REPORT

ON THE

1986 DEVELOPMENT PROGRAM

FOR THE

REG PROPERTY

0F

SKYLINE EXPLORATIONS LTD.

SUBMITTED IN COMPLIANCE WITH

FINANCIAL ASSISTANCE FOR MINERAL EXPLORATION GRANT NO. 10962 E-73

NOVEMBER 1986

BY

C.K. IKONA, P.Eng.

GEOLOGICAL BRANCH ASSESSMENT REPORT

FILME

15,736

assmore SUBJECT Ter Your Request For Your Information Please O.K. and Return Pleased Diseases With Me For Your Signature Return With More Details Investigate and Report • D Please Answer For Your File Please Process Enclosed is the Assessme enquiring about (+a fox sent of Our office received an angeing from Assess Rpt # 15736 + we couldn't find you need further hank you for sending us the report. We did aw capy eventually ice should have a copy of 15736. It is a I would like to verify some pages in when you find it. If you don't please let Your FAME Feodr Me Know SIGNATURE Kim DATE OF REPLY NOV 14188 asomore RETAIN THIS COPY FOR YOUR RECORD OF THE INQUIRY AND REPLY. EVERGREEN PRESS LIMITED - CARBON READY SETS

MEMOGRAM

SMITHERS

FAME REPORT (E73) 15736

D	Province of British Columbia	Ministry of Energy Mines and Petroleum Resources		ASSETSMENT TITLE PACE AND	
		SEOCHEMICAL;	PHYSICAL	549,753.z	5
AUTHORIS	C.K.IK	6 19	NATURE'SI		na n
DATE STAT	TEMENT OF EXPLORAT	TON AND DEVELOPMENT FIL	ED Jan. 16/	87 YEAR OF	WOF* 1986
PROPERTY	NAME(S)		· · · · · · · · · · · · · · · · · · ·		
COMMODIT	TES PRESENT A9,	Cu, Pb	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
B.C. MINES	AL INVENTORY NUMB	ERIS	B-107	· · · · · · · · · · · · · · · · · · ·	
MIL NO DI	vision Lia	rd		104 B/11E	
LATITUDE	56 38 21		NGITUDE	44	, , ,
		tenures in pood standing iwnen wo rat Lease M 123. Mining or Cartitied			:X14 6:861
	Lots 286	5-2867		· · · · · · · · · · · · · · · · · · ·	
	· · <i>·</i> · · · · · · · · · ·	, . ,		···· · · · · · · · · · · · · · · · · ·	
OWNER/S)		- 1 4 14			
111	JRYTINE E	Explorations Ltd. (2)	· .		
MAILING 4	ADDRESS				
· .	<i></i>	• • • • • • • • • • • • • • • • • • • •			
OPERATOR	iiS- (that is, Company pay	ng for the work!	, ,	· · ·	
d1	49 a	boue			
	,			, · · ·	
MAILING A	DDRESS				
			- <i>.</i> . <i>.</i>		
· ·					
volc gold sys form ass	deposit is in deposit is in stem that is Early pyrin Emblage. Gal	induction mineration mineration tres of recent vol n volcanics and feldspathized and te is replaced by leng is associated	canism. M is control nd silicifi by gold/sil ad with go	ineralization of red by a broad ed. Gold occurs ver and phasolf id mineralization	the main fracture in natice chalcopyrite sn.
	ES TO PREVIOUS WOR	K. A.R. 9090,	11327	· · · · · · · · · · · · · · · · · · ·	

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	COST APPOHTIONED
GEOLOGICAL (scale, eres)			
Ground			
Photo			
GEOPHYSICAL (Ilne-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Potenzation		· · · · · · · · · · · · · · · · · · ·	· ·
Rediometric		· · · · · · · · · · · · · · · · · · ·	
Seismic		· · · · · · · · · · · · · · · · · · ·	
Other		•••••••••••••••••••••••••••••••••••••••	•
Autopoe			•
GEOCHEMICAL loumber of samples analyse	et for)		
Soil			· · ·
Silt second s			
Hock ROCK ZZS	; Cu, Ag, Au		
Othan			
Z DRILLING (total metres; number of holes, al	78) / /	Lots 2865 - 2867	
Cone DIAD 1017	.7 m; ZI holes		· ·
Noncore	<i>,</i> ,, <i>,</i> ,, <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,		
RELATED TECHNICAL			
Sampling/Assaying SAMP 5	6(; A9, AU		
Petrographic	· · · · · · · · · · · · · · · · · · ·		· · · ·
Mineralogic		······································	
Metallurgic		· · · · · · · · · · · · · · · · · · ·	· ·
PROSPECTING (scale, area)	• • • • • • • • • • • • • • • • • • •	··· ··· · · ···· · ···· · · · · · · ·	
PREPARATORY/PHYSICAL			
Legal surveys (scale, area)			
Topographic (scale, area)	•••••••••		· · ·
Photogrammetric (scale, area)			· . •
Line/grid (kilometres)			
Road, local access (kilometres)		······································	
Tranch (motres)			
Underground (metres) UNDV	329.2 M		
		IOTAL COST	549,753.25
FOR MINISTRY USE ONLY	NAME OF PAC ACCOUNT		
·····	and the second s		ere i villessans compositionen e e a
Value work done (from report) 54.9, 7		· · · · · · · · · · · · · · · · · · ·	
Value of work approved	· · · · · · · · · · · ·	••••	
Value claimed (from statement)			
Value credited to PAC account	· · · · · · · · · · · · · · · · · · ·		
Value debited to PAC account Accepted Date Feb.23	88 Rept No. 15736	Hotostaatoo Class (2)	

÷.

.

CHARLES K. IKONA, P.Eng. #5 Cowley Court Port Moody, British Columbia

5 November 1986

Skyline Explorations Ltd. 200-675 West Hastings Street, Vancouver, B.C. V6B 4Z1

Dear Sirs:

Please find a Summary Report on the 1986 development program for your Reg property. This report has been compiled in accordance with guidelines for Financial Assistance for Mineral Exploration of the Province of British Columbia.

Information contained in this report was provided by Skyline and we have restricted ourselves to summarizing and orgainzing the material. We have not attempted to modify the information in any manner.

We hope that this report will be in order for the purposes intended.

Yours sincerely,

Charles K. Ikona, Ø.Eng.

Province of British Columbia Ministry of	BC	lo	arant Jentificatior	1	
Energy, Mines and Petroleum Resources	ATION BRITISH COL	.UMBIA N	lo. <u>/09</u>	625-	73
	ASSISTANCE FOR MINERAL EXPL	ORATION			
	FORM 3				
APPL	ICATION FOR PAYME	NT			
	INSTRUCTIONS:				
 Please type or print 					
 Please submit completed Manager EXPLOBATION 	forms, with a copy of the f BRITISH COLUMBIA, Mine			·	
Ministry of Energy, Mines	and Petroleum Resources				
Parliament Buildings, Victor	oria, B.C. V8V 1X4		in 1996 - Instant Amerikani Amerikani Ma	پ اندې کونه ۲۰۰۰ و. وېږې اي با و مېرو که مېرو کې کې کې	-7 m -3
. Date of this Application		ಕ್ಷ ಕ್ಷೇತ್ರಿ ಕೊಳ್ಳಿದಿದೆ. ಕ್ಷೇತ್ರ ಕ್ಷೇತ್ರಿ ಕೊಳಿಗಳು			
Jovember 27, 1986					
. Applicant's Identification and Location			a total total duty issue	245 4 1 Jan J. Bart 1. 1994 1. 1994 1. 1994 1. 1995	17- 5-M
Name SKYLINE EXPLORATIONS LT	D.	an a	ವಿ ಪ್ರಾಯಕ್ ಕಾರ್ ಎಂಗ್ರೆಯ ಬಿಕ್ಕಾರ್ ಇವರು ಕಾರ್ಯಕ್ರಮ ಸಂಗ್ರೆಯ ಬಿಕ್ಕಾರ್ ಇವರು	att of the subsection	
Address Street Number and Name, Apt. No.	<u></u>		600	Telephone No).
#200-675 W. Hastings Str City, Town, Village	Province		683	- 6865 Postal Code	
Vancouver, B.C.	B.C.		V6B	4Z1	
Head Office Location Address — Street Number and Name, Apt. No.				Telephone No).
as above					
City, Town, Village	Province			Postal Code	
Address — Street Number and Name, Apt. No.	s above			Telephone No).
City, Town, Village	Province			Postal Code	
5. British Columbia Free Miner Certificate No.					
	212912				
5. I/We,	n British Columbia Financial A	ssistance for Minera	I Exploration	, her Program a	
Time & Der	in Jo	yce A. Davis			
Signature of Applicant or Signing Officer		Name (pleas	e print)		
\mathcal{U} .					
		Dee Dee te			
		Reg Project			
Secretary/Director			looso aria"		
Secretary/Director		Project Name (p	lease print)		
		Project Name (p			

ĺ

7. EXPENDITURES (N.B. Please provide actual all-inclusive costs, including salaries and wages, equipment and machinery rental, supplies, services, transportation and accommodation directly attributable to the field program.)

	full cost (100% of expenditures) a		Eligible Expenses
eological Surveys, M	ap and Report Preparation and Re	lated Costs	\$ 95,268.00
eophysical Surveys (line-kilometres)		
Ground			
Magnetic			
•			
-			
		-	
Other		\$	
Airborne			
		\$	\$ 0
Geochemical Surveys	(No. of samples analysed for)	
30il		\$	
Silt		\$	
Rock		S	
		\$	\$ 0
Drilling		_ *	
Underground	m @ \$	= \$	
		\$	\$ 145,017.00
Related Technical Surv	reys		
Sampling/Assaying		" \$ 10,396.00	
• •			
•			
rictanurgie		\$	\$ 10,396.00
Preparatory/Physical		¢	
irenching (metres)			
		\$	\$
Other Exploration Cos	ts (attach detailed schedules)		
	Camp Costs	\$ 172 730 00	
	Gamp Costs	\$ 1/2,/30.00	
		\$ 172,730.00	s 172,730.00
Total Eligible Expenses	5	-	\$ 423,411.00
For the following anti-	vition only 25% of total costs are a	licible	
	vities only 25% of total costs are e		
(25% of total expense	ner Lateral Excavation, Shaft Sinki es are eligible)	-	
π	m@ \$ 505,369.00 = \$ ×	25% = \$ 126,342.25	
	n@\$ = \$ ×		
	_ · ·	\$	s 126 342 25
		T	+120,3+2.25
	5/0 753 25	x 33 1/3% = 183 250 00	\$126,342.25 549,753.
TOTAL ELIGIBLE EXP	ENDITURES: \$	x 33 1/3% = 183,250.00	$\downarrow T I F J$

8. SUPPLEMENTARY INFORMATION: The following information is required in order to help us determine the contribution which mineral exploration activity makes to the economy, and relates to the utilization of B.C. vs. outside labour and services. Only figures directly attributable to the funded program should be included (approximate figures acceptable, but please be as accurate as possible).

(a) Employment, wages and salaries

Туре	No. Employed		No. Pers	the second s	Salaries/Wages Paid	
······································	B.C.	Outside	B.C.	Outside	B.C.	Outside
Prospectors	0		0		\$ 0	\$
Linecutters	0		0 m		0	
Technicians	1		38		4,750.00	p
General Labourers	4		117		13,033.3	
Drillers/Helpers	4		117		24,783.20	p
Equipment Operators	2		177		15,400.00	p
Geologists	2		167		19,950.00	0
Geophysicists	0		0		0	
Geochemists	0		0		0	
Engineers	1		54		10,800.0	þ
Supervisory	1		92		15,000.0	p
Consulting						
Secretarial						
MXXXXX Camp. Adm cook/mechanic e	in tc 4		177		22,700.0	p
Løgal						
Accounting						
Others (specify) Miners	10		221		47,152.0	б
Others (specify)	1		35		5,094.0	В
TOTALS	30	,	1195	<u></u>	\$178,662.	6 \$

(b) Goods and Services

escription		Expenditure		
Meals, Groceries, etc.		B.C.	Outside	
		\$17,791.5	2 \$	
Camping Supplies, Equipment, etc. owned from previous years		0		
Accommodation		35,850.0	0	
Transportations — Scheduled Air		58,492.6	4	
— Air Charter				
Vehicle Rentals				
Vehicle O and M Costs				
Other (specify)				
Equipment Rentals —		0	 	
Equipment Rentals — Trenching, etc.		0		
— Geophysical, etc.		· · · · · · · · · · · · · · · · · · ·		
— Other (specify)				
Com State Concerning		35,372.5	1	
Consultant Services		5,000.		
Assays and Analyses		1,859.4	4	
Communications		1,167.5	3	
Other (specify) Helicopters		54,590.5		

9. IMPACT OF FAME GRANT

(a) Please indicate what level of expansion of your project was attributable to receiving a FAME grant.

s 300,000.00

_____ person/days employment.

1.

(b) Please indicate what you feel to be the main achievement of this FAME funded program.

The additional funding provided to us by FAME allowed us to

plan and execute a much better programme for our summer season.

	Letter of Submission Frontpi	ece
1.0	Introduction	1
2.0	Program Summary	1
3.0	Location & Access	2
4.0	Property	3
5.0	History	4
6.0	Regional Geology	4
7.0	Property Geology	4
8.0	Mineralization	5
	<pre>8.1 Cloutier Zone 8.2 16 Zone 8.3 Zephrin Zone</pre>	5 6 6
9.0	1986 Program	7
	9.1 Surface Drilling 9.2 Underground Development	7 8
10.0	Discussion & Conclusions	9

LIST OF FIGURES

FOLLOWING PAGE

PAGE

Figure I	Property Location Map	1
Figure II	Claim Map	2
Figure III	Site Layout Map	In Pocket
Figure IV	Plan - Surface Drillhole Locations	In Pocket
Figure V	Plan - Underground Development	In Pocket

LIST OF APPENDICES

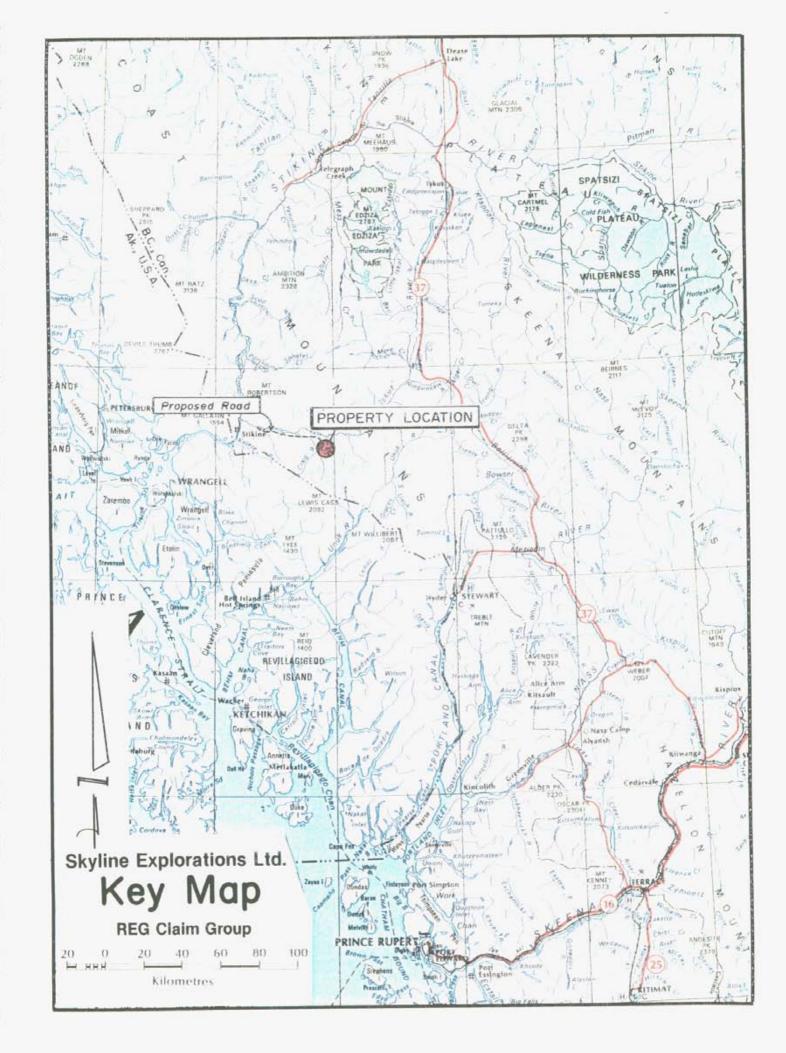
Appendix I	Assay Logs - Surface Drillholes
Appendix II	Assay Logs - Underground Sampling
Appendix III	Report on Reg Group, E.W. Grove, April 20, 1986
Appendix IV	Engineer's Certificate
Appendix V	Cost Statements, 1986 Program, June 1-September 30, 1986

1.0 Introduction

Skyline Explorations Ltd. has been actively exploring the Reg claim group on Johnny Mountain in the lower Iskut River area of British Columbia since 1980. In 1986 a program consisting of underground development of surface explored veins and continuing surface drilling was undertaken. The program was extimated to cost \$625,000, and application was made for financial assistance from the government of British Columbia under its Financial Assistance for Mineral Exploraton Program.

In a letter dated July 4, 1986, financial assistance in the amount of \$100,000 was granted to Skyline by Anthony J. Brummet, Minister, Department of Energy, Mines and Resources.

This report is submitted in compliance with the regulations governing this grant.


2.0 Program Summary

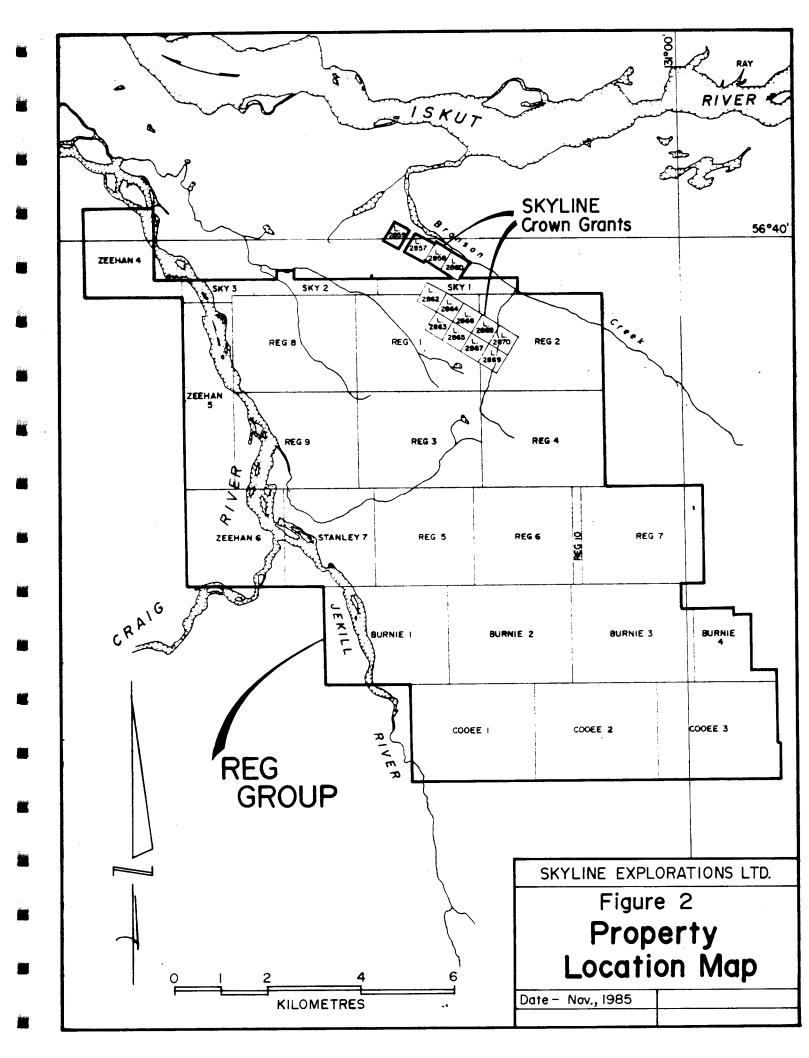
The program was initiated on June 1986 and at the date of writing was still in progress. During the period reported on herein (June 1-September 30, 1986), a total of 21 surface diamond drill holes totalling 3,339 feet were drilled and 1,080 feet of underground development completed. Statements of expenditures are appended to this report.

Major highlights of the program are the intersection and development of both the target zones (Cloutier and 16) as well as a third hitherto unknown zone between the Cloutier and 16 zones. All three zones contain good mining widths (8' and greater), and contain good visual gold with assays indicating ore grade mineralization over substantial strike lengths. An example is the Cloutier west drift where the arithmetic average of 189 samples for a length of 124' over the width of the drift returned an average uncut grade of 0.659 oz/ton gold.

Development of the 16 Zone and the third zone (now referred to as the Zephrin Zone) is progressing.

An underground drill program of some 10,000 feet was commenced in the first

week of November to further delineate these potential reserves.


This report contains a summary of the results of this program to date and a summary of the geological parameters for the property. For a more detailed discussion of geology, history and potential reserves, Appendix III contains a comprehensive report on the Reg group by Dr. Edward W. Grove dated April 20, 1986, from which much of the summaries presented have been excerpted.

3.0 Location and Access

The property lies approximately 50 miles east of Wrangell, Alaska on the south side of the Iskut River some 25 miles from its confluence with the Stikine River. The claims cover the north slope of Johnny Mountain between 300 feet A.S.L. to 7500 feet A.S.L. Map reference is N.T.S. 104 Bll/E.

Access to the property has historically been fixed wing aircrft from Terrace to the Snippaker strip some 10 km east, and then by helicopter. An airstrip has recently been constructed on Johnny Mountain flats which allows direct access to the camp.

Future access may be available by road either from the Stuart-Cassiar road down the Iskut, or by road to the junction of the Stikine and Iskut and thence by barge to Wrangell, Alaska. Both routes have received active study.

4.0 Property

The Reg group consists of 25 staked mineral claims and 13 Crown-grnted claims (Figure 2).

Claim	Units	Record No.	Expiry Date
Red Bluff		Lot 2857	
Homestake		Lot 2878	
Red Bird		Lot 2859	
Mermaid		Lot 2860	
El Oro		Lot 2862	
Discovery or Silver King		Lot 2863	
Golden Pheasant		Lot 2864	
Brown Bear		Lot 2865	
Iskoot		Lot 2866	
Silver Dollar		Lot 2867	
Marguerite		Lot 2868	
Blu Grouse		Lot 2869	
Copper Queen	00	Lot 2870	1 4
REG 1	20	1247	1 April 1993
REG 2	20	1248	1 April 1993
REG 3	20	1249 1250	1 April 1993
REG 4	20	1250	1 April 1993
REG 5	16 16	1251	1 April 1993
REG 6	20	1929	1 April 1993
REG 7 REG 8	20	2033	July 1993 August 1993
REG 0	20	2033	August 1993
REG 10	8	2544	13 September 1988
SKY 1	8	2568	13 September 1988
SKY 2	5	2569	13 September 1988
SKY 3	20	2570	13 September 1988
ZEEHAN 4	20	2979	13 October 1986
ZEEHAN 5	16	2980	13 October 1986
ZEEHAN 6	16	2981	13 October 1986
ZEEHAN 7	16	2982	13 October 1986
STANLEY 7	16	2580	13 September 1988
BURNIE 1	20	2564	13 September 1988
BURNIE 2	20	2565	13 September 1988
BURNIE 3	20	2566	13 September 1988
BURNIE 4	16	2567	13 September 1988
COOEE 1	20	2541	13 October 1986
C00EE 2	20	2542	13 October 1986
COOEE 3	20	2543	13 October 1986

5.0 History

Work on the property dates back to 1907 when a number of veins and stringers were reported to contain galena and gold-silver bearing mineralization.

Sporatic work is reported until 1954 when Hudsons Bay Mining & Smelting located the Pick Axe Zone and by 1961 had drilled 5 holes totalling 810 feet. Subsequently, Cominco and Texasgulf worked in the area.

In 1980, Skyline re-staked the area and commenced the program leading up to this year's work. Assistance with this work was provided by Placer Development (1983) and Anaconda Canada Ltd. (1984). Both companies dropped their interest, and in 1985 Skyline continued the development program of trenching and drilling which identified the zones presently being developed underground.

6.0 Regional Geology

The area contains a complex assemblage of Paleozoic through Cenozoic sedimentary and volcanic rocks with Triassic to Tertiary intrusion of the Coast Plutonic Complex. Extensive structural modification of this assemblage has occurred, notably major east-west trending thrusts along the Iskut and the King Salmon Fault, along with more minor movements and deformations. For a detailed discussion, please refer to Grove, pp. 13-19 incl. appended.

7.0 Property Geology

Erosion has exposed a window of intercalated volcaniclastic, feldsparporphyry and mixed sedimentary rocks on Johnny Mountain.

In the main gold zone sequence, feldspar-porphyry members are sandwiched with medium to dark green volcaniclastics of a primarily acidic volcanic sequence.

Deformation within these rocks has been variable with textures ranging from

fine schistose to coarse breccias. Sericitization, carbonatization and pyritization are seen as alteration products.

Structurally, rocks in the gold zone sequence has been cut by a number of discrete faults, as well as more complex shears. Of these, the north-trending faults appear to be the most important.

This extensive structural activity has resulted in the development of a system of mineralized shears and veins which possibly represent local remobilization in and around the major sulphide lenses of the volcanoclastic sequence. These now also appear to be controlled by major fracture zones trending 050°-055°/60°-80°N. Again, please refer to Grove, pp. 19-25, for detailed discussion.

8.0 Mineralization

A large number of mineralized structures and areas are known to occur on Johnny Mountain and are discussed by Grove. For the purpose of this report the writer will restrict himself to the zones pertaining to the underground development of this year.

8.1 Cloutier Zone

First discovered in the P-12 trench, disseminated fine to mediumgrained pyrite and chalcopyrite veins in volcaniclastics were noted. Assay results from this trench averaged 3.62% Cu, 1.26 oz/ton Ag, and 0.329 oz/ton Au over 7.2 feet in the 40 feet exposed by the trench. By 1985, drilling and trenching indicated a mineralized strike length of 1300 feet containing four gold-silver bearing sulphide lenses.

Mineralization appears controlled by a strong fracture system with an attitude of $053^{\circ}/65^{\circ}N$.

8.2 16 Zone

First indicated by a VLF-EM anomaly and subsequently trenched and drilled between 1982 and 1985. The system has a hanging wall vein up to 8' in apparent width and a footwall vein up to 5' in apparent width.

Known strike length of the structure is 700 feet with additional strike length potential. The veins are largely banded coarse pyrite and quartz with "abundant" free gold and scattered galena, tetrahedrite and minor sulfosalts.

8.3 Zephrin Zone

This new zone has a different tenor than the two discussed above. Where the Cloutier and 16 have the appearance of a true fracture controlled vein system, the Zephrin zone consists of a brecciated smoky grey quartz containing fine native gold.

Within the drift it has been exposed for 45', which may or may not represent true width. The underground drill program commencing in November will allow a greater resolution of its extent and attitude.

Sixty-two samples of this material returned an uncut arithmetic average of 1.76 oz/ton gold.

Surface expression of this zone is a depression which most probably reflects the different tenor of the material and accounts for it not being recognized on surface.

9.0 1986 Program

9.1 Surface Drilling

Logs of DDH S 86-86 to S 86-108 are presented in Appendix I of this report. Figure 4 (map pocket) presents the collar locations of these holes.

Correlation of results is underway but has not proceeded to the extent that property cross sections can be presented at this time. The following table presents a partial list of the results contained which are anticipated to be of significance to the ongoing development of the property.

	(Feet)		
Hole	Intersection	% Cu	Oz/Ton Au
86-86	125.0-126.0	N/A	0.101
	157.0-161.0	N/A	0.297
86-87	201.5-206.0	N/A	3.280
86-88	243.0-248.0	N/A	1.720
	251.0-252.7	N/A	0.183
	308.4-312.6	N/A	0.980
86-89	92.6- 96.1	3.36	0.142
	96.1- 99.5	4.51	0.716
	99.5-103.5	7.29	0.152
	103.5-107.5	N/A	0.228
86-90	113.5-116.5	3.74	0.026
	116.5-119.5	N/A	0.205
86-94	90.5- 95.5	N/A	0.465
	95.5-100.8	4.95	0.014
86-95	95.0-100.0	-	0.275
86-99	41.0- 43.3		0.198

86-101	37.0- 42.0	-	0.148
86-106	72.5- 75.4	-	0.309
	75.4- 78.4	-	0.452

While the above represent intersections considered to be of obvious significance, it can be noted from the logs that as the sections are developed, additional inferences can be anticipated from this data.

9.2 Underground Development

To the date of writing, 1,085 feet of crosscut and 360 feet of development on the Cloutier and 16 Zone have been done. Due to delay in accounting, costs are as at 30 September 1986, while the amount of development quoted and shown on the accompanying Figure 5, represents current status.

Sample results are presented in Appendix II of this report, with locations shown in Figure 5.

Highlights of the sampling program results received to date are as follows:

Cloutier West Drift

Arithmetic average of 189 panel samples from face, back and both walls of drift for 124' of strike length is 0.659 oz/ton Au (uncut).

Cloutier East Drift

Arithmetic uncut average of 36 samples as above for drift length of 80 feet is 0.100 oz/ton Au.

Zephrin Zone

Where crosscut by the main drift, 62 samples averaged 1.76 oz/ton Au for 45 feet of drift length (not true width). Assays are pending on an additional 20' of drift.

16 Zone

The 16 Zone was intersected as projected by the crosscut on October 26, 1986. The structure contains native gold over good width and is presently being developed. Assays have not been received at date of writing.

10.0 Discussion and Conclusions

The 1986 program to date has been highly successful in increasing the property's potential from surface drilling results and in exposing in the underground development, three zones which from grade and size can only be interpreted as highly significant in developing reserves.

The completion of the underground drilling stage of the program presenty underway, and the compilation of this year's field data, are expected to allow detailed reserve calculations for feasibility purposes.

Sampling for metallurgical testing from the 3 zones is presently underway. Metallurgical testing will commence upon receipt of these samples.

Respectfully submitted,

Charles K.Ikona, P.Eng.

APPENDIX I

.

í۳

ASSAY LOGS - SURFACE DRILLHOLES

ASSAY S86-86 Cathou				0	tier Zone Skyline Exploratio Hastings Street, Vancou	ns Ltd.	-45° @ 270° @	Prop	erty: REC	
		21 						0z/T	ppm	ppb
SampleNo.	From	То	Length	Rec. %	Rock type					
601	89.0	94.0	5.0	100%	V.C. 5% py				1.9	715
602	94.0	97.0	3.0	11	qtz-py 10% tr. cpy				4.2	525
603	97.0	100.0	3.0		V.C. 3% py				.4	265
604	125.0	126.0	1.0	11	V.C. qtz.py.sph.			.101	. 12.2	3320
605	152.0	157.0	5.0	95%	Alt. V.C. 3% py				.8	15
606	157.0	161.0	4.0	95%	Alt. V.C. qtz. py.	tr. sph		. 297		9170
607	161.0	166.0	5.0	100%	Alt. ¥.C. tr. 1% py				.8	17
608	166.0	171.0	5.0	98%	Alt. V.C. tr. 1% py				.4	16
609	171.0	175.0	4.0	95%				·····	.3	210
610	175.0	179.0	4.0	<u>95%</u>	Alt V.C. tr 3% py.				.5	2
611	179.0	184.0	5.0	90%	qtz.py.(10%) tr. sp	h			1.1	100
612	184.0	189.0	5.0	75%	Fault zone, heavy a				.3	1
613	189.0	192.5	3.5	95%	Alt. V.C. tr 1%				.6	370
614	192.5	196.0	3.5	90%	5% py qtz. matrix	PJ.			.6	9
615	196.0	200.0	4.0	11	Alt. V.C. 3% py.				.2	
616	200	202.5	2.5	11	8% py. 0.5%cpy.qtz.	matrix			3.4	11
617	202.5	208.0	5.5	95%	$\frac{1}{1+1}$ V C 2% pu	macrix			.1	1
618	202.5	215.0	7.0.	95%	Alt. V.C3% py.				.2	
SSAY RE		6-1904 6-1904R	·····	D	Aug. 13, 1986 ATE: Aug. 15, 1986	HOL	E No . 86-8	6 P A	GE	1

)

÷

ASSAY	- LOG	nlina			Skulino Exploratio	ne i td			Property:	
Floutie	er Foots 6-86	val & M224	ið Floor, 6	675 West	Skyline Exploratio Hastings Street, Vancou	ver, B.C.	V6B 4Z1 (604) 683-686	ō Oz/T	Oz/T
ampleNo.	From	То	Length	Rec. %	Rock type			,	Ag	Au
900	140.2	146.0	5.8		Alt V.C. Bleached	white.	heavy K	spar	.02	.001
* 					minor ankqtz-fra	c. fill	•			
901	146.0	152.0	6.0		11 11 11 11	17 17			.01	.001
										· .
										_
				······································						
					······································		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·								
								1		
			·····	<u> </u>			-	1		
	······································	·····					1			
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>				1		
							<u>}</u>			
							1	-		
	······							1		
						<u>↓</u>				_
				·		<u> </u>		1		
						<u> </u>				
								<u> </u>		
							<u> </u>			
	<u></u>					 		- <u>-</u>		
								-{		
			<u></u>				<u> </u>	<u> </u>		
	<u></u>						<u> </u>	<u>+</u> +-		
							I			l

ASSAY CATHOU Hole #		2r	nd Floor, 6	675 West	Skyline Exploratio Hastings Street, Vancou	ns Ltd. Iver, B.C. V	60°@2 V6B 4Z1 ((70 ° ⁸ • 9 . 604) 683-68	Prop 65 PPM	erty: REG	; Oz/T
SampleNo.	From	То	Length	Rec. %	Rock type				Ag	Au	Au
619	84.7	89.7	5.0	100%	V.C. 3% py	<u> </u>		<u> </u>	1.0	970	
620	89.7	92.3	2.6	11	qtz.py.cpy.vein				6.1	1350	.032
621	92.3	97.7	5.4	-11	2%py. minor bx.tr.	sph.			.6	180	
622	97.7	103.1	5.4	11	11 11 11 11	11			1.1	295	
623	187.4	191.5	4.1	97%	Alt V.C. 3% py				.9	1100	.031
624	191.5	196.5	5.0	97%	Alt V.C. qtzbx.	4% py.	1		1.0	400	
625	196.5	201.5	5.0	70%	Fault zone, clay &				.9	140	
626	201.5	206.0	5.0	95%	Alt. V.C. qtz. bx		1		34.5	88000	3.280
627	206.0	211.0	5.0	11	Alt. V.C. 3% py.	<u> </u>	1		2.1	2100	.069
628	211.0	216.0	5.0	11	Alt V.C. 3% py. mi	nor atz.	bx		1.2	2100	.046
629	216.0	221.0	5.0	11	Alt. V.C. 3% py.	<u> </u>	 		.5	125	1
630	221.0	225.6	4.6	70%	Faultzone 5% py. c	av & ri	bb1e	1	.6	20	
631	225.6	230.6	5.0	95%	Alt. V.C. 3% py				.7	17	
632	230.6	235.6	5.0	80%	Fault zone 10% py.	<u> </u>			.7	20	
633	235.6	240.6	5.0	98%	Alt. V.C. 3% py.				.3	14	
								1			
	· _ ·										
							1	1		1	1
				-		1	<u></u>			1	
											-
		· · · · · · · · · · · · · · · · · · ·								1	1
						<u> </u>	1				1
		·				<u> </u>				1	1
					· · · · · · · · · · · · · · · · · · ·					-	
						†				1	-1
							1				
					······································	1					
						<u> </u>					
						1		1		1	-

ASSAY REPORT: 86-1908 86-1958 DATE: Aug. 16, 1986

HOLE No. 86-87

PAGE _____ of ____

ASSAY CATHOU		0-			Skyline Explorations Lto	d.	Prope	erty: REG	
Hole a	⊧ 586-87	, 2r	10 Floor, 6	575 West	Skyline Explorations Lte Hastings Street, Vancouver, B.	C. V6B 4Z1 (604) 6	583-6865 ppm	ppb	Oz/T
SampleNo.	From	То	Length	Rec. %	Rock type		Ag	Au	Au
619	84.7	89.7	5.0	100%	V.C. 3% py.		1.0	970	
620	89.7	92.3	2.6	11	qtz. py. cpy. vein		6.1	1350	.032
621	92.3	97.7	5.4	11	2% py minor bx. tr. spł	1.	.6	180	
622	97.7	103.1	5.4		,		1.1	295	
623	187.4	191.5	4.1		Alt. V.C. 3% py.		.9	1100	.031
624	191.5	196.5	5.0	97%	Alt. V.C. qtz. bx. 4% p	y.	1.0	400	
625	196.5	201.5	5.0	70%	Fault zone, clay & rubb	le	.9	140	
626	201.5	206.0	5.0	95%	Alt. V.C. qtz. bx 5% py	7.	34.5	88000	3.280
627	206.0	211.0	5.0	11	Alt. V.C. 3% py		2.1	2100	:069
	211.0	216.0	5.0	11	Alt. V.C. 3% py. minor	qtz. bx.	1.2	2100	.046
629	216.0	221.0	5.0		11 11 11 Ť Í	· ·	.5	125	
		-							
							, ,,		
									1
								1	
								1	1
								1	
		-							
								1	
							<u> </u>	1	

ASSAY Clouti		wall and	Main V	ein	Skyline Exploration	ns Ltd.	-45° @ 314° /	Brg Prope	rty: REG	
Hole S	86-88	2r	nd Floor, 6	675 West	Hastings Street, Vancouv	ver, B.C. V	√6B 4Z1 (604) 683	8-6865	Oz/T	Oz/T
ampleNo.	From	То	Length	Rec. %	Rock type			%Cu	Ag	Au
634	16.0	17.0	1.0	99%	V.C. qtz vein py 1)% tr. c	py sph.		. 34	.072
635	167.0	172.0	5.0	60%	Alt. rock Fault zor				.05	.044
636	172.0	177.0	5.0	80%	" " Qtz. bx 2%				.02	.004
637	177.0	182.0	5.0	80%	11 73 18 28 78	,			.02	.007
638	182.0	187.0	5.0	90%	** ** ** ** **	•			.03	.003
639	187.0	192.0	5.0	60%	'' '' Fault Zone				.07	.034
640	192.0	197.0	5.0	60%	71 17 11 17				.10	.043
641	197.0	203.0	6.0	90%	Alt. Rock Qtz. bx				.41	. 404
642	235.3	240.0	4.7	86%	F.P. Fault zone 3%	py. Qtz	bx.		.03	.034
643	240.0	243.0	3.0	T 1	11 11 11 11	11 11	11	······································	.09	.018
644	243.0	248.0	5.0	98%	" 3% py. tr. gal.	sph.			3.06	1.720
645	251.0	252.7	1.7	99%	11 11 11 11	11			2.52	.183
646	308.4	312.6	4.2	11	F.P. stringer veins	8% py.	tr. cpy.		1.12	.980
647	312.6	315.6	3.0	11	647 - 663: Main Vei			3.64	.56	.097
648	315.6	318.6	3.0	11				6.23	.90	.034
649	318.6	321.6	3.0	11	65% py 4% cpy in	qtz mat	rix	1.94	. 33	.740
650	321.6	324.6	3.0	11				2.11	. 33	.054
651	324.6	327.6	3.0	11)			1.43	.27	.031
652	327.6	330.6	3.0	11	<u> </u>			.65	.18	.020
653	330.6	333.6	3.0	11		<u> </u>		1.71	.25	.011
654	333.6	336.6	3.0	11				.63	.15	.025
655	336.6	339.6	3.0	11		<u></u>		1.57	.15	.016
656	339.6	342.6	3.0	11	30% py 2% cpy in c	tz matr	ix	.78	.14	.013
657	342.6	345.6	3.0	11		1		1.29	.12	.016
658	345.6	348.6	3.0	11				1.22	.13	.011
659	351.6	354.6	3.0		/			.20	.05	.004
660	351.6	354.6	3.0	11				1.87	.14	.006
661	354.6	357.6	3.0	†1				.95	.11	.006
662	357.6	360.6	3.0	11	30% py 1% cpy in c	tz matr	ix	. 82	.10	.013
663	360.6	366.0	5.4	11				1.22	. 12	.011
664	366.0	371.0	5.0	11	F.P. qtz. bx. 15% p	y. tr.	cpy.	1.36	.07	.006

	er Footv	wall & M			Skyline Exploratio					erty: REG	
Hole S	86-88	2n	nd Floor, 6	675 West	Hastings Street, Vancou	ver, B.C. V	V6B 4Z1 (6	683-68	865	0z/T	0z/T
ampleNo.	From	То	Length	Rec. %	Rock type				Cu%	Ag	Au
665	371.0	376.0	5.0	99%	F.P. Qtz bx 20% py	tr.1% (ру		.90	.08	.010
666	376.0	381.0	5.0		F.P. Qtz bx 8% py.	tr. cp	<u>x</u>		.10	.05	.008
667	381.0	386.0	5.0	11	F.P. Qtz bx 8% py.	tr. cp	x		.03	.04	.005
668	386.0	391.0	5.0	11	F.P. '' 5% py.		¥.		.05	.05	.008
669	391.0	396.0	5.0	11	F.P. " 5% py.				.03	.03	.010
670	396.0	401.0	5.0	11	F.P. 3% diss py.				.02	.03	.009
671	401.0	406.0	5.0	11	F.P. 5% py. tr. cp	у.	1		.04	.03	.01
672	406.0	410.5	4.5	t1	F.P. 8% py. tr. cp				.15	.08	.008
				·		·			<u> </u>		·
				· ·							
									<u> </u>		
										- <u> </u>	
ł									+		
									 		
							<u> </u>				
									<u> </u>		
			··· ···								
			· ·								
									ļ		
								<u> </u>			
									T		
								 	1		<u>, </u>
~						·	1		1		
·				·		· ··· -· ··· · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u>† </u>		
	·						<u> </u>	 	l		

ASSAY REPORT: 86-2021

DATE: Aug. 15, 1986 HOLE No. 86-88 PAGE _____ of ____

	- LOG		d Elear (Skyline Explorat			roperty: _{REG}	
50 HUU	0-00	21			Hastings Street, Vanco		12.1 (004) 083-0800	Oz/T	Oz/T
SampleNo.		То	Length	Rec. %	Rock type			Ag	Au
781	203.0	208.0	5.0	99%	Alt. F.P. 3% py.	tr. sph.		.05	.046
782	208.0	213.0	5.0	11	11 11 17 11	minor bx		.10	.206
783	213.0	218.0	5.0	11	FT TI ET			.07	.199
784	218.0	223.0	5.0	11	11 11 11			.09	.065
785	223.0	_228.6	5.6	11	11 11 11			.06	.220
786	228.6	235.3	6.7	11	11 11 11			.03	.043
787	248.0	251.0	3.0	11	11 FT 18			.39	.460
788	252.7	258.0	5.3	11	71 11 12			1.18	2.670
789	258.0	263.0	5.0	F1	11 11 11			.11	.095
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
			•						
		· · · · · ·			······································		· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·				
									1
	·								
					<u> </u>				
									-
					·				

Additic	— LOG onal Clo ll & Mai	~	d Elect (ns Ltd.			Property:	
DDH S86	5-88	21				igs St	reet, v	ancou	ver, в.с.		683-686 	0z/1	Oz/T
SampleNo.	From	То	Length	Rec. %		Rock 1						Ag	Au
870	141.8	147.0	5.2	· <u> </u>					spar bl	eached w	hite qtz	.01	.001
					ank.	ira	cture	S 11			1 11	01	0.01
	147.0	152.0	5.0		11							.01	.001
	152.0	157.0	5.0					,	·			.01	.009
873	157.0	162.0	5.0		11						11 11	. 02	.028
	162.0	167.0	5.0		I							.01	.009
	233.9	235.3	1.4		Alt	<u>F.P.</u>	qtz.	ank.	frac.	fillings	s 1-2% py	.01	.005
	263.0	268.0	5.0							''		.04	.011
	268.0	273.0	5.0	·	I							.03	.019
	273.0	278.0	5.0		11		"	11	11	11	17 11	.07	.013
	278.0	_283.0	5.0		11			11		11	11 11	.09	.014
	283.0	288.0	5.0		11	11	11	11	11	11	11 11	.10	.030
T	288.0	293.0	5.0		"		ti	11	11	11	11 11	.05	.007
	293.0	298.0	5.0		11	- 11	11		11	11		.28	.014
	298.0	303.0	5.0		11	11	11	11	11	11		.25	.104
884	303.0	308.4	5.4		"	11		11		11	11 11	.20	.216
					<u> </u>								
													_
								_					
	86	-2671				Sent	. 20/	86		זחח	I S86-88	1	1

ASSAY					-45° @	2 160° 516. Pro	perty: REG	
Cloutie 86-89	r	2r	nd Floor, 6	675 West	Skyline Explorations Ltd. Hastings Street, Vancouver, B.C. V6B	4Z1 (604) 683-6865	Oz/T	Oz/t
SampleNo.	From	То	Length	Rec. %	Rock type	Cu%	Ag	Au
673	41.2	46.2	5.0		F.P. qtz. stockwork 2% py		.05	.054
674	46.2	50.5	4.3		11 11 11 11		.02	.001
675	50.5	54.5	4.0		F.P. 3% py.		.01	.001
676	54.4	58.0	3.5		F.P. 8% py. 1% cpy	.01	.03	.001
677	79.5	84.5	5.0		F.P. 3%py		.01	.002
678	84.5	89.5	5.0		Alt. F.P. qtz. py.		.08	.020
689	89.5	92.6	3.1		Alt. F.P. qtz. py. cpy		.18	.07
680	92.6	96.1	3.5		Main vein 15% py 3% cpy	3.36	.97	.142
681	96.1	99.5	3.4	<u> </u>	11 11 11 11 11 11	4.51	1.43	.716
682	99.5	103.5	4.0		11 11 11 11 11	7.29	2.31	.15
683	103.5	107.5	3.0		F.P. 2% py.		.51	.228
				<u> </u>				
		•						
	·	****						
					· · · · · · · · · · · · · · · · · · ·			
				······································				
					·····			
		····						
	, <u>,</u>							
				······	<u>├</u> ─────			
	·				<u> </u>			
					h			
						·		
					·····			

-

	— LOG onal sar		nd Floor f	375 West	Skyline Explorations Hastings Street, Vancouver	Ltd.	Property: REG	
	0-09	·				, 8.0. (08 12	 Oz/T	Oz/T
mpleNo.	From	То	Length	Rec. %	Rock type		 Ag	Au
790	106.5	112.0	5.5		Alt. F.P. 3% py.		 .03	.02
				· · · · · · · · · · · · · · · · · · ·			 	+
							 	+
							 	†

ASSAY 586-90					Skyline Exploratio	ns Ltd.			ərty: REG	•
Cloutie	r Fill-	in. 21	nd Floor, 6	675 West	Hastings Street, Vancou	ver, B.C. V6	604) 683 (604) 683	3-6865	Oz/T	Oz/T
SampleNo.	From	То	Length	Rec. %	Rock type			Cu%	Ag	Au
684	101.0	105.0	4.0		F.P. 3% py.				.08	.017
685	105.0	109.5	4.5			2% сру		.60	.27	.019
686	109.5	113.5	4.0		11 11 11 11	11 11		.18	.07	.014
687	113.5	116.5	3.0		50% ру. 3% сру			3.74	1.08	.026
688	116.5	119.5	3.0		F.P. 2% py				.15	.205
689	119.5	122.5	3.0	<u> </u>	17 11 11				.08	.018
690	37.8	39.1	1.3		15% py. in qtz mat	rix			.19	.006
						1				
										1
						l				
										1
				<u></u>					1	

ASSAY		_				-6	0° @ 180	° Bry F	Property: RE(3
Cloutie S86-91	r Fill-		nd Floor (Skyline Exploratio					
300-91		21		ors west	Hastings Street, Vancou	ver, B.C. V	VOB 421 (00	4) 003-0000	Oz/T	Oz/T
ampleNo.	From	То	Length	Rec. %	Rock type			Cu%	ά Ag	Au
591	17.0	20.2	3.2		F.P. 10% py tr. cp	Y			.03	.004
592	20.2	22.2	2.0		50% ру. 1% сру			1.7	74 1.09	.024
593	22.2	26.2	4.0		F.P. Alt. 2% py.				.13	.009
694	59.3	64.3	5.0		Alt F.P. 2% py				.05	.015
595	64.3	69.3	5.0		11 11				.01	.022
696	69.3	74.0	4.7		11 11				.01	.008
697	74.0	78.6	4.6		11 11				.09	.090
598	78.6	83.6	5.0		11 11				.01	.004
699	83.6	88.6	5.0		Alt F.P. 3% py. tr	сру			.01	.005
700	88.6	93.6	5.0		11 11	1			.02	.014
701	93.6	98.6	5.0		TT IF	1			.01	.015
702	98.6	103.6	5.0		11 11	1			.04	.005
703	103.6	108.1	4.5		11 11	11			.04	.005
704	108.1	111.1	3.0		25% py. 1% cpy in	ıtz matr	ix	7.4	48 1.37	.051
705	111.1	114.1	3.0		17 17 11	11		3.4	.71	.022
706	114.1	119.8	5.7		11 12 13	11		.5	54 .17	.035
707	119.8	122.7	2.9		F.P. 3% py.				.04	.005
				_						

ASSAY REPORT: 86-2132

DATE: Aug. 22/86 HOLE No. 586-90

PAGE _____ of ____

ASSAY	— LOG					_	60° O	150° Br	9 Prope	ərty: REG	
DDH S86	-92 r Fill-	in 2r	nd Floor, 6	675 West	Skyline Exploratio Hastings Street, Vancou	ns Ltd.		•	·	-	
					<u> </u>	,	, T	, 1	r	Oz/T	Oz/T
SampleNo . 708	From 9.0	<u> </u>	Length 5.0	Rec. % 95%	Rock type F.P. Bx. 2% py.				Cu%	Ag	Au
709	14.0	14.0	4.0	11	F.P., Bx. 2% py.					.02	.001
710	14.0 18.0	21.3	3.3	11	60% py. 0.5% cpy in	ata m			1 01	.02	.001
711	21.3	24.8	3.5	71		i quz m			1.81	1.31	.046
712	60.8	62.0	1.2	99%	F.P. 3% py.				Į	.02	.002
713	76.8	84.3	7.5	11	35% py. tr. cpy				<u> </u>	.07	.005
714	96.4	97.4	1.0	11	Alt. F.P.					.03	
	133.3	137.7	4.4	11	40% py. tr. cpy. in	i quz. i	latrix			.07	.015
	137.7	141.4	3.7	11	5% py.				2.25	.02	.053
	141.4	145.2	3.8	11	30% py. 1% cpy			-	2.25	.73	.031
	145.2	149.5	4.3	T1	Alt. F.P. 2% py. c:	rackla l			2.55	.01	.021
	149.5	153.0	3.5	11	F.P. 3% py.	ackie	JX.				
	149.5 153.0	155.0 157.0	4.0	11	F.P. " "					.28	.002
	157.0	157.0 161.5	4.0	11	F.P. " "					.01	.001
	161.5	101.5 166.5	5.0	11	F.P. " "		-	<u> </u>		.01	.001
	166.5	169.5	3.0	11	<i>T</i> • E.			1	1.29	.03	.003
	169.5	172.5	3.0	11					3.97	.44	.016
	172.5	175.5	3.0	11					5.57	.20	.010
	192.7	197.7	5.0							.08	.003
	197.7	202.7	5.0	11					}	.02	.003
	202.7	208.0	5.3	11						.02	.002
	208.0	214.0	5.0	_ <u>.</u>		· · · · · · · · · · · · · · · · · · ·				.02	.002
	223.0	227.0	4.0	,,						.01	.001
	227.0	231.5	4.5	11						.01	.001
	243.0	246.0	3.0	11						.01	.001
				<u></u>						.01	.003
	······································					····				<u> </u>	
							1	-			
				·····			1	1	1		
							1	1			

ASSAY REPORT: 86-2226

DATE: Aug. 26/86

HOLE No. 586-92

PAGE _____ of ____

ASSAY – LOG –45° @ 225° B-9. Property: REI Skyline Explorations Ltd.									rty: REG		
DDH S86-93		2nd Floor, 675 West Hastings Street, Vancouver, B.C. V6B 4Z1 (604) 683-68							0865	Oz/T	
ampleN	o. From	То	Length	Rec. %	Rock type				Cu%	Ag	Au
733	24.0	26.3	2.3	93%	F.P. 3% py.		11			.02	.00
734	26.3	27.8	1.5	95%	50% py. tr. cpy.				2.11	.69	.014
735	27.8	32.0	4.2	11	F.P. 2% py.					.01	.00
736	92.2	94.0	1.8	99%	20% py. tr. cpy. :	iņ qtz ma	trix			.12	.000
737	156.0	160.0	4.0	11	F.P. 5% py					.07	.00
738	160.0	164.0	4.0	11	15% py tr. 4% cpy	in qtz 1	natrix		1.40	.29	.01
739	164.0	167.8	3.8	11	11 11 11 11	11 11	F1		1.13	.30	.01
740	167.8	172.8	5.0	11	F.P. 3% py.					.04	.004
741	172.8	177.9	5.1	11	11 11 11	1				.03	.00
742	189.0	192.0	3.0	11	F.P. Intense sili	cificati	n 8% py.			.04	.00
743	192.0	197.5	5.5	11	F.P. 3% py.					.03	.00
744	197.5	202.8	5.3	11	11 11					.04	.013
				· · · · · · · · · · · · · · · · · · ·							
			•								
]
			·····								ļ
			···								

DDH 86		0-		67E \\/==1	Skyline Exploratio	ons ltd.	40° @ /		-	rty: REG	
	er Fill	-in. 21			Hastings Street, Vancou	uver, B.C.	V6B 4Z1 (604) 683-6	865	Oz/T	0z/t
SampleNo.		То	Length	Rec. %	Rock type				Cu%	Ag	Au
745	10.0	16.0	6.0	99%	Alt. F.P. 3% py.					.03	.009
746	16.0	18.5	2.5		30% py. 0.5% cpy				.51	.16	.054
747	18.5	22.0	3.5		<u>3% py Alt. F.P.</u>					.01	.001
748	22.0	25.7	3.7	TT.						.02	.009
749	51.0	57.0	6.0	90%	F.P. 3% py minor of	tz. bx.				.05	.008
750 751	57.0	62.0	5.0	99%						.03	.009
	62.0	67.0	5.0	85%		11 11				.01	.008
752	67.0	72.0	5.0	99%	11 11 11	11 11				.01	.002
753	72.0	77.0	5.0	11	F.P. 3% py.					.05	.007
754	77.0	82.0	5.0	11	17 77 71					.06	.008
755	82.0	87.0	5.0	90%	ti ti					.10	.034
756	87.0	90.5	3.5	90%	Alt. F.P. Qtz. bx	5% py.				.03	.014
757	90.5	95.5	5.0	99%	Alt. F.P. Qtz. bx					.13	.485
	95.5	100.8	5.3	11	60% py. 1% cpy in	qtz. ma	rix		4.95	.58	.014
	100.8	104.6	3.8	11	Weak alteration 3%	py.				.04	.002
760	104.6	108.6	4.0	11	11 11 11	<u> </u>				.01	.001
									1		
									1		<u> </u>
						·····			1		
									1		
									1		
									++		
									1		
									┨		
									╂──────┤		
									╂━─────┤		
											·
		86-2290			Aug. 29/86						

į

ASSAY	-95		nd Floor, f	375 West	Skyline Exploration Hastings Street, Vancou			<i>8-7</i> , Proper	rty: _{REG}	
	er Fill-				T	T			Oz/T	Oz/T
SampleNo. 761	From 11.0	To	Length	Rec. %	Rock type			Cu%	Ag	Au
762	$\frac{11.0}{16.0}$	16.0 20.0	5.0		Alt. F.P. 3% py. Qtz. bx 10% py. t	0.0.11		. 05	.01	.001
763	85.0	90.0	5.0		Alt. F.P. 3% py.	· cpy		.05		
764	90.0	90.0	5.0		AIL. F.P. 5% py.				.03	.003
765	95.0	100.0	5.0		$0+\pi$ by $5^{\%}$ py t	, 			.25	.275
766	100.0	100.0 105.0	5.0	<u>-</u>	Qtz. bx. 5% py. t:	. cpy "	<u> </u>		.14	.029
767	105.0	110.0	5.0		11 11 11 11	11	<u> </u>		.23	.029
768	110.0	110.0 115.0	5.0		11 11 11 11	11			.13	.021
769	115.0	118.0	3.0		10% py. qtz. bx t	1% 00	7	. 79	.13	.000
770	118.0	121.0	3.0			<u>. 1/ CP</u>	Y	.53	.12	.004
771	121.0	126.0	5.0	·····	Alt. F.P. minor q	z by	R ^y ny		.06	.008
772	126.0	131.0	5.0		11 11 11 11	11	11		.03	.000
773	131.0	136.0	5.0		11 17 11	11	11		.01	.001
774	136.0	141.0	5.0	<u>.</u>	Alt. F.P. Crackle	bx. 5%	bv		.05	.003
775	141.0	146.0	5.0		Alt. F.P. minor q		₿% ру.		.03	.001
776	146.0	151.0	5.0		11 11 11 11	11	11 11		.07	.013
777	151.0	156.0	5.0		11 11 11 11	11	11 11		.08	.005
778	156.0	161.0	5.0		11 11 11 11	11	11 11		.01	.042
779	161.0	166.0	5.0		F.P. 3% py.				.01	.001
780	166.0	170.0	4.0		Alt. F.P. Crackle	bx.			001	.001
										· ·
						1				
							[
					······································				· · · · · · · · · · · · · · · · · · ·	
										

DATE:

HOLE No. 00-95

PAGE _____ of ____

ASSAY DH S86-	96				Skyline Exploration	ons lta.	•45° @ 3	•	Property:	
loutier	Fill-i	.n 2r	nd Floor, 6	675 West	Hastings Street, Vanco	uver, B.C. \	√6B 4Z1 (60	04) 683-6865	Oz/T	Oz/T
SampleNo.	From	То	Length	Rec. %	Rock type				Ag	Au
791	88.8	90.8	2.0	98%	Alt. V.C. minor c:				.23	.025
792	117.2	123.0	5.8	11	Alt. V.C.epidote			g.	.01	.029
793	123.0	129.4	6.4	11	Alt. V.C. 2% py.(1	nem. mag	trace)		.01	.001
794	129.4	134.4	5.0	11					. 02	.007
795	134.4	139.4	5.0	11	11 11 11 11		194	. •	.06	.023
796	139.4	144.4	5.0	11	11 11 11 11				.01	.004
797	144.4	149.4	5.0	90%	11 11 11 11				.01	.001
798	149.4	154.4	5.0	98%	17 79 18 77	Heavy I	K-spar		.01	.001
the second s		159.4	5.0	11	17 17 17 19		d & oxi		. 02	.001
		164.4	5.0	11		minor (clay mine	erals	.01	.001
and the second	164.4	169.4	5.0	11		develop	4 1		.02	.006
802	169.4	174.4	5.0	90%	Qtz. bx. 5% py. in	n qtz. ma	atrix		.02	.013
	174.4	179.4	5.0	98%	Alt. V.C. 2% py				.01	.004
	179.4	184.4	5.0	11					.02	.003
805	184.4	189.4	5.0	11	11 11 11 11				.02	.002
	189.4	194.4	5.0	11	11 11 11 11				.01	.007
	194.4	199.4	5.0	11	11 11 11 11 11	T			.01	.001
808	199.4	204.4	5.0	11	Altered rock 5% p	7. 5% spl	in qtz	matrix	.04	.020
809	204.4	209.4	5.0	11	F.P. Alt 3% py. s:	liceous			.01	.002
		214.4			F.P. Alt " " "				. 02	.005
311	214.4	219.4	5.0	11	77 79 79 79 71	1			.01	.004
	219.4	223.0	3.6	70%	Fault zone, 5% py	minorad	tz. bx.		.01	.004
313	223.0	229.4	6.4	98%		1			.01	.001
	229.4	234.4	5.0	11					.01	.001
315		240.5	5.0	11					.01	.001
316	246.6	253.4	6.8	11					.01	.005
										<u></u>
							•			

ASSAY DDH 86	-99	0-			Skyline Exploration	ons Lta.	·32° @ 160° Br		
GOLDRU	SH VEIN	20	id Floor, E	575 West	Hastings Street, Vanco	uver, B.C.	V6B 4Z1 (604) 683-6	865 Oz/T	Oz/T
ampleNo.	From	То	Length	Rec. %	Rock type			Ag	Au
817	17.0	21.0	4.0	99%	V.C. 3% py. tr.	cpy. in d	tz. matrix	. 02	.00
818	21.0	24.7	3.7	11		1 11	TT TT	.01	.00
819	24.7	28.1	3.4	11	F.P. 5% py.			.30	.016
820	28.1	32.0	3.9	11	F.P. 1% py minor	crackle	bx.	.03	.00
821	32.0	36.0	4.0	11	F.P. " " "	11	11	.03	.004
822	36.0	41.0	5.0	11	F.P. 3% py. heavy	K-spar		.04	.001
823	41.0	43.3	2.3	11	F.P. 8% py. tr. 6			. 40	.19
				· · · · · · · · · · · · · · · · · · ·		1			
						_			
									-
							{		
				<u> </u>					
ł					· · · · · · · · · · · · · · · · · · ·	+			
				<u>.</u>		_ _			
					: - · · · · · · · · · · · · · · · · · · ·				
									T
				<u></u>					
									1
							<u> </u>		1
							<u>+</u>		1
							<u> </u>	<u> </u>	1
	ł	·····				1	<u> </u>		
					······································		<u> </u>		
					· · · · · · · · · · · · · · · · · · ·			+	
			· · ·				<u> </u>		

ASSAY DDH S8		21	nd Floor f	375 West	Skyline Exploration Hastings Street, Vancou			- · · · ·	roperty:	
<u> </u>		بے 							Oz/T	Oz/T
SampleNo.	From	То	Length	Rec. %	Rock type				Ag	Au
824	23.7	28.6	4.9	99%	Contact zone F.P.		5% py.		.19	.004
825	28.6	33.6	5.0	11	1111 11 11		3% ру.		.07	.002
826	33.6	36.1	2.5	tt	F.P. minor crackle	e bx. 3%	py.		.22	.003
827	36.1	40.3	4.2	11	11 11	, <u>11</u>	11		.01	.001
82.8	40.3	44.3	4.0	11	11 11 11	" 2%	ру.		.03	.002
829	44.3	48.6	4.3	11	F.P. minor crackle	e bx. 2%	py.		.06	.002
830	48.6	51.0	2.4	11	Alt. siliceous ro	ck 1% py		tr. cpy	.15	.002
831	51.0	54.0	3.0	11	11 11 11	TT	5% pyc	. 1 1	.09	. 002
832	54.0	57.0	3.0	11	11 11 11	ŤŤ	5% pyc		.33	.015
833	57.0	62.0	5.0	11	V.C. 3% py. tr. s	h. infi			.16	.006
834	62.0	69.2	7.2	11	V.C. 1% py. "	1 11	<u>_</u>	11	.10	.003
		· .								<u></u>
			·							
						L				
					······································					
1										
		····						┝────		

835 2 836 2 837 2 838 2 839 2 840 2 841 5 842 5 843 5 844 6 845 6	From 22.0 27.0 32.0 37.0 42.0 48.0 52.0 55.0 58.0 61.0 64.0	To 27.0 32.0 37.0 42.0 48.0 52.0 55.0 55.0 58.0 61.0	Length 5.0 5.0 5.0 6.0 4.0 3.0 3.0	Rec. % 99% '' '' ''	Hastings Street, Vancouv Rock type Alt. F.P. 3% py. " minor qtz ve " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "		e bx. 2% py.	Oz/T Ag .16 .06 .06 .06	Oz/T Au .048 .005 .002
835 2 836 2 837 2 838 2 839 2 840 2 841 5 842 5 843 5 844 6 845 6	22.0 27.0 32.0 37.0 42.0 48.0 52.0 55.0 58.0 61.0	27.0 32.0 37.0 42.0 48.0 52.0 55.0 55.0 58.0 61.0	5.0 5.0 5.0 5.0 6.0 4.0 3.0	99% "' "' "'	Alt. F.P. 3% py. " minor qtz ve " " " " " " " " " "	11 11 11 17	11 11	.16 .06 .06	.005
836 2 837 3 838 3 839 2 840 2 841 5 842 5 843 5 844 6 845 6	27.0 32.0 37.0 42.0 48.0 52.0 55.0 58.0 61.0	32.0 37.0 42.0 48.0 52.0 55.0 55.0 58.0 61.0	5.0 5.0 5.0 6.0 4.0 3.0	11 11 11 11	" " minor qtz ve " " " " " " " " " " " " " " "	11 11 11 17	11 11	.06	.005
838 3 839 2 840 2 841 5 842 5 843 5 844 6 845 6 846 6	37.0 42.0 48.0 52.0 55.0 58.0 61.0	42.0 48.0 52.0 55.0 58.0 61.0	5.0 6.0 4.0 3.0	11 11 11		11 11 11 17			.002
839 2 840 2 841 5 842 5 843 5 844 6 845 6 846 6	42.0 48.0 52.0 55.0 58.0 61.0	48.0 52.0 55.0 58.0 61.0	6.0 4.0 3.0	11	11 11 11 11		11 11	06	
840 2 841 5 842 5 843 5 844 6 845 6 846 6	48.0 52.0 55.0 58.0 61.0	52.0 55.0 58.0 61.0	4.0 3.0	11		11 11	I		.148
841 5 842 5 843 5 844 6 845 6 846 6	52.0 55.0 58.0 61.0	55.0 58.0 61.0	3.0		11 11 11 11 11		11	.02	.001
842 5 843 5 844 6 845 6 846 6	55.0 58.0 61.0	58.0 61.0		**			5% py.	.01	.002
843 5 844 6 845 6 846 6	58.0 61.0	61.0	3.0			qtz matrix tr		.14	.004
844 6 845 6 846 6	61.0			11	TT 11 TT TT	11 1	11	.09	.001
845 6 846 6			3.0	11	11 11 11 11 11	1 11	11	.07	.001
846 6	61.01	64.0	3.0	11	11 11 11 11	··· · · · · · · · · · · · · · · · · ·	11	.04	.003
		67.0	3.0	11	15% pyo. tr. cpy in			.19	.001
847 7	67.0	70.0	3.0	11	25% pyo. 1% cpy in			.68	.004
	70.0	74.5	4.5	11	Alt F.P. 2% py. min	or crackle bx.		.09	.003
									<u> </u>
			······		┠━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━	<u></u>			
					<u>├</u>				
	<u> </u>				├ ─────				
		· · · · · · · · · · · · · · · · · · ·			├ ────				
					<u>├</u> ──────────				

ASSAY	— LOG				.	-	•45° @	2100	Brg.	Prope	rty: _{REG}	
DDH S8	6-102	2	nd Floor. 6	675 West	Skyline Exploration Hastings Street, Vanco	ons Ltd.			-			
ampleNo.	From	T	T		T		T		T		Oz/T Ag	Oz/T Au
848	26.0	To 34.0	Length 8.0	Rec. % 50%	Rock type F.P. Fault zone		<u> </u>				.04	.005
849	$\frac{20.0}{34.0}$	39.0	5.0	99%	F.P. Increased qt:	1-3% 1					.04	.003
850	39.0	44.0	5.0	11	<u>"""</u> "	<u> </u>	y.				.03	.001
851	44.0	49.6	5.6	f1	11 11 11	F1 F1					.20	.001
852	49.6	52.9	3.3	11	Main vein 20% pyo	l% sph	thr on				.18	.006
552		52.7	<u> </u>		in qtz matrix tr.	chl.	<u>ur. cp</u>	У_ <u> </u>			.10	.000
853	52.9	56.0	3.1	11	1111 1111 1111						. 34	.011
854	56.0	61.0	5.0	11	F.P. Moderate K-sp	ar 3% p	v. tr.	sph.	ch1.		.09	.001
855	61.0	66.0	5.0			<u></u>					.04	.001
856	66.0	71.0	5.0	11	11 11 11	11 1	1 11		11		.04	.001
857	71.0	76.2	5.2	11	11 11 11	11	1 11	-11	- 11		.01	.001
							+				·	
					······································	1						
				······································								
							1					† <u></u>
							1					
						-	1					
							1					
							1					
						1	1					
	·	L										
		<u> </u>										
		ļ										
												1

Image: Street Process P		ty:	Propert	•	° Brg	! 40°	@ 2	·45°	Ltd.	ons	Exploratio	Skyline					ASSAY - DDH S86
858 53.1 58.5 5.4 99% F.P. Modurate K-spar interse .10 859 58.5 63.9 5.4 """"""""""""""""""""""""""""""""""""	T Oz/	Oz/T		365	683-68	604)	4Z1 (6	/6B	r, B.C. \	uve	reet, Vancou	Hastings Str	675 West	nd Floor, 6	21		
859 58.5 63.9 5.4 """"""""""""""""""""""""""""""""""""													Rec. %	Length	То	From	ampleNo.
859 58.5 63.9 5.4 """"""""""""""""""""""""""""""""""""	.00	.10						se					99%	5.4	58.5	53.1	858
339 53.3 63.9 5.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>þУ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									•	þУ							
360 69.3 74.8 5.5 """"""""""""""""""""""""""""""""""""	.00	.11								"	1 11 11 11	11 11 11 11	11	5.4	63.9	58.5	359
361 69.5 74.8 5.5 <t< td=""><td>.00</td><td>.14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1 11 11 11</td><td>** ** ** **</td><td>11</td><td>5.4</td><td>69.3</td><td>63.9</td><td>360</td></t<>	.00	.14								1	1 11 11 11	** ** ** **	11	5.4	69.3	63.9	360
363 78.2 83.2 5.0 """"""""""""""""""""""""""""""""""""	.00	.15								7	1 11 11 11	11 11 11 11	11	5.5	74.8	69.3	361
363 78.2 83.2 5.0 " <th< td=""><td>.00</td><td>x .25</td><td>atrix</td><td>z m</td><td>in q</td><td>þh</td><td>tr s</td><td>ру</td><td>-1%</td><td>tr</td><td>n 8% pyo.</td><td>Main vein</td><td>11</td><td>3.4</td><td>78.2</td><td>74.8</td><td>362</td></th<>	.00	x .25	atrix	z m	in q	þh	tr s	ру	-1%	tr	n 8% pyo.	Main vein	11	3.4	78.2	74.8	362
364 83.2 88.2 5.0 " F.P. Intense silicification 3% pp. tr. sph cpy .01 365 88.2 92.2 4.0 " .02 .01 .02 .01 .01 .01 .01 .02 .01 .01 .01 .02 .01	.00			1						11			11	5.0	83.2		363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.00		cpy	ph	tr.	b.	3% pv	n 3	icati	chi f	ense silic	F.P. Inte	11				
366 92.2 96.6 4.4 """"""""""""""""""""""""""""""""""""	.00									1			11				
367 96.6 98.6 2.0 """"""""""""""""""""""""""""""""""""			11	11	11	11	1	i		1-	11	11 11	11				
Image: series of the series				11	11	1	1	· · ·			11	11 11	11				
Image: Second						 		f		+							
Image: Second									<u></u>	+		· · · · · · · · · · · · · · · · · · ·					
Image: Second		- <u></u>															
Image: Second						<u> </u>				+							
Image: Second				ł		<u> </u>				+			<u></u>				
Image: Second								ŀ		+							
Image: Second				 						+		· · · · · · · · · · · · · · · · · · ·					
Image: Second						{	·			+				· · · · · · · · · · · · · · · · · · ·			
Image: Second													<u> </u>				
Image: Second								ł		+							
Image: Second				<u> </u>			· · · · · · · · · · · · · · · · · · ·			+							
Image: Second									······								
		<u></u>															
		a		 													
										+-							
				}		 				+-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
			 	<u> </u>						+							
										+-		<u> </u>					
				 													
			 	 													

	— LOG				Skyline Exploratio	ns Ltd.	45° @ 1	50° Brg	Prope	rty:	
DDH S8	6-104	2	nd Floor, 6	675 West	Hastings Street, Vancou	ver, B.C. \	/6B 4Z1 (6	683-68	65	Oz/T	Oz/T
ampleNo.	From	То	Length	Rec. %	Rock type					Ag	Au
885	25.8	30.8	5.0		F.P. 1-2% py diss.	and re	lacemen	t veins		.12	.004
					and patches						
886	30.8	35.8	5.0			11 11 11	11 11	11 11		.01	.00
887	35.8	40.8	5.0		<u> 11 11 11 11 11 11 11 11 11 11 11 11 11</u>	11 <u>11 1</u> 1	FT 11	11 11		.03	.00
888	40.8	44.5	3.7		11 11 11 11 11 11	11 11 11	11 11	" " tr	sph.	.02	.00
889	44.5	48.6	4.1		** ** ** ** **	11 11 11	FF 17	11 11		.08	.00
890	48.6	52.0	3.4		Main mineral zone	15% руо	tr. cp	y sph in	n qtz matrix	.16	.00
891	52.0	55.0	3.0		11 11 11	11 11	* 1	11 11 11	11 11	. 31	.034
892	55.0	58.0	3.0		11 11 11	11 11	11	11 11 11	11 11	.28	.01
893	58.0	64.0	6.0		Contact zone 5% py	tr. cp	v sph			.10	.00
894	64.0	68.6	4.6		V.C. 3% py tr. spł	. cpy	<u> </u>			.13	.008
895	68.6	73.2	4.6		11 11 11 11 11	11				.07	.00
896	73.2	77.7	4.5		V.C. 3% py frac. f	illing				.09	.00
897	77.7	80.8	3.1		11 11 11 11	11				.31	.00
898	80.8	86.6	5.8		11 11 11 11	11				.16	.006
899	95.5	100.0	4.5		F.P. Intense silio	ificati	on 15% g	tz. tr.	ch1.	.01	.00
			· .								
				· · · · · · · · · · · · · · · · · · ·							
	· · · · · · · · · · · · · · · · · · ·										
				······							
											-

	- LOG SH VEIN 5 Dip 60	⁾ 2r	nd Floor, 6	675 West	Skyline Exploration Hastings Street, Vancouve	J L (M .	60°@} /6B 4Z1 (6	-		rty: REG Oz/T	Oz/T
ampleNo.	From	То	Length	Rec. %	Rock type					,	
902	26.5	31.2	4.7	95%	F.P. mod. silicifica	ation 1	-3% py :	frac.		.05	.001
ŕ					fill some broken gro						
903	44.1	49.1	5.0	99%	11 11 11 11					.01	.001
904	49.1	54.1	5.0	11	11 11 11 11					.09	.001
905	54.1	59.1	5.0	11	11 IF II II					.04	.001
906	59.1	64.1	5.0	11	11 11 11 11					.09	.001
907	64.1	69.1	5.0	11	11 11 11 11					.06	.001
908	69.1	74.1	5.0	11	11 11 11					.04	.001
909		80.0	5.9	11	F.P. Main vein? 8% p frac. fill to 3" with	<u>y. (no</u>	tably no	pyo.)		.09	.025
				11						01	0.01
910	80.0	85.7	5.7	·	F.P. 1-3% py. frac. F.P. " " "	till,	weak -K	spar		.01	.001
<u>911</u> 912	<u> 85.7</u> 91.0	<u>91.0</u> 95.7	4.3	<u>95%</u> 99%	F.P. " " "		- 11 11			.03	.001
913	95.7	99.2	3.5	11	F.P. Increasing K-sp	var. 5%	pv 3'' 1	vide pv	vein	.01	.001
						·, 5/	PJ 0	<u> pj</u>			
							· · · · · · · · · · · · · · · · · · ·				
ł											
	86	-2787			Sept 26/86			107		1 SE	

÷

	- LOG USH VEI 6 Dep 4	-		7 E \ \ \ \	Skyline Exploratio	113 L.W.			Property: REG	
r				r	Hastings Street, Vancou	iver, B.C. v			Oz/T	Oz/T
SampleNo.	From	То	Length	Rec. %	Rock type				Ag	Au
926	24.9	31.8	6.9		F.P. 2-3% py frac.	fi11			.05	.001
927	65.5	69.5	4.0						.03	.001
928	69.5	72.5	3.0		Main mineral zone cpy. in qtz matrix	10% pyo	tr. sp	n.	.31	.009
929	72.5	75 /	2.9			·			.47	. 309
929	75.4	75.4	3.0		11 11 11 11 11	┨─────┤			.30	.309
931	78.4	83.5	5.1		V.C. 2-3% py. frac	fill			.09	.016
932	83.5	88.5	5.0		V.C. " " "	• LLLL 11			.03	.010
932	88.5	93.5			V.C. " " "	11				.032
935	<u> </u>	93.5	<u>5.0</u> 5.0		V.C. '' '' ''	11			.05	.013
935	98.5	103.5	5.0	·····	V.C. '' '' ''	11 .			.03	.001
		103.5			V.O				05	.001
	<u> </u>									
					······					
	- <u>.</u>									}
	·····	· · · · · · · · · · · · · · · · · · ·								
			· · · · · · · · · · · · · · · · · · ·							
			· · · · · · · · · · · · · · · · · · ·							
			······							
	· · · · · · · · · · · · · · · · · · ·									1
	·									1
										
										l
										1
					Sept. 26/86					1

ASSAY MBS86-	— LOG - 107				Skyline Exploration	ns Ltd.		Pro	perty: REG	·
		2	nd Floor, 6	675 West	Hastings Street, Vancou		V6B 4Z1 (604)	683-6865	Oz/t	Oz/t
mpleNo.	From	То	Length	Rec %	Rock Type				Ag	Au
6	24.0	29.5	5.5	96%	1% py in qtz Alt.	v.c.	<u> </u>		.06	.022
78	226.6	231.0	4.4	99%	5% py F.P.				.04	.006
8	231.0	235.5	4.5	95%	Crackle Bx. K-spar	Ank.			.04	.011
9	235.5	238.5	3.0	70%	Fault zone, mud se	am 6"			.01	.002
.0	238.5	242.0	3.5	99%	1% py F.P.			······································	.01	.002
						. <u> </u>				}
										ļ
							+			
				!						
							++			
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
							<u> </u>			
							}			
										T

ASSAY DDH S86		Or.	d Eleor (S75 Moot	Skyl	ine Explor	atior	ns Ltd.				ty: REG	
	From	To				s Street, Var		/er, B.C. \	768 421 (t T	504) 683-6 T	865		
SampleNo. 941	29.4		Length		Rock							Ag	Au
941 942	34.8	34.8	5.4 5.9	98%		V.C. K-sp	oar,	ank, qt	z. as m	icro-ve	inlets	. 02	.00
943	40.7	45.2		70%	same			<u> </u>				.04	.01
943 944			4.5	70%	same							.03	.01
944 945	<u>45.2</u> 51.8	<u>51.8</u> 56.8	6.6	98%		Rock, Aut	obre	ecciated	heavy	K-spar,	Ank. 2%p		.01
945 946	56.8	62.0	5.0	11	same						 .	.02	.02
947	62.0	66.5		11	same							.01	.01
948	66.5	71.3	4.5	11	same			<u> </u>				.01	.01
949	71.3	75.4	4.0		same						44	.01	.00
950	75.4	81.1	5.7	11 .	same							.01	.00
951	81.1	86.0	4.4		same							.03	.01
952	86.0	92.0	6.0		same	······						.01	.01
953	92.0	92.0	3.2	11	same same						<u> </u>	.01	.00
954	113.8	118.5	4.7			Rock, sil	icif	ied or	adelo B	K-an	<u> </u>	.03	.000
						tr. cp			ackie D	r, r-sp	dr	.01	.002
955	118.5	124.2	5.7	11	same							.02	.003
956	124.2	129.0	4.8	11	same	······································			· · · · · · · · · · · · · · · · · · ·		╉╼╼╍╍╸╴╴╏	.02	.00
957	129.0	133.8	4.8			Rock, sil	icif	ied. 6%	DV 0.5	CD.	ł	.07	.000
						ure filli			, <u>p</u>) 015	° °P		.05	
958	133.8	138.6	4.8	11	same							.14	.003
959	138.6	143.7	5.1	- 11	same					L	╂	.60	.012
960	143.7	148.9	5.2	11	same						╂────╂─	.30	.049
961	148.9	152.0	3.1			y 3% cp i	n qt	z matri	x		┨────┤─	.50	.043
962	152.0	155.0	3.0	11	same						╊────┣─	.37	.059
						· · · · · · · · · · · · · · · · · · ·					<u>├</u> ─────		
											<u>├</u> ──── <u>├</u>		
	-												
		,									<u>├</u> ────┤─		
									····		<u> </u>		
											<u> </u>		
		-3188											

APPENDIX II

-

1000

ASSAY LOGS - UNDERGROUND SAMPLING

ASSAY ·			ground H ground H ground H		S	Skyline	Expl	oratio	ns Ltd.					Propei	rty:	
ampleNo.	From	То	Length	Rec. %		Rock	type									
B2001	1.5'	channe1	across	qtz.py.	ch.	l. vei	n at	back	393' re						·····	
LW2002		dhanne 1	across c	tzpy	ch1	map v	vein a	it wal	1 391'		101					
LW2003	2.0'	11	across c	tz "	1	- <u>n</u>			396'	1-						
LW2004	2.0'		across	11 11				11 11	, 402 '	11	11					
F2005	6.5'	dhannel	along ve	in at f	ace	424	ref.	101		1						
					1											
			1	1						1			1		. <u> </u>	
				<u> </u>	1					†				4.		-
			<u> </u>	<u> </u>			<u> </u>			+						
													_			
ł	····						<u>.</u>									
							<u> </u>						_			
{		•	}							<u> </u>						
				- <u></u> .	<u> </u>											
ł												 				
			<u> </u>		 											
	······		· · · · ·		·					<u> </u>						
					ļ					<u> </u>						
	·····															
						······································										
					1			<u> </u>		1						
					1					1						
	······································		1		·											
				1						1						
			1		1				her 	+			-			

	<pre>/ — LOG round per bolo</pre>			S	kyline Explorati	ons Ltd.			Prope	rty: Reg	5
			nd Floor, 67	5 West Hast	ings Street, Vanco	uver, B.C.	V6B 4Z1 (6	604) 683-68 	865	Oz/T	Oz/T
ampleNo	Station No.	Footage		Ro	c k Type					Ag	· Au
^-1	109 W	27.0	App. Bea	ring 200	G.R. Dip Flat						
914	0.0	2.0		He	avy sulphides	30% ру				. 42	.09
15	2.0	4.0		1%	ру					.15	.03
16	4.0	6.0		[tr	1% py	,				.09	.01
17	6.0	8.0								.06	.00
18	8.0	10.0								.02	.00
19	10.0	12.0								.04	.00
20	12.0	14.0		"						.03	.00
21	14.0	16.0								.10	.0:
22	16.0	18.0		11						.01	.03
23	18.0	20.0		5%	ру					.03	. 02
24	20.0	22.0			- 1% py					.02	.00
25	22.0	24.0		sa	me					.02	.0
				······································		-					
											1
					······		-				
									1		1
			· · · · · · · · · · · · · · · · · · ·								1
					, and the second s		-				
											1
											1
			· · · · · · · · · · · · · · · · · · ·								1
											<u> </u>
											<u> </u>
	1	·····	 								1
		· · · · · · · · · · · · · · · · · · ·	 								
	-	······			·····						
	- 		<u>├</u>		······································				1	}	1

	— LOG Adit Sε	mpling				vyline Exploratio				-	erty: REG	
		2r Ft.	nd Floor, 6 Ft.	675 West H	lasti	ngs Street, Vancou	ver, B.C. V	V6B 4Z1 (6	04) 683-68	65	Oz/T	Oz/T
SampleNo.	Station	From	То	Panel Area	Loc	ation & Rock Ty	pe	[Cu%	Ag	Au
2001	101	393.0	394.5			k 30% py. tr.		qtz matr	1X		.14	.008
2002	101	392.0	393.0	1.5x1.0	Lft	W1. 15% py. tr	. cp. m	ag hem.			.01	.001
2003	101	396.0	397.0	2.0x1.0	11	" same	*	<u> </u>			.01	.001
2004	101	401.0	402.0	2.0x1.0		same					.01	.001
2005	101	424.0		6.0x1.0	Fac	e 15% py. tr.	chl. in	qtz mat	rix		.10	.011
2006	107	117.0		4.0x2.0	TI	6% py. tr. o		†		·	.01	.002
2007	107	117.0		4.5x2.5	11		hl.	 			.01	.001
2008	107	117.0		2.0x2.0		10% py. in c		rix			.04	.003
2009	108	45.0	48.0	3.0x3.0	Lft	W1. 5% py. tr.					.02	.005
2010	108	45.0		3.0x3.0	11	" same		<u> </u>			.02	.001
2011	108	47.0		3.0x3.0	11	" same		<u>}</u>			.05	.007
2012	108	47.0		3.0x3.0	11	'' same	·······	<u> </u>			.28	1.190
2013	108	50.0		3.0x3.0	11	" 20% ру 1% ср	Hangin	g wall		.19	.26	.236
2014	108	50.0		4.0x3.0	11	" same		<u> </u>		.14	.14	.022
2015	108	54.0		3.0x3.0	11	" 80% ру 8% ср	main V	'ein		.91	.47	.066
2016	108	54.0		4.0x3.0	11	" same	· _ · _ · _ · _ · · · · · · · · · · · ·	<u> </u>		.73	. 35	.067
2017	108	57.0		3.0x3.0	11	'' 15% py 1% cp	Footwa	11		.11	.23	.086
2018	108	57.0		3.0x3.0	11	" same	· · · · · · · · · · · · · · · · · · ·	<u> </u>		.05	.19	.123
2019	108	61.0		3.0x1.0	11	" 5% cp in qtz	. matri	ĸ			.36	1.960
2020	108	61.0		3.0x3.0	11	" 3% py leavir					.08	.090
2021	108	61.0		3.0x3.0		same					.12	.094
2022	108	44.0		3.0x3.0	Rt		:p				.02	.005
2023	108	44.0		3.0x3.0	-11	"same	L	<u> </u>			.02	.004
2024	108	47.0		3.0x3.0	11	" same					.06	.006
2025	108	47.0	51.0	3.0x3.0	. 17	" same				. <u> </u>	.10	.004
2026	108	51.0		4.0x3.0		" 15% py. 1% d	p heavy	K-spar		.04	.09	.011
2027	108	51.0		4.0x3.0		" same				.03	.05	.018
2028	108	55.0		3.0x2.0		" 80% py 8% cp	tr. st	ephanite	?	.55	.42	.035
2029	108	55.0			11	" same				1.97	.76	.039
2030	108	58.0			11	" 5% py minor	K-spar			.06	.21	.245
2031	108	58.0			11	" 2% py minor	-			.97	.77	.436

ASSAY					Skyl	ine Exploratio	neltd		Pro	perty: REG	
	dit sam _j	Ft Pling 2r	nd Floor, Ft	675 West		s Street, Vancou		V6B 4Z1 (604	4) 683-6865	0z/T	Oz/T
SampleNo.	Station No.	From	То	Panel Area	Locati	on & Rock Ty	pe	1	Cu%	Ag	Au
2032	108	60.0	64.0	3.0x3.0	Rf wl	. 2% py. min	or K-spa	r		.03	1.101
2033	108	60.0	64.0	3.0x3.0	11 11	same				.03	.060
2034	108	25.0	30.0	5.0x1.0	11 11	same			· · · · · · · · · · · · · · · · · · ·	.02	.00
2035	108	30.0	35.0	11	11 11	same				.01	.00
2036	108	35.0	40.0	11 11	11 11	same				.03	.00
2037	108	40.0	45.0	11 11	11 11	same				.02	.00
2038	108	65.0	70.0	11 11	11 11	same				.02	. 04
2039	108	70.0	75.0	71 71	11 11	3% py tr. c	p 25% qt	z.		.01	.004
2040	108	75.0	80.0	11 11	11 11					.02	.00
2041	108	80.0	85.0	11 . 11	11 11	same				.02	.00
2042	108	25.0	30.0	11 11	Lft Wl	2% py minor	K-spar	tr. chl		.01	.00
2043	108	30.0	35.0	11 11		same				.01	.00
2044	108	35.0	40.0	11 11	11 11	same				.01	.00
2045	108	40.0	45.0	11 11	11 11	same				.01	.00
2046	108	65.0	70.0	5.0x4.5	11 11	same				.01	.01
2047	108	65.0	70.0	11 11	11 11	same				.03	. 02
2048	108	85.0	90.0	5.0x1.0	Rgt W		quartz			.01	.00
2049	108	70.0	75.0	5.0x4.5	Lft W	. .	t K-spar			.06	.05
2050	108	70.0	75.0	11 11	11 11	same				.01	.00
2051	108	75.0	80.0	11 11	11 11	same				.01	.00
2052	108	75.0	80.0	11 11	17 17	same				.01	.00
2053	108	80.0	85.0	11 11	11 11	same				.01	.00
2054	108	80.0	0.00	11 11	11 11	same				.04	.00
2055	108	85.0	90.0	11 11	11 11	same				.14	.04
2056	108	85.0	90.0	11 11	11 11	same				.08	.01
2057	?								.01	.02	.01
									·		
						<u> </u>					-

ASSAY Cloutie E & W D:	r Vein	21	nd Floor. 6	675 West	Skyline Exploration Hastings Street, Vancour	1s Ltd. ver. B.C. \	√6B 4Z1 (604		erty: REG	•
	Station				Rock Type		r	Cu%	Oz/T Ag	Oz/T Au
SampleNo. 2058	No E	rootage	Panel Area 4.0x3.0	Local.						
				Face	35% py 1% cp			.17	.07	.024
2059	<u>109 E.</u>		$\beta.0x2.0$		same			.07	.03	.016
2060	109 E		4.0x4.0	11	80% ру 6% ср	·		5.36	1.59	
2061	109 E	L			same			3.32	. 87	.065
2062	109 E		3.0x2.0	11	same			9.88	2.51	.108
2063	109 E		3.0x2.0	11	Heavy K-spar 5% cp			3.50	.82	.279
2064	109 W	23.0	4.0x3.0		5% py 1% cp			7.71	2.76	.269
2065	109 W	11	3.0x3.0	11	80% ру 8% ср			1.05	.70	.179
2066	109 W	11	4.0x4.0	11	5% py 1% cp minor	qtz.	<u>├</u> ────┼─	.22	.08	.003
2067	109 W	11	11 11	11	same			.29	.15	.007
2068	109 W	11	3.0x2.0	11	3% py tr. cp		<u> </u>	.07	.12	.044
2069	109 W		1.0×0.6	11	20% py 8% cp 1% st	ephanit	e?	8.94	6.20	5.100
						······	┨────┤─			
				······································						
	· ·						<u> </u>			
							<u>}</u> }			
			·							╋╼───
				L			┨─────┤──			
						<u> </u>	<u> </u>			
·····										
									_	
								·····		
				······		· · · · · · · · · · · · · · · · · · ·				
		5-2788			Sept 25/86					<u> </u>

	ER WEST						e Exploratio					rty: REG	
3780'	erev.	20	nd Flo	oor, (675 West H	lastings S	Street, Vancou	iver, B.C. V	/6B 4Z1 (6	04) 683-68	65	Oz/T	Oz/T
SampleNo.	Stn. N	d.Footag	e Par	nel	Locatio	n Roc	k Type				Cu%	Ag	Au
2070	109	1013	3.0				tr. cp mod	K-spar			.02	.04	.008
2071	109	10 - 13	1	-11		same					.02	.08	.015
2072	109	10 - 13	"	11	11	15% pv	0.5% cp mo	d. K-spa	ir		.03	.08	.012
2073	109	20 - 23	"	11			tr cp heavy				4.15	1.46	.114
2074	109	20 - 23		11		same	I	<u> </u>			3.95	1.47	.304
2075	109	20 - 23		11		10% py	1% cp heav	y K-span	:		2.06	1.36	.145
2076	109	30 - 33	"	11	71	same					.14	.08	.026
2077	109	30 - 33	11	11	11	25% py	3% cp heav	y K-span	tr.		.88	.28	.035
				<u> </u>				hanite	(Ag ₅ Sb S	2)			
2078	109	30 - 33	"	11	11	80% p	у 8% ср "	11 11 1	1 11 11		8.58	6.53	.052
2079	109	40 - 43		11	11	25% py		11 11 1	1 11 11		9.41	3.23	.088
2080	109	40 - 43	"	11	11		5% cp ''	11 11 1	1 11 11		4.25	1.64	.059
2081	109	40 - 43	t	11	11	same					1.62	.50	.031
2082	109	43	"	11	Face	20% py	3% cp "	11 11 11	11		.92	.29	.022
2083	109	43	11	11	Face	50% py					4.36	1.56	.022
2084	109	43	11	11	11	same			•		5.94	1.36	.031
2085	109	11	8.0x	4.5	11	8% py	tr. cp. mod	K-spar			.64	.27	.023
2086	109	11	- "	. 11	11	Same					.95	. 33	.031
2087	109	11	11	11	11	11					.63	.36	.020
2088	109	11		11	11	11		1			.11	.06	.013
												1	
													1
													1
	, , , , , , , , , , , , , , , , , , ,											1	1

assay X-C	- LOG .UT ./>5tn#	21	nd Floor, (675 West I		ne Exploratio Street, Vancou		V6B 4Z1 (604) 683-	Property: Re 6865	9
ampleNo.	From	То	Longth	Hoc. to	Ro	ck type			Ag	- Aw
2414	A112	27.0-30.0	5.0×3.0	Back Cutout	Heavy	4-spar, 32 pg,	Qtz bx	Cault 2000	.01	.046
2415	11	ic II	10 11	βu	11		11	· (.04	.066
2416	4	18.0-21.0	10 (1	11 11	١٢		ij	1	.01	.010
2417	4	11 11	16 (1	⁴ С. Ц	- 4	4	· 1]	1	F0,	.043
2418	11	9.0-12.0	le 11	46 14	- 11	Ч		· · · ·	.02	.004
2419	"	4 11	11 11	11 11	"(4	- 14	16	.01	000.
2420	11	27.0.30.0	(())	Back XX	"	L,	11	te	,01	1001
2421	13	ic n	() 1)	11. II	(,	ι,	4	4	.06	.134
2422	11	24.0-27.0	11 -1	a y	4	٤١	ч	l _i	10,	.006
24 <u>2</u> 3	4	41 LJ	11 11	4 9	4	4	4	1.	10,	.003
2424	4	21.0-24.0	11 11	{(4	1)	ι.	1	1,	.02	.002
1425		Le 13	4 4	12 4		<u> </u>	4		.01	1001
2426	11	18.0-21.0	h ()	1, 1,	4	4	4	1,	.06	,007
2427	11	íc 11	11 11	4 4	4	4	4	5	,03	1001
2428	1	15.0-18.0	4 4	4 4	•1	้ ๆ	4	11	.03	.021
.429	4	11 11	61 4	ų (j	41		4	1	.09	.070
-430	4	12.0-15.0	4 11	41 (1	11	 (11	1,	.10	.066
2431	41	11 11	4.11	n y		41	1,	11	.05	.046
432	۱	9-0-12.0	1(4	<u>h</u> (4	۱ <u>۱</u>	(₁	1.	.90	1.260
2433	4	11 11	11 11	4 4	د <u>ا</u>	1		11	15.	. 128
434	4	0.0-3.0	11 11	4 11		L	()		10,	,006
2435	1	1/ 11	4 4	<u>ц</u> і.		<u>_</u>	ri	ч	.37	.195
2436	11	li i)	4.0×3.0		! tj	1	(₁	<u> </u>	.02	,013
437	"1		4 1	Right Wall		 Li	L.	ł	,04	.018
2438	11		11 F	11		T!			• • • •	.052
<u> </u>						a <u>,</u>				+
					······································					1
					<i></i>			<u> </u>		1
	······				*,					
										1
		3188								1

				ب							40
ASSAY X-Cut	— LOG				Skyline Exploratio					erty: REG	
	-		- 1	675 West	Hastings Street, Vancou	iver, B.C. V	/6B 4Z1 (6	683-68	365	0z/t	Oz/T
SampleNo.	Stat. 1	F tage	Area	Locat.	Rock Type					Ag	Au
2333	111	91.0	5x2	Fc X-C	3% py heavy K-spar	Otz. b	fault	zone		.08	.009
2334	11	t t	11	11	same	† • • • • • • • • • • • • • • • • • • •				.09	.001
2335	11	11	11	11	same	<u> </u>		}		.04	.016
2336	11	11	11	11	same	ļ		1	[.09	.102
2337	11	96.0	3x6	11	3% py heavy K-spar	qtz bx	tr. gal	. fault	zone	.05	.022
2338	tı	11	**	11	2% py heavy K-apar					.09	.052
2339	11	11	11	11	same				f	1.25	.686
2340	11	11	Ť1	11	same	<u> </u>				.05	.059
2341	11	11	11	11	same	<u>+</u>				.02	.004
2342	T T	11	11	11.	same			 		.06	.005
2343	11	109.0	3x4	11	5% pyheavy K-spar	Dtz bx.	fault z	one		.04	.022
2344	11	11	11	11	same					1.48	3.920
2345	11	11	11	11	same	1				.08	.030
2346	11	11	11	11	same					.03	.023
2347	11	106-109	3x3	RtcW1	Qtz. Bx. 5% py hea	WW K-sna	r fault	7000	<u> </u>	.08	.046
2348	11	11	11	"	same		<u>L_LQULC</u>	20110	[.10	.040
2349	11	11	11	11	same	1			ł	.04	.022
2350	11	103-106		11	same					.02	.001
2351	11	11	11	11	same					.03	.010
2352	11	11	11	11	same				 	.07	.022
2353	11	105.0	4x4	Fc X-C	3% py heavy K-spar		foult	gono		.02	.012
2354	11		11		same		<u>, tauit</u>	2011		.04	.012
2355	11		11		same	}				2.86	. 398
2356	11	11	11	11	same					.01	.006
2357	11	115.0	3x5	Fc X-C	8% py heavy K-spar	Qtz bx	fault z	one	<u> </u>	.12	.136
2358	11	11	11	11	3% py heavy K-spar					.19	.152
2359				†	8% py same			[.05	.036
2360	11	11	11		3% py same	 				.02	.011
2361	TT	111.0	4x4	Fc X-C- cutout	same	 				.19	.090
2362	11	11	11	urour	same					.04	.090
2363	11	11	11	11	same					.04	.192
ASSAY RE	86- PORT:	3188		DA	Oct. 17/86	HOL	E No.	L	PA	GE	

.

-LOG - Cut Sh #	¿ Clout 2r	ier Drit nd Floor, 6	₩ ₩. ₩ ₩ ₩ ₩ ₩	Skyline Exploratio Hastings Street, Vancou		√6B 4Z1 (6	04) 683-6865	Property: Ro	}
. ¥ From	То	Longth-	-Rec. %	Rock type				Fg	An
2/11	111.0	4.0×4.0	Face Lufor	-3'3 py heavy K-spor at	by fault	ene		.07	.030
1(130,0	4.0x3.5	Face X-C	56py tr. cp. heavy K-	spar Qtz.		Zone triham.	. 10	.037
()	b i	11 IJ	<i>(</i> ())		14 11	4		·06	.015
''	<u> </u>	4 H	11 m	41 (X []	. ti <u>ji</u>		11	. 18	.045
11	11	y 11	Face X. Cout	32 py Lowin K-Spe	w Qtz b	Fault 2	ine		
11	1	4 11	u ji	(1) - (0) - (0)	<u> </u>	4	4	.05	.015
11	11	4 4	16 4	<u>4 4 N</u>	- ((4	1,	.03	.004
$\Delta 109$	84.0-87.0	3.5×3.0	Left Wall	52 py tr. cp. silice	nus FP.			.08	.015
11	11) 1	4.0x 3.0	<u>n n</u>	1/ 11 11	11			.47	.055
11	<u> </u>	15X30	ii (i)	<u>н н</u>	11		,	.05	,002
11	4 4	3.0x 3.0	Back Dr. W	102 pg tr. cp. silic	ous F.P.			.42	.030
- '1	y ti	4 j1	ii v	602 py 66 py. m.	in ven			1.20	.380_
•1	<u>y</u> (<u>4</u> 17	CI II	53 ph trigh.				.39	.036
11	<u>ч</u> ц	11 li	R. yht will	10% pg tr. cp.				.13	1013
-11	ց կ		4 4	u il i''				.09	DIZ
"(11 11	¹ 1 1 ¹	11 11	52 pg trip.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			.14	018
11	75.0.78.0	·i I	Left Wall Dr. W	52 pg tr. cp. silic				.02	.008
<u> </u>	11 11	<u>11</u> .4	41 ij	11 11 11	<u> </u>	tz ven	i fautzne	.02	.001
	4 I)	·1 II	4 11	<u>it (t i</u>	<i>L</i>	ſ		.92	.045
1	h 11	11 [1	Bock Dr.w	52 pg tr. cp.				1.33	.129
<u> ' </u>	<u>4</u> ()	·1 ·1	<u> </u>	602 pg 52 g.m	invein.		_	.26	.082
11	<u>(())</u>	<u>11 11</u>	11 11	1020 pg tr. p. sili	eous F.	P.		.12	.025
<u>(</u>)		4.0×30	Right Wall		4			.11	.019
1	() ()	3.0×3.0	<u>11) </u>	n la n	1 (1	tault 200	e, gtz. vein	.05	F10.
1)		2.0x30	11 11		ett			.72	.031
¹	66.0-61.0	3.0×3.0		je et it et	ι (ι			.01	.003
-11		3-0×3.0	<u>ic </u>	<u>n u</u> n u	<u>u y</u>			.16	.044
+	•,	3.0 X 3.0	11 11	a p li ci	<u>6 11</u>				.027
	(1 ')	3.0× 5.0	Buck Dr.						,044
{}				603 py 63 cp	mun Ve	in		1.11	-598 -015
11 1, 1, 1, 188 EPORT:		(a) (a) (a) (a) (c) (a) (a) (a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	«· 1) 30×30 11 11 11 11 11 11 11 (1) 11 30×30 Back Dr. U 11 (1) (1) (1) (1) 11 20×30 * 11 603 py 63 cp 11 11 40×30 (1) 11 8-9 py tr (p. 5)	«· 1) 30×30 11 11 11 11 11 11 11 11 11 11 11 11 11	" 11 3.0 × 3.0 11 " 11 11 11 11 11 11 11 11 11 11 11	(1) 3.0×3.0 11 11 11 11 11 11 11 11 11 11 11 (1) 11 3.0×3.0 Back Dr. U 11 (1) 11 (1) (1) (1) (1) (1) (1) (1) ((\cdot 1) 3.0×3.0 11 11 \cdot 11 11 0.5 (\cdot 1) 3.0×3.0 Back $D_{1,0}$ 11 (\cdot 11 11 16 (\cdot 1) 2.0×3.0 * 11 6.03 py 6.5 py 6.5 1.11 (\cdot 1) 4.0×3.0 * 11 6.03 py 6.5 py 1.11 (\cdot 1) 4.0×3.0 * 11 6.03 py 6.5 py 6.5 1.11 (\cdot 1) 4.0×3.0 * 11 6.03 py 6.5 py 6.5 1.11

$2395 \Delta 10$ $2396 0$ $2397 0$ $2398 0$ $2397 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 $2408 0$ 100 100 100 100	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	II IJ IJ II IJ II II III III III III III III IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.0x3.0 4.0x3.0	Location Roc. % Right Well """ Left Wall """ Left Wall """ Rack Pr. W """ Right Wall """ """ """	82 py "" "" "" "" "" "" "" "" "" "" "" "" ""	$\frac{1}{1}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1		Aq 19 .22 .03 3.04 .03 3.04 .03 .04 .08 .01 2.80 .44 .19 .15	AU .014 .012 .004 .349 .028 .004 .403 .048 .014
2396 2397 2398 2397 2397 2400 2400 1002	11 1	11 11 11 11 17.0-60.0 11 11 11 11	3.0x30 "" 4.0x3.0 1.0x3.0 4.0x3.0 3.0x3.0 2.0x3.0 4.0x3.0 3.0x3.0 4.0x3.0 3.0x3.0 4.0x3.0 1.0x3.0	""" Left Wall """ Back Pr. W """ Right Walt """ """	$\frac{1}{1}$	11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " "	F.R.	19 .22 03 3.04 .08 .01 2.80 .44 .44	.012 .004 .349 .028 .004 .403
2396 2397 2398 2397 2397 2400 2400 1002	11 1	11 11 11 11 17.0-60.0 11 11 11 11	$ \begin{array}{c} " " " \\ 4_0 \times 3.0 \\ $	""" Left Wall """ Back Pr. W """ Right Walt """ """	$\frac{1}{1}$	11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " "	F.R.	03 3.04 .08 .01 2.80 .44 .44	.004 .349 .028 .004 .403
2398 2397 2400 2401 12402 12402 12402 102404 102404 102406 102407 10240	(1) S (1) (1) (1) (1) (1) (1)	57.0-60.0 11 11 11 11 11 11	40×30 1.0×3.0 4.0×3.0 3.0×3.0 2.0×3.0 4.0×3.0 3.0×3.0 1.0×3.0	Left Wall Ox.w """ Back Pr.W """ Right Wall """	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ \end{array} $	4 4 4 11 4 11 10 10 10 10 10 10 11 11 11	(i (i) (i) (i) (i) (i) (i) (i) (F.R. "	3.04 .08 .01 2.80 .44 .10	.349 .02.8 .004 .403 .048
2397 2400 2401 12402 1401 1402 1403 1404 1405 1405 1406 1406 1407 1408 1407 1408 1407 1408 1407 1408 1407 1407 1408 1407 140		11 17 14 17 14 17 14 17 14 17 15 D-48.0	1.0×3.0 4.0×3.0 3.0×3.0 2.0×3.0 4.0×3.0 3.0×3.0	""""""""""""""""""""""""""""""""""""""	11 11 11 10 10 10 11 11 11 11	" " " " " " " "	i ii ii ii ii ii ii ii ii ii ii ii ii i	F.R. "	3.04 .08 .01 2.80 .44 .10	.349 .02.8 .004 .403 .048
2400 1401 1402 1402 1403 1404 1405 1405 1406 1406 1406 1406 1407 1408 1407 1408 1407 1408 1407 1408 1407 1407 1408 1407 1407 1408 1407 1407 1408 1407 1407 1408 1407 1407 1407 1408 1407 1407 1408 1407 1408 1407		11 17 14 17 14 17 14 17 14 17 15 D-48.0	1.0×3.0 4.0×3.0 3.0×3.0 2.0×3.0 4.0×3.0 3.0×3.0	""""""""""""""""""""""""""""""""""""""	11 11 602 p 82 p 11 p	11 11 11 11 14 12 cp 17 cp 51 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F.R. "	.08 .01 2.80 .44 .44	.02.8 .004 .403 .048
$ \frac{401}{2402} + \frac{1}{2402} + \frac{1}{22402} + \frac{1}{$	1 1 1 1 1 1 1 1 1 1 1	11 11 1 11 1 11 1 11 1 11 11 11 15.0-48.0	4.0×3.0 3.0×3.0 2.0×3.0 4.0×3.0 3.0×3.0 1	Back Dr. W """" Right Wall """"	11 602 p 82 p 11 p	11 11 14 62 cp 17. cp 51 11	il nain Veiu il iceons il	F.R. "	.01 2.80 .44 .19	.004 ,403 ,048
$ \frac{24}{2402} i \\ \frac{403}{1404} i \\ \frac{404}{1405} i \\ \frac{405}{1406} i \\ \frac{405}{1406} i \\ \frac{407}{1408} i \\ \frac{2408}{1407} i \\ \frac{2408}{1407} i \\ \frac{2410}{140} i \\ $		11 11 1 11 1 11 1 11 1 11 11 11 15.0-48.0	3.0×30 2.0×3.0 4.0×3.0 3.0×3.0 11 11	(1 4 11 11 Right Walt 11 11	602 p 82 p 1, p	1 62 cp 1 . cp 5 1	il nain Veiu il iceons il	F.R. "	2.80 .44 .16	,403 ,048
2402 1 403 1 404 1 405 1 406 1 406 1 407 1 408 1 2408 1 2410		· · · · · · · ·	2.0 x 3.0 4.0 x 3.0 3.0 x 3.0 	(1 4 11 11 Right Walt 11 11	602 p 82 p 1, p	1 tr. (p S)	liceons.	F.R. "	·44 ·16	,403 ,048
403 1 404 1 405 1 406 1 406 1 407 1 408 1 408 1 409 1 2410		· · · · · · · ·	40×30 30×30 11 11	Right Wall	82 /J 1, /J 11	1 tr. (p S)	liceons.	F.R. "	·44 ·16	.048
404 1 405 11 406 1 407 1 2408 1 2408 1 2409 1 2410		1 11 (1 11 (1 11 (1 11 (1 11) (1 11)	3.0×3.0	Right Wall 1. 11 1. 11	1, 1 <i>0</i>		4	4	.16	
405 11 406 1 407 1 408 1 408 1 2409 1 2410		(1 1) (1 1) (5.2-48.0	<u>li (j</u> 11 li	1, 1j (1, 1)	"(- <u> </u>			<u> </u>
406 407 408 1408 1409 1409 1409 1409 10		(1 (1 15.0-48.0	a li	<u>4</u> 11			+ <u>'</u>	<u>↓ -` ↓</u>		.016
407 408 408 409 2410 2411		+5.0-48.0					1.1	4	1.14	.184
2408 1 2409 1 2410 2411	1)		1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11 11	1	1(1(it	 .07	.03
2410			4 1	N 1)	1.	1	()	l	 .12	1051
2410	כו א	3.0-35.0	4 11	4 11	4	()	$\frac{1}{1}$.14	.010
2411		4 11	1 11	() 4	· ·(· · ·			 .42	.034
		1.0-24.0	4 - (·1 10		() ()	1.		 .01	,001
			<u> </u>	4 4	4	(4	11	 .0.7	,028
		108.0 108.4		Loft Wall		1 king			 1	101.40
-112 -		100.0 100.5	0.27 (0.5		Qtzbx,	heavy K-spar, s	15 pg 12. ¥	h-gal V. F.		101,-10
									 •	
						······				
						·····				
SG - 3/5 ASSAY REPO										

ASSAY Cloutie	- LOG r Drift				Skyline Exploratio					erty: _{REG}	
	a			675 West	Hastings Street, Vancou	iver, B.C. \	/6B 4Z1 (6	683-68 	365	<u> 0z/T</u>	Oz/T
SampleNo.	Stat.#		Panel Area	Locat.					Cu%	Ag	Au
2247					Dr W. 3% py F.P.			1		.33	.070
2248	11	11 11	11 11	11	10% py heavy K-spa	r 1% cp	fault z	one		.41	1.151
2249	11	11 11	4x3	11	3% py F.P.					. 33	.542
2250	11	131-132	1x4	11	Qtz vein 5% py 1%	çp 1% te	t V.G.			10.74	9.760
2251		121-124		Bck Dr V	7. 10% py 1% cp					.17	.097
2252	11	11 11	3x3	11 11	60% ру 6% ср (Ма	in Vein)				2.56	7.040
2253	tt	11 11	3x3	11 11	same					.54	.163
2254	11	11 11	3x3	Rt Wl Dı	W. 5% py heavy K-	spar				4.71	.454
2255	11	11 11	4x3	11	5% py mod. K-spar					.15	.056
2256		112-115	3x3	Lt W1 Dı	W. 3% py F.P.					.19	.072
2257	11	11 11	3x3	- m	10% py heavy K	-spar 1%	cp, fa	ult zone		.67	.592
2258	11	11 11	3x3	11	3% py F.P.					.05	.006
2259	11	11 11	3x2	Bk Dr W	10% py 1% cp.					.08	.013
2260	11	11 11	3x4	11 11	50% py 5% cp (Main	Vein)				1.49	.083
2261	11	17 11	3x3	11 11	same					.50	.108
2262	11	11 11	11	Rt Wl Di	W 5% py mod K-sp	ar				.20	.039
2263	11	11 11	11	11	10% py 1% cp in qt		fault	kone		.10	.245
2264	11	17 11	HT .	11	5% py mod K-spar F	<u></u>				.02	.042
2265	11	134.0	Grab	Fc Dr W	8% py tr. cp & gol		ed mine	ral x?		2.58	38.850
2266		103-106		Lf Wl D:						.62	.125
2267	11	11 11	11	11 11	same fault zon					.48	.071
2268	11	17 11	11	11 11	5% py F.P. mod K-s					.76	.025
2269	11	11 11	3x2	Bk Dr W						.11	.009
2270	11	11 11	3x4	11 11	60% py 6% cp (Main	Vein)				1.19	.115
2271	11	11 11	3x3	17 17	same (fault zone)	· · · · · ·				.37	.095
2272	11	11 11		Rt W1 D	W 5% py tr. cp F	.P.	·····			1.06	.203
2273	11	11 11	71	11 11	same					.04	.102
2274	11	ii ii	TT	11 11	15% py 1% cp fault	zone			·····	.02	.026
2275	11	94-97	11	Lf W1 D	. W. 5% py F.P. he		ar			.52	5.580
2276	11	11 11	11	<u>n n</u>	60% py 5% cp			zone		1.06	2.090
2277	11	11 11	11	11 11				······································		.04	.007
ASSAY RE	PORT: 86	-3188		DA	Oct 17/86	но	E No.		PA:	GE	3

...

مال²

ASSAY CLOUTIE		E&W	X-C		Skyline Exploratio				-	erty: REG	
				, 675 West	Hastings Street, Vancou	Iver, B.C. V	/68 421 (6	04) 683-68	65 	Oz/T	Oz/T
ampleNo.	Stat #	F'tage	Panel Area	Locat.	Rock Type				Cu%	Ag	Au
2278	109	94 - 97	3x3	Bk Dr W	10% py tr. cp	1				.03	.00
2279	11	11 11	11	11	60% py 6% cp (Mair	vein)				. 30	.02
2280	11	11 11	11	11	20% ру 1% ср					. 34	.01
2281	11	11 11		Rt W1 D	W 5% py 1% cp					.22	.01
2282	11	11 11	11	11	10% py 1% cp H	ault zor	e			.12	.04
2283	11	11 11	11	11	5% py F.P. med K-s	par				.07	.09
2284	111	35.0	4x2	Fc X-C	3% py heavy K-spar					.01	.00
2285	11	11	4x1	11	10" qtz vein & fau					.01	.00
2286	11	11	4x2	17	3% py heavy K-spar	·				.01	.00
2287	109	121-124	3x1	Rt W1 D	W 10% py 1% cp i		trix fa	ilt zone	<u></u>	2.17	1.89
2288	111	55.0	4x2	Fc X-C	3% py heavy K-					.08	.00
2289	11	11	4x2	11	12" qtz vein & fau					.19	.00
2290	11	11	4x2	11	3% py heavy K-spar					.03	. 00
2291	109	67-70	3x3	Rt W1 D	E = 5% py heavy K-		% ср			.07	.01
2292	11	11 11	Ŧ1	11	same		·• - <u>F</u>			.21	.01
2293		11 11			same					.44	.02
2294	11	11 11	11	Bk DrE	60% py 6% cp Main	Vein				1.66	.05
2295	11	11 11	F1		same					1.50	.04
2296	11	11 11	11	11	same	1				.23	.03
2297		11 11	11	Lf W1 D		nging wa	11			.29	.17
2298	11	11 11	11		SAME					.15	. 02
2299	11	11 11	11	11	same					.10	.00
2300	11	76-79	11	R+ W1 D	E 8% py 1% cp he	avy K-er	ar			.02	.01
2301	11 11		11		same	avy K-Sp	ar			.01	.00
2302	11	11 11	11		same					.01	.01
2303	11	11 11	11	Bk Dr E		vein				.14	.01
2304	11	11 11			same					1.72	.02
2305	11	11 11	11		30% py 1% cp Main	vein				.99	.11
2306	11	11 11	11	Lf W1 Dr			par		·	.34	.01
2307	11	11 11	11	11	60% py 6% cp m					.21	.02
2308	11	11 11	11		60% py 6% cp					.60	.01

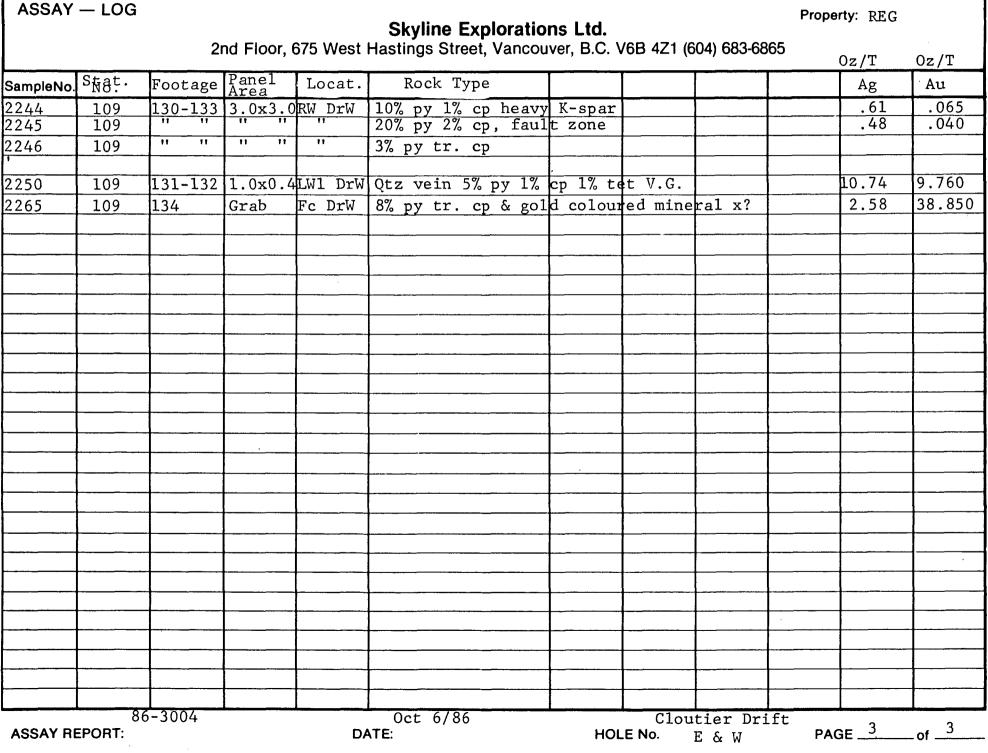
	- LOG r drift	E & X-0			Skyline Explorations Ltd.		Property: reg	
	<u> </u>			675 West I	lastings Street, Vancouver, B.C. V6E	3 4Z1 (604) 683-6865	Oz/T	Oz/T
SampleNo.	Stat #	F'tage	Panel Area	Locat	Rock Type		Ag	Au
2309	109	85-88	3x3	Rt WI Dr E	10% py 1% cp heavy K-spar f	ault zone	.05	.012
2310	**	11	11	- 11	same		.03	.009
2311	11	11	11	11	same		.05	. 008
2312	11	11	11	Bk Dr E	20% py 1% cp fault zone		.08	.016
2313	11	11	11	11	same		.27	.027
2314	11	11	11	11	same		. 31	.010
2315	11	11	11	Pt R1	same		.21	.011
2316	11	11	TT	11	same		1.74	.124
2317	11	11	11	11	same		1.77	. 372
2318		88.0	5x2	Fc Dr E	same		1.33	.343
2319	11	11	5x2	11	same		.06	.021
2320	111	61.0	2x3	Fc X-C	2% py mod. K-spar		.11	.013
2321	11	11	1.5x3.0	11	5% py tr. cp qtz vein fault	zone	.13	.007
2322	11	11	2x3	11	3% py heavy K-spar		.02	.001
2323	11	67.0	3.5x3.0	11	same		.03	.001
2324	11	11	2.5x3.0	11	5% py tr. cp qtz vein fault	zone	.08	.001
2325	11	11	3.5x3.0	11	3% py heavy K-spar		.03	.001
2326	11	80.0	3x3	11	same		.01	.001
2327	tı	11	11	11	5% py tr cp qtz vein fault :	2000	. 35	.024
2328	11	11	11	11	3% py heavy K-spar	20116	.01	.024
2329	F1	86.0	4x4	11	2% py heavy K-spar fault zor	ne l	.02	.004
2330	11	11	11	-11	2% py med K-spar fault zone		.03	.001
2331	11	11	11	11	20% py 2% cp alt. rock 10%		.06	.002
2332	11			- n	3% py 5% qtz. (vein)		.05	.002
	··					·····	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·						
	<u> </u>	 						

	— LOG r Drift				Skyline Exploration				operty: REG	
		2	nd Floor, 6	675 West	Hastings Street, Vancour	ver, B.C. \	/6B 4Z1 (60)4) 683-6865	Oz/T	Oz/T
SampleNo.	Stn. No	Ftage	Panel Area	Locat	Rock Type			Cu%	Ag	Au
2089	109	25-28	3x3	Bk DrE	8% py 1% cp heavy	K-spar,	F.P.	.01	.01	.00
2090		11 11	11 11	11	60% py 6% cp 10%			2.07	.56	.18
2091	11	11 11	11	11	same			3.52	. 87	.05
2092	11	34-37	11 11	11	8% py 1% cp heavy	K-spar	F.P.	.11	.06	.03
2093	11	11 11	11 11	F1	80% py 8% cp 10%			1.69	. 41	.16
2094	11	11 11	11 11	11	same			1.98	.61	.14
2095	11	44-47	11 11	Ħ	8% py 1% cp heavy	K-S F.F	1. 1	.26	.07	.01
2096	11	11 11	11 11	F1	80% py 8% cp 10%			3.82	.87	.04
2097	11	11 11	11 11	11	same	1		3.97	The second se	.05
2098	11	49.0	4.0x1.0	FcDrE	10% py 5% cp 10% c	tz (Mai	n Vein)	. 12	.03	.01
2099	11	11	5.0x1.0	11	same	**	1	3.62	.78	.05
2100	11	45-48	3.0x3.0	BkDrW	30% ру 3% ср (Ма	ln Vein)		1.73	.62	.14
2101	11	11	11 11	11		n Vein)		1.35	. 30	. 02
2102	11	11	11 11	11	5% py tr. cp mod H	(-spar F	.P.	. 15	.13	.03
2103	11	35.5-38	3.5 "	11	30% py 3% cp 10% o	tz (Mai	n vein)	.29	.12	. 02
2104	11	11 11	11 11	11	same	F			.10	.00
2105	11	11 11	11 11	11	8% py tr. cp. F.P				.21	.01
2106	11	10 - 13	3 '' ''	biene Ha	¹¹ 8% py tr. cp. hea	ivy K-sp	ar F.P.	.13	.06	.00
2107	11	11 11	11 11	11	same				.10	.00
2108	11	11 11	11 11	11	same				.04	.01
2109	11	20-23	11 11	11	25% py 2% cp heavy	K-spar(Main Vei	n) 3.19	.86	.03
2110	11	11 11	11 11	11	60% py 5% cp 10% qt	z (Main	vein)	2.20	. 59	.04
2111	11	11 11	11 11	11	same				.53	. 31
2112	11	30-33	11 11	11	same			.02	.03	.02
2113	11	11 11	11 11	13	same			.02	.05	.01
2114	. 11	11 11	11 11	11	same			. 02	.10	.07
2115	11	40-43	11 11	11	10% py 1% cp heavy	K-spar	F.P.	.03		.17
2116	11	11 11	11 11	11	same			.04		.10
2117	11	11 11	11 11	11	same				. 32	.92
2118	FT .		5 1.0x5	0 bfft	E ¹¹ 8% py tr. cp he	avy K-s	par	.01	.01	.00
2119		22.5-27.	5 '' ''	11	same			.02	.01	.00

	- LOG	t E & W	nd Elect	675 \N/oot	Skyline Exploratio	ns Ltd.				erty: REG	
	Stat. ;	- Ftage			Hastings Street, Vancou	iver, B.C.	V6B 4Z1 (6	683-68 	65	Oz/T	Oz/T
SampleNo. 2120			Panel Area	Locat.	Rock Type				Cu%	Ag	Au
	109	27.5-32		DFF RT	8% py tr. cp heavy	K-spar			.01	.01	.008
2121	11	32.5-37.			same				.02	.01	.006
2122	11	37.5-42.			same				.01	. 02	.001
2123	11	42.5-47.			same	,			.03	.03	.001
2124	11	55.0	1.0x8.0		3% py Qtz stockwo		p heavy	K-spar		.03	.009
2125			4.0x4.0		20% py 2% cp (Main	Vein)				. 59	.035
2126			4.0x4.0	l	same				2.84	. 64	.012
2127			3.0x4.0		80% py 8% cp 10% q	z (Mair	Vein)		3.09	.81	.018
2128			3.0x3.0		same					1.01	.026
2129		55.0	3.0x4.0	Fc Dr W	8% py 1% cp				.03	.03	.003
2130 2131		11	4.0x4.0		15% py 3% cp (Main				4.42	1.36	.186
			2.0x4.0		80% py 8% cp (Main	Vein)				1.26	.098
2132	11	ļ	2.0x4.0		same					.43	.042
2133	11		3.0x4.0		5% py tr. cp med.	K-spar				.14	.026
2134			3.0x4.0		same				1.61	.46	.044
2135		54.0x57.		bftWe	same				.06	.03	.004
2136	11 	11 11	<u> </u>	11	same				.03	.04	.001
2137		11 11	".	11	same					.05	.014
2138		11 11	r1	<u>Bk Dr E</u>	8% py 1% cp heavy	K-spar				.13	.019
2139		11 11	11	11	80% py 8% cp 10% q	z (Main	Vein)			.42	.039
2140		11 11		11	same					. 81	.035
2141	11		11	Rt W1 D1	Е. 20% ру 2% ср (1	lain Vei	n)			.44	.018
2142	 		T1	11	same				······································	.19	.034
2143	·		11		10% ру 1% ср					.12	.024
2144	11 	61.0	3x8		5% ру 1% ср				.74	.19	.014
2 <u>145</u> 2146	11 	11	5x5	11	80% py 8% cp 10% q	z (Main	Vein)		8.72	2.04	.044
	11	- 11	3x5		same					1.21	.039
2147	11		<u>3x1</u>		5% ру 2% ср					.07	.035
2148	11	66.0			5% py tr. cp					.11	.011
149	11	11	1.5×2.0		80% py 8% cp 10% q	z. (Mai	n Vein)		5.44	1.41	.130
2150		-2962/86	2x3	11	same Oct 3/86				.19	.12	.063

ASSAY		D C 11			Skyline Exploration	ns Itd.			Prope	erty: REG	
CLOUTIE X-Cut A		E & W 21	nd Floor, 6	675 West I	Hastings Street, Vancou		/6B 4Z1 (6	04) 683-6	865	Oz/t	Oz/T
SampleNo.	Sta.#	Ftage	Panel Area	Locat.	Rock Type				Cu%	Ag	Au
2151	109		2.0x3.0	Fc DrW	5% py tr. cp heavy	K-spar			1.65	.60	.009
2152	109	11	11 11	11 11	80% py 8% cp 10% d	tz (Mai	n Vein)		2.45	.81	.106
2153	109	11	3.0x4.0	11 11	5% py tr. cp Qtz s	tockwor	k med K-	spar	.20	.18	.023
2154	109	66.0	2.0x3.0	Fc DrE	8% py 1% cp heavy	K-spar				.07	.008
2155	11	11	3.0x3.0	11	80% py 8% cp 10% o		n vein)		2.77	.67	.012
2156	11	11	2.5x3.0	11	same					1.15	.031
2157	11	11	2/5x3/0	11	8% py 1% cp heavy	K-spar			.34	.09	.011
2158	11	42-47	5.0x3.0	LtW1X-C	1% py med K-spar					.03	.001
2159		47-51	4.0x3.0		same				.03	.02	.004
2160	11	51-55	11 11	11	1% py heavy K-spar	r			.01	.01	.004
2161	11	51-55	11 11	11	2% py heavy K-spar		z fault	zone		.04	.001
2162	11	51-55	11 11	11	same				.01	.01	.001
2163	11	47-51	11 11	11	same					.02	.001
2164	11	42-47	5.0x3.0	11	2% py heavy K-spar	t 10% qt	z		.01	.01	.009
2165	11	55.0	3.0x3.0	FcX-C	same					.03	.001
2166	11	11	11	11	2% py heavy K-spar	r 20% qt	z fault	zone	.01	.01	.001
2167	11	11	"	11	1% py heavy K-span				.01	.01	.001
2168	11	41-46	5.0x1.0	RWX-C	1% py mod K-spar 2	0% gtz	fault zo	ne	.01	.01	.001
2169	11	46-51	11	11	1% py F.P.					.02	.001
2170	11	51-56	11	11	same					.02	.001
2171	11	77.0	1.0x4.0	FcDrW	5% py mod K-spar	r. cp.				. 35	.051
2172	**	11	4.0x4.0	11	80% py 8% cp (Main					1.01	.096
2173	11	11	2.5x4.0		5% py tr. cp Qtz					.20	.034
2174	11	11	2.0x4.0		same				. 82	.31	.022
2175	11	71.0	5.0x1.0	and the second se	40% py 4% cp heav	K-spar	(Main V	(ein)	6.11	1.43	.102
2176	11	11	11 11	11	same	1			4.99	1.25	.563
2177	11	77.0	4.5x3.0	FcDrE	80%py 8% cp 10% q	tz (Main	Vein)			1.47	.047
2178	11	11	2.5x3.0		20% py 2% cp 10%	tz (Mai	h Vein)			.58	.040
2179	11	11	2.0x3.0	and the second se	5% py 1% cp heavy	K-spar				.17	.201
2180	11	79-82	3.0x3.0		80%py 8% cp heavy	K-spar	(Main Ve	in)		2.10	.270
2181	11	82.0	4.0x2.0	Fabril	40% ру 4% ср (Маі	h Vein)				.51	.033

ASSAY REPORT:


DATE:

HOLE No.

PAGE **~**f

ASSAY CLOUTI		TE&W	nd Floor (Skyline Exploratio				Property: REG	
	Stat.	· · · · · · · · · · · · · · · · · · ·			Hastings Street, Vancou	ver, B.C. v	/6B 4Z1 (t	1	Oz/T	Oz/T
ampleNo.	No	Footage	Area	Locatio					Ag	Au
2182 2183	109	82.0	2.0x4.0	FC DrW	40% py 4% cp (main				. 58	.046
	100	00.0	2.0×5.0		5% py tr. cp. med				.17	.010
2184	109	82.0	2.0x4.5	FC DrE	80% py 8% cp 10% d	itz (mai	n vein)		2.00	.117
2185		11	11 11	11 11	same				1.61	.136
2186 2187		11	11 11	11 11	10% py K-spar tr.	cp.			.57	.025
2188		87.0	1.5x4.5		same 80% py 8%cp (Main	Voim			.63	.058
		07.0				vein)			·····	.105
2189		11	2.0×4.5		same				.50	.070
<u>2190</u> 2191		11	2.5×4.0		same				.44	.045
2191			2.5x3.5 2.5x3.0		10% py				.41	.047
2193	109	55.0			Hoore Varan 2%			· · · · ·		
2195	105	1	<u>3.0x3.0</u>		Heavy K-spar, 2% p Heavy K-spar 1% p		Fault (one	.01	.007
2195	11	11	11 17	11 11	F.P. 2% py	0% 422			.01	.001
2196		97.0	3.0x3.0	FcDrW	3% py tr. cp Alt]	י די קי			.12	.001
2197	11	11	3.0x3.0	11 11	same	•1 •			.90	.083
2198	F 1	11	2.0x3.0	11 11	80% py 8% cp 10% d	itz (Ma	in vein'		1.16	.078
2199	11	11	2.0x3.0	11 11	3% py tr. cp Alt I			1	1.38	7.740
2200	• • • • •	11	4.0x3.0	11 11	same				. 46	.106
2201	11	11	11 11	11 11	same				.34	.075
2202	109	106.0	2.0x2.0	FcDrW	5% py tr. cp 10% c	tz			.34	.075
2203	11	11	2.0x3.0		80% py 8% cp (Mair				.03	.022
2204	11	11	2.0x4.0		5% py tr. cp.				.12	.095
2205	TT	101-106	5.0x1.5	L.W.DrW	80% py 8% cp				.68	.098
2206	109	106-111	FT TT	11 11	same		· · · · · · · · · · · · · · · · · · ·		.46	.291
2207	11		3.5x2.0		10% py tr. cp				.10	.041
2208	11		3.5x2.0		80%ру 8%ср				.34	.033
2209	T1	T	3.5x2.0	the second s	10% py tr. cp				. 35	.044
2210	11		4.5x2.0		same				.04	.029
2211	11	11	4.5x2.0		80% ру 8% ср				.18	.102
2212	86-30	11	4.5x2.0	11 11	80% ру 8% ср				1.80	.241

ASSAY		t E & W			Skyline Exploration	ns I td		Prope	erty: REG	
			nd Floor, (675 West	Hastings Street, Vanco		/6B 4Z1 (604) 68	3-6865	Oz/T	Oz/T
ampleNo.	Stat. No.	Footage	Panel Area	Locat.	Rock Type				Ag	Au
2213	109	88.0	B.5x2.0		80% py 8% cp 10%	dtz (Maii	n Vein)		1.28	.098
2214	11		4.0x2.0	1	Heavy K-spar 10%				.03	.003
2215	11	"	5.0x2.0		5% py Heavy K-spa	1			.02	.001
2216	11	11	5.5x2.0		same	,			.06	.010
2217		117.0	5.0x2.5		5% py tr. cp				.09	.038
2218		"	4.5x2.5	11 11	Fault zone Heavy				1.13	.094
2219		11	4.5x2.5	11 11	5% py tr. cp 10%				.42	.084
2220	11	11	5.0x2.5	11 11	20% py 2% cp 10%	qtz (Mai	n Vein)		1.25	.48
2221	TT	122.0	5.0x1.0		8% py tr. cp				.29	.02
2222		11	5.0x2.0		15% py 2% cp Faul	t zone			.88	.16
2223		11	5.0x2.0	11 11	8% py tr. cp				.73	1.860
2224	t1	11	5.0x2.0	11 11	40% py 2% cp (Main	Vein)			2 75	8 200
225	11	11	5.0x1.5	11 11	8% py tr. cp.				2.75	8.290
226	11		2.0x5.0	11 11	5% py tr. cp				.10	.058
227	11 	11	3.0x4.0		20% py 2% cp tr. t	et.			6.59	. 825
2228			1.5x3.5		30% py 3% cp.tr. t				1.34	1.62
229	11	11	3.0x3.0		Fault zone 5% py	9% qtz.			3.12	1.610
230		11	2.0x4.5		same				.22	.044
231	11		3.0x3.0		same				2.16	6.380
232	11	134.0	2.0x5.0	11 11	2% py F.P.				.16	.098
233	11	11		11 11	15% py 1% cp tr. t	t.			8.81	1.260
234	**	11	\$1 11	11 11	60% ру 6% ср				3.58	.308
235	11	11	11 11		8% py 2% cp tr. sp	•			1.19	6.270
236	11	11		11 11	8% py 1% cp 1%sp t	r. tet.	V.G.			1
237	11	11		** **	2% py F.P.				.20	.086
238	11		3.0x3.0		5% py					
239	11		3.0x3.0		10% py 3% cp 1% te	t V.G.				
240		11 11		11 11	3% py tr. cp.					
241	11		$\beta.0x3.5$	DK DIW	11 11					
242	**	11 11		11 11	30% py 3% cp Main	Vein				

, 🔳

APPENDIX III

REPORT ON REG GROUP, E.W. GROVE, APRIL 20, 1986

GEOLOGICAL REPORT, EXPLORATION

AND

DEVELOPMENT PROPOSAL

ON THE

SKYLINE EXPLORATIONS LTD.

REG PROPERTY

IN THE

ISKUT RIVER AREA, NORTHWESTERN BRITISH COLUMBIA

LIARD M.D.

N.T.S. 104 B11/E

BY EDWARD W. GROVE, Ph.D., P.Eng.

VICTORIA, B.C.

APRIL 20,1986

E. W. Grove Consultants Ltd. -

SUMMARY

This report provides a complete up date on the mineral exploration activities of Skyline Explorations Ltd. on the REG property at Johnny Mountain with emphasis on the status of the major Stonehouse Gold Zone deposit.

The REG property includes 25 staked mineral claims and 13 Crown granted mineral claims. All the claims are in good standing and are 100% owned by Skyline Explorations Ltd. Mineral exploration in this part of northwestern B.C. dates to 1907 when placer gold prospectors found copper-gold-silver-leadzinc mineralization above Bronson Creek and recorded the RED BLUFF and ISKOOT claims. In 1956 Hudsons Bay Mining & Smelting Company prospectors discovered the Pick Axe copper-rich massive sulfide in open ground just below the receding Johnny glacier. Cominco and Texas Gulf explored portions of the ground in the mid 1960's and early 1970's for lead-zinc and copper/molybdenum deposits. In 1980 Skyline Explorations restaked the area for gold completing the cycle and opening a new era seeing the development of the first potentially commercial major goldsilver-copper deposit in the Stewart District in many years.

1980 Skyline Explorations Ltd. Since with partners Placer Development Ltd. in 1983, Anaconda Canada Exploration in 1984, and separately in 1985 has drilled and shown the Ltd. extensive good to high grade nature of the Stonehouse Gold Zone, and has uncovered a number of new sulfide showings including extensive Bonanza silver-gold-lead-zinc zone, as well as the promising new gold/sulfide showings in the north and west parts of the property in what now appears to include both strata-bound and porphyry-like situations. Good detailed prospecting led to the Bonanza discovery while the others have resulted from stream silt/heavy mineral, detailed soil geochemistry, and combined geophysical techniques.

These major discoveries lie about 70 kilometers east of Wrangell, Alaska, and 100 kilometers north of Stewart, B.C. at Johnny Mountain on the south side of the Iskut River. The property has been supplied by boat and aircraft from Wrangell and by truck and aircraft from Terrace, B.C.

Surface sampling, trenching and about 16,000 feet of core drilling on the Stonehouse Gold Zone have outlined at least seven gold bearing sulfide rich mineral lenses and veins within only a small part of a 3,200 foot thick host rock sequence. Core drilling has now confirmed gold mineralization over a length of 4,750 feet and a width of 900 feet to a depth of 525 feet within the Gold Zone. The mineral lenses are marked by an alteration envelope of K feldspar, quartz and calcite veining, cent Cu, $\emptyset.6$ per cent Pb, 3.5 per cent Zn, 3.7 oz./T Ag and $\emptyset.055$ oz./T Au. Selected material has assayed as high as 405.4 oz./T Ag, and 2.884 oz./T Au.

A new area, the C-3 zone, was also tested in 1985 by preliminary trenching, mapping and a geochemical soil survey. This work showed the presence of extensive massive pyrite zones within sediments. One pyrite lens assayed 0.36 % Cu, 2.41 oz./T Ag and 1.79 oz./T Au across 12 inches.

Skyline Explorations Ltd. continued exploration and development of the REG property in 1985 has shown the potential for development of several types of mineral deposits. At the present, the major Stonehouse Gold Zone which was extended in 1985 by new work on the high grade R-19/R-20 veins represents the best deposit for commercial development.

In order to develop the Stonehouse Gold Zone the writer has recommended a combined surface and underground program estimated to cost about \$1.5 million.

RECOMMENDATION

Exploration core drilling in the REG Stonehouse Gold Zone has intersected gold bearing mineralization to a depth of at least 525 feet below surface over a length of at least 4,500 feet. The mineral lenses outlined are still open on the ends and to depth indicating further core drilling is warranted to expand the current reserves. Continued drilling using surface equipment is slow, expensive, and involves long holes because of the shallow slope of the surface and steep dip of the mineral lenses. The short field season in this area is also an impediment to effective exploration. d.

Because of the above factors it is recommended that development of the main Gold Zone proceed from underground headings at the 1100 meter level. This will involve a crosscut heading about 500 meters long, and drifting both east and west along the 1100 level roughly below the greatest portion of the current drill indicated mineral reserves. It is suggested that the west drift proceed in the footwall of the Cloutier mineralization to give the maximum burden and best situation for The east drift should extend along the exploration drilling. hangingwall of the '16' mineral lenses to allow deep drill exploration. Together the cross-cut, drift headings and crosscuts to sample the mineral zone are proposed to total about 1300 The method, that is, track or trackless, will depend meters. upon cost and timing.

In addition to this underground development which will

new areas and the discovery of many new mineral deposits. The mid 1960's wave of copper-molybdenum exploration touched on the Johnny Mountain mineralization briefly showing the presence of significant copper along with accessory gold and silver as well as scattered lead, zine and rare cadmium. It wasn't until 1980 when Skyline Explorations Ltd. personnel restaked the property that the gold potential of the deposit was recognized.

The REG property, owned 100% by Skyline Explorations Ltd., at Johnny Mountain now includes 25 staked mineral claims, and 13 Crown granted mineral claims. The Stonehouse Gold Zone lies mainly on the REG 4 claim and extends northwesterly onto REG 3 and southeasterly onto REG 6 at about elevation 3,800 feet on the gentle northerly slope of Johnny Mountain. This area is well above the local tree line and is covered by a thin but variable veneer of eluvial materials, and partly by ridges of thick lateral moraine.

Geological studies based upon sampling, trenching, and core drilling of the Gold Zone since 1981 have shown the presence of a major sulfide mineral zone in which gold is the The presence of low temperature gold major economic mineral. and silver minerals, K feldspar, quartz and carbonate alteration and overlapping mineral lenses shows the similarity of the REG Conservative estimates based 'Gold Zone' to the Silbak Premier. almost exclusively upon the core drill results indicate a geological mineral reserve of over 3,000,000 tons with a grade of about Ø.30 ounces per ton gold plus silver and recoverable base metals to a drilled depth of 525 feet. Results of this work suggest that the Gold Zone remains open to the east and west, and at depth.

Work on the new Bonanza deposits found in 1984 has now the presence of at least three stratabound polysulfide shown zones over a length of at least 4,500 feet in a thick sedimentary sequence exposed along Benson Creek. Drilling, and mapping suggest that the upper Bonanza Zone trenching mineralization has an estimated average grade of about Ø.7 per cent Cu, Ø.6 per cent Pb, 3.5 per cent Zn, 3.7 oz./T Ag, and Ø.055 oz./T Au over a width of up to 23 feet. Grab samples from lenses within this zone containing tetrahedrite, argentite, and electrum have yielded assay values of up to 14.1 per cent Cu, 405.5 oz./T Ag and 2.88 oz./T Au.

The new C-3 zone was partially tested in 1985 by geochemical sampling, trenching and mapping. The results showed the presence of extensive pyritization, K feldspar alteration, and quartz veining in sedimentary rocks overlain by a volcanic/ volcaniclastic sequence. One pyrite vein assayed Ø.36 per cent Cu, 2.41 oz./T Ag, and 1.79 oz./T Au.

Two distinct geological/geochemical environments have been recognized on the REG property within Lower Jurassic now Unuk River Formation strata. Host rocks for the major Stonehouse Gold Zone mineral deposit comprise intercalated rhyodacitic feldspar porphyry and polymictic volcaniclastics. The second, extending from Johnny Creek north to the Iskut River comprises a thick sequence of folded sedimentary strata cut by small stocks, and dikes which have been variously deformed and faulted. A number of silver-zinc-lead, zinc-silver and goldquartz showings have been found throughout this sequence from Craig River on the west to Bronson Creek on the east including the extensive Bonanza showings and the C-3 zone.

The writer has worked in the Stewart District since 1964 studying the mineral deposits, and local and regional geology. This report was compiled at the request of Mr. R.E. Davis, President, Skyline Explorations Ltd. and is based upon work at the property in 1981, 1983, 1984 and 1985. The writer has logged and supervised splitting and sampling of much of the drill core. The report describes the work carried out to date, the results obtained, an interpretation of the observations, and recommendations for further work.

LOCATION AND ACCESS

Skyline Explorations Ltd.'s 100% owned REG property lies about 50 miles east of Wrangell, Alaska and 70 miles northwest of Stewart in northwestern British Columbia at the north end of the mineral rich Stewart District (Figure 1). The mineral claims lie across the gently sloping north slope of Mount Johnny on the south side of the Iskut River, a major tributary of the Stikine. Claim elevations range from 300 to 500 feet ASL on Craig River and Bronson Creek to about 7,500 feet on the high ridge south of Mount Johnny. The main Stonehouse Gold Zone trends across the bouldery gently open slope between elevations 3,700 feet and 4,200 feet, well above the local timber line and below the snow line. The new Bonanza Zone lies along Bronson Creek between 2,000 and 2,650 feet in light timber.

Access to the property has since 1980 been mainly by fixed wing aircraft from Terrace to Bob Quinn Lake on the Cassiar-Stewart Highway or directly to Snippaker strip which lies about 8 miles by helicopter east of the REG camp. In 1983 a large portion of the fuel and supplies was shipped from Wrangell on the coast by river boat to Johnson Landing on the Iskut River, and then by helicopter to camp. Late in the 1983 season an airstrip was partly finished on Johnny Flats below camp which allowed fuel to be delivered on the snow strip in early 1984 and 1985. Construction of a gravel airstrip on the REG property about 2.5 miles west of camp near the junction of the Jekill and Craig rivers would facilitate development of the property by allowing quick access from Wrangell. This strip and tote road connection to the present camp area would enjoy a considerable advantage weather- and cost-wise over the usual routes.

In addition to abundant timber resources on the lower slopes the REG property has a number of small streams and rivers which could be harnessed to provide abundant year-round hydro electric power.

REG PROPERTY

The REG property consists of 25 staked mineral claims and the thirteen ISKODT and RED BLUFF Crown Granted mineral claims (Figure 2):

4

<u>Claim</u>	Units	Record No.	Expiry Date
RED BLUFF HOMESTAKE RED BIRD MERMAID EL ORO DISCOVERY or GOLDEN PHEASA BROWN BEAR ISKOOT SILVER DOLLAR MARGUERITE BLU GROUSE COPPER QUEEN		Lot 2857 Lot 2878 Lot 2859 Lot 2860 Lot 2862 Lot 2863 Lot 2864 Lot 2865 Lot 2866 Lot 2866 Lot 2867 Lot 2868 Lot 2869 Lot 2870	
REG 1	2Ø	1247	April Ø1, 1993
REG 2	2Ø	1248	April Ø1, 1993
REG 3	2Ø	1249	April Ø1, 1993
REG 4	SQ	1250	April Ø1, 1993
REG 5	16	1251	April Ø1, 1993
REG 6	16	1252	April Ø1, 1993
REG 7	20	1929	July , 1993
REG 8	20	2033	August , 1993
REG 9	20	2Ø34	August , 1993
REG 1Ø	8	. 2544	September 13, 1988
SKY 1	8	2568	September 13, 1988
SKY 2	5	2569	September 13, 1988
SKY 3	2Ø	257Ø	September 13, 1988
ZEEHAN 4	гø	2979	October 13, 1986
ZEEHAN 5	16	2780	October 13, 1986
ZEEHAN 6	16	2981	October 13, 1986
ZEEHAN 7	16	2982	October 13, 1986

In 1980 Skyline Explorations Ltd. restaked the area and concentrated on the known Pick Axe showing and on collecting float samples. Several new sulfide bearing outcrops were also found suggesting more widespread mineralization than noted by the Cominco and Texas Gulf work.

In 1981 Skyline continued prospecting and began a series of exploration trenches to examine several of the pyritic zones found in outcrop including the new Cloutier exposure. The company also drilled six core holes (81-1 to 81-6); two on the Pick Axe and four on the new Cloutier showing. The results of were particularly the latter encouraging confirming the continuation of the Cloutier sulfide and showing the presence of high grade copper mineralization and good gold and silver.

Skyline Explorations Ltd. continued drilling in 1982 completing holes 82-7 through 82-16 extending the Cloutier Zone and locating a new lens at first thought to be part of the Pick High grade gold including two core sections with visible Axe. gold intersected in holes 82-11, 82-14, and 82-16 proved free the potential importance of this new discovery. In addition to the major extension of the known mineralization by drilling, a detailed ground E.M. survey outlined two continuous conductor axes which were correlated to the Cloutier and Pick Axe zones and suggested continuity over 2,200 feet. Sulfide float found the east end of these anomalies was also sampled and the at assay from 13 pyrite boulders averaged 2.80 ounces gold per ton. Samples of this material taken by two major companies averaged from 3.20 to 6.58 ounces gold per ton confirming the high grade nature of the McFadden Moraine.

In late 1982 negotiations with Placer Development Ltd. produced an agreement by which Placer was to expend \$750,000 on the property during 1983, and \$1,000,000 in 1984 plus other terms. Placer then brought in Anaconda Canada Ltd. as a partner but continued as operator for the 1983 season.

Work performed during 1983 comprised an overall saturation-type approach including resplitting some core and reassaying all the rejects from Skyline's work with satisfactory results, drilling 23 new core holes, bulldozer trenching, rock and trench sampling, detailed geochemical soil and silt sampling areas, ground geophysics and a regional airborne of three small geophysical survey including VLF-E.M., resistivity and magnetics. The results of much of this work were such that Skyline resplit much of the '83 core for reassay, completed the soil/silt grid, and did most of the geological geochemical mapping. Some work was attempted on locating the origin of the McFadden float including two core holes drilled through Johnny Glacier.

Work on the main Stonehouse Gold Zone resumed in August starting with drilling the R-19 exposure. This was followed by drilling on the Pick Axe, '16', and Cloutier mineralization. In late September trenching and drilling was resumed on the R-19 and R-20 showings resulting in the discovery of high grade gold two veins and the extension of the Stonehouse mineralization in 600 feet to the east for a total length of Gold Zone another In 1985 drilling on the Stonehouse Gold Zone over 4,700 feet. included 24 core holes totalling about 6,000 feet. This work added to the definition of the mineral deposit and allowed a substantial increase in all categories of mineral reserves.

This report provides an overall interpretation of results from the various programs. The various geologic interpretations and calculations have been made by the writer from a growing, extensive data file.

GENERAL GEOLOGY

The writer's detailed and regional studies in the Stewart District have extended from the Iskut River to Alice Arm and have resolved many of the perplexing stratigraphic and lithostructural problems which still confuse most of the current workers (Table I). During the past four years the writer has been studying several mineral deposits found along the Iskut east of Craig River. These rocks were mapped as River Triassic by Kerr on the basis of appearance. pre-Permian and The shaly units forming Snippaker Mountain are fossiliferous and variably deformed thick slabs of appear to represent Carboniferous strata trending along the river and dipping northerly down the slope very much like the zone west of Craig River. The ridge east of Snippaker was also mapped in some detail in 1983 and 1984 and deformed units which include blocks of crinoidal Mississippian limestone form the crude dip slope. The property mapping provides information which suggests that these Carboniferous slope forming slabs unconformably overlie correlatives of the Middle Jurassic Betty Creek Formation and Lower Jurassic UnuK River Formation mapped as extending from Tom McKay Lake southeasterly through Stewart to Alice Arm.

deformed of the The highly contorted, nature Carboniferous strata can be seen in the steep cliffs between Bronson Creek and Snippaker Creek. The unconformable nature of the Carboniferous/Middle Jurassic overlap is well exposed on both sides of Snippaker Ridge north of Snippaker Peak. The same unconformable relationship between these major rock units appears to extend from Forrest Kerr Creek west along the Iskut River to the Stikine River junction. Present interpretation suggests an east-west trending thrust along the axis of the Iskut River which like the King Salmon Thrust Fault pushed up

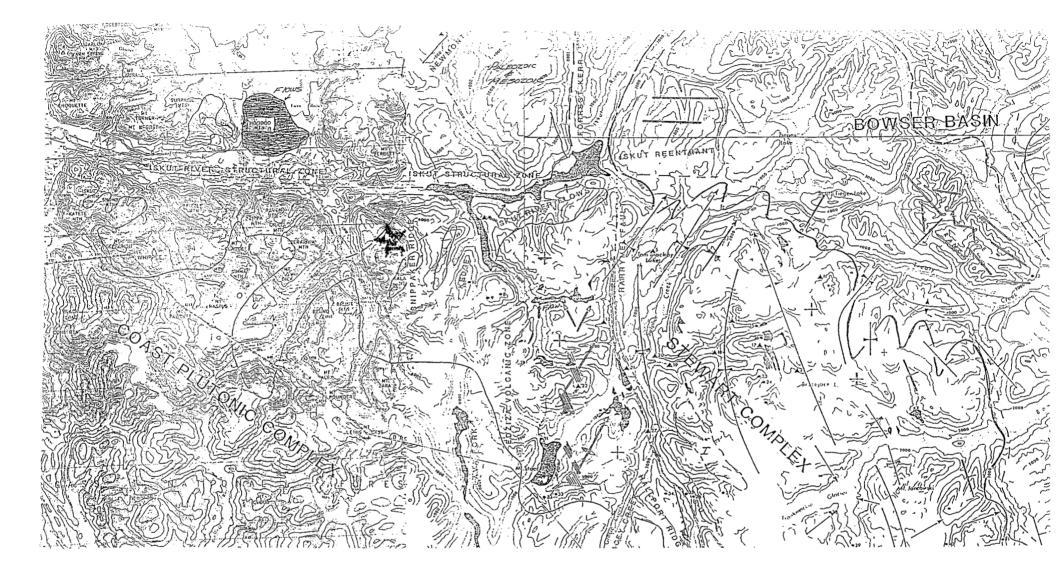


FIGURE 3

GEOLOGICAL FRAMEWORK

NORTHWESTERN BRITISH COLUMBIA

E. W. Grove Consultants Ltd.

TABLE I CONTINUED

SUMMARY TABLE OF FORMATIONS - ISKUT RIVER AREA

PLUTONIC ROCKS

COAST PLUTONIC COMPLEX

PERIOD	: : LITHOLOGY
Tertiary	: granodiorite, diorite, basalt : : -Intrusive Contacts
Early Tertiary	-Intrusive Contacts
Middle Jurassic	<pre>: quartz monzonite, feldspar porphyry, syenite : Intrusive Contact</pre>
Lower Jurassic	: diorite, syenodiorite, granite : : Intrusive Contact
Late Triassic	: diorite, quartz diorite, granodiorite :
? NOT DETERMINED	: quartz diorite, ? : : : :
	Late Tertiary Early Tertiary Middle Jurassic Lower Jurassic Late Triassic ? NOT

-15-

northerly trending Forrest Kerr-Harrymel Creek fault. The locus of the easterly trending Iskut River zone, the northerly Forrest Kerr-Harrymel zone and the north-northeasterly Iskut River zone forms the vent of the Quaternary Iskut River lava flow. The southerly limit of the Stewart Complex is marked by the line of Quaternary volcanic flows that occur just south of the east-northeasterly trending Alice Arm-Illiance River lineament.

In summary, the Stewart Complex is bounded on the west by the intrusive margin of the Coast Plutonic Complex, and on the south, east, and north by high angle normal faults which are major regional tectonic features. It appears that the Stewart Complex has been essentially frozen to the east margin of the Coast Plutonic Complex, and has been involved in major uplift along with the Coast Geanticline, whereas the adjacent basin is separated by major normal faults and exhibits a relative depression.

UNUK RIVER FORMATION

Jurassic Unuk River Formation (Grove, 1973) The Lower is described here as a stratified volcanic sedimentary sequence. Scattered areas of uppermost Unuk River Formation in the Stewart and Portland Canal districts of the Stewart Complex were mapped in the past by early workers as Bear River Formation or Hazelton Group. As a result of the writer's study of the Lower Jurassic the Unuk River Formation now rocks of the Stewart Complex, supersedes and replaces the previous descriptions and and structural relations of nomenclature. The lithology, age, This formation is the the formation are now fairly well known. oldest of the Hazelton Group and unconformably overlies Triassic and older units. In turn, the Unuk River Formation is overlain members of the Hazelton Group with angular by the younger unconformity.

Within the Stewart Complex the formation is hest exposed in the Unuk River area where this formation as well as the Upper Triassic rocks are strongly deformed. The base of the formation has not been identified outside the Unuk River- Treaty The Unuk River Formation Creek area. includes diagnostic Hettangian, Upper Pleinsbachian, and Lower to Middle Toarcian fossil assemblages, spans most of the Lower Jurassic period, and is a mappable unit throughout the Stewart Complex, distinguished and delimited on the basis of lithologic characteristics. In the type area this formation has a measured cumulative thickness of over 43,000 feet showing its importance in the development of the region.

and over to the south. However, this is probably only part of the explanation of the Iskut River Structural Zone, and only part of the tectonic record exposed in the area.

Together these geological studies including the detailed mineral deposit programs have served to define a geo-entity termed the Stewart Complex which along with the Bowser Basin, the Coast Plutonic Complex, and a number of other features combine to form the framework of this part of northwestern British Columbia (Figure 3).

The Stewart Complex lies along the contact between the Coast Plutonic Complex on the west, the Bowser Basin on the east, Alice Arm on the south and the Iskut River on the north. The western limit of the Stewart Complex, including the Anyox and Georgie River pendants extends from Belle Bay north along the Portland Canal to Stewart, then swings northwesterly to Iskut River. Portland Canal separates intersect the the massive, granitic Hyder pluton, localized along the eastern margin of the Coast Plutonic Complex, from the gneiss complex between Belle Bay and Stewart. At Stewart, the Portland Canal lineament extends inland along the Bear River-American Creek Valley and intersects the Bowser River lineament at the Todd Creek junction where it is offset to the east, and continues northerly along Scott Creek. In the Bear River valley at Stewart. the Portland Canal lineament is marked by the narrow Bear River cataclasite zone. In the American Creek and Scott Creek areas a graphite shear zone marks the presence of the lineament. The field data indicates that the Portland Canal lineament which forms the southwest boundary of the Stewart Complex, represents a normal fault over a large part of its length.

The west boundary of the Stewart Complex is marked by the intrusive contact between the Coast Plutonic Complex and the country rocks. The contact exhibits irregular to angular undulations, and marked reentrants in the Unuk and Leduc River areas represent old structures which have been truncated. The intrusive contact is generally steep, but the presence of the satellite Tertiary plutons suggests that the Plutonic Complex actually underlies part of the Stewart Complex at depth. It is suggested that the Anyox and Georgie River pendants represent an intrusive level comparable to the projected deep contact between the Stewart Complex and the underlying intrusives in the Unuk-Leduc River section.

The northerly boundary of the Stewart Complex is approximately along the Iskut River. Extensive chlorite to sericite schists developed along the easterly trending Iskut River Valley indicate a major fault which has offset the volcaniclastic, feldspar porphyry and mixed sedimentary rocks (Figure 4). Most important, these rocks are marked by extensive mineralization and related alteration. The Stonehouse Gold zone in rocks below a regional unconformity marking lies the superposition of the widespread Betty Creek Formation. Fossils collected from sedimentary rocks below the Betty Creek 1984 have now been identified as Toarcian making the strata in early tentative correlation to the Lower Jurassic Unuk River Formation positive. These underlying mineralized rocks have strong similarities lithologically and structurally to the Unuk River Formation, a complex sequence in which the Silbak Premier, Big Missouri, Scottie, Granduc and several hundred other mineral deposits are now known to occur.

UNUK RIVER FORMATION (LOWER UNIT)

Stonehouse Gold Zone mineralization is confined to The part of sequence comprising mostly volcaniclastics а and feldspar porphyry partly exposed from the toe of Camp Glacier to the base of the slope where a major fault separates this sequence from a strongly folded predominantly greywacke, The Gold Zone host rocks trend about siltstone sequence. dip steep; north forming a sequence at least east-west and 3,200 feet (1000 meters) thick. So far only a small fraction of this thick sequence has been examined in detail, mainly in drill core, because of the scant rock exposure.

Massive, extensive andesitic to rhyolitic feldspar porphyry members of the 'crackle breccia' type lying between the largely sedimentary units to the west and the deformed rhyolitic cataclasites form mappable units at the local scale. Most are marked by a close-spaced fracturing with fine grained pyrite typically outlining the fracture pattern. Chalcopyrite was found associated with the pyrite in a small number of areas and heavy sulfide was found localized along the contact of these units with intercalated deformed volcanics. Widths of up to 100 units. meters were measured on several of these massive The persistent autometamorphic textures found in these members suggest they were sills. Close-spaced quartz veining is typical of these rocks particularly at and near the upper contacts with sediments and volcaniclastics.

In thin section the feldspar porphyry comprises plagioclase phenocrysts in a very fine grained matrix which exhibits signs of crushing. Alteration is typically fine grained sericite, quartz, and some calcite. Fine pyrite is ubiquitous with concentrations along hair-line fractures.

-2Ø-

BETTY CREEK FORMATION

The Middle Jurassic Betty Creek Formation was first recognized and mapped by the writer in the Stewart area and throughout the Stewart Complex from the Iskut later extended River to Alice Arm. This distinct volcaniclastic unit was not recognized by previous workers in the region. Recognition of this unit and its stratigraphic relationship to the underlying Unuk River Formation has provided a key to understanding the tectonic development of the region and in particular has been important in recognizing mineral deposit forming episodes. The recognition of the Betty Creek, together with the Lower Jurassic Unuk River, Middle Jurassic Salmon River, and Upper Jurassic Nass Formation, has made it possible to establish and formalize the terminology of the Hazelton Group.

Two Middle Jurassic units, both part of the Hazelton Group, and defined by the writer (1973) as the Betty Creek and Salmon River Formations, were first traced as mappable units in the Stewart Complex. The Betty Creek Formation is characterized by the common intercalation of planar bedded, bright red and oreen volcaniclastics, with intercalated, andesitic volcanic flows, pillow lavas, tuffs, breccias, sedimentary members inluding chert, and carbonate lenses. Fossil collections made from the various sedimentary units have defined the age of the unit as lower to middle Bajocian, that is, lower Middle Jurassic. In the type area the formation has a thickness of 2,500 feet, but at Sulphurets Creek it exceeds 4,500 feet, and in the Anyox area exceeds 8,000 feet. Apart from these regional variations which reflect warps, old topographic surfaces, and provenance the overall Betty Creek sequence maintains an unusual continuity from the Iskut River to Alice Arm and in the Smithers area.

In the Stewart Complex the Betty Creek sequence can be used as a reliable major marker horizon because of its common occurence as structural remnants. Most important to this report is the fact that in a number of situations such as at Silbak Premier, Big Missouri, and Sulphurets Creek, Betty Creek strata formed lithostructural traps, or dams, controlling mineralizing fluids, and causing the formation of major ore deposits.

LOCAL GEOLOGY

INTRODUCTION

Erosion through part of the Iskut Structural thrust zone complex on the north slope of Mount Johnny has opened a window to a partly deformed sequence of intercalated

Simple volcanic flow rocks are also fairly rare in this rock sequence. At first pass many of the rocks in the host mineralized sequence were thought to be rhyolite flows. Subsequent drilling and petrographic studies have shown that these were cataclastically deformed and altered rhyolitic volcaniclastics. Rhyolite breccia has now been recognized in 84-55 drilled at hole the deep east end of the '16' mineralization where it is intercalated with feldspar porphyry.

The overall composition of the Gold Zone sequence of rhyodacitic to andesitic members suggests a primarily acidic volcanic sequence. Deformation in these rocks has been variable with textures ranging from fine schistose to coarse breccias found over short distances. Some of these cataclasites were originally porphyritic but crushing has reduced the rocks to a chert-like aspect. Sericitization, carbonatization, and pyritization are seen as ubiquitous alteration products in thin section. Fine grained secondary biotite was seen in many of the rocks possible reflecting post deformation mineralization.

Work on the Bonanza Zone mineralization in 1985 provided considerable information about the mainly sedimentary sequence which lies north of the Gold Zone and forms the bulk of the Johnny Flats escarpment. Scattered outcrop on the Flats suggested a deformed sequence comprising mainly dark wacke and thin bedded siltstone units. Drill hole 84-51 and subsequent detailed mapping on the steep slope above Bronson Creek has disclosed a section aggregating at least 2,600 feet of intercalated argillaceous siltstone, sandstone, and conglomerate. The massive, thick units generally lack bedding features and show simple upright open folds. The thin bedded, fine grained units display abundant slump features related to rapid deposition and basin subsidence. These country rock sediments have been cut by a number of small stocks and dikes on Johnny Flats and by a large syenitic pluton located at the north between the REG property and the Iskut River. These sedimentary rocks are also partly overlain along Bronson Creek and in the C-3 area by Neogene basalt flows.

On both the local and regional scale the Unuk River Formation sequences are unconformably overlain by Lower Middle Jurassic Betty Creek Formation strata.

In summary, the Gold Zone strata underlying part of the north slope of Mount Johnny represent a 3,200(+) foot thick variably deformed, volcanic sequence of probable Lower Jurassic age. The sedimentary members include siltstone, sandstone, minor limestone, and intercalated thin rhyolite flows. The mainly volcanic sequence comprises massive sill-like porphyritic

In the main Gold Zone sequence the ridge forming porphyry members are sandwiched with less resistant feldspar medium to dark green volcaniclastics. The bulk of these fragmental rocks are polymictic, containing as many or more than twelve diverse types. The grain size ranges from sand-size particles through cobbles to boulders and angular blocks. Rhyodacite forms a ubiquitous member of many of the units mainly as a groundmass, and in a few forms the bulk of the member. Primary structures are rare in these rocks, but in a few outcrops and drill cores bedding and cross-bedding indicate water borne transport. Some of these rocks are therefore epiclastic while the bulk appear to be mudflows and fanglomerates. Tuff and ash are not prominent and form only a small part of the sequence.

Rocks on the west limits of the Camp Glacier cirque and Johnny Flats comprise a sequence of intercalated phyllitic grit, siltstone, and thin rhyolite members. These appear to grade conformably to the north and east into the main bowl of the cirque through a mixed sandstone/limestone band to massive andesite and rhyodacite porphyrys (crackle breccia type). Within the main bowl of the cirque and towards the base of the upper slope the rocks comprise a variety of phyllitic to schistose cataclasites, volcanic breccias, and less deformed feldspar porphyry units. Thin diorite and porphyritic olivine gabbro lenses are scattered through the main volcanic sequence but because of deformation are not easily recognized except under the microscope in thin section.

Microscopic study of the sedimentary units along the northwest side of the Gold Zone indicates that many of the far phyllitic rocks were originally siltstone. Very fine grained biotite and sericite now form the matrix of these rocks and impart a strong foliation to them. In the transitional zone between the bulk of the sediments and the volcanics, creamy to bluish limestone is present as discrete lenses and boudins a few centimeters to a meter wide within a distinctive brown siltstone /sandstone member. So far these sedimentary rocks have been intersected in only one core hole (84-43) drilled at the far west end of the Cloutier mineral zone. Sediments in this hole have been variably altered/deformed to phyllite, semi-schist and lie intercalated between a number of brecciated feldspar porphyry lenses. The present interpretation indicates that the sedimentary units lens or pinch-out within the thick feldspar porphyry-volcaniclastic package. That is, the sedimentary sequence expands and becomes dominant to the west and northwest, and overlies the feldspar, volcaniclastic sequence to the north. The eastern extension of this sequence and its relationship to sedimentary rocks easterly is unknown because of the the extensive thick overlying Betty Creek Formation.

STRUCTURE - REGIONAL

At present, rock structure is probably the least studied and understood element in the local geological picture, probably because of the apparent simplicity of the system. The deeply eroded Iskut River valley trends due east-west over a length of representing a major structural 40 miles zone on the west by the Tertiary Coast Plutonic Complex terminated and on the east by the Late Jurassic/Cretaceous Meziadin Hinge (Grove, 1973). The Iskut zone marks one of the or Graben region's major thrusts involving Paleozoic strata that have been pushed southerly across Mesozoic units. Prior to this major event mass gravity sliding of Middle Jurassic and younger rocks across Lower Jurassic and Triassic strata took place during development of the Bowser Basin (Grove, 1972, 73). These major structures are exposed in the REG area and probably represent part of the region's complex tectonic development. only

STRUCTURE - LOCAL

scale the Stonehouse Gold Zone strata At the local comprise a 3,200 foot thick sequence of dominantly lenticular feldspar porphyry with intercalated volcanic conglomerate and minor fine grained sedimentary members (Figure 4). These feldspar porphyry members form irregular lenses up to 450 feet thick trending about Ø80°/65°N. A few bedding determinations in the epiclastic and sedimentary members of this sequence confirm At the west end of the Gold Zone the this general attitude. thinned out sedimentary bands expand to the northwest and swing attitude 100°/55°N marking the facies lens-out. Below the to main Gold Zone the juncture of the hillside slope and hummocky Johnny Flats is marked by a strong northeast trending fault that separates the feldspar porphyry/volcaniclastic sequence from a thick, tightly folded, greywacke, lithic wacke, siltstone sequence. Movement on this fault is right lateral and exhibits about a 500 foot offset.

Rocks in the Gold Zone sequence have been cut by a number of discrete faults as well as more complex shears. Although numerous faults and narrow shears have been logged in the drill core only a few have been mapped in the surface outcrop. Of these the north trending faults appear to be the most important, but no major offsets have been determined. One northerly trending fault at the east end of the Gold Zone which cuts across the R-19 showing cuts across both the Betty Creek and underlying Unuk River Formation rocks forming a steep fault scarp along the west edge of Johnny Glacier. The Betty Creek strata have been dropped down on the east side suggesting a vertical offset of about 300 to 400 feet near the head of Johnny Glacier cirque.

andesites, and massive to crudely bedded thick volcaniclastics. Lenticular highly deformed diorite and olivine gabbro units scattered throughout this sequence represent thin sills, flows and perhaps dikes. Upwards, this largely volcanic-volcaniclastic sequence becomes a mainly clastic sedimentary series with a measured thickness of at least 2,600 feet. Both sequences are overlain unconformably both locally and regionally by the Lower Middle Jurassic Betty Creek Formation.

BETTY CREEK FORMATION (UPPER UNIT)

Betty Creek Formation strata form the bulk of Mount Johnny above the Stonehouse Gold Zone area and drape northerly to cover the lower slope above Johnny Flats. The lower portion of this gently dipping unit has been mapped in Camp and Johnny Glacier cirgues and on parts of the adjacent ridges. Through most of the local Gold Zone area the basal unit comprises rhyolitic to polymictic volcanic breccia overlain by well stratified volcanic sediments, rhyolites, bedded tuffs and polymictic boulder conglomerate. Primary bedding features are common indicating that tops are up, that the strata are flat to gently north dipping and lie with profound unconformity across the full extent of the steep dipping Lower Unit.

In 1983 Placer drilled two core holes through Johnny Glacier in an attempt to locate the origin of the McFadden sulfide float. Both holes intersected only shallow dipping volcanic sandstone and lithic tuff. In 1984 Anaconda drilled seven more holes through the ice intersecting only tuff, volcanic sediments, and agglomerate. Core from these holes show some alteration which includes induration, quartz-chlorite veining and weak cataclasis.

At the base of the slope, east of the main Gold Zone, both the Betty Creek and the underlying Lower Unit strata exhibit strong planar deformation apparently formed by gravity sliding. Slipping of the thick Betty Creek sequence downslope on the old erosion surface is now expressed by a thin but variable dark phyllite that is partly preserved to the north and west on Johnny Flats. Some weak K feldspar veining was observed in thin sections of Betty Creek overlying the east end of the Gold Zone '19' showing. This suggests that like other parts of the Stewart Complex the Betty Creek strata may have been one of the structural contols trapping mineralizing fluids in Unuk River Formation strata and preparing these country rocks for the Gold Zone mineralization. deposits have shown some production including the world class Hidden Creek and Granduc copper mines, the B.C. Molybdenum mine, the Silbak Premier gold-silver base metal mine, and the Torbrit-Dolly Varden silver mine, as well as 16 other major B.C. producers. All of these mineral deposits plus several hundred other small or poorly explored showings are located in Mesozoic and Cenozoic units bounded by the Coast Plutonic Complex on the west and the Upper Jurassic strata forming part of the Bowser Basin on the east. The northerly limit of this irregular area lies crudely along the Iskut River where Paleozoic strata predominate.

STONEHOUSE GOLD ZONE

Nomenclature of the various parts of the Gold Zone still retains the flavour of the original prospect finds. These showings include the original Pick Axe, P-10, P-13, No. 16, R-19, and R-20 (Figure 5). Early work on the original Pick Axe find included two short drill holes and a narrow trench which exposed a four foot wide massive sulfide lens over a length of about 40 feet comprising coarse grained pyrite with inclusions of altered country rock cut by lenses, pods and irregular veins of chalcopyrite, quartz and calcite. This material gave assays of up to 11.0 per cent copper, 8.42 ounces/ton silver, and 0.732 ounces/ton gold. Further sampling averaged 5.4% copper, 4.0 ounces silver and 0.28 ounces/ton gold across 30.0 feet. Subsequent review of the core from holes 81-1 and 81-2 confirmed the grade and showed that the host rock was a strongly brecciated, altered feldspar porphyry. In 1984 Anaconda cleaned off a large area around the Pick Axe showing exposing a zone width of at least 70 feet in which pyrite and chalcopyrite are found disseminated and as lenses, pods and veins.

In 1985 these showings were mapped and Skyline drilled five short core holes through the western end of the original Pick Axe showing. This work has revealed a zone of extensive pyritization, pods and lenses of chalcopyrite/pyrite, extensive K feldspar alteration and abundant late quartz-chlorite veining. This mineralized rock is marked by low angle cataclastic deformation and by several low angle faults. At present this portion of the zone represents only a small fraction of the overall mineral reserves.

The Cloutier mineralization was first reported from the P-12 trench prospect which revealed disseminated fine to medium grained pyrite and chalcopyrite veins in volcaniclastics. The assay results from this trench over a length of 40 feet averaged 3.62 per cent copper, 1.26 ounces silver and 0.329 ounces/ton gold across 7.2 feet. Drilling in 1982 to outline the extension of the Cloutier zone intersected high grade mineralization in

Small scale structural features in the Gold Zone rocks include various cataclasites, semi-schists, minor schists, and fractures. The deformation features are marked by the development of secondary biotite and sericite imparting a strong foliation to the crushed rocks which is sub-parallel to rock contacts. No detailed studies of the fracture systems have yet been made but strong sets are present in all the various rock Kink-band zones trending 160°/V are common in the types. volcaniclastics and are commonly marked by late quartz-green chlorite veins and veinlets. Other late vein sets are also possibly in part representing local remobilization in and around the major sulfide lenses which now also appear to be controlled by major fracture zones trending Ø50°-Ø55°/60°-80°N.

Extensive outcrop areas are rare on Johnny Flats and along the steep slopes of Bronson Creek where Skyline explored a number of polymetallic sulfide showings in 1985. Scattered outcrop and trenches on Johnny Flats have revealed a ubiquitous flat to rolling phyllitic structure imposed upon the sedimentary rocks which has obscured primary structure. As previously indicated this structural feature which is sometimes marked by sericite relates to gravity sliding of the thick Betty Creek Formation strata down and across the underlying Unuk River strata.

Scattered outcrop along Bronson Creek below the phyllite zone show open upright folds in the massive wacke and conglomerate and complex slump folds in the intercalated fine grained banded sedimentary members. The overall fold structure in this thick sedimentary package is still uncertain except that deformation becomes more complex towards the Iskut River where the strata have been both intruded by at least one large stock and extensively deformed under the sole of the major Iskut River thrust.

Work along Bronson Creek has disclosed that the Bonanza Zone sulfide mineralization is confined to strong, throughgoing shears cutting sharply across the folded sedimentary rocks. Three parallel shears have now been investigated by surface mapping, trenching and geophysics and by drill hole 84-51 and found to trend uniformly at about $110^{\circ}/45^{\circ}$ W. Each of these shears is marked by sericite, calcite, quartz and sulfide alteration and replacement.

MINERALIZATION

STEWART DISTRICT

More than 500 mineral deposits have been found within the various rocks forming the Stewart Complex. Of these, 70

The attitude of these new veins as well as the strong V.L.F.-E.M. conductor axis suggest that this mineralization represents the easterly extension of the broad low grade Pick Axe showing. Most of the 850 foot long interval between these showings is covered by thick marginal moraine leaving the easterly extension for further surface trenching and core drilling.

In summary, surface work and core drilling have shown that the Stonehouse Gold Zone mineralization comprises a number of gangue minerals, simple sulfide minerals and native gold and electrum, localized as overlapping lenses within a steep, complex fracture system cutting across altered country rocks. The fracture zone has now been shown to have a length of at least 4,750 feet with a width of at least 900 feet which has so far been partly explored to a depth of only 525 feet. A number of other mineralized showings exposed in the area south of the main showings have not yet been studied and suggest that the 3,200 foot thick volcaniclastic-volcanic section requires further examination.

ZONING

Drilling has confirmed that there are at least seven overlapping sulfide-rich lenses with a similar mineralogy in the Cloutier-16 portion of the Gold Zone. The proposed outline of each of these lenses based upon the available core drilling is shown here in a composite longitudinal projection (Figure 6). Unfortunately most of the 1983 holes were drilled to intersect geophysical rather than geological targets and, as a result, some were too short or in the wrong place to intersect the mineralization. Therefore, the proposed outlines reflect only drill limits, not mineral boundaries. These flexible boundaries reflect gold assay results above 3 grams/tonne, but as can be seen by the projections, high, medium, and low grades are apparently scattered within the lens outlines. Obviously, further core drilling is required to test and extend these limits.

Most of the cores were assayed for copper, silver, and gold and some were tested for a variety of elements including lead, zinc, and mercury. Contouring of these available results has produced the indication that first, the mineral content varies from lens to lens, and second, that there are high grade shoots within each lens. Copper content appears to be strongly variable with an average 1.55% in the Cloutier Main lens and only $\emptyset.\emptyset1$ % in the Cloutier Footwall lens. Copper content also ranges from $\emptyset.54$ % in the '16' Hangingwall lens to $\emptyset.\emptyset4$ % in the Footwall lens. With regard to metal concentration, contouring all the available assay data for each lens suggests that copper holes 82-11, and in 82-14 which included visible free gold. Core rejects from this 1982 drilling were examined by Placer geologists who recognized a wide variety of sulfide and sulfosalt minerals.

Metallic minerals identified from the high grade Cloutier drill core include:

arsenopyrite (rare)	galena	molybdenite
bornite	native gold	pyrargyrite
chalcopyrite	hematite	pyrite
covellite	ilmenite	sphalerite
electrum	magnetite	stephanite
enargite	marcasite	tetrahedrite

As a result of trenching, mapping and drilling in 1983, 1984, and 1985 the Cloutier mineralization has now been shown to extend over a length of 1,300 feet and now includes four goldsilver bearing sulfide lenses three of which are included in the mineral reserve calculations. The general trend of the mineralization which is $053^{\circ}/65^{\circ}N$ cuts across the host country rocks at an acute angle reflecting a strong fracture control. This mineral system remains open horizontally and at depth but the relationship to the '16' mineralization has yet to be determined.

The '16' mineralization was indicated by a surface V.L.F.-E.M. anomaly and confirmed by drill holes 82-15 and 82-16 intersected good to which high grade gold-silver/sulfide mineralization. Four sulfide lenses have now been outlined over length of about 500 feet and more lenses are indicated which а remain to be drilled. The mineralogy of the '16' sulfide lenses is similar to the Cloutier except that chalcopyrite is less abundant, and galena and sphalerite are more abundant. The '16' lenses lie in the footwall of the Cloutier and in the hangingwall of the Pick Axe mineralization and like the latter lie along fractures cutting the volcaniclastic and volcanic country rocks which are marked by K feldspar flooding and general pyritization.

The 1985 trenching and drilling showed that the R-19 and R-20 mineralization which had been previously disregarded in spite of the strong geochemical gold anomaly are part of a highgrade quartz-pyrite vein system which has now been traced on the surface over a length of 700 feet below the toe of Johnny Glacier. The main vein has an apparent width of up to eight feet over this length and the footwall vein a width of up to five feet over about 200 feet. These veins are largely banded coarse pyrite and quartz with "abundant" free gold, with scattered galena, tetrahedrite, and minor sulfosalts.

-27-

cobble sized clasts. These are mainly detrital and secondary epidote is minor and largely associated with carbonate. Almost all of the chlorite is found as blebs, streaks, clots and veins in late quartz-calcite stringers which cut virtually all rocks in the general area including Betty Creek strata.

BONANZA ZONE

Exploration on the REG property concentrated on the Bonanza showings during the early part of the 1985 field season. This work involved tracing extensions of the 1984 Bonanza showing by ground geophysics, soil geochemistry, mapping, and trenching. Compilation of the 1984 trenching and core drilling suggested that the polymetallic showing was localized within a strong shear (Figure 7). Soil sampling, mapping and sampling on a detailed grid showed the extensive nature of the mineralized zone, and revealed the presence of two similar sub-parallel mineralized shears at lower elevations (Figures 8, and 9). Together these zones have been traced along the slope a length of over 4,600 feet with widths of up to 60 feet.

These showing comprise essentially stratabound pyrite, pyrrhotite, chalcopyrite, sphalerite, galena plus tetrahedrite replacement mineralization which shows evidence of sulfide into secondary fractures and kink folds. The remobilization shears cut sharply across the folded sedimentary sequence at about 110° and dip about 45° westerly. Alteration includes sericitization, carbonatization, silicification and pyritization have produced a bleached envelope in the which together otherwise dark sediments. Grab samples have assayed as high as 14.1% Cu, 405.5 oz./T Ag, and 2.88 oz./T Au, but the overall results from the trenching suggest a large tonnage that would grade about 0.7 per cent Cu, 0.6 per cent Pb, 3.5 per cent Zn, 3.7 oz./T Ag, and about Ø.055 oz./T Au.

Skyline's work on the Bonanza area has shown the potential for large tonnages of relatively low grade mineralization. Continued exploration would be expensive because of the structure and location, and not pressing because of the current market conditions.

C-3 ZONE

The C-3 zone mineralization was first observed in 1983 but was not examined until 1985. The C-3 comprises a 3,600 foot wide pyritic alteration zone localized in sedimentary rocks near the north boundary of the REG property. Work in 1985 involving soil geochemistry, trenching, and mapping concentrated on a small accessible area west of the main Sky Creek showings. Results from this work showed the presence of massive pyrite

-3Ø-

and gold minerals together form crudely overlapping shoots plunging 40° to 50° northwesterly within both main lenses and in the '16' Hangingwall lens. The silver as well as the available zinc values appear to crudely follow lens outlines, but also appear to extend beyond the current outlines. Mercury results are very incomplete, but unlike gold, silver, copper, lead and zinc, mercury appears to cut across the Stonehouse Gold Zone in a roughly east-west direction forming a crude halo involving the Pick Axe, '16' and Cloutier lenses. Taken together these various clues provide possible guidance for further exploration.

ALTERATION

the drill Macroscopic examination of core revealed three major rock types including feldspar porphyry and volcanic conglomerate which are the major hosts to the local gold mineralization. The pyrite, chalcopyrite and other sulfides are intimately associated with quartz veins, calcite, biotite, sericite, K feldspar, epidote, and chlorite in late guartz veins. The writer stained 160 rock slices from 28 holes and also examined thin sections from each slice. The results of the staining show that к feldspar alteration has effected replacement of from a few per cent to almost 100 per cent of both porphyry and volcaniclastic rocks hosting the sulfides. Very fine guartz veinlets and stockwork with sulfides have cut the early K-fledspar alteration and have in turn been cut by later sulfide and calcite veins and veinlets. Rock forming minerals have also been altered to calcite, sericite, epidote and biotite clusters and lenses. Fine grained dark brown to black biotite is present throughout the mineral zone but generally in only scant amounts except in the R-19/R-20 veins. These veins comprise banded quartz and dark massive pyrite with dark selvedges against the country rock host. Very fine black biotite makes up a significant part of the pyrite banding and forms most of the selvedges. Together with the greater amount of quartz, and lesser K feldspar, this abundant dark biotite alteration marks an apparent change in the type and character of the Stonehouse Gold Zone mineralization to the east.

Although still incomplete, this study shows that the Gold Zone sulfide mineralization has an envelope of extensive K feldspar alteration and a biotite tail involving both volcaniclastics and feldspar porphyry. Because this envelope is broader and more extensive than the mineralization it provides a useful tool for local exploration.

Cataclastic deformation has imposed a platy or foliated fabric on these rocks which in part exhibit hartscheifer/recrystallization texture. Epidote is prominent in many of the volcaniclastic members ranging from small grains and pebbles to survey is 'floating' and does not agree with the current topographic map. This poses a small problem with regard to mineral reserve calculations and could become a major problem if the proposed underground development and surface data are not tied precisely.

The calculations shown in the following reflect common methodology. operating practice, terminology and Core intersections grading 3.0 ppm Au and greater have been included lens boundaries and internal material grading less than 3.0 as ppm have also been included. No cut-off grade has yet been applied to the calculations, but this should be done when underground results are available. Likewise, no dilution factor has been applied to the tonnage calculations as this will probably vary from lens to lens and with mining methods. Tonnage has been calculated based upon a 65 foot (20 meter) square block, and a tonnage factor of 10 cubic feet per ton has been applied because of the generally heavy sulfide content.

REG PROPERTY

MINERAL RESERVES - 1985

TABLE II

DRILL	INDICATED	MINERAL	RESERVES	- CLOUT	IER	MAIN LE	INS .
Drill Hole	resserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserver True		======= /Ton	Per	==== Се	======= e n t	
No.	Width Ft.	Au	Ag	Cu	РЬ	Zn	Tons
3, 4, 5, 6	av. 10		.415				4,238
9	16.5	.134	1.Ø6	3.46	-	-	7,063
1Ø	29.5	.271	1.25	3.48	-	-	10,171
11	32.8	.436	.31	.32			14,126
13	9.8	.388	.26	.37	-	-	2,851
14	19.Ø	3.418	1.55	.74	-	-	8,475
18	9.8	.167	.284	2.32	-	-	4,238
25	6.6	.1Ø	.27	1.Ø1			2,825
31	6.8	.232	.Ø7	.Ø1	_	-	2,851
ВØ	13.Ø	.1Ø7	.41	-	-	-	5,595
81	25.0	.540	.36Ø	-	-	-	10,716
					1	TOTAL	73,194
Average (х)	.668	.663	1.55(+)		-	
	cut to 2x)			1.50(+)		-	
 					====	*======	=======

....continued

lenses 20 feet wide in K-feldspar, quartz, calcite alteration zones within the sediments (Figure 10). One pyrite lens assayed 1.790 oz./T Au across 12 inches. Other samples showed the presence of up to 3.51 oz./T Ag, and up to 5.8 per cent Cu plus minor lead and zinc. The C-3 zone is very large, has relatively easy access early in the season and could be explored when other priorities are satisfied.

GEOCHEMICAL AND GEOPHYSICAL SURVEYS - 1985

In 1985 geochemical soil surveys were successfully combined with a pulse electromagnetometer survey on the Bonanza area in order to trace the new sulfide zone (Figures 8, 10, 11). The geophysical work on Johnny Flats located a number of strong conductors which mainly reflected pyritic/pyrrhotitic lenses and shears with relatively low amounts of commercial sulfides, gold and silver as disclosed by trenching and core drilling. The Groove Ridge conductors were not correlated to any specific structure or mineral zone.

The V.L.F.-E.M. conductor axis connecting the Pick Axe and R-19/R-20 showings remains the most interesting feature worth exploring. This in conjunction with the strong geochemical soil gold anomaly overlying the R-19/R-20 vein system at the toe of Johnny Glacier, and the overlapping McFadden moraine train provide a good target area for further surface trenching and drilling.

MINERAL RESERVES

Sufficient surface work, core drilling and assaying have now been completed to make a preliminary estimate of the mineral reserves of the Stonehouse Gold Zone. Surface drilling carried out over a length of 4,700 feet within part of the Zone over a width of 900 feet to a depth of 525 feet has now confirmed the presence of at least eight gold bearing sulfide lenses and indicates the presence of several more.

Considerable work has also been done on the compilation of drill core sections and plans showing geology, mineralization and assay values (Figure 12). This material is voluminous and is not included here but has been reduced to vertical longitudinal sections to show the relative location of the drill holes, the relationship of the mineral lenses within the drilled zone and the true widths and grades of the assay intersections (Figure 6).

Both Placer and Anaconda surveyed the drill hole sites but these show differences in location of up to ten meters as well as variations in direction. In addition, the Gold Zone

-31-

-34-

TABLE III

	LL INDICAT						
Drill Hole No.		oz./	Ton	Per Cu	Cer Pb		Tons
15 16 26 27 29 52 53 54 69 73 75 75 76	6 9.8 4 9.8 3.3 10 9 9.8 5 23 6 21.5 ×)	Ø.1Ø6 1.242 6.499 Ø.495 Ø.12Ø Ø.351 Ø.657 Ø.466 .528 1.43Ø .144 .463	Ø.57 Ø.522 1.725 1.861 1.30 Ø.660 Ø.198 Ø.174 .22 .53 .64 8.14 2.034	Ø.24 Ø.51 Ø.56 Ø.42 1.1Ø Ø.415 Ø.023 Ø.185 Ø.17 	 _01 _025 <.10	- .Ø2 .Ø2 .Ø32 .91 .22 - .1Ø -	2,800 4,238 1,412 4,238 1,412 4,238 4,238 4,238 4,238 2,152 9,878 2,825 9,878 2,825 9,238 50,927
DRILL I	NDICATED M	INERAL RE		- - '16' H ======== P e r	- ANGINGU		======= ENS =======
Drill Hole No.	True Width Ft	oz., . Au	Ag	гел Сч	сет РЬ	Zn	Tons
36 38 43 77 Average (6.5 6 1.2 <u>6</u> ×)	Ø.392 Ø.498 Ø.144 2.15Ø	1.579	Ø.71 Ø.36 	.09 .03 TOTAL 	.Ø5 	2,825 2,800 425 <u>2,800</u> 8,850
-	cut to 2x)		1.32	-	-	-	
DRILL INDICATED MINERAL RESERVES - '16' FOOTWALL LENS							
Drill Hole No.	True Width Ft		/Ton Ag	Per Cu	Сел РЬ	n t Zn	Tons
28 52	6.5 9.0	Ø.293 Ø.357	Ø.12 Ø.66	.Ø4 	.Ø1 	.10	2,825 <u>4,236</u> 7,061
-	x) cut to 2x)	Ø.344 Ø.344	Ø.444 Ø.444	- - =========	-		

÷۵

Drill Hole No.							Tons
 DDH-12	6.6						2,825
72	5.0				-		2,158
					TOTA	4L	4,977
Average (x)			2.35	-	-	-	
Average (cu	It to 2x) ===========	.793	2.19 ========	 =#=========	-		
DRILL INDI	CATED MINE						
Drill Hole	True	oz.,	/Ton	Per	Cen	t	
No.	Width Ft.				РЬ	Zn	Tons
DDH-71	6.Ø			_	-	-	2,582
		SES - :	1985				
		======= 0 Z . /	 /Ton	Per			
DRILL INDICA	<u>ATED</u> 	====== oz., Au	======= /Ton Ag	Per Cu			Tons
DRILL INDICA		eeeeeee oz., Au	/Ton Ag	Cu	РЪ	Zn	
<u>DRILL INDICA</u> Lens Main Footwall¤	<u>ATED</u> 	eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	/Ton Ag .66 2.35		РЪ	Zn	73,194
<u>DRILL INDICA</u> Lens Main Footwall¤	<u>ATED</u> 	eeeeeee oz., Au	/Ton Ag .66 2.35	Cu	РЬ - -	Zn - - -	73,194 4,977 _2,588
DRILL INDICA Lens Main Footwall® Footwall [®]	<u>ATED</u>	e===== Au .668 .795 .332 .665	/Ton Ag .66 2.35 .19	Cu 1.55(<u>+</u>) - - 1.55(+)	РЬ - -	Zn - - -	73,194 4,977 _2,588
	<u>ATED</u>	e===== Au .668 .795 .332 .665	/Ton Ag .66 2.35 .19	Cu 1.55(<u>+</u>) - - 1.55(+)	РЬ - -	Zn - - -	
DRILL INDICA Lens Main Footwall® Footwall Average (x) Average (cu	<u>ATED</u>	oz. Au .668 .795 .332 .665 .665	/Ton Ag .66 2.35 .19 .749 .697	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>)	РЬ - - ТОТАL	Zn 	73,194 4,977 <u>2,588</u> 80,753
DRILL INDICA Lens Main Footwall® Footwall® Average (x) Average (cu DRILL INFERF	ATED at to 2x) RED	oz. Au .668 .795 .332 .665 .665	/Ton Ag .66 2.35 .19 .749 .697	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>)	Pb 	Zn 	73,194 4,977 <u>2,588</u> 80,753
DRILL INDICA Lens Main Footwall® Footwall Average (x) Average (cu	ATED at to 2x) RED	oz. Au .668 .795 .332 .665 .665	/Ton Ag .66 2.35 .19 .749 .697	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>) Per	Pb - TOTAL	Zn 	73,194 4,977 <u>2,588</u> 80,753
DRILL INDICA Lens Main Footwall® Footwall® Average (x) Average (cu DRILL INFERF	ATED at to 2x) RED	oz. Au .668 .795 .332 .665 .665	/Ton Ag .66 2.35 .19 .749 .697	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>)	Pb - TOTAL	Zn 	73,194 4,977 <u>2,588</u> 80,753
DRILL INDICA Lens Main Footwall® Footwall Average (x) Average (c) DRILL INFERF Lens	ATED at to 2x) RED	oz. Au .668 .795 .332 .665 .665 .665	/Ton Ag .66 2.35 .19 .749 .697 /Ton Ag .60	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>) Per	Pb - TOTAL	Zn - - t Zn	73,194 4,977 <u>2,588</u> 80,753
DRILL INDICA Lens Main Footwall® Footwall Average (x) Average (c) DRILL INFERF Lens Lens	ATED at to 2x) RED	oz. Au .668 .795 .332 .665 .665 .665 .665	/Ton Ag .66 2.35 .19 .749 .697 /Ton Ag .60 .60	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>) Per Cu	Pb - TOTAL	Zn - - t Zn	73,194 4,977 <u>2,588</u> 80,753
DRILL INDICA Lens Main Footwall® Footwall® Average (x) Average (cu DRILL INFERF	ATED at to 2x) RED	oz. Au .668 .795 .332 .665 .665 .665	/Ton Ag .66 2.35 .19 .749 .697 /Ton Ag .60	Cu 1.55(<u>+</u>) - 1.55(<u>+</u>) 1.55(<u>+</u>) Per Cu	РЬ - - - - - - - - - - - -	Zn 	73,194 4,977 <u>2,588</u> 80,753

-33-

TABLE III (Cont.'d)

SUMMARY '16' LENSES - 1985 MINERAL RESERVES

DRILL INDICATED

*****	=======		========		=====	2222222
Lens	oz./Ton		Per	Cent		
	Au	Ag	Cu*	Pb*	Zn*	Tons
Main	.866	2.034	-	_	_	50,927
Hangingwall	.737	1.316	-		-	8,850
Footwall	.344	.444		-	-	7,061
				TOTA	L	66,838
Average (x)	.792	1.753	*.3Ø(<u>+</u>)	-	-	
Average (cut to 2x)	.668	1.212	—			
*incomplete						
					=====	
'16' LENSES - DRILL IN	IFERRED					
	=======	.======			=====	*=====

Lens	oz./Ton		Per	Cent		
	Au	Ag	Cu	РЬ	Zn	Tons
Main	.50	1.00				130,000
Hangingwall	.5Ø	1.00(+)		-		70,000
Footwall	.25	.10		-	-	15,000
				TOT	AL	215,000
Average (x)	.50	.90				
		========	=======		====	=======

2

TABLE IV

DRILL INDICATED MINERAL RESERVES - PICK AXE							
Drill Hole No.	True Width Ft.			Per Cu	Cen Pb		Tons
67 (HW) 67 (FW) Average	5 5 =================	.144	.61 .05 .33		- - TOTAL -	-	2,550 <u>2,550</u> 5,100
DRILL INFERRED MINERAL RESERVES - PICK AXE oz./Ton Per Cent Au Ag Cu Pb Zn Tons .1 .2 .7 10,000							

TABLE VI

MINERAL POTENTIAL OF SKYLINE EXPLORATIONS LTD.

JOHNNY MOUNTAIN, ISKUT RIVER AREA

SUMMARY - MINERAL RESERVES - STONEHOUSE GOLD ZONE - 1985 ounces/Ton* Per Cent* Au Ag Cu Pb Zn Tons Status -------TOTAL MEASURED 2.08 3.502 1.00(+) - -19,364 Cloutier Ø.665 Ø.697 -Drill 1.55(+) 80,753 Indicated '16' Drill Indicated $\emptyset.668$ 1.212 $\emptyset.30(\pm)$ - - 66,838 _____ Pick Axe Drill Ø.168 Ø.33 1.02(<u>+</u>) -5,100 Indicated TOTAL DRILL INDICATED 0.650 0.916 1.00(+)* 152,691 Cloutier Inferred Ø.5Ø Ø.6Ø 1.00(<u>+</u>) -262,000 '16' Inferred Ø.5Ø Ø.6Ø - 215,000 Pick Axe Inferred 0.10 0.20 0.70 10,000 _____ R-19/R-20 Pick Axe Ø.60 -Ø.3Ø Ø.5Ø -100,000 Extension TOTAL * * 587,000 INFERRED Ø.50(+) Ø.60(+) Ø.75(+)* * values cut to 2x # significant values but assays incomplete Geological Potential Mineral Reserves 3,300,000 tons 0 0.30 ounces/st Au a Ø.50 ounces/st Ag + Cu, Zn, Pb

d.

the geological reserve forecast. The presence of a large high grade 'broken reserve' in the McFadden moraine and the huge potential of the talus below Johnny Glacier is a unique situation where low cost surface extraction methods could be employed almost at once.

Only a small fraction of the potential of the Gold Zone has been examined leaving a number of geochemical anomalies and geological structures to be carefully explored. The unique coincident anomalies below Johnny Glacier suggest mineralization localized at the Betty Creek - Unuk River contact or within the lower Betty Creek. The McFadden high grade moraine train deserves detailed geological study before more drilling funds are wasted and should entail a more careful examination of the lateral moraine as well as mapping upstream. This should be accompanied by detailed geologic mapping of the 3,200 foot thick Gold Zone sequence including both cirques.

Studies of the Stonehouse Gold Zone deposit suggest that in many respects this new deposit compares favourably to the Silbak Premier near Stewart. The geological environment, the presence of low temperature sulfosalts, sulfide minerals, and native metals, extensive related mineral alteration and strong fracture control are similar aspects also reflecting sub-volcanic genesis.

To date, the Silbak Premier mine has produced over 5 million tons grading about 0.40 ounces gold and 8.0 ounces/ton silver plus copper, lead and zinc. Current studies by Westmin have blocked out a further 6.0 million (plus) tons of low grade indicating the potential for renewed production from an open pit. Like most mines in the Stewart District, the original Premier mine did not realize its potential until underground exploration and development proved the size and grade of the orebodies.

The short season imposed upon work at the Gold Zone by weather and by the lack of reasonable access should be examined with consideration given to building a gravel strip on the east side of the Craig River connected to the development site on Johnny Mountain by a short tote road.

-39-

REFERENCES

Geology, Exploration and Mining in British Columbia, B.C. Dept. of Mines & Petroleum Resources, 1972, p. 518 1973, p. 501

Assessment Report 630: Report on Geological Survey of Bron Nos. 1 and 2 Groups, A. B. Mawer, for The Consolidated Mining and Smelting Company of Canada Limited, April 23, 1965.

Assessment Report 769: Geological Report Bronson Creek Nos. 1-3 Claim Groups, by G. Parsons, for Tuksi Mining and Development Ltd., Copper Soo Mining Co. Ltd., Cominco. May 18, 1966.

Assessment Report 1657: Geological Report on Cat Nos. 1-12 Claims, by R.G. Bagshaw, for Cominco Ltd., October 11, 1968.

Gareau, M. (1982): Mineralogy of 12 Sulfide Specimens from the REG Claims Mineral Deposit, for Placer Development Ltd

Grove, E.W. (1968): Unuk River, Ann. Rept., Min. of Mines and Pet.Res., British Columbia, pp. 45-46.

(1972): Geology and Mineral Deposits of the Stewart Area; B.C. Dept. of Mines and Pet. Res. Bull. 58.

2

(1973): Detailed Geological Studies in the Stewart Complex, Northwestern British Columbia, Ph.D. Thesis, McGill University.

(1974): Deglaciation - A Possible Triggering Mechanism for Recent Volcanism, Proceedings of Intern. Assoc. of Volcanology and Chemistry of Earth's Interior, Symposium on Andean and Antarctic Volcanology Problems, Santiago, Chile.

(1981): Geological Report and Work Proposals on the REG and INEL Properties of Skyline Explorations Ltd. December 11, 1981.

(1982): Unuk River, Salmon River, Anyox Map Areas; Min. of Energy, Mines & Petroleum Resources.

(1983): Geological Report and Work Proposal on the Skyline Explorations Ltd. INEL Property, Nov. 12, 1983.

APPENDIX IV

ENGINEER'S CERTIFICATE

1

7

ENGINEER'S CERTIFICATE

I, Charles K. Ikona, of #5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Mining Engineer with offices at 215 543 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. I first became familiar with the Reg property in 1960 and have maintained an active interest in the property subsequently.
- 5. Data reported on is as supplied by Skyline Explorations Limited. The writer has restricted himself to correlations of data and has not attempted to produce metric equivalents of distances, lengths and grids presented, or to modify the plans in any manner.

DATED at Vancouver, British Columbia this 5^{-1} day of 100^{-1} , 1986.

Charles K. Ikoná, P.Eng.

APPENDIX V

COST STATEMENTS, 1986 PROGRAM, JUNE 1-SEPTEMBER 30, 1986

•

٦

INTERIM FINANCIAL INFORMATION

OCTOBER 1986

_

٠

STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS

OCTOBER,	1986
(unaudi	ted)

RECEIPTS Payment for exploration expenditure (see Note)			\$ 294,970
DISBURSEMENTS Capital expenditure Investment in shares of KRS Retract Limited (see Note) Exploration advances	ion	\$ 13,313 147,485 6,000	
Wages and benefits Supplies - Field, underground and lab Transportation Travel and accommodation Equipment rent and repairs Printing, maps and drafting Assays Administration expenditures	16,536 46,387 37,108 18,055 5,062 4,015 3,880 2,800	133,843	
Salaries Office services, supplies and sundry Rent Telephone Public relations Legal fees Transfer agent fees Auto and travel Donation EXCESS OF CASH DISBURSEMENTS OVER CASH RECEIPTS	1,867 1,697 1,000 247 4,768 3,000 577 1,568 1,050	<u>15,774</u>	<u>316,415</u> 21,445
CASH ON HAND AT BEGINNING OF MONTH CASH ON HAND AT END OF MONTH			<u>183,669</u> \$ <u>162,224</u>
Represented by: Bank - current account Term deposit (see attached Note) Approved by the Directors:		145,224 	\$ <u>162,224</u>

NOTE TO STATEMENT OF CASH RECEIPTS AND DISBURSEMENTS

OCTOBER, 1986

NOTE:

Under the terms of an agreement with Knight's Mineral Exploration and Company, Limited Partnership (Knight's), Skyline is incurring exploration expenditures on behalf of Knight's. These expenditures are on Skyline's mineral claims and in consideration for such expenditures Skyline is issuing treasury shares and warrants to Knight's. In connection with the agreement Skyline is renting certain exploration equipment to Knight's and Skyline's subsidiary is purchasing preferred shares in a third company.

As the attached financial statement is prepared on a cash basis, expenditures incurred on behalf of Knight's are shown as exploration expenditures and payments by Knight's for such expenditures are shown as receipts.

Morgan & Company

Chartered Accountants

1210 - 675 West Hastings Street Vancouver, B.C. V6B 1N2 Telephone (604) 687-5841

November 26, 1986

The Directors Skyline Explorations Ltd. # 200 - 675 West Hastings Street Vancouver, B.C.

Dear Sirs:

In connection with your Province of British Columbia "FAME" grant application we have prepared from your accounting records the attached financial statement of exploration expenditure on the Reg claims for the period May 1, 1986 to September 30, 1986.

Although your accounting records are maintained to show somewhat different categories of expenditures we have re-analysed the expenditures to put them in the categories required under the FAME reporting. In particular, as your underground adit, cross-cut and drifts are eligible only as to 25% for grants we have distinguished these costs and allocated general camp costs such as cookhouse expense on a reasonable basis between underground development and surface work.

Based on the attached financial statement our calculation of your FAME grant entitlement is as follows:

Grant calculation - 33 1/3 %	\$ 183,250
Expenditures eligible for grant	549,752
Total exploration costs per financial statement Deduct 75% of underground development costs	\$ 928,780 <u>379,028</u>

As we understand that Skyline received an allocation of only \$100,000 from the grant programme, this will be the amount receivable.

Also enclosed is a monthly reporting form for the month of September, 1986, to add to those previously sent. Please remember that these monthly

. . . 2

STATEMENT OF EXPLORATION EXPENDITURES - REG CLAIMS

FOR THE PERIOD APRIL I, 1986 TO SEPTEMBER 30, 1986

(unaudited)

Geology		\$ 95, 268
Surface drilling		. 145,017
Other surveys		10,396
Underground development		505,369
General camp costs	\$ 323,579	
Less portion included in underground development above	150,849	
		172,730
Total exploration expenditure for the period		\$ 928,780

Note:

In accordance with provisions of the Income Tax Act a substantial portion of the above expenditures were incurred by Skyline Explorations Ltd. on behalf of certain investors who reimbursed Skyline for such expenditures in return for receiving treasury shares and warrants of Skyline and the income tax benefits of such expenditures. The above statement reflects the expenditures on a gross basis without provision for the reimbursements.

Morgan & Company

reports are prepared on a cash paid basis so it is necessary to add the large amount of accounts payable existing at September 30, 1986 to arrive at the total shown in the enclosed summary financial statement.

Please contact us if further information is required.

- 2 -

Yours very truly,

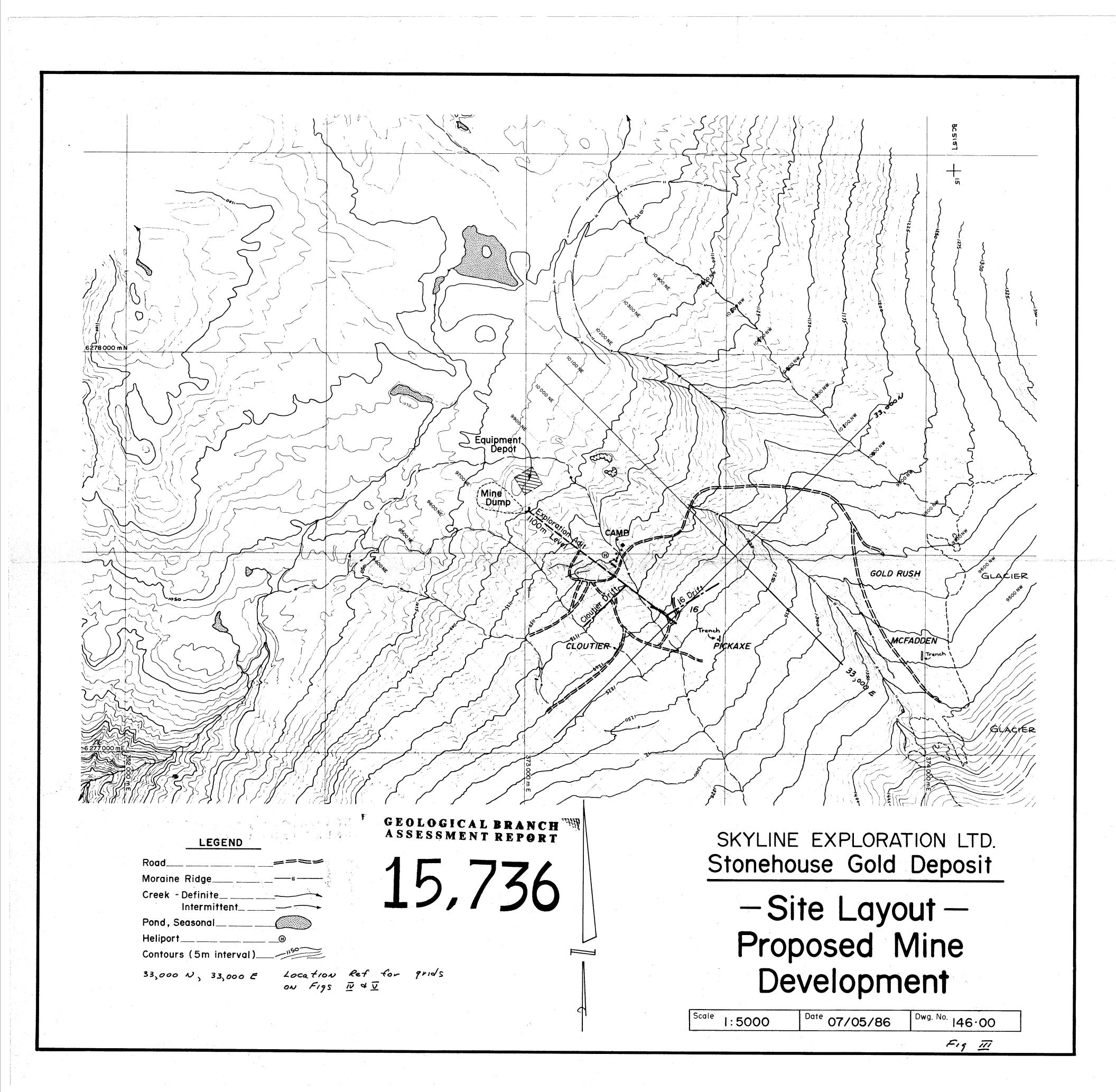
MORGAN & COMPANY

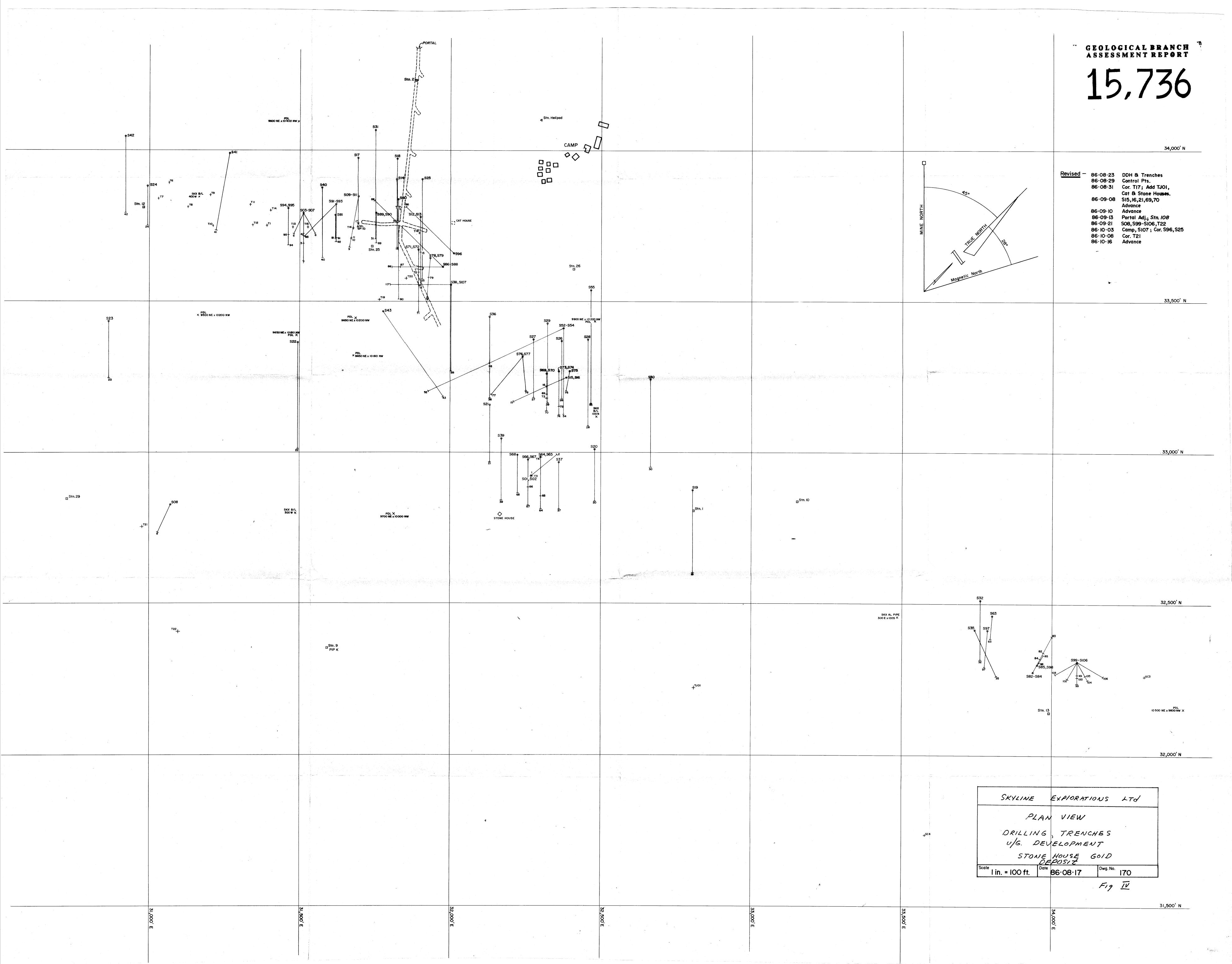
hunger Per: JFM:smc encl.

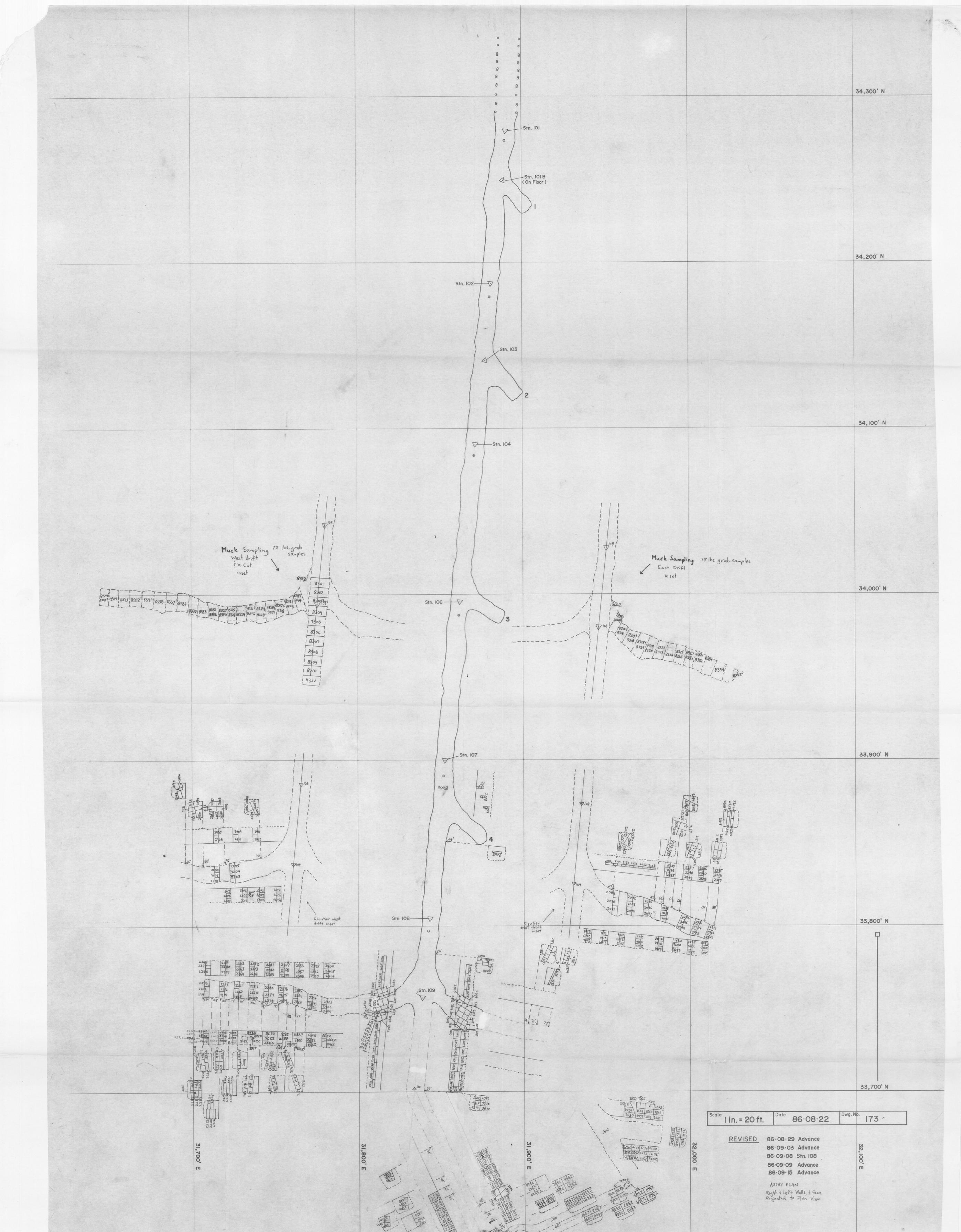
COMMENTS ON UNAUDITED

INTERIM FINANCIAL INFORMATION

The Directors Skyline Explorations Ltd. Vancouver, B.C.


We have prepared the accompanying unaudited interim financial information comprising statement of exploration expenditure - Reg claims for the period May I, 1986 to September 30, 1986 from the records of Skyline Explorations Ltd. and from other information supplied to us by the company and have reviewed such interim financial information. Our review, which was made in accordance with standards established for such reviews, consisted primarily of enquiry, comparison and discussion.


We have not performed an audit and consequently do not express an opinion on this interim financial information. The most recent audited financial statements issued to shareholders on which we have expressed an opinion were for the year ended October 31, 1985.


° prodund

Chartered Accountants

Vancouver, B.C. November 24, 1986

SKYLINE EXPLORATIONS PLAN VIEW GEOLOGICAL BRANCH ASSESSMENT REPORT UNDERGROUND Development Sample Location MAP. Cloutier & Zephrin Zones 15,736 partial table of assay results appearing IL Fig