample I	10. Lt.	% Cu	OPT Au		
310	100	TUIS	3? Hod. Oz sta	ict works	D.	Nointes Line	1	5 3		.	17			
		11	Q2" Microfracte			Venuer / aure /			. 60	-	•//5			
520		.312-	318 bleached to	very light grey			4	4	6		.145			
370	95										-110			
	12	28(80	r: - lyttole.	e que	Ver	phi cp		1 1	6.	ı	.162			
340	100	lace	La mich are	776 +	0									
			n yr for or any	1 337 -	- Py	pan cp			5	<u>}</u>	•185			
350	4	Less	Oz than ab	w.	lucal	Cecule its		. 11	E		,,,,			4 4 4
711	,	Q2 V	reins breccia	ted, with						<u>}</u>	•/0/			
_ 360	·	White	carbonate fill.	, incl. caleit	- Hi.	<u> </u>	L		5	7	.176			
211	4	• 363	Highly alt - Bx,	including		•								
	· · · ·	.365	tault@ 200	Ginese				41	79056	2	.136			
END		. 365	BFP - aut	70-ge										
		2	it lenow if t	thin in	·····	<i></i>			·		<u> </u>		<u> </u>	
		play	in body of i	utrusion.										
									<u>+</u>					+
						· · · · ·								
				1		$\frac{1}{2}$								+
						ť								
2. *				×										+
an an the transfer of the test of test		······												
														<u> </u>
	I.				·····		l							

SEE-MOORE PRINT . SMITHERS FORM #103

and the strange of the second second

Collared	INE,	24	Completed JUNS	-25-	Core Size N		Logge	dby A. L'OR	2SA	•		P	roject No		Dat	eno	11.101
			FIELD COORDIN	ATES					SURV	VEYED	COORDI	NATES				27	16/00
Lat. 16	6440	\sim	Elev. 2060'		Dip - 90	0	Lat.	16427.77	Elev,	2.	11 -	- r	lin	0.0		<u>, et (</u>	or 5
Dep. 2	1100		Depth 360'		Bearing		Dep.	21196.07	Dept	<u></u> h	21-1		earing	90		86.	-
Footage	Rec'y	·	Rock Typ	e/Altera	tion		ـــــــــــــــــــــــــــــــــــــ	Aineralization		8	<u>567</u>	Samala N				+	
0		-	ł		· .	+				Sulp.	Grade	Sample N		- % Cu	OPT Au		
21		Cas	ing				······			+0	CODE						
2 ~	ar	DEI		- ,						-			_	-		-	
	<u>-</u> ,		- Serica	1 dea	8	1 Tynil	ū,	Sommant.	•	5	41	7953	3	.137			
40	100	. L	ale higher	TO T	end of	Ч.		1. C		4							
		• 55 -	Bx start -	- Xm	v 72' +	Ful	<u> (</u>	mancopy. (1				3	7	• 22/			
	<u> </u>	• 57.	5 Dyles, Ligh	Foline	sreen 85°					ч	"	2	,	.1197			
1.	ч		± 20 cm	, wid	.									-716			
60		<u>ISX u</u>	ich, rounded B	FP	alta I	Hi. de	is. f	by in Bx		4		3	5	.363			
70	4	12 1	Sk end in H	igney	altered .		•	1		ы	04						
		φ_2	veine, sub, p.	wall	2. 4+2ct						81	3	/	.473			
80		100	l q'2 sto.	ckwa	vies,			ः : - : :		•4	41	27	,	227			
C A	i ig	• Dyke	, ± 20 cm e2	5°, lig	tt Oline green	- 96'	·······						2	1.337			
-70		• * +	98-114.5°C	150	; includes					4	71	32		. 478			
100	4	few	chloritized	biolit	boules.			ст. 94-т.,			1	//		1-1-0			
· · · · · · · · ·		± 4	y (Wigular	Carl Llaba	cul.					4		3/		.340			
110	4	2	Sam, but	4.0 +0	74.00					.,	4	0					
	<u>ч</u>			F			·	······································				ەك		·084	•		
120		BFP	, chally sen	ni, b	etween		·			1.	·,	70	3	.208			
130	4	Ŷ	my Q2'Ve	ine.		_					,						
			ong QZ Sto	ctwn	res	Py Za	· P · ·	= 7% dis		10	41	29		• 410			
140	19 4 - 1	Local	Vuccy carb	mate	Vein					a						İ	
	4	with	. caleto cry	ste	situ lis cu							27		• 335			
150										4		21		.429			
160	v	SFP	obvioue. La	res yr	- Veuin												
		Telld	· average	Sau	Langth 1	·····	······································			4		25		.385			

. .,

D.L

: XXXX.S.

and the second
Collared	<u>. 1</u>		Completed	Core Size		Logged by	an a		· .		Pr	oject No		D	ate		
		r	FIELD COORDINATES					SURV	EYED	COORDI	NATES			5	Sheet	2 0	i つ
Lat.	- 		Elev.	Dip		Lat.		Elev.			D	p			lole Nc).	
Dep.	-		Depth	Bearing		Dep.		Depti)		В	aring				36-	7
Footage	Rec'y		Rock Type/Alte	eration		Mineralizatio	n		% Sulp.	Est. Grade	Sample No	. Lt.	% Cu	OPT /	Au		,
160	160	BEP	- actend			······	ng na Maria Thai	-		HIF						<u> </u>	
1/0	100	160-1	61 Faultzone,	gouge, @ 40°	$ -P{1} $	contin			5	41	24	/	•432				
180	1 4	3000	42 Stocework	<u> </u>					ζ,								
	14 T	Few 7	era: guosts				and				2	<u>-</u>	· 384				
190	1	Subt	Le breccia 177.5	- 230 ±					t_{I}	11	27	,	. 4711				
	ч	ver-	1 alternal : ser	i- Q2					• <u> </u>		<i>ca</i>	·	164				<u> </u>
200		Prol	· byerciated ToF	9					11	.`	21		.588				
210	4.	203.	Nine, 6.5 cm	@ 30"			13. •			۱.							
	- X-	5	in + 4, 5 mm	. Avigrain	HL, L	en, thing.	frac .	fil.	5		20		.503				
220	4	Good	07 stockwork	s Convain						**	in in		.700				
	~	50	el perallel to	corp									•348				
_ 230			····		Py L	p to 7%	deis.		10	٦	18		. 443				
210	5	• 237	dave en ing. Light	+ que eninte	, I	1			~		A						
<u></u>		. 9 11	-0 brownich gr	Ay.					8	1	17		.493				
250	9	r da 6 Mai	u be start it h.		4- SL	alurindea of	¥ (20) 3.5		1.	.,							
624		4	K zone. This	sectime ?		CEMARS 1	Some				/6	+	• 372				
260	1. 	. evio	wr: Ked. gray to	light browing					3	ų.	15		. 3/2				
170	ч	3	groy domin	-t.									215				
210		Less	QZ from ± 20	10'					4	<u>''</u>	14		.389				
2,80	્દ્	Fue.	-gramal seconda	ny bio.					4	۲,							
		and	his allest chi	miting 1		<u> </u>							• 4/7				
290	4	· ····	scor appears com	ger					4	٠,	17		. 220				
2.0	q				·····						/c	1	- 575			·····	
500		1			····				4	``	H		-314				
210	$\frac{3}{2}N$	LOCUL (C	ing up to a sury	92 Vein/14			т. 								_		
				/							/0		•20/				

े इ.

. Mino

SEE-MOORE PRINT . SMITHERS FORM #103

Acres 1

and starting of the

Collared			Completed	Core Size		Logged by								<u>-</u>		······································
· · · · · · · · · · · · · · · · · · ·			FIELD COORD	DINATES	······································		•				Pr	roject No		D.	ate	
Lat.			Elev.	Dip		Lat	-	SUR	/EYED	COORD	INATES			s	heet 3	of 3
Dep.			Depth	Bearing				Elev.			D	ip		н	lole No.	
Footage	Rec'y	I	Rock T			Dep.		Depti	h 		Ве	earing	· · · ·		86.	- 7
310						Mineralizat	ion		% Sulp.	Est. Grade	Sample No). Lt.	% Cu	OPT A	,u	(
320	100	BEF	>. Hed, de	Level Line			1.		_				1	<u> </u>		
		4	40% ala	cio clase ou	ST RY	vie cu	<u>Xuua</u>		5	41	09	2	.405			
330		2	- 5 11. presh-	loolenie, com		an them 1	181		4	21						
210	•,		'biot	The ,		era (nam	(alm	-•		-71		?	•639		_	
540		- Li	scal Q2 5	fuch warles	Veinle	ts of secon	Lavy bi	. ?	٤,	41	ה א		.674			
350	4	\$ 6.	Saa transic	ion to service		0					01		617			
		160	t provini	. Hed, grey to	s Spece	lexite me	-casing		4	41	06		• 432			
_360	11	Falidio	per chosts	, Sand	646	iow 344'	-		10	11						
7/4		Shan	5 QZ Stor	elewartes + 350	b				10		05		• 459			
		40	and q 1	hole					10	41	JACAU		T 10			
END											19309		.208			
						······										
_																
			······································													
			· · · · · · · · · · · · · · · · · · ·													
											· · · · · · · · · · · · · · · · · · ·	<u> </u>				
. ·																
at let to t												<u> </u>				
						e.										
•												┠────┼				
				è.						.						
						· .						┝───┼			·	
	<u> </u>						4		1	1			i]	

8

SEE-MOORE PRINT . SMITHERS FORM #103

saadiis Ku

)-

a national and a second second

	JUNE	20	Completed	JUNE 21	Core Size	N	Logged	by A	<u>, 401</u>	5.2	<u>A</u>		P	roject No		Da	ate 28/6	/198
1.00			FIELD	COORDINATES	- <u>T</u>	· · ·				SUR	EYED	COORDI	NATES			S	heet /	of 3
Dep. 2	130	oë	Elev. Depth	2020' 440'	Dip 9 Bearing	٥*	Lat. Dep.	<u>16409 ·</u> 21299	18 •85	Elev. Depti	201 n 41	9.35 47'	. С В	lip earing	90°	н	ole No. 86-	8
Footage	Rec'y			Rock Type/Alto	eration	ef.	M	ineralizatio	n		*	Est.	Sample N		5% Cu			
20	/	CA	SINC	· `						-	UP To	MIF CODE			<i>n</i> cu			
30	80	BF	P Mer	a he looking a	when bioto	- Pyril	Te in	domin	ant cul	hile	. 3	41	7945	8	•479			
40	(00)	-si-k Dyk Int	<u>e(s)</u>	e, Olivaque	- peox 	7. EV	actur	chalc e fieli	yst di	i Si	1,	4	4	9	.568			
50	<u> </u>	fin	<u>a-qrai</u>	- I matrix	. Includes	Diss.	the of	count on	in dy	real. Le	4	71	4	8	•334			
60	•/	- Bx r'd	45-52 , BFP,	\$ 64-67. que q q 2 \$	Incl. +'d tos other frags	u Local	carbo	nate ve	ins, inc	. cal.	ι،	81	4	<u>,</u>	•2//			
70	4	BFP. Gr	- derke y Q2 v	to med.	rey Levolus g	Py+	Cp +	mi. c	<u>ivelli</u>	G	7	71	46		1387			
80		gen	mally C	° to 10° to	core	Vein	uts.	- Thin	Dornel		10	41	45		•771			
10		<u> </u>	ione o	aciochase =	2-3mm (ecricica)						• •	<u> </u>	4	/	.707			
110	4		olle,	ooks fre	h locally			,			•	·,	43		.756			
120	4	Cra-	0- 40	in at law	1	ICP W	47 0	xcead	P7			-7	47	-	•739	•		
130	<u>u</u>	н Ц Ц	any t	2 cm chi Hoezwark	mater	P.	ven.	prac	· fill .			<u> </u>	<u> </u>	+	.731			-
140	5 cg 2						<u> </u>	- F			7	4	<u> </u>		.28/			
150	4										4	••	38		.684			_
160				·····							4	۰.	37		• 73/			

Ź

Collared			Completed	Core Size		Logged by				1	Project No			Date		
			FIELD COORDINATES	;			SURV	EYED	COORDI	NATES				Sheet 2	of	3
Lat.			Elev.	Dip		Lat.	Elev.				Dip			Hole No.	~	
Dep.			Depth	Bearing		Dep.	Depth	1			Bearing			86	- 8	ter.
Footage	Rec'y		Rock Type/Ai	teration		Mineralization		% Sulp.	Est	Sample N	lo. Lt.	% Cu	ОРТ	Au		
160	100	BF	P - biotitio	l t		down		10	HIF		11	.596				
180	• ,		Sericitized. Fresh-appearin	- Cobriel	- <i> </i> -			. 11	· ·	•	xo	.461				
190	•,		biolite locally, is conciling	TSidtle alsource				4	r,		54	.607				
200	۰,	Н	Includes fine-grains led. dask gray a Lo	I according bib,				4	C ₁ .,		3	.496				
2/0	٤,	. (97-	208 - Core biole er	<u> </u>	Py>c	p + bornite + covell	ite	7	•	3	.2	.493				
220	۰,	Bisti	Le generally cer	ietyd				1	4	3	2	.488				
230	7		· · · · · · · · · · · · · · · · · · ·	-				7	4		20	-265				
240	<i>e</i> ,				PY	tcp		и	- 47 	2	9	· 295				-
250	•,				Hemet	ite: dei + frac. fill		••	4	2	8	- 35/				
260)							decre	*1		27	•29/				
270		harge	- Suy QZ vien	(+5mm)				1.	6 1		.6	•457				
280		<u>د</u>	Flow angles -	to core,				۲. ۲	<i>t</i> •	z	5	•369				
250	,	· 20%		de trac 121				7	L.	2	<i>y</i>	· 324				
300		± 6	sarallel to core. Al	su anhydrite!				pt. +	U	2	3	•478				
310		Local	e strong oz	Stockworks	Hunor	red benatite		4	U	2	2	· 479				

SEE-MOORE PRINT . SMITHERS FORM #103

- Jan 💥 🕻

1.4

noranda mines limited Bell COPPER DIVISION

Collared	······		Completed	Core Size		Logged by					Proj	ect No	******	Da	te	
			FIELD COORDINATES					SURVEY	ED COC	RDINATE	 S			Sh	eet	01 7
Lat.			Elev,	Dip		Lat.		Elev.			Dip			н	No.	
Dep.			Depth	Bearing		Dep.		Depth		1	Bea	rina			86 -	Q.
Footage	Rec'y		Rock Type/Alter	ation	[Mineraliza	tion		6 E	Si Sam	ple No		% Cu			
310 320	100	BEI	> - Hed, dark	Every	Py	-+ CP	contin	u 4		i F El	2/		·374			
330	<u>`ı</u>					`	·····		/	,	20		.389			
340	4							۰,			19		.462			
350	۰,							•/	(,	18		.485			
360	<i>y</i>	Sevic	the increasing , lie	the colour					<i>ـــــــــــ</i>		_17		,450			
370	~	•367	Challey feld	par (cori)				-,	- L		16		.443			
380	•1	- 40	" of rock is fild	spar, = Zur un		19 - Tanan an Angelan /b>		.,			15		.480			
390	L	0 	d grey dominan	im langth	Hinor	hem atile	to en	<u>ر ا</u> ،	۲		14		• 376			
400	4	"Fren	hi coaren biotili	common	Py.	ZCPC	anno	•,	-,		13		.386			-
410	د,	Lo Local	cal challen fild carbonids re	ipanie, vugen	(,		• ,	-,		12		•477		1	
420	(,	Grey	92 veins subp	evalled			·	, t,	<u>-</u>		11		.456			
430	ц	tu abi	corp (i.e. storep), undant as higher	Not as in section.				,	. 1		10		·6/0			
440	4		U					4	(1		<u></u>		.461		-	
447	ι.	riagio Biotet	chase withenty card	Lovitzed					11	794	108		· yge			
END			to concitized	, 0												

SEE-MOORE PRINT . SMITHERS FORM #103

21 ·

Collared	June	= 22	Completed Jure 23	Core Size N	1	Logged by λ	, L'OR	2SA			Pro	ject No		Da	te Q T (IGU.
			FIELD COORDINATES					SURV	/EYED	COORDI	NATES			St	reet /	of 1
Lat. 16	450	5 N	Elev. 2020'	Dip - 60	0	Lat. 1645	0.55	Elev.	20	19.26	Dip)	640		ole No.	
Dep. 21	5.80	<u>) (</u>	Depth 510'	Bearing Due 1	NoR511	Dep. 215	19.53	Dept	h .	5/7	Bea	aring //	1-39-27	E	86-0	7
Footage	Rec'y		Rock Type/Alte	ration		Mineralizati	on		% Sulp.	Est.	Sample No.	 Lt.	// Cu	OPT A		<u> </u>
0 00	/		SING						υρ	NIF						
<u>~</u>			Grey QZ Veine	A stock works					40	CODE			ļ			
30	90	BF	P. sovicitized t	silicited	Pyrit	a beau s.	2 may	£	.15	41	79681		. 277			
40	100	+ s	2 mm fildspar =	25% ·	minio	r chalcop	sy.it.		5							
		Distin	active light brown	alteration							80	· ·	1204		_	
50	11	37	-40' \$ 63-67'		Dxyda	Tion (ti. re	ust in f	rac.)	11	*1	79		•111			
_60	1,	Loca	l cabonate		ext	ends down	to 59	·	• •	÷1	75		64.4			
70	•,	Feul (light grey do	un an F	Pyrc	P, but be	the than	abro		+1	10	<u></u>	.001			
		1. 2.	Q2 valatively poo	or.	1 cm	covellite	Covellit	<u>↓</u> {. {. }.			77		•294			
- 80	',	±20:	z veins @ 1 cm / bo	× /	± 1%, v.	ery fine - grain	ed dies. 5	Leph.	6	4	76		.288			
- 90	•,	Bro	un alteration	courses	:				4	ч	75		,296			
100	1,		+0 127'.						U.	"			~10			
											74		• 332			
$\frac{110}{110}$					· · · · · · · · · · · · · · · · · · ·				11		73		-225	-		
120	17				<u></u>				a	5	72		.339			
130	1,	Φz	increasing		25		х.		<i>(</i>)	. 4			. 77-		-	
110	U.		÷	1., .	- F-7-	· · · · · · · · · · · · · · · · · · ·					(/		- 366			
140		10	a 150	ludy ven	Q-2	1 - Mi gype	um (?) UE	in			70		. 301	· ·····		
150	U	······							4	.,	69		,247			
160	ь	Serce Linkt	hearth alt a	verible .			***********		、	h					-	
	ł	- 2 -		million and and a second	·····						68		· 661			

9

SEE-MOORE PRINT . SMITHERS FORM #103

<u>____</u>

Collared			Completed	Core Size		Logged by				Pro	iject No		Da	ite	
			FIELD COORDINATES				SURV	EYED	COORDI	NATES			SI	neet 2	of A
Lat.			Elev.	Dip		Lat.	Elev.			- Dip)		н	ole No.	
Dep.			Depth	Bearing		Dep.	Depth	1		Be	aring			86-	9
Footage	Rec'y		Rock Type/Alte	ration		Mineralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT A	u	
170	100	BFF	Semeilized t	silicited	Pyni	te dominant		To 5	HIF 41	67		.208			
180	4	Lie L	o 137. Repleces	continues biotile of to	0			. '(• •	66		,325			
190	4	Grey	De vein loca	faldaper				•1	+}	65		1221			
200	<u>ب</u>							i	ч	64		.196			
210	4	Lock	grey Q2 Sto	etworks				`,	<u>\</u>	63		. 426			
220	4							`,	v	67		.466			
230	••							۲	V	61		• 328			
210	4	• 237	FAULT @ 30°		1			<u>'ı</u>	U.	60		· 845	······		
250	·'/	• 246 -	- 207 FAULT @ 7	0°	rasser			4	4	59		.677			
260	·,	• 24 8	pz stockwal	es at grey	<u>cp 4</u>	acreasing 6.7		~1	4	58		1.01			
270	4	C	pz provaring		Py Erac	fill. > diss.		<u>\</u>	ч	57		.885			
280	4	Ruch	k so serveitige.	l to sil.	Hi.	diss. spec. on f	ac.	·1	1	56		.858			
290	ι,	Detu	usen 237 & 482	ucertain,	tocal Edoubl	by terminated cher	-77104) z X	•	٤	22	-	.807			
300	4.	Main	Q2 veins @ 25	- [⁻ .	<u></u>			1	ų	54		, 915			
310	n	1 cm	cality + brown	carly, vein	·			۰.	ų	53		1.19			

#***

• M2.

SEE-MOORE PRINT . SMITHERS FORM #103

State State State

noranda mines limited Bell COPPER DIVISION

Collared		Completed	Core Size		Logged by				Pro	ject No		D	ate	
		FIELD COORDIN	ATES			SURVI	EYED	COORDI	NATES			s	heet 3	of L
Lat.		Elev.	Dip		Lat.	Elev.			Dip)		F	lole No.	
Dep.		Depth	Bearing		Dep.	Depth			Bea	iring			86-	9
Footage	Rec'y	Rock Typ	pe/Alteration		Mineralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT A	lu l	
310 _320	100	Highly altered BF	= P? Siri-02	P	JE > CP		τ. 5	HIF AI?	SZ		1.31			
_330	"	Good stuctwa	les	- 323	1 cm cp vein @	35°.	,	11	5/		1.83			
_340	٤,			Cp dis	QZ. Veins, CP>	m)	4	٤.	50		1.31			
350	•,	·346 more silicitie	25° between 1 & more ceri, vois	Cp)	> Py, probably		4	` 1	49		1.04			
360	ì	Cchalley ·352 - 359 Heavy	Q2 flooding	Py	7(0	1	ч	`1	48		1.29			
_ 370	٣		' đ	· · ·,	`		ų	٦	47		. 736			
380	~	General echour:	Hed, grey to				٦	بر	46		.729			
390	4	med, dark	prey 1				÷,	ч	45		·6/2			
400		Highly silicife	ed	<u>r.</u> .	red ham		ę.		44		.855			
410	-			Py	> < 0		۰,	`	43		.966			
420		· 417 = 3 cm	Carb-Qz-py-	<u>دې ۷</u>	ein @ 15°		۰,	~1	42		.721			
430	2	Probably alt	BFP				4	4	41		.689			
440	, ,	silicification	decreasing,				۰,	4	40		• 57/			
450	\ \	bit q'é stuckwo sericityation in	tense; lo call	•			۰,	۰,	39		1.02			
460	٣	chiley	, , ,		· ·		٠,	۲.	38		1.21			

%:

et.e.

.....

SEE-MOORE PRINT . SMITHERS FORM #103

Collared	ared Completed FIELD COORDINATE					Core Siz	e		Logged b	ΥY					Pre	oject No		(Date		
• <u> </u>			FIELD	COORD	DINATES						SU	RVEYI	ED C	COORDI	NATES				Sheet	4 0	14
Lat.			Elev.			Dip			Lat.		Ele	v.			Di	þ			Hole	No.	0
Dep.			Depth			Bearing			Dep.		De	pth			Be	aring				86-'	7
Footage	Rec'y			Rock "	Type/Alte	eration			Min	eralization		9 Su	íp.	Est Grade	Sample No	. Lt.	% Cu	OPT	Au		
460 -	160	Highl.	alter	~1-	BF	P ?		P-	<u>, > (</u>	cp_			5	41?	37		1.09			100 - 11 J	
480		. 472	= 14 c	un gr	en Q:	z Vein (240°	Dig	3. 8	frac .	pier.	- ⁴		'(36		.944			<u></u>	
490		• 488	BFF	D. Bin	s, 'visite	$\frac{1}{1} = \frac{30^{7}}{30^{7}}$	ceri.	but	hot a $\varphi_2 v$	lways cin	abrend en	+	、	41	35		1.11				
500					<u></u>			Ry;	>> <+	<u>ь</u> , н	i. hem.	•		17	34		1.32				
510		• 509	to	end.	- gre	- Q2	flood		t + ¹				., 	,	33	5	·8/8				
_517		[[V	rg. To		30° =	t Vagu		Q2 1	loopin	zace	mpanie	4	~	ч	79632	_	1.08				
END								67	increa	se in	_ <u>cp</u> .										
								/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·											
										····										=	
					<u></u>																
															-						
									<u></u>												
									•												

SEE MOORE PRINT . SMITHERS FORM #103

Collared	JUNE	21	Completed JUNE 22	Core Size	(Logged by A. LOR	257	7		Pro	ject No		Dat	10 20 //	11561
	·		FIELD COORDINATES				SURV	/EYED	COORDI	NATES			Sh	 eet /	of >
Lat. / 6	660.	5N	Elev. 2020	Dip - 90	0	Lat. 16604.21	Elev.	20	19.20	U Dip		91.0	Но	le No.	
Dep. 21	650	5	Depth 440'	Bearing		Dep. 21650.10	Dept	h 4	127'	Bea	ring	10		86-1	0
Footage	Rec'y		Rock Type/Alter	ation		Mineralization		% Sulp.	Est. Grade	Sample No.	Lt.	% Cu	OPT Au	,	
20	/	c.	ASING					UP TO	HIF						
_30	90	BF	P - Q2 - Seri.	Zone	Pyris	i dominant.		. 5	41	79503		• 772			
40	100		Hed, grey, Loc	· Crange Ster	C P Free	+ mi bornite fillings > diss	4	٤,	۰.	02		• 746			
50	ş		chelly feld.	Common.	Hine. Few	Mined grey Q2 measure subplied	Vein	11	-1	61		.941			
60	ų				- fri	e. fillugs.		e,	۰,	79500	-	.859			
_70	ч				.69-7.	d sulphidy vein		Ų	•1	99		• 761			
80	4		11-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-		Mi.	speculinte & ved	here	4	-1	98		.556			
90	4	Majir	Q2 Veins sub per	abled to care				+1	7	97		.865			
100	ч							۷	~	96		•741			
110	4							1	~	95		.918			
120	4							7	* ,	94		.792			
130	4	Ç60.	d Q2 stoctu	rules				٣	`,	93		·264			
140	Y		1					`	٠,	92		· 661			
150	ц.	G 60 .	d stockwales, q	ry Qz	Py su	costly diss.		٦	••	91		1.00	•		
160	7			,	540	etwork almost ba	rren	۶	• 1	90		.928			

SEE-MOORE PRINT . SMITHERS FORM #103

Ŧ

Collared		Completed	Core Size		Logged by			······	Pro	iect No		Dat	e	
·		FIELD COORDINATE	S			SUR	VEYED	COORDI	NATES			Shr		of ~7
Lat.		Elev.	Dip		Lat.	Elev.			Dip			Ho	le No	5
Dep.		Depth	Bearing		Dep.	Dept	h		Bea	ring			0	10
Footage	Rec'y	Rock Type/A	Iteration		Mineralization	1	%	Esim	Sample No	$\frac{1}{1}$	Ste Cu		$\frac{26}{1}$	$\frac{70}{1}$
160 -	1		1 1 1-				To	HIF				OPT AU		
170	100	SFF. light grey	predou mates	Py>	cp; diss > fro	-c.p.	5	41	89		.965			
180	د.	Sericiti - G	22	E	continuing bel	sur [¥]	. "	4	88		-838			
190	• (186-191 breccinted. Ca	b. filling				١,	•1	87		.358			
200	4	Q2 veius mustly su	b parallel to	Hem.	+ bis cp+ ca	reuit	li.	e,	86		•171			-
210	*1	Local Q2 Stock	core.	QZ	Vena carry here	\$	۰,	ų	85		. 747			
220	۰t			Sus	iphide, Nort de	i	۰,	•	84		.767			
230	-7						٤,	٤,	83		.793			
240	4	Very altered, Play.	any locally				۰.	٤,	82		1896			
250	4	Visible,	· · · ·				۰,	` ,	8/		.826			
260	4						4	5	80		.798			1
270	4	Alteration increas	ung	Covell	ite, rape		t.		79		.915			-
280	7		0		,		•7	-	78		.772			
290	4	· 286 - 276 Bx - angula	~ BFP & Ge frue	۶.			٠,	"	77		1522			
360	~	 296 - 297.8 Dyke ± 3[']. diss. feld. in 	; light olive sug 1. C. Matrix	Mi'. di	a, subplike in 1		tı	81	76		.7/			
310	~	Few sub-vided QZ. Tup cart. 45°, both	frags. om 550			ter	U.	81	74		./28			

<u>بور</u>

SEE-MOORE PRINT . SMITHERS FORM #103

Collared			Completed	Core Size		Logged by					Pro	ject No		1	Date		
			FIELD COORDINATES					SUR	EYED	COORDI	NATES			<u> </u>	Sheet	2	of 3
Lat.			Elev.	Dip		Lat.		Elev.			Dip)			Hole	No.	
Dep.			Depth	Bearing		Dep.		Dept	 ו		Bea	iring				36	- /ð
Footage	Rec'y		Rock Type/Alt	eration		Mineralization	า		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT	Au		
310	100	B× 312	+0 1 320', FAULT (~ 45	5°, gouge	PY	> cp,	cartu	me	70 5	hif Bl	74		.390				
330	11	BFI	P - Seri - Q:	e to end.	4	o and.			•	41	73		.575				
- 340	· / ·1	quy G	ind. Light grey	tinus					y		72		·8/9				
350	v	Very	strong stuck	oorles					4		71		1.16				
_360	"			*					<i>د</i>	ч	70		1866				
370	"			······					•,	ц.	69		1.58				
380	"	Tour	native (?) fine-gra	ined "Scenburgh"					(·	4	68		1.51				
390	ۍ	.387	Felduper shorts vis	ibic + dyles (7)	<u>Mi s</u> í	seculate i	a veinte	4	v	<u>ر</u>	67		1.88				
460	•,	.400	- 10 cm Bx						u	81	66		1976				
410	<i>י</i>	BFF	> - light to d	let que					11	41	65		1.38				
420	"	FON	carb. venu	2 m e 35 1°					<u>(</u> 1		64		1.17				
427									<u>.</u> .		79463		.677				
END																	

SEE-MOORE PRINT . SMITHERS FORM #103

81 **Ж**-13

22°

· · ·

· · · · · · · · · · · · ·

1996 - L

Collared	JLME	26	Comple	eted J	נמכי א	7 Core S	^{ize} N		Logge	ты Д	Lc.	PRS	A			Project	No			Date C	JJuly	1586
			FIE	LD COOF	DINATES	5	-					SUR	VEYED	COORDI	NATES					Sheet	1 0	3
Lat. 16	500	2	Elev.	218	:0	Dip	- 75	-	Lat.	1628	5.62	Elev.	21	87.2	6	Dip		77°		Hote	No.	
Dep. 21	020	E	Depth	37	5.1	Bearin	9 DUE	504+4	Dep.	21015	.12	Dept	h (387'		Bearing	S.	8-51-02	W	8	6-11	·
Footage	Rec'y			Rock	. Type/Alt	teration			٨	lineralizatio	>n		% Sulp.	-Est. Grade	Sample	No.	Lt.	% Cu	OPT	Au		
0	/				~								up	HIF								
/4	/	,	45	l N Q	1	terte a	li i i i	501				. (.	+0	CUDE							·····	
フハ	100	الم ال		=02	WZ-Sev		Sut.	Suco.	maer	Throng	hours		5		701	- /						
		Very al	LT. DI	$\frac{r}{r}$	Q2-	we an	Love	Fyre	<u>ti</u>	more	abund	les T	· _	41 ?	196	51		•//5				
30	ч	G v.	een t	our	ralin	L (7,)	i	Hina	n ch	alcop	yite	•	a	11		20		./7/				
		13×	31-	68	Frags.	Sen. a	- 3 cm	Fras.	Jel	. ty ove	abu	de t				~						
40	90	5	iliceo	us bus	tuix	,		the	m	disser	in at	ing	<u>(</u>	81		29		.201				
r ^	11-0	ú	icher d	(e.j. 73	FP.	trass	. 1	_	۰ ·	A	٠		ų	- (1				0				
	(00		ericu	yes ,	10 call	cha	eg_	Spece	lar	le cum	man un	free				27		1200				
60	u	G	zentra	they we	d. even	tolich	- olive are						1 (¹	4		27		. 1918				
					8.1	3	0				. 1				· · · · · · · · · · · · · · · · · · ·							
_70		End	<u>Rx</u>	- 68		1 1		127	aul	<u>('</u>	'/			• (26		.241				
∽ م	4	Dyke	e (?) (- 8 - 8 e	$1, \pm 0$	tale gua	Ster			C C			e.	-,								
80	<u> </u>	BV C	asul c	5 - 1	F (D) G	0 0	4 (<u> </u>		•/66	<u>}</u>			
-90	ч	Dyke	2 ? 85	5-97	likt o	live cre	5 .						t'	81	-	u l		.212				
,	ų				7	0.1	1/1 2						0		********************************						····· · · · · · · · · · · · · · · · ·	
100		IS F	<u>P?</u>	50	<u></u>	Q2.	- 73×	ļ						41		3		•159				
# 110	-1	TWO	107	TAG	S /N	130X		Hene	til	can	non		u									
		Dyke	115-12	22 01	very	10 001 E	ND	+-7	~ .	<u> </u>	cp_				7			.131				
120	4				đ		-	CP	+	P۲			પ	71				.072				
	4	. 122-	126	Tree	cintal.	921	coded.				<u></u>											
130		. 126 .	- 130	.75	Dyke!	light	due	 						81		20		.101				
140	4	Brece	inte o	1. 4	2 1100	d + 1	Q2 vens						4					. I. I				
140			<u>, - ,0</u> ,	yee,	VAN	<u>le i</u>		<u> </u>					·		I	9		•/04				
150	1	L	t 1										e)	71		18		103				
SEE-MO	ORE PRINT	. SMITHER	S FORM #	#103	Mistal	ce p	-0 (a ()	Jabo	ve i	. 67'.	Vanc	e l	ias	6	n a	Lert	Eal	-10	5	ate	h fo	~
	· . 				7 (^{***} 4			ż			Ж		€°%,								v	

Collared			Completed	Core Size		Logged by				P	roject No		Da	te	
<u> </u>			FIELD COORDINATES				SURV	EYED	COORDI	NATES			Sh	eet 2	of 3
Lat.			Elev.	Dip		Lat.	Elev.			C	Dip		н	ole No.	
Dep.			Depth	Bearing		Dep.	Depth	1		8	earing			86-	11
Footage	Rec'y		Rock Type/Alte	ration		Mineralization		% Sulp.	Est. Grade	Sample N	0. Lt.	% Cu	OPT A		
50 <u>160</u>	100	Dy	Ke (?) Hay	include	Pyri	ite dominant		το <u>3</u>	41F 7/	1	7	•114			
170	1/		Bx & local so biolite, fine -	grained.		to end.		. u	U			· 102			
180	v	. 18	o approx. en	1 dyka?				LĮ	17		'5	.087			
190	ť	Bx	180-193. Sil. Hat	J-1 frags. vix. 2 cm frags				۰.	81	1	4	.125			
200	v	Dyke	(?) light dire	- guen				•/	71	1	3	· 085			
210	4	La	scal white carb.	Vein	Hem.	tite common		· (4		12	•/37			
220	v	54	rocted zone, Q2 V	einter e 65°				1	4	(1	•134			
230	~	L	ocal gray of 54	octworks				•,	~		0	•117			
240	4	5	Lo The yields mottles	221-247	Hi.	<u> </u>		ʻı	()	D	9	·696			
250	1.	- 247	and dyke		н	cp + covellate		t.	4	c	8	•123			
260		Bx	247-287	out	Ki.	cp - continue	•	v	81	0	7	-155			
270	"	Au Gre	g. frags. up to	atrix				5	<u>ب</u>	D	6	.018			
280	<i>u</i>	Ge. so	rityed (BFP?). So	rey prays,				11	·1	0	5	•199			
290	.,	Dyke	= 287 - 348.5,1	ight olive grey				3		0	4	•142			
300		Ve Fo	ry fine- grained	+ calcite x15				4	71	03		. 118			

*

SEE-MOORE PRINT . SMITHERS FORM #103

1999 A.

noranda mines limited Bell COPPER DIVISION

Collared		Completed	Core Size	:	Logged by				Proj	ect No		Dal	(e	
		FIELD COORDINATES	;			SURV	EYED	COORDI	NATES			Sh	eet Z	of 3
Lat.		Elev.	Dip "		Lat.	Elev.			Dip			Ho	le No.	
Dep.		Depth	Bearing		Dep.	Dept	h		Bear	ing			86-	11
Footage	Rec'y	Rock Type/Al	teration		Mineralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT AL	1	
300				\cap			+0	HIF						
_ 510	160	DYKE (continue	d)	- 1-y x	ite continue		5	7/	02		•159			
320	4	Altered. All 1.	can say	Lo	scal here. & plague	tele	٠,	6	0/		./63			
330	ч	with certainty	, is that				4	4	19600		./37			
	41	ruck of igned	us devivation				4	<i>u</i>	~		1-1-1		-	
									- 99		•754			
350	4	· 348.5. Sharp basel	cutact. 75°	- 77	+ calcite			11	98		•142			
360	ч	Bx to end of	hole	Ver	y know cp.		5	81	97		.013			
370	G.	lightgrey to very Frags, ser. 10 cm or	light grey less; and, to				-U	4	96		.2/8			
*		rounded. Q2	hatrix						·					
381	195	Serietized & si	licified		<u></u>		<i>L1</i>	4	95		•011	.		
387	100	Hey include very at Local gough. Vu	s + calited				4	4	79594		.014			
(397		DRILLERS MARK	CUZ CU				t v	F 3	79924					
		AT 387' & TH.	AT SHOULD					1						
		BE CORRECT,	Hy 104											
-		RUNS 10' AHE RECAUSE OF T	WO CHIPS											
		HARKED 107	71		<u>, ,</u>									
								+						
·	<u> </u>				·		I	1	L	<u> </u>	1			

8

SEE-MOORE PRINT . SMITHERS FORM #103

Collared Jewe 25		£ 25	Completed June 26 Core Size			Logged by A. LORSA Pro							Da	ite Q T (1001
FIELD COORDINATES					SURVEYED COORDINATES								Sheet / of 3		
Lat. 16250~ Elev. 2180 Dip - 9.			o ·	Lat. 16230.28 Elev. 2125.57				7 Dip	Dip Qo [°]				<u>, , , , , , , , , , , , , , , , , , , </u>		
Dep. 21135E			Depth 360'	Bearing		Dep. 21/27,32	Dep. 21/27, 32 Depth 368'		368'	Bearing		86-12			
Footage	Rec′y		Rock Type/Alte	eration		Mineralization	T.	% Sulp	Est	Sample No.	Lt.	5/6 CH			1
20	/	CA	SING					IP To	MIF						-
			Qz - Sevi.	Zone		****			7						
_ 30	98	TUI	FE?(Qz-s	ericite rock	Pyrit	t chalcopy, ite		5	31	792 16		1390			
_40	160	· Orie	- seri alt. the mal rock type o	ten in doubt	the	oughout bole		بر	¢ i	09		,280			-
50	4	K× 3 Hig	d-46 indistin. hty cericitized,	chalty	QZ Ve Hodest	- Oz stuctward	د؛	٤1	81	08		,251			
60	',	Mari Lugi	It grey to ovang	JEP U CORY	Good Bump	(u) Py > cp @ 4	50	4	31	~7		250			
_70	``	Colour by To	- clianging to m	id dart grey	Rad +	- Spec. han. Veine	ti	υ	4	0/		2.			
80	٠,	indu	ati secondary	bittel.	Hals	starburder Det	<u></u>	ч	• 1			1,500	****		
90	•,	Light to:	er aguin : light t ± pink locally, c	o orange goey Dz-Seri		1. 2. 2 mes PY		4	、	05		.360			
100		Tul	? locally bree	cited	Grey q	2 + CP + spec, +	27	1,	`*			•270			
110	.,	Good	Qz stoctwal Qz verie (a	es. some	QZ-P	by - cp - spec .			· ,	03		•276	.		
120	•,	Ovang	1 gray alt. (seri +	+ limaite)	2 \	<u>()</u>		4		02		•353			
130	••	Ora	us event dime	Sare	14.2			5		0/		•372			
140	4	Loca	l callante V	elin				<u> </u>	.,	19200		• 255			
150		Hoste	it as cheshing	ula.				4		<u>47</u>		•265			
160	·	. 159 -	alt. BFP? Dyk.?	14 cm	Spac.	, few frac, fiel.		u		<u> </u>		-259 -230			

· • •

JELIMOORE FRINT - SMITHERS FORM #10

in the second

) noranda MINES LIMITED BELL COPPER DIVISION

Collared	red Completed Core Size						Logged by				Proj	ect No			Date	·····	
			FIELD COORD	INATES				SURV	EYED	COORDI	NATES				Sheet	2	of 3
Lat.		····-	Elev.		Dip		Lat.	Elev.			Dip				Hole	No.	
Dep.			Depth		Bearing		Dep.	Depth	1	·····	Bear	ring				86,	- 12
Footage	Rec'y		Rock T	ype/Altera	tion		Mineralization		% Sulp.	Est. Grade	Sample No.	Lt.	% Cu	OPT	Au		1
60	$1 \propto$	Q2-	Sevirite	rock	= Tuth?	PY	more abundant the	- Cp	upto 5	HIF 31	96		•272				
1 80	ι,	. 179	gray QZ vec		Sub perallel	Ŧ	continuing	•	•1	۰,	95		./89				-
190	٤,					Local	hematile		ï	۰,	94		.426				
200	4	Biot	Hized - (Se	y Sree	a g)	Py	SCP		ц	•1	93		·392				
210	7	- 213	Itand to	eleni T H	; some tr (?)	CP	> py in q2 ve	ins	4	ų	92		.190				
220	7	BFP	stats. pr	stock.	+ flooding	18- A 	rein,		v	41	91		1205				
230	~	N	U bio, hed	· light	grey to		• •		10	11	90		.476				
240	-1		sht browning	sh J.	- ۲ . 				5	0	89		•410				
250	7	B×.	= 249-2	85		PYZ	cp = 3% dis.	ret	U	(,	84		, 335				
260	-7		very Q2 mat	tvix	'Bud	سا ما جا <u>سا</u> چ	i'de frac. ent hat	uix	۰,	81	87		·207				
270	د,		us. SFIS().		TO Bein				4	4	86		•246				
280	•,	<u> н</u>	uderate sto	etwork	rs (42)				(,	•1	४८		.178	-			
290	•,	• 285	Bx end	ι.		Mi. U	natrix dies.		4	ι,	84		.263				
300	-,	BF	P(?) Faw w	ulite es,	b. veins	· · · · · · · · · · · · · · · · · · ·			'1	41	83		· 3/0				
310	••	Bx .	stat 309.	Vague	50° top	h			,1	• •	82		•240			;	
SEE-MOO	RE PRINT	- SMITHERS	FORM #103	<.	intael												

...... 27 • • • • •

Collared			Completed	Core Size		Logged by					р			10			
1 			FIELD COORDINATES					SURVI	EYED	COORDI	NATES						
Lat.			Elev.	Dip		Lat.		Flev				i e			Sheet	3	of 3
Dep.			Depth	Bearing		Dep.		Denth							Hole	No.	15
Footage	Rec'y		Rock Type/Alte	ration	11	Mineraliza	tion		%	Estr	B	earing		l_		06	-14
310				······	†				Sulp. To	Ande	Sample N	0. Lt.	% Cu	OPT /	Au		
20	100	Kx_	- generally Vas	rul	Py ·	> mi.	CP		10	81	8	-/	1.328				
330		5.	cally challen	eitiz I	Lacas	ved 1	rem		17	(;	Ø	<u></u>	1/1				
710		.232	2 cm Quein @ 2	-5 °									• 700				
		Han	yting Q2 fractu						5	1	74	,	.420				
350		F,	rags. up to 3	cm	cp	> Py_	(?)		4	4	78		.260				
- 366		Ģ	an colour: light	browingh grey	Py	$> c_{p}$			4	ι,	77		./87				
368		4 Fv	ags, to 10 cm -	prob. alt.		6			.,	ر،	79176		101				
END			Tududes and Q2	BFP							1110		.//8				
			<i>(10-) 4 =</i>	- real grass											_		_
		*****											-				
												-					
															-		
														·			

SEE-MOORE PRINT . SMITHERS FORM #103

1

Collared	JUNE	/3	Completed June 14	Core Size N		Logged by A, LOR	254	Ł		Proj	ect No		Dat	e 21/1	191
			FIELD COORDINATES	3			SURV	EYED	COORDI	NATES			Sh		of E
Lat. /J	5552	2 ~~	Elev. 2460'	Dip -55	- 6	Lat. 15852.15	Elev.	24:	54.29	Dip		(Но	le No.	
Dep. 2	1250)E	Depth 650'	Bearing Dur	NOR.74	Dep. 21251.44	Depth	6	77'	Bea	ring //	1- N7- 592	-	86-	13
Footage	Rec'y		Rock Type/All	teration		Mineralization		% Sulp.	Est	Sample No.	<u>/v</u> Lt.	% Cu (
	/	CA	SING					いか +0	HIF						
30	80	BFF	> (?) Hight serici	tizatesi.	Pyri	te in main sulph	Ľi.	5	41?	79348		.06/	an kanan mangangkan ya dan akan dipang	-	
40	160	<u> </u>	ignal rock type	ucertain	CP ^U H	local. ore frac. fill than	din	4	(1	47		·057	A rr d		
_50	•,	φ: 	cally rock in	well	Q2 Ve	ins + py cut b	3	li .	ų	46		.050			
60	~		act. ; QZ fill	uj .	± 141	- py veins (masse	ie)	4	1/	45		.075			
70	и 	Co	slour is avery	a orange to	Locus	l. diss. bem.		£1	11	44		.087			
80	e,		orange que y	-7 -+0				4	(1	43		.103			
90			See petrographie	veport 5-92)	Py+	(p + mi chelevei	<u>tı</u>	и	.,	42		.228			
100	<i>t</i> ,							(((41		•115			
110	•				4 1 1 / - 1	15 5 cnhuide - here		1) 	(j.	40		•22/			
120		01	uly a few Q2	veins .	Swert	pz vein : parallel	è	10	4	39		.180			
130								5	6.	. 38		•179			
140								•,	4	37		•180			
150								11	•.	36		:/63			
160					k			3	4. E	35		.093			

 $\dot{\mathcal{A}}_{L}$

 $M_{\rm eff}$

SEE-MOORE PRINT . SMITHERS FORM #103

•

Collsred	<u></u>	Completed	Core Size		Logged by			Р	roject No		Date	e	
		FIELD COORDINATES				SURVEYED	COORDI	NATES			She		
Lat.		Elev.	Dip		Lat.	Elev.	·····		in				<u> </u>
Dep.		Depth	Bearing		Dep.	Depth		B	earing			O/	, ~ 7
Footage	Rec'y	Rock Type/Alte	ration	1	Mineralization		Est	Sample N				06-	<u> </u>
160 -	110			+			Grade HIF		D. Lt.	∽ Cu	OPT Au		
		BFP (?) Q2-Serie	it rock	Py		3	41?	3	4	. 196			
180	11	cartinues				. 4	1.	2	1				-
190	95	Oracce aven to	lichtoren			4	1.		2	1040			
200	160	3 0 [8.17				1,	56		-076			
210	4		t					3		.091			+
220	17							3		106/			
270	17	a.c.t						2°	2	. 045			
1/0	- ti	Lascon rare					()	7 5	2	.073			
240	<u>Cc</u>						<i>U</i>	27		•101			
~20	78	· 249 Fault Source		. 248-2	45 Py-Qz vein	1	- (26		1098			
260	4	· 255-257 Fault_	crusted	Fri	· cp.	4	.,	25		•161			
270	4	Fow Qz + sulph	ide veins	cpi	frac. fill , I die	1. "	•(24		•141			
280	<u> </u>	· 277 1.5 cm gouge	@ 45°	ri. L	un. frac. fill.	9	4	23		.058			
290	<i>u</i>			Bluish	Qz vein + co	4	11	27		. h(15			
300	U	·294 · 5 cm breecia	dyke	Ham.	frace field ing a	ų	1	21		.066			
310	Ч	@ 45° Post winer	al clictan-		comment	• • •	.,	20		•/77			

SEE-MOORE PRINT . SMITHERS FORM #103

n www.

Collared		Completed	Core Size		Logged by				Pro	ject No		Date		
		FIELD COORDINATES				SURV	EYED	COORDI	NATES			She	et <u>3</u>	of 5
Lat.		Elev.	Dip		Lat.	Elev.			Di)		Hole	e No.	
Dep,		Depth	Bearing		Dep.	Depth			Be	aring			86 -	13
Footage	Rec'y	Rock Type/Alter	ration		Mineralization		% Sulp.	Est. Grade	Sample No	L1.	% Cu	OPT Au		
310 -	100	BFP? Q2-S	eni, rock	Py			tu 3	HIF di?	19		.146			
330	۹,	Probably an igneou ariginally. Gray of	is rocke	QV +	dis. sper. + p	x	. (1	4	18		.225			
340	4						• 1	£t.			.124			
350	۰.			Len,	pay reach 10%.		<u>ر</u> י	4			.243			
360	4	hight coloured frage, a	E.g. 3 cm		l		(,	ч			·200			
370	7	Eugent isk or 1	apilli tufl.	Py	+ cp .		1	4			.182			
380	7						11	(1	13		•256	<u></u>		
390	Ľ	.386-387 FAULT		382-	386 (Jz. 5. Lphile V.	in	5	۰.	12		.441			
400	•,	Local dol. + ealin	te veine	393.	395	,	t.	ł'			.436			
410	98	BFP Hore gra	1. Huan above				<i>(</i> 1	41	/0		.173			
420	e,	hocal Q2 Stocky	wales				U	t :	09		.280			
430	•/	BX - BFP (orp	yroclastic?)				4	81	08		281			
440	11	Li		24-55	dis. > frac. f.	is.	3	4,	67		· 208			
450	ι,	- 445 Bx dyke . 1.	5 cm wide	demal Dyke:	up to 10' kin py	(7	4	06		•/79			
460		Crean Colourd to	light gray	····· · · · · · · · · · · · · · · · ·	:		、 <i>,</i>	4	05		.178			
SEE-MO	ORE PRINT	- SMITHERS FORM #103	frags.		ž		15						•••	i

Collared			Completed	Core Size		Logged by				Pro	oject No		Dat	e	
:			FIELD COORDINAT	ES			SURV	EYED	COORDI	NATES			Shi	et 4	of 5
Lat,			Elev.	Dip		Lat.	Elev.			Di	p		Но	le No.	
Dep.			Depth	Bearing		Dep.	Depti	1		Be	aring			S	-13
Footage	Rec'y		Rock Type/J	Alteration		Mineralization		% Sulp.	Est. Grade	Sample No	. Lt.	% Cu	OPT Au		
160 -		• 460	BX - 42 + Sulph	ide filling.		1 1		-7	MIE		-			1	
470	160	1.466	Bx gour . Culour	change grad.	27	. Local her . fr.		>	8(64	[]	.185			
480	4	Luca	L Q 2 Stuck	wales	(. 5	41?	0.3		, 752			
10.	4	. 488	Br dyke @45°	- 5 cm vike				(,		¥					
440	· · · · · ·	BFP:	Henatitized, sili	ified, seri	Hen.	, dess. + pac. fill.	to 10'		• • • •	02		.215			
500	ſ							L.	ų.			. 7 57			
		·504 '	Bx dyke @ 30°.	1.5 cm	Dober:	= 3" diss. sulphice				0/		• 232			
510		.506	FAULT			in matrix		41	-li	79300		.284			
520	م	·509 +0	colour change :	dark greg green				<i>L</i> i	٤,	99		·273			
530	ч	Bx ((?) Highly alta	- to light going	V-529-	536 ca-bearing (בנ	11	817	91		.25/			
540	4	· 519	- 546 crange g	rey to grey	Veu	in parechel tota	ore	¢ 1	4	97	,	. 76.6		-	
- FEA	4	• 541	change to sud light	-stay + lighter	Local	Q2 stockwales		1.		11	-			-	
_ 000		Bx(!) cuit huer (i-Seri.	Py+c	p diy. to 510		10		96		1539			
560	1,	· 558	1 - stat date	- green gray				1,	1	95		.383			
570	,	TUF	= (?) (in - <,	amed	Cp · fr	ac. + die. + red b	our,	5	، ح	90		1327			
500	r,	• 572	BEP C 55°	Med. deale grey				ι,	1	(1					
0			Ld, average I	3 4 4	154 4	t cp			4]	43		•233	····		
590	،	Loc	cally rock in	chalty (seni)	FEW 1	Wei () z. Veins w	in.	ti	t 1	91		,268			
600	''	• 587.	-622 bio. mont	ly altend.	< P	+ spice ite		۲,	7	9		.343			
610	\ \							٠,	•	90		.278			

43

wie.

SEE-MOORE PRINT - SMITHERS FORM #103

Collared	red Completed Core Size			Core Size		Logged by	/				Pro	ject No			Date		,	
ja.			FIELD C	OORDINATES					SURV	EYED (COORDI	NATES				Sheet	. 5 °	15
Lat.			Elev.		Dip		Lat.		Elev.			Dip				Hole	No.	
Dep.			Depth		Bearing		Dep.		Depti	1		Bea	ring				86-1	3
Footage	Rec'y		Ą	Rock Type/Alter	ration		Mine	ralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT	Au	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
620	/00	BF	Pcr	ntinues	8					۲° 5	41=	89		•239				
630	4	7	Fild. an	rereges 3 m	m, upto Soun, 0% of voit	1620 - Vein	621.5	Q2- Sulph Cove @ 10	o	۹, ۹	11	88		./55				
640	٠(. 64	5-654 .	darker: fre	L biotel	CP	+	>->		۰,	11	87		1245				
650	99	L	ocal e	pidote		Wente	Qz	stoctwa	k	، ر	61	86		•087				
660	100	. 654	1 - 30°	cutact	- with					٩,	ι,	४ऽ		1096				
670	4	ьu	a che d	SFP (bio. ± gou)					لام	· (.113				
677										L Į	۰,	79283		· 14Z				
END																	i	
																		Σ ¹¹
				مر														

SEE-MOORE PRINT . SMITHERS FORM #103

.

Collared	Jawi	· //	Completed JUNE 13	Core Size N		Logged by A. LO	RS	A		Proj	ect No		Date	16/6/	186
	`. 		FIELD COORDINATES				SUR	VEYED O	COORDI	NATES			Shee	эт / с	of 4
Lat.	605	5N	Elev. 2460'	Dip -50	0	Lat. 16056.85	Elev.	2450	ç9	Dip	5	, 0 2	Hole	3 No.	
Dep.	074	05	Depth 560'	Bearing N 40	° 45	Dep. 20741.09	Dept	h 5	57'	Bea	ring N Ý	0-00-02 B		86-1	4
Footage	Rec'y		Rock Type/Alter	ation		Mineralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT Au		
0		CAS	ING					00 TO	MIF CODE						
20	100'	AND	ESITE TUFI	2	Pyvit	I ; dies, & frac.	ιü,	. 3	31	79055		1039			
30	ų	incl Larg	udes lapilli & b est freq, noted	: 80 mm	wi	the quest 3 -	r	4		54		.842			
40	•,	Loc	ally brecciated:	gray Quest,	Hem	atite & Hagnetite I	. 1%.	u		53		.03/			
50		Alt	revation: chla:	te + epidote		0		a		52		.026			
60	,,		Varies : moderation	printe veins	r			ч		5/		.030			
70	.,	<u></u>	locer: dark to	light	Pyr:	ti <u><u> </u></u>		¥		50		.038			
	"		green	-	Poil	dilitic py in free general	ture	3		49		.044			
90	90''				fruct	une fillings (2mm 5%.	Local)			48		.844			
100	160							2		47		053			e
110	"	.1	A clasts £ 50	u un	quart.	- py venis = 301	un du un	2		46		.048			
120	11	 	·					-4		45		.053			
130	ч	cl	asts £60 mm		23.5	ti : dise. + frac.	fil.	4		44		1043			
140	\	R	we green		Hey,	isseminated: 22 incl. frac,fill 5	1. 244	3		43		·036			
.150	`				Hemat	the: dark, powder	٦	3	Ý	42		•054			

)

noranda mines LIMITED BELL COPPER DIVISION

Collared			Completed	Core Size	7	Logged by	. LO	RSt	1		Proj	iect No		Da	te 16/6	186
			FIELD COORDINATES					SURV	EYED	COORDI	NATES			Sh	eet Z	of 4
Lat.			Elev.	Dip		Lat.		Elev.			Dip			Но	ble No.	11
Dep.			Depth	Bearing		Dep.		Depth	_	ODE	Bea	ring			86	- /4
Footage	Rec'y		Rock Type/Alter	ation		Mineralization	•		% Sulp.	Est.	Sample No.	Lt.	% Cu	OPT AL	L	
160	100	Local	L- proposition	Bx ? D- Spri-calid					3	31	41		1074			
170	- 1	Ine	a of bleachuic	+ scricite		Gracture fil	equing	-	, <u>′</u>			+	1055			
180	90	Local	white calite very	S, e.c. 10 mm	F	vac. avevage	3/1t	?	3			-	.046			
190	70	colo	ur: light gray to a	range - grey	Kaju	fractures	0, і. е. ры	allel	3		38		.029			
200	100		Hedium Late	green	Loca	I magniti	to in	e ,	4		37		.077			
210	ч	2410	Sale green	prédomina					3		36		.045			
220	LI	luc	l red hematile	alteration.	Som	pyvite-Qua	tz ven	<u> </u>	3		35		.052			
230	4				oper Greyt	a cito vue	ents h	(s. em,	3		34		.070			
240	¢1	Llan	the ESSmin	$S \equiv (PY)$	Pyru Pyru	I + Mag , +	Lemente	core. Il	3		33		.044			
250	4	cle	witized. Dlead	ing along vering	Few	pyrite ve	ins = ;	Zuun	2		32		.048			
260	4	Ċu	lour gen derk	green	0.0	Plus din.	PY.				31		.051			
270	9 4	Cla	at = 60mm		ent ent	by pyrit	I vein	2	2		30		.649	•		·
280	× •	277.	5 alt. micross ; he	d. grey to putin	n				3		29	ļ	.044			
290	<u>,</u>	L+c	at dark green, Li	gut greig		1			4		28		.051			
300	,				Blue C	veen minoral	+ 97	٦	3	+	27		. 054			

SEE-MOORE PRINT . SMITHERS FORM #103

7

Y

17 A. 7

••••

NORANDA MINES LIMITED BELL COPPER DIVISION

Collared			Completed	Core Size		Logged by				Proj	ect No		1	Date	
			FIELD COORDINATES				SURV	EYED	COORDI	NATES				Sheet 3	of 4
Lat.			Elev.	Dip		Lat.	Elev.			Dip	_			Hole No.	
Dep.			Depth	Bearing		Dep.	Depti	 ר		Bea	ring			86	- 14
Footage	Rec'y		Rock Type/Alte	ration		Mineralization		% Sulp.	Est	Sample No.	Lt.	% Cu	OPT	Au	
300- 310	100	Tuf	. Highly serie +	sil.	Py.	Hi. Hem. frac. 1	iic.	3%	кі г 31	26		·064			
320		d Q	2 veins + PY	ave. 4/ft.	Vugge	Q2 VEHILT PY +	esth.	• 4	۰.	25		.070			
330	u	Luca	I Islands of ella	Tiged tuff	Local	diss. spec. + F	en.	R	L.f	24		.070			
340	4	He d Ku	in grange				/	٩,	٩	23		.077			
350	<u>م</u>	- 345 Loca	1 Qz Stockward	es				ر ۰	ι,	22		•091			
360	<i>c</i> 1	Local	y breceisted , Gr	ey Qz fiel .				5	<u>ц</u>	21		.064			
370	1	Ked.	proy to pinking	harry				۱ <i>†</i>	4	20		÷/32			
380		Local	ly shattered with	Q2 flooding				(1	<u>۱</u>	19		.138			
390	•		۱ 		Py	veins up to 5kin		٢	~	18		.056			
400	4	Vuege	calite value with	= 3 hm Kls	/			U	'\	17		-/37			
410	<u>، ا</u>	Light	F que, to light	dire gray	Lage	Q2-py veins @	109	<u>,</u>	<u>`ı</u>	16		·123			
420	4		•	~ ,		· · ·		٤,	١,	15		.132			
430	1,	GIL.	Q2+ py veius (20°		·		Z	<u>ц</u>	14		•144			
440	4	- 435	5-437 BFP Lyk.	e@ 20°	• 438 Loca	sulphide mylonite l cp (?)		4	ц.	13		.096			
450	••	F_l bi	d. av. zum, up-	to sam		•		3	۰,	12		.070			

SEE-MOORE PRINT . SMITHERS FORM #103

in the second
Collared			Completed		Logged by					Proj	ect No			Date			
,			FIELD COORDINATES					SURV	EYED	COORDI	NATES				Sheet	4 .	1 4-
Lat,			Elev.	Dip		Lat.		Elev.			Dip				Hole	No.	
Dep.			Depth	Bearing		Dep.		Depti	1		Bea	ring				86-1	14
Footage	Rec'y		Rock Type/Alter	ation		Minerali	zation		% Sulp.	Est Grade	Sample No.	Lt.	% Cu	ΟΡΤ	Au		
450- 460	100	Tuff	(?) sericitized	t sil,	R,	e hi	(p su	لمدر	+0	XIL MI	11		.098				
470	4	10	to end " tarbante prese	.+	Loca	& hem			. 4	ч	(0		•/37				
480	ч	Hai	n Uz veins @	35 °					11	(1	09		.080				
490	۱ <u>,</u>	Ore.	ye to green g	rey					t _t	Ļ	08		.093				
560	'(• 496	. Colour change:	dave grey green					3	<i>u</i>	87		·088				
510		- 496-	513 chevilize.				·		"	(1	06		.//7				
520	'1	Alt. to	gray to crange	Grey .	Q2 /	ording			11	(1	05		./57				
530		Qz	Stock works	·					1,	v.	04		./24				
540	· (5		03		.165				
550	١.	ora	uge great to med	(pray					<i>י</i> י	6	02		.160				
557	• ,	White	echiti vein, 1.5 cu	Q2 rock					7	L	79001		• ///				
END																·····	
·																	
* 					· · ·												

SEE-MOORE PRINT . SMITHERS FORM #103

Sec. Sec.

)

- 4 - SQ

5)

्रं

Collare	d Jun	£ 23	Completed JUNE 24	Core Size N		Logged by A.LOR	25	A		Proje	ect No		Date	29/61	1986
	• •		FIELD COORDINATES		· · · · · · · · · · · · · · · · · · ·		SURV	EYED	COORDI	NATES			She	et / c	of 4
Lat.	16250		Elev. 2060'	Dip - 50	v	Lat. 16234.44	Elev.	_20.	58.8.	7 Dip		54°	Hol	e No.	
Dep.	2144	04	Depth 560'	Bearing Dur	NORTH	Dep. 21441.07	Dept	י <u>5</u>	567'	Bear	ring N	2-21-13	Ē	86- /	5
Footag	e Rec'y		Rock Type/Alte	ration		Mineralization		% Sulp.	Est- Brade	Sample No.	Lt.	% Cu	OPT Au		
20	, <u>/</u>	CAS	CING - NO H	ARKER				UP TO	MIF						
3	0 80	BRE	cciA(Bx) +	0 40'	Pyri	te is main sul	phil	. 5	81	19593		.143			
4	0 100	Ligh Fra	ht brown going to	fine - grained	chal	copyrite occur		()	۰,	92	 	,304			w .
5	0 "	•42' BF	P - Serieti	\$ Q2	Hem;	Kinor, in frace. fr	it.	3	41	9/		•174			
6	0 ''	Ob Se	vious feldspars- ricitized bio, in	scri,	Py	& cp; frac. fil:	>	4	۰,	90		120/			
7	0 "	• 64 '	transition to bl darker; locally da	Let Biolit	- in	dudes fine - graine	22 1	e,	ų	89		•//7			
8	0 "	Fiel	d. ± 240, 4p occupy 30-40	to Taum 1	Cp>	> py locally		(1	ti	89		•116			
- 9	0 "	QΖ	is grey throng This applies to a	al'86 lectar				CI	٤,	87		•194			
10	0 "	•92 • Q	end black broth z vein + crackle	i. 3 cm				11	• •	86		.299			
11	0 "	e Bx	Rounde 2 99- ± 115. Frazi. B	I to angular FP, & J.g. rocks				ţ	81	85		.339			
12	5 ''	sh. La	up top cartact Q over cart. to altere	ato pick	Goua	1 Qz stockwarks		ч	۰,	84		.6/0			
/ 3	0 "	BFF)_ (?) - unrecogniz	alle, Seri-Q2		lucall	1	u	41	83		.466			
14	0 1	L BFP	-135- feldspars v	is the . No bis	Py +	Cp+ Q2 froc. f.	<u>u.</u>	5	4	82		. 488			
15	0 "		· ·		`````````	• •		4	е,	81		,386			
16	6 /	BFA	² vecognizable an	by locally		- A - -		Ч	.,	80		•7/0			

a.

SEE-MOORE PRINT . SMITHERS FORM #103

Collared			Completed Core Size			Logged by	Pro	oject No		Dat	Date						
FIELD COORDINATES				5			EYED	COORDI	NATES			Sheet 2 of 4					
Lat.	Lat. Elev. Dip				Lat. Elev.					p		Но	Hole No.				
Dep. Depth			Bearing	Dep. De			า		Be	Bearing			86-15				
Footage	Rec'y	y Rock Type/Alteration				Mineralization		% Sulp.	Est. Grade	Sample No	. Lt.	% Cu	OPT Au				
60	160	BFP. Lightgray. Sori- QZ			24	Py > CP			ні <u></u> 41	79	,	.963					
180	43	Alteration so interest in much of section that			Ŧve	c. fiel. I diss	4	ų •	ډ,	78		.901					
190	<i>u</i>	Good QZ Stockwaks of			Luca	(her a lite	4	· ·	71		.606						
200	4	\$2 flood ing. Few white carbonate veine				ude: dis. > free	z fiel	ьd		76		,534					
210		·203 - fild. obviour				massive frac. fiel. +	- د		4	7:		.5/2					
220		Hoderate Q2 veining				5 km + Vugs & ed		-1	v	74	/	. 394					
230		loca	ely chilley					4	G	73	,	,538					
240		.237	-242 no visible	s field spars				-1	4	7	?	.535					
250		-		•		·		`	ې 	7	/	. 334					
260				······				1	4	70		.296					
270		QZ	veine not abo	endant				1	٩	69	•	•33/					
280		Serce	citized biotice v	inible				•1	`	68		,396					
290		Local	black biotile	Olive query				3	\ 	67	,	•218					
300		• 297 50	· / cm carb. ve zri. > QZ	m @ 35°				4	"	66		.128					
310			·	- 19 11	.308	e 400 Hass. py vein, 5mm	1	11	ر/	65		./83					

SEE-MOORE PRINT . SMITHERS FORM #103

· · · · * **.

Collared			Completed Core Size			Logged by								Date	Date			
FIELD COORDINATES					SURV						NATES			Sheet 3 of 4				
Lat. Elev.			Dip		Lat. Elev.						р		Но	Hole No.				
Dep. Depth			Bearing	Dep. Dept			Depth	1		Be	Bearing			86-15				
Footage	Rec'y	Rock Type/Alteration				Mine		% Sulp,	Est Grade	Sampte No). Lt.	% Cu	OPT Au					
310 -	320 100 BFP light spen to orange orey			- P-y-	rite	cartinue		+,	HI.F 41	69	/	.224						
330	4	Feld. Schostal & serieitized bio, visible			C C) bedy	be prese	.t,	•	4.1	6	3	.208	······				
340	• ;	QZ frac. not abundant. o.g. + / frac. @ 2mm / ft.			6	t la	lid not spo	t it.	· · · · · ·			2	·/35	<u>-</u>				
350	7	Loca	I calite frac. fo					(/		6,	,	1221						
360	L,		percelat to	core.					t .	•	6	0	1240					
370	••						anne anna - a sha da sha a sha da sha sha sh		<i>י</i> י	U	54	<u> </u>	12/1					
380	ų	- 375	Dyke, 13 cm (a 60°					ų	~	S	8	.250	,				
390	7	.385	, light olive gre.	frags. Rx llour					£ •	4	5	1	·273	<u> </u>				
400	١	· 408	Bx dyke, 2.5 cm	@ 45°					{I	-1	5	,	.252					
410	.	Roo to	unded BFP frags. ck flour matrix 1	. in a Q2 + Sai.					V	~,	5	5	•/33					
420		BF	Q2 Veius inc. FP hi. groen -	tourmaline?					<i>u</i>	i.	×	(.185					
430		Bx	437-448 Ve	aline grey	Py, A	(ass. 1.	5 cm vain p	80°	ų	•	5	3	.385					
440			to yellowich Lower contact y	grey.	Few	QZ	stuckworks		L ×	81	5	2	·032					
450			& hand to p BFP+Q2 vain frags	si'cie 1. Rx flour metris		·			. '	81	5	/	·0/Z	·				
460		BF	P	•	1 cm	uss. R	yvein@ 30	٥	5	41	5	,	. 306					

SEE-MOORE PRINT . SMITHERS FORM #103

• 14

Collared		Completed Core Size			Logged by	Proj	ect No		Date	Date					
FIELD COORDINATES						NATES			She	et <u>4</u>	of 4				
Lat.	Lat. Elev. Dip				Lat.	Dip			Hol	Hole No.					
Dep. Depth			Bearing	Dep. Dept			1		Bea	Bearing			86-15		
Footage	Rec'y	Rock Type/Alte	ration		Mineralization		% Sulp.	Est Grade	Sample No.	Lt.	% Cu	OPT Au			
470	100	•462 Bx 5 cm BFP. Frags BFP 4 42	@ 30 ° in rock flower	·Py	Host dunda	.+	To 3	41.F	49		.366				
480	4	QZ veins, 1 mm thick = 4/1+. @ 45'	ar Hicker ar less	•467	\$ 475 Vust cal	i٦	• ''	i 1	48	ļ	. 372				
490	۰,	i dad lan ite ve rilia	i li contri i contri	ŧ	ep ergstals		"	1+	47		• 466				
560	<u>`ı</u>	• 497 Bx 16 cm, ang, al	to BEP frage.				5	1 :	46		1531				
510	t1	BFP - med. de	k gray				()	4	<u>4s</u>		.67/				
520	ц. 	· 517 post minaral faul	-@55°	Cayle.	nite		٤,	٢,	44		.541				
530		Med. dark gray (silie.) to	light dive grey				1,	£1	43		•541				
540		. 531-535 Qz flood	ug + Vugs -	\$ 5	s.phila_	·	· ı	• 1	42		.641				
550		sovicitized bio. visit	, C.C.	Hi. he	m. top in Q2	vein	p 1	<u>ر</u> ،	41		,379				
560		. 548 - 563 several 30	mes of dayle			n	• •		40		•547				
567		Surgicular + sul						£ 1	79539		• 584				
END															
			,												

SEE-MOORE PRINT . SMITHERS FORM #103

.....

()

Collared JUNE 29 Completed JUNE 29		Core Size N		Logged by A 11	IRS	A		Pro	iect No			Date / / T / /					
FIELD COORDINATES							NATES				10 July 190						
Lat. /2	Lat. 17175N Elev. 2180' Dip -			Dip -60	0	Lat. /7/70. /// FI			31 70	Die		/ . °		Sheet of			
Dep. 2	1170	70 E Depth 560'		Bearing Due	SOLITH	Dep. 711.9.93	Deoth		2186.30		ring C	60	· · · · · · · · · · · · · · · · · · ·	Hole No.		1	
Footage	Rec'y	'y Rock Type/Alteration			1	Mineralization		% Est. Same		Sample No.	bearing 5 0-07-26		6WI	$-\frac{26}{1}$	<u> </u>	φ	
٥	%	%			+			Suip.	Grade	Sample No.	Lt.	% Cu	OPT A	.u			
10	0	Casi	ng		Pritt	doginant sulph	ide	to	CODE								
Do		Probal	by altered TST	= P(?)	1 the	roughout. Chalco	97.	_									
	10	Que.	tz- sericite rock	, Local bx	gei	nerally present		5	41	79462		1355					
30	100	Him	of grey gues is st	(2) and it	TYAL.	fillings > dessemin	ations	L,									
	1	Silie	. > seri, but V.	eriable	Dornil	we with dolomit	- Py			6/		1380					
_ 40	90	Light	- crange grey to m	ed, crey			v. m	10	1,	6.5							
-		• 4 7	- = 7 mm bx dyke @	2 6500						00		1485					
	100	. 50.5	1, = 20 cm - "-	55*	Local r	ed hem. + spec. in a	y Qz.	5	•/	59		1565					
60	er		gs, ung, to subtou	nded. For	± 3%	diss. py + cp	° Lin										
		φ <u>2</u> φ ₇	1 matrix, & small	trans. Grey		DX MATTIK,				58		.487					
_ 70	t j	BFP	Obvious, Fald. ± 1 mm	= ± 15%				47	ų.	* -7		74.					
												•366					
- 80	'1	Colouv	locally greyish	green	Spec	tred hem, locally e	chubs can	7	1'	56		.386					
90	.,	0/ /				,		4		V							
		<u>, 84-1</u> G	opel stuctworks	efecation.	hocal f	24 free, fill, to "	Sum		.,	<u>\$</u> 5		· 325	منظناتی ہے ہے چید انگری				
100	۰,	Ś	ilien flooding]	7	y	• . (2					
		Hed. 1	get to ned grey ty	to and .								.786					
110	0	. 108 -	127 Strong silie	icetion				7	"	53		.749					
120	4			', <u>,</u>	9 mm 11	hite caleite vein @	65 •					~		-			
120		• //5 €	nd of slight rust	in free.	Ry doning	ant. Hi. cp + covel			,	<u>5</u> 2		-445					
130	۱.	Local	White carbonate	Veins				10	ч	51		·636					
132	ι,							5	,,	79451							
END										1.1.21							
		Drill	stopped at f.	ault	·····												

APPENDIX_IV

DRILL HOLE LOG SUMMARY

4 WW 4

SUMMARIES OF DIAMOND DRILL HOLES 86-1 to 86-16. July 1986.

<u>86-1</u> Upper section of hole is in chloritized tuffs cut by BFP dykes. Below 172 ft. sericitized and silicified BFP predominates. Explosion and probable tectonic breccias occur in both rock types. Pyrite is the dominant sulphide mineral, accompanied generally by chalcopyrite. Hematite is present. Small amounts of molybdenite were noted at the bottom of the hole associated with strong chalcopyrite mineralization and quartz.

<u>86-2</u> Altered BFP occurs throughout the hole, interrupted by several breccia zones. The rock is generally well fractured with lots of quartz. Alteration is mainly sericite-quartz but some darker coloured sections may represent fine-grained biotitization. I cannot tell megascopically without petrographic support. Pyrite and chalcopyrite are present throughout the hole in fracture fillings and disseminations. Minor disseminated molybdenite was noted at 128ft. and 487ft. Hematite is present from about 120 ft. to end of hole. Magnetite is rarely present.

1

<u>86-3</u> Chloritized tuffs, silicic in part, were intersected to 60 ft., from which point the drill cored very altered (sericitized and silicified) BFP to end of hole. Silicification increases in lower sections of hole where local zones of pervasive silicification were encountered, but not to the extent of nearby 86-1 at lower depths. Pyrite and chalcopyrite occur in fracture fillings and disseminations throughout. Bornite (?) is finely disseminated at 251 ft. Hematite was noted from about 150 ft. to EOH.

<u>86-4</u> BFP throughout the hole; silicified, sericitized and locally biotitized. Hydrothermal biotite particularly noted at 234-291 ft. and 317-355 ft. Breccia zones occur in sections 100-138 ft. and 164-226 ft., with much quartz. Pyrite and chalcopyrite are present in fracture fillings and disseminations. Minor molybdenite was noted at 347 ft. Magnetite appears to be associated with biotitization in a general way. It may be useful to check old magnetometer maps as an aid in determining zoning. <u>86-5</u> The hole was collared in highly sericitized and silicified tuffs (?) and this alteration and rock type generally continued throughout. A thin section was prepared from a sample collected at 92 ft. and a petrographic report is attached to the drill log. Breccia dykes (explosion breccias) were intersected in the 550 ft.-570 ft. area and include altered probable BFP fragments. Pyrite is the most abundant sulphide mineral. Chalcopyrite occurs locally. Small amounts of hematite and magnetite were found.

<u>86-6</u> Generally highly sericitized and silicified rocks extend to the bottom of the hole. Most are probably igneous rocks but alteration is too intense for megascopic identification. There is BFP at the bottom of the hole, but it is not certain that this occurrence represents the main intrusion. A probable BFP dyke was cored at 295.5-297 ft. A highly altered breccia zone was intersected from the collar of the hole to about 65 ft. Explosion breccia dykes with BFP fragments were noted at 132-136.5 ft. and 258 ft. Pyrite is common throughout. Small amounts of chalcopyrite were noted below 200 ft.

<u>86-7</u> BFP all the way down the hole. Alteration varies from quartz-sericite (0-240') to biotite (240-340!) and back to qz-seri. A dyke and explosion breccia complex was cut between 55 and 115 ft. Pyrite is the most abundant sulphide mineral by far. Small amounts of chalcopyrite were noted locally. Hematite is present in places.

<u>86-8</u> This hole completely in BFP. Alteration includes sericite, quartz and biotite with local gypsum. A dyke and explosion breccia complex was intersected 39-67 ft. The breccia includes rounded to angular fragments of altered BFP, quartz veins and quartz-sericite rock. Pyrite is the dominant sulphide mineral throughout, but chalcopyrite and local bornite are present. There is a marked increase in sulphides below the dyke-breccia complex.

-2-

<u>86-9</u> This hole is probably in BFP all the way, but alteration is so intense between 237 ft and 488 ft that I cannot identify the original rock. Alteration is quartz and sericite. The explosion breccias of nearby holes were not identified, but they could be in the highly altered 237-488 ft section. Sulphides occur throughout the hole. Pyrite generally predominates but chalcopyrite is locally dominant (e.g. 320-330 ft).

<u>86-10</u> The hole was drilled in altered BFP of the quartz-sericite zone. There is much intense sericitization. Explosion brecciadyke complex 286-320 ft and smaller breccia zones below. Pyrite is the main sulphide mineral. Chalcopyrite is present and minor bornite was noted.

<u>86-1</u>1 This hole was drilled entirely in a breccia and dyke complex, mainly in the quartz-sericite alteration zone. Hydrothermal biotite is present in places (e.g. 221-247 ft), indicating that this hole also cut some potassic zone rocks. This hole may have penetrated a major breccia pipe to which breccias found in nearby holes are related. Pyrite is the major sulphide mineral. Chalcopyrite occurs locally.

<u>86-1</u>2 Highly sericitized and silicified rocks were encountered throughout the hole. The upper part of the hole may be in altered tuffs, but alteration is too intense for megascopic identification. BFP starts at 220 ft, but from about 249 ft to end of hole breccias predominate. Breccia fragments include highly altered probable BFP. Pyrite is the main sulphide, but chalcopyrite is also present.

-3-

<u>86-13</u> This hole was collared in quartz-sericite rock that could be BFP or could be a tuff sequence or could be a bit of both. The rock is cut by a few thin explosion breccia dykes that cross the core at 45° . There are also extensive breccias, many of which are vague, in the 430-550 ft section. Some of these breccias may be quartz-filled shattered zones rather than explosion breccias. Obvious BFP was intersected at 572 ft and continued to end of the hole. Pyrite is the principal sulphide mineral here, but chalcopyrite is relatively abundant locally. There is more hematite in this hole than in any other of this series.

<u>86-1</u>4 The hole is generally in the chlorite-carbonate zone from the collar to about 277 ft where the transition to the quartzsericite zone occurs. Below 277 ft quartz and sericite are dominant, but local chlorite-carbonate alteration was encountered below 500 ft. Pyrite is the most abundant sulphide mineral by far. Magnetite is common in upper sections of the hole and hematite is found throughout.

<u>86-15</u> The entire hole is in sericitized, silicified and locally biotitized BFP, cut by several zones of explosion breccias. Hematite is generally present. Pyrite is the dominant sulphide mineral, accompanied by local chalcopyrite. Minor molybdenite was noted at 198 ft.

<u>86-16</u> This hole intersected quartz-sericite zone BFP. However, the quartz-sericite rock in upper sections of the hole is too altered for positive identification. Silicification is strong in places. Pyrite is the main sulphide mineral, but chalcopyrite is generally also present. Bornite was noted at 30 ft. Two breccia dykes, up to 20 cm wide, occur in this hole. The rock is slightly oxidized (minor rust in fractures) down to 115 ft.

A.La

Anthony L'Orsa, Geologist

APPENDIX_V

.

GEOLOGIST'S QUALIFICATIONS STATEMENT

and the second
CERTIFICATE

I, Anthony T. L'Orsa, of Smithers, British Columbia, hereby certify that:

- I am a consulting geologist with business address at R.R.2, S.57, C.23, Adams Road, Smithers, B.C., VOJ 2NO.
- 2. I was born in and raised near Smithers, B.C.
- 3. I am a graduate of Tulane University, New Orleans, La., U.S.A., with the degrees of B.Sc. (1961) and M.Sc (1964) in geology.
- 4. I have practised my profession in mineral exploration since 1962 in western Canada, Australia and Mexico.
- 5. I am a Fellow in good standing of the Geological Association of Canada and a member of the Society for Geology Applied to Mineral Deposits.
- 6. I logged diamond drill holes 86-1 through 86-16 at the Bell mine during June and July 1986.

Alla

Anthony L'Orsa, Geologist

