GEOLOGICAL, GEOCHEMICAL, TRENCHING & DRILLING REPORT

NEW MOON PROPERTY OMINECA MINING DIVISION BRITISH COLUMBIA

LOCATION:	100 km SW of Smithers, B.C. Latitude 53 ⁰ 57'N Longitude 127 ⁰ 45'W N.T.S. 93E 13E/W
OWNER :	Newmont Mines Limited (under Option Agreement from C. Kowall)
OPERATOR :	Newmont Exploration of Canada Limited
WORK DONE:	June 25 to September 5, 1986
BY :	D. Visagie Vancouver, B.C. January 15, T987 GEOLOGICAL BRANCH ASSESSMENT REPORT 15, 741
	INKI IDPZ

TABLE OF CONTENTS

<u>Page</u>

•

SUMMARY	1
INTRODUCTION	3
Location, Access, Physiography Property Definition and Claim Status History Work Summary Infrastructure and Logistics	3 3 6 8 11
REGIONAL GEOLOGY	12
Lithology Alteration Structure Mineralization	16 18 19 19
EVALUATION OF ZONES	21
Main Twilight Splay Misty Day Rhyolite Flats North Scree Creek Camp Lunar D Pb Shadow Valley Boulder	21 32 36 40 41 44 44 46 46 46 48 48 48 48
GEOCHEMISTRY	49
Procedure Results	49 51
GEOPHYSICS	52
CONCLUSIONS	53

BIBLIOGRAPHY	55
STATEMENT OF QUALIFICATIONS	56
COST STATEMENTS	57
APPENDIX 1 - Drill Logs 86-1 to 88-17	63
APPENDIX 2 - Results - North Zone	190
APPENDIX 3 - I.C.P. Results	193

LIST OF TABLES

Table 1	Formations, Members & Facies of the Hazelton Group	13
Table 2	Main Zone - Trench Summary	23
Table 3	Main Zone - Trench Intersections	24
Table 4	Twilight and Splay Zones Trench and Drill Results	33

LIST OF FIGURES

Figure	1	New Moon Project Location		4
Figure	2	Regional Geology - North Half	Th	Dogkot
Figure	3	Property Geology - North Half	T 11	Pocket
riguie	4	Propercy Geology - South Hall	τn	PUCKEL
Figure	5	Plateau Area - Showings		22
Figure	6	Plateau Grid - Geology	In	Pocket
Figure	7	Plateau Grid - Trench Geology	In	Pocket
Figure	8	Plateau Grid - Trench Assays Pb, Zn	In	Pocket
Figure	9	Plateau Grid - Trench Assays Ag, Au	In	Pocket
Figure	10	Main Zone - Drill Section 0+35S		26
Figure	11	Main Zone - Drill Section 0+00	In	Pocket
Figure	12	Main Zone - Drill Section 0+25N		27
Figure	13	Main Zone - Drill Section 0+75N	In	Pocket
Figure	14	Main Zone - Drill Section 1+25N		28
Figure	15	Main Zone - Drill Section 1+50N	In	Pocket
Figure	16	Main Zone - Drill Section 1+87N		29
Figure	17	Main Zone - Drill Section 2+24N		30
Figure	18	Main Zone - Drill Section 3+25N		31
Figure	19	Twilight Zone - Drill Section 0+50N	In	Pocket
Figure	20	Splay Zone - Drill Section 1+25N		34
Figure	21	Splay Zone - Drill Section 2+15N		35
Figure	22	Misty Day Grid - Geology	In	Pocket
Figure	23	Misty Day Grid - Trench Geology	In	Pocket
Figure	24	Misty Day Grid - Trench Assays Pb, Zn	In	Pocket
Figure	25	Misty Day Grid - Trench Assays Aq, Au	In	Pocket
Figure	26	Misty Day Grid - Drill Section 0+40S		37
Figure	27	Misty Day Grid - Drill Section 1+30S		38
Figure	28	Misty Day Grid - Drill Section 2+60S		39
Figure	29	Rhyolite Flats - Trench Geology	In	Pocket
Figure	30	Rhyolite Flats - Trench Assay Pb, Zn, Ag, Au	In	Pocket
Figure	31	North Zone - Geology		42
Figure	32	North Zone - Trench Assays Pb, Zn, Ag, Au		43
Figure	33	Scree Zone - Rock Assay Pb, Zn, Ag, Au		45
Figure	34	Lunar Zone - Geology & Assay - Pb, Zn, Ag,	Au	47
-	25		+	
Figure	35	Regional Geochemistry - North Halt	1n	Pocket
Figure	36	Regional Geochemistry - South Half	In	Pocket
Figure	37	Plateau Grid - Geophysics	In	Pocket

SUMMARY

The New Moon property was optioned by Newmont from prospector C. Kowall in June 1985. This epithermal base and precious metal prospect is located in west-central British Columbia approximately 100 km southwest of Smithers, B.C. During the 1985 and 1986 summer field seasons Newmont personnel carried out mapping, prospecting, hand and back-hoe trenching, rock chip and stream sediment sampling, geophysical surveying (magnetometer and radem) and drilling. This work resulted in the discovery of 14 mineralized zones or occurrences, 4 of which were drilled in 1986. These were the Main, Splay, Misty Day and Twilight Zones. A total of 1216m of trenching and 1529m of BQ core in 17 holes has been completed by Newmont to date.

Mapping has shown that the epithermal zones to consist quartz carbonate veins in fault zones within Hazelton of volcanics. The veins mineralogy consists primarily of with lesser amounts of chalcopyrite and sphalerite, galena, Gold and silver are associated, but not in a direct pyrite. correlation with the base metals. In polished section electrum has been found to be associated with pyrite.

Drilling of the 4 zones has shown the veins to pinch and mineralization to be variable in grade and swell, a nd content. The Main Zone is at least 250m long and varies in width between 1 and 4.2m with the down dip extension tested to at least 230m where an intercept averaging 3.60% Pb, 12.24% Zn, 0.62 Ag and 0.024 Au over 4.2m was obtained. Overall mineral content is approximately 6.5% combined sphalerite and galena. Gold and Shallow drilling on the Splay silver values vary throughout. Zone has shown two distinct steeply dipping quartz carbonate veins which contain moderately anomalous values with the best section averaging 1.71% Pb, 2.55% Zn, 3.30 Ag and 0.005 Au over 1.3m.

On the Twilight Zone the limited amount of drilling completed has shown a narrow 1.5m steeply dipping quartz vein occurring in an area of extensive shearing to average 0.46% Cu, 2.69% Pb, 7.77% Zn, 1.10 Ag and 0.007 Au. The zone has not been delineated.

The Misty Day Zone is at least 350m long by 0.5 to 3m wide, as outlined by trenching. While the Main, Twilight and Splay zones contain significant base metals with minor silver, the reverse is true on the Misty Day. Three shallow holes located over a 220m strike length, showed the zones to contain minor base metals with significant precious metals. The best hole averaged 0.664% Pb, 2.15% Zn, 38.60 Ag, 0.075 Au over 6.2m. The zone is open at depth and along strike to the south but is truncated to the north by a snow-filled cirque.

The most significant undrilled occurrence is the North Zone. It covers an area 600 x 100m that consists of several quartz veins and stockworks which contain low base metal values with significant gold and/or silver. The best exposure sampled averaged 1.26% Pb, 2.38% Zn, 34.12 Ag, 0.225 Au across 5m at one end and 0.54% Pb, 0.68% Zn, 23.18 Ag, and 0.075 Au across 5m at the other with the intervening llm left unsampled.

The North Zone is aligned along the same structure as the Main Zone and the Scree Zone which indicates that the total of the length mineralized structure could be in excess of 3.0 km.

Additional drilling is recommended to test the zones with the objective to develop deposits of higher tonnages and grades.

- 2 -

INTRODUCTION

Location, Access, Physiography

The New Moon property is located on the eastern margin of the Coast Range Mountains approximately 100 km south of Smithers in west-central British Columbia. The claims centered at 53° 57'N and 127° 45'E, NTS 93E/13, occur within the Omineca Mining Division. Access is by helicopter from Smithers, Terrace or Houston. A 74 km all-weather gravel road connects Houston with a staging area on the east side of Morice Lake. From there it is 18 km by helicopter across the lake to the base camp at the centre of the property. (Figure 1)

Elevations on the property vary considerably from 775m (2500 ft) at Morice Lake to above 2200m (7200 ft) at some of the peaks. The terrain is characterized by steep ridges and large U-shaped valleys. The central part of the property, where most of the work described in this report was carried out, is an alpine plateau at about 2100m (6800 ft) elevation.

Vegetation is altitude-dependent, with small spruce, pine and alder in the valleys with sparse patches of grass at the higher locales. The tree line is at approximately 1400m. The higher parts of the property, particularly the northeast facing slopes, are covered by small alpine glaciers and snow fields. Wildlife consists primarily of marmots, birds, and occasional mountain goats and bears.

Property Definition and Claim Status

The New Moon property is a polymetallic prospect with significant values present in gold, silver, lead, zinc and copper. Fourteen mineralized zones with several separate styles of mineralization are known. The current emphasis is on the

gold-silver lead, zinc bearing vein-stockwork mineralization. The property is still at the exploration stage, with the principal work methods being (a) mapping and prospecting, (b) trenching and sampling, and (c) diamond drilling.

The property has been held under option from prospector C. Kowall since June 1985 by Newmont Mines Limited. Newmont Exploration of Canada Limited is the operator. The property consists of 22 contiguous claims totalling 375 units, listed as follows:

<u>Claim Name</u>	Number	Units	Date of Record
Misty Day	832	12	October 21, 1977
Copper Cliff	833	12	October 21, 1977
New Moon	834	20	October 21, 1977
Full Moon	4163	8	August 12, 1981
Lunar l	4718	18	August 19, 1982
Lunar 2	4719	14	August 19, 1982
Lunar 3	4720	16	August 19, 1982
Lunar 4	4764	18	September 21, 1982
Lunar 5	4765	12	September 21, 1982
Lunar 6	4836	20	October 21, 1982
Lunar 7	4837	18	October 21, 1982
Lunar 8	4838	20	October 21, 1982
Lunar 9	4839	20	October 21, 1982
Lunar 10	4840	20	October 21, 1982
Lunar 11	4841	20	October 21, 1982
Lunar 12	4842	20	October 21, 1982
Lunar 13	4843	20	October 21, 1982
Lunar 14	4844	20	October 21, 1982
Lunar 15	4845	20	October 21, 1982
Lunar 16	4852	20	October 21, 1982
Lunar 17	4853	15	October 21, 1982
Lunar 18	4854	12	October 21, 1982

- 5 -

History

Early work concentrated on mineralization exposed in outcrop and rubble on the plateau, while later programs concentrated on the volcanogenic massive sulphide potential of the property.

1967-68 Phelps Dodge Corporation of Canada

- staked PC 1-36 claims to cover mineral showings located on the central plateau area,
- 9 trenches totalling 211m blasted and sampled,
- area mapped,
- 6 men employed for 6 weeks.
- 1969 Silver Standard Mines
 - area to the south of the PC claims prospected by C.
 Kowall results in the discovery of banded, copperbearing massive sulphide boulders whose probable source is under a glacier,
 - area staked, no further work.
- 1970 Aggressive Mining
 - restakes the lapsed PC 1-36 as the JOW 1-20.
- 1971 Aggressive Mining
 - area mapped by R.W. Phendler (1'' = 400'),
 - Crone JEM survey, 6 lines totalling 5000' at 50' intervals with a coil separation of 200'.
- 1972 Aggressive Mining
 - Mag and EM survey completed,
 - geochem survey results in 101 samples being taken from 150' of trenching,
 - 5 BQ drill holes (312m) completed on the JOW 4,
 - results outlined a zone 7.6 to 9.1m wide x 165m long that averages 1.74% Pb and 5.43% Zn, silver and gold

were not systematically sampled.

- spot anomalies up to .ll oz Au/t located in short sections in drill core with less than 1 oz Aq.
- a composite of the intersections of the drill core shows the zone to average 2.97% Pb, 8.52% Zn, 0.79 oz Ag and 0.046 oz Au across 5.6m.
- claims dropped because silver values were low,
- 1977 C. Kowall
 - stakes the lapsed JOW 1-20 as the Misty Day, New Moon and Copper Cliff.
- 1978 Silver Standard-Norcen & Aquitaine
 - Silver Standard optioned the claims from C. Kowall and in turn optioned them to a joint venture consisting of Norcen and Aquitaine, the purpose of which was to explore the massive sulphide potential,
 - limited prospecting and detailed geologic mapping along with minor ground VLF and magnetic surveys identified a favourable volcanogenic environment,
 - option dropped as logistics unfavourable.
- 1981 Great Western Petroleum Corporation
 - optioned the claims from Kowall,
 - completed a helicopter VLF-EM and magnetometer survey,
- 1982 St. Joe Canada
 - optioned the claims in August 1982 from Great West,
 - carried out a helicopter EM and magnetic survey,
 - staked the Lunar 1-18 claims.
- 1983 St. Joe Canada
 - UTEM and mag surveys, mapping and sampling around the massive sulphide target under the New Moon Glacier,
 - IP and mag surveys, mapping, sampling on the plateau polymetallic zone.

1984 St. Joe Canada

- completed 4 BQ diamond drill holes totalling 936m to locate the source of the massive sulphide boulders.
 Failed to find any significant mineralization.
- 1985 Newmont Exploration of Canada
 - St. Joe and Great West options terminated,
 - Newmont options claims from C. Kowall,
 - mapping at 1:10,000 and prospecting over 40% of property,
 - cleaned out and sampled old trenches, dug new ones, mapping and mag survey over 4 selected areas on the polymetallic zones on the plateau.

Work Summary

As a result of Newmont's 1985 exploration plus the work of past operators, it was decided that the purpose of the 1986 program would be to drill test three of the plateau zones (called the Main, Splay and Misty Day) to depth and laterally. In addition, mapping-prospecting-trenching-sampling would be continued over much of the remainder of this large property to discover new zones and bring them along to the drilling stage, if warranted.

The 1986 exploration program was carried out from June 26 to September 10, utilizing 716 man days of employee's time plus another 154 man days by the drill contractor. Personnel consisted of:

- D. Visagie Project Geologist
- D. Bohme Geologist
- I. Casidy Geologic Technician
- C. Kowall Prospector
- D. Barnett Tractor Operator
- B. Anderson Field Assistant

- G. Malensek Field Assistant
- M. Savage Field Assistant
- G. Mountford Field Assistant
- P. Witt Field Assistant
- D. Visagie Cook
- A. Howard Cook

For the sake of completeness, this report includes some of the results of 1985 work where appropriate, however, only 1986 costs are given in the cost statement. In particular this applies to the geologic mapping, hand trenching and chip sampling. Work summaries and methods are described below:

- (a) Geologic Mapping: Reconnaissance-type mapping at 1:10,000 scale was continued in 1986 so that most of the property has now been covered. An area of 4,000 hectares was mapped in 1986. Control for this work was provided by air photo, altimeter and a topographic base map with a 500 foot (152m) contour interval. The work was done from fly camps, with helicopter set-outs whenever possible. Detailed mapping of areas containing the mineralized zones was done at 1:500 scale, with trench geology plotted at 1:250 scale. Control was provided by a grid marked with lath pickets, laid out by Brunton compass, with a line spacing of 25m and station spacing of 25m.
- (b) Geochemistry: A stream sediment survey resulted in 31 silt samples. Rock chip samples of trenches, outcrop, float and drill core totalled 1420.
- (c) Geophysics: A resistivity survey using a VLF-EMR instrument was carried out over 4.5 line kilometres with 376 readings taken at station intervals of 12.5m.
- (d) Trenching: 58 bulldozer trenches totalling 1074m in length were dug on the plateau in the vicinity of the Main, Splay, Misty Day and Rhyolite Flats Zones. The equipment used was a John Deere 450 tractor rented from Coast Tractor. Trench depths were commonly 0.3 to 1.0m. Bedrock surface was

cleaned up by pick shovel and broom, sample sites marked by red paint on the rock, and representative chip samples over measured lengths taken by hammer and moil. Sample lengths ranged from about 0.5 to 1.0m in mineralized material to 1.0 to 2.0m where mineralization was weaker. Sample weights were about 2 to 5 kg each. Twenty-one hand-dug or blasted trenches totalling 142m in length were completed in 1986 in those outlying areas (mainly the North and Scree Zones) inaccessible to the tractor.

(e) Diamond Drilling: A program of 17 BQ diamond drill holes ranging from 35 to 255m deep and totalling 1529m in length was carried out between August 2 and September 5. Work was performed under contract by DJ Drilling of Surrey, B.C. using a Longyear 38 wireline drill. Drilling conditions were generally good with overburden being absent. However, some of the mineralized zones were considerably fractured, resulting in poor core recovery in some intersections. No drilling mud was used. Drilling was carried out on two 10 hour shifts per day, 7 days a week. Performance averaged 24.7m per shift, including all time spent moving between holes and to and from the staging area. Drill hole collar locations were determined by transit survey; their azimuths were laid out by Brunton compass. Acid dip tests were taken at the bottom of each hole, or at irregular intervals of 50 to 150m in the deeper holes. Elevations are with respect to a base station located at 200N Bl, where an altimeter reading provided a base elevation of 2100m above sea level. The drill core is stored at the base camp site on the plateau near the Main Zone.

01	Bull-	Hand or		- • • •		
Claim	dozer	Blasted	Drill-	Silt	Geol	VLF-
Name	Trench	Trench	<u>lng</u>	Sampling	Mapping	EMR_
Misty Day	х		x			x
Copper Cliff	х		х			
New Moon						
Full Moon						
Lunar l	х		х		х	
Lunar 2		х			х	
Lunar 3					х	
Lunar 4		Х			х	
Lunar 5					х	
Lunar 6					х	
Lunar 7				Х	х	
Lunar 8				х	х	
Lunar 9				х	Х	
Lunar 10				Х	х	
Lunar 11					Х	
Lunar 12					х	
Lunar 13				Х	Х	
Lunar 14		Х			Х	
Lunar 15				х	х	
Lunar 16				Х	х	
Lunar 17				х	х	
Lunar 18				Х	Х	

The work is distributed as shown below:

Infrastructure and Logistics

_ _ _

The workings on the New Moon property are presently accessible only by helicopter, with bases being located at Smithers, Terrace, Houston and Kitimat. Both Smithers and Terrace have daily scheduled air service to Vancouver.

A 74 km all-weather gravel road from Houston comes to within 18 km of the centre of the property. For the purpose of mobilization, a staging area was selected. Equipment was moved to the staging area using low-beds and semi-trailers, then broken down and flown to the workings using a Bell 205 or 206 helicopter. Transportation costs for the drilling equipment, tractor and camp gear from the owners' premises within British Columbia, and return thereto, is included in the Cost Statement. Smithers, a town of 5,000 people, was used as a supply base for the project. During the summer program, camp was serviced by weekly flights using a Bell 206 helicopter. It should be noted that the provision of a tractor, and a Newmont operator to build drill sites and roads in advance, made the drill job run smoothly and saved money compared to an all-helicopter drill job. Furthermore, the tractor was available for trenching and accomplished far more than could ever have been done by hand.

Possible sources of hydroelectric power for mine development would be either a private generating plant at Kemano 50 km to the south or the provincial power grid at Houston 90 km NE.

REGIONAL GEOLOGY

In 1980 G.J. Woodsworth compiled the available geologic mapping of the Whitesail Map sheet (NTS 93E) at a scale of 1:25,000 (G.S.C. Open File 708).

The important contacts and rock types in the vicinity of the New Moon property are outlined on Figure 2. The claims lie at the western limits of the Hazelton Group (early to mid Jurassic) in close proximity to the Coast Plutonic Complex. The Hazelton Group has been subdivided locally into the Telkwa and Nilkitkwa Formations. The Telkwa Formation underlies most of the property.

The name Telkwa Formation refers to the oldest of three formations which make up the Hazelton Group (see Table I). This formation consists of a thick suite of calc-alkaline volcanic rocks that has been subdivided into 5 distinct facies, of which the "Howson subaerial facies" composed of bright red, maroon, purple, pink, grey, green, well-bedded, slightly deformed basalt to rhyolite (dominantly andesite-dacite), pyroclastic flows and deposited in a terrestrial environment (Tipper tuffs andRichards, 1976) is locally prominent. The Telkwa Formation is probably coeval with Lower Jurassic Topley underlain and is overlain conformably by the Nilkitkwa Intrusions a nd Formation.

TA	B	LE	1
- T L	יטיג	يتدلب	_

FORMATIONS, MEMBERS, AND FACIES OF THE HAZELTON GROUP

Unit	Lithology	Thickness (m)	Age
<u>Smithers</u> Formation	Greywacke, argillite, siltstone, sandstone, sharpstone, conglomerate, glauconitic sandstone, ash-fall tuff, tuffaceous sediments	40 - 800	Middle Toarcian to Lower Callovian
Bait Member	Argillite, siltstone, fine-grained greywacke, limestone, sharpstone conglomerate, tuff and tuffaceous sediments	30 - 450	Middle Toarcian to Middle Bajocian
Yuen Member	Siltstone, tuffaceous siltstone, reddish tuff, fine tuff- aceous greywacke	780	Toarcian to Middle Bajocian
<u>Nilkitkwa</u> Formation	Shale, siltstone, greywacke, limy shale, limestone, rhyo- dacite airfall tuff and breccia, basalt	30 - 1200	Early Pliensbachian to Middle Toarcian
Carruthers Member	Pillow basalt, aquagene tuff, breccia, minor flows and limestone	60	Late Pliensbachian to Early Toercian
Ankwell Member	Subaerial and subaqueous alkali olivine basalt, minor basalt, minor sandstone and limestone	10 - 1000	Middle Toercian
Red Tuff Member	Subaerial airfall tuff, lapilli tuff, rhyolite to basalt flow breccia and tuff, minor subaqueous volcanics	50 - 300	Middle and ? Late Tourcian
<u>Telkwa</u> Formation			Late Sinemurian to Early Pliensbachian
Howson sub- aerial facies	Calc-alkaline basalt to rhyolite flows; breccia, tuff; intravolcanic sediments; minor marl	1000 - 2500	
Babine shelf facies	Calc-alkaline basalt to rhyolite; subaerial and subaq- eous flow, breccia, and tuff; limestone, greywacke, siltstone, and shale	1000 ?	
Kotsine subaqueous facies	Calc-alkaline basalt and rhyolite; subaqueous flow, breccia, tuff, pillow breccia; limestone, greywacke, siltstone and shale	30 - 1500	
Bear Lake subaerial facies	Calc-alkaline basalt to rhyolite flow, breccia, and tuff; and intravolcanic sediments	; 2000	
Sikanni clas- tic-volcanic facies	Subaerial conglomerate, sandstone, mudstone, lahar, rhyo- dacite flow, breccia, basalt, andesite; minor shallow- marine sandstone and conglomerate	200 - 1000	

Source: Tipper & Richards, GSC Bulletin 270, 1976

The Nilkitwa Formation is composed of shale, siltstone, graywacke, limestone, rhyodacite, airfall tuffs and breccias, and The basal member of the Nilkitkwa Formation is the Red basalts. Tuff member composed of reddish calc-alkaline volcanic rocks, some of which are found around Morice Lake. The Red Tuff member is similar to the Howson subaerial facies, making their exact distinction difficult. Where possible, the units are separated on the basis of their relationships to overlying and underlying Where such contacts are absent, the separation of formations. the two units is dependent upon subtle lithologic differences. Tipper (G.S.C.) states that one of the prime difference is that the Red Tuff member contains pervasive, thin limestone and/or shale beds while the Howsen subaerial facies does not.

The preservation of the Red Tuff member strata has occurred where drop faulting, has lowered blocks of the Red Tuffs into the surrounding Telkwa Formation. It is therefore possible that some of the mapped Howson rocks on the New Moon property may belong to the Red Tuff member.

The Telkwa Formation rocks have been intruded by the Topley Intrusions which form calc-alkaline stocks and batholiths that are Early Jurassic in age. They form a series of bodies coincident with the Skeena Arch, and although they strike directly toward the Coast Plutonic Complex they have not been recognized within it. These intrusions are thought to be contemporaneous with and intrusive into the Telkwa Formation.

The intrusions are coincidental with the thickest piles of volcanics and are associated with the greatest abundance of acidic extrusives. They are epizonal in character. On the New Moon property, roof pendants of volcanic strata are well preserved, with some volcanic xenoliths near the contacts. Otherwise the contacts are sharp.

PROPERTY GEOLOGY

Lithology

The New Moon property is underlain by Lower to Middle Jurassic intermediate to felsic volcanics and volcaniclastics of the Hazelton Group of which locally the Telkwa Formation is prominant. The volcanics in turn have been cut by various dykes and intrusive bodies. To date 16 rock types have been identified and are outlined on Figures 3 and 4. For reporting purposes the various types have been grouped where possible.

- Unit 1 Andesitic Tuff
 - fine to medium grained, green and maroon colored, includes green auto-brecciated flows, flows and breccia, minor limestone. Calcareous.
- Unit 2 Hornfels
 - fine grained, mauve to grey-green colored, contains noticeable biotite, tremolite, and magnetite. Minor calc-silicate magnetite skarn included.
- Unit 3 Dacite Porphyry Flow
 - fine grained, light grey to maroon colored, contains feldspar phenocrysts up to 5mm in size. Massive and brecciated.

Unit 4 Dacitic Tuff - Agglomerate

- fine grained, light green to flesh pink colored, fragments up to 20 cm included in agglomerate. In part welded lapilli (lapilli up to 2 cm) and crystal tuff.
- Unit 5 Rhyolitic Flow and Tuff
 - fine grained, light grey-yellow colored, in part autobrecciated includes agglomerate and quartz eye feldspar crystal tuff and tuff breccia.

Unit 6 Cherty Tuff - Exhalite

- fine grained, light grey colored typically forms beds up to lm thick, well laminated on occasion.
- Unit 7 Maroon Tuff
 - red-maroon-grey colored, medium grained, subaerial, includes some rhyolite ejecta, and narrow sections of felsic and intermediate tuffs, andesitic in composition.
- Unit 8 Felsic Crystal Tuff
 - fine grained, light grey colored, contains abundant quartz eyes and laths, equivalent in part to units 4 and 5.
- Unit 9 Andesite Flows
 - fine to medium grained, grey to maroon colored, brecciated on occasion, related to and cyclically interbedded with unit 7.
- Unit 10-13 Dykes
 - variable in composition, grain size, and color
 - in general the mafic dykes are older than the felsic dykes. In part forms dyke swarms.
- Unit 14 Topley Intrusive
 - includes Granite, Quartz Monzonite, Granodiorite generally coarse grained, light to medium grayish white colored.
- Unit 15 Aplite Dyke
 - medium grained light green beige and white colored.
- Unit 16 Andesite Sill/Flow
 medium grained green colored, plagioclase phenocrysts
 up to 0.5 cm in size occur throughout.

Alteration

The New Moon property is host to several styles of alteration. On a regional scale the Howson subaerial facies is extensively altered with a regional development of zeolites, epidote, prehnite and calcite. The low grade minerals epidote, prehnite and calcite occur in three forms:

- As veins, from approximately 30 cm wide to fine veinlets less than lcm that cut the strata.
- As primary porosity fillings that form amygdules and cement the breccias.
- As a matrix component of secondary minerals in pyroclastics and flows.

The zeolitization tends to occur in andesitic rather than rhyolitic rocks.

In addition to the above local alteration zones can include:

- 1) silicification along shear and fault zones,
- moderate clay alteration (kaolinization) of the feldspar and on occasion saussuritization,
- chloritization of the mafic constituents of some of the volcanic rocks, and
- 4) minor k-spar rimming of quartz veins.

Structure

The tuffs and flows are generally flat to moderately dipping with no major folds being developed. Structurally, significant faulting has had the most effect on volcanic stratigraphy and is the prime localizing factor in the development of the mineralized zones. Predominant faults occur along either a NW-SE or NE-SW trend. Displacement for the most part is generally minor less than 5m. The faulting was probably caused either by underlying intrusive activities or by dilatant flexures in response to lateral stress in a NW-SE direction. Faults are generally steeply to moderately dipping.

Mineralization

Three types of mineralization have been identified on the property:

- a) Epithermal base and precious metal
- b) Massive banded sulphide possibly volcanogenic
- c) Magnetite skarn

Of the three, the epithermal is the most prevalent with 12 of the 14 located zones being classified as such:

1. Eipthermal Base and Precious Metal

The mineralization occurs within or in close proximity to quartz-carbonate vein filled fault and fracture zones. Typically the zones are composed of various combinations and grades of base and precious metals. Mineralization consists primarily of sphalerite and galena along with minor amounts of chalcopyrite, pyrite and malachite. Gold and silver occur generally in association, but not in a direct correlation, with the sulphides. Previously completed polished section studies of samples taken from the Main Zone have shown electrum to be associated with pyrite. In addition one drill core sample in an area of high silver values on the Misty Day zone is thought to contain native silver.

In form the sulphides occur both as distinct semi-massive to massive bands up to 10cm thick and as disseminations. At surface the zones are characterized by manganese and hematite staining. Gossan has formed in areas of heavy sulphide. In core, oxidation has been noted at depths of up to 200m.

- 2. Massive Banded Sulphide possibly volcanogenic Massive to semi-massive sulphide boulders have been located in moraines emanating from a glacier located in the Boulder Zone. The boulders up to lm in size are angular and form three distinct styles of mineralization:
 - a) massive galena/sphalerite with pyrite in silicified carbonatized and chloritized andesitic flows,
 - b) heavy specular hematite, chalcopyrite, magnetite and minor sphalerite in jasperoidal chert,
 - c) chalcopyrite and pyrite in a chlorite and epidote altered grey cherty host rock.
- 3. Skarn

Skarn type mineralization occurs at the Shadow Valley showing. The skarn is composed of a massive magnetite lens in which minor chalcopyrite, pyrite, galena and sphalerite occur. The lens is hosted by a calcareous horizon within hornfelsed andesitic tuffs. The lens is exposed for 300m and is 2 to 3m thick.

EVALUATION OF ZONES

Fourteen mineralized zones are known to occur on the New Moon property ranging from four zones that have been drilled, down to one that is known only through a train of mineralized float (rubble). Their locations are shown on Figure 4 and 5; 13 of them located in the central part of the property are indicated on Figure 5. The zones have been evaluated through combinations of trenching, mapping, rock chip sampling and diamond drilling. The results are summarized below for those zones explored by Newmont in 1986, followed by brief references to those zones explored in earlier years.

<u>Main Zone</u> (Figures 5-18) Trenching: 23 trenches totalling 639.9m Drilling: 11 holes totalling 1159.5m

The results of the drilling and trenching programs are summarized in Tables 2 and 3. Trenching has outlined a zone that is at least 250m long by 1 to 10.3m wide (averaging 4m) that grades at surface 3,14% Pb, 3.49% Zn, 0.77 oz Ag, 0.065 oz Au. The structure hosting the zone extends another 75m to the north with lower grade values, where it is then truncated by a snowfilled cirque. Trenching was attempted on the southern extension, but was unsuccessful in reaching bedrock due to thick scree cover and steep slopes. Thus the zone is still open in that direction.

Mineralization consists of banded quartz-carbonate veins in part brecciated, that contain disseminated to semimassive galena and sphalerite with lesser amounts of pyrite, chalcopyrite, malachite and azurite. Overall the zone is estimated to contain 7% total sulphides by volume. Hematite is found within the host tuffs, while manganese associated with the veins probably results from the breakdown of dolomite.

TABLE 2

MAIN ZONE - TRENCH SUMMARY

			INTERSECT	ION	GRADE						
Trench	Length(m)	From(m)	<u>To(m)</u>	Int(m)	Pbt	Znt	Ag oz/T	<u>Au oz/T</u>			
_											
1	33	4.8	8.0	3.2	2.37	4.00	.66	•060			
		9.7	10.7	1.0	6.14	8.86	1.08	-034			
		13.0	20.0	7.0	4.20	3.20	.90	.031			
		21.0	22.0	1.0	7.22	0.65	.86	.006			
		28.0	29.0	1.0	1.48	3.26	07	.050			
23	42	12.0	15.0	3.0	1.71	2.78	.47	.079			
		18.0	22.0	4.0	3.63	5.15	.53	•034			
		30.0	36.0	6.0	2.73	3.45	.41	.027			
5	46	20.3	26.0	5.7	3.10	6.10	.95	.078			
32	28	5.0	14.0	9.0	5.03	3.78	1.05	.033			
30	42	14.0	18.0	4.0	1.34	3.99	.55	•089			
		33.5	39.0	5.5	2.14	2.49	.67	.106			
		31.5	33.5	2.0	2.47	1.85	2.56	.020			
31	44	17.5	23.5	6.0	4.38	7.78	1.14	.173			
		26.0	28.0	2.0	0.98	2.65	.37	.004			
		30.0	31.5	1.5	2.31	4.25	.55	.005			
33	22	4.5	13.0	8.5	3.73	1.99	1.05	.031			
		13.0	16.0	3.0	4.83	0.62	1.20	.004			
34	50	2.7	14.0	10.3	2.43	2.66	.70	.047			
		22.0	23.0	1.0	1.05	1.64	.22	• 048			
		46.2	48.0	0.8	2.59	4.15	. 39	.024			
35	13.5 41	19.0	22.5	3.0	3.31	3.80	1.60	.109			
36	14	9.0	17.0	8.0	2.30	2.40	. 51	.108			
50	30	9 0	14 0	5.0	3.30	3.10	. 56	.150			
		9.5	12.5	3.0	4.84	3.58	.75	.234			
37	60	-	-	-	-	-	-	-			
30	10 5	F F	12.0	6 6	1 10	1 05	40	050			
20	19.5	5.0	8.0	3.0	1.18	3.14	.72	.108			
39	22	1.0	15	0.5	2.26	1.96	. 35	.022			
55	~~~	2 5	6.0	3.5	4.73	4.17	.82	.085			
		3.0	5.5	2.5	6.15	4.77	.87	.115			
40	14	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.			
41	17	4.0	5.5	1.5	1.61	1.84	.17	.025			
42	12	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.			
43	13	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.			
44	8	4.0	4.5	0.5	>1	>1	.66	.012			
45	13	0.5 3.0	1.0 4.5	0.5 1.5	1.31 1.63	$1.39 \\ 1.44$.07	<.002 .002			
46	37.4	10.0	14.2	4.2	3.07	5.22	.53	.052			
47	18	1.5	2.0	0.5	2.78	1.49	.16	.020			
48	19	3.5	5.5	2.0	1.49	2.34	.31	.002			
49	9	5.0	7.5	2.5	3.30	3.20	. 58	.028			

•

MAIN ZONE - DRILL INTERSECTIONS

Hole <u>No.</u>	Length	From(m)	<u>To(m)</u>	Int.(m)	Cut	Pb8	Znt	<u>Ag oz/T</u>	Au oz/T
86-1	54.3	8.6	10.2	1.6		.88	3.64	. 38	.029
		17.8	18.9	1.1		2.49	9.59	.47	.016
1001		29.2	34.2	5.0		1.15	3.19	• 30	.032
Inci	•	33.2	34.2	1.0		3.93	10.32	• 90	.140
86-2	57.7	22.6	24.5	1.9		1.54	5.93	.50	.023
		34.7	39.3	4.6	.27	2.40	7.26	.62	.029
incl	•	34.7	37.0	2.3	.19	3.58	8.57	. /5	.048
DUP		38.1	39.3	1.2	.08	2.00	10.00	•05	.017
86-3	71.9	9.3	9.9	0.6	.23	2.00	6.01	.37	.004
		20.6	22.1	1.5		0.19	3.44	.27	.002
		22.1	23.1	1.0	.21	2.20	12.65	.34	.013
		23.1	25.1	2.0		0.05	U-48 E 00	.03	.002
		23.1	27.2	2.1		0.25	2.00	- 17	.002
		29.4	32.2	2.2		0.64	5.58	. 25	.002
or		22.1	32.2	10.1		0.52	4.44	.21	.006
96-4	112 1	01 2	01 7	0.5		0 33	1 00	06	002
00-4	113.1	91.7	95.7	4 0	57	2.43	6.75	. 52	.015
incl	•	91.7	93.3	1.6	.40	4.75	11.10	.52	.026
86-5	125.9	96 5	100 5	4 0		0.41	1.83	- 05	. 002
incl		96.5	98.1	1.6		0.33	1.89	.06	.002
		98.1	99.8	1.7		0.15	0.71	.05	.002
•		99.8	100.5	0.7		1.22	4.43	.16	.002
		102.5	104.7	2.2	>18	0.10	5.29	. 55	.003
		109.8	110.3	0.5		0.01	1.39	.13	.002
86-6	119.5	35.4	36.0	0.6		1.31	2.82	.23	.012
		74.2	75.9	1.7		0.34	1.41	.11	.021
		86.6	90.8	4.2	• •	1.24	3.10	.28	.002
		103.4	107.7	4.3	. 36	0.83	3.35	.35	.020
86-13	254.8	35.4	36.9	1.5		1.25	3.58	.23	.002
		44.9	49.9	5.0		1.35	3.09	.19	.002
		57.8	61.2	3.4		1.08	2.78	.14	.002
		137.2	139.6	2.4	.29	0.31	2.61	.16	.002
		144.2	140.4	2.2	.18	0.47	1 20	. 21	.008
		132.7	120.2	5.0	.12	0.12	1.23	.05	.002
86-14	221.0	42.0	42.6	0.6	.16	0.57	3.97	.19	.002
		65.7	66.8	1.1	.08	0.47	3.05	.15	.003
		93.7	96.7	3.0		0.97	2.48	.17	.034
		176.5	180.2	3.7		0.30	1.97	.17	.002
		180.2	184.4	4.2	.23	3.60	12,24	.62	.042
86-15	34.7	19.3	20.7	1.4		0.19	0.96	2.77	.002
		25.0	25.6	0.6		0.89	2.53	. 20	.004
86-16	35.4			No Sig	nifica	nt Resul	lts		
86-17	76.2			No Sia	nifica	nt Resu	lts		

· · ---

· __ · _ ·

-

Drilling was conducted along strike and down dip from the previously drilled holes (1972) to test for extensions and explore the vein system for more Au-Aq enriched portions. Core recovery was generally excellent, with the notable exception of some of the mineralized intercepts. Within the Main Zone, the quartz veining is highly fractured and brecciated by the host fault system. In addition, oxidation has been noted to occur to a depth in excess of 150m. No fault gouge was seen. The deepest intersection (in 86-14) is 200m vertically below surface or 220m down dip. The zone was intersected in all but the northern most Drilling has shown the Main Zone to be composed of a series hole. of quartz vein systems that contain appreciable sulphide, primarily galena and sphalerite. The zone appears to pinch and swell along strike and down dip with grades being variable. In general, grade and width are less in drill core than at surface. The zone appears to pinch out to the north but this may be only a Hole 86-16, a shallow drill product of elevation in the system. located at the northern end of the system, failed test to However, a deep test (hole 86-14) located intersect the zone. 200m to the south intersected a strongly developed shear zone for 40m at 135m below the interpreted zone in 86-16. Immediately below the shear zone occurs a heavily mineralized zone that contains a 4.2m section averaging 0.23% Cu, 3.60% Pb, 12.24% Zn, 0.62 oz Ag and 0.042 oz Au. Hole 86-13, a deep test located 150m south of Hole 14, failed to intersect the zone at depth. It is noted that holes 86-13 and 86-14 different lithologies suggesting the faulting of the system at the south end at depth. The faulting at depth is given credence by the fact that hole 86-4 intersected a 4.0m zone averaging 2.43% Pb, 6.75% Zn, 0.52 oz Ag and 0.015 oz Au at approximately 70m above the projection of the The failure to intersect the zone in 86-13 may zone in 86-13. also be in part caused by the rock type. The felsic tuff may be a poor host rock that does not fracture readily providing a pathway for the percolating fluids.

- 25 -

- 26 -LEGEND BASALT DYKE ANDESITE DIKE DUARTZ VEIN I FELDSPAR PORPHYRY DACITE DURE AGGLOME ZATE FELLOSPAR REPAIRY ANDESITES FLOW 1 LAPILLI TUFF ANDESITE FLOW-SILL ANDESITE AQUINERATE SREY-GREEN TUFF AAROON TUFF I FELSIC TUFF + AGGLOMERATE 2 ANDESITE TUFF 1 RAYOLITE TUFF SCALE 10 0 5 15 NEWMONT EXPLORATION OF CANADA LTD. MAIN ZONE SECTION 0+35 S LOCAMON 93E 13 DEC 7/86 1:250 DRAWN BY D.V. D.V 10

Table III, Cont'd.

		Zir	ic Clean	ner Co	ncentra	ate		Zinc Cleaner Tailing						Time Province Build							
	Estimated Particle Compositions(Wt 2)				(Wt 1)		Estimated Particle Compositions /He W						Linc Scavenger Tailing								
	WE X	Sp	C1	Cy	Čo.	Py	C	Wt X	Sp	<u>c1</u>	6	Co	Pe	(=[A)	Mar. 9	ASTIM	Led Pa	rticle	Compos	itions	WE X)
Free Minerals													-17		WL A	<u></u>	61	-7	<u>_Co</u>	17_	G
Sphalerite (Sp)	88.55	88.55						75.19	75.19												
Gelena (Cl)	1.32		1.32					2.04		2.04					1.84	1.84					
Chalcopyrite (Cy)	0.29			0.29				0.31			0.31				0.40		0.40				
Covellite (Co)	Tr				Tr			Ť-			0.31	.			Tr			Tr			
Pyrite (Py)	-					-		0.51				11			-				-		
Gangue (G) ^a	0.73						0.73	4.59					0.51	4.59	0.31					0.31	
Binary Lockings																					0/.32
Sp/G1	4.23	3.31	0.92					7 1 2		3 14											
Sp/Cy	3.50	2.78		0.72				5 60	4.70	2.14					0.99	0.83	0.16				
Sp/Co	0.09	0.06			0.03			5.09	4.71		0./8				0.14	0.10		0.04			
Sp/Ty	0.10	0.04			••••	0.04		~ ~ ~							-						
Sp/G	0.91	0.11				0.00		0.10	0.09				0.01		-						
G1/Cy	-						0.80	2.84	0.50					1.98	3.15	0.25					2.90
G1/Py	-							-							-						
G1 / G	-														0.11		0.01			0.10	
Cy/Py	_							0.10		0.03				0.07	1.38		0.11			0.10	1 28
Cy/G	_							-							Tr		••••	T			1.25
Co/G	-							-							0.45			A		11	
Pr/G	-							-							0.12			0.01			0.43
.,,.	-							-							0.12				0.01		0.11
Ternery Lockings															0.30					0.03	0.27
Sp/G1/Cy	0.28	0.20	0.04	0.04				0.75	0 61	0.04	0.04										
Sp/G1/Py	-								0.03	0.00	0.00				0.26	0.15	0.03	0.08			
Sp/G1/G	-							0 47	0.04						-						
Others	-							0.07	0.06	0.02				0.59	1.82	0.22	0.11				1.40
								0.09	0.00		0.01			0.02	1.07	0.07	0.02	0.02	0.01	Ťr	0.95
Ousternary Lockings	-							-													
Microscopic Totale	100.00					• • •									0.34	0.07	0.01	0.01			0.25
	100.00	····	2.28	1.05	0.03	0.06	1.53	100.00	86.78	4.29	1.16	Tr	0.52	7.25	100.00	3.53	0.87	0.17	0.02	0.44	94.97
Degree of Liber'n.(%)		93.	58.	28.	Tr	0.	48.		87.	48.	27.	Ťr	98.	63.		52.	46.	Ťr	0.	70.	

٠

a. Includes iron oxides.
b. Includes approx. 1% cerussite (Pb003).

×

.

. •

Twilight Zone (Figures 5-9, 19)

Trenching: 4 trenches totalling 92m Drilling: 1 hole of 101.2m

The Twilight Zone is located approximately 100m grid W of the south end of the Main Zone. To date trenching has outlined a zone that is 30m long by 1 to 3m wide that is open to the south but appears at surface to pinch out to the north. quartz vein hosted Mineralization consists of galena and sphalerite with lesser amounts of pyrite and chalcopyrite. Grades and widths are variable between trenches. A drill hole designed to test the system at depth intersected a 10m long shear zone 40m below the surface that had at its lower contact a 1.5m guartz vein averaging 0.46% Cu, 2.69% Pb, 7.77% Zn, 1.10 oz Ag and 0.007 oz Au. Whereas the sulphides in the Main Zone exhibit colloform textures those in the Twilight Zone appear to be more disseminated in character. It is possible that the zone extends to grid north as the shear structure is strongly developed at depth.

Splay Zone (Figures 5-9, 20, 21) Trenching: 3 trenches totalling 17.9m Drilling: 2 drill holes totalling 104.6m

The Splay Zone is a north striking offshoot of the Main Zone. The Zone has been located in float and outcrop over a 125m length with widths varying between 1 and 3m. The northern extension is truncated by the North Canyon Cirque while the southern extension merges with Main Zone at approximately 0+75S, 0+00. The mineralization, occurring in the fault controlled quartz carbonate vein system, consists of disseminated and semimassive occurrences of galena and sphalerite with lesser amounts of chalcopyrite, malachite and pyrite.

- 33 -

-

_

TABLE 4

TWILIGHT & SPLAY ZONES - TRENCH & DRILL RESULTS

			INT	ERSECTION			GRA	ADE	
Trenc	h Length	(m) <u>Fr</u>	om(m)	<u>To(m)</u>	Int(m)	Pb 🖁	Zn 8	Ag opt	<u>Au opt</u>
TWILI	GHT ZONE								
50	19 or	1:	2.5 1.0	14.0 17.5	1.5 6.5	6.99 2.00	4.2 4.3	.72 .32	.040 .013
53	25.	55 1	1.0	14.0	3.0	0.50	2.71	.24	.042
54	3.	5	0.5	1.5	1.0	0.50	7.36	.24	.004
SPLAY	ZONE								
19	11.	4	7.6	10.8	3.2	4.26	3.23	10.55	.012
51	5.	0	0.0	2.0	2.0	0.52	1.17	0.93	.020
52	1.	5	0.0	1.5	1.5	7.98	10.37	2.04	.012
Hole <u>No.</u>	Length	From(m)	<u>T0(m)</u>	<u>Int.(m</u>) <u>Cu</u> %	Pb%	Znt	Ag opt	<u>Au opt</u>
TWILI	GHT								
86-7	101.2	58.2	59.7	1.5	0.46	2.69	7.77	1.10	.007
SPLAY									
86-8	55.2	27.7 33.1	29.0 34.7	1.3 1.6		1.71 0.14	2.55 0.34	3.30 1.80	.005 .003
86-9	49.4	28.4	29.0	0.6		0.17	2.22	0.95	.004

the second s

Trench values are variable with the best trench located at the extreme north of the zone averaging 4.26% Pb, 3.23% Zn, 10.55 oz Ag and 0.028 oz Au across 3.2m.

Two drill holes were located to test the zone at 25m depth. The best section averaged 1.71% Pb, 2.55% Zn, 3.30 oz Au and 0.005 oz Au over 1.3m. In drill core the zone appears to consist of two distinct parallel quartz-carbonate veins which are in part fractured and recemented. Outside of the veins mineralization is negligible, consisting of trace disseminations of pyrite. The Zone dips at approximately $70^{\circ}E$.

Misty Day (Figures 22-28)

Trenching: 14 trenches totalling 190.9m Drilling: 3 holes totalling 1643m

The Misty Day grid is located approximately 600m west of the Plateau Grid, and as outlined by trenching is at least 350m long by 0.5 to 3m wide. The northern extension is truncated by the North Canyon Cirque, while the southern is drift covered. The Zone, in part paralleling the Main Zone, consists of a fault controlled quartz-carbonate vein system in which variable amounts of disseminated galena and sphalerite along with lesser amounts of chalcopyrite pyrite and malachite occur. However, unlike the Main Zone which dips $60-80^{\circ}$ SE, the Misty Day Zone dips $60-80^{\circ}$ A more significant difference is the fact that whereas the NW. Main and Twilight Zones contain more than 5% combined galena + sphalerite at surface, the sulphide content on the Misty Day Unlike the other zones on the plateau, the rarely totals 3%. Misty Day contains much more silver, with the best trench averaging 0.13 % Pb, 0.37% Zn, 16.62 oz Ag and 0.008 oz Au over 3m.

Three drill holes located over a 220m strike length were drilled to test the down dip extension at a 25m vertical depth. In general the zone appears to be better mineralized at depth. Hole 86-11 drilled under the previously mentioned 3m zone intersected a 6.2m (true width 4.5m) section that averages 0.66% Pb, 2.15% Zn, 38.6 oz Ag and 0.075 oz Au. In this hole native silver was identified.

The differences in metal content between the Main-Twilight-Splay zones and the Misty Day zone may be due to metal zonation within the epithermal system, with the Misty Day being higher up in the system.

Rhyolite Flats (Figures 29 & 30)

Trenching: 11 trenches totalling 103m

The Rhyolite Flats Zone is located 400m west of the Misty Day Zone. Trenching has outlined a zone that is 250m long by 1 to 4m wide. The zone at surface appears to pinch out to the east, while to the west it appears to have been faulted. Prospecting has failed to locate the western extension as the area is drift covered.

Mineralization consists of variable amounts of galena, sphalerite and chalcopyrite along with minor pyrite and malachite located with a fault controlled quartz vein. In comparison to other zones, carbonate within the vein system is minor. Results are generally low, although at the western end of the system a lm intersection averaged 2.29% Pb, 4.99% Zn, 0.26 oz Ag, 0.020 oz Au.

North Zone (Figures 31 & 32)

Trenching: 21 hand trenches totalling 141.7m

The North Zone occurs approximately 2 km to the north of and along strike from the Main Zone. It lies on and adjacent to a northeast striking ridge. The zone encompasses a 600 x 100m area in which several quartz carbonate vein systems occur in andesitic and rhyolitic tuffs and flows. Mineralization consists of variable amounts of galena and sphalerite, generally less than 2%, with lesser chalcopyrite and pyrite. They occur primarily as disseminations and on occasion as colloform bands within the veins. Minor disseminated pyrite occurs in the host volcanics. In general, the zone appears to be base metal poor, precious metal rich, with no direct correlation between metals. Examples are Trench 14 (4.70% Pb, 4.89% Zn, 8.32 oz Ag, 0.054 oz Au across 4m) and Trench 7 (0.11% Pb, 0.13% Zn, 11.11 oz Ag, 0.009 oz Au across 4m). The best sampled outcrop averages 1.26% Pb, 2.38% 34.12 oz Ag, 0.225 oz Au across 5m followed by an llm Zn, unsampled section, and then another 5m section averaging 0.54% Pb, 0.68% Zn, 23.18 oz Ag and 0.075 oz Au. Alteration is weakly developed consisting of minor zones of silicification and chlorite. The lack of sulphide in the North Zone in comparison to the Main Zone may indicate that the North Zone is higher in the epithermal system.

The difficult accessibility of the zone has limited exploration to date. In addition, due to time constraints and priorities elsewhere on the property, only a limited amount of exploration was completed in this area.

The North Zone appears to be open along strike, but exploration to determine its extent will be limited by steep topography and snow cover.

- 41 -

					French 21				Summer Markelling Sca
		1				mm		Trench	ESCAROMENT RIDGE Trench II
			Trend	ch Results	- North	Zone			
	Trench	From (M)	. To (M)	Int (M)	Pb %	Zn %	Ag oz/T	Au oz/T	Trench 9
	1	2.5	3.0	0.5	.17	.40	3.91	.034	ESCA TANK
	· 2	0	3.5	3.5	.30	.96	2.12	.023	NOMENTITITIE Tranks
	3	or 2.0	No	Significa	.49 Int Result	2.28	3.15	.032	
	4	0 3-0	1.0	1.0	.05	.13	1.69	<.002	THE THE STATE
	5	0	1.0	1.0	.13	.15	1.55	.002	· · ·
	6	0 or 5.0	7.0 7.0	7.0 2.0	.04	.06	2.91 5.75	.006	
	7	0	12.0	12.0	.07	.12	4.87	.005	
	8	0	2.0	2.0	.32	.13	4.08	.009	
-	9		No	Significa	nt Result				
	10		No	Significa	nt Result				
	12	0	2.0	2.0	.13	.24	2.36	.018	· · · · · · · · · · · · · · · · · · ·
	13	0	3.0	3.0	.48	.98	6.49	.010	ASSESSME
· · ·	14	6.0 or 7.0	8.0 8.0	2.0 1.0	4.70 8.84	4.89 9.54	8.32 15.20	.053 .054	
	15	0	1.3	1.3	.09	.20	2.60	.006	
	16	0	1.4	1.4	3.68	2.53	5.98	.024	
	17	0 1.0	3.0 3.0	3.0	.39	.73 .74	7.24 9.60	.037 .044	
	18	1.0	2.0	1.0	1.07	.46	1.20	.016	
	19		No	Significar	nt Result				
	20		No	Significar	nt Result				
	21	0.0 16.0	5.0 21.0	5.0 5.0	1.26	2.38	34.12 23.18	.225	TARI
	11	0 or 0	2.0 4.0	2.0 4.0	.44 .26	.80 .47	8.75 4.97	.044	

Scree Zone (Figure 33)

The Scree Zone was discovered late in the season and as such has had only a small amount of work completed on it. It is located along strike approximately half way between the Main and North Zones. It consists of extensive guartz float and limited outcrop located over a 75m x 300m area. Mineralization consists of quartz-vein hosted disseminated to semi-massive galena and sphalerite with lesser chalcopyrite and pyrite. The zone is underlain by rhyolitic to andesitic tuffs and flows. Alteration consists of weak K-feldspar rimming of quartz veins, and on occasion pervasive but weak chlorite and/or carbonate alteration of the host volcanics. The vein system appears to strike NE although lack of outcrop makes this difficult to determine. Α limited number of samples were taken over selected widths from outcrops located through the zone. Results vary from 0.05% Pb, 0.09% Zn, 0.32 oz Aq, less than 0.003 oz Au to 8.65% Pb, 6.98% Zn, 0.58 oz Ag, 0.006 oz Au over 1m lengths. Silver and gold values vary up to 2.25 and 0.030 oz respectively. The Scree Zone is open along strike although extensions are snow and ice covered.

Creek Zone (Figure 5)

Trenching: 1 trench 6m long

The Creek Zone is located about 400m southeast of the centre of the Plateau Grid. It consists of minor quartz-vein stockwork and attendant silification located in boulders over a 10 x 20m area. The veins, generally 1-5 cm thick, contain minor galena and sphalerite, along with trace chalcopyrite. A trench located in the centre of the boulders intersected only fault gouge at 0.5m depth. Two samples taken from the gouge failed to produce any significant values.

<u>Camp Zone</u> (Figure 5) Trenching: 2 trenches totalling 25m

The Camp Zone is located 400m SW of the NE corner of the Plateau Grid. The Zone, hosted by rhyolite tuffs, consists of narrow 1-10 cm quartz veins that have been found primarily in float over a 200 x 5m area, the zone trends at 045° and dips steeply SE. Mineralization consists of minor (less than 2%) galena, sphalerite and pyrite. Alteration is minimal.

Two trenches 10m apart were dug in the most promising area. Results of the sampling were largely negative, with the best section averaging 0.83% Pb, 0.21% Zn, 0.25 oz Ag, 0.004 oz Au over 1m.

The Zone is truncated by a fault dyke to the east and is covered by talus to the west.

Lunar Showing (Figure 34)

The Lunar showing is located along the eastern boundary The north-trending west-dipping of Lunar 4 claim. zone encompasses a 700 x 50m area centered about the fault contact between rhyolite and andesitic tuffs. The fault contact has weak attendant quartz veining throughout, with the veins generally being 1-5 cm in thickness. Traces of pyrite are disseminated throughout the host, while the quartz veins have both minor Due to oxidation the zone has a pyrite and chalcopyrite. pronounced gossan associated with it. A series of chip samples taken across the strike of the zone failed to detect any significant mineralized areas.

Sample Number	Length(m)	Cu ppm	Pb	Zn ppm	Ag FA oz/t	Au FA
0363	2.0	12	33	143	(0.01	<0.00
9752	2+0	435	32	185	0.08	(0.00)
9754	1.0	36	53	278	0.09	<0.00
9755	+ + V	80	150	750	0.09	<0.00
0756		85	75	415	0.03	<0.00
9757		120	52	253	0.05	<0.00
0758	2.0	88	82	400	0.01	<0.00
9759	10	72	112	435	0-01	<0.00
0740	34	38	38	163	0.07	<0.00
9760		238	73	258	0.05	(0.00
9761		147	59	210	0-01	<0.00
0743	1.5	50	47	158	<0.01	<0.00
0744	2 5	23	58	154	<0.01	<0.00
9104	2 + O	28	42	158	(0-01	(0.00
9100	÷	31	23	89	(0.01	(0.00
9100		27	34	114	0.01	10.00
9161		17	15		0.07	10.00
9768	Ŵ	35	25	83	0.02	10.00
9769	÷	107	13	63	0.01	10.00
9770		201	22	95	0.07	(0.00
9771		30	~ ~		0.02	<0.00
9772	1.0	310		115	0.04	(0.00
9773		20	8	178	0+01	(0.00
9774		93	1	175	0.03	(0.00
9775		192	9	165	0.07	<0.00
9776		268	8	165	0.07	<0.00
9777	м.	70	5	100	0.01	<0.00
9778	1.5	69	7	143	0.01	<0.00
9779	2.0	108	z	86	0.01	<0.00
9780	11	11	4	117	0.01	<0.00
9781	14	26	5	65	<0.01	0.00
9782	14	50	3	137	0.01	<0.00
9783	88.	7	1	55	<0.01	<0.00
9784	34	200	1	35	0.03	<0.00
9785	1.0	57	18	27	<0.01	<0.00
9786	1.0	29	24	237	<0.01	<0.00
9787	1.2	45	5	64	<0.01	<0.00
9788	1.9	24	3	32	<0.01	<0.00
9789	2.0	51	1	31	<0.01	<0.00
9790	**	195		42	0.03	<0.00
9791	**	18	1	52	<0.01	<0.00
9792	2.0	9	1	48	<0.01	<0.01
9793	-	21	7	40	<0.01	<0.00
9794	2.0	4	2	45	<0.01	<0.01
9795	1.2	120	32	185	0.04	<0.00
9796	2.0	35	2	26	<0.01	<0.01
9797		17	3	6 Z	<0.01	<0.00
9798	H.	13	3	116	<0.01	<0.00
0700	1.1	16	8	92	0.01	<0.01
9900	2.0	17	5	40	<0.01	<0.0
10151		15	1	23	<0.01	<0.0
10152		17	8	36	<0.01	<0.0
10153	**	17	5	23	<0.01	<0.0
10155	1.0	115	8	50	0.01	<0.0
10154	2.0	200	8	52	0+02	<0.0
10155	2.0	9	5	75	<0.01	\$0.0
10150		6	Ť	110	0-01	<0.0
10157	4.4	5	6	40	(0-01	\$0.0
10158	1./		4	22	(0.01	(0.0
10159	1.8	28	5	34	(0.01	(0.0
10160	1.0	10	2	36	(0.01	(0.0
10161	1.5	26	2	31	<0.01	(0.0
10162	2.0	20	1	27	(0.01	(0.0
10163	1.0		1	21	<0.01	<0.0
10164	2.0	10		21	<0.01	<0.0
10165	2.0	130		86	0.01	<0.0

€

(

€

D Zone (Figures 5 & 33)

The D Zone located 500m north of the Main Zone occurs along the contact between andesitic dykes and the rhyolite/dacite host. The dykes up to 1.5m wide are fracture-controlled and trend $080^{\circ} - 120^{\circ}$. Along the contact several narrow quartzcarbonate veins between 1 and 20 cm wide are exposed along strike for 10m. The veins contain variable amounts of galena, sphalerite with lesser chalcopyrite and pyrite. The best sample averaged 0.39% Cu, 4.68% Pb, 4.80% Zn, 0.57 oz Ag, 0.003 oz Au over a 20 cm (width) x 3.0m (strike) area.

ZONES NOT EVALUATED IN 1986

Pb Showing (Figure 5)

100 1 Om zone located The Pb showing is a х The showing consists approximately 150m south of Rhyolite Flats. of erratic quartz veins up to 10cm wide in which minor galena and sphalerite (less than 1% combined) along with minor chalcopyrite and pyrite occur. As results from the 1985 program were largely negative no work was completed in 1986.

Shadow Valley

The Shadow Valley zone is located approximately 4.2 km southwest of Rhyolite Flats. The zone a magnetite skarn in which minor chalcopyrite, pyrite and sphalerite occurs is a lens 300m long that is 2 to 3m thick. Results from previous programs show the area to contain only minor copper and zinc. Gold and silver are insignificant. No work was completed in 1986.

Boulder

The Boulder Zone located approximately 1 km southwest of the Main Zone is comprised of well mineralized boulders up to 1m in size that are found in glacial moraines emanating from under a glacier filled cirque. Previous work has shown the mineralization to consist of semi-massive to massive sulphide occurrences of chalcopyrite, hematite, galena and sphalerite. Due to the lack of success by previous companies in locating the source no work was completed by Newmont.

GEOCHEMISTRY

Procedures

During the 1985-86 program, samples of stream sediments, outcrops, trenches and drill core were collected and sent for analysis to Chemex Labs in North Vancouver. For stream sediments, samples (preferably of silt) were taken from the middle of the creek using a trowel, stored in Kraft paper bags and air dried. Rock chip samples taken from both trenches and selected outcrop, generally consisted of 2 to 5 kg of continuous chips over a measured length. The samples were collected using hammer and moil or cold chisel and were stored in plastic bags. Drill core was split in half with 1/2 being sent for analysis and the remainder being stored in the core box.

All stream sediment samples were dried at 60^OC and then sieved to -80 mesh. Analysis was conducted using the 30 element Inductively Coupled Plasma Method (ICP) with gold being determined by Fire Assay and Atomic Absorption.

For the 30 element ICP analysis, a 1/2 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90oC for 2-1/2 hours. The sample is then diluted to 10

mls with demineralized water and analyzed The reported values for Al, Sb, Ba, Be, Ca, Cr, Ga, La, Mg, K, Na, Sr, Tl, Ti, W and U are considered to be semi-quantitative as the leach is only partial for these elements.

For rock and drill core analysis, the samples are prepared and assayed or geochemically analyzed as shown below:

Assay Preparation:

- 1. Samples are sorted, then listed on assay sheets.
- The entire sample is crushed first in a primary jaw crusher, then in a secondary cone crusher.
- The crushed sample is reduced to a 200 400 gm sub-sample in a Jones Riffler, then dried.
- The dried material is pulverized to pass a 100 mesh screen, then rolled to homogenize.

Assay Analytical Methods:

- 1. Cu % A 2 gm sub-sample is digested in a hot perchloricnitric acid mixture for 2 hours, cooled, then transferred into a 250 ml volumetric flask. Aluminum chloride is added as an ionization suppressant for Mo. The solutions are then analyzed on an atomic absorption instrument.
- Pb, Zn & These elements are analyzed as above with the addition of nitric acid to the final sample and standard solutions.

- Silver and gold analyses are done by 3. Aq, Au (oz/ton) standard fire assay techniques. In the sample preparation stage the screens are checked for metallics which, if present, are assayed separately and calculated into the results obtained from the pulp assay. 0.5 assay ton sub samples are fused in litharge, carbonate and siliceous The lead button containing the precious metals is fluxes. cupelled in a muffle furnace. The combined Ag and Au is weighed on a microbalance, parted, annealed and again The difference in the two weighings is Ag. weighed as Au.
- 4. Cu, Pb, Zn, Ag ppm 1.0 gm sample is digested with perchloric-nitric acid for approximately 2 hours. The digested sample is cooled and made up to 25 ml with distilled water. The solution is mixed and solids are allowed to settle. Cu, Pb, Zn and Ag are determined by atomic absorption techniques. Ag and Pb are corrected for background absorption. Detection limit: Cu, Zn 1 ppm; Ag 0.2 ppm; Pb 2 ppm.
- 5. Au F.A.-A.A. Combo Method ppb For low grade samples and geochemical materials, 10 gm samples are fused in litharge, carbonate and siliceous flux with the addition of 10 mg of Au-free Ag metal and cupelled. The Ag bead is parted with dilute HNO₃ and then treated with aqua regia. The salts are dissolved in dilute HCl and analyzed for Au on an atomic absorption spectrophotometer. Detection limit: 5 ppb.

Results

Only the results of the 31 stream sediment samples will be discussed here, as those for the trenching and drilling have presented in the preceding chapter. The 30 element analyses were scanned with the significant elements (Ag, Au, Cu, Pb, Zn) being plotted on Figures 35 and 36. Interpretation by inspection is summarized below by element.

- Gold Using a 15 ppb cutoff to denote anomalous conditions showed only spot anomalies up to 90 ppb to exist on the property. Almost all samples contained 5 ppb or less. No distinct anomalies related to the mineralized zones have been recognized.
- Silver For silver a 0.3 ppm threshold was selected to outline anomalous conditions. This showed few significant areas of interest, with only a couple of spot highs up to 2.5 ppm being present.
- Copper Copper values throughout the property are generally all less than 100 ppm with no significant anomalous drainages being located.
- 4. Lead Lead values are generally less than 50 ppm, except for Creeks drawing the areas containing the Main to North mineral zones where values of up to 210 ppm occur.
- 4. Zinc Zinc values show the greatest variability ranging from 25 to 1240 ppm, with the highest numbers occurring in a north-flowing creek located down-slope from the Scree and North Zone moraines. The values in this area are generally coincidental with those of lead. Elsewhere, spot highs up to 375 ppm occur, unrelated to any known mineralized zones.

GEOPHYSICS

A test VLF resistivity survey was carried out to determine if known zones on the Plateau Grid could be detected with this method. Experience on other properties has shown that areas of quartz veining and silicification may impart higher resistivities than surrounding rocks. A Geonics EM16R instrument was rented from Exploranium G.S. Limited of Bolton, Ontario. Readings were taken at 12.5m intervals on lines spaced at 25m using Seattle, Washington or Honolulu, Hawaii as the transmitting stations. The entire grid was not sampled due to ground conditions - snow and ice cover, lack of suitable earth for contacts, and the presence of cliffs. The results of the survey are plotted on Figure 37.

The VLF resistivity survey will, in general, produce results that relate inversely to the porosity and permeability of the surrounding rocks. Lower porosity and permeability, such as in regions of silicification, produce higher resistivities. Contouring of the results has shown a central area of high resistivity 200 x 100m to coincide with an area of felsic tuffs. Lower resistivities appear in part to coincide with andesitic and maroon tuffs. The zone of mineralization appears in part to parallel to the north the zone of high resistivity.

CONCLUSIONS

From preliminary studies it can be concluded that the New Moon property hosts several epithermal type quartz-carbonate vein stockwork zones of variable grade and metal content. The zones in order of priority are:

> Highest - Main, North, Scree, Misty Day Moderate - Twilight, Splay, Rhyolite Flats, D Low - Lunar, Camp, Creek

Mineralization consists of various combinations of galena, sphalerite, chalcopyrite, pyrite, gold and silver as both semi-massive colloform bands and disseminations. The zones are fault controlled, pinching and swelling along strike and dip, ranging in length from less than 100m to over 600m and in width from less than 1m to over 50m. In one case three zones (Main, Scree and North) occur along strike over a 3.0 km distance and may be all related. Drilling completed on the Main Zone has shown mineralization to continue to at least 225m down dip. Elsewhere drilling completed on the Twilight, Splay and Misty Day all intersected the zones at shallow depths with no deep tests being completed as yet.

On the Main and Twilight Zones there appears to have been some enrichment of gold at surface, as drilling failed to obtain as high as values, although significant intersections do exist, at depth. Lead, zinc and silver values are relatively stable, while copper content increases with depth. The hosting structure in both zones appears to be strong.

On the Splay Zone, silver, gold, lead and zinc values appear to decrease with depth.

The Misty Day Zone has less base but higher precious metal content than the Main, Twilight or Splay Zones. In addition there appears to be a poor correlation between trench and drill values. In general, surface values are less than those at depth.

The North Zone contains significant silver and gold values with, in general, minor lead and zinc. The Zone's mineralogy suggest that it could occur at the top of an epithermal system.

Vancouver, B.C. January 15, 1987

David Visagie –

- 55 -

BIBLIOGRAPHY

- Garrat, G.L.: Geological Report on the JOW Claims, Norcen Energy Limited, 1978, Assessment Report 7022.
- Kennedy, D.R.: Geological and Geophysical Report on the New Moon Prospect, St. Joe Minerals, 1981, Assessment Report 11153.
- Kennedy, D.R.: Geological and Geophysical Report on the New Moon Prospect, St. Joe Minerals, 1982, Assessment Report 11764.
- Pezzot, E.T.: Helicopter Airborne Electromagnetic Survey, Great Western Petroleum, 1981, Assessment Report 9709.
- Phendler, R.W.: Report on the Morice Lake Survey, Aggressive Mining Limited, 1971, Assessment Report 3251.
- Phendler, R.W.: Geological Report on the JOW Claims, Morice Lake, Aggressive Mining Limited, 1971, Assessment Report 3252.
- Tipper & Richards: Jurassic Stratigraphy and History of North Central British Columbia, GSC Bulletin 270, 1976.

STATEMENT OF QUALIFICATIONS

- I, David Visagie, do hereby certify that:
- I am a geologist presently employed by Newmont Exploration of Canada Limited.
- I am a graduate of the University of British Columbia, 1976, and since then I have been steadily employed in mining exploration.
- 3. I supervised the program outlined in this report.

Visagie

I, Terrence N. Macauley, do hereby certify that the work described in this report was done under my direction.

<u>IMacauley</u> T. N. Macauley

COST STATEMENT

Α. Cost Used for Pro-Rating to Claim Groups Labor D. Visagie Project Geologist 73 June 24 - July 25, Aug 1 - Sept 11 = July 24 - Sept 5 45 D. Bohme Geologist = I. Casidy Geol Technician June 27 - July 25, Aug 1-9, Aug 30-Sept 11 48 = Prospector Aug 1-7, 28-30, Sept 1-3, 5-11 = C. Kowall 22 G. Malensek Jr Assistant June 27 - Aug 10, Aug 30 - Sept 4 50 = Jr Assistant June 28 - Aug 30 69 = M. Savage G. Montford Jr Assistant Aug 1 - Aug 20 ≓ 20 P. Witt Jr Assistant Aug 16 - Sept 5 B. Anderson Jr Assistant June 25 - Sept 10 = 19 = 74 D. Barnett Bulldozer Op June 26 - Sept 5 71 = D. Visagie Cook June 25 - July 25 31 = July 25 - Sept 5 A. Havard Cook = 40 Drillers Man-days Aug 1 - Sept 6 = 154

Total Man-days = 716

Breakdown of Days spent on each claim group and on mobe/demobe

	NM1	NM2	NM3	<u>NM4</u>	Mobe	Totals	Salary/day
D. Visagie	3	4	46	8	12	73	\$ 147.45
D. Bohme	12	16	13	4	9	45	121.00
I. Casidy	3	6	30			48	104.25
C. Kowall	8	7	2	1	4	22	162.50
G. Malensek	6	4	31		9	50	82.24
M. Savage	12	14	32	4	7	69	74.76
G. Montford		8	10		2	20	64.79
P. Witt		8	7	3	1	19	74.25
B. Anderson	7	19	37		11	74	104.00
D. Barnett		7	51	2	11	71	\$20/hr
D. Visagie			21		10	31	104.00
A. Havard	6	3	24	7		40	123.50
Drilling		_22	<u>100</u>	<u>32</u>		154	
MAN-DAYS	57	118	404	61	76	716	

For Pro-Rating Factor should be 716 man-days less 76 man-days used for mobe-demobe = 640 man-days.

Note: NM = New Moon

Food Total of all bills		13,243.26
Mobe - Demobe Airfare Smithers to Vancouver Lodging, including meals Truck rentals (moving equip., fuel) Helicopter (camp, drill & cat move) 29.1 hrs Bell 205 @ 1,372.75/hr 23.7 brs Bell 206 @ 543.60/br	1,991.40 2,051.52 2,996.28	
(includes fuel & oil) Labor	52,837.88 8,152,00	
Total	68,029. 00	68,029.00
Camp Supplies includes wood, propane, fuel, tents, etc.		9,068.90
Expediting		6,158.66
Communications includes radio rental, long distance calls		1,674.00
B. Costs Not Assigned by Pro-Rating		
Tractor Use Rental Operator	20,984.02 14,963.02	35,947.04
Labor - Total labor cost		39,250.57
Assaying - Total costs		30,490.90
Helicopter 63.0 hrs @ 543.60/hr (Bell 206)		34,267.25
Drilling Costs 1525.2m @ an average of \$68.85/m		105,014.60
Supervisory and Report includes writing, drafting, editing, typing, xeroxing, paper		20,000.00
Total Cost of Assessment Wo	rk	\$361,458.18
The breakdown for grouping purposes is: New Moon 1 claim group New Moon 2 claim group New Moon 3 claim group New Moon 4 claim group	22,837.22 60,075.83 236,120.97 44,009.94	

Cost Statement for New Moon 1 Group

Pro-rated	cost	factor	= <u>57</u>	Man-days on claim group = .089	
			640	Total Project Man-day	

Labor

6,366.66

Mobe/Demobe	.089 x 68,029	6,054.81
Food	.089 x 13,243.26	1,178.65
Camp Supplies	.089 x 9,086.90	808.73
Expediting	.089 x 6,158.66	548.12
Helicopter Support	10 hr x 543.60	5,436.00
Communication	.089 x 1,674	148.90

Drilling Om BQ drilling @ an average of O/m

Tractor Cost Rental Operator

Assaying	9 stream sediments,	ll rock chip	295.00
Report and	Supervisory		2,000.00

Total 22,837.37

Cost Statement For New Moon 2 Group

Pro-rated cost factor	= <u>118</u> <u>Man-days on claim group</u> 640 Total Project Man-days	= .184
Labor		3,228.44
Mobe/Demobe	.184 x 68,029.00	12,517.34
Food	.184 x 13,243.26	2,436.76
Camp Supplies	.184 x 9,086.90	1,671.98
Expediting	.184 x 6,158.66	1,133.19
Helicopter Support	10.6 x 543.60/hr	5,762.16
Communication	.184 x 1,674	308.02
Drilling 164.5m BQ @	an average of 72.86/m	11,985.75
Tractor Cost		
Rental 4,52	7.85	
Operator 3,62	8.98	8,156.83
Assaying 38 drill co.	re, 339 rock chip,	
17 stream s	ediments	7,875.40
Report and Supervisory		5,000.00

Total 60,075.87

- 60 -

Cost Statement for New Moon 3 Group

Pro-rated o	cost factor	$=\frac{404}{640}$	<u>Man-days on cl</u> Total Project	aim group Man-day	= .631
Labor					26,427.03
Mobe/Demobe	2	.631 x	68,029.00		42,926.29
Food		.631 x	13,243.16		8,356.49
Camp Suppli	es	.631 x	9,086,90		5,733.83
Expediting		.631 x	6,158.66		3,886.11
Helicopter	Support	38 hrs	x 543.60		20,656.80
Communicati	.on	.631 x	1,674		1,056.29
Drilling 1	.030.2m BQ @	an ave	erage of 68.19/m		70,245.90
Tractor Cos	st				
Rental	-	14,845.	41		
Operat	or	10,906.	82		25,752.23
Assaying	294 drill c	ore, 67	5 rock & trench	,	
	5 stream				21,080.00
Report and	Supervisory	,			10,000.00

- 61 -

Cost Statement for New Moon 4 Group

Pro-rated cost factor =	61 <u>Man-days on Claim Group</u> 640 Total Project Man-days	= .095
Labor		3,228.44
Mobe/Demobe .	.095 x 68,029.00	6,462.76
Food .	.095 x 13,243.26	1,258.11
Camp Supplies .	.095 x 9,086.90	863.26
Expediting .	095 x 6,158.66	585.07
Helicopter Support 4	4 hrs x 543.60	2,391.84
Communication .	095 x 1,674	159.03
Drilling 330.5m BQ dri	lling at average of 68.94/m	22,782.95
Tractor Cost		
Operator 427.72		2,038.48
Assaying 63 drill co	bre	1,240.00
Report and Supervisory		3,000.00
	Total	44 000 04
	IULAI	44,007.74

APPENDIX 1

DRILL LOGS 86-1 - 86-17

List of Abbreviations

pyr	pyrite	occ	occasion
сру	chalcopyrite	dissem	disseminated
mal	malachite	tr	trace
gal	galena	irreg	irregular
sphal	sphalerite	ca	core axis
Mn	manganese	t/o	throughout
Pbs	galena	brxx	breccia
qv	quartz vein	*	approximately
carb	carbonate	hem	hematite
qtz	quartz	comp	composition
11	parallel	stkwk	stockwork

	NEWM	ONT E	XP. OF	CANADA LTD	LEVEL Surface	DEPT	H BEARING	DI	P	TY	PE OF	SURVE	YLEN	GTH	54.3	<u>m</u>	HOL	E NO.	N.M.	86-1	
	וופח	I LI			LOCATION Plateau Grid	0	300 °	-4	45		Brunton	1	CORE	SIZE	1	1					
	ELEVATION 2111.0 m						300	/	48	1	Acid		TOTA	L REC	OVERY	+95	LOG	GED E	Visagi	e	
		NEV			LATITUDE 1 + 25 N								STAR	TED	Augus	st 3/86	ala	IM 1	ISTY D	AY	
					DEPARTURE 0 + 50 E						·		COM	PLETE	D Augu	1st 4/86	PUF	POSE	To te	st Main	1 Zone
DEPTH	GEOL	INTE	RVAL	GEOLO	DGICAL DESCRIPTION	M	NERALIZAT	N	ALT						AS	SAYS				RECOV	ERY
neters		FROM	TO		•	*					SAMP	FROM	TO	LENG						RUN	%
•		0	1.7	Casing																5.8	100
-	1												-							7.3	11
-		1.7	6.3	Andesite Flow		Tr	pyr						_							10.3	
_				- fine graine	ed, dark green, highly broken-up															13.4	11
-				on occasion	n:1.8 - 2.4 m and 5.8 - 6.3															16.5	11
<u>.</u>		-		- minor calc:	ite stringers occur sporadically	,														19.5	11
- 				- minor pyr																22.6	"
				- hairline fi	racturing is commonly developed	at														25.6	11
•				20° to the	са															28.0	
-				- minor Mn s	tain occurs along the fracture														ļ	30.0	**
•				faces																32.0	11
																				33.2	н
-		6.3	6.9	Rhyolite Tuf	£?														l	34.7	"
-				- medium - co	oarse grained															37.8	
				- grey-green	colored															40.8	!
				- weak chlor:	ite alteration															43.9	11
-				- minor calc:	ite fragments															46.9	
-				- minor limor	nite occurs along the fracture															49.3	"
				faces																51.8	"
-				- lower conta	act is irregular sharp at 70°																
								Τ													
-																					
-								Τ													
E															L			Ļ	ļ		
	,					•		•				•			-						

1

64

• i.

دب ا

		F R						- 0									FA		ot 5
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION							AS	SAYS				RECON	/ERY
neters		FROM	То		1%		_		SAMP	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		6.9	7.7	Andesite Flow								ļ						<u> </u>	
-				- similar to previous															
-				- lower contact sharp irreg. @ 70°			_											<u> </u>	
														L					L
		7.7	10.5	Porphyrytic Andesite Flow	4	galena,			11751	8.6	9.1	0.5		1.34	3.97	0.28	0.028		
				- med grained		sphalerite,			11752	9.1	9.6	0.5	-	0.47	2.26	0.17	0.020		
• ••••••••••••••••••••••••••••••••••••				- green with white-green phenocrysts		minor pyrite			11753	9.6	10.2	0.6	-	0.86	4.52	0.26	0.038		
				- quartz veining occurs t/o but is sporadic					11754	10.2	10.5	0.3	-	0.17	0.20	0.07	0.002		
-				q v occurs @ 8.1 3 cm @ 60° barren															
•				8.8 15 cm @ 70° 5%PbS, 2%ZnS	Τ														
-				9.5 10 cm @ 60° 10% PbS, 5% ZnS	Γ									1					Γ
•				9.9 - 10.1 lcm vein: massive	1												1		<u> </u>
-				ZnS/PbS @ 20° to Ca	\uparrow												t	1	t
-	[10.3 20 cm irreg zone of qv	T									1			1		
-	[_		tr pyr 2% PbS	1														
 -	ſ			- lower contact @ 60° to Ca	1				1										
-	ſ				T														
-	ſ	10.5	12.8	Andesite Flow	T				1										
				- similar to 1.7 - 6.3	1											[Τ
-	ſ			- fractures @ 30° to the Ca										1					Ţ
-	ſ								1										1
-	ſ	12.8	31.0	Porphyrytic Andesite Flow		variable amt			11755	16.8	17.8	1.0	-	0.06	0.16	0.07	0.002	2	1
				- similar to 7.7 - 10.5	T	of galena &										1			
				- grey - green colored	1	sphalerite			11756	17.8	18.3	0.5	-	4.28	15.30	0.71	0.02	2	Γ
-	ſ			- coarse grained	1				11757	18.3	18.9	0.6	-	1.66	4.85	0.29	0.012	2	-
-	ĥ			- relatively compositionally homogenous	1				11758	18.9	20.4	0.5	-	11.50	0.3	0.05	k0.00	2	
-			1	- approximately 30% veining t/o	1-				11759	20.4	21.9	1.5	-	0.02	0.1	0.01	k0.00	2	<u>†</u>
-			1	- veining consists predominantly of pink	\uparrow	1			11760	21.9	23.4	1.5	-	0.02	0.0	0.01	×0.00	4	
- 1	F		1		+	†		-+-	1					 	t	t	1	t	1-

.

		PR	OJECI	NEW MOON (336) HOLE N.M. 86-1 NEWM	ONT EXPLORAT	101	N O	F CAN	ADA I	LIMITE	ED					PA	GE 3	of 5
PTH	GEOL.	INTERVAL		GEOLOGICAL DESCRIPTION	MINERALIZATION	A	LT	ASSAY					SAYS				RECOV	ERY
eters		FROM	то		%			SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
_	i	12.8	31.0	Porphyrytic Andesite Flow Cont'd														
_				calcite with quartz														
-				- veins generally occur @ 60°				11761	23.4	24.8	1.4		0.14	0.11	0.06	.002		
-				- at 13.3: the fracture face is limonite				11762	24.8	25.9	1.1		0.54	1.08	0.13	.002		
-			_	stained				11763	25.9	26.6	0.7		0.61	1.18	0.11	.002		
-				- 13.3-17.7: the section has 20% pink calcite-				11764	26.6	27.2	0.6		0.48	2.53	0.20	.002		
				quartz veins. 5% occurs as disseminations				11765	27.2	28.0	0.8		0.07	0.36	0.04	<.002		
.				t/o				11766	28.0	28.5	0.5		0.15	0.52	0.08	<.002		
				- from 17.3-17.6: 3 colloform quartz veins				11767	28.5	29.2	0.7		0.25	0.77	0.08	.004		
.				occur which contain tr galena				11768	29.2	29.7	0.5		1.63	4.78	0.35	.014		
				- from 17.8-18.9: the unit is laced with				11769	29.7	30.1	0.4		1.34	4.26	0.36	.006		
				quartz veins that contain significant		Τ		11770	30.1	31.0	0.9		0.32	1.00	0.09	<.002		
				mineralization primarily galena and				11771	31.0	31.7	0.7		0.05	0.11	0.04	<.002		
				sphalerite. The section contains 20% ZnS/PbS				11772	31.7	32.3	0.6		0.21	0.98	0.12	k.002		
			_	- from 18.4-18.9: the unit has 5% hematite				11773	32.3	33.2	0.9		0.01	0.03	0.02	<.002		
				- from 19.0-19.2: occurs a gossanous zone			Τ	11774	33.2	33.7	0.5		2.17	9.93	0.94	.072		
				centered about a 2 cm qv				11775	33.7	34.2	0.5		5.68	10.70	1.02	.208		
				- from 18.9: quartz veining decreases with				11776	34.2	34.7	0.5		0.16	0.43	0.08	.004		
				sporadic veins occurring intermittently														
				- @ 25.6: 15 cm qv @ 60° to ca 5% PbS, 5% ZnS														
				26.1: 2 cm qv erratic 30% PbS + ZnS														
				26.6: 10 cm qv @ 30° has 5% ZnS, 5% PbS			Γ											
				28.0: 15 cm qv has 2% hematite		Т												
				28.7: 10 cm zone of erratic qv has 5% PbS		Τ												
				29.3-30: occurs a qv with 10% ZnS, 5% pyr,		Τ												
				5% PbS is banded @ 70°		Τ	Т								T			
1						1	T								1	1		
1	[Т										T		

.

miles						NEDAL IZ ATION	۸I	т	ASSAYS									DECON)VFF
ersi		FROM	TO	GEOLLOICAL DESCRIPTION	%		\widehat{T}	<u>"</u>	SAMPLER		0	ENG		T	1	r	r	RIN	Ť
				30.1 - 31.0 erratic q.v. zone			+	+-			Ť						<u> </u>	1	t
							+	+	1 1					1			<u> </u>	<u>†</u>	t
	1	31.0	31.6	Andesite Dyke			+	+						1	1		<u> </u>	<u>†</u>	1
				- fine grained grey-black			Τ	Τ										Γ	Ī
				- minor hairline fracturing				Ţ						ļ					ļ
	ŀ	31.6	42.2	Andesite Tuff	┢─		+	+	-	+	\dashv							╂───	$\frac{1}{1}$
•	ľ			- fine grained grey purple			╋	╀						1				<u> </u>	1
	[- small feldspar	Γ														
	[phenocrysts			Т	Τ									Í.		
	[- from 32.3 - 33.2 the unit is a purple colored				Γ											
	[andesite tuff in which 20% calcite occurs			Т	Т											
	ľ			as inclusions															
	[- from 33.2 - 34.2 the unit consists				Τ											
	[predominantly of quartz veining in which			Т	Τ								Γ		<u> </u>	
]			10% PbS and 5% ZnS occur. At 33.2 occurs a				Τ								1	1		-
	Ī			1 cm zone of gouge.				Τ											
	ļ			- from 34.2 - 43.2 gv is minor	ļ		+				_					[
	ŀ	42.2	54.3	Porphyrytic Andesite Flow	┢		╉	╋			-+					+		<u> </u>	4
	[- medium grained with feldspar phenocrysts	Γ		Т									1			
				upto .2 cm															
	ļ			- minor qtz-calcite veining t/o			_				_					[L		-
	ŀ				┝		┽	╉	┟──┟─						<u> </u>	<u> </u>		┟────	-
	ľ					<u>├</u> ────┤	╈	+			-+				<u> </u>	†			
								Τ							1	1	1		1
	ſ				Γ						\neg				1	1	1		1

(
	r			N.M. 80-1 HOLL														PA	GE 5 a	of 5
EPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION		MI	VERALIZATION	<u> </u>	<u>LT</u>					AS	SAYS			r	RECO\	<u>ERY</u>
neters		FROM				%		\rightarrow	+	SAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
_				Significant veins occur: are				-+	4	11777	44.5	46.0	1.5	-	0.08	0.25	0.01	0.002	 	
_				@ 45.0 3cm qtz-calcite @ 30° barre	en				\bot	11778	46.9	48.3	1.4	-	0.05	0.38	0.01	0.002		
_				45.9 5cm qtz @ 50° Tr Zr	ıS					11779	49.2	49.7	0.5	-	0.83	0.30	0.02	0.002		
_				46.9 5cm qtz 2% ZnS 5%Pt	oS															
				48.0 3cm qtz @ 80° 5% Pt	oS 5% ZnS															
				48.2 10cm qtz @ 80° tr ga	al			Т	Τ											
-				49.3 15cm qtz @ 80° tr ga	al 🗌				Т										T	
· ·																			1	
-				54.3 E.O.H. N.M. 86-1				-	+	1										
•								-†	+	<u>+</u>									t –	├ ──
-									-†-	+	<u> </u>								<u> </u>	
- ·				······································				-+	+	+	<u> </u>									├───
.									+	╂────								<u> </u>	 	
								-+	+	+								 	 	├──
								-+	+	+								 	 	
-										<u> </u>							ļ	ļ	ļ	
								_	_	_							· · · ·	ļ	ļ	<u> </u>
								$ \rightarrow $	_										ļ	L
																	Ĺ	L		
																	{			
				······································				T												
								Τ		1										
'										+-										
								-	+	1							· · · · ·	<u> </u>		
	ľ							-	-†-	1										
	ľ							-	+	+							 			
								+	+	+	f	 						┣───		
	ł							-+										┟		
1	ŀ	{						-+	-	╉───	I	—				ļ	 	ļ		<u> </u>

. .

	NEWMO	NT E	XP. OF	CANADA LTD	LEVEL	Surface		DEPTH	BEARING	DI	P	TYPE O	F SURVE	YELEN	GTH	52.7	' m	HOL	E NO.	86-	2	
	DRII	н		RECORD	LOCATION	Plateau Grid	1	0	300°	-5	5	Brunt	on	COR	E SIZE	BQ	•	SHE	et no.	l of	5	
					ELEVATION	2113.0 m		-52.7	300°	-5	4	Acid		TOTA	IL REC	OVERY	>95%	LOG	GED B	Υ <u>D</u> .	Visagie	2
		NEW PR	OJEC	r T	LATITUDE	1 + 87 N								STAF	RTED	August	4/86	a	IM M	ISTY D	AY	
					DEPARTURE	0 + 50 E 1	+ 87 N							COM	PLETE	D Aug	ust 5/8		POSE	Test	Main Zo	one
DEPTI	I GEOL.	INTE	RVAL	GEOLO	OGICAL DES	CRIPTION		MIN	ERALIZATIO	N	ALT	T				AS	SAYS				RECOV	ERY
neteri		FROM	TO			•		1*1				SAM	? FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	*
•		0	1.8	Casing			-			Γ											1.8	100
•					-					Τ	Π										4.3	103
-		1.8	22.3	Red & Grey A	ndesitic Tuff			Γr	dissem pyr		Π										7.3	97
				- reddish br	own-grey cold	ored matrix in	which	Π													.10.4	96
-				fragments	upto .2cm occ	ur															13.1	94
		-		- banded t/o	with bedding	coccurring at	t 40−50°			Т	\Box										16.2	116
-				to the ca			-			Ι											18.6	118
•				- minor calc	ite stringers	s occur t/o											•				21.3	118
-				- fracturing	occurs @ 80°	to the caar	nd at 55	•		Ι											22.9	107
-				to the ca																	25.9	100
				- minor hema	titic fragmer	its occur t/o															28.4	100
_				- tops by gr	aded bedding	are to the to	op of th	e													31.4	100
-				hole																	33.2	100
-				- Quartz vei	ning (general	ly mixed with	n calcit	e)	. <u>-</u>												35.4	92
•				occurs spo	radically																37.8	112
-				- mineraliza	tion is gener	ally confined	l to														40.3	100
-				quartz-cal	cite veins wi	th the except	tion of														43.3	100
-				minor tr d	issem pyrite																45.7	100
•				- significan	t veins occur	-															48.7	100
-	[6.8-7.0 m:	50% qv stku	vk tr ZnS						1178	0 14.2	15.2	1.0	-	0.14	0.23	0.07	0.002	50.9	100
•				14.2: 2cm	qv@ 20° tr p	byr							ł								52.7	100
-				14.9: 5cm	qv@ 50° vugg	gy with 5% py				Τ												
-					2% PbS +	⊦ZnS tr Mal																
										Ι												
_	1	r <u> </u>	1	I				TT		1												i T

тнl	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERAL ZATION		ALT.					AS	SAYS				RECÓ	VEF
ers		FROM	Ð		%		Ń	Ē	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Aø	Au	RUN	T
-+		1.8	22.3	Red & Grey Andesitic Tuff Cont'd				H											+
				@ 20.5: 3cm qtz-calcite @ 20° with tr gal					11781	19.8	20.6	0.8	-	0.10	0.37	0.09	0.002	<u> </u>	\uparrow
				@ 21.0: 10cm calcite-qtz zone with 5% PbS 5% Pyr			_							1		·			+
				@ 22.0: 10cm gossanous zone occurs													1		T
																			T
		22.3	25.0	Quartz Vein Breccia Zone															t
				- first 30cm is a silicified quartz vein	10	2% Pb, 4% Zn		Π	11782	22.2	22.6	0.4	-	0.29	0.87	0.13	0.002		t
				stockwork zone with 10% pyr that has		4% Pyr		Π	11783	22.6	23.3	0.7	-	3.68	11.30	0.95	0.058		T
				gossanous fragments upto .3cm within it					11784	23.3	24.0	0.7	-	0.23	1.56	0.17	0.002		T
				- from 22.6-24.1 the unit contains 10% PbS,					11785	24.0	24.5	0.5	-	0.75	4.52	0.35	0.002		T
	[10% ZnS,5% Pyr and 5% hematite,1% cpy as				\square	11786	24.5	26.0	1.5	-	0.13	0.45	0.09	c0.00 2		Т
	[fine grained x-stals. The sphalerite is								,					1		T
	[honey brown colored															t
	[_		- from 24.1-24.7 the unit is fractured and															Ι
				silicified and contains 1% PbS, 2% ZnS and			1												Τ
				10% pyr															Τ
		25.0	27.4	Andesitic Tuff (Maroon - Grey)															Ι
	. [- similar to previous					11787	26.0	27.4	1.4	-	0.16	0.50	0.08	0.004		
				- contains approximately 30% pink calcite-					ł										
				quartz veinlets generally oriented at 40-50°															Τ
		_		and contain 2-5% disseminated pyrite															Τ
				- minor epidote on occasion is developed															Ι
	ŀ		_	adjacent to the veins															
		_		- at 26.8 an 8cm qv @ 50° contains 1% PbS															
	Ļ																		Ι
											Ī								Τ

:

TH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT	1				AS	SAYS				RECO	N
ers		FROM	TO		%		T		SAMP	FROM	TO	LENG	Cu	Pb	Zn	Ag	Au	RUN	T
Т		27.4	33.6	Porphyrytic Andesite (Occasionally Brxx) Flow	1	pyr	1		11788	27.4	28.5	1.1	-	0.15	0.67	0.08	<0.002		٦
				- fine grained green-black matrix with pale	1				11789	28.5	30.2	1.7	-	0.35	1.06	0.10	0.008		
				green feldspar phenocrysts upto 3 cm	\uparrow				11790	30.2	31.0	0.8	-	0.59	1.64	0.13	0.020		
				- feldspar phenocrysts appear to be sausseritiz	z		1		11791	31.0	32.3	1.2	-	0.90	0.32	0.07	0.004		-
1	i			- the unit is on occasion brecciated	1		1		11792	32.2	33.7	1.4	-	0.20	0.63	0.15	0.008	1	-
				- Quartz-calcite veining occurs t/o with the															
				mineralization being predominantly in quartz															1
				veins	1			Ť									·		1
				- from 27.5-28.0 occurs a 2cm calcite vein that	e		-										· · · · ·	<u> </u>	1
				runs // to the ca			1	1	tt									<u>t</u>	
	1			- at 28.3 the unit has a 2cm qv at 20° to the	\uparrow		1		1-1								· · · · ·		1
	[ca that has 5% ZnS 1% PbS and 5% pyr			7	1-	1 1								t	†	
	ľ			- from 28.3-33.7 the unit contains approximatel	y -		-+	+	1-1							<u> </u>	<u> </u>	<u> </u>	1
	1			30% calcite-quartz veining	\top		1							-			1		-
	Ī			- at 28.6 a 20cm x lcm seam at galena with			1	1	1 1								†		1
	[minor sphalerite occurs. At 29.1 a 10 cm qtz														<u> </u>	-
	Ĩ			stwk with tr cpy & 5% pyr occurs	\top														î
	Ţ			- 30.2 a 2cm qv @ 10° to the ca is weakly			1												1
	Ī			rimmed with ZnS				+							· · · · · · · · · · · · · · · · · · ·	t		<u> </u>	1
	ſ			- from 30.7-30.9 occurs a quartz vein zone					1					•		1		<u> </u>	1
	Γ			(@ 50° to the ca) which contains 5% PbS			-									<u> </u>		t	
	ſ			- at 31.2 a 10 cm qv has 2% cpy, 5% PbS tr ZnS			-+										1	<u> </u>	
	ſ			- from 31.6-33.6 the quartz veining decreases			1	1								ţ		<u> </u>	~
	Ī			to less than 10% of the unit and the unit is			-	+-										1	Ĩ
	ſ			less porphyrytic			1										1		1
1	Í						1	\top									1		1
	Ī				\uparrow		+	1	<u>† † </u>							1	<u>† </u>	<u>†</u>	•
	ľ				+	11	+	+	1 1							†	1		1
	r				+		-+	-	tt							<u> </u>	<u> </u>	h	-

(

.

		PR	OJECT	NEW MOON HOLE 86-2 NEWM	ON	T EXPLORA	TIC	N	0F	CAN	ADA I	IMITE	D					PA	GE 4	of 5
DEPTH	GEOL.	INTE	RVAL.	GEOLOGICAL DESCRIPTION	MI	NERALIZATION		ULT.	Τ			_		ASS	SAYS			_	RECÓV	ERY
meters		FROM	то		%			\square		SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		33.6	35.1	Quartz Vein Breccia	5	PbS + ZnS		Π	Т	11793	33.7	34.7	1.0	-	0.16	0.61	0.16	0.006		
-				- a mineralized brecciated zone dominated by				Π	Т	11794	34.7	35.1	0.4	0.11	5.45	15.30	2.04	0.144		
-				quartz & calcite						11795	34.1	35.7	0.6	-	0.07	0.03	0.11	<0.002		
-				- from 33.65-33.8: the unit has 5% Pb/Zn with														_		
				5% hematite in a quartz vein (@30° to the Ca)				Π	Т											
-				- from 33.8-34.7: the unit is dominated by				Π	Τ											
_				pink calcite-quartz veining and contains				Π	Т											
				5% pyr 1% PbS/Zn				Π	Т											
-				- 34.7-35.1: the unit is highly mineralized				Π	1											
-				with 30% PbS + ZnS																
-									1											
-		35.1	35.7	Andesite Dyke				\square												
-				- fine grained, green colored			-	\square												
-				- broken contacts				Π												
				- unit is highly broken up				Π												
.				- barren																
-									T											
-		35.7	37.0	Quartz Vein (Breccia?)	20	PbS + ZnS				11796	35.7	36.2	0.5	0.14	3.65	6.72	0.42	0.038		
				- highly broken up	Γ					11797	36.2	37.0	0.8	0.40	5.17	12.70	0.82	D.040		
-				- heavy sulphide min consisting of galena and	Γ															
	[sphal approximately 20% combined																
-	[- minor pyrite and cpy					Τ											
-	[
2		37.0	38.1	Andesite Dyke																
<u> </u>				- similar to previous						11798	37.0	38.1	1.1	-	0.30	0.87	0.09	0.002		
				- broken contacts																
E																				
-	[T											
-	[Γ				T											

:

12-

t

		PR	OJEC	T NLW MOON HOLE 86-2 NEWM	ON	T EXF_JRAT	TION	0	F CAN	ADA	LIMITE	D		(PA	GE 5	of 5
DEPTH	GEOL.	INTE	RVAL.	GEOLOGICAL DESCRIPTION	M	INERALIZATION	AL:	Т	Γ		_		ASS	SAYS	_			RECOV	/ERY
meters		FROM	то		%		Τ	Τ	SAMP.	FROM	ТО	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
-		38.1	39.3	Quartz Vein Mineralized Żone Brecciated	17	67 ZnS,													
Ε.				- well mineralized quartz vein zone that		37 Pbs,		Т	11799	38.1	38.6	0.5	0.17	2.30	4.85	0.47	0:026		
E				contains fragments upto 3 cm of andesitic tuff		17 Сру,			11800	38.6	39.3	0.7	1.04	1.21	14.80	1.12	0.010		
E				- the section is colloform banded and contains		5% pyr,													
<u>-</u>				6% ZNS, 3% PbS, .5% cpy, 5% pyr and 2% hem		2% hem		Τ											
				- the contacts are broken				Τ											
		39.3	44.0	Andesite Tuff															
				- possibly basaltic in comp					11801	39.3	40.0	0.7	-	0.09	1.79	0.17	0.002		
–				- reddish-brown, fine grained					11802	41.8	42.8	1.0	-	0.14	1.18	0.09	<0.002		
F				- minor fragments t/o					11803	42.8	44.0	1.2	-	0.10	0.69	0.05	<0.002		
E				- minor quartz-veining occurs sporadically	Γ			I											
Ε				- at 42.2 a 6cm qv @ 70 to the ca has 5% ZnS				Τ											
E				2% PbS and Tr Hem				Τ											
F				- at 43.7 a 20 cm qtz stkwk has tr PbS and ZnS	Γ														
-				- minor pyrite is found dissem t/o the unit				Т											
-								Τ											
-	ľ	44.0	46.9	Porphyrytic Andesite Flow				Τ											Ι
-				- fine grained grey colored with white feldspar															Ι
				phenocrysts	Γ														
-				- generally barren	Γ			Τ										[Γ
-	[- quartz veining minor															
F	[- mottled appearance				Τ											
EI	[- lower contact @ 15°				Ι											
F	[<u> </u>
$F \mid$	[46.9	52.7	Andesitic Tuff															
F	ſ			[:] milar to 39.3-44	Γ		Τ												
FΙ	[icareous			Τ												
ΓI	ſ			52.7 E. O. H.	Γ		Т	T				_							

٠.

(

	NEWMO	NTE:	kp: of OFF	CANADA LTD	LEVEL Surface LOCATION Plateau Grid	DEPT 0	H BEARING	DI -5	P 5	TY Br	PE OF	SURVE	CORE	GTH E SIZE	71.9 BQ) HOL SHE	E NO. Et NO.	N.M. 86- 1_of 7	-3	
					ELEVATION 2091.0 m	-71.	9 300°	-5	8	Ac	id Te	st	TOTA	L REC	OVERY	>95	LOG	IGED 8	Y D. Visa	agie	
		PR	OJECI	r r	LATITUDE 0 + 18 S					 			STAF	RTED	August	5/86	<u> a</u>	<u>um</u>	MISTY DAY	Y	
					DEPARTURE 0 + 53 E	(COM	PLET	ED Aug	ust 6/8	6 PU	<u>₹POŞE</u>	Test Mai	in Zo	one
DEPTH	GEOL	INTE	RVAL	GEOLO	DESCRIPTION	M	INERALIZAT	ON	ALT	. 1					AS	SAYS	_		RE	COV	ERY
meters		FROM	TO		· · · · · · · · · · · · · · · · · · ·	*	l l				SAMP.	FROM	TO	LENG					R	UN	*
F		0	1.8	Casing			1		Π	Π										1.8	84
F							1			Π									/	4.9	104
F		1.8	20.8	Andesite Tuff		1	pyr		Π											7.6	100
E				- fine graine	d grey green colored														10	0.4	100
F				- bedding not	evident														1:	3.4	121
E		-		- fractured e	xtensively at 6.3 m														1(6.8	70
E				- in first 6.	3 fracturing common at 50° with														1/	.8.0	10 0
F.				limonite st	ained faces														20	0.1	112
E				- fragments u	pto 1 cm insize														2:	2.3	115
┝				- q.v. minor	to 8.3														2	5.0	117
F				- veining pre	dominantly calcite														21	6.2	93
E				- at 6.9 a l	cm q.v.@ 80° has boxwork struct	ure													2	.7.7	100
E				- from 7.4-7.	7 the unit is coarser grained wi	th													2	.9.3	83
E				fragments u	pto 1.5 cm														3	12.3	111
F				- at 8.5 the	unit has a 20 cm q.v.@ 70° whic	h 12	10% ZnS									•			3	\$4.1	100
E				contains 10	% ZnS and 2% PbS		2% PbS												3	16.6	109
F				- upto 8.5 m	pyrite content is minor <1% from														3	8.7	104
\mathbf{F}				8.5 the con	tent increases upto 3%	3	pyrite												4	.3.9	70
F				- at 8.7-9.3	the unit appears to brecciated														4	6.0	125
F				with errati	c q.v. and 5% dissem pyr, Tr. Ma	1													4	7.2	96
F				occurs alon	g the fractures, veins are														4'	9.7	143
F				colloform						\square									5	;1.5	106
F																			5.	,3.0	100
F								Τ		Π		T							5	5.2	100

(

-74-

.

-							101										FA		or
н	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					ASS	SAYS				RECO	/E
3		FROM	TO		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	Ŀ
T		1.8	20.8	Andesite Flow Cont'd														56.4	
																		58.8	
	[from 9.3-9.9 the unit is a quartz vein breccia	15	10% ZnS			11804	8.7	9.3	0.6	-	0.23	2.22	0.10	0.004	61.3	L
				and is colloform. In the first 15 cm the unit		5% Pbs			11805	9.3	9.9	0.6	0.26	2.00	6.01	0.37	0.004	64.0	
				has 30% PbS, 20% ZnS, 5% pyr, tr, cpy. The					11806	9.9	11.4	1.5	-	0.01	0.45	0.05	<0.002	66.1	ł
	[rest of the vein contains 10% PbS, 2% hematit														67.4	ł
	[Upper contact occurs @ 50° to the ca as is														67.2	
				the lower contact			Τ											71.9	Į
							Τ												Ι
	[from 9.9 the unit decreases in vein content			Τ	Τ											I
				with calcite (pink) being predominant	Γ			Τ											I
	Ì																		
	ľ			from 9.9-14.4 the unit is mainly a coarse															
	Ī			grained tuff that has minor epidote	Τ		Τ												I
	ſ			alteration	Τ		Т	T											
	1 I						Τ	Τ											
	ſ			from 14-4-20.6 the unit is a reddish andesitic	Γ		Τ	Τ	11807	17.3	18.6	1.3	0.02	0.03	0.19	0.03	0.002	2	
	ľ			tuff that contains approximately 7% qtz-	Γ				11808	18.6	19.2	0.6	0.15	0.16	2.53	0.14	0.002	4	
	ľ			calcite veining. The pyrite in this section															
				contains <1% pyr															
	[Τ	Т											
	ſ			Significant veining starts at 18.6 m			Ī												
				@ 18.6: 1 x 5 cm q.v. // to ca has 20% PbS													<u> </u>		ļ
	[19.0: 20 cm zone contains 10% PbS	14	10% PbS								_					l
	ĺ			2% ZnS, 2% Cpy in zone which occurs @		2% Сру													
	ſ			10° to the Ca		2% ZnS													I
	Ī				T		Т	Т											I
	ľ							1	_										T

Ы	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	Å	LT					ASS	SAYS				RECÓ	/E
8		FROM	TO		%			Т	SAM	FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	Γ
T		1.8	20.8	Andesite Flow Cont'd															Γ
				19.5: 2 cm @ 80° contains 10% PbS					1180	9 19.2	19.7	0.5	-	0.04	0.88	0.05	<0.002		Γ
				19.7: 1 cm gouge zone @ 50°					1181	0 19.7	20.6	0.9	_	0.20	4.26	0.14	0.002		T
																			Γ
				from 19.8-20.6 the unit is a hematitic tuff															Γ
				that is banded a 60° to the ca															ľ
								Τ											Γ
				from 20.6-20.8 the section contains a 20 cm					1181	1 20.6	21.1	0.5	-	0.20	4.26	0.14	0.00		I
				qtz-calcite vein whose upper contact is @ 60°						Τ									T
				The vein contains 5% ZnS, 5% PbS and 1% Cpy															Î
1																			Ī
		20.8	32.1	Porphyrytic Andesite Flow	5	3% ZnS		Т	1181	2 21.1	22.1	1.0	-	0.05	0.45	0.13	0.002		Ī
				- green with white to greenish white feldspar		2% PbS			1181	3 22.1	22.6	0.5	0.13	4.20	19.20	0.41	0.022		Î
	[phenocrysts															l
ſ				- minor epidote t/o															
				- throughout the unit quartz veining is															I
	[predominant with quartz veining totalling													ļ		ļ
				10 - 20% of the unit															1
																			1
	[Significant veining occurs at															1
	[22.0: 10 cm x 1 cm epidote vein // to the ca															
				22.2: 35 cm zone of q.v. brxx 10% hematite															
				20% PbS, 20% ZnS					1181	4 22.6	23.1	0.5	0.29	0.19	6.10	0.23	0.004		1
				22.85: 45 cm zone of qtz vein brxx 10% hematite				_	1181	5 23.1	23.9	0.8	-	0.07	0.60	0.04	0.004		1
	Ĺ			25% Pb + Zn vein occurs at 45°					1181	6 23.9	25.1	1.2	-	0.05	0.39	0.03	0.002		ļ
		_		23.90: 1 cm q.v. @ 10° tr, hem, tr, pyr					1181	7 25.1	25.9	0.8	-	0.23	5.22	0.16	0.002		
	L	_		from 23.0 on feldspars becoming increasingly															I
	L	<u> </u>		green & clay altered															ſ
L	I						ļ		1			l				I			

:

6-

	[Tan			_	T					-					
EPTH GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION		.I.				1	AS	SAYS				RECOV	ERY
neters	FROM	то		%		_		SAMP	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-	20.8	32.1	Porphyrytic Andesite Flow Cont'd														ļ	
_ .			24.2: 2 cm qtz-carb vein @ 45° has tr, gal				1						ļ					
_			25.1-25.9: 80 cm 9.v. with 10% Pb/Zn, 1% Cpy,	_		_	4_											
_			2% hematite banding occurs @ 80° to the ca															
-			at 26.2: a 50 cm q.v. @ 70° has 20% PbS + ZnS					11818	25.9	26.7	0.8	-	0.13	2.13	0.07	<0.002	2	
_			@ 26.9: 30 cm zone of q.v. with 10% PbS + ZnS					11819	26.7	27.2	0.5	-	0.49	12.90	0.29	0.002		
			@ 27.95 a 5 cm vein @ 85 to the ca has 5% PbS,					11820	27.2	27.7	0.5	-	0.08	1.63	0.07	<0.002	2	
			5% ZnS					11821	27.7	28.9	1.2	-	0.13	0.59	0.05	0.002	2	
			from 28.0-28.9 the unit is predominantly an															
•			andesite porphyry flow with minor hairline															
-			fractions to 1% PbS + ZnS occurs in the															
			erratic stockwork															
			from 28.9-32.1 the unit is all quartz vein				T	11822	28.9	29.4	0.5	-	0.10	2.35	0.09	0.002	2	
-			- highy broken up from 30.5	10	7% ZnS			11823	29.4	30.1	0.7	-	0.52	3.36	0.21	0.004		
			- heavy sulphide (PbS +ZnS) starts at 29.5 and	Γ	3% PbS	Τ	Т	11824	30.1	30.8	0.7	-	0.79	7.44	0.32	0.008	8	
			averages 15% combined t/o	Τ		Т	Т	11825	30.8	31.5	0.7	-	0.41	4.99	0.26	0.004	•	
.			- the vein is brecciated on occasion	1		Т	Τ	11826	31.5	32.2	0.7	-	0.82	6.52	0.22	0.026	i.	
-			- limonite boxwork occurs t/o				Τ	11827	32.2	34.1	1.9	-	0.10	0.45	0.03	<0.002	z	
			- from 30.5 the quartz vein is typically	1				11828	34.1	36.1	2.0	-	0.02	0.17	0.01	k0.002	2	
-			gossanous in nature, broken and has Mn stain	1				11829	36.6	38.4	1.8	-	0.04	0.28	<0.01	k0.002	2	
-			- within the gossan sulphide fragments are	1			Τ											
			observed upto 2 cm in size	Γ														
			- core recovery is <80% in the section 29.2															
			32.2															
-				Ι														
				Τ												Τ		
-															1			
				1														
-				1	tt		-1-	1 1							t	1		

.77-

		00201		1				1										<u>ot</u> /
SEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION		<u>.</u> 				1 - 1	AS	SAYS				RECO	VER
	FROM	0		~		_	4_	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	Ľ
	32.1	40.8	Andesite Tuff	Tr	Pyr	-	+-										<u> </u>	
ļ			- medium grained grey black colored			_												
			- black fragments upto .5 cm occur t/o				1_									ļ	<u> </u>	┶
			- minor hematite fragments t/o															
			- quartz veining minor															
l			- quartz veining occurs at															
			32.4: 1 cm @ 70° tr, gal															
[34.0-35.8: weak q.v. stkwk ∿30% tr gal, tr															
[ZnS															Т
			35.9: 3 cm q.v. @ 90°tr PbS				T											Т
[36.7: 2 cm erratic q.v. @ 80 tr PbS														T	Т
ſ			37.3: 5 cm g.v. zone 5% PbS					1										Ť
ľ			38.3: 3 cm q.v. @ 80° 10% Zn as splotches				╈	1										+
ľ			38.7: 2 cm q.v. @ 80°				T											T
ſ								1										T
ſ	40.8	46.8	Andesitic LapilliTuff															T
Г			- green colored fine grained matrix, elongated	Γ														Τ
Γ			fragments @ 60° to the ca	Γ			Τ											Τ
			- fragments are upto 1 cm in size	1			1										Т	Τ
ľ			- the unit is barren	1			Τ											Т
ſ			- minor carb veinlets													1		T
F	·		- hemogenous	1			1	1								<u> </u>		T
F			- lower contact @ 60°				╈										1	T
ŀ							+											T
Ē	46.8	51.9	Maroon Andesitic Tuff															T
ľ	·		- fine grained maroon colored															Τ
L L			~ fragments upto 1 cm in size common	1	1			1						<u> </u>		1	1	T
ŀ			- the unit is generally barren	1	1		+							<u> </u>		1		T
F				+			-	+						<u> </u>	 	†	†	+

H	GEOL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	AL'	Г	ł				ASS	SAYS				RECO
5		FROM	то		%				SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN
Ī		46.8	51.9	Maroon Andesitic Tuff Cont'd	Т		Т	Τ										
l	·			- at 46.4 a 30 cm fracture // to the ca is														
I				limonite stained														
I	[- at 46.9 a 10 cm gouge zone occurs														
	[- from 47.0-48.0 the unit is grey-green colored														
l	[_		(reddish tinged)				Τ										
l				- throughout the section short intervals of a			Τ											
l	[coarse grained tuff occur														
l	[
		51.9	53.0	Coarse Grained Fragmental Andesitic Tuff														
	[- grey-green-red colored	Τ			Τ										[
	[- contains fragments upto 2 cm in size fragment	5			Τ										
	Ī			generally reddish colored														
	[- fractured at 50°														
ĺ	[- barren														
	[lower contact @ 50°														
l	ſ																	
	ſ	53.0	65.4	Maroon Andesitic Tuff														
	[- fine grained														
l		_		- similar to 46.8-51.9														
	[- minor hairline fracturing												Ι		
	E			- barren														
		65.4	67.7	Grey Andesitic Tuff			T											
				- similar to the maroon tuff only grey colored														
	Ľ			instead														
		-																
	L																	
i																1		

;

		PR	OJEC.	NEW MOON HOLE 86-3 NEWM	N	T EXPLORAT	101	4 0	F CAN	IADA I	LIMITE	ED					PA	GE 7	of 7
DEPTH	GEOL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	Т					AS	SAYS			_	RECÓ	/ERY
meters		FROM	то		%				SAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		67.7	70.3	Felsic Tuff															
				grev fine grained with minor feldspar															
-				phenocrysts															
-				- minor epidote-sporadically distributed															
F				- lower contact @ 37°	Г			1											
-				- from 67.7-68.9 the unit appears to be in	\square			Τ											<u> </u>
F				transition from the grey tuff to the felsic	Γ						····								
F				tuff								1		1					
							+	╈										<u> </u>	
		70.3	71.9	Andesitic Tuff			-†	┿										<u> </u>	<u> </u>
		/013		- fine grained green grey colored, massive			-†	┿					<u> </u>	<u> </u>				<u> </u>	<u> </u>
interi i P				- non mineralized			-†	┿	<u>}</u>									<u> </u>	
-				- fracturing θ 35° to the ca	┟──		+	╋	+ +	_				<u> </u>				<u> </u>	╂───
					+		-†	╈	+									<u> </u>	<u> </u>
-					┢		-+	+-	+										╂───
F					┢		-+-	+	<u> </u>		···							<u> </u>	╂───
F			<u> </u>	/1.9 B. O. n.	╉──		+	+	╂									┟────	╂───
F					┢		-+-	+-										┢────	──
		_	L		┢		\rightarrow	+-										┣───	┢──
						ļ	-							.				 	┣
-							$ \downarrow$											L	
							\bot											L	
_													_						L
E													_						
-																			
ΕI	[Τ	T											
							Τ												
	- 1						-†		t1				-						<u>├</u> ──
			<u> </u>		-	┝┯┿┯┯╼╼┻╋	-	-	ا					·	L	ا لہ ب		ل	i

i · · · (

	NEWMO	NT E	kp. of	CANADA LTD	LEVEL	Surface	DEPTH	BEARING	DIP	m	PE OF	SURVE	LEN	GTH	113.1	m	HOL	E NO.	N . M.	. 86-4	
	DRILI	н		RECORD	LOCATION	Plateau Grid	0	300°	-60°	В	Brunton	1	CORE	SIZE	B	<u>ې</u>	SHE	ET NO.	l of	8	
					ELEVATION	2091.0 m	113.	հոր 300°	-60°	A	Acid Te	st	TOTA	LREC	OVERY		LOG	GED B	Y D. 1	/isagie	
		PR		DN F	LATITUDE	0 + 00							STAF	TED	Aug	. 6/86	a A	IM M	ISTY D	١Y	
					DEPARTURI	E <u>1 + 15 E</u>	L						COM	PLETE	D Au	g. 8/86	PUF	POSE	Test 1	<u>fain Zo</u>	ne
DEPTH	GEOL	INTE	RVAL	GEOLO	OGICAL DES	CRIPTION	MIN	ERALIZATIO	AL:	T					AS	SAYS				RECOV	ERY
meters		FROM	TO				*			Τ	SAMP	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	*
E		0	1.8	Casing						Γ											
E	I									Τ											
E		1.8	5.3	Feldspar Porp	hyry Dyke					T											
£				- fine graine	d grey with	white upto .2 cm														25.3	2.0
F				feldspar ph	enocrysts (u	maltered)							_							26.8	1.5
E.				- barren, hom	ogeneous															28.4	1.5
L		_		- lower conta	ct broken															29.0	0.7
上				- fracturing	occurs @ 60°	& 10°														32.0	3.0
F																				35.1	3.1
F		5.3	12.2	Mottled Andes	ite Tuff															37.2	3.1
E				- fine graine	d reddish br	own matrix with coar	se													39.9	2.8
E				angular fra	igments upto	.3 cm														41.8	1.9
F				- calcareous																44.8	3.0
E				- limonite st	ained fractu	ires														46.3	1.7
E				- barren in g	general															47.9	1.6
E				- fracturing	@ 45° & 10°															48.8	0.9
E				- coarse grai	ined from 11.	.3														50.3	1.5
E																				52.4	2.2
L		12.3	18.1	Maroon Colore	d Tuff															54.9	2.8
F				- ranges from	m reddish bro	own fine grained to a	a													56.1	1.1
Ł				coarse grai	ined tuff															57.6	1.5
E				- calcareous	t/o															59.7	2.5
E				- @ 17.4 a 1	5 cm qv @ 70	° has 5% pyr, 1% cpy														60.7	1.0
E				5% ZnS																61.8	1.2
F																		1		, 1	

·

		r n	UULU	NEW MOON 336 HOLE N.M. 86-4 NEWN		I EAFLURA				IAUA I								JE 2 0	<u> </u>
PTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	.Т					ASS	SAYS				RECÓV	/ER
eters		FROM	то		%			Т	SAMP	FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUŃ	%
		18.1	29.4	Andesitic Tuff	1	PbS/ZnS			11830	17.2	17.7	0.5	. 12	.96	1.54	0.13	.002	64.0	2.
[]				- fine grained with a reddish tinge		Tr Pyr			11831	23.5	24.5	1.0	-	.65	0.49	0.12	.002	66.1	2.
[]				- massive					11832	28.9	29.6	0.7	-	.11	0.01	0.04	<.002	69.0	2.
				- broken t/o with the section from 23.3-25.3														71.0	2.
_				being highly broken-up				Ι.										73.2	2.
				- quartz-calcite veining (generally fracture	Γ													75.0	1.
				fillings) occurs t/o sporadically				Τ										78.0	3.
				- qv @ 23.6: 15 cm tr pyr				Т										79.8	1.
				23.8: 1 cm qtz-cal @ 10° tr gal				Т	T									89.0	1
				- from 23.8-24.5 the unit has 5% pyr	1			T										90.5	1
•				- at 24.3 a 20 cm qv stkwk has 5% pyr														92.7	1
•				- at 27.2 @ 1 cm @ 25° tr pyr	1		T	T	T									93.3	0
				- at 28.9 a 30 cm zone of qv stkwk has 5%	1			1	1									93.8	0
				pyrite and tr gal	Τ			Т	T									94.2	0
								Τ										94.5	0
	1	29.4	43.5	Calcareous Andesitic Tuff & Porphyrytic Flow	1				1									95.7	1
	ĺ			- a chaotic assemblege with short sections of	1				1									97.2	1
	1			maroon tuff intermixed with a feldspar	\mathbf{T}													98.4	1
1	ļ			porphyry flow that has 20% calcite	1				1								<u> </u>	101.2	2
	Ì			inclusions	1												1	102.4	1
	ľ			- maroon tuff is bedded @ 80-90° to the ca	\uparrow			+	1								1	105.8	3
	t			- minor quartz veining with the veins	1-												†	108.9	3
	ľ			occurring	\top				1							I		110.0	1
	ľ			@ 30.3: 5 cm vuggy	1		-	╈										111.3	1
	ſ			35.0: 1 cm @ 60° barren	1				I									113.1	1
	ľ			- feldspars increasingly green with depth	1														Γ
	ļ			(saussuritization)	1		-	\top									1		Γ
	ľ			- @ 43.2 @ 20 cm qv stkwk with tr gal and 5%	5	5% pyr	\top		1 18 3 3	42.9	43.5	0.6	-	.06	0.10	0.04	<.002		\Box

٠.,

-82-

mul		INTE	-					1 T	T				20	2VA2				DETIÓN	5
ters	UEUL.	FROM		GEOLOGICAL DESCRIPTION	- 19L		hî		SAMP	FROM	TO	FNG	Cu	Ph	7 n	٨٥	A11	DUN	ì
		45.5	49.9	Andonito Flou			\vdash	┿			10				2	- 18		RUN	1
•		4313		- fine preined			\vdash	╉	ł								╆───		+
				- The granied		<u> </u>	┠╌┥		+							<u> </u>	╂────	┢───	┥
.				- greenish grey		<u> </u>		+	<u> </u>								┢────	<u> </u>	+
				- tr apidata	+													┼───	-
				= from 45.7-45.8 + 307 ev occurs	+-												┢────	<u> </u>	-
				= 110m 45.7 - 45.8 + 50 + 50 k qV occurs			┝╌╢	+									┢───	┢────	-
·				porphyry flou			┞╴┨	-+-								•	┼──	┣───	-
				porphyry flow $-0.43.7$ and 10 and 20	┥╴	27	┝─┤	+	1.1.000								<u> </u>	<u> </u>	-
				PhC and 17 Cau		2% PDS,	┝╌┨	+	11834	43.5	44.2	0.7	.02	.18	.31	0.05	<0.002	┢────	_
						2% 205	┠─┨	-+-	╂────								┣───	┟───	-
				e 44.5 a 90 cm qv zone occurs in which the		Тх сру	\vdash		<u> </u>								┢───	┢───	-
				first 20 cm has 10% 2nS the vein is at 10	10	10% ZnS	┠─┨		11835	44.2	44.7	0.5	<0.01	0.04	0.08	0.05	<0.002		-
				to the ca			⊢┤	+	 									┢───	-
				@ 46.3 the unit has a 1 cm gouge zone			┝╌┨		11836	44.7	45.8	1.1		0.18	0.63	0.07	<0.002	┣───	-
				- 49.9 a 1 cm qv @ 50° has 5% PbS, Tr, ZnS,		ļ	\square	_	<u> </u>									┣───	_
				2% Pyr			\square											 	4
							┞╌┨		ļ							 		 	_
		49.9	57.5	Calcareous Andesitic Flow			Ц		ļ							I		 	_
			 	- similar in part to 29.4-43.5												ļ		 	_
				- phenocrysts fresh		L	Ц		ļ										_
	ĺ			- from 53.0-54.3 the unit is reddish colored					ļ							L			-
				- @ 53.5: 3 cm qv @ 60° has 2% ZnS		L													
				@ 54.1: 1 cm qv @ 60° has tr cpy			\square		<u> </u>							L			
				from 54.3-57.5 the unit is in part brxx and h	15		\square		11837	55.0	56.5	1.5	-	0.04	0.06	0.04	<0.002	L	
				20% quartz					11838	56.5	57.6	1.1	-	0.05	0.03	0.03	<0.002		
	ļ			from 56.0 the quartz veins are generally @ 50	·														
	l			to the ca]
1					I														1

		PR	OJEC	NEW MOON 336 HOLE N. M. 86-4 NEWM	KON'	EXPLORA	TIC	N	OF	CAN	AUA L	_IMIT	ED				 PA	6 <u>5</u> 4	of {
PTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	1	LT						AS	SAYS			RECÓV	ER
ters		FROM	то		%					SAMP	FROM	то	LENG			<u> </u>		RUÌ	%
		57.5	60.9	Maroon Tuff															
				- reddish colored fine grained															
				- weakly foliated @ 70° to the ca											ļ	ļ			
				- barren								···							
				- fractured @ 30° to the ca		•													
		60.9	69.3	Calcareous Andesitic Tuff															
				- similar to 49.9-57.5												L			
				- from 64.1-65.6 the unit contains large															
				fragments, upto 2 cm															
•				- calcite occurs t/o															
••				- the unit is generally barren															
'			l																
		69.3	75.7	Lapilli Tuff															
, ,				- fragments upto 2 cm (variable composition)															
•				set in a green matrix															
				- weakly bedded @ 70°	Ι														
•				- massive non-mineralized					Τ										
	:			minor epidote along some fracture faces															
•				minor maroon tuff fragmentation, unit															
			1	generally barren	T														
				- minor quartz veining occurs sporadically t/o							Ι								
			1	- qv @ 74.3 2 small veins @ 50° have tr pyr					Τ										
			1	- @ 74.6 a .5 cm qv @ 60° has 15% pyr and															
				5% PbS															
	[@ 73.8 the unit has tr cpy in a qv					Τ	T									
	[T										
	ſ				Γ				T							1	Ι		

.

		PR	OJECT	NEW MOON HOLE N.M. 86-4 NEWM	ЮN ⁻	T EXPLORAT	01	N (OF C	ANADA	LIMIT	ED					PA	GE 5 (of 8
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT					AS	SAYS				RECÓV	/ERY
meters		FROM	то		%				SAN	IP FROM	то	LENG						RUN	%
-		75.7	78.8	Andesite Tuff															
				- similar to 45.5-49.9															
				- grey colored															
-				- fractured @ 30° the ca															
-																			
		78.8	82.9	Feldspar Porphyry Dyke															
				- similar to 1.8-5.3			\square				L								
-				- upper contact @ 10°							L								
-				lower contact @ 70°															
•				- minor calcite fracturing															
-																			
		82.9	87.8	Andesite Tuff															
-				- similar to 45.5-49.9															
-				- bedded @ 40°			\square												ļ
-																			
<u>-</u>		87.8	91.2	Andesite Porphyry Tuff			\square										ļ		
Ξ				- similar to previous											_				
				- fine grained green with small feldspar			\square		118:	90.0	90.5	0.5	-	.04	.15	0.04	<0.002		ļ
-				phenocrysts			\square		118	0 90.5	91.2	0.7	-	.05	.22	0.03	<0.002		ļ
				- from 88.3 the unit is broken up and has			\square												L
-		_		limonite along the faces											_		L		
-				- 89.4 the unit has a 1 cm qv @ 45° that has			_	$ \rightarrow $											ļ
-			L	20% pyr	 		$ \downarrow$	\rightarrow			 					L	ļ		
-					 		┛	_								L	ļ		
-		91.2	95.7	Quartz Vein Breccia	15	10 Z Zn,	$ \rightarrow$		1184	1 91.2	91.7	0.5		.04	.32	1.09	0.002		ļ
	ļ			- highly fractured t/o with the core recovery	 	5 % Pb		_								L			
_	ļ			being highly variable		₫Х сру	_	_											
						2% pyr													
المهيبيسيهيا			A	Land the second se		I			1								1		

:

		PR	OJECI	NEW MOON HOLE N.M. 86-4 NEWM	ON T	EXPLORAT	10	1 0	F CAN	ADA I	LIMITE	:D					PA	GE 6	of 8
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	AL	.T					AS	SAYS				RECÓV	/ERY
meters		FROM	то		%				SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		91.2	95.7	Quartz Vein Breccia Cont'd			Τ												
				- from 91.2-91.8 the unit is a white qv which is										<u> </u>					
				highly broken up and has black sulphide gouge											ļ				
-				(10%)															
-				- from 91.8-93.3: the unit is highly fractured		-			11842	91.7	92.7	1.0	.35	2.34	11.10	0.47	0.024		
-				with the longest piece of core being 5 cm.					11843	92.7	93.3	0.6	. 50	7.10	11.10	0.61	0.030		
-				The unit is well mineralized with 10% ZnS,															
				3% PbS, 5% hematite, 3% pyr											L				
-				- from 93.3-94.2: only 20 cm recovered and is					11844	93.3	94.2	0.9	.44	0.79	2.77	0.26	0.006	>	
-				mineralized similar to 91.8-93.3															
			-	- from 94.2-94.5: 100% recovery 10% PbS/ZnS in					11845	94.2	94.7	0.5	.69	3.86	7.68	0.69	0.018	8	
-				veining @ 60° to the ca															
				- from 94.5-95.7: the unit is predominantly					11846	94.7	95.7	1.0	.90	0.48	2.96	0.67	0.004		
-				brxx qv in which the sulphide content has												L	<u> </u>	L	
-				decreased to 1% Pb/Zn with 1% cpy												,	<u> </u>		
-		95.7	98.4	Altered Feldspar Porphyry Flow	Γ										L				
				- fine grained siliceous					11847	95.7	96.7	1.0	.08	0,10	0.26	0.04	<u>k0.002</u>		
-			Î	- ser & argillic alt is mod developed													L	<u> </u>	
-			1	- small feldspar phenos <.2 cm					11848	96.7	97,2	0.5	.03	0.10	0.22	0.02	k0.002		
-				fine grained grey matrix															
-				- highly fractured t/o with limonite occurring					11849	97.2	98.4	1.2	.01	0.05	0.024	k0.01	k0.002		
-	1			along fracture					[<u> </u>			<u> </u>
-				- from 96.2-96.8 the unit is highly fragmental															Ļ
-				with Tr. PbS/ZnS occurring in minor quartz					_						ļ	L		ļ	_
-				veins															
-				- erratic qv stkwk is located throughout and is															
-				occasionally well developed															

. .

;

·

	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION		ALT	' I					AS	SAYS				RECOV	/ERY
	FROM	TO		%		\Box			SAMP.	FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
	95.7	98.4	Altered Feldspar Porphyry Flow Cont'd											1		[
			- from 96.8-97.5 there is a weak qv stkwk with																
			2% PbS, 2% Zn and 1% cpy														1		
			- @ 97.4 a 3 cm qv @ 60° has 2% ZnS. 2% PbS																
			and 1% cpy													[
			@ 98.1 a 1 cm qv @ 60° with 15% ZnS																
			@ 98.4 the unit has a sharp irregular contact																_
																[
	98.4	102.3	Andesitic Tuff												1				
			- fine grained														<u> </u>		
- [- similar to previous												1		1		
1			- calcareous				Π									t			
[- soft								<u> </u>			<u> </u>	<u>}</u>				
			- minor hematite occurs in calcite veins																
			- calcite veining minor				Π								1				
			- fracturing common @ 55°												<u> </u>				
[- the last 1 m has a lighter green color																
[<u> </u>			
[102.3	104.3	Altered Feldspar Porphyry Flow	1	1 % pyr				11850	103.1	103.8	0.7	.12	0.03	0.07	0.02	<0 m2		
			- similar to 95.7-98.4						11851	103.8	104.2	0.4	.21	0.06	-	0.06	<0.002		
			- grey																
			- fracturing occurs // to the ca and is														<u> </u>		
- [limonite stained																
Ĺ			- argillic alteration is best developed in the																
			first 30 cm																
			- 103.2 @ 1 cm qv @ 55° has 10% py																
			- between 103.2 and 103.9 the unit has ~ 15%											 					
			veining which contains 1% cpy																

-			OJEC	I NEW MOUN HOLE N.M. 86-4 NEW	NOW	I EXPLORA				INADA								GE 8 d	of
н	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	4						AS	SAYS				RECOV	EI
3		FROM	то		%				SAN	PFROM	TO	LENG			L			RUN	L
		102.3	104.3	Altered Feldspar Porphyry Flow Cont'd															
				- 103.9 @ 10 cm qv @ 40° has 10% PbS, 5% Zn															
				and 1% cpy															Γ
				- 104.2 @ 1 cm qv @ 40° has tr pyr															
1			L																Γ
		104.3	110.5	Andesite Tuff															Γ
				- similar to 45.9-47.5															Γ
				- massive non-mineralized															Γ
				- @ 105.7 - 40 cm broken veining limonite															
	[stained	Τ									1					t
	ľ																		T
	ł	110.5	113.1	Felsic Tuff											<u> </u>				T
	ľ			- siliceous										†					t
	Ì			- grey colored, fine grained with minor															T
	ľ			feldspar phenocrysts					1										T
				- weak qv						1				1	1				t
	ľ			- 1% dissem pyr											1				T
	ľ			- highly broken up										1					t
	h													1		<u> </u>			T
	ľ			113.1 E. O. H.					1	1				<u> </u>					t
	t		1				-									t			t
	ļ						-			1					<u> </u>				t
	ľ									+					<u> </u>	1			t
	F													i		<u> </u>			t
1	ľ						-	-+		1					1				t
	t							-+							<u> </u>	<u> </u>			t
	ľ							-+		+						<u> </u>			┢
	t t	_	<u>├ </u>		+		-	-+		1						<u> </u>			┢
	F		t		+									 	↓	L			

(_i (

. .

(;
	•
	•:

	NEWMO	NT E	XP. OF	CANADA LTD	LEVEL Surface	DEPT	гн I	BEARING	DI	Р	TYP	YE OF	SURVE	LEN	ЭTH	125.9) m	HOL	E NO.	N.M.	86-5	
		I H			LOCATION Plateau Grid	0 1	m	300°	-6	0°	Bı	runtor	1	CORE	SIZE	BQ		SHE	ET NO.	l of	10	
	DIVIC			NECOND	ELEVATION 2095.0 m	.114	m	300°	-6	4°	Ac	cid		TOTA	L RECO	OVERY	79.5%	LOG	GED B	ΪΥ D.	Visagie	2
		NI PE	EW MOC	n r	LATITUDE 0 + 75N									STAR	TED	Aug.	8/86	alA	IM	MISTY	DAY	
		•••			DEPARTURE 1 + 15 E									COM	LETE	D Aug	3. 11/86	PUF	POSE	Test	Main Zo	one
EPT	I GEOL	INTE	RVAL	GEOLO	DGICAL DESCRIPTION	м	INEF	RALIZATION		ALT	Т					AS	SAYS				RECOV	ERY
peters	•	FROM	то			*					1	SAMP	FROM	TO	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
		0	1.8	Casing						\Box											3.4	1.00
•																					5.2	1.80
<u> </u>		1.8	4.3	Andesitic Tu	ff	Tr	pyr														6.4	1.20
				- fine grain	ed grey-grey colored																8.3	1.90
				- calcareous	······································																10.4	2.30
		-		- small calc	ite inclusions upto .2 cm in siz	ze															11.9	1.60
-				- fractured	t/o to 3.4																14.3	2.40
-					······································					Ц											16.5	2.20
		4.3	5.3	Maroon Tuff	······································	Tı	rpyı	r		Ш											18.3	2.40
•				- red- maroo	on colored, fine to med grained			·		Ц	_										20.7	2.4
_		<u> </u>		- calcareous	\$ • • • • • • • • • • • • • • • • • • •											_					23.2	3.2
				- bedded @ 6	0° to the ca																24.6	1.8
				- fractured	@ 10 & 60°			· · · · · · · · · · · · · · · · · · ·	ļ		$ \downarrow$									ļ	26.5	1.8
-			l	- short sect	ions are coarse fragmental															[29.0	2.6
-				- calcite st	ringers heal fractures		4				_								ļ	ļ	30.5	1.5
-							+		 	┞╴╿	\rightarrow									ļ	32.3	2.0
-		5.3	9.4	Andesite Tuf	f				┢┈	┠─┤	\rightarrow								ļ	└──	34.4	2.2
-				- similar to	0 1.8-4.3	Tr	pyr				4									ļ	37.5	3.0
-				- grey color	-ed					-	\rightarrow										39.3	2.0
-							_			$\left \right $	+										43.0	3.8
-		9.4	11.1	Maroon Tutt			_			\square	_										43.9	1.00
				- similar to	4.3~5.3		_	• ··· · · ·	-	┞─┤	+						┝──┤			 	44.5	1.6
-			ļ				┨		-	\vdash	_										46.6	2.2
		<u> </u>			<u> </u>	—	+		\vdash	┞─┤	\rightarrow										48.5	.9
-	1		1	1		1	1		1	1 1	1				1		1		I	1		1

GEOL	INTE		GEOLOGICAL DESCRIPTION	M	NERAL IZATION	1	J T	Т				AS	SAYS				RECÓ
	FROM			%		-	Ē	SAM	FROM	То	ENG	Cu	РЪ	Zn	Ag	Au	RUN
	- 1.011			1~						<u> </u>							50
ŀ				┼──			-+-		+								50.0
ł				\vdash			+	+			+		<u> </u>				51 6
ł	11.1	12.7	Porphyrytic Andesite	Tr	pyr			+	+				<u> </u>	<u> </u>			53.3
ŀ			- fine grained with feldspar phenocrysts	t	···	_		1	1	1			t	f			55.2
t t			(upto .2 cm)				+	+									57.0
T T			- grey matrix, feldspar white			-		1									58.5
ľ			- non-mineralized						1	1							60.0
Ī			- lower contact irregular @ 45° sharp							1							61.6
ſ										<u> </u>							63.1
T	12.7	18.6	Andesitic Tuff Flow							1							64.9
Ī			- fine grained, green colored														66.8
ľ			- bedded @ 60° to the ca														68.3
Ī			- barren														70.1
[- minor calcite vein stringers														91.7
			- weak chlor alt														93.9
[96.6
[18.6	25.9	Feldspar Porphyry Dyke														97.8
[- fine grained, grey matrix in which feldspar														99.6
[phenocrysts upto .2 cm occur														100.9
E			- massive, hemogeneous														103.6
			- non-mineralized														106.4
																[109.1
	25.9	34.5	Andesitic Tuff				\square										110.1
Ļ			- fine grained, grey-green colored with short	I				118	2 27.0	28.0	1.0	_	0.03	0.17	0.04	-0.002	112.5
Ļ			sections of reddish maroon tuff														114
L			- @ 26.8 m a 15 cm stkwk contains 1% ZnS/PbS,	6	1% ZnS/5% pyr				1								115.5
			5% pyr														117.0

•

i

T		- P R	UJEC	NEW MOON 336 MULC N.M. 86-5 NEWN		I EAPLORA			AUA						·		3	of 10
ртн	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION		<u> </u>			,	AS	SAYS				RECOV	<u>/ERY</u>
ters		FROM	то		%		_	SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUŃ	%
.		25.9	34.5	Andesitic Tuff Cont'd												ļ	118.6	1.6
				- fracturing occurs at 70° and 10° to the ca													120.1	1.7
				- minor grit sections													121.6	1.6
				- 30.5-31.5 weak erratic qv stkwk with 1% PbS,	7	1 m 1%PbS,		11853	30.4	31.9	1.5	-	0.09	0.18	0.04	×0.002	122.8	1.3
				1% ZnS, 5% pyr		5% pyr											87.2	2.8
				- from 33.2-34.2 the unit is highly broken				<u> </u>							_		90.2	3.0
				- gradational lower contact													90.5	.3
	ļ															L	91.7	1.2
		34.5	39.8	Andesite Tuff (Mottled)														
				- calcareous										_				
	[- grey black blotchy in appearance														
	[- fine - med grained with andesite fragments														
	[- generally barren														
	[- fracturing occurs at 5°, 70° and 40°														
				- minor epidote alteration														
				- lower contact occurs @ 30°														
	[
	[39.8	46.6	Andesite Tuff				<u> </u>										
	[- fine - med grained greyish green colored														
	[homogenous														
	[- small calcite inclusions t/o calcareous														
				- fracturing @ 20°														
1	L																	
	ļ	46.6	53.8	Maroon Tuff														
				- similar to previous														
	L			- non-mineralized														
	L																	
					1		 - 1			T					1	I		5

:

ны		INTER		GEOLOGICAL DESCRIPTION	M	NERALIZATION	LT	1				AS	SAYS			1	RECOV	/EF
8	F	ROM	TO		%			SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	
T		53.8	62.8	Pred Andesitic Tuff														
1	L L			- fine grained dark green black with reddish	Τ													Γ
	F			tinge, mottled	Г													
				- calcareous														
	F			- minor quartz veining @ 62.5 5 cm qv @ 30°	Τ		Π	11854	62.3	63.1	.8	_	0.04	0.19	0.02	<0.002		Γ
				with 2% PbS, 1% ZnS	Ι										_			
				- gradational lower contact														
•	L L																	
	Г	62.8	66.8	Maroon Tuff	Tr	dissem pyr												
	Γ			- similar to previous	Τ													
1			-	- fracturing @ 10 & 45°														
				- tr dissem pyr	Τ													Γ
	F																	
	F	66.8	70.7	Andesitic Tuff	1	dissem pyr		11855	70.1	71.6	1.5	-	<0.01	0.03	0.03	<0.002		
	Γ			- fine grained grey-green colored	Т													
	Γ			- quartz veining more prominant than previous	Т													
				constituting $\sim 10\%$ of the unit														
	Г			- @ 66.7 a 2 cm qv @ 70° has tr PbS, vuggy qtz														
	F			t/o														
1				- 69.7 3 cm qv @ 45° has tr PbS	Τ													
				- 69.8 2 cm qv @ 75° has 2% pyr								-						
				- from 70.1-70.3 the unit has an irreg qv														
	Γ			stkwk														
		70.7	78.0	Feldspar Porphyry Andesite Flow														
	E			- large, upto 1 cm, amygdules set in a fine-				11856	71.6	72.3	0.7	-	0.17	0.33	0.04	-0.002		
				grained purple-grey matrix														
				and a second		V					. 1							

.

(

		<u> </u>	UJEC	NEW MOON 336 RULL N.M. 86-5 NEW													FA	5	ot 10
PTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	INERALIZATION	_			-		·	AS	SAYS			·	RECOV	<u>ERY</u>
ters		FROM	TO		1%			\square	SAME	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		70.7	78.0	Feldspar Porphyry Andesite Flow Cont'd				\square		ļ				ļ					L
				- on occasion the feldspar phenocrysts are					11857	75.5	76.1	0.6		0.39	1.56	0.09	0.002	124.4	1.5
				weakly altered				Ц		_	L			ļ				125.9	1.4
				- minor quartz-calcite veins occurs					11858	76.1	77.0	0.9	-	0.57	0.85	0.09	<0.002		
				sporadically t/o															
				- @ 72.1 1 cm @ 60° irreg 50% PbS, 1% cpy	2	2% pyr tr			1 1 8 6 3	77.9	78.9	1.0	-	0.19	0.69	0.04	<0.002		
				75.9 2 cm @ 30° 20% ZnS + PbS		PbS tr ZnS		\square		ļ									
				76.9 1 cm qv @ 30° 50% PbS							L								
				76.95 .5 cm qv @ 60° massive PbS															
		78.0	79.8	Andesitic Tuff	1	dissem pyr													
				- fine grained, grey colored															
				- calcareous															
				- minor qtz-calcite veining															
				- @ 78.1: 25 cm zone 10% Pyr, 5% PbS veins												l			
				@ 70°															
	ſ			@ 78.8: 1 cm vein @ 20° 5% PbS	Τ												<u> </u>		
				- throughout small black phenocryst occur															
	1																		
	ſ	79.8	89.3	Feldspar Porphyry Andesitic Flow	2	dissem pyr				T									
	[- similar to 70.7-78.0		increasing			1 1 8 5 9	82.0	83.0	1.0	-	0.01	0.04	0.02	<0.002		
				- feldspars green colored		sulphide			11860	83.0	84.0	1,0	-	0.01	0.05	0.03	<0.002		
	[- from 82.1 qtz-calcite veining increases		with depth			11861	84.0	85.0	1.0	1	0.10	0.52	0.08	<0.002		
	[qv @ 82.0 3 cm qtz-carb @ 30° 1%PbS, 1% ZnS					11862	85.0	86.0	1.0	-	0.29	0.5	0.04	<0.002		
				83.2 1 cm " " @ 30° barren					11864	86.0	87.6	1.6	-	0.19	0.69	0.05	<0.002		
	[83.3 2 cm qtz-carb @ 70° barren					11865	87.6	89.0	1.4	-	0.09	0.53	0.05	<0.002		
				84.8 2 cm vuggy qtz-vein	Τ				11866	93.0	94.3	1.3	-	0.03	0.13	0.02	<0.002		
				· · · · · · · · · · · · · · · · · · ·	Г														\square
									- 1	1					1	1	1		
																			9

. .

;

i.

		<u>PR</u>	OJECI	[NEW MOON (336) HOLE N.M. 86-5 NEWM	ION	T EXPLORA	TIO	N (OF CA	NADA I		ED					PA	GE 6	of 10
ЕРТН	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT			··· =		AS	SAYS				RECOV	ERY
neters		FROM	то		%		Т		SAMP	FROM	TO	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
		79.8	89.3	Feldspar Porphyry Andesite Flow Cont'd															
				- qv @ 85.2: 5 cm zone with 5% pyr					11867	94.3	94.9	0.6		0.04	0.13	0.02	<.002		
_				85.6: 10 cm @ 60° tr cpy					11868	94.9	95.9	1.0		0.04	0.15	0.03	<.002		
				85.5: 5 cm @ 70°.3 cm running by ZnS															
				86.1: 5 cm stkwk 5% ZnS, tr PbS															
		89.3	93.0	Feldspar Porphyry Dacite Dyke															
		93.0	95.7	Feldspar Porphyrytic Andesite Flows	Tr	PbS, ZnS			11869	95.9	96.5	0.6		0.05	0.22	0.04	<.002		
				- fine grained purple matrix in which grey-		dissem pyr													
				green feldspar phenocrysts upto .2 cm occur															
				- feldspars are green	Γ		Π	Τ											
				- weakly calcareous	Γ														
				- quartz veins occur t/o															
				- qv @ 93.1: 10 cm @ 70°, 5% pyr, 1% ZnS															
			_	tr PbS															
				@ 94.2: fracture @ 30°															
				@ 94.5: 1 cm qv @ 60° colloform				Τ											
				- from 94.4-94.8: the unit has weak quartz vein	4									•					
				stockwork															
				- @ 93.9: 1 cm @ 60° tr PbS															
		95.7	101.7	Andesite Breccia	5	4% pyr			11870	96.5	97.0	0.5		0.04	1.30	0.04	k.002		
				- fine grained matrix in which fragments upto		17 PbS/ZnS			11871	97.0	97.7	0.7		0.58	1.59	0.07	k.002		
				2 cm occur					11872	97.7	98.1	0.4		0.28	3.15	0.07	k .002		
		L		- section is reddish green colored and contains	3				11873	98.1	99.0	0.9		0.17	0.46	0.03	k .002		
		L		several quartz-veins					11874	99.0	99.8	0.8	.06	0.13	1.00	0.08	k.002		
.				- minor sections of feldspar porphyry occur t/c					11875	99.8	100.5	0.7		1.22	4.43	0.16	.002		
-					T	1		T	T								T		

					1.4		1.7					AS	CAVE				PECOV	
PTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION		NERALIZATION					ENIC	A3.	DL	2-	4.0			
ters		FROM	10		70		 -+-	SAM	PROM	10	LENG		PD	20	Ag	Au	RUN	70
-		95.7	101.7	Andesite Breccia Cont d			 ┿	+	(100 5	101 0	0.5		0.04	0.12	0.01		,	┢──
				Porphyrytic Andesite	+		 \rightarrow	118/		101.0	0.3		0.04	0.12	0.01	0.00		╂──
.				- from 95.7-97.0 the unit has been bleached	╉─┤		-+-	118/	/ 101.0	101.7	0.7		0.03	0.10	0.01	<0.002	ł	┣—
				adjacent to the veins to a light green color			 -+-		+	───							┢───	╂───
				96.8: 20 cm qtz stkwk 5% ZnS			-+-		+	}	├ ───┤						<u> </u>	╂──
				97.0: 30 cm qv @ 30°, 5% hematite, Tr ZnS,					┫━━━━						·			┣—
				27 Pbs			 -		<u> </u>						•			╂───
				97.8: 15 cm qv with 10% ZnS, 5% pyr, tr PbS,			_				ļ					ļ		┣—
				10% Fyr			_	_	_									\vdash
				98.5-98.80: weak qv stkwk 5% pyr														_
				99.3-99.6: erratic qv zone with 5% ZnS,														
				17 cpy														
				99.8-100.6: Quartz vein with 10% Pb + Zn,														_
				5% hematite, 5% pyr contact @ 50-60°														
				from 98.8-101.7 the unit appears to be more														
				siliceous and is fine grained grey-red brxx														
					Τ													
1		101.7	105.2	Quartz Vein Breccia Zone	10	87 PbS + ZnS		1187	8 101.7	102.5	0.8	-	0.15	1.00	0.08	<0.00;		
				- well mineralized highly fractured quartz		2Z pyr		1187	9 102.5	103.0	0.5	.70	0.26	3.58	0.44	0.00		
				vein zone		іх сру		1188	0 103.0	103.6	0.6	1.30	0.06	8.86	0.77	0.01		
				- sheared in first 1.2 m with the core being				1188	1 103.6	104.1	0.5	1.29	0.06	5.83	0.67	0.00		
Į		<u> </u>		highly fragmental: fault zone				1 1 88	2 104.1	104.7	0.6	.61	0.07	2.70	0.32	0.00	2	
	Ĩ			- within the fault zone, small fragments of														
				massive PbS/ZnS occur				1188	3 104.7	105.2	0.5	.28	0.08	0.94	0.15	<0.00	4	
	[- the upper contact of the zone is marked by														
	ľ			gouge which occurs at 50°	T		Τ											
	ļ				T		1	1								1	<u> </u>	\square
	t				1			1	1									1

.

ı

		<u> </u>	OJEC.	NEW MOON 336 HOLE N.M.86-5 NEW	MON	T EXPLORA				ADA	LIMITE	<u> </u>					PA	GE 8	of
н	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	INERALIZATION	4	LT					ASS	SAYS				RECOV	<u>/ER</u>
8		FROM	TO		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
Ť		101.7	105.2	Quartz Vein Breccia Zone Cont'd															
				- the quartz is hematitic t/o															
				- from 102.9 to 105.2 the core is less					<u> </u>					L					┢
				fractured															
				- the section from 102.9-103.6 contains 20%														ļ	
				PbS + ZnS															L
				- from 103.6-105.2 the unit has significant					<u> </u>	L						· ·			\vdash
				(5%) hematite						L									_
				- chalcopyrite, averaging .2% occurs t/o as															
				small dissem blebs														ļ	▙
				- limonite occurs on fractures t/o															
																			┢
ſ		105.2	107.7	Andesite Flow						L	 							I	4—
				- fine grained, grey colored						L	ļ								_
				- quartz veining minor						ļ	 			ļ				ļ	_
				- fracturing occurs at 10° and 60°		<u> </u>			,	ļ				Ļ	ļ			ļ	┢
				- barren in general	\bot	ļ				┣									┢
			L			<u> </u>	_	┝╌╂╸		<u> </u>	 								┢
		107.7	113.5	Brecciated Andesitic Tuff & Porphyrytic Flow			\vdash	-+	11884	109.0	109.4	0.40	.27	0.10	0.90	0.11	<0,002	<u>}</u>	┢
			L	- green grey colored fine grained matrix			┨──		11885	109.4	109.8	0.40	.15	0.03	0.19	0.07	0.00		┢
			ļ	with fragments		<u> </u>		┝╌╋	11886	109.8	110.3	0.50	.22	<0.01	1.39	0.13	0.002		┢
	ļ			of rhyolite and quartz	_	+			11887	110.3	110.8	0.50	.01	0.01	0.17	k0.01	<0.002	1	┢
				- feldspar phenocrysts occur in both the	-+-		┢──		11888	110.8	111.4	0.60	.08	0.02	0.55	0.07	0.014		+
			<u> </u>	matrix and the clasts		<u></u>		\vdash	11889	111.4	112.1	0.70	.03	0.02	0.30	0.02	×0.002		┢
	ŀ			- weak qv stkwk is developed on occasion	+-			-+		┢	<u>├</u>								┢
	H			······································	+					┢									┢
	ŀ				+-	╉──────		-+				 				 		<u> </u>	┢
ł	L							_	- -	 				ļ			L	 	┢

L

	PR	OJECT	NEW MOON 336 HOLE N.M. 86-5 NEWM	ЮN	T EXPLORAT	101	4 0	F CAN	ADA	LIMIT	ED					PA	GE 9	of 10
GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	T					AS	SAYS				RECON	/ERY
	FROM	το		%		Τ	Т	SAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	107.7	113.5	Brecciated Andesitic Tuffs & Porphyrytic Flow															
			Cont'd															
			@ 107.4 10 cm qtz stkwk 1% cpy															
			108.4 .1 cm qv @ 40° 10% cpy												i			
			109.0-109.30: hematitic fragments occur															
			within a qtz brxx															
			109.4 .3 cm qv @ 30° 10% Pbs			Ι												
			from 109.4-109.8 the unit is relatively barren															
			from 109.8-110.3 weak qv stkwk with 2% ZnS,															
			2% сру															
[from 110.3-110.8 the unit is barren															
ĺ			from 110.8-111.4 the unit has several erratic			T												
[quartz veins within it			Ι		I										
[@ 110.9 l cm qv @ 40° has 10% ZnS															
[110.95 .5 cm qv @ 40° has 10% ZnS															
[111.20 l cm qv @ 80° colloform			Τ	Τ											Γ
[111.30 1 cm qv @ 80° barren			Τ												<u> </u>
[from 111.4-112.1 the unit has minor quartz															
[veining which contain minor amounts of galena															
[& sphalerite with minor amounts of hematite															
[_					Τ												
[113.5	125.4	Basaltic Tuff			Ι												
	i		- fine - med grained, grey colored															
			- massive														L	L
			- homogeneous															<u> </u>
Ľ			- minor calcite healed fractures															
			- fractured @ 20° and @ 45°			Ι	Ι											
ſ				Γ		Т									1			1

.

		PR	OJECT	NEW MOON	336	HOLE	N.M. 86-5	NEWM	ON	EXPLORAT	ГЮ	N	OF	CAN	ADA I	LIMITE	ED				PA	SE 10	of 10
сертн	GEOL	INTE	RVAL	GEOLO	GICAL	DESCRIP	PTION		MI	NERALIZATION	A	LT						AS	SAYS			RECOV	ERY
meters		FROM	TO						%				S	AMP	FROM	TO	LENG					RUN	%
-		125.4	125.8	Felsic Tuff		· · · · ·																	
-				- fine grained	1																		
				- light grey																			
-				- upper contac	t irre	g @ 10°					Π												
				~ non-minerali	zed							Т	Т										
-												T	Τ										
				E. O. H. 125.	.8	······································							Т										
													Т										
								-				T											
												T											
												1				1							
											-	+	+							 			
												+	+-										
. . .												+	╈										
												+	╈							 			
											-	-+	╋							 			
											-	-+	╈							 			
									\square		-1	+	╉							 			
\mathbf{F}											-	-+	╉				·			 	_		<u> </u>
\mathbf{F}											-	-+	+					_		 			
-											-	-+	+							 			
F									\square		{	╈	-{-							 			
F		<u> </u>	<u> </u>						\vdash			~	-+-							 			
F-											-+	-+	-+-							 			
FI									\vdash		-	+	+-							 			
F	ŀ			ļ							-{	+	+	{						 			
1 I	ŀ										-+	+	+							 		┝───┨	
₽ 	ŀ										\dashv	+	-+-		ł								
									—		_+	-	-		ł					 			

:

ı

•

N	EWMO	NT EX	(P. OF	CANADA LTD	LEVEL Su	rface	DEPTI	BEARING	DI	P	TYP	EOF	SURVEY	LEN	зтн	119	.5 <u>m</u>	HOL	E NO.	N.M. 86-6		
r					LOCATION	Plateau Grid	0	300°		50	B	runton		CORE	E SIZE	B.(Q	SHE	ET NO.	1 of 12		
L.					ELEVATION	2100.3 m	-1 10 m	300°	-	50	A	cid Te	st	TOTA	L RECO	WERY	+ 95%	LO	GED B	Y D. Visag	ie	
		PR	OJECI	r	LATITUDE	1 + 50 N								STAR	TED	Aug.	12/86	a	AIM M	ISTY DAY		<u> </u>
					DEPARTURE	1 + 15 E								COMI	PLETE	D Au	g. 14/8	6 PU	RPOSE	Test Mai	n Zoi	ne
ЕРТН	GEOL	INTE		GEOL	OGICAL DESC	RIPTION	M	NERALIZATK	DN	ALT	T					AS	SAYS		·	REC	OVE	RY
aters	0202.	FROM	TO				%			T		SAMP	FROM	TO	LENG					RU	ı́Г	%
-+		0	1.8	Casing						\square							1			3	.4	
-	•																			4	.9	
-		1.8	3.7	Maroon Tuff	•					П										6	.4	
-	•			- fine grain	ed with some m	ninor fragmental														7	.9	
-				sections						Π										9	. 5	
-		-		- maroon col	ored					Π										10	.7	
	-			- non-minera	lized															12	.5 C).3
<u> </u>				- fractured	@ 30°												•			13	.7	_
-				- minor Mn s	tain															15	.2	
																				16	.8	
-		3.7	9.8	Mottled Ande	site Tuff		Tr	Pyr in												18	.3	
				- calcareous				calcite												19	.8	
				– dark grey	green colored	fine grained matri	x	veins												21	.9	
				in which f	ragments upto	2 cm occur														24	<u>.4 c</u>).3
				- fractures	common @ 30°												•			26	.2	
				- minor calc	ite veining @	30° and @ 70°														29	.0	
				- tr pyr wit	hin calcite ve	eins														33	.5	
				- @7.6 a 30	cm fracture occ	ursparallel to the	ca													36	0 0).1
																	L			37	.5	
_		9.8	20.8	Feldspar Por	phyry Dyke						\square					ļ	<u> </u>			39	3 0).1
				- fine grain	ed grey-green	in which fresh whi	te													42	4	
-		L		feldspar p	henocrysts up	to .2 cm occur			_	\square	\square									45	.4	
_			Į –														1	l		48	2	

:

	,	PR	OJEC	NEW MOON (336) HOLE N.M. 86-6 NEWM	KON	T EXPLORA	ТЮ)N	OF	CAN	IADA I	LIMITE	ED					PA	GE 2	of
H GE	:oL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	M	INERALIZATION	1	NLT.						AS	SAYS				RECON	VE
8		FROM	то		%			Ш	S	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	
		9.8	20.8	Feldspar Porphyry Dyke Cont'd															51.5	
	[- homogenous															54.9)
	[- non-mineralized															57.9	
	[- core is highly broken from 17.9-19.8															59.3	3
1				- fractures occur // to the ca and @ 50°		•													61.0	Ā
				- lower contact is at 40°															64.0	
																			65.0	
		20.8	36.0	Andesitic Tuff	1	PbS, ZnS				11890	22.9	23.8	0.9	-	.17	. 28	.07	.002	66.8	
				- pred grey-green colored, medium grained		Pyr				11891	23.8	24.5	0.7	.02	.21		.07	.002	68.3	
	Γ			- minor fragmentation occurs t/o	Γ														69.8	T
				- mineralization is confined to quartz veining					Т										71.3	T
	ſ			- quartz veining t/o				Π	Т										72.9	T
	ľ			- fracturing occurs at 60° and at 40° as does															73.2	t
	Γ			veining	Γ			Π	Τ										74.7	Τ
	[- quartz veining is erratic and generally					Τ										77.1	Γ
	Γ			occurs in combination with calcite															78.6	t
	Γ			- within the quartz veins tr PbS can be found	Γ														79.2	Τ
	Γ			- @ 21.7: 5 cm qtz-cal @ 40° barren															80.8	Ι
				22.6: 3 cm qtz-cal @ 80° 1% Pbs															82.3	Ι
1	Г			23.0: 10 cm qtz-cal @ 80° barren	Ι				Т										83.8	Τ
	Γ			23.4: 20 cm qtz @ 50° 1% PbS tr mal,	T		_												85.3	t
	Γ			tr ZnS boxwork limonite ribboned qv	Γ					_									86.9	T
	Γ		-	24.15: 10 cm qv @ 50° 1% PbS tr mal,	Γ														88.4	T
				tr ZnS boxwork limonite, ribboned qv					T										89.3	T
	Г			24.35: 4 cm qv @ 50° similar to above					T							-			90.8	T
	Γ				Γ				T										92.4	T
	Γ					1 1			\uparrow										93.9	t
	Γ				t	ţ			+				+		[94 5	t

ſ

:

		PR	OJEC.	T NEW MOON (336) HOLE N.M. 86-6 NEWM	ON'	T EXPLORAT	Г Ю	N	OF C	ANADA	LIMIT	ED					PA	GE 3	of 12
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					AS	SAYS				RECOV	/ERY
eters		FROM	то		%				SAI	MP FROM	TO	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
		20.8	36.0	Andesitic Tuff Cont'd															
-				from 24.7-26.9: the unit is coarser grained															
-				and has larger fragments with the fragments															
_				being upto 3 cm in size. Hematite common															
				from 26.9-29.9: the unit is finer grained with															
				small fragments of maroon tuff, minor calcite															
				veining															
				from 29.9-32.4: the unit is uniform consisting															
				of a medium-coarse grained fragmental															
				andesitic tuff. Fragments are upto 3 cm.															
-				Small black fragments occur t/o. Section															
				is almost barren with the exception of minor															
				limonite along a fracture face fracturing				Ι											
				occurs at 50° and at 20°															
				from 32.4-36.0: the unit is tuffaceous minor															
				quartz vein t/o however some of the veins															
				contain significant mineralization. Calcite															ļ
				veining is prominant															
	[33.7: 20 cm calcite vein barren					118	92 35.4	36.0	0.6	.05	1.31	2.82	.23	.012		
	ſ			35.4: 55 cm qv @ 40° 10% Zn + Pb colloform,	10	10% Zn/Pb in													
	Ĩ			limonite on fractures		55 cm qv													
	[
	ſ	36.0	63.8	Purple Feldspar Porphyry Andesite Flow															
				- fine grained purple colored matrix with green					118	93 36.0	36.7	0.7		.03	. 10	.04	<.002		<u> </u>
	[feldspar phenocrysts (saussuritized phenocrysts															
	ĺ			- feldspar phenocryst are upto 1 cm in size															
]			- quartz veining occurs throughout															
	ſ																		
•					1	T 1			T										1

-í

(

		PR	OJEC.	T NEW MOON (336) HOLE N.M. 86-6 NEWN	N	T EXPLORAT	10	1 0	F CAN	ADA	LIMITE	ED					PA	GE 4	of 12
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	<u>.</u>				_	AS	SAYS	_			RECON	/ERY
meters		FROM	то		%				SAMP	FROM	TO	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
-		36.0	63.8	Purple Feldspar Porphyry Andesite Flow Cont'd															
				- fracturing occurs @ 60° and @ 40°															
•				- from 36.7-39.2 quartz veining rare															
_				- qv @ 39.4: 5 cm qv @ 80° colloform tr gal															
				- at 39.5: 20 cm fracutre // to ca			Τ												
				- qv @ 40.5: 2 cm pink colloform tr pyr				Т											
•				- from 40.9-42.4: unit has approximately 20%				Τ	11894	40.9	42.4	1.5	-	.04	.08	.07	< .002		
_				pink calcite veining @ 70°					11895	42.4	43.9	1.5	-	.02	.04	.04	< .002		
				- from 42.4-43.9: 10% pink calcite veining occu	rs		Т	Т											
				– at 44.6 a 2 cm qv @ 70° has tr pyr			T	Т	11896	50.2	51.0	0.8	-	.10	.44	.07	.002	<u> </u>	
-				- at 45.6 10 cm qv 2% PbS				T	1					1			1		
				- minor quartz veins t/o at 50°			T	Т	11897	52.3	52.8	0.5	-	.81	.92	.14	<.002		1
-				- at 50.2: 25 cm qv @ 70° 2% PbS														1	
-				50.5: 10 cm qv @ 60° tr PbS, tr ZnS			T		11898	59.3	60.3	1.0	-	.14	.41	.11	<.002		
-				52.5: 30 cm qv @ 30° 5% PbS, 2% ZnS,			Τ	1											
	Í			2% Pyr			T	T	11899	61.4	62.5	1.1	-	.06	.09	.02	<.002	1	1
	Ì			56.7: 2 cm qv @ 50° 2% ZnS			╈	T	11900	62.5	63.4	0.9	-	.02	.05	.02	<.002		
-	ľ			- minor chlorite occurs along the fracture			1	1											
-	ľ			faces			1		11901	64.7	65.5	0.8	-	.06	.09	.06	<.002	1	1
- 1	ľ			- from 59.3-60.2 the unit has ∿ 20% qv					1										1
-	Ī			~ @ 59.70: 1 cm qv @ 50° 15% PbS + ZnS				1										1	t
-	f			59.75: 5 cm qv @ 50° 5% PbS + ZnS			+	+			$\neg \uparrow$								1
-	ſ			60.0: 5 cm qv @ 50° 5% cpy, 5% pyr,				1											
-	F			5% PbS + ZnS				1											
-	ľ			61.1: 15 cm qv @ 50° 2% cpv															
-	ľ			61.8: 1 cm @ 80° tr pyr			1												
-	t t			62.0: 5 cm qtz stkwk with tr gal			+	+											<u> </u>
- 1	F						+	+										!	
- 1	L.				{ {		+	+	┥───┤	<u> </u>							 		

(

EPTH (I	PRUJECI NEW MOON (336) HOLE N.M. 86-6 NEWMO						UNI EXILORATION C						PAGE 5 of 1:					
neters	GEOL	INTERVAL		GEOLOGICAL DESCRIPTION	MINERALIZATION ALT			ASSAYS							RECOVERY				
		FROM	то		%				SAM	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		36.0	63.8	Purple Feldspar Porphyry Andesite Flow Cont'd															
<u> </u>				62.8: 2 cm qtz colloform tr gal, fracturing															
				also occurs at 70° and 30° and at 50° to															
_				the ca															
_				- Phenocrysts less defined with depth and are															
				less altered				Π											
	[
	[63.8	74.8	Andesite Flow															
	[- fine grained, grey colored	5	2% pyr		Π											Γ
	ſ			- highly veined with veins predominantly	Ι	2% РЪ				1									1
-	Γ			calcite and qtz-calcite. Veining accounts	Γ	17 Zn													\square
	ſ			for 25% of the unit	1				11902	65.5	66.1	0.5		. 10	.22	.06	.002		†
	r			- mineralization is related to veining					11903	66.1	66.6	0.5		. 54	1.92	.23	.010		<u>†</u>
	[- contact gradational	Γ				11904	66.6	67.1	0.5		.16	.64	. 16	.004		1
	Γ			64.4-64.8 fracture // to ca					11905	67.1	67.8	0.7		.02	.04	.11	.004		
-	Γ			@ 65.3: 5 cm qv @ 80° 17 cpy					11906	67.8	68.3	0.5		1.96	.36	. 26	.004		1
	Г			65.5: 20 cm qv stkwk brxx 2% PbS	1				11907	68.3	69.9	0.6		.03	.06	.07	.002		1
-	Г			65.8: 10 cm qv stkwk brxx 2% PbS	1				11908	69.9	70.6	0.7		.11	.25	.08	.002		T
-	ľ			66.1 30 cm qv @ 40° 5% Pb/Zn, 2% pyr					11909	70.6	72.0	0.4		.02	.06	.07	.002		T
-	ſ			66.9 10 cm qtz stkwk with pink calcite					11910	72.0	72.4	0.4		.34	.61	.09	.002		1
-	Γ		-	2% PbS					11911	72.4	73.1	0.7		1.54	3.10	.17	.002		1
•	F			67.8: 30 cm qv zone 5% Pb/Zn lower contact					11912	73.1	74.2	1.1		.27	. 59	.09	.002		1
-	Γ			@ 45°					11913	74.2	74.7	0.5		. 36	1.26	.10	.002		1
				from 68.3-69.8 the unit has minor qv															
	Γ			@ 69.9: 20 cm qv tr gal/sphal															
-	L L			70.5: 8 cm qv @ 50° 5% PbS															
•	Γ			from 70.6-81.3 quartz veining decreases but is	1			\uparrow	1										<u>†</u>
-	Γ			still significant					\top										

.
		PR	OJEC	NEW MOON (336) HOLE N.M. 86-6 NEWN	ЮN	T EXPLORA	TIO	N	OF CA	NADA	LIMIT	ED					PA	GE 6 (of 12
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					AS	SAYS				RECOV	/ERY
meters		FROM	то		%				SAME	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUŇ	%
		63.8	74.8	Andesite Flow Cont'd															
	Ì.			@ 71.4: 1 cm @ 40° barren															
-				71.7: 3 cm @ 40° 5% pyr															
				72.1-72.3 erratic qv, 2% PbS															
-				72.5: 2 cm @ 20° and @ 70° 2% PbS, 2% ZnS		·													
-				72.75: 20 cm @ 80° 10% PbS, 10% ZnS, 5% pyr															
				73.1: 10 cm qv @ 40° 15% PbS, 5% ZnS															
-				73.7: 8 cm qv @ 50° 10% PbS, 5% pyr															
-				74.3: 10 cm qv @ 50° 10% PbS, 5% pyr															
-																			
-		74.9	83.8	Feldspar Porphyry Andesite Flow	2	1% pyr			11914	4 74.7	75.4	0.7		. 24	1.08	.09	.018		
-				- fine grained green matrix in which feldspars	Ι	1% Zn + Pb		Т	1191	5 75.4	75.9	0.5		.50	2.02	. 16	.046		
-				upto .4 cm occur					11916	5 75.9	76.3	0.4		.02	.05	.04	.002		
_	[- veined t/o with veining (generally pink					1191	7 76.3	76.8	0.5		.04	.06	.09	<.002		
-				calcite and calcite-qtz) totalling $\sim 20\%$				Т	11918	3 76.8	77.4	0.6		.02	.07	.04	<.002		
	[- @ 75.8: 12 cm qtz-cal @ 30° 20% PbS, 5% ZnS				Τ	11919	77.4	78.1	0.7		.03	.07	.07	<.002		
-	[76.2: 20 cm pink calcite @ 60° tr PbS				T	11920	78.1	79.0	0.9		.02	.05	.02	<.002		
-	ſ			77.3: 2 cm @ 50° 2% PbS	Γ			Т	1192	79.0	79.5	0.5		.17	.77	.05	<.002		
-	[77.5: 30 cm pink calcite-qtz colloform					1192:	2 79.5	80.9	1.4		.03	.07	.05	<.002		
-	[1% PbS	Τ		Π	Τ	1192	80.9	82.6	1.7		.02	.05	.05	<.002		
	ſ			78.9: 1 cm @ 60° Tr ZnS colloform				1	11924	82.6	84.0	1.4		.02	.04	.03	<.002		
-	[79.1: 25 cm @ 30° 5% PbS					1										
-	Γ			80.3: 2 cm qtz~calcite barren	Γ		Т	1											
-	[80.7: 1 cm qtz-calcite @ 50°															
-				81.9: 2 cm qv @ 10° 5% PbS															
-	ſ			- occasionally tourmaline is found within	Γ		Τ	Τ											
-	[the veins															
-	ľ				1														
- 1	r -	+			+				+	<u>+</u> +	+		+						

ł

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-6 NEWM	ЮN	T EXPLORA	тю)N	OF	CAN	IADA	LIMITE	ED					PA	GE 7	of 12
EPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION		ALT						AS	SAYS				RECOV	'ERY
neters		FROM	то		%					SAMP.	FROM	то	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
		83.8	86.4	Feldspar Porphyry Andesite Flow	2	1% pyr		Π												
				- dark green matrix in which andesite fragments		1% Zn + Pb				11925	84.0	85.5	1.5		.08	. 23	.08	<.002		
-				occur						11926	85.5	86.6	1.1		.01	.05	.04	<.002		
				- feldspars are upto 2 cm in size																
-				- calcite-qtz inclusions occur t/o																
-				- pink calcite veining occurs t/o																
				- short sections of fine grained andesite																
				occur sporadically				Π	Π											
-				- minor quartz + calcite veining occurs t/o	Γ			Π	Τ											
•				84.0: 1 cm qv irreg @ 40° 5% pyr, 5% ZnS	Ī			Π												
-				84.2: 2 cm qv @ 80°, 10% PbS			Γ	Π	T											
••••				84.4: 3 cm qtz-cal @ 20° 5% pyr, 2% PbS					Τ											
-				84.9: 10 cm area of qv stkwk with 2% Pb/Zn					1											
•					Ι		Γ													
-		86.6	93.7	Andesitic Flow	15	5% Pb			Ι	11927	86.6	87.1	0.5	.21	.77	3.42	.26	.006		
-				- fine grained green colored	Γ	5% Zn		Π	Τ	11928	87.1	87.9	0.8		. 10	. 89	. 29	<.002		
•				- highly mineralized and veined	Γ	5% Pyr				11929	87.9	88.4	0.5		.91	1.88	. 29	.004		
-				- fractured t/o	Γ		Γ			11930	88.4	89.1	0.7		.95	3.58	. 28	.020		
-				- non-bedded			Γ			11931	89.1	89.4	0.3	.22	.37	.89	. 16	<.002		
- (- veining occursprimarily as quartz and	Γ			Π		11932	89.4	90.0	0.6		3.44	4.35	.41	.008		
-	ľ			constitutes 60% of the unit						11933	90.0	90.3	0.3				.06	<.002		
•	ľ			- from 86.6-87.1: 50 cm qv with 1% cpy						11934	90.3	90.8	0.5		2.90	3.72	.23	.018		
-	1			5% pyr, 10% PbS and 10% ZnS minor					1	11935	90.8	91.3	0.5	. 39	.83	1.39	.23	.002		
: 1	f			calcite veining within the section						11936	91.3	91.8	0.5	. 32	.46	. 50	.17	<.002		
	1	······		@ 45° to ca						11937	91.8	93.3	1.5	.04	.07	. 20	.06	<.002		
	ľ			- from 87.1-87.9: minor quartz veining occurs						11938	93.3	94.4	1.1	.10	.09	.30	.06	<.002		
	[Τ											
· 1	[T											
	r								+			+		<u> </u>						

(

· · ·

.

(

		PR	OJEC	NEW MOON (336) HOLE N.M. 86-6 NEWM	ON'	EXPLORAT	10	0	F CAN	ADA	LIMIT	ED					PA	GE 8	of 12
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	AL	T					AS	SAYS		_		RECOV	ERY
meters		FROM	TO		%		Т		SAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUŇ	%
-		86.6	93.7	Andesitic Flow Cont'd			Т	Τ											
-				- from 87.9-88.55: the unit is a qtz calcite			Τ	Τ											
E				vein with 5% Pb + Zn, sulphide banding occurs															
E				@ 70°			Т	Τ											
				- from 88.55-88.7 a seam of 50% PbS, 10% ZnS,															
E				5% pyr occurs				1											
E .				- from 88.7-89.1: highly contoured quartz			Τ	T											
- 1				vein with 10% PbS, 10% ZnS, 5% pyr, tr cpy				Τ											
-				- from 89.1-89.4: andesitic tuff with weak															
-				qv stkwk				\uparrow											
F	Ì			- from 89.4-90.0: quartz veining with 10% PbS,				1-											
- -				10% ZnS, qv seams @ 30° to ca. At 89.4		- 1		+											
-	j			l cm massive galena, 89.9 2 cm massive			+	╈											
F	ľ			galena occur				1-											
	ſ	_		- from 90.0-90.3: andesitic tuff barren and			\top	\top											
	ſ			sheared@40° to ca		i	╈	1											
	ľ			- from 90.3-90.7: quartz veined with 10% Pb/			╈	1											
-				Zn. At 90.3 occurs a 2 cm massive galena			╈	1-											
-	ľ			sphalerite seam			+	1											
-	ľ			- from 90.7-90.8: 10 cm barren andesite															
	f			- from 90.8-91.3: 50 cm qv zone 5% PbS, 5% ZnS			+	+											
-	ľ			1 % Cu			+	+						· · · · · · · · · · · · · · · · · · ·					
	Γ			- from 91.3-91.9: 10% qv stkwk with 1% Cu,			+	+											
	ľ			2% PbS/ZnS			╈	┢											
	Г			- from 91.9-93.7: Q.V. decreases to constitute			+-	\uparrow		- 1									
	ſ			<10% of the unit		t	+-	t				†							
-	L L			- from 91.8-93.5 fracturing occurs // to the			+-												
	ſ			ca			+-												
<u> </u>	F						-+	+	┝──┨										

(

. i

. .

	93.7	TO 99.0	GEULDOICAL DESCRIPTION	1 1	NCRALIZATION	- AI						AD:	GIAC				INCLUDE	7 F H)
	93.7	99.0		10/				-	I conce el	70	- Euro		r					
	93.7	99.0		70		\dashv	-	SAMP	FROM	10	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
			Andesitic Tutt	<u> </u>		+	+											┣──
			- medium grained, brown-green colored with	10	5% Pbs		╋	11939	94.4	95.0	0.6	.07	.21	1.30	.09	.004	 	
F			black fragments (upto 1.5 cm in size)		5% ZnS	-+	╉	11940	95.0	95.6	0.6	.07	.48	1.54	.09	.004		┢──
F			throughout (20%)	_			╇	11941	95.6	96.1	0.5	.02	.06	.25	.02	<.002		
			- the unit is brown colored to 95.0 where upon	_		-+	╇	11942	96.1	96.6	0.5	.25	. 16	1.26	.15	.004	<u> </u>	
			it becomes green colored	<u> </u>		_	\downarrow	11943	96.6	97.3	0.7	. 10	.06	.41	.09	<.002		<u> </u>
⊢			- quartz veining occurs t/o with sulphide	 		_		11944	97.3	98.1	0.8		.07	.21	.06	<.002		_
┝			being related to qv	Ļ		_		11945	98.1	98.7	0.6	. 20	.11	.43	.10	<.002	 	Ļ
F			- qv occurs at															1
L			93.8: 1 cm @ 20° 10% cpy, 5% pyr														L	
L			94.2: 10 cm sand seam occurs															
			94.5: 3 cm @ 50° colloform															
L			94.6: 1 cm @ 20° 5% PbS															
			94.7: 22 cm @ 60° 5% PbS, 5% ZnS, 2% Pyr															
			94.9: 1 cm @ 30° 5% cpy															
Γ			95.0: 15 cm qtz brxx 5% PbS, 5% ZnS	Γ		Т	Т											
			95.3: 20 cm @ 60° 10% PbS minor ZnS				T											T
Γ			95.5: 20 cm gossanous qv				T											Γ
		<u></u>	96.2: 15 cm 10% PbS															
Γ			96.6: 30 cm qtz stkwk in first 5 cm	1			T									1		
			10% cpy, 5% Pb/Zn	1			T									1	1	1
			97.1: 3 cm @ 70° 10% Pb			+	╈									t	1	1
			97.2: .5 cm @ 30° 5% cpy				╈											1
			98.1: 15 cm @ 30° 5% PbS, 2% cpy			-+	╈											
						+	╈									1		\square
	99.0	102.4	Feldspar Porphyry Dyke			+	1											<u> </u>
			- grey colored matrix in which white feldspar	1-		+	╈	-1										\vdash
			phenocrysts upto .3 cm occur(comprising	1-	†	-+	╈	1							· · · · ·	<u> </u>		

	INTE				NERAL IZATION		Т					AS	SAYS				RECO
DE UL	FROM	TO	GEULIDICAL DESCRIPTION	%		-		SAM	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN
	99.0	102.4	Feldspar Porphyry Dyke Cont'd	<u> </u>	·			1									
			approximately 50% of the unit)				\top	1	1								<u> </u>
			- massive, homogeneous					1	1								
	102.4	106.4	Porphyrytic Andesitic Tuff - Brxx	10	to 107.0			11946	102.4	102.8	0.4		.08	.30	.09	< .002	<u></u>
			- andesite tuff with small white feldspar		5% PbS			11947	102.8	103.4	0.6	.84	.14	.82	.33	.010	, — — — — — — — — — — — — — — — — — — —
			phenocryst		5% ZnS			11948	103.4	104.0	0.6	. 50	.64	1.49	.27	.006	, ,
			- highly veined to 107.5 with the section					11949	104.0	104.8	0.8	.35	1.77	8.52	.55	.024	,
			averaging >50% qv					11950	104.8	105.3	0.5	.03	.23	.77	.09	.002	2
			- mineralization is related to quartz veining					11951	105.3	105.9	0.6	.73	2.10	6.10	.78	.004	
			102.6: 10 cm qtz-calc veins barren					11952	105.9	106.6	0.7	.60	.24	2.32	.39	.006	
-			102.9: 50 cm qtz vein 1% cpy, 5% ZnS vein	Τ				11953	106.6	107.7	1.1	.08	.19	.92	.11	.049	
			@ 50°														
			103.7: 40 cm qv 10% ZnS, 2% cpy														
			104.3: 60 cm qv zone 10% ZnS														
			@ 104.6 10 cm zone massive galena/														
- [sphalerite ~ 60/40														
[104.9: 40 cm sheared andesite fine grained														
			green														
l			105.3-106.8: Qtz veining with 10% ZnS,														
			1% cpy, 5% hematite veining at 40°				_										
ľ	106.4	115.4	Felsic Porphyry Flow?	1	pyr, cpy,												
			- light green fine grained colored with small		PbS			11954	107.7	108.7	1.0	.17	.10	.46	.10	.002	
			<.2 cm irregular white phenocrysts					11955	108.7	110.2	1.5	.07	.01	.19	.04	<.002	
┟]		- relatively homogeneous	\square				11956	110.2	111.2	1.0	1.09	.09	.01	.18	<.002	ļ
- F								1	ļ								

.

i

;

	PR	OJECI	NEW MOON (336) HOLE N.M. 86-6 NEWM	ON'	EXPLORATI	ON	0	F CAN	IADA I	LIMITE	D					PA	GE 11	of
EOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	ALI	r	1				AS	SAYS				RECON	/ER
	FROM	то		%		L		SAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	106.4	115.4	Felsic Porphyry Flow? Cont'd															
			- silicic															Γ
			- from 106.2-106.4 the core is fractured			Ι		11957	115.4	116.2	0.8	.06	.05		.05	<.002	2	
			- quartz veining is <10%															
			- qv @															\Box
			108.3: 10 cm qv breccia @ 50° 5% pyr, 2% cpy							_								
			108.5: 5 cm @ 40° 5% pyr															
			109.0: .5 cm @ 20° 5% pyr															I
			110.1: 1 cm @ 5° 2% cpy erratic															
			110.4: 15 cm stkwk, K-spar alt			Τ												
[110.7: 10 cm stkwk, K-spar alt				Γ											Γ
ſ			- from 111.2-112.1 the unit is a fine grained			Т	Г											Τ
ľ			andesite (dyke?) that is green colored,			T	Γ									İ		
			fine grained, calcareous massive and			I	Γ											
			non-mineralized, upper contact occurs at 70°			Т	Γ											
			while the lower contact is shattered			Т	Τ											Γ
Γ	······		- qv @ 113.1: 2 cm @ 70° banded collsform			Τ	Γ											
Γ			113.6: 2 cm @ 70° 1% Zn/Pb															
			113.7: 1 cm @ 70° 1% cpy				Ι											
			114.0: 1 cm @ 10° 5% cpy, 1% PbS															
						Ι	Γ											
	115.4	116.1	Andesite Tuff			Ι												Ι
Γ			- fine grained, dark grey colored															
			- upper contact broken lower at 30°			T.												
			- minor qv with variable mineralization			Τ												
ſ						Ī	Γ											
r						T	T									[

÷ļ'

60T

		PR	OJEC	T NEW MOON (336) HOLE N.M. 86-6 NEWM	ЮN	T EXPLORA	тіс	N	OF	CAN	ADA I	IMITE	ED					PAG	GE 12	of 12
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	4	LT						AS	SAYS				RECOV	ERY
meters		FROM	то		%					SAMP	FROM	TO	LENG.	Cu	РЪ	Zn	Ag	Au	RUŇ	%
1		115.4	116.1	Andesite Tuff Cont'd																
-				- qv @ 115.4: 2 cm @ 60° 2% Zn																
-				115.5: 3 cm @ 60° 15% Zn																
-				116.0: 2 cm @ 60° 5% cpy, 1% ZnS																
-				116.2 - minor fracture with cpy				T												
					Ι															
-		116.1	118.6	Andesite (Dyke?)				П	Τ											
				- similar to 111.2-112.1																
-				- weakly calcareous				Π	Τ											
-				- massive non-mineralized																
-									Τ											
-		118.6	119.5	Andesite Tuff					1											
				- similar to 115.4-116.1					1											
-									Т											
					Γ			Т	Τ											
				119.5 E.O.H.					1											
-					Γ															
					Γ				1	- 1										
-									1											
-																				
-		_							1											
-	ľ								╈											
-	ľ								╈											
-	ľ								1											
-	ſ								1											
	ľ								1											
	1							-†	+			†								
	ľ						-	-+	-†			+								
<u> </u>	. ۲					┝━━───┤	-	-+	┿					+			 			

.

(

N	EWMO	NT EX	KP: OF	CANADA LTD	LEVEL	Surface	e	DEPTH	I BEA	RING	DIF	5	TYPE O	SURVEN	LEN	зтн	101.2	•	HOL	E NO.	N.M	. 86-7	
r		L		PECOPD	LOCATION	Plateau	ı Grid	0	-	140°	-4	5	Compas	S	CORE	E SIZE	B.Q.		SHE	et no.	1 of	9	
				RECORD	ELEVATION	2102.5		-96.6	óm	140°	-5	2°	Acid 7	'est	TOTA	L RECO	WERY	+95%	LO	GED E	BY D.	Visagi	e
		NE	N MOON	•	LATITUDE	0 + 4	45N	_							STAF	TED	Aug.	14/86	a	NM	MISTY	DAY	
		PR	UJECI		DEPARTURE	0 + 1	58W								COM	PLETE	D Aug	g. 16/8	6 PU	RPOSE	Test '	Twiligh	t Zone
DEPTH	GEOL	INTE	RVAL	GEOLO	OGICAL DESCR	PTION		MIT	NERAL	IZATIO		ULT.	T				AS	SAYS				RECOV	/ERY
maters	1	FROM	τo					×				T	SAMP	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	*
F		0	1.8	Casing	········	·····	······································															4.3	
	t							11				T	-									6.1	
F	Ī	1.8	7.4	Agglomerate	.							Ħ										8.8	
F	Ī			- light green	n, fine grained	, modera	ately				Π	Π										11.0	
FI	Ī			siliceous m	matrix with rou	nded to	sub-angula					Π										12.2	
ΕI	F	-		fragments ((upto 2 cm)																	15.2	
EI				- sheared in	part							Π										17.4	
E I	Ī			- relatively	massive with c	nly mind	or calcite					Π						•				20.4	
ΕI	[stringers																		23.5	
F I				- barren								Π										26.8/	
FI	[- short inclu	usion of andesi	te tuff																29.6	
ΕI	[- at 5.9 40	cm andesite in	clusion	@ 20°															30.5	
ΕI	[32.3	
ΕI		7.4	8.6	Andesite Flow	ω																	33.8	
ΕI				- fine graine	ed	· · · · · · · · · · · · · · · · · · ·												•				35.4	
ΕI	[- green-grey	colored																	36.9	
ΕI				- massive																		38.4	
E I				- fractures o	occur @ 45°												_					39.9	-0.1
ΕI				- minor calci	ite stringers:	barren							_				_					41.5	-0.2
EI				- calcareous																		43.0	
L																						44.5	
L	Ĺ				<u> </u>			\square														46.0	
L	Ļ				<u> </u>			\square														47.9	-0.2
	Ļ																			<u> </u>			
Manager,													1	1 I	- 1					1	L	1 2	4 1

i C

. .

		OJEC	NEW MOON (336) HOLE N.M. 86-7 NEWN		EXPLORA	10	N (ADA		ED					PAGE 2	of 9
TH GEOL		RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION				1		1	<u> </u>	SAYS	T		RECO	VERY
яз	FROM	10		70			-	SAMP.	FROM	то	LENG		╉────	 		RUN	%
	8.0	14.1	Andesitic Lapilli Turr	\vdash		+			ļ					┨─────		49.4	·
			- green-reddish green colored			_	4						_	ļ		50.9	
			- medium grained			-	+									52.4	
			- clasts upto 3 cm occur t/o. Clasts are red			4	_				_			ļ		53.6	<u> </u>
			and black colored			_	_	_			 					55.2	· .
			- weak bedding @ 70°													55.8	
			- veining absent					4					<u> </u>			56.4	
			- mottled appearance, massive													57.0	
																57.3	-0.1
	14.1	20.4	Andesitic Agglomerate													57.9	
			- light green to reddish green matrix with													59.7	· [
			variable composition fragments									1				61.3	-0.1
			- matrix is siliceous										1			61.6	,
			- fragments range upto 4 cm in size and			Т	Т									63.1	
[constitute approximately 30% of the unit					1					1			64.6	
[- minor calcite veining occurs sporadically	\square									1		1	67.7	-0.2
1			t/o generally as fracture healings					1					1			70.7	-
I [- fracturing occurs at 40°-60° to the ca			1		1					1			73.8	
			- lower contact is broken	П				1						1	1	76.8	
1 [1		1					1	Î	1	80.8	
! T	20.4	26.6	Maroon Tuff			\uparrow		1								83.6	-
			- generally maroon colored fine grained			+		1							1	86.9	
1 F			although minor sections are coarse grained					1						1	t	89.9	
			- barren			1		1					1	1		93.0	-0.1
ΙΓ			- no veining	Π		Ť	T									96.0	
			- lower contact gradational			1								1		97.5	
						+	-1-	1						<u> </u>		98.1	1
1							-						1				1
1 F		+	······································	++		-+-	-	+	┝───┥				 	+			+

.

нŀ	GEOL	INTER	RVAL.	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	Å	LT	Ţ					AS	SAYS				RECOV	/ER
5		FROM	TO		%			T	s	AMP	FROM	то	LENG			Γ			RUN	9
╈		26.6	33.9	Andesitic Tuff/Flow											1				99.7	
				- fine grained, grey-green colored															101.2	
				- minor <5% calcite veining																
				- occasional limonite along fractures				Π	Τ											
			·	- most fractures are calcite healed	\square				Т											Γ
	Ī			- minor mafic fragments																T
1																				
	[33.9	36.3	Felsic Tuff	Π				Т											\square
	[- fine grained, light grey siliceous	Π				Τ											
	[- massive, lower contact irregular	Π										1					
	I			- no veining present	П				Т											Γ
	[- barren	Π															
	ľ												11							†
	[36.3	41.0	Andesitic Tuff																Γ
	[- similar to 26.6-33.9	Π															
	ſ				Π				T											
	[41.0	43.4	Andesitic Tuff																
	Γ			- similar to 26.6-33.9, however the unit has a																
				reddish tinge																
I				- minor non-tinged sections																Γ
									Т								I			Γ
	[43.4	45.0	Andesitic Tuff																
				- med grained																
				- light green colored																
				- weak chlorite alt																
	L			- minor calcite veining																
]		- fracturing occurs @ 20° & @ 50°																
1					\Box			T	Τ							[
مىلەر.					11			- 1				+	+			1	1	1	r	+

Τ (

:

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-7 NEWN	ЮN	T EXPLORA	TIC)N	OF	CAN	ADA L	IMITE	D					PA	GE 4 d	of 9
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	/	ALT.						AS	SAYS				RECOV	ERY
neters		FROM	то		%				Τ	SAMP	FROM	то	LENG						RUN	%
		43.4	45.0	Andesitic Tuff Cont'd	Γ															
-				- fractures generally healed by calcite																
				- traces of hematite t/o																
		45.0	47.3	Maroon Tuff																
				- similar to 20.4-26.6																
				- fracturing occurs @ 30° & @ 50° to the ca	l															
_				- minor epidote alteration																
•		47.3	48.9	Andesitic Tuff																
				- med grained	Γ															
•				- similar to 43.4-45.0	Γ				Π											
-				- weakly calcareous	Γ															
-				- grad lower and upper contacts	Ι															
-				- minor hematite stringers with calcite																
-		48.9	55.6	Andesitic Tuff	2	27 dissem	\vdash	┝╌┤	-											
-				- similar to 26.6-33.9	1	pyr														
-				- calcite stringers occur t/o	1															
-	1			- fracturing @ 80° and @ 45°													1			
.				- in part sheared					1										<u> </u>	
.				51.7-52.4 sheared and fractured														<u>├</u> ───		
-	ſ			52.4: 1 cm fault gouge	1															
	ľ	_		53.2-53.6 core highly fractured					\neg											
-	[53.6-55.6 rock less fractured					1											
.																				
<u> </u>	[·	<u> </u>		
	[1	- 1										
	r				†			+	-+				+			<u> </u>				······

		PR	OJEC.	T NEW MOON (336) HOLE N.M. 86-7 NEWM	ЮN	T EXPLORAT	10	10	F CAN	IADA I	LIMITE	D					PA	GE 5	of
H	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	.Τ				_	AS	SAYS				RECO	VEF
rs	_	FROM	то		%				SAMP.	FROM	TO	LENG.	РЪ	Zn	Ag	Au	Cu	RUN	9
		55.6	58.2	Shear Zone	5	4% pyr													Τ
				- highly faulted section of core with the		1% Pb/Zn			11958	55.2	55.8	0.6	<.01	.03	.03	<.002			
				result everything is small fragments					11959	55.8	56.4	0.6	.04	.11	.01	<.002			
				- to 56.4 the unit is predominantly andesitic					11960	56.4	57.3	0.9	. 10	.62	.03	<.002			
1				tuff whereas from 56.4-57.3 the core is			Т	Т	11961	57.3	58.2	0.9	. 29	.79	.21	.002			
	I			felsic agglomerates in composition	Γ		T	Τ										1	
	[- at 55.8 the unit is a 10 cm piece of brxx qv			Τ	Т							ſ				Τ
	[- from 56-56.5 the core is all gouge and			Τ	Т											Г
	[fragments with approximately 5% of the			Τ	Τ											
	[section being quartz vein fragments with	1			T										1	1
	ſ			traces of sphalerite	1														
]			- at 57.0 a 2 cm qv has 10% ZnS				1										1	1
	ľ			- from 57.3-58.2 the unit is a andesitic tuff		1	-†-	1-										1	1-
	ſ			similar to previous	t			1											T
	ſ			- at 57.5 a 3 cm qv @ 80° has 5% pyr, 10% ZnS									-						\top
	ſ			- at 57.5-57.7 a 20 cm gouged zone exist				\top											t
	ſ																		T
	ſ	58.2	59.7	Quartz Vein - Brxx	10	sphalerite		1	11962	58.2	58.7	0.5	4.68	7.05	1.08	.012	. 24		
	Γ			- large well mineralized quartz vein in which	5	galena	\uparrow		11963	58.7	59.2	0.5	1.03	3.15	.71	.004	.45		1
	Γ			minor fragmentation is observed				Τ	11964	59.2	59.7	0.5	2.37	13.10	1.38	.004	. 70		
	Γ			- upper contact @ 30°	Ŧ	chalcopyrite													
	Γ			- fine grained sphalerite (10%) and galena (5%)	5	pyrite	+	\uparrow											
	ſ			occur t/o as does minor chalcopyrite															1
	L L			∿ 25%, 5% pyr also occurs			1	1						-					Τ
	Γ			- sphalerite is cream colored									-					l	Τ
	[- chalcopyrite is associated with pyrite	Γ			Τ											
	Γ							1-											
1	r				—														

-1

		<u> </u>	OJEC	NEW MOON (336) HOLE N.M. 86-7 NEWN		I EXPLORA	110	N (NADA	LIMITI	-D					PA	GE 6	of 9
:PTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					AS	SAYS				RECOV	ERY
ters.		FROM	то		%				SAM	FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
-		59.7	89.4	Andesite Tuff	4	3 % pyr			1196	59.7	61.3	0.6	.02	. 10	.30	.11	.002		
				- somewhat similar to 26.6-33.9		1% Pb + Zn			11966	61.3	62.5	0.8	.08	.08	.50	.19	.002		[
.				- greenish grey, fine grained					11967	62.5	63.9	1.4		.03	.21	.09	.002		
				- 30% veining throughout predominantly calcite	<u> </u>				11968	63.9	64.9	1.0	.16	.08	.30	.11	.002		
				and qtz-calcite					11969	65.7	66.3	0.6		.15	.72	.35	.002		
				- mineralization with the exception of pyrite					11970	66.3	67.3	1.0		.03	. 22	. 14	.002		
				is related to veining					11971	67.3	68.9	1.6		.03	.07	. 16	.002		
				- veining is generally erratically distributed					11972	68.9	69.4	0.5		М	ISS	ING			
				and has irregular angles on occasion					11973	69.4	70.4	1.0		.24	1.34	.35	.002		
				- from 59.7-61.3: 20 % qtz-calc veining stkwk			П		11974	70.4	72.2	1.8				.09	.002		
				occur with 5% dissem pyr and ½% Zn					1197	5 72.2	73.8	1.6		.05	. 19	.11	.002		
				- from 61.3-61.6: the core is heavily					11976	76.0	77.2	1.2		.15	.68	. 20	.002		
				fractured. At 61.4 a 5 cm qv has 5% pyr and															
	[tr ZnS			Τ											[
	[- from 61.6-63.1: the unit has 20% qtz-calcite				Т											
	ſ			stkwk. At 62.1 a 1 cm qv at 5° has 10% cpy,	Γ														
	[5% PbS. The vein is exposed for 10 cm at a															
	ſ			core axis of 10° and is displaced by a															
	ľ			fracture at 30°					1										
	ſ			- At 62.7: 2 cm qv @ 5° contains tr ZnS,	1		1			11									
	ſ			2% pyr			\neg		1									†	<u> </u>
	Ī			- from 63.1-63.9: veining is minor	\square		1												
	[- from 63.9-65.5: the unit has 20% pink	1		1											1	
	ľ			calcite veining in which 2% cpy and 1% Zn			1			1									
	ſ			occur in a vein stockwork			-												
	ľ			- 65.5-65.7: the unit has minor veining			╡		1										
	ſ			- QV is erratic from 65.7. Significant veins			\uparrow	+	1		+								
	ľ			occur at:	1		+	1	1										

٠.

: ŀ:

		PR	OJECT	T NEW MOON (336) HOLE N.M. 86-7 NEWN	ION	EXPLORAT	101	0	F CAN	ADA	LIMIT	ED					PA	GE 7	of 9
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	.T					AS	SAYS				RECÖ	/ER'
meters		FROM	то		%				SAMP.	FROM	то	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
-		59.7	89.4	Andesite Tuff Cont'd															
-				65.8: 1 cm @ 10° ribboned for 10 cm has															
-	j			5% cpy, 10% pyr, 5% Pb/Zn															
				66.1: 20 cm qtz-cal brxx vein with 1% Pb,															
-				1% Zn, 5% pyr lower contact @ 30°															
_				to the ca									<u></u>						
_ .				- from 67.3-68.9: veining is absent															
- 1				68.9: 15 cm qtz carb @ 40° with 2% PbS,															
_				2% ZnS weakly colloform															
-				- from 69.4-70.4: qv occur @ 5° to the ca on															
-				occasion brxx. Contains 5% Pb Pyr, 1% PbS,															
-				1% ZnS				I											Τ
Ξ				- from 70.4-70.9: veining is minor															
-				- from 70.9-71.8: the unit has a weak calcite-															
-				qtz stockwork															
				- at:															
-	Ī			72.2: 5 cm calcite vein @ 30° has 5% PbS	Ι														
-				72.8: 4 cm calc vein @ 60° has 5% pyr															
-	Ī			73.5: 2 cm @ 10° has 5% pyr															
-	ſ			73.7: 10 cm @ 40° has 5% pyr, 2% Pb/Zn															
-	ľ			- from 73.8-74.8 the rock is highly fractured	Γ		Т	Τ											
-	Ī			with faulting continuing intermittently															
-	[to 77.0	Ι		Τ												L
-	1			- at 76.1: 1 cm qtz-cal vein has 5% pyr,															
-	Γ			10% Zn			Τ												
-	Ĩ			76.5: 10 cm qtz~cal stkwk tr pyr tr PbS			Τ	Τ											
-	ſ			77.0: 3 cm qv erratic @ 20° 5% ZnS/PbS	1			Γ											
-	ľ			77.1: 1 cm qv @ 10° 8% cpy, 10% pyr	T			Т	T										

.

			SO JEC	T NEW MOON (336) HOLE N.M. 86-7 NEWM	ЮN'	T EXPLORA	тю	<u>N (</u>	OF CAN	ADA	LIMIT	ED					PA	3E 8	of 9
æртн	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					AS	SAYS				RECÖ	/ERY
neters		FROM	то		%				SAMP.	FROM	то	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
·		59.7	89.4	Andesite Tuff Cont'd															
·				- from 78.1 quartz calcite veining is generally	·														
-				minimal although the veins are still															
				mineralized. The quartz veins and fractures															
·				are commonly developed at 10° to the ca.		,													
-				Significant mineralized quartz veins are				Τ											
-				listed below:										<u> </u>					1
- 1			[80.0: 1 cm @ 10° 10% Pb, tr cpy		- m.			11977	85.9	86.9	1.0		.10	1.11	.11	.002		
-				81.1: 1 cm @ 10° 20% Pb					11978	86.9	88.4	1.0	MIS	SIN	G				1
.				83.3: 2 cm @ 10° 10% Pb, Zn					1										<u>t</u>
-				84.2: 40 cm qtz-calc vein // to ca															—
· ·				85.9: 20 cm @ 30° 10% PbS, 10% Zn															<u> </u>
-				87.5: 1 cm @ 40° 25% PbS					1										<u> </u>
-			1	88.3: 1 cm @ 80° 2% PbS															
-				88.4: 1 cm @ 45° 10% PbS															
-								+	1										1
.	t	89.4	91.4	Calcareous Mottled Andesite Tuff	╀──			+											\square
	ľ			- dark grey with reddish tinge	<u>†</u>			1											
-	ł			- fine grained	\vdash														
-	ľ		<u> </u>	- mottled				-	1										1
-	ŀ		<u>†</u>	- minor qv	†		-+												<u> </u>
-	t			- 81.2: 1 cm gv @ 10° barren	╞──		-+	+	-										<u>+</u>
-	ľ		<u> </u>	- unit is barren non-mineralized	┢─		-+	+											<u> </u>
-	ŀ				\vdash		-+	+								_			<u> </u>
-	ŀ		†		\mathbf{t}		-+	-											
-	ŀ		<u> </u>		1		+	+	1										-
-	ł				\vdash		+												
-	ŀ		 	······································	 				+										

•<u>|</u>! •

E

.

PTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	j Ml	NERALIZATION		NT						ASS	SAYS				RECOV	/EF
ters		FROM	TO		%				s	SAMP	FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	9
		91.4	99.3	Andesitic Tuff - Reddish Tinged	1	dissem pyr			1	1979	93.7	94.2	0.5		.01	.04	.03	.002		
				- generally fine grained tuff with minor																
				porphyrytic tuff																
				- minor hairline fracture																
				- reddish tinged t/o		• • • • • • • • • • • • • • • • • • • •			Т											
				- minor calcite veining occurs t/o.			Γ		Τ											
				Significantly mineralized quartz veins rare	Γ	1			Τ											
				- at 93.8: 20 cm qv brxx @ 20° minor hematite					Т											Γ
				- from 96.0-97.1 the unit is greenish colored																Γ
				- at 99.1 a 1 cm qv @ 20° has 2% pyr	1															
																				Γ
		99.3	101.2	Porphyrytic Andesitic Tuff	\square	1														
				- fine grained dark grey green colored with	1-															t
				small calcite phenocrysts	1															
				- barren																
				- mottled in appearance		1														
				- veining minor		_														Γ
						f			+											Γ
				E. O. H. 101.2 m	1	1														Γ
					1															T
					1	<u> </u>														1-
					1	1			-									_		
					1	1			+											
	ł								+								-			\vdash
	ľ					1														F
	ľ				1	1			-+-											
	ľ				1	1	\square		-											
	ŀ		···-		1	1	Η		+											
1					+	†			+											⊢

ŀ	NEWMO	ONT E	XP: OF	CANADA LTD	LEVEL	Surface	DEPTH	BEARING	DIP	T	YPE OF	SURVEY	ELEN	GTH	55.2	D	HOL	E NO.	N.M	. 86-8	
ſ	DRII	I H		RECORD	LOCATION	Plateau Grid	0	292°	-45	°	Brunto	n	COR	E SIZE	BQ		SHE	ET NO.	1 c	•f 5	
				NECOND	ELEVATION	2132.9 m	-55.2	m_292°	-48	•	Acid T	'est	TOTA	L RECO	WERY	>95%	LO	GED E	Y D.	Visagie	5
		PR		r l	LATITUDE	2 + 15 N							STAP	RTED	Aug.	17/86	a	NM M	ISTY D	AY	
					DEPARTURE	1 + 46 W							COM	PLETE	DAug.	17/86	PUI	RPOSE	Test	<u>Splay Z</u>	lone
ртн	GEOL	INTE	RVAL	GEOLO	GICAL DESC	RIPTION	MIN	ERALIZATIO		LT	T				ASS	SAYS				RECON	/ERY
ters		FROM	TO			•	*				SAMP	FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
_		0	1 #8	Casing																4.6	2.8
_																				5.8	1.2
_		1.8	4.5	Andesitic Tur	Ef															8.2	2.4
.				- fine graine	ed green-grey	matrix in which														9.5	1.1
.				angular to	sub-rounded f	ragments upto 1 cm														11.0	1.5
	•			occur		·····			\square											14.0	3.2
				- fragments h	have varied co	mposition, general	ly													14.6	0.3
				maroon tuff	E				\square											16.2	1.9
				- fracturing	occurs @ 5° a	nd @ 50°														18.6	2.8
.				- barren	<u> </u>				\square											20.7	2.
.				- minor calci	ite veining								_							23.2	2.5
				- in part the	e matrix is ca	lcareous														24.7	1.2
									\downarrow	\bot	ļ									26.5	2.0
.		4.5	6.5	Coarse Andesi	itic Tuff				\downarrow		ļ									28.5	1.9
	•			- fragments,	rounded and a	ngular, upto 6 cm			\square											30.8	2.7
				in size occ	cur in a fine	grained greenish-r	ed		+											33.8	3.1
				matrix					\downarrow	\perp	<u> </u>									36.6	3.1
				- small <.05	cm orange spe	ckles occur t/o			\square	1		-								38.7	2.1
				- barren and	non-veined				+											41.1	2.5
				- contacts ar	re gradational				+											43.9	2.9
									+											46.9	3.2
		6.5	11.6	Andesite Tuf	f	· · · · · · · · · · · · · · · · · · ·			++											49.1	2.3
				- green, fine	e grained matr	ix with small, <.2	<u> </u>		+											<u>5</u> 2.1	3.2
				cm, calcit	e inclusions	(white)														55.2	3.1

• i

,

	Inme	-					tΤ					Acc	SAYS					15
GEOL.	FROM	TO	GEOLOGICAL DESCRIPTION	%	NERALIZATION			SAME	FROM	TO	ENG	A 3. Cu	Ph	70	4.0		RIN	Ē
	6.5	11.6	Andesite Tuff Cont'd	+ ~						<u>`</u> -				211	Ag .	AU		┢
			- minor calcite veining				+				<u>}-</u>							t
			- occasional short sections of a heavily	\square				1						1				t
			fragmental tuff															t
			- appears foliated in part @ 20° to ca															ţ
			- barren															t
																		Î
	11.6	12.4	Andesitic Tuff															I
			- fine grained, green colored															I
			- massive non-mineralized															I
			- contact irregular @ 40° to the ca															
																		I
	12.4	13.8	Andesitic Tuff															Į
			- similar to 1.8-4.5															ļ
			- barren & homogenous											<u> </u>				ļ
1			- lower contact gradational											ļ			 	ļ
									ļ					Ļ			 	ļ
	13.8	14.7	Maroon Tuff				$ \rightarrow $							╂			 	ļ
			- fine grained, maroon colored	4										[[]		<u> </u>	ł
			- non mineralized	\downarrow													 	ļ
			- fractured irregularly @ 20°	4			_	_								L	 	ļ
			- contacts gradational				\rightarrow											ļ
				┥												┝───┦		ł
	_14.7	16.3	Andesitic Tuff	╉—			-+									┝───┩		ł
- {			- fine grained matrix greenish grey colored	4			-+	<u> </u>								┝┥	'	ł
ł			in which fragments upto 1 cm in size	╉		_	\rightarrow											ļ
-			comprise 60% of the unit	+			_		 									ł

C

нl	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT						AS	SAYS				RECOV	ERY
rs		FROM	TO		%			Т	-1	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
1		14.7	16.3	Andesitic Tuff Contid	1															
				- maroon tuff comprises the majority of	Γ				T											
				fragments			Ī													
				- fragments are generally rounded			Τ	Τ												
				- lower contact is @ 30° to ca			Τ	T	Τ											
				- barren			Т		Τ											
							Ι		Ι											
		16.3	18.2	Maroon Tuff																
				- fine grained maroon colored																
				- calcite stringers generally @ 60° occur t/o					Ι											
	[but total <5% of the unit					Τ											
				- barren				Т	Т											
				- lower contact irreg sharp @ 20°			Ι		Ι								1			
	[- minor limonite occurs along a fracture @ 17.5																
																	Γ			
		18.2	24.9	Porphyrytic Andesite Flow Sill?																
				- fine grained green colored with upto 1 cm																
	[calcite inclusions							_									
				- calcareous matrix																
				- homogenous																
				- fracturing occurs at 70° & 20°							_									
				- calcitic phenocrysts comprise 30% of the																
				unit																
				- minor biotite alteration										_						
	_			- barren								[
	Ļ			- from 23.6-24.9 the unit is fractured,																
				limonite and manganese stained																
I	L]					Ι	Ι	Τ											1
····							T	T												<u> </u>

.

SEOL	INTE		GEOLOGICAL DESCRIPTION	M	NERALIZATION	ALT	T					AS	SAYS				RECŎ	
	FROM	TO		%		 Ē	-	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	24.9	27.7	Felsic Agglomerate	2	pyrite	\square		11980	25.0	26.5	1.5				.09	< .002		
			- fine grained felsic (rhyolite) matrix in	Γ		Π		11981	26.5	27.7	1.2				.23	.002		
			variable composition rounded fragments upto	Γ														
			3 cm occur	Γ		Π	Т					-						
			- unit is highly sheared to 26.0 with at 24.9	Γ		Π	Τ											
			a 20 cm gouge zone stain occurs on the core															
			and along the fracture faces															
			- minor qv stkwk t/o															
			- 2% dissem pyr t/o															
	27.7	29.0	Brecciated Quartz Vein	5	∿ 50/50 РЪЅ			11982	27.7	28.4	0.7		.32	.63	2.33	.008		Γ
			- singular quartz vein which has been		ZnS			11983	28.4	29.0	0.6		3.34	4.79	4.43	.010		Γ
			brecciated and as a consequence has															
			fragments upto 5 cm within it (generally															
			of andesitic tuff and quartz)															
			- 10% dissem pyr occurs t/o															
			- most of the mineralization occurs in the															
			first and last 30 cm of the section															
			- in the first 30 cm occurs 3% Zn, 5% Pb while															
			in the last 30 cm occurs 8% Pb and 1% cpy															
			- upper contact is a 60° while the lower is															
			fractured															
	29.0	33.1	Andesite															L
			- dark grey green colored															
ļ			- med grained															
			- calcareous (strongly)															
						i T	ſ	1	Т		-1	1						

.

HGEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	INERALIZATION	A	LT						AS	SAYS				RECOV	ERY
8	FROM	TO		%					SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	29.0	33.1	Andesite Cont'd																
			- minor fractures with calcite healing occur																
			@ 40° to the ca										_						
			- barren																
			- mottled appearance with black fragments					Τ											
	33.1	35.4	Quartz Calcite Vein	3	2% Pbs				11984	33.1	34.0	0.9		.12	.21	1.15	.004		
			- in part brxx		17 ZnS				11985	34.0	34.7	0.7				1.90	.002		
			- predominantly quartz to 34.1 then calcite				Τ	Т	11986	34.7	35.4	0.7		. 21	. 52	.83	.002		
1			- mineralization generally occurs within the				Т	Τ									1		
			quartz veining consisting of 2% PbS, 1% ZnS				Τ	Т											
1			- in the calcite vein section occurs 1% Zn tr	Γ															
I			Pb, tr cpy	T				1											
			- @ 34.8 occurs a 20 cm andesite dyke	Γ				Т											
				Γ															
	35.4	36.6	Andesite					T											
			- similar to 29.0-33.1					1											
								↑											
	36.6	55.2	Calcite Porphyry Andesite Sill/Flow?	Γ				╡							,				
			- dark green colored	Γ				┓											
			- calcite blebs occur t/o		1			╈											
			- homogenous			1		+											_
			- fine grained matrix, calcite blebs upto	Γ				1											
			.5 cm (with minor feldspar phenocrysts that			1		╈											
			are occasionally weakly altered)					Τ											
			- barren																
			- minor veining predominantly calcite @ 55°			1	1	╈											
			Е.О.Н. 55.2			T		T			_								
				ī —	T	-+	-+	+		+									·
																			E C C

				1	<u></u>				-								(·			
	NEWMO	ONT E	XP. OF	CANAL LTD	LEVEL	Surface		EPTH	BEAR J	DIP	TY	PE OF	SURVEY	LEN	GTH	49.4	<u>m</u>	HOL	E NO.	N.M.	86-9	
	DRIL	LH	OLE	RECORD	LOCATION	Plateau Grid		0	292°	-70°		ompass		CORE	SIZE	BQ		SHE	ET NO.	10	f 4	
					ELEVATION	2123.1 m	-4	9.4 n	292°	-71°	Ac	cid Tea	st	TOTA	L REC	OVERY	+ 99	LOG	GED E	YD.	Visagi	e
		PR		r	LATITUDE	1 + 17 N			Ļ		1			STAF	RTED	Aug. 1	7/86	a	IM	MISTY	DAY	
					DEPARTUR	E 1 + 25 W			<u> </u>					COM	PLETE	D Aug.	18/86	PUF	POSE	Test	Splay 2	Zone
DEPTI	I GEOL	INTE	RVAL	GEOLO	OGICAL DES	CRIPTION		MINE	ERALIZATIO	N AL	T					AS	SAYS				RECOV	ERY
neter:	3	FROM	TO		نى بەر مە			*			Г	SAMP.	FROM	TO	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
~	1	0	4.0	Casing					··		\square										4.9	-0.
		ļ				·······						1									6.7	-0.
-		4.0	25.6	Fine Grained	Andesite Tu	ıff															8.2	<u> </u>
-	· ·			- fine grain	ed green col	ored															9.1	
-	1			- calcite ve	ining common	with the veining	being														11.0	
	1			confined t	o fracture f	aces															12.5	
-				- calcite ge	nerally whit	e colored															14.0	
•				- fracturing	common @ 40	° & 80° to the ca															15.5	
				- trace diss	em pyrite																17.1	
-				- @ 8.4: 5 c	m erratic qv	barren														1	18.6	
-				10.2: 5 c	m qv @ 60° c	olloform 5% pyr															18.9	
				- from 11.0	the unit is	grey colored fine							tt							h	20.4	
		<u> </u>		grained wi	th fractures	@ 10°. Erratic															21.0	
-				qv-calc ve	ining occurs	t/o, homogenous															22.3	-0.
				@ 12.1: 10 a	m stkwk with	tr PbS															22.9	
-				17.7: 1 cm	n qv with tr	РЪЅ														[24.1	
-				18.1: 3 cm	n qv @ 40° cc	lloform															24.4	
				- from 23.7-	-24.5 the cor	e is fractured and	d has														26.8	
-				a slight b	orown colorat	ion					Π									1	27.7	
-				- upto 12 m	the unit is	light brown tinge	đ														29.0	-0.
-				and is fir	ne grained, w	whereas after 12 m	the													1	29.6	
-				unit is co	oarse grained	l and has calcite	blebs														30.2	
F]]					,													1	1	30.5	
			İ	1																	32.6	
F						·····					$\uparrow \uparrow$									1		1
-	-	-	-																			

		OJEC	NEW MOON (336) HOLE N.M. 86-9 NEWM			IUN			IADA I		<u>.</u> D					PA	GE 2	of 4
GEO	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	<u>.</u>	ļ	 i			AS	SAYS				RECO\	ER'
	FROM	70		%		4	1	SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	25.6	26.4	Maroon Tuff			\perp	1										35.0	
			- maroon colored													·	36.0	
		-	- fine grained matrix with fragments upto 1 cm				_	ļ									39.0	-0
			- weakly siliceous														41.5	L
			- upper contact occurs @ 80°														43.3	
			- barren														44.2	
			- calcareous														45.4	
			- lower contact broken														46.9	
			- erratic calcite stringers t/o														47.9	
																	49.4	
	26.4	30.7	Andesite Tuff ?															
			- light grey green colored, fine grained			Τ	Τ											
			- highly fractured t/o	Γ				11987	27.7	28.4	0.7		. 36	.87	.52	.004		
			- qv occurs sporadically				Τ	11988	28.4	29.0	0.6		.17	2.22	.95	.004		
			- @ 27.8: 50 cm fault gouge minor qv frags	Τ		Τ	Τ	11989	29.0	29.6	0.6		. 10	.27	.15	.004		
			28.6: 20 cm qv 10% PbS, 5% pyr, 5% Zn	1				11990	29.6	30.2	0.6		.11	.30	. 20	.002		
			29.1: 40 cm qv 5% PbS, 3% Pyr				1	11991	32.6	33.9	1.3		.04	.14	.09	.003		
			- from 29.5-30.2 the unit is siliceous and has	\square			1											
			a weak gy stkwk with 1% PbS, 1% ZnS. The	1														
			unit is fractured and has limonite staining	1														
			throughout this section	1			+	1									1	
	<u>├</u> ───		- from 30.2-30.7 the unit is highly fractured	\uparrow		+	+	1										
	<u> </u>			1		-†-	\uparrow									1		
	30.7	32.4	Andesite Dyke ?	1		-†-		1										
			- fine grained, grey colored	1	11	+												Γ
	¦		- massive	1			1											
			= homogenous	\mathbf{t}		+	+-	1								1		
			induo gentou s	1-	<u> </u>	-	+	1								1		

(

126

~

HGEC		DIA	I NEW MOON (336) HULL N.M. 86-9 NEWM									Δ <u>ς</u>	SAYS				BE 3	
ns l	FROM	TO	GEOLOSICAL DESCRIPTION	%		Ť	T	SAMP	FROM	то	LENG	Cu	Ph	Zn	A.0	A	RUŃ	%
	30.7	32.4	Andesite Dyke ? Cont'd				\top					<u> </u>						ا
			- calcareous	Π														
			- fractured @ 50° & @ 70°				Γ											
			- minor calcite healing fractures				_											
	32.4	49.4	Andesite Tuff			╉	╂─											
			- similar to 26.4-30.7				Τ	11992	33.9	34.6	0.7		.04	.22	. 20	.002		
			- fine grained, grey colored			Τ	Т											
			- fractured t/o				Т											
			- tuffaceous fragments are upto .5 cm				Τ											
			- in the first 1.5 m the unit is siliceous			7-	Τ											
			- fractured t/o @ 20° to the ca	\square	1	Τ	Т											
			- calcite-quartz (pink calcite) veining totals				1											
			\sim 35% of the unit															
			33.0: 1 cm cal-qtz vein @ 0° for 15 cm 5% pyr															
			33.9: 65 cm cal-qtz vein upper contact @ 10°				Τ											
			lower @ 80° which contains 2% pyr,															
			1% Pb/Zn. In part colloform															
			34.4: 2 cm qv @ 70° colloform															
			34.8: 2 cm qv @ 80° 5% Pb/Zn															
			36.8: 25 cm pink calcite vein															
			37.8: 60 cm calcite qv @ 80°-30°; .25% cpy,															
			2% ZnS, 1% pyr			Τ												
			- from 39.0-39.7 the unit is highly fractured	Γ														
			t/o. From 39.0-40 the unit is siliceous															
			and light grey colored															
			- @ 39.8: 5 cm qtz-calc qv @ 40° 2% pyr, Tr Zns	s			Ι											
							Τ											

A state of the sta

• •

				(((
		PR	OJEC	T NEW MOON (336) HOLE N.M. 86-9 NEWN	ION'	T EXPLORAT	10	N C	OF CAN	IADA I		ED					PA	GE 4	of 4
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					AS	SAYS				RECOV	ERY
meters		FROM	TO		%				SAMP.	FROM	то	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
		32.4	49.4	Andesite Cont'd															
=				40.1: 70 cm qtz-calc qv @ 1% Pb/Zn, .1% Cu															
E				40.9: 30 cm qtz-calc qv @ 70°															
E				- from 44-49.4 the unit highly fractured with															
E				qtz-calcite veining occurring t/o															
E				44.1: 2 cm @ 80° colloform tr Pb			Ι												
E.				44.3: 5 cm @ 80° 2% Zn, 1% pyr			Τ												
E			-	44.9: 10 cm @ 70° colloform 2% pyr tr Pb/Zn			Ι												
Ε.				45.4: 15 cm @ 70° colloform tr Pb/Zn	Γ		Τ	Т											
-			-	45.5: 1 cm gouge			T		1										
-			•	45.6: 80 cm calcite qtz vein lower contact @			T												
				10°. While the vein is colloform	Τ		1							1	1			1	
				@ 60°, 2% pyr tr Pb tr Zn			1		1					1				1	
				- from 46.4 qtz-carbonate veining decreases	1				1										
				@ 47.3: 5 cm gouge	1		1												
							1					11		f				1	
1				Е.О.Н. 49.4	+-		1	+	1										
							+												
					+-		╈		1									1	
-					+		-	+	1								1		
-				······································	+		╉	-	1										
					1-		╉										<u> </u>	1	
-			· · · · ·		+		+	+	1										
-					+-		-+	-									<u> </u>		
-	ľ				\uparrow		-+	+	1						<u>├</u> ───		1		
					+	1	+	+	1								1		
	ł				+	<u> </u>	+		1								t		
	ŀ		<u> </u>		+-	łł	-†	+	+			<u> </u>			 				F
	ļ			<u></u>		łł	+	-+-							 		 	}	

ļ	NEWMO	NT E	KP: OF	CANADA LTD	LEVEL	Surface	DEI	PTH	BEARING	DI	Ρ	ТҮР	EOF	SURVE	YLEN	GTH	63.	1 m	HOL	E NO.	N.M.	86-10	
1	DRIL I	н		RECORD	LOCATION	New Moon		0	320°	-4	<u>5°</u>	B	runto	n	CORE	SIZE	BQ	·	SHE	ET NO.	1 0	f_6	
		- •• N	FW MOON		ELEVATION		-55	5.8°	320°	-4	6°	A	cid Te	est	TOTA	LREC	VERY	> 95%	LO	GED 8	Y D. 1	lisagie	e
		PR	OJECT	•	LATITUDE	1 + 30 S									STAR	TED	Aug. 1	8/86	a.		LUNAR	l	
					DEPARTURE	0 + 14 W									COM	PLETE	DAug.	19/86	PU	RPOSE	Test N	listy I	Day Zo
PTH	GEOL.	INTE	RVAL	GEOLO	OGICAL DESCR	IPTION		MINE	RALIZATIO		ALT						AS	SAYS				RECOV	/ERY
ters		FROM	то			•	ľ	*				S	iamp.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	×
		0	1 /8	Casing																		4.0	-0.1
																						4.6	
		1.8	15.3	Andesite Flo	w																	5.8	ļ
				- fine grain	ed, grey green	colored					\square		1 1 9 9 9	2.0	4.3	2.3	_	.01	.04	2.01	.008	7.3	[
1				- relatively	homogenous								12000	4.3	5.8	1.5	_	.10	.04	1.31	.006	7.9	
				- calcite ve	ining t/o tota	lling approximate	1y				Ш						-					9.5	
				30% of the	unit								13501	9.5	11.0	1.5	_			1.09	.002	11.0	
				- veins gene	rally occur @	50° and @ 0°					\square											13.1	ļ
				- veins are	occasionally v	uggy and are usua	11y		<u> </u>								-					15.2	
				barren																		18.0	
				- tr dissem	pyrite occurs	within the host																20.7	
				- from 1.8-3	.4: the unit i	s dominated by a																23.8	
				calcite qu	artz vein whic	h exhibits variou	s															25.3	
				orientatio	ns particulari	ly at 0°. Minor					Ц											28.4	Ļ
				boxwork oc	curs at 2.3				<u></u>		Ц											30.2	
				- at 4.6: 3	cm pink calcit	e @ 10° with 3% p	yr				\square											33.3	
				- the unit i	n places is br	ecciated																36.3	ļ
				<u></u>						1												39.3	
		15.3	20.7	Andesite-Cal	cite Breccia																	41.8	
				- maroon tuf	f fragments al	ong with green							13502	17.5	19.6	2.1				.13	<.002	44.5	
				andesite f	ragments upto	5cm set in a cale	ite															47.8	ļ
	Ļ			matrix			\square													ļ		50.3	L
				- fracturing	occurs t/o at	10° and @ 30°																	L
	L																						L

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-10 NEWM	ONT	EXPLORAT	10	N	OF	CANADA	LIMITI	ED					PAC	SE 2	of 6
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT			_		AS	SAYS				RECOV	ERY
meters		FROM	то		%				S	AMP FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		15.3	20.7	Andesite-Calcite Breccia Cont'd															
-				- minor tr pyr															
ΕI				- approximately 40% calcite t/o															
E I		20.7	28.1	Andesite Flow		•													
				- grey, fine grained															
E .				- veining is <5% and is predominantly calcite							L								
				with minor quartz				\bot							·				
L I				- fractures occur @ 10° and @ 30° to the ca															
-				- hematite staining on occasion is developed															
F				along the fracture faces															
E				- minor epidote is randomly developed															
E				- in part calcareous					_										
E				- minor hematite within the calcite veins												-			
E				- calcite veining is erratic															
E				- @ 26.8 a 4 cm hematite qv @ 30° exist															
FI																			· · ·
FI		28.1	30.2	Calcitic Porphyrytic Andesite Flow															
F				- fine grained, green colored with small															
F				calcite phenocrysts															
ΕI				- calcareous															
ΕI				- sheared in the first 50 cm															
ΕI				- 1 cm gouge @ 28.6															
E				- minor chlorite occurs along the fracture															
ΕI				faces					_										
-	l			- tr dissem hematite and pyrite															
EI	[Ī											
E																			

:

{

	PR	OJECT	NEW MOON (336) HOLE N.M. 86-10 NEWM	ON.	EXPLORAT	ION	0	F CAN	IADA I	LIMITE	D					PA	GE 3	of
EOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	ALI						AS	SAYS				RECO	
	FROM	то		%				SAMP	FROM	TO	LENG	Cu	РЪ	Zn	AR	Au	RUN	%
	30.2	47.4	Andesite Flow					13503	30.2	31.2	1.0				. 74	.002	ļ	
			- similar to 15.3-20.7															
			- calcite veining occurs sporadically t/o										 				ļ	┢
			totalling 5% of the unit														 	
			- veining is generally a combination of															1
			calcite and quartz														I	
			- veining is erratic															
			- @ 30.2: 20 cm cal-qtz @ 45° hematite														ļ	
			36.1: 2 cm cal-qtz @ 10°															
			- minor hematite blebs t/o															
			- 38.5: 2 cm cal-qtz @ 30° 10% pyr, 5% PbS/ZnS															
			39.7: 2 cm cal-qtz @ 80° colloform															
			41.0: calcite vein parallel to the ca vein					13504	35.7	36.7	1.0				1.36	<.002		
Ì			goes from 10 - 80° to the ca for 20 cm	Γ			Γ	13505	38.3	39.8	1.5				.89	<.002		
Ì			42.2: speckled calcitic andesite for 20 cm				Τ											
Ì			42.9: 30 cm cal-qtz @ 30° 5% pyr tr PbS	1-				13506	41.0	42.0	1.0				.60	<.002		
ľ			42.3: 1 m cal-qtz vein // to the ca. Minor	1			Γ	13507	42.9	44.3	1.4				3.79	.014		
Ī			cherty fragments with hematite occur				Τ											
ľ			t/o				1											
ľ			46.4: 2 cm cal-qtz vein @ 60° tr pyr				Γ											Ī
ľ			47.2: 8 cm cal-qtz vein @ 45° 5% pyr tr gal				\top								1			Γ
Ì							1											Γ
ł	47.4	49.1	Quartz-Calcite Brecciated Andesite	1	pyr		1	13508	47.2	48.2	1.0				1.95	.012		
			- fragments upto 5 cm of andesite occur in a	1-														
Ī			matrix of guartz and calcite				Γ											
			- tr hematite occurs within the matrix	1														
ľ	······		- limonite occurs on occasion along the	1	 f	-	T	1										
ŀ			fracture faces	1	<u> </u>	-†-	1											Γ

				((_				_ ک_		_		
		PR	OJEC	NEW MOON (336) HOLE N.M. 86-10 NEWN	ION	T EXPLORAT	10	N C	F CA	ADA	LIMITE	ED					PA	3E 4	of 6
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	INERALIZATION	A	LT					AS	SAYS				RECOV	'ERY
meters		FROM	TO		%				SAMP	FROM	TO	LENG.	Cu	Pb	Zn	Ag	Au	RUN	%
•		47.4	49.1	Quartz-Calcite Brecciated Andesite Cont'd															
-				- @ 48.1 a 40 cm zone of highly fractured															
E.				core occurs				Ι											
E				- 5% pyrite occurs disseminated within the					13509	48.2	49.1	0.9				2.80	.018		
-				tuff		I	Τ	Τ											
E				- approximately 60% of the unit consists of															
<u> </u>				quartz and calcite															
E				- in the last 1 m the unit has approximately															
<u> </u>				80% quartz-calcite															
-																			
F		49.1	55.2	Calcite-Quartz Vein	10	5% pyr,			13510	49.1	50.0	0.9		.54	1.47	57.70	.066		
-				- section is one vein consisting of 70%	Τ	5% Pb/Zn	Т	Т	13511	50.0	50.5	0.5		1.22	2.48	51.60	.122		
E				calcite and 30% quartz					13512	50.5	51.3	0.8		.26	.61	4.05	.062		
F				- upper contact is @ 40° and is sharp					13513	51.3	52.1	0.8		1.22	5.13	63.80	.155		
				irregular	Г				13514	52.1	52.9	0.8		.42	.98	17.20	.040		
				- within the first 20 cm the unit contains	Τ				13515	52.9	53.9	1.0`		.55	1.49	28.00	.058		
	Ì			∿ 30% fragments	Τ			Т	13516	53.9	55.3	1.4		.68	2.77	46.70	.056		
	Í		[- core axis readings vary from 10°-45°	Τ		Т												
		•=		- mineralization consists of fine grained PbS				Т	-										
-				and pyrite erratically distributed t/o	Τ														
F	ſ			- the unit to 50.0 is well mineralized with															
F	[5% PbS, 5% pyr. Calcite occurs to @ 49.1,	Τ		Т												
F	ſ			minor native silver occurs as a shiny	Τ														
EI	[striated fragment. Minor chalcopyrite is	Ι														
-	[also disseminated			Τ												
				- from 50.0-50.6 the unit suggests by colloform															
E				bedding that it occurs @ 40° to the ca.	Γ														
F	Γ		[Τ	Т											
I	•		+	•••	i	tt	-1-		1									T	

		DUAL	T NEW MOON (336) FOLL N.M. 86-10 HEWM					Ť					AS	SAYS					/FR
CUL	FROM	TO	GEOLOGICAL DESCRIPTION	%		ľ	ĨŤ		SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	49.1	55.2	Calcite-Quartz Vein Cont'd																
			Fine grained galena totals 5% t/o				Π												
			- 50.6-50.8: calcitic veining tr pyr																
			50.8-51.4: 5% Pb, 5% pyr, 2% Zn, tr hematite				\Box												
			51.4-52.0: Vein is less mineralized primarily		•		П												
			pyrite, colloform // to the ca, grey				Π										_		
			andesite seam occurs // to the ca for 40 cm				Π												
			52.0-52.6: vein is brecciated with 5% pyrite,				Π												
			1% PbS, 1% ZnS, fragments upto 3 cm are				Π												
			all altered				Π												
			52.6-52.9: 10% pyr, 2% PbS, tr ZnS vein is	Γ			Π												
			erratic				Π												Γ
			52.9-53.3: Qtz calcite vein, contact @ 50°																
			generally barren				Π												
			53.3-54.5: colloform veining // to the ca																
			for 1-2 m, minor hemitite tourmaline																
	<u> </u>		54.5-55.0: well mineralized with 5% PbS,	1															
	<u> </u>		5% pyr tr Zn colloform @ 50°																
	<u> </u>		55.0-55.3: fractured except for the last 10																
			cm lower contact @ 40°, 5% pyr																
		f		1															
	55.2	58.7	Andesite Flow	2	pyrite				13517	55.3	56.8	1.5		.09	.17	2.46	.022		
	<u> </u>		- fine grained, grey-green with a reddish tinge	Γ					13518	56.8	58.5	1.7		.07	.13	1.49	.008		
	<u> </u>		- veining decreases significantly	\square			Π												
			- in the first 20 cm the unit has 10% pyrite			Γ													
		1	while the rest has 2%	1															
			- calcite lined fractures	\uparrow															Γ
		<u> </u>		\square		—													\square

•

ы на 1

				(((
		PR	OJECT	NEW MOON (336) HOLE N.M. 86-10 NEWN	N	EXPLORAT	10	N	OF (ANADA	LIMIT	ED					PAC	3E 6	of 6
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT					AS	SAYS				RECŎV	ERY
meters		FROM	то		%		Ι	Т	SA	MP FROM	то	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
-		55.2	58.7	Andesite Flow Cont'd															
				- fractures occur at 50° and @ 70°															
E				- minor tuff fragments occur t/o															
E				- from 57.0 unit is reddish tinged										Í					
-				@ 56.4: 30 cm colloform calcite vein @ 30°															
				5% pyr, minor tourmaline lower contact															
<u> </u>				is irregular @ 10°															
-				@ 57.6: 3 cm qv @ 50° 2% pyr tr gal															
<u> </u>				@ 58.3: 20 cm colleform calcite vein irreg															
-				@ 30° 5% pyr tr gal															
-																			
-		58.7	63.1	Calcite Andesite Porphyry Flow/Sill															
Ε				- fine grained, dark green colored with				\Box											
-				feldspar phenocrysts upto .5 cm															
-				- minor calcite veining				Ι											
				- barren															
				- minor round fragments of a porphyry tuff															
				unit															
				- fractures are limonite stained occasionally															
-				- barren, homogeneous	Γ														
F																			
-				63.1 E. O. H.															
-																			
-																		L	L
-																			
-			<u> </u>																
			[Γ		Τ		T	T									
'	•		•		+	+	+		-1		1								ſ

:

NEWM	ONT E	XP. OF	CANADA LTD	EVEL	Surface	DEPTH	BEARING	DI	Р	ТҮР	E OF SU	JRVEY	LEN	GTH	61.0	m	HOL	E NO.	N.M.	86-11	1
DRII	I H		RECORD	CATION	Misty Day Grid	0	145°	<u> </u>	45	Bru	unton		CORE	E SIZE	B	Q ·	SHE	ET NO.	l of	5	
				EVATION		-61	145°		44	Aci	id Test	ž.	TUTA	L RECO	WERY	> 95%		GED I	3Y D.	Visagi	le
	NI PR	W MOON		ATITUDE	2 + 58 S								STAR	TED /	Aug. 1	9/86	<u> a.</u>	NM	LUNAR	1	
	•••		De	EPARTURE	1 + 63 W		<u> </u>			<u></u>			COM	PLETE	D Aug	. 19/86	5 <u>PU</u>	RPOŞE	Test	Misty	Day Zo
EPTH GEOL	INTE	RVAL	GEOLOGI	CAL DES	CRIPTION	MIN	ERALIZATIO		NLT						AS	SAYS				RECO	/ERY
neters	FROM	TO			•	×				8	AMP FR	MOS	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	*
	0	1.2	Casing																	<u> </u>	
	1.2	16.6	Maroon Tuff (4)																	ļ	
			- generally find	e grained	with fragments upto														<u> </u>	<u> </u>	
			l cm																		
	-		- maroon colore	d															[<u> </u>
			- in the first	l m calcit	te-quartz breccia														L	L	
			occurs t/o													•					
			- fracturing oc	curs at 30)°&@60°																
			- calcareous																	L	
			- from 3.9-6.1	the unit i	is typically coarse																
			fragmental wi	th fragmen	nts being upto 2 cm																
			in size																		
			- short 30 cm z	one @ 7.1	which is green																
			colored																		
			- from 6.1 the	unit is fi	iner grained																L
			homogenous																ļ		
			- lower contact	is at 50°																	
	_						<u></u>												İ		
	16.6	19.1	Andesitic Tuff	(2)																	L
			- med grained w	ith approx	ximately 20% calcite																
			fragments with	h the frag	gments being upto													L			
			2 cm																ļ		
I T									ł	1	1	I	ļ	1		1	i				13

HOLE N.M. 86-11 NEWMONT EXPLORATION OF CANADA LIMITED PAGE 2 of 5 PROJECT NEW MOON (336) RECOVERY ASSAYS MINERALIZATION ALT DEPTH GEOL INTERVAL GEOLOGICAL DESCRIPTION % SAMP FROM TO LENG RUN % FROM TO meters Cu РЪ Zn Åα Au 16.6 19.1 Andesitic Tuff Cont'd - matrix is green-black colored - the unit is moderately calcareous - fracture occurs @ 45° and are dry - minor erratic calcite stringers - at 18.7: 10 cm cal-qtz vein @ 80°, erratic barren 19.1 21.0 Andesite Tuff - fine grained, green colored reddish tinge - massive homogenous - fractured @ 50° - minor hematite occurs t/o - barren Calcitic Andesitic Tuff 21.0 26.1 - massive, mottled in appearance - 25% calcite fragments - fragments are upto 2 cm - barren - maroon colored while calcite is white - minor veining occurs t/o 26.1 29.6 Andesite Tuff? - fine grained, green colored - massive

		<u>PR</u>	OJECT	NEW MOON (336) HOLE N.M. 86-11 NEW	MON	T EXPLORA	T10	N (OF CAN	IADA	LIMITE	.0					PA	GE 3	of 5
PTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT	1				ASS	SAYS				RECÖV	ER'
ters		FROM	то		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		26.1	29.6	Andesite Tuff? Cont'd					<u> </u>										L
				- non-mineralized								[]							
				- minor qtz-cal veining					<u> </u>			[]							
				- fracturing is @ 30° and 60° and is dry															
		29.6	32.4	Calcareous Andesite Tuff	1														
				- similar to previous	⊥_			$ \downarrow$	1										
				- minor veining					1	[
.				- grey colored, calcite occurs as blebs					1										
				(possible gas bubbles)							_								
										I									
		32.4	35.6	Andesite Tuff															
				- reddish grey colored					13519	32.0	33.2	1.2		.02	.05	. 16	.006	ļ	
				- fine grained with maroon tuff fragments					13520	33.2	34.7	1.5		.01	.02	.08	.008	ļ	
				(minor hematite)															<u> </u>
				- veining is minor <5% and is predominantly		L			┥	ļ									<u> </u>
				calcite with minor qtz						Ì									
				- contacts gradational									- <u></u>			L	L		<u> </u>
				- veins contain the sulphides present					<u> </u>					ļ		ļ	 	<u> </u>	
				- calcite quartz veins occur at:											<u> </u>		L	ļ	L
	[32.8: 1 cm @ 35° 5% PbS											L		L	ļ	ļ
				33.0: 1 cm @ 80° tr hematite															<u> </u>
	[33.9: .5 cm @ 80° tr hematite													 	L	
	I			34.1: 1 cm @ 35° barren						l								L	
									<u> </u>								ļ	L	
										<u> </u>									
	ſ																1		

. .

137

•

ΠH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	4	LT						ASS	SAYS				RECOV	ERY
rs		FROM	то		%					SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
Т		35.6	40.8	Calcite Quartz Veined and Brecciated Andesite																
				Tuff																
				- section features brxx andesite and calcite-	5	3% Py				13521	35.6	36.6	1.0		.02	.10	.18	.002		
				quartz veining		2% Pb/Zn				13522	36.6	38.1	1.5		.02	.18	. 20	.002		
				- fragments are upto 5 cm in size						13523	38.1	39.2	1.1		.35	.43	.23	.002		
				- veining predominantly calcite occurs t/o						13524	39.2	40.3	1.1		.30	1.59	.52	.074		
				- shearing common in the first meter						13525	40.3	41.0	0.7		.57	1.08	.74	.026		
.]				- from 35.6-36.8: calcite quartz veining																
				totalling 30% occurs t/o as stkwk, 5% pyr																
				occurs with the veins																
				@ 36.6-37.0: pred andesite tuff - barren																
1				@ 37.0-37.6: sheared andesite with 30%	Ι															
				veining. At 37.6 occurs 1 cm gouge.																
				Minor Mn stain.																
				@ 37.6-39.2: Pred andesite with <10% calcite																
				veining, minor hematite, veins barren																
				@ 39.2-40.3: the unit is brecciated calcite-																
				quartz hematite vein in which 1% PbS and																
				2% pyrite occur along with a fine grained																
				steel grey, striated by drilling, sulphide:																
				nature silver?																
1				@ 40.3-40.8: brecciated andesite with calcite																
				quartz healing. Tr cpy 1% PbS, 1% ZnS,																
				and 2% pyr occur to. Min generally occurs																
				at the outer edges of the veins																
	[
	[
	ſ				Ι			T	T											

:

ртн	GEOL	INTE	RVAI	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	AL	.Т					ASS	SAYS				RECOV	ERY
eters		FROM	TO		%		Т	Т	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	†	40.8	42.8	Calcitic Andesite Flow			\top		13526	42.0	42.9	0.9		.04	.09	.13	.008		
-				- similar to 29.6-32.4			1		13527	43.6	44.7	1.1		.08	.13	. 16	.002		
-				- at 42.2: 3 cm qv @ 60° barren			1												
-							T	Т											
•		42.8	43.7	Brecciated Andesite			T	Τ											
	1			- fine grained, green colored in which fragments															
•				(angular) upto 5 cm occur															
•••				- minor quartz veining occurs in the first 2 cm				Τ											
•				in which tr cpy and minor PbS occur				Τ											
•				- fragments are variable in composition															
-																			
.		43.7	61.0	Feldspar Porphyry Andesite Flow	Γ			Τ	13528	53.0	53.6	0.6		.06	.10	.08	.004		
•				- fine grained, grey green colored matrix with				Τ											
				white-green feldspar phenocryst upto 1.5 cm											[<u> </u>	
•				- homogenous															
•				- minor quartz-calcite veining comprises <5%															
,				of the unit											<u> </u>				
•				- veins are generally at 60° to the ca and						<u> </u>									
•				contain minor amounts of galena and pyrite											<u> </u>				
•				- mineralization is confined to veins															
•				- at 51.7: 20 cm stkwk tr PbS tr ZnS															
				@ 54.6: 20 cm bleached area adjacent to a															
•				small qv												L		ļ	I
				@ 58.1: 10 cm bleached zone centered about			_		ļ	ļ						 		 	
				two small qv's @ 60°	 		_	+	ļ	L				L	L			ļ	ļ
								\perp							L			L	
				61.0 E. O. H.	\vdash		\bot		L	ļ								L	
						L		1	Ļ					L					
					•	• •	•	•	•	•	• •	I	1	I	•	•		1	Ē
																			ω

.
N	EWMO	NT E	XP: OF	CANADA LTD	LEVEL	Surface	0E	PTH	BEARING	DIP	m	PE OF	SURVE	YLEN	IGTH	40.2	m	HOL	E NO.	N.M.	86-12	2
n	RII I	н		RECORD	LOCATION	Misty Day Grid	e)	120°	~50°		Compass	s	COR	e size	BQ		SHE	ET NO.	l of	4	
		- ''			ELEVATION		40).2	120°	-51°		Acid Te	st	TOP	AL REC	OVERY	+ 95	LOC	GED E	Y D. 1	Visagi	ie
		PR		r	LATITUDE	0 + 40 S			l					STA	RTED	Aug	19/86	a	AIM I	UNAR	1	
					DEPARTUR	E 0 + 32 W				L				COM	PLETE	D Aug	3. 20/8		RPOSE	Test	Misty	/ Day
6	EOL	INTE	RVAL	GEOLO	DGICAL DES	SCRIPTION		MINE	RALIZATIO	N ALT	Γ					AS	SAYS				RECO	VER
	T	FROM	TO			•		*	<u> </u>	\mathbf{T}	Γ	SAMP	FROM	TO	LENG	Cu	РЬ	Zn	Ag	Au	RUN	1%
F	-+	0	1.8	Casing		<u> </u>							1	1							1.8	1-
	Ť			······································	<u></u>						Γ										5.5	T
	Γ	1.8	6.3	Calcareous An	desite (gre	en)	I	3 ру	rite												6.4	
	Γ			- fine graine	d, green co	lored with 30% ca	alcite														6.7	
	Γ			blebs (upto	.1 cm)																7.9	
	E	·		- 3% dissem p	yr																9.5	
	E			- blebbed app	earance																11.3	
	Ľ			- calcite als	o occurs al	ong fractures											•				12.8	<u> </u>
				- fractures a	re // to the	e ca and @ 40° an	1d 80°													 	14.3	
	L			- veining is	insignifica	nt															15.2	\perp
				- from 5.5-6.	3 the unit	is fractured															16.8	
																					18.3	
		6.3	18.8	Andesite Flow	/Tuff																19.8	_
]	- fine graine	d, grey col	ored with a reddi	sh					13529	18.8	19.7	0.9		.08	.32	11.40	.010	21.3	_
				tinge		·····					Ц	13530	19.7	20.6	0.9		♦.02	.10	3.24	.010	2 2 .9	<u> </u>
				- fragments a	re minor																24.1	_
				- hematite st	ain occurs	t/o generally as															25.0	_
	L			streaks tota	lling ∿ 5%																26.5	<u> </u>
	L]	- pyrite is f	ound as tra	ce dissem															29.3	_
	L			- veining is a	minor consi	sting primarily o	f	_			Ц										31.4	<u> -0.</u>
	L			calcite wit	h minor quar	rtz				┥┥	\square										32.6	┨
	L			- vein @ 11.3	т@30°5 с	cm barren															35.7	<u> </u>

		OJEC	T NEW MOON (336) HOLE N.H 80-12 NEWI		I EXPLORAT	10			VADA		<u>.</u> D					PA	GE 2	0
GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A					·	AS	SAYS				RECO	<u>V</u> E
	FROM	то		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	1
	6.3	18.8	Andesite Flow/Tuff Cont'd														37.5	
			- from 13.8 hematite content decreases to <1%														38.7	
i																	40.2	
	18.8	20.7	Calcite Vein Brxx	5	pyr													
			- first 20 and last 60 cm are brxx		PbS			13531	24.7	25.7	1.0		.01	.01	.29	.002		
			brxx consists of 60% fragments upto 1 cm															
			set in a calcitic matrix. Fragments are															
			generally andesitic in composition and are															
			pyritic. In addition minor angular fragment	s														
			of galena occur. In the first 20 cm the uni	t														
			has 4% PbS				_											
			- from 19.01-20.1: the unit is composed of a	Γ		Τ												
			pink calcite quartz vein with Tr PbS	Γ														
			- contact between the brxx and vein is at 40°															
			- from 20.1-20.7: the unit is brxx similar to															
			previous and has 10% pyr															
			- pyrite content t/o the entire zone averages															_
			5X															
	20.7	24.5	Andesite															_
			- similar to 6.3-18.5	Γ														
			- has erratic qtz-cal vein zones															
			- minor stkwk in last 20 cm															
						Π												
	24.5	32.6	Andesite			Τ												
			- dark grey colored, fine grained					13532	25.7	26.5	0.8		.01	.01	.13	.002		
			- qtz-cal stkwk t/o			T	T	13533	26.5	28.0	1.5		.01	.07	.20	.002		-
				T														1

•

. . .

			OJEC	T NEW MOON (336) HOLE N.M. 86-12 NEWM	ON.	T EXPLORA	10		F CAN	IADA	LIMITE	.0					PA	GE 3	of 4
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	<u> </u>		_			AS	SAYS				RECOV	ERY
eters		FROM	TO		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	AU	RUN	%
_		24.5	32.6	Andesite Cont'd															
_				- 5% pyr					13534	28.0	29.0	1.0		.02	.06	.13	.009		
				- unit has minor fragmentation					13535	32.4	33.9	1.5		.01	.03	.74	.004		
_				- fragments are generally less then .5 cm															
				- calcite veins occur sporadically t/o															
				@ 28.0: 40 cm pink @ 60° 5% pyr			Т												
				28.5: 15 cm cal-qtz @ 60° 5% pyr			T	Т											
				- from 29.0-30.0 andesite is generally barren			Т												
				with the section 29.3-30 being a fracture			T	Τ											
				zone			1	1											
-				- from 29.8-30.2 minor feldspar porphyry					1										
-				fragments occur			1	\top											
-	1			- from 31.2-31.9 occurs a fracture zone with				\uparrow											
•				minor limonite alteration along the fracture			1	T											
•	[1											
-	[32.6	33.8	Quartz-Calcite Vein	2	pyrite	T	1											
•				- solid			1	T											
-	ľ			- grey white colored, smokey in part			T												
-	1			- upper contact is @ 90°			T	T											
-	ľ			- 2% pyr			1												
- [Γ			- fracture // to ca for 50 cm @ 32.7 with															
·	ſ			minor limonite along the fracture face			T												
•	ſ						T	╈	1										
<u> </u>	F	33.8	35.7	Andesite			╈	+	13536	33.9	35.5	1.6		.01	.01	.33	.010		
				- similar to 24.5-32.6			1												
-	ſ			- @ 34.2: 3 cm qv @ 60° pink calcite				T											
	Γ			@ 34.6: 15 cm qtz-cal brxx vein @ 50°,			╈	+-											
.	Γ						+	\top											
ا بي	1			and a second second second second second second second second second second second second second second second			- 1-	-1-	+		┝╌──╋			+					<u> </u>

(

TH GEC	ᅬ။	NTER	VALI	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	.Τ					ASS	SAYS				RECON
ers	FR	MOM	то		%		Τ	Τ	SAMP.	FROM	то	LENG	Cu	Pb	Zn	Ag	Au	RUN
	3	3.8	35.7	Andesite Cont'd				Ι			_							
				andesitic frags along with altered feldspar														
				porphyry frags						_								
				@ 35.2: 20 cm breccia vein, minor chalcedony	,						-							
				occasional pyritic	\square		4	+										
	3	5.7	40.2	Andesite Flow - Calcareous														
				- fine grained, dary grey colored														
				- massive: homogenous														
		[- minor fragments @ 80° & 30°														
				- calcite blebs upto 5% occur t/o. Blebs							-							
				are generally less than .5 cm														
							_	_										<u> </u>
				40.2 E. O. H.	+		+	+										
	-	-+			╉╾┥		+	┿										<u> </u>
		-+			╉╾┥		+	+										<u> </u>
	-				+		+	+										
		-+			+		+	+-										
1		-+			1-			╈								<u> </u>		
					\top													
		-+		······			-+											
					+						$ \longrightarrow $					L	L	
		-+			+													
	\vdash	-+	{		+ - +		+	+										
		━+			╉╾┥	├		-	┝────┪	 	 							L

. .

ł	NEWMO	NT E	XP. OF	CANADA LTD	LEVEL	Surface	DEPTH	BEARING	DIP	T	YPE OF	SURVE	LEN	GTH	254.8	B m	HOLE	NO. N.F	1. 86-13	
		ı ц			LOCATION	Plateau Grid	0	310°	-75	°	Compas	s	CORE	ESIZE	BQ	•	SHEET	NO. 1 (of 17	
		L 11		NECOND	ELEVATION	2087.8 m	-138.	6 310°	-67	•	Acid T	est	TOTA	L REC	OVERY	+ 95	LOGGE	DBY D.	Visagi	e
		PR		Γ	LATITUDE	0 + 5 N	-189	3 310°	-67	•	Acid T	est	STAP	RTED	Aug.	21/86	CLAIM	COPPE	R CLIFF	•
				I	DEPARTURE	1 + 65 E	-254	8 310°	-68	°	Acid To	est	COM	PLETE	D Aug	3. 27/86	PURPO	ISE TE	ST MAIN OF DEPT	I ZONE H
ОЕРТН	GEOL.	INTE	RVAL	GEOLO	DGICAL DESCRI	PTION	MI	ERALIZATIO	N AL	.T	T				AS	SAYS			RECOV	/ERY
meters		FROM	TO			•	*	· · · · ·	TT	Т	SAMP	FROM	то	LENG.					RUN	%
-		0	1.8	Casing						T									3.4	
-					-				TT	Τ									4.9	0.9
F		1.8	12.5	Andesite Tuf	f														6.1	
E				- fine grain	éd			۰											7.3	
-				- grey with	reddish tinge c	oloration				Τ									7.9	
1		-		- on occasio	n there is hema	titic banding wit	h		TT	Τ									9.5	
				the bands	occurring at 58	° to the ca													11.0	
				- the unit i	s massive and h	omogeneous										•			12.5	
•				- the unit c	ontains approxi	mately 30% hemati	te		ТТ	Τ									14.0	
-				- in the las	t 30 cm the uni	t is grey colored			TT	Ι									15.5	
E				and contai	.ns ∿ 10% errati	c calcite veins				Τ									17.1	
E				- fracturing	; occurs @ 20° a	nd @ 45°				Τ									18.3	
E				- barren															19.8	
E																			21.3	
E		12.5	14.0	Maroon Tuff B	Freccia											•			22.9	0.3
E				- marcon colo	ored				TT										25.9	
E				- fine graine	d ground-mass i	n which Feldspar				Т									28.7	
ΕI	•			Porphyry Fl	low fragments up	to 5 cm constitut	ing												31.1	
E				30% of the	section occur														33.5	
E				- feldspar p	henocrysts are	weakly altered				Т									36.6	
	· [- minor veini	ing					1									38.4	
El	Ι			- lower conta	ict is gradation	al				Τ								-	40.9	
	I			- barren															43.6	
						بوديون التبايو				Γ			Ţ	. 1						بر ا

(

۲

.

	<u>Р</u>	ROJEC	T NEW MOON (336) HOLE N.M. 85-13 NEWN	NON.	T EXPLORAT	<u>ION</u>	0	F CANA	ADA L		ED					PA	GE 2	of 17
TH GEO	L INT	ERVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	Γ					AS	SAYS				RECOV	ERY
lers	FRO	n to		%				SAMP F	ROM	то	LENG	Cu	РЬ	Zn	Ag	Au	RUN	%
	14.	0 16.4	Andesite Tuff														46.6	
			- similar to 1.8-12.5				Γ										49.1	
			- towards bottom of the section fragments of												_		52.1	
			feldspar porphyry occur (upto 10 cm). The														55.2	
			feldspar phenocrysts are saussuritized		·												57.0	L
			- fractures occurs @ 10°														60.1	
			- gradational lower contact				Γ										62.8	
																	65.2	
	16.	4 31.6	Feldspar Porphyry Flow	Τ													68.3	
1			- fine grained, grey matrix, which is grey-	Τ													71.3	
			reddish tinged color, in which feldspar				Γ										72.9	
Į			phenocryst ranging from white to pale green				1										74.4	
			color occur	\uparrow													75.9	
			- weak to moderate saussurite alteration	Τ			Γ	\square									77.4	
ĺ		1	- the unit is massive and is homogeneous	1			1										78.9	
		1	- quartz veining is erratic, on occasion	1			1						1				80.5	0.
		1	highly altered pale green sections occur												I		82.6	
		1	adjacent to the veins				1										83.8	
			- pale alteration zones occur at:				T										84.7	0.
1		1	23.7-23.8	Τ			T					-		1			86.3	
			28.1-28.2		1	+								t			87.8	
		1	28.4-28.6				\top							[1	†	89.3	
-		1	- fractures occur at 60° and @ 40°		1		T						1	1			90.2	
			- feldspars in general are green colored				1-										91.7	
1			- lower contact is sharp @ 40°				Τ							1			93.3	
		1	ļ.	1	1	\top	T									[94.8	
		1		1-	1 1		\uparrow	†+					<u> </u>	<u>† </u>	1	<u> </u>	96.3	
	—			\uparrow	tt	+	+	<u> </u> †			<u> </u>		1	t	†		1	

		ROJEC	NEW MOON (336) HOLE N.M. 86-13 NEWM			101		DF CAN	IADA I		ED	AS	SAYS			PA	GE 3	
SEC	FROM	TO	GEOLOGICAL DESCRIPTION	%		Ť	T	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	<u>un</u> %
	31.6	35.2	Feldspar Porphyry Dyke			╈	1	1									97.9	
			- fine grained, grey green ground-mass in which			T	T	1									99.4	المراجعة التقار
			40% white calcite blebs upto .2 cm occur														100.6	
			- the unit is homogeneous and is massive				Τ										101.8	
		1	- barren				Т										102.7	
		1	- possible carbonatization			1		1									103.3	
																	104.9	
	35.2	42.6	Feldspar Porphyry Flow			Τ		13537	35.4	36.9	1.5		1.25	3.58		.002	106.4	
			- similar to 16.4-31.6			Т	Т										107.9	
			- quartz veining occurs sporadically t/o				Τ	1									109.4	
		1	- @ 35.4: 20 cm stkwk 10% pyr, 5% PbS														111.0	
		1	35.9: 20 cm zone with 10% pyr, 5% PbS/ZnS				T	1									114.0	
		1	36.3: 10 cm erratic zone with 5% PbS/ZnS			1		1									116.4	
		1	36.6: two 2 cm massive veins of galena,				Τ										119.8	
		1	10% pyr														121.3	
			- from 37.2-38.0 the rock is fractured	1		1	1										123.1	
			- phenocrysts are carbonate altered			T		1									125.6	
		1		1		1		1									128.3	
	42.6	62.9	Andesite Flow/Tuff	10	5% pyr	1	1	13538	42.1	43.6	1.5		0.19	.43	.08	.002	140.8	
		1	- fine grained, green colored	1	4% Pb			13539	43.6	44.9	1.3		.21	.50	. 10	.002	142.3	[
		1	- calcareous		1 7 Zn	1	\top	13540	44.9	46.0	1.1		4.12	6.10	.48	.002	143.9	\square
		1	- highly veined and well mineralized on occasion			1	\top	13542	46.0	46.9	0.9		.26	.87	.09	.004	145.4	
		1	- pyritic t/o with upto 20% pyrite				T	13543	46.9	48.0	1.1		.06	.10	.03	.002	146.0	
	-	1	- fracturing occurs t/o at 20° and 50°			1	T	13544	48.0	49.0	1.0		.27	.64	.07	.002	146.9	
			- veins form stockwork on occasion and attendar	1t		T		13545	49.0	49.9	0.9		1.81	6.10	. 26	.002	148.7	
			wallrock is silicified on occasion	Τ		T		13546	49.9	50.0	1.1		. 16	.52	.07	.002	149.4	
		1	- in the first 2 m calcitic fracturing	1	1	1		13547	50.9	51.9	1.0		. 58	1.43	.11	.002	150.9	
		1	occurs // to the ca	1		1	1	1									151.2	

•

1

۰

.

•

r		PR	OJECI	NEW MOON (336) HOLE N.M. 86-13 NEWM			10	N C		IADA I		.0			<u></u>		PA	GE 4	of 17
PTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	T	<u> </u>				AS	SAYS				RECOV	/ERY
eters		FROM	то		%				SAMP	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		42.6	62.9	Andesite Flow/Tuff Cont'd					<u> </u>									152.7	
_				- at 44.1: limonite occurs for 10 cm					13548	51.9	53.2	1.3		.13	.37	.07	.002	154.2	
_			-	- from 45.2: start significant increase in					13549	53.2	54.7	1.5		.03	.08	.05	.004	155.5	
.				mineralization and qtz-cal					13550	54.7	56.2	1.5		.08	.13	.06	.004	157.3	
.				- from 45.2: start significant increase in		•			13551	56.2	57.8	1.6		.02	.13	.05	.002	158.3	
-				mineralization and qtz-cal					13552	57.8	59.0	1.2		1.84	5.00	.22	<.002	160.0	
				- from 44.9-46.0: the unit has 15% PbS, 10% pyr					13553	59.0	60.6	1.6		.28	.62	.07	<.002	161.5	
				2% ZnS occurring irregularly in a quartz-					13554	60.6	61.2	0.6		1.68	4.11	.19	<.002	163.4	
				flooded zone					13555	61.2	62.8	1.6		.10	.18	.08	.002	164.6	
				- from 46.0-46.9: the zone has erratic quartz														166.7	
	[veining t/o. Within the last 30 cm the													I	167.6	
	ſ			section has a pink calcite-quartz stockwork														169.8	
	Ī			with limonite alteration														170.4	
	Ī			- from 46.9-48.1: the unit has minor quartz			Т											171.9	
	ſ			veining within feldspar porphyry														173.4	
	[- from 48.1-49.0: 3% PbS/ZnS and 2% pyr occurs														175.0	
	ľ			within the unit. Within this area from			\top		1									175.6	
	ſ			48.1-48.3: occurs a 1 cm qtz-cal vein //				1									1	177.1	!
	F			to the ca. From 48.5-48.8: a qtz flooded			_		1								1	177.7	
	ľ			stkwk with 5% PbS, 5% ZnS occurs			1										1	178.3	
	F			- from 49.0: the unit has a variably mineralized			+		1								1	178.9	
	F			quartz vein stockwork which has attendant			-	+	1								1	180.4	
1	f			silicification													1	182.9	1
	ŀ			- from 49.0-49.3: the unit has 30% PbS/ZnS in			-	+										184.7	1
	ſ			a vein which occurs at 10° to the ca.			1										1	186.8	1
	ľ			Bleached fragments occur t/o (Sil and					1									188.4	1
]	ľ			argillically altered). 5% pyr is dissem	t		+	-+-									t	190.8	
	ŀ				f		-+-	1	1								1	192.3	

.

+

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-13 NEWM	ON	T EXPLORAT	r IO	N	OF	CAN	ADA	LIMIT	D					PA	GE 5 a	of 17
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT						ASS	SAYS				RECOV	ERY
meters	_	FROM	TO		%					SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
•		42.6	62.9	Andesite Flow/Tuff Cont'd					Τ										192.6	
-				- from 49.3-49.9: good qv stkwk with 3% PbS															193.9	
-				and 5% pyr															195.4	
E				- from 49.9-50.2: stkwk decreases, minor															196.9	
-				hematite with 2% PbS, 1% ZnS															198.4	
Ε				- from 50.2-51.9: excellent 10% qv stkwk,															199.0	
_ .				cross-hatched. Silicification is adjacent															199.3	
-				to the quartz-veining. Contains 5% PbS/															200.6	0.1
E.				ZnS and 5% pyr															202.1	0.5
-				- from 51.9-52.5: quartz veining decreases to															203.6	
F			_	less than 15%. Section contains 3% PbS/															205.1	
E				ZnS, 5% pyr					Τ										205.9	
ΕI				- from 52.5-54.7: quartz stkwk with 5% pyr,				Ī											206.4	
E				1% PbS, 2% ZnS. From 54.2-54.7: the unit															207.3	
-				has heavy chloritic alteration and							_								207.9	
				bleaching															208.4	
F				- from 54.7-57.6: vein decreases to approx.							_								209.4	0.3
				20% and contains 1% PbS/ZnS, 2% pyr within															210.6	
F				andesite flow			\Box	Ι											211.8	
FI				- 57.6-59.2: the section has 10% pyr, 5% PbS,															213.4	
F	[2% ZnS, qv @ 57.6 @ 20° to ca. Minor															214.9	
E				limonite alteration along the fracture															216.4	
-	[faces. Quartz veins are vuggy				Ι	Τ										218.2	
-	[- from 59.2-59.9: andesite with 30% qv, 1% PbS			Т	Ι											220.7	
-				minor hematite															221.9	
				- from 59.9-60.1: 20 cm erratic qv zone with			Τ												223.4	
ΕI				20% PbS, 5% ZnS @ 20°			Ι	Ι	Τ											
E							Τ		Τ											
							T	Т			_			1						

.

		PR	OJECT	T NEW MOON (336) HOLE N.M 86-13 NEWM		EXPLORAT	ION	0	F CAN	ADA	LIMIT	ED					PA	GE 6	of 17
EPTH	GEOL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	MI	NERALIZATION		<u>.</u> т.		<u> </u>		L	AS	SAYS				RECO\	/ERY
meters		FROM	σ		%		_		ISAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		42.6	62.9	Andesite Flow/Tuff Cont'd				1	ļ	 				ļ				226.2	
				- from 60.1-60.6: the unit is fine grained,			_	1										229.2	
_				chloritic andesite with 5% pyr			_		<u> </u>	ļ		ļ		 				230.2	
				- from 60.6-62.8: calcite-quartz vein possibly										 				231.7	
·				// to the ca. Upper contact @ 30°. From									_					233.2	
-				60.7-62.0: the vein is parallel to the ca					ļ					ļ				234.7	
_ .				with maroon tuff inclusions. The first														236.2	
				50 cm has 30% PbS tr cpy. The last 2.1 m														236.8	
-				is primarily calcite vein with 1% PbS/ZnS														238.4	
-				- lower contact is at 30°														239.5	
-			1															241.4	
-		62.9	66.4	Maroon Tuff		l.	Т	Τ										242.6	
-			1	- fine grained, maroon colored similar to														243.5	
-				previous			Т	Τ									-	246.0	
																		247.5	
		66.4	73.4	Feldspar Porphyry Andesite Flow					1									249.3	
-			<u> </u>	- somewhat similar to				T	1									251.5	
-				previous														254.2	
-			†	- fragmental					1									254.8	
-				- feldspar phenocrysts are green saussüritzed					1										
-			<u> </u>	- tr hematite	1-		+	+-	1			11							1
-			<u> </u>	- minor pyr			+		1							1			
-			 	- mottled in part				+	1										
-				- minor veining		[-		1									1	
-			i	- calcite veisicules occur t/o	1		-					1						1	
-			<u> </u>				-	+	1							1		1	
-					1	·		╉								<u> </u>			1
-			<u> </u>		+	├ ───── ∤		+	<u> </u>									1	1
-					╉━━	<u> </u>	+	-+	+									+	1

•

~

				(((
	_	PR	OJEC	NEW MOON (336) HOLE N.M. 86-13 NEWN		EXPLORAT	<u>10</u> N	0	F CAN	ADA I		D			<u> </u>		PA	3E 7	of 17
DEPTH	GEOL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	M	NERALIZATION	ALI						AS	SAYS		т		RECOV	ERY
meters		FROM	то		%		4	ļ	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		73.4	75.4	Feldspar Porphyry Dyke	\square		+	 											
				- similar to previous			-												
				- inclusion @ 73.4: is 30 cm of finely bedded			4-	 	 										
- 				@ 20° altered tuff				 											
	Ĩ			- upper contact @ 50° while lower is at 80°			4-												
-		75.4	79.8	Feldspar Porphyry Andesite Flow				╂╌	13556	76.5	78.0	1.5		.09	. 19	.06	.002		
				- similar to previous					13557	78.0	79.0	1.0		.10	.22	.05	.002		
-				- minor erratic veining occurs t/o					13558	79.0	79.8	0.8		. 18	. 59	.05	.002		
		79.8	81.7	Andesite Tuff	$\left - \right $		+	┢	┨───┤										
-				- fine grained: grey green				╂─											
				- minor fragments $\sim 10\%$, generally less than				┢╌											
				.] cm	\top														
-				- <5% calcite gtz veining															
<u> </u>				- fracturing occurs @ 60° and 20°	1-			1											
				@ 80.7: 1 cm @ 80° 2% PbS. 10% ZnS. 1% Cpy	+			+											
-				- barren and massive				T											
-																			1
-		81.7	87.1	Andesite Lapilli Tuff															
-				- fine grained grey matrix in which 80%															
-				fragments occur	Τ			T											
-				- fragments are upto 2 cm and are variable in	Γ		Τ	Ι											
-				composition but appear to be generally				Γ											
-				andesitic	Τ														
-				- bedding is @ 80° to the ca	Τ														
-				- minor veining predominantly qtz-calcite is	1			T											
=				@ 60°	1			T											
-	ľ				1			T	11	1						1			<u> </u>

....

	PR	OJECT	NEW MOON (336) HOLE N.M. 86-13 NEWN		EXPLORA	ION		OF CAN	IADA	LIMIT	ED					PA	GE 8	of
EOL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	AL	<u>.</u>					AS	SAYS				RECO	VER
	FROM	то		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	81.7	87.1	Andesite Lapilli Tuff Cont'd															
			- fracturing occurs (0.60°) and $//$ to the ca															
			- inclusions at 85.4: 40 cm of fine grained	<u> </u>													<u> </u>	
			andesite whose upper contact is @ 70°															
			- from 85.5-86.1: at 10° to the ca occurs a															
l			fine grained brown andesite															
			- minor qv occurs sporadically															
			@ 83.7: 10 cm qtz stkwk tr pyr															
			85.5: @ 80° 4 cm qv 15% PbS, 5% cpy															
			- minor - 1% pyrite occurs disseminated t/o			Τ	Ι											
[Γ														
	87.1	88.2	Andesite Tuff			Т												Γ
Γ			- fine grained															
			- brown green groundmass in which 20% fragment	s														
[occur	Τ			Τ											\Box
ſ			- fragments are variable in composition				Τ			_								Τ
ľ			generally andesitic and are upto 2 cm in				Τ											
Γ			size															
ſ				1		Τ	Т											Τ
Γ	88.2	92.5	Andesite Flow				Τ											Τ
Γ			- fine grained, green colored															Τ
Γ			- massive homogeneous	1														T
Γ			- minor epidote in fractures															Τ
			- barren, non-veined															
Γ			- last 30 cm fractured extensively			Τ												
						Τ	Τ											
Γ				1			1			<u> </u>								1
[Τ			T											Ι

FM	INTE		CEOLOGICAL DESCRIPTION	MI	FRAI ZATION AL	T					AS	SAYS				RECÖV	/ERY
	FROM	TO		%		T	SAMP F	MOR	то	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
	92.5	96.6	Andesite Tuff			T											
			- similar to above however the unit is dark			T											
			green colored			T			•								
			- minor qtz-calcite veining occurs @ 97.8 where			Τ									_		
			a 10 cm qtz stkwk occurs with tr PbS			Τ											
						Τ											
	96.6	101.7	Andesite Flow														
			- fine grained, green (med) colored														
			- minor fragments <5%														
			- fracturing is @ 60° and 30° with minor														
			limonite alteration														
ĺ			- barren, massive														
			- contacts are broken														I
																	_
	101.7	102.7	Andesitic LapilliTuff (Agglomerate)														
			- similar to 81.7-87.1														
			- 70-80% fragments													 	
			- in first 1/2 m fragments occur t/o totalling														
			>90% of the unit while 102.2 the unit has														<u> </u>
			only 30% fragments													L	<u> </u>
			- veining minor														
			@ 102.1: 1 cm calcite vein @ 10° with a 1 cm														ļ
			rim of galena and sphalerite														<u> </u>
	102.7	104.6	Andesite Flow/Tuff														_
			- grey-black colored														
[- fine grained														
			- minor 5-10% calcite blebs occur t/o						[

152

· Contraction of

÷

		PR	OJEC	NEW MOON (336) HOLE N.M. 86-13 NEW	MON	<u>IT</u>	EXPLORA	<u> 10</u>	N	OF	CAN	IADA I	LIMITE	ED					PA	GE 10	of 1
нG	EOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	INE	RALIZATION	<u>A</u>	LT						AS	SAYS				RECÖN	ER
8		FROM	р		%					S/	AMP	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	Τ	102.7	104.6	Andesite Flow/Tuff Cont'd																	
	[- massive																	
	[- small black-green colored fragments upto 1.	3																
	[cm constituting less than 10% of the unit																	
	[occur t/o			,														
				- unit is non-mineralized																	
	ļ					╇			-+	╇										ļ	
	ļ	104.6	106.4	Andesite Flow	_	┶			\rightarrow											 	
				- fine grained, greenish-grey colored																	
				- minor calcite veinlets occur t/o with the																	
1	[exception of 105-105.5 where the above unit																	
	[102.7-104.6 occurs																	Γ
	[- barren	Τ					Τ											
				- lower contact is fragmented					$ \downarrow$												
	ŀ	106.4	123.7	Andesitic Agglomerate	╋	╢─		-	-+	╋											
	ŀ			- fine grained matrix in which 70% fragments	-†-				-	13	599	113.6	115.5	1.9		.13	. 52	.02	.002		\vdash
	ľ			of variable composition and angularity	+	╋				13	560	121.0	122.8	1.8		.04	. 26	.02	.002		
	Ī			occur																	
	ſ			- fragments are upto 3 cm in size	Τ	Т															Γ
	ſ			- fragments are for the most part andesitic i	n	\top															
	ſ			composition						┭											
	Г			- fractures occur at 80° and 30° and		1															
				occasionally have limonite stain	Т					T											
	[- minor quartz veining with variable ZnS		Τ				Т											
1	[- qv @ 121.0: 1 cm @ 80° 1% cpy, 1% PbS	T	T															
				121.8: 1 cm @ 40° 1% cpy, 10% PbS/ZnS		1			-	1				†							
	ſ			129.9: 1 cm @ 60° 10% pyr		T			1	Τ											

(

.

(

. 1

•

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-13 NEWM	ONT	EXPLORAT	101	4 C	F CAN	ADA	LIMITE	ED					PAC	GE 11	of 17
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	Mil	NERALIZATION	AL	T					AS	SAYS				RECOV	ERY
meters		FROM	то		%		Τ	Τ	SAMP.	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		123.7	124.5	Andesite Flow															
F				- green, massive, fine grained			Τ												
F				- minor calcite veining															
F				- fractured @ 80°												_			
F				- minor limonite along fracture faces		•													
E				- lower contact is broken															
E.								Ι											
E		124.5	132.9	Andesitic Agglomerate															
E.		1		- similar to 106.4-123.7					13561	129.5	130.9	1.4		.10	.69	.04	.002		
F				- from 127.0-129.0: the unit is mottled					13562	130.9	132.9	2.0		.03	.32	.06	.002		
F				blotchy black and grey															
E				- t/o minor calcite qtz veins occur															
E				- veins generally occur @ 60° to the ca			T	T											
E				- qtz-calcite veins are at:															
E				128.4: .2 cm @ 80° 50% PbS															
E				128.9: 2 cm @ 65° tr PbS, tr ZnS															
F				129.6: 2 veins .2 cm 50% PbS/ZnS															
F				129.7: 20 cm qtz stkwk 5% PbS, 2% cpy, 5% pyr															
F				130.6: 2 cm @ 60° 5% pyr															
F				132.4: 1 cm @ 40° 5% PbS				_											
E				- from 129.2: the unit is variable from a fine															
E				grained tuff to agglomerate			\bot												
E	[132.8: 5 cm qv with 10% Pb, 2% cpy															
E	[
L		132.9	136.3	Feldspar Porphyry Dacite Dyke			\perp	\perp											
E				- similar to previous															
E	l			- massive non-mineralized															
E	1			eontacts broken			\bot	\bot											
.	I		L			I I	I	I	1 1	i i	i ľ	ł						1	1

, ,

ГРТН	GEOL		RVAI	GEOLOGICAL DESCRIPTION								AS	SAYS	<u>.</u>		PA	RECOV	
eters		FROM	TO		%	Ē		SAMP	FROM	то	LENG	Cu	Ph	Zn	Åq	A 11	RUN	%
		136.3	145.2	Andesitic Agglomerate		П								~~				
-				- similar to 106.4-123.7		П		13563	136.3	13742	0.9	.15	.04	.66	.06	.006		
-				- quartz veining is erratically distributed				13564	137.2	137.9	0.7	.46	.08	2.13	.15	<.002		
				- minor inclusion of fine grained, green				13565	137.9	138.8	0.8	.24	. 16	3.47	.18	<.002		
				andesite				13566	138.8	139.6	0.8	.17	. 70	2.22	. 16	.002		
				- quartz veining is rarely stkwk generally				13567	139.6	140.3	0.7	.03	.15	. 34	.04	<.002		
				@ 40°				13568	140.3	142.3	2.0	.01	.04	. 10	.01	<.002		
.				- fractures are occasionally limonite stained				13569	142.3	143.7	1.4	.01	.04	.08	<.01	<.002		
				- upper and lower contacts are sharp but broken				13570	143.7	144.2	0.5	.01	. 10	.21	.01	<.002		
				- from 136.3-137.8: 20% qv @ 45° barren				13571	144.2	145.2	1.0	. 24	. 78	5.40	.35	.014		
				136.3:10 cm qv collsform erratic 5% pyr				13572	145.2	146.4	0.8	.14	.22	1.67	.09	<.002		
	1			136.7: 3 veins over 20 cm totalling 10 cm				13573	146.4	148.7	2.3		.01	.06	.02	<.002		
				have 5% PbS, 1% cpy, 5% pyr, 1% ZnS				13574	148.7	150.2	1.5	. 18	.01	.41	.04	<.002		
				137.0: 5 cm stkwk 5% pyr @ 45°				13575	150.2	151.3	1.1	. 24	.04	. 39	.07	<.002		
				137.2: 5 cm @ 70° 5% PbS, 5% ZnS, 2% PbS				13576	151.3	152.7	1.4	.23	. 10	.71	.07	<.002		
				137.6: over 20 cm 4 qv 5% cpy, 5% ZnS,				13577	152.7	153.7	1.0	.20	.62	3.91	.17	<.002		
				2% pyr	Γ			13578	153.7	155.5	1.8	.01	.01	.07	<.01	<.002		
	Í			- from 137.9-138.2: fine grained, green				13579	155.5	157.5	2.0	.11	.02	.64	.02	<.002		
	Ī			andesitic tuff				13580	157.5	158.5	1.0	.14	.04	2.17	.05	<.002		
	[- from 138.2-145.2: Andesitic Agglomerate														
	Ī			138.2: 25 cm qtz collaform with 5% PbS,														
	[5% ZnS, 2% cpy							Ι							
	[138.7: 5 cm qtz stkwk 5% PbS, ZnS			Τ											
	[139.2: 10 cm qv 5% ZnS											_			
	[139.3: 20 cm zone with 20% ZnS, 1% cpy														
	[139.7: 40 cm qtz stkwk with 2% pyr, 1% PbS/														
				Zn			Τ											

٩.

GEO	INTE	RVAI	GEOLOGICAL DESCRIPTION		Δ	T	T				AS	SAYS				RECO	
	FROM	ΤΟ		%	Î		SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	<u> </u>
	136.3	145.2	Andesitic Agglomerate			+						1					<u>†</u> ~~
		1	- at 140.3 occurs a 15 cm section of fine				1									1	
			grained, green andesitic tuff, limonite			1	1		1							1	
			occurs along the fractures			Τ											
			- from 140.3-144: quartz veining is minor													1	
			however, small stringers are shown to			T	1										
			contain variable PbS/ZnS				1									1	1
			@ 144: 5 cm qtz stkwk with 5% PbS/ZnS			Τ	1	<u> </u>									
			144.3: 1 cm erratic tr PbS				1					[
			144.5: 1 cm @ 40° barren			T	1					1					
			144.9: 30 cm vein @ 30° 10% PbS, 20% ZnS			T						1					Γ
						Т											1
	145.2	146.3	Shear Zone				1										
			- highly faulted section all fragments, minor														
			quartz veining			Τ											Γ
	[- soft		Τ	Τ											
			- altered, all feldspars saussuritized														
			- contacts broken														Ι
						Τ											
	146.3	211.5	Highly Altered Felsic Tuff				13581	165.5	166.8	1.3	.96	.08	.43	. 23	.002		
			- light grey-purple beige colored				13582	172.5	174.6	2.1	.01	.04	.13	.01	<.002		
			- fine grained with small feldspar phenocryst				13583	174.6	175.6	1.0	.13	.04	.72	.03	.002		
			- the feldspars are occasionally saussuritized				13584	178.3	178.8	0.5		. 38	1.11	.03	.002		
			the matrix ser alt? and silicified														
			- the unit is extremely hard														
			- no mafic phenocryst														

.

.

~

	r	PR	OJEC	NEW MOON (336) HOLE N.M. 86-13 NEWM	ON.	EXPLORA	rioi	0 1	F CAN	IADA	LIMITI	ED					PA	GE 14	of 1
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	J					AS	SAYS				RECON	VERY
meters		FROM	то		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		146.3	211.5	Highly Altered Felsic Tuff Cont'd			Т	Τ											
-				- fractures are at 50° commonly dry				T											
-				- quartz veining is minor generally @ 50°				Τ											†
_				- mineralization consisting of PbS, ZnS and							_								
-				cpy is related to veins				Т											\square
-				- veins			T												<u>†</u>
- .				at 150.1: 1 cm @ 70° 60% PbS/Zn 20% cpy			Т	Т											<u>†</u>
-				- minor qtz-eyes occ developed			Т	Т											<u> </u>
				- at 148.7: 40 cm qtz stkwk erratic barren			Τ												<u> </u>
-				150.1: 1 cm @ 50-60% Pb/Zn 20% cpy				Τ										<u>├</u> ───┤	<u> </u>
<u> </u>				150.8: 5 cm @ 60° hematitic			Т	Τ											
E				151.4: 30 cm qtz stkwk 3% cpy			T												<u>†</u>
-				151.9: 20 cm qtz stkwk 2% cpy, 2% Pb/Zn															<u> </u>
-				152.7: 90 cm stkwk // to ca 5% Pb/Zn,			Т	Τ											
-				17 Cu			Т	Τ											
				153.6: 1 cm qv @ 50° 5% cpy															
-				156.0: 20 cm qtz stkwk 2% Zn, 2% cpy				1-											
-				156.6: 15 cm qtz stkwk			T												
	[157.8: 15 cm qtz stkwk 10% ZnS, 2% Cu															
ΞΙ	[161.0: 5 cm irreg stkwk 5% Cu			Τ												
ΞΙ	[165.1: 1 cm @ 40° 10% ZnS															<u> </u>
Ξ Ι	[165.5-166.7: 20% qtz stkwk with 5% cpy															
-				at 166.2 occurs a 2 cm seam at 40°															
<u> </u>	[of ZnS			T	П											
<u> </u>				168.1: 1 cm qv @ 40° 1% cpy			T												
				168.9: 1 cm qv @ 80 5% Zn										1					
Ξ Ι	[- at 169.8 the core is bedded @ 50°			+	\top			+							 	<u> </u>
-				extremely hard core			+	\top						- 1					

:

157

.

		PR	OJEC	T NEW MOON (336) HOLE N.M. 86-13 NEWM	ON	T EXPLORAT	ГЮ	N	OF	CAN	ADA	LIMITI	ED		· · · · · · · · · · · · · · · · · · ·			PA	GE 15	of 17
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	4	LT	Τ					AS	SAYS				RECOV	/ERY
meters		FROM	TO		%					SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		146.3	211.5	Highly Altered Felsic Tuff Cont'd	Γ			Π	Т											
-				- qv @ 172.7: .1 cm @ 40° 50% Zn S																
-				172.8: 1 cm @ 40° 20% ZnS					Τ											
E				@ 173.4: the fractures are chlorite																
-				lined																
E				- from 178.9: the unit is highly altered with																
L .				no traces of the original composition																
				- from 183.9-185.8: the core is fractured //																
				to the ca					Τ	_		_								
-				- from 190-191.0: the core is fractured													_			
F				extensively				Т												
E.				- from 192.0: the unit has less altered					T		_									
Ε				sections that appear to be brown colored					Ī											
E				fine-moderately grained. The section is																
-				non-mineralized. Fractures occur // to				Τ									-			
Ξ				the ca and @ 80°. The brown unaltered				Ι	Τ											
E				rocks in general appear to be a feldspar				Τ												
-				porphyry flow				Τ			_									
				- at 204.8: banding is at 50°				Τ												
-	i			- at 205.1: hematite lined fractures occur				Т	Т											
ΞI				- in the last 3 m feldspars appear to be				1	╈											
-				fresher					T											
-																				
Ξ		211.5	214.0	Andesite Flow					Ι											
-	[- fine grained, dark green colored with small					Τ											
-	[phenocrysts of a pale green material			Τ	Τ	T	T										
ΞI	ĺ			- fractures ranging from 40-80° occur t/o				Ť	T											
-				and are hematized			T	T	T											
	F						-+		-			·	+	+					f	

•

		PR	OJEC	NEW MOON (336) HOLE N.M. 86-13 NEWM	ON	T EXPLORA	TIC)N	OF	CAN	ADA I	IMITE	ED					PA	GE 16	of 17
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION		ALT						AS	SAYS	_			RECOV	ERY
neters		FROM	TO		%			Π		SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		211.5	214.0	Andesite Flow Cont'd																
-				- very minor calcite veining occurs @ 70°																
-				- lower contact occurs @ 40° to the ca																
-		214.0	236.5	Feldspar Porphyry Flow																
-				- altered silc and sericitically in part																
- .				- brown colored generally with pale grey-white																
-				predominantly in the more altered sections		-														
-				- fine grained with .12 cm feldspar																
-				phenocrysts																
-				- fractured with minor qtz veintels																
-				- @ 223.8: 30 cm andesite tuff																
_				- minor hematite occurs t/o																
_				- in part feldspars absent																
_				- fractures are chlorite lined					_											
<u> </u>				- very siliceous from 223.1																
-				- from 234.2: the unit is fresher																
•																				
		236.5	241.4	Andesite Flow																
\mathbf{E}				- fine grained, dark green colored in part					_											
-		-		porphyritic																
_				- weakly chlor alt																
<u> </u>	1	_		- small feldspar upto .1 cm occur																
_				- minor calcite veining occurs erratically t/o																
_																				
<u> </u>]		1						
<u> </u>	ļ																			
-	l										[
·]	l			n yearan tip, et al. a		I – – – I		1				T	T		T					

€ ;

;

, •

HOLE N.M. 86-13 NEWMONT EXPLORATION OF CANADA LIMITED PAGE 17 of 17 PROJECT NEW MOON (336) RECOVERY DEPTH GEOL MINERALIZATION ASSAYS GEOLOGICAL DESCRIPTION ALT INTERVAL FROM TO % SAMP FROM то LENG meters Au RUN % Cu РЪ Zn Ag 245.2 Feldsapr Porphyry Flow 241.4 - similar to 214.0-236.5 -- minor qtz veining - non-mineralized - feldspars weakly altered 245.2 247.2 Feldspar Porphyry Flow - similar to previous only grey colored - @ 245.3: 70 cm fracture zone - lower contacts @ 20° 247.2 248.1 Andesite Flow - similar to 236.5-241.4 248.1 251.7 Feldspar Porphyry Flow - similar to previous 251.7 254.8 Andesite Flow - similar to 236.5-241.4 254.8 E. O. H.

1.1

and the second second second second second second second second second second second second second second second

C	RIL	LH		RECORD	LOCATION	Plateau Grid 2088.7 m	0	300°	-7	ף 75° 75°	C A	ompas cid Te	s s st	CORE	E SIZE	BQ DVERY	> 95%	SHE	ET NO. ET NO. IGED B	1 c Y D.	of 15 Visagi	
		PR	W MOON OJECT		LATITUDE DEPARTURE	1 + 75 N 1 + 65 E	-221	m 300°	-;	75°	A	cid T	est	STAF	RTED A	D Aug.	7/86 31/86		NM MIS	TY DAY Test	Main Depth	Zone
тн	GEOL.	INTE	RVAL	GEOLO	OGICAL DESC		MI	NERALIZATI	ON	ALT	Τ					AS	BAYS				RECOV	ERY
a		FROM	тo				*					SAMP.	FROM	TO	LENG	Cu	РЪ	Zn	Ag	Au	RUN	*
Τ		0	148	Casing																_	3:1	
																					7.6	
I		1.8	27.5	Feldspar Porp	hyry Andesite	Flow			_		\square										9.1	
				- fine graine	d, grey to re	ddish grey matri	x in													_	10.7	ļ
				which felds	par phenocrys	st upto l cm occu	r														12.2	L
ł		-		- feldspar ph	enocrysts var	y from grey to g	reen														12.5	
				depending u	pon alteratio															_	14.0	L
				- minor hemat	ite												•				15.5	
				- minor calci	tic inclusion	18												_			17.1	
				- fracturing	occurs @ 30°	& 70° & 0°															19.8	
l				- calcite vei	ining predomin	nat with veins															21.3	
				parallel to	fracturing																22.9	
ļ				- calcite vei	ins range upto	o 3 cm															24.4	
ļ				- veins are t	ypically barn	ren		·													25.9	
ł				- minor hemat	titic inclusion	on s											•				28.0	
l				- occ calcite	e veins have e	epidote adjacent	to					_									31.1	
				them																	32.9	
				- calcite vei	ins are occasi	ionally vuggy															36.0	
1				- ∿ 5% calcit	e veining occ	curs erratically	t/o														39.0	0.9
																					39.6	[
																					41.2	
	I					······································				Π											44.2	
	I					······································				Π												

							<u> </u>											<u> </u>
DEPTH GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	.T					AS	SAYS				RECOV	/ERY
meters	FROM	TO		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-	27.5	32.9	Maroon Tuff														47.2	
-			- fine grained matrix in which fragments upto														50.3	
-			.2 cm occur														53.3	
			- maroon colored														54.9	1
			- fragments are of various andesitic														56.7	
			composition														57.9	1
- 1			- calcareous														61.0	1
-			- veining consists of minor calcitic stringers									_					63.4	
<u> </u>			- section is barren														64.9	
-			- fracturing is @ 40°				Τ										66.8	·
-			- barren			Τ											68.3	1
			- lower contact is gradational	Γ		Т	Τ										69.2	0.2
-				\mathbf{T}													70.2	1
-	32.9	39.7	Andesitic Tuff	3	2% Pb/Zn			13585	3318	35.0	1.2	.14	. 56	3.01	.19	.006	72.2	0.6
-			- fine grained, green to green-grey with	Γ	1% pyr			13586	35.0	36.0	1.0	.03	. 19	. 84	.08	.004	73.8	3
			reddish tinge	Τ				13587	36.0	37.4	1.4		.07	.77	.09	.004	75.0	0.1
		1	- minor tuffaceous frags upto .2 cm occur	Τ				13588	37.4	38.4	1.0		.11	.78	.09	.004	· 77.1	1.5
-			sporadically t/o	Γ				13589	38.4	39.4	1.0		.02	.06	.05	.002	80.2	2
-			- 25% veining with veins ranging from <.5 cm	Τ				13590	39.4	40.4	1.0	.03	.11	. 56	.08	.002	2 81.7	/
			to upto 20 cm	Τ				13591	40.4	41.4	1.0		.10	.77	.07	.002	83.2	2
-			- veins are variably qtz to calcitic in comp			Τ	Τ	13592	41.4	42.0	0.6		.13	.92	.19	.002	84.7	/
-			- mineralization consisting of various amounts			Τ	Τ	13593	42.0	42.6	0.6	. 16	.57	3.97	.19	<.002	2 86.3	3
-			of galena, sphalerite and chalcopyrite along	Γ			T	13594	42.6	44.6	2.0		.03	.09	.05	.002	87.8	3
-			with pyrite	1				13595	44.6	45.9	1.3		.02	.04	<.01	<.002	2 89.3	3
-			- veins are occasionally colloform					13596	45.9	47.7	1.8		.05	.18	<.01	<.002	<u>90.8</u>	
			- smaller veins are typically calcitic	Γ			Τ	13597	47.7	48.9	1.2		. 16	. 50	.05	.002	92.4	0.1
-		1	- fractures are at 40° & 80° and are limonite														93.9	
-			stained	Γ		Τ	Τ										[

•

	0.504	PR	OJEC.	NEW MOON (336) HOLE N.M. 86-14 NEWN			10	N (CANADA L	IMIT	ED	A.C.	CAVO			PA	GE 3 0	t 15
meters	GEOL	FROM	TO	GEOLOGICAL DESCRIPTION	MI %	NERALIZATION	Î			SAMPEROM	то	ENG	<u>A5</u>	SATS	70	4.0		DIIK	ERY
-		32 0	30.7	Andesitic Tuff Cont'd	-		┫	╈	Ŧ						211	-18	Au	95.4	70
_		24.7		- unit is somewhat similar to Marcon Tuff			1	+	┽									99.1	
-				- av @ 33.9: 50 cm @ 40° 57 PbS. 57 7nS.			1	1	╈			11						100.6	
-				3% pyr, $1/2%$ cpy			1		1									102.1	
-				34.6: 10 cm stkwk 57 pvr			1	1	╈			1-1						103.6	
-				34.8: 5 cm cal-qv @ 20° pyr, 5% ZnS			↑		↑			\top	-					105.2	0.1
-				35.0: 5 cm qtz stkwk 15% ZnS			1		↑								<u>.</u>	107.0	
- '	1			35.2: 1 cm qtz @ 40° 5% ZnS, 5% pyr					╈			\mathbf{T}						108.5	
-				colloform	1				1									109.7	
-				35.3: 15 cm qtz-cal @ 70° 5% ZnS,			1	\top	1									111.3	0.1
-				5% PbS	\square		1		T									112.5	
-				35.5: 5 cm qtz-cal stkwk 5% ZnS			1		T			1-1						114.0	
-				35.6: 1.5 cm qtz vein colloform @ 70°			1	+	1			1						115.5	
-	1			15% ZnS			T	Т	Т									116.1	
-	[35.8-36.0: broken core 50% qtz vein	Τ		Τ		T									119.5	
				with 5% ZnS	T		T		T			11						122.5	
-	Ĩ			36.25: 2 cm qtz vein @ 80° colloform														125.6	
-	ſ			5% ZnS	Γ			T	T									127.7	
-	Ī			36.6: 10 cm qv @ 80° colloform, 5% ZnS					T									129.8	
- 1				37.0: 10 cm stkwk 20% ZnS	Τ		Т	Τ	Т									132.0	
-	ſ			37.5: 15 cm qv broken contacts 5% PbS/	1		T		T			11						134.7	
-	1			ZnS	1				T									137.8	
-	Ī			37.8: 2 cm @ 80° 20% ZnS, 2% cpy	1		T		T									141.8	0.6
_				38.0: 25 cm @ 20° to ca 10% PbS/ZnS			Τ											143.8	
-				- from 38.0: veining is predominantly calcitic														146.3	
-	[@ 38.9: 20 cm cal-qtz stkwk 5% pyr tr Zn5	3		Τ		Τ									147.5	
-	Γ			39.3: 30 cm qtz cal stkwk 5% PbS,			T											149.1	0.4
-	ſ			5% pyr			T		T									152.0	

~

	PR	OJECT	NEW MOON (336) HOLE N.M. 86-14 NEWN	ION	T EXPLORAT	10	1 0	F CAN	NADA I		ED					PAGE 4	of 15
DEPTH GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	.T.			_		AS	SAYS			RECŎ	VERY
meters	FROM	TO		%				SAMP	FROM	то	LENG					RUN	%
-	39.7	40.6	Andesite													153.3	
			- fine grained, light red colored	1	1/2 2 Pb/Zn											154.8	
F			- qtz stkwk to totals 40° in the first 70 cm		1/2% pyr											156.4	
E			- qtz veins are dark green colored							_						157.0	>
			- 40.2: 10 cm qtz vein brxx 10% PbS, 5% Zn,													158.5	\$
			5% pyr													160.9	2
			- from 40.3-40.6: core all fractured													161.5	5 0.1
										_						163.1	1
	40.6	46.2	Andesitic Tuff	1	1% Pb/Zn											164.1	1
			- similar to 32.9-39.7				Τ									165.2	2
F			- first 60 cm fractured with approximately	Γ			Τ					_				166.4	4
Ε			20% qv in which 10% PbS/ZnS occur	Г			T						1			168.3	3
El			- 41.2: 35 cm qtz @ 15° to ca 10% PbS/ZnS					1								169.8	8
F			- 41.6: 30 cm qtz-cal vein stkwk tr pyr	Τ			Τ									171.0	6 .1.2
			- 42.0: 45 cm qtz vein brxx in part 10% PbS/													172.0	8
			ZnS, 25% cpy				1	1								174.4	4
			- from 42.5: the unit is less mineralized and									<u> </u>				175.	9
			appears bedded @ 50°	1			T	1								176.	5
	<u> </u>	t	- veining is predominantly calcitic	1	1											177.	d 0.2
		1	- to 44.3 % 20% calcite veining, then section			1	T									177.	1
-		1	has less than 5%	1	1											178.0	d
-			- the unit is also coarser grained		1 1	1							1		1	178.	e 0.3
-			- @ 43.0: 4 cm calcite vein @ 80° 15% pvr	1			1-									179.2	2 0
-			45.0: 2 cm qtz vein @ 80° collaform	1			1						1			180.	1 0.3
-			10% pyr, 5% PbS/ZnS	Τ		Τ	Τ									180,8	0
				Τ			Τ									181.1	0.1
					11	\top	1									181.4	0.2
		1		Τ	1		1										
<u>- </u>		t		+—	†	-+-				+			t	+			

~

164

•

		PR	OJECI	NEW MOON (336) HOLE N.M. 86-14 NEWN	AON	T EXPLORAT	10	1 0	F CAN	IADA I	LIMIT	ED					PAGE 5	of 15
GE	oL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	AL	T			_		AS	SAYS			RECÕ	VERY
	[f	ROM	то		%				SAMP	FROM	то	LENG	Cu	РЬ	Zn	Ag	Au RUN	1%
	Τ	46.2	52.1	Feldspar Porphyry Andesite Flow	Tr	cpy PbS/ZnS											182.0	0.3
				- fine grained, dark green colored in which											i		182.	9 0.6
1				feldspar phenocrysts upto .4 cm occur													183.	2 0.2
	L			- the feldspar phenocrysts are white													184.	1 0.7
	L			- veining is predominantly calcitic although													184.	7 0.2
				minor ~ 5% quartz veining occurs													185.	3 0.3
				- mineralization consisting of galena,													186.	0 0.3
	L			chalcopyrite, sphalerite and pyrite in													186.	5 0.1
				various amounts occurs primarily within													187.	5
				quartz veins				1									188.	7 0.1
				- 46.7: 3 cm qv @ 40° 5% PbS, 5% pyr													190.	2
	Γ			48.3: 1 cm colloform @ 20° 20% ZnS, 5% PbS													190.	8
	Γ			48.8: 2 cm @ 60° 50% PbS/ZnS	Γ												191.	1
	Γ			49.0: 15 cm stkwk 2% PbS/ZnS, 5% pyr			Τ										192.	9
	Γ			- hornblende frags are ser alt			Т										194.	2 0.:
	ſ			- epidote on occasion weakly developed	Τ		T	Τ									195.	1
				- 50.0: 30 cm cal vein // to ca	Τ		T										195.	7
	Γ			- 50.7: 30 cm fracture // to ca	Т		T	Τ									197.	2
				- last 40 cm appears bleached to light green			T	Τ									197.	8
							Τ						Ī				199.	0
	Γ	52.1	60.1	Feldspar Porphyry Dacite Dyke													200.	6
	Γ			- fine grained, green in which grey unaltered													202.	4
	Γ			feldspar phenocryst occur	Τ												203.	9
				- fresh													204.	5
	Γ			- approximately 10% mafics			Τ										205.	7
				- hematite occurs along fracture faces	Т		T										207.	0
	Γ			- from 53.3-59.0: rock is all small fragments	1												208.	2
					1-		1	Τ									208.	8

*

_		PR	OJEC	NEW MOON (336) HOLE N.M. 86-14 NEWM	ON	T EXPLORA	TIC	N	OF	CAN	ADA	LIMITI	ED					PA	GE 6	of 15
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION		NLT.				_		AS	SAYS				RECON	/ERY
meters		FROM	το		%					SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
•		52.1	60.1	Feldspar Porphyry Dacite Dyke Cont'd															210.3	
-				- from 52.8-53.2: the unit is fractured and															211.8	
-				altered barren															213.4	
				- 57.2-57.9: highly altered, bleached															213.7	
-				section. Chlor alt and barren. Original															214.9	
-				characteristic unknown															216.7	
Ξ.				- from 58.7-60.1: well altered similar to															218.2	
- 1				57.2-57.9															219.5	
																			221.0	
-		60.1	66.2	Andesitic Tuff					Τ											
				- in part andesite porphyry	1	pyr														
-				- biotite altered to white (sericite)																
				- weakly chlor alt					Τ											
	[- minor calcite veining																
-	[- minor dissem pyr						13598	65.7	66.8	1.1	.08	.47	3.05	.15	.003		
				- qv @ 63.1: 4 cm @ 35° tr ca 20% Zn, 5% Pb	Γ					13599	66.8	68.3	1.5	. 20	.07	.29	.10	<.002		
-	[- @ 65.7: 30 cm qv @ 40° 30% ZnS/PbS																
-	ſ				Γ				T											
		66.2	70.9	Coarse Andesitic Tuff					T											
-	ſ			- fine grained, greyish green matrix in which	Γ															
-	ſ			fragments upto 3 cm occur	Γ	11			-						1					
-	Ī			- fragments are variable in description but																
-	ſ			appear to be andesitic in composition																
E				- minor pyrite occurs t/o in small dissem					1											
-				- along fracture faces limonite alt is located				Т	Т						T					
•	[- fragments are generally black or red in			T	T												
E				color			1		1						†	†				
	Γ					11		1	╈								_			
- !	- Г					<u></u>	-†	+	-+-			+	-+		+	+		┝		~

•

HOLE N.M. 86-14 NEWMONT EXPLORATION OF CANADA LIMITED PROJECT NEW MOON (336) PAGE 7 of 15 DEPTH GEOL INTERVAL RECOVERY MINERALIZATION ALT ASSAYS GEOLOGICAL DESCRIPTION FROM TO % SAMP FROM TO LENG meters Au RUN % Рb Cu Zn Ag 70.9 Coarse Andesitic Tuff Cont'd 66.2 ليراد إنبابيا بالما بالما بالما بالما بالما بالما بالما بالما بالما بالما - @ 67.2: 30 cm zone of 5% pyr, 1% PbS, 1% cpy in erratic stringers - 67.9: 40 cm qtz-cal vein // to ca, 5% pyr, 1% cpy - from 68.2: more splotchy in appearance larger fragments at 69.7: 30 cm fine grained andesite - from 70.0: unit is finer grained lower contact @ 90° 70.9 75.6 Porphyrytic Andesite Flow - fine grained, green colored with small .2 cm feldspar phenocrysts that are generally fresh - veining is predominantly calcite - limonite occurs along fracture faces - at 74.1: 40 cm well altered (ser) coarse fragmental tuff bedded @ 70° - from 75.0: the unit is a mix of felspar porphyry and fine grained tuff Tr PbS/ZnS 87.3 Andesitic Tuff 75.6 - fine grained, green colored - minor fragmentation - non-stratified in general - occasional coarse grained fragmental tuff sections

ana kaja na serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la se

		PR	OJEC	NEW MOON (336) HOLE N.M. 86-14 NEWM	N	EXPLORA	TIO	N	OF C	ANADA	LIMIT	ED					PA	GE 8	of 15
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	UT	T				AS	SAYS				RECŎ	/ERY
meters		FROM	то		%				SAN	IP FROM	ТО	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	%
E		75.6	87.3	Andesitic Tuff Cont'd															<u> </u>
				- minor stratification @ 70°															
E				- minor calcitic fragments															<u> </u>
E				- @ 83.6: 2 cm vein irregular with 15% PbS,															
L				5% pyr															
				- lower contact @ 30°					136	OC 92.7	93.7	1.0	.03	.39	1.63	.01	.008		
L .																			
L I		87.3	113.6	Feldspar Porphyry Andesite Flow															
È.				- similar to 70.9-75.6															
E				- limonite alt along fractures					116	51 93.7	94.7	1.0		1.06	3.36	.28	.006		
E.				- weak alt of biotite sericite					116	52 94.7	95.7	1.0		.37	1.37	.11	.062		
E				- quartz veining is generally minor			Τ		116	53 95.7	96.7	1.0		.89	2.70	.16	.034		
E				- fractures range from 70° to 40°															
E				- from 92.7-96.6: unit contains 40% qv erratic															
E				qtz veining with variable PbS/ZnS/Pyr															
E				generally averaging 5% combined															
ΕI				- from 96.6: on the unit is less veined with															
				predominantly quartz veins healing fracture	8														
EI	[- minor chlorite along the fracture faces															
ΕI				- @ 99.5: 1 cm qv @ 30° 50% PbS/ZnS				Т											
ΕI	[105.5: 1 cm qv @ 30° 5% PbS/ZnS			T												
E				106.0: 40 cm fracture zone						1									
E				107.6: 20 cm fracture zone			Т	Т											
				109.7: 15 cm pink calcite veining			T												
				111.3: fracture for 50 cm // to ca lower			Т		Τ										
	L			contact is non-descript			Τ	Т											
ΕI																			
E							T		1										
	Γ		1				+	1	1	1					+		+		

•

(336) HOLE N.M. 86-14 NEWMONT EXPLORATION OF CANADA LIMITED PROJECT NEW MOON PAGE 9 of 15 ASSAYS RECOVERY DEPTH GEOL MINERALIZATION ALT INTERVAL GEOLOGICAL DESCRIPTION % SAMP FROM TO FROM TO LENG Zn Au RUN % РЪ meters Cu Ag Andesitic Agglomerate 113.6 118.9 - fine grained, green dark green matrix in which rounded fragments upto 3 cm occur - fragments are rounded and are andesitic in composition and are light green بالداء ليليليا - blotchy in appearance - veining consists of minor qtz-calcite veinlets that healed fractures 118.9 124.2 Andesite Flow - fine grained, green colored in which small ململماململململما calcite fragments occur (generally less than .2 cm) veining is generally absent generally barren - fractures occur at 50° and 80° 124.2 145.3 Feldspar Porphyry Andesite Flow - similar to previous with minor calcite fragments والمرام المرام المرام الم - veining is generally minor with qtz-calcite stringers occurring as healing within fractures - feldspars are occasionally green colored

н	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	J						AS	SAYS				RECÖV	'ERY
n		FROM	р		%				SAN	19 FI	ROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		145.3	147.5	Sheared Feldspar Porphyry Andesite																
				- lighter green almost bleached green colored																
				- gouge is intermittently developed t/o				Τ		Т		_		_						
				- fractured t/o																
Í				- qv fragmentation totals 15%																
								Τ	T											
.]		147.5	156.5	Feldspar Porphyry Andesite Flow																
				- similar to previous																
				- minor qtz-cal vein ~ 2%					Τ											
				- generally barren				Τ												
	I			- fractures at low angles to ca and at 80°					T											
1	[- fractures have weak chlor alt on occasion																
	[T			T										
	[156.5	177.7	Shear Zone: Feldspar Porphyry Andesite Flow			T		Τ											
1	[- heavily fractured zone in which approximately			Т													
1				80% of the core is in pieces less than 10 cm	9		Т	Τ		Т										
	Ι			long						Τ										
1				- minor calcite inclusions within the core																
	E			- occasional limonite																
				- veining minor			Τ	Γ		T										
	[- @ 164.1: .5 cm qv @ 80° 30% cpy			Т			Τ										
ł				169.0: 10 cm gouge																
	[166.1: .3 cm @ 80° barren				Τ												
				171.2: 25 cm qv @ 80° barren									_							
				172.3: 2 cm qv 2% PbS			Τ													
	L]		172.5: 3 cm qv @ 20° 20% ZnS, 1% cpy:			Τ	Γ		Γ										
				172.8: 1 cm qv @ 35° 5% PbS																
								Γ		T								1		

. i

				(i									(_
						EXPLOR	AT 10	N C	OF CAN	ADA L	IMITE	D					PAC	Ξ
		PR	OJECT	NEW MOON (336) HOLE N.M. 86-14 NE				<u>іт</u>	1				ASS	AYS				RE
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	ev l		$\frac{1}{1}$	Ē	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	R
meters		FROM	то				┼╌┤	+-										-
-		156.5	177.7	Shear Zone: Feldspar Porphyry Andesite Flow			++	-+										_
F	 			Cont'd			╉╌┨	-+-										┡
F				174.4: 5 cm qv 40% PbS/ZnS		L	+											L
F	1			- from 176.5: highly fractured			╶╂╼╼┥	┝─╋╹										
F	ł			176.5: 10 cm stkwk 30% ZnS			+-	┝╼╋╸										1
F				177.0-177.7: 20% qtz frags some				\vdash	11654	172.0	174.6	2.6		.18	.98	.08	<.00	<u>2</u>
F				mineralized				┠╋	1165	174.6	176.5	1.9		.03	.12	.03	<.00	<u>4</u>
F				177.7-178.0: predominantly qv with 10%		<u>}</u>	+-	┟╌┼	11656	176.5	177.7	1.1		.30	2.09	.10	.00	2
F				PbS/ZnS 2% cpy		<u> </u>		┼┼										╇
F			T	178.0-178.5: andesite agglom with 5% g	<u> </u>	<u> </u>	+-	┼╌┼										\bot
F							-+-	╂─╂	1165	7 177.7	179.2	1.5		.13	.45	.09	<.00	2
F		177.7	184.4	Quartz Vein - Mineralized Zone	$-+1^{10}$	PBS/Zn	-+-	┼╌┨	1165	8 179.7	180.2	1.0	.32	.72	4.11	35	00	2
F				- section is highly mineralized, highly		2% pyr	-+-	┼─┤	1165	9 180.2	181.4	1.2	.35	6.28	25.00	1.14	.06	2
F				fractured with core recovery generally b	eing	1% cpy	-+-	+	1166	0 181.4	182.	9 1.5	.28	3.17	8.54	.60	.04	16
F			Τ	poor	-+	+		+	1166	1 182.5	184.	4 1.5	.09	1.92	5.74	.29	.0:	28
F				- 177.7-178: predominantly quartz vein wit	<u>h</u>		-+-		1166	2 184.4	186.	0 1.6		.04	.12	<u>01 - 2</u>	<.00	2
F			1	10% PbS/ZnS 2% cpy							1					<u> </u>	<u> </u>	\downarrow
F				- 178-178.5: andesitic agglomerate with 52	qv		-+-	╂──	╏╴┨╼╼╼		<u>├──</u>		1					\downarrow
F				178.5-179.2: all fractured with 20% qv				┼─	+	+	1						<u> </u>	\downarrow
				variably mineralized			-+-	+	╂╍╂╼╼╼	+	+					Τ		\downarrow
F				179.2-180.2: all qv brxx with sulphide			-+-	+	╏╴╂───			1	1					_
F				fragments 15% ZnS, 2% cpy. Minor calc	ite		-+-	+	┼┼──		1	1						4
F				veining included veins @ 45° to ca.	Сру		-+-	╉─	┼╌┼───	+	1	1						4
F				in blebs	+		-+-	╉─	┼╌┼╌╌╸	+		1				\bot	1	\rightarrow
F				180.2-180.8: section highly mineralized	+			+-	++		-		1					
			-1	with 30% Pb/Zn. Highly fractured. P	00 T			-+-	╆╋╼╸		+	+		1	1	T		

н	GEOL	INTE	RVAL	GEOLOGICAL	DESCRIPTION	Mu	NERALIZATION	A	J					AS	SAYS		······		RECOV	ERY
7 78		FROM	TO			%				SAM	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
		177.7	184.4	Quartz Vein - Miner	alized Zone Cont'd															
				180.8-181.1: high	ly mineralized almost															
				massive in part	all fragments															
				181.1-181.4: 407	mineralized semi-massive															
				first 15 cm wel	1 fractured															
				181.4-182.0: core	less fractured 30% Pb/Zn.															
				Minor qv materi	al 2% pyr															
				182.0-182.9: only	20 cm recovered appears in															L
				part to be mino	r felsic flow (~ 40%)															
				10% PbS/ZnS																
				182.9-183.2: 10 c	m recovered ∿ 10% PbS/ZnS															
··				rest rhyolite f	low				Τ											
				183.2-184.1: only	15 cm recovered of the															
				fragment 20% ar	e heavily mineralized with															L
				50% sulphide																
				184.1-184.4: ~ 40	X dark fragments that are															
				well mineralize	d	Γ														L
				- lower contact to	section is fractured	Γ														
		184.4	194.2	Quartz Eye Rhyolite	Tuff-Flow	Τ														
				- fine-medium grain	ed, extremely hard			Ι												
	Ì			- on occasion minor	qtz-eye development	Τ		Ι	Τ											
	1			- unit is greyish b	rown colored	Т														
				- unit is fractured	l @ 80° and at 45° and 10°			Τ												
	Γ			- stratified at 80°	to ca															
	ſ			- veining is predou	inantly calcite															
	1			- feldspar develope	d t/o			Τ	Γ											
	, Г							Т	T	1			Ī							, —

Horization MINERALZATION ALT ASSAMS GEOL INTERVAL GEOLOGICAL DESCRIPTION MINERALZATION ALT SAMP TO LENG Cu Pb Zn Ag A Geol FROM TO ERG TO LENG Cu Pb Zn Ag A I84.4 194.2 Quarter Bye Rhyolite Tuff-Flow Cont'd Image: Control of the second set 6 sausaurite alt Image: Control of the second set 6 sausaurite alt Image: Control of the second set 6 sausaurite alt Image: Control of the second set 6 sausaurite alt Image: Control of the second set 6 sausaurite alt Image: Control of the second set 6 sausaurite alt - at 190.6 - 50 cm fracture zone - at 190.6 - 50 cm fracture zone - at 190.6 - 50 cm fracture zone - at 100.6 - 10.0		PR	OJECT	NEW MOON (336) HOLE N.M. 86-14 NEW	MON	T EXPLORAT	[10	N (OF CA	NADA	LIMIT	ED					PAG	E 13	of 1!
FROM TO LENS Cu PB Zn As A 184.4 194.2 Quartz Eye Rhyolite Tuff-Flow Cont'd Image: Control of the control o	OL.	INTE	RVAL.	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	LT					AS	SAYS			F	VÖJ	/ERY
184.4 194.2 Quartz Eye Rhyolite Tuff-Flow Cont'd		FROM	το		%				SAM	P FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
- minor qtz vein development	1	184.4	194.2	Quartz Eye Rhyolite Tuff-Flow Cont'd															
- minor-mod ser 6 saussurite alt - at 190.6 - 50 cm fracture zone 194.2 195.2 Andesite Porphyry Dyke - fine grained, green with small dark green - fine grained, green with small dark green - upper and lower contact at 10° - upper and lower contact at 10° - fractures @ 80° - fractures @ 80° - fractures @ 80° - dark grey with green phenocryst - dark grey with green phenocryst - minor qtz-eyee Rhyolite Tuff - minor qtz-eyee developed - minor qtz veining - minor qtz veining - minor qtz veining - minor qtz veining - minor qtz veining - minor qtz veining - wak qtz-eye development - fine grained, dark grey brown colored - weak qtz-eye development - weak qtz-eye development - weak qtz-eye davelopment - weak qtz	L			- minor qtz vein development															
- at 190.6 - 50 cm fracture zone				- minor-mod ser & saussurite alt					1			<u> </u>							
194.2 195.2 Andesite Porphyry Dyke	┝			- at 190.6 - 50 cm fracture zone			4	+				╉──┤				{			
- fine grained, green with small dark green		94.2	195.2	Andesite Porphyry Dyke			\dashv	╉	+			+-+							
phenocrysts - upper and lower contact at 10° - minor qtz-calcite veining healing fractures - fractures @ 80° - fractures @ 80° - fractures @ 80° - dark grey with green phenocryst - dark grey with green phenocryst - minor qtz-eyes developed - minor qtz veining - minor qtz veining - fine grained, dark grey brown colored - weak qtz-eye development - minor qtz veining in general t/o	Γ			- fine grained, green with small dark green															
- upper and lower contact at 10°				phenocrysts															
- minor qtz-calcite veining healing fractures				- upper and lower contact at 10°															
- fractures @ 80°				- minor qtz-calcite veining healing fractures															
195.2 201.2 Feldspar Qtz-Eye Rhyolite Tuff	F			- fractures @ 80°				_				-+							<u> </u>
- dark grey with green phenocryst	h	95.2	201.2	Feldspar Otz-Eve Rhvolite Tuff			-	+				┼──┼	<u></u>						
- minor qtz-eyes developed	F			- dark grey with green phenocryst	1			\top	1			1							
- medium grained				- minor qtz-eyes developed	1		1		1	1									
- siliceous	Γ			- medium grained	-		1		1										
- minor qtz veining	Γ			- siliceous			Τ	Τ											
- @ 200.0: 1 cm qv @ 5° 10Z PbS	Γ			- minor qtz veining			Τ	Т											
201.2 206.3 Rhyolite Flow			·	- @ 200.0: 1 cm qv @ 5° 10% PbS															
201.2 206.3 Rhyolite Flow																			
 - fine grained, dark grey brown colored - weak qtz-eye development - minor qtz veining in general t/o - stkwk @ 201.4: 5 cm tr gal/ZnS 	2	01.2	206.3	Rhyolite Flow															
 weak qtz-eye development minor qtz veining in general t/o stkwk @ 201.4: 5 cm tr gal/ZnS 				- fine grained, dark grey brown colored															
- minor qtz veining in general t/o - stkwk @ 201.4: 5 cm tr gal/ZnS				- weak qtz-eye development															
- stkwk @ 201.4: 5 cm tr gal/ZnS	Ľ			- minor qtz veining in general t/o			-	1											
				- stkwk @ 201.4: 5 cm tr gal/ZnS		L	4	\perp											
						L													

<u> </u>		PR	OJECT	NEW MOON (336) HOLE N.M. 86-14 NEWM	ЮN'	T EXPLORA	Г10	N (OF CA	ADA	LIMITE	D				<u> </u>	PA	GE 14	of 15
DEPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT _					ASS	SAYS				RECOV	ERY
meters		FROM	TO		%				SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		201.2	206.3	Rhyolite Flow Cont'd				Τ											
F				- from 203.9-206.6: unit becomes more bleached															
F				in appearnce and there is an increase in				Ι											
F				qtz-calcite veining, veins are generally															
F				barren however at 205.4: a 30 cm qv that is		·													
E				erratic has 5% PbS and 1% cpy															
E .				- at 205.9: 40 cm fracture zone															
E																			
E.		206.3	206.8	Andesite Dyke															
F				- fine grained														L	
F				- green colored															
E				massive, non-mineralized							[
Ε				- minor calcite veining					1										
E				~ upper contact @ 60° while lower is at 40°															
F																			
ΕI		206.8	212.4	Rhyolite Porphyry Flow Tuff	1	PbS/ZnS			11665	208.9	210.3	1.4		.15	.32	.18	<.002		
F				- similar to previous					11666	210.3	212.0	1.7		.05	.13	<.01	<.002		
F				- predominantly brownish-grey colored $\sim 10\%$					11667	212.0	213.6	1.6		.22	.64	.03	<.002		
E				quartz-calcite veining occurs t/o					11668	213.6	215.0	1.4		.08	.21	<.01	<.002		
ΕI				- in the first 2 m the unit is bleached															
ΕI	[- siliceous t/o - hard															
E				- at 208.5 very mottled for 40 cm						[
EI				- from 208.5-209.5: ~ 5 small .15 cm qv				1		I									
E				with 50% ZnS			_	\bot	4										
L I				- 209.5: 5 cm qv @ 20° 50% ZnS tr PbS	1_		-+	_											
El	l								1										
ΕI	l						-	\downarrow	<u> </u>										
.				I	ł.,	1. 1	I	ł	1										

.

•

тн	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	A	Ţ					<u>AS</u>	SAYS				RECOV	'ERY			
ters	0202	FROM	TO		%		T	Т	SAME	FROM	то	LENG	Cu	Pb	Zn	Ag	Au	RUN	%			
		206.8	212.4	Rhyolite Porphyry Flow Tuff Cont'd			T	T														
-				- 210.0: 5 cm qv @ 30° 50% PbS				Т														
•				210.3-211.2: ~ 5% qv with 50% ZnS				Τ														
•				- minor chlorite alt along fractures																		
		212.4	213.9	Feldspar Porphyry Andesite Flow																		
				- fine grained, green colored with white																		
				feldspar phenocrysts																		
				- feldspar phenocrysts are upto .3 cm																		
				- irregular contacts with upper at 30° while				Ι														
•				lower is @ 80°																		
				minor qtz stringers with tr galena and																		
				sphalerite																		
				- qv's generally at 30° to ca																		
				- at 213.5: 25 cm vein at 10° 10% PbS/10% ZnS															 			
. (
		213.9	221.0	Porphyrytic Rhyolite Flow												 		ļ				
				- similar to previous															 			
				- veining less pronounced than previous					<u> </u>		ļ								 			
.				- @ 214.4: 1 cm @ 60° 20% PbS/ZnS veins															<u> </u>			
				generally at 80-60° to the ca														L	 			
				- appears massive in part					1									 	 			
				- at 215.8: 30 cm fracture zone				\perp										 	┣──			
								_	- 										┣───			
.								\bot										 	 			
	l			221.0 E. O. H.	1														 			
	l				4-				<u> </u>									 	┣			
	l			I		1			1	1 1	i l		Į					1				
							·	_	<u> </u>													
--------	----------	------	--------	---------------	-----------------	---------------------------------------	-----	--------------	------------	---------------	------------	--------	-------	------	--------	--------	---------	------	----------	----------	------------	----------
	NEWMO	WT E	XP. OF	CANADA LTD	LEVEL	Surface	DEP	TH	BEARING	DIP	Т	YPE OF	SURVE	YLEN	GTH	34.	7 m	HOL	E NO.	N.M.	86-15	5
	DRIL	LH		RECORD	LOCATION	Plateau	0		300°	-60°		Compas	8	CORI	E SIZE	BQ	•	SHE	ET NO.	l of	5	
		N		,	ELEVATION	2115.51 m	-31	.6 m	300°	-60°		Acid T	est	TOTA	L REC	OVERY	> 95		GED F	JΥ D.	Visagi	e
		PR		r	LATITUDE	224 N								STAF	RTED	Aug. 3	1/86	a	NM	MIST	Y DAY	
				•	DEPARTURE	29 E								COM	PLETE	ED Sep	t. 1/80	PU	RPOSE	Te Ma	xt Nex	it le
DEPTH	GEOL	INTE	RVA!	GEOLO	OGICAL DESC			HM F	RAL IZATIO		r	T				AQ	SAV9	•			DECO	ICOV
neters		FROM	το	0000				T		$+\hat{\tau}$	T	SAMP	FROM	то	LENG	Cu	Ph	Zn	40	Δ.,	RUN	1 %
•		0	1,8	Casing		· · · · · · · · · · · · · · · · · · ·	-+-	╋		╉┈╉╌	╋	1									1.8	1, 6
•	l ·							╋		+ +	┿	1				_			┝───┦		3./ E 0	1.5
-		1.8	20.8	Andesitic Tuf	f			+		┼╌┼╴	╋╌										7.6	1.6
	· ·			- brownish-gr	een colored		-	+-			┢	1									8.8	
-				- fine graine	d			\mathbf{T}		+ +	\uparrow	11669	7.0	8.1	1.1		.17	.47	.07	c.002	10.4	
Ξ		-		- calcareous						<u>† †</u>	┢									\	11.0	
-				- small blebs	of calcite of	cur t/o blebs are		1			╈										13.7	
				less than .	l cm					++	┢	11670	10.2	12.2	2.0		.40	1.15	.09	<.002	15.2	
				- fractures o	ccur at 0° and	1 @ 70°		T			\uparrow										15.9	
-				- to 7.0: the	unit has very	<pre>/ little veining <</pre>	37	1-	·····		T										17.4	0.8
-				- at 6.0: 2 c	m qv € 20° 15	PbS		T			t	11671	14.1	15.2	1.1		.08	. 39	.08	<.002	18.6	
				- from 7.0-8.	0: qtz-cal vei	in brxx, // to ca,					T								—		20.1	
				tr PbS/Zn	S, vuggy						1	11672	15.9	17.4	1.5		.17	. 79	.07	<.002	23.2	
				- from 8.0-8.	8: well fractu	red with minor qv		Τ				11673	17.4	19.3	1.9		.12	.48	.07	<.002	24.1	
				// to ca.	Limonite sta	ined		Τ			Γ	11674	19.3	20.7	1.4		.19	.96	2.77	.002	25.6	
				- 8.8-9.8: mi	nor erratic qu	z-calcite veining	Т	Γ			T										27.1	
	[- from 10.0-1	1.2: the unit	has small black		Γ			Ī										28.7	0.6
				phenocrys	ts and erration	qtz-calcite		Τ		\square	Γ										30.2	
	[veining				Γ			Γ					- 1					31.7	
				- at 10.2: oc	curs a 20 cm c	tz-cal vein with		Γ		\square	Γ										33.2	
	[2% PbS/Zn	S			Γ													34.7	
	Ι			- at 10.9: 40	cm erratic qu	z-calcite veining							†						<u>†</u>	†		
	I			with 2% p	yr								Ì							t		
	<u> </u>		I													1			†			

ĸ,

		PR	OJECI	NEW MOON (336) HOLE N.M. 86-15 NEWM									A.C.C	AVC					to training
EPTH	GEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION				1		1	ASS	ATS		T		RECOV	ER'
etors		FROM	то		%		_		SAMP.	FROM	TO	LENG	Cu	PD	Zn	Ag	Au	RUN	%
		1.8	20.8	Andesitic Tuff Cont'd			_	_	4			┥							\vdash
_				- at 11.9: 5 cm qv @ 30° minor gal sphal				_	<u> </u>										
-				12.0: 5 cm qv @ 30° 30% PbS/ZnS lower				\downarrow											_
_				contact limonite stained				_				 							L
-				- from 12.1-15.2: unit has several fractured					<u> </u>										
_				zones with limontie occurring t/o.															
				Fracturing occurs at:				\bot											
				13.4: 30 cm							I								L
				13.8: 20 cm														[
				14.6: 60 cm															
-				- from 14.2-14.5: ~ 70% qtz-calcite veining															
••				5% pyr, 1% PbS															
•				- from 15.9-17.3: erratic qtz-cal veining															
•				with 5% pyr, 2% PbS/ZnS														L	
•				- at 16.3: 3 cm boxwork vein															
•				16.5: 1 cm boxwork vein	Г														
•				- from 17.3-18.1: veining is minor but contains	s			Ι											
-		·		erratic sparse mineralization	T		Т												
•				- from 18.1-19.3: section has approximately	T		Т												
-		· · · · ·		25% guartz veining with minor PbS/ZnS	T			Т											
•				- at 19.3: 15 cm cal-qtz vein colliform	†—														
•				107 ppy. 52 PbS/ZnS	1		1			1									
-				19.6: 10 cm qtz-stkwk with 10% PbS/ZnS	Î			T	1										
				107 pyrite	\uparrow			Т											
				19.8: 10 cm @ 80° 10% pyr, 10% PbS/ZnS	Τ		Т	Т											
	l t			19.9: 10 cm @ 80° 10% pyr, 5% PbS/ZnS	Τ		T												
· [1	·			1		1	+		1									Γ
	ŀ				1	tt	-†	1	1	1									Γ
												•	•			• •			·

. .

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-15 NEWM	ON"	EXPLORAT	10	N	OF	CAN/	ADA L	IMITE	D					PA	GE 3 (of 5
DEPTH	GEOL	INTE	RVAL.	GEOLOGICAL DESCRIPTION	Mil	NERALIZATION	A	LT						ASS	SAYS				RECOV	ERY
meters		FROM	то		%			Т	S	AMP F	FROM	TO	LENG	Cu	Pb	Zn	Ag	Au	RUN	%
-		1.8	20.8	Andesitic Tuff Cont'd				Τ												
-				20.1: 2 cm qv @ 30° 10% pyr, 5% PbS/ZnS																
-				20% hematite					Γ											
E				- from 20.2-20.4: heavily fractured																
				20.6: 10 cm @ 70° 5% pyr																
E				- the unit at 20.8 has a sharp irregular																
				contact @ 60°																
E																				
<u>-</u>		20.8	21.6	Andesitic Flow																
–				- green colored																
E				- weakly porphyrytic													_			
E				- minor calcitic veining																
E				- feldspar phenocrysts are upto .1 cm in size																
E				- minor limonite along the fracture faces																
E				- lower contact is broken											-					
E																				
F		21.6	24.1	Andesitic Tuff					1	1675	23.2	24.1	0.9		.34	.67	.11	<.002		
F				- greyish-brown colored																
Ε				- coarse grained with fragments upto 1 cm														[
E				generally andesitic in composition																
E				- fragments are rounded to sub-angular																
E				- veining totalling 5% occurs erratically t/o																
E				- veins are generally a combination of qtz																
-				and calcite				_												
			 	- fracturing is as before				_										I		
				- minor dissem pyrite																
<u> </u>			ļ	- from 23.4-24.1: unit has erratic quartz																
<u>ج</u>			L	veining with 5% pyr, tr mal, 5% PbS/ZnS,				_									L			
F 1				I limonite occurs along tracture laces	1			1					I							

GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	M	NERALIZATION	ALI	r					ASS	SAYS				RECOV	/ERY
	FROM	то		%		Т	Γ	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
	24.1	26.1	Andesite Porphyry Flow															
			- similar to 21.6-24.1															
			- first 30 cm limonite altered														 	_
			- from 25.2-25.6: erratic siliceous zone in					11676	25.0	25.6	0.6		. 89	2.53	. 20	.004		
			which 5% PbS/ZnS occurs														<u> </u>	
			- broken up with limonite alteration t/o														l	
			the fractures														ļ	<u></u>
																	ļ	┢───
	26.1	26.5	Quartz Vein															\bot
			- grey-white qv whose first 15 cm is heavily					11677	26.1	27.3	1.2		.64	2.26	.22	.002		\downarrow
			limonite altered with minor Mn stain										l	Í				
			- 1% PbS/ZnS															
			- lower contact @ 60°			Τ												
	26.5	29.9	Andesite Agglomerate															
			- fine grained, grey-green matrix in which	Τ				11678	27.3	28.5	1.2		.13	.27	<.01	<.002	2	
			fragments (rounded & andesitic) upto 1 cm				Τ_	11679	28.5	29.9	1.4		.17	.85	<.01	<.002	2	
			occur	Τ														
			- on occasion the unit is well altered. At	T			Τ						_					
		1	27.1: the unit has 20 cm argillic and	Τ		T	Γ											
		1	saussurite alteration and is bleached			Т	Τ											
			greyish-white			Τ												
			- from 26.4-27.3: the unit contains coarse	Τ		Τ												
		1	fragments. Sulphides consists of 5% PbS/			Τ	Τ											
			ZnS and 1/2% cpy along with 2% pyr occur	Τ														
			- from 27.3-27.6: well altered section with	T			Γ											
			PbS/ZnS			Τ	Τ							1				<u> </u>
		1		T	tt		1			1				ı ——				<u> </u>

r			0 15 01								INALTI	50		(<u> </u>		<u></u>	
		PR	UJEC	NEW MOON (336) HOLE N.M. 86~15 NEW M		EXPLORA												5	of 5
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION						· · · · · ·	AS	SAYS				RECOV	<u>/ERY</u>
meters		FROM	TO		%				SAMP	FROM	_T0	LENG	Cu	РЬ	Zn	Ag	Au	RUN	%
		26.5	29.9	Andesite Agglomerate Cont'd										L					L
E				- from 27.6-28.6: the unit has minor quartz										L					
E				veining in which minor grits of galena and										L					L
E				sphalerite occur. Somewhat chaotic in															
E				appearance															
E				- from 28.6-29.9: weak quartz-vein stockwork															
E				occur along with sporadic PbS/ZnS									_						
E				mineralization. Highly altered throughout,															
F				chlorite and saussurite	Γ		Т	Т											
F				- at 29.8: 10 cm qv @ 70° 10% ZnS?	1				1										
F									1						_				
		29.9	34.7	Maroon Tuff	1			\uparrow	1										1
F			1	- fine grained	1		1	1	1										<u>†</u>
F				- maroon colored	\uparrow			1											Ţ
				- minor calcite veining	1			1											T
				- harren	1-		-	╈						 					1
F			<u> </u>				-+	+	1										1
			t		1		-1		-{					<u> </u>					1
				34.7 E. O. H.			-+	-	1										1
			<u> </u>		1-		-+												1
			<u> </u>		+		-1	+	+						<u> </u>			1	1
					╋		-+								<u> </u>				1
							-†		1						f				1
					+		-+	-	+						<u> </u>			1	1
			╂───		1		-+	+	+										1
F					┢		+												1
E			<u> </u>	<u></u>	+	<u> </u>	-+	-						<u> </u>	<u> </u>				†
E			╂		╀─	f f	+	-+	1	<u>├</u>					†	t			<u>†</u>
E I			╉────	<u>+</u>	╋	∤──── ┦	-+	+	+	<u>├ </u>					<u>├</u> ────	<u> </u>			†

(

•

.

	NEWMO	NT E	KP: OF	CANADA LTD	LEVEL	Surface	DEPT	ПН	BEARING	DI	9	TYP	₩E OF	SURVE	YLEN	GTH	35.4	4 m	HOL	E NO.	N.M.	86-16	
		1 LL			LOCATION	Plateau Grid	0		<u>2</u> 58°		50	Co	mpass		CORI	E SIZE	BQ	•	SHE	et no.	1 of	3	
			ULE	RECORD	ELEVATION	2126.00 m	-35.	4 m	258°	-	50	Ac	id Te	st	TOTA	L REC	OVERY	> 9'5%	LOG	GED B	γy D.	Visagi	.e
		NE	O JECT	1 r	LATITUDE	3 + 18 N									STAF	TED	Sept.	2/86	CLA	JM 1	ISTY	DAY	
		FR		l .	DEPARTURE	0 + 19 W									СОМ	PLETE	D Sep	t. 2/8	5 PUE	POSE	Test	Main 2	lone
ЕРТН	GEOL	INTE	RVAL	GEOL	DGICAL DESC	RIPTION	M	INE	RALIZATIO		ALT	T					AS	SAYS				RECOV	ERY
neters		FROM	TO					T			Ē	E	SAMP	FROM	TO	LENG	Cu	Pb	Zn	Aγ	A11	RUN	*
<u></u>		0	4/3	Casing				+		╋	\square											4.3	
	[1							1		\mathbf{T}	П											4.6	
		4.3	8.4	Fragmental An	desitic Tuff	······································		\top		╋	Ħ											5.8	
				- fine graine	d, light gree	n matrix in which		T		T	Π	T										6.7	
•				fragments o	of green andes	ite upto 1 cm that				T	Π	T										8.2	0.3
	!	-		are both an	ngular & round	ed occur. Uniform		Τ		T	\square											9.1	0.1
Ξ				composition	nally			Γ		Γ												10.7	0.1
				- heavily fra	actured t/o wi	th the section at				Τ								• 1				12.2	
				5.8 to 8.3	being highly	fractured																13.1	
•				- the section	n is barren																	14.6	
								Ι		Γ												16.2	
•		8.4	15.9	Andesite Tuff	E					Т												16.5	
				- light grey-	-green-reddish	green, fine grain	ed,	Ι														18.0	
-				weakly frag	gmental																	19.5	
	· ·			- quartz veir	ning is minor										_							21.0	0.1
				- fractures a	at 0°, at 60°																	22.6	
				- minor calci	ite fracture h	ealing																23.2	
																						24.7	
		15.9	24.6	Andesite Tuff	E																	26.2	
				- similar to	above, howeve	r qtz-cal veining						1	1680	17.2	18.7	1.5		.01	.02	<.01	<.002	27.7	İ
				occurs tota	alling 20% of	the unit. Veins a	re					1	11681	18.7	21.0	2.3		.01	.02	<.01	<.002	29.3	
				predominan	tly calcite							1	1682	21.0	23.1	2.1		.03	.07	<.01	<.002	30.8	
_				- @ 18.1: oc	ccurs 1 cm gou	ge					\square	1	1683	23.1	24.6	1.5		.01	.04	<.01	<.002	33.8	
-				t	r dissem pyrit	e																35.4	
	L J	1		1			I	1		1	1			l I			J			I	1		٦. ٦

		OJECT	NEW MOON (336) HOLE N.M. 86-16 NEWM	IONT	EXPLORA	T IO	N	<u>OF</u>	CAN	IADA I	IMITE	D					PA	GE 2	of
SEOL	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT						ASS	SAYS				RECOV	VE
	FROM	то		%					SAMP	FROM	то	LENG	Cu	₿Ъ	Zn	Ag	Au	RUN	I
	15.9	24.6	Andesite Tuff Cont'd																
[- minor tr PbS in some veins																
			- weak chlor alt on occasion																I
			- minor tr limonite																
			- lower contact sharp @ 75°																I
																			I
[24.6	26.4	Andesitic Tuff (X-stal)																
			- med grained, green colored																
			- calcareous																
Γ			- minor limonite along fracture faces					Τ											1
ſ			- fractures // to ca and at 30°					Τ											
ſ			- lower contact @ 70°					Т											1
ľ																			1
	26.4	29.7	Andesitic Tuff					Ι											
[- a chaotic assemblage of andesitic tuffs.					Τ											
ſ			Compositionally similar however, the unit																
ſ			varies physically from fine grained with																
Γ			minor fragmentation to a unit with coarse																
			fragmentation																-
[- the unit has minor calcite veining																
[Τ											
Ľ	29.7	33.8	Porphyrytic Andesite Flow																
			- unit is fine grained, dark grey colored in																
E			which light green calcareous phenocrysts																
			upto .5 cm occur																I
			- veining is minor consisting of erratic calcite		-														1
[stringers, minor epidote along some of the					Ţ											1
Γ			fracture zones					T											1

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-16 NEWM	ON.	EXPLORA	TIC	N	OF	CANA	ADA L	IMITE	D					PAC	Э Е з (of 3
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT						ASS	SAYS				RECOV	ERY
meters		FROM	то		%				s	SAMP F	ROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		33.8	35.4	Maroon Tuff																
-				- fine grained, maroon colored, non-mineralized											_					
F				calcareous																
E																				
E																				
E				35.4 Е.О.Н.																
E.																				
E																				
E																				
F									Τ											
F								Π			_									
F					Γ															
F			t			······			1											
F					Π			Т	Т											
F																				
			1																	
F									1											
1																				
F									1											
F					1-				+											
F									1											
F									+											
-									-1-											
F																				
F																				
F				İ					+							— —				
F							Π		+											
					t				-		1					<u> </u>				

(

(

. 183

.

•

1				

	NEWMO	NT E	XP. OF	CANADA LTD	LEVEL	Surface	DEPTH	BEARING	DIP	₽	YPE OF	SURVE	LEN	GTH	76.2	□	HOL	E NO.	N.M.	86-17	
	DRIL	LH	OLE	RECORD	LOCATION	Plateau Grid	-76 2	300 °	-/0	+-	Compas				BQ		J	ET NU.	<u>l of</u>	6	
		NE	w moon		ELEVATION		-70.2	<u> </u>	-47		ACIU				OVERT	> 95%	100	SGED I	BY D.	Visagi	.e
		PR	OJECI	r	LATITUDE	0 + 35 S	<u> </u>		╂───	+-			STAF	RTED	Sept.	2/86	101	NM.	COPPER	CLIFF	1000
					DEPARTURE	E 1 + 43 E				1			COM	PLETE	ED Sep	t. 3/8		RPOSE	lest	6-13	
DEPTH	GEOL.	INTE	RVAL	GEOL	OGICAL DES	CRIPTION	MIN	ERALIZATIC	AL	.Т					AS	SAYS				RECO	VERY
meters		FROM	TO			•	*				SAMP.	FROM	TO	LENG.	Cu	РЪ	Zn	Ag	Au	RUN	*
E		0	1.18	Casing						Ι										4:3	2.5
F																				4.9	
F		1.8	5.9	Andesitic Tu	ff				T											6.4	1
£				- fine grain	ed, reddish	green colored														7.9	
E				- minor calc	ite veining															8.2	
E		-		- fractures	@ 60° & 0°	<u></u>				T										9.6	
E				- barren						T								i —		11.0	t
E				- lower cont	act at 40°														1	11.6	1
E				- calcareous	5					T										12.2	
F									++		1							1		13.7	
F		5.9	16.7	Calcareous A	ndesitic Flo	v													1	15.2	
F				- fine grain	ned, green co	lored in which					11684	16.0	17.7	1.7		.01	.03	.50	<.002	16.2	:
F				irregular	calcite frag	ments upto 1.5 cm			++		1							<u> </u>		18.6	, †
F				occur					11											21.0	,
F				- weakly por	rphyrytic													1		22.0	1
F				- minor epid	iote altered	clots														23.5	,
F	ľ			- minor calc	te stringer	occur sporadically				1									t	25.0	, <u> </u>
F	Ī			@ 30° to t	che ca				1-1-										<u> </u>	26.5	,
F	ľ			- fracturing	g occurs at 2	0° and @ 30-40° and				╈										28.0	,
F	1			are genera	ally dry, from	14.2-16.9: the unit	- 1-1			+										29.5	,
F	f			has less c	alcitic frag	mentation. At 16.1:			++	1-	1							<u> </u>		32.6	,
F	T			l cm qtz-c	al @ 10° tr	gal, tr pyr				╈	+									34.1	l
F	t						- -+		++	+-	++									35.7	
F	t					<u></u>	-++		++	+	11							<u>├</u> ───	<u> </u>	<u> </u>	+

				MINED AL IT ATTAL	A1 -	T	I				Acc	SAYS				RECOV	FP
SEOL.	FROM		GEOLOGICAL DESCRIPTION	MINERALIZATION		 T	SAMP	FROM	то	ENG	43		7_	4.5		RIIN	6 9/
						╋			10		<u> </u>	PD	<u>2</u> n	Ag	Au	37.2	-
	16.7	21.1	Porphyrytic Andesite Flow		-+-	+-	<u> </u>									38.7	
			- fine grained, purple matrix in which feldspar		+-	╉─	11685	17.7	19.9	2.2				<.01	<.002	40.2	
			phenocrysts that are upto .5 cm occur		-+-	╈										43.9	
			- the phenocrysts are saussentized moderatery	· · · · · · · · · · · · · · · · · · ·	-+-	╉─	11686	19.9	21.0	1.1				<.01	<.002	45.4	
			- calcite fragments occur t/o		+	+	11000									46.9	
			- calcite veining is sporadic occurring		+	╋										48.5	
			generally at 10-20 to ca			+								<u> </u>		50.3	F
			16.7: 1 cm @ 40° tr pyr			+-									<u> </u>	51.8	┢
			16.9: 3 cm (2 80° tr pyr			+	<u> </u>							<u> </u>		5/ 9	┞
			17.7: 1 cm @ 2° for 50 cm tr PbS			+-				┨───┤						56 /	┢
			18.5: 1 cm @ 40° 2% pyr			+-										57.8	╀
			19.9: 2 cm @ 40° greenish colored											──	┨	57.0	ł
			- from 19.9-20.8: a 20% veining of which only		+											6/ 2	ł
	<u> </u>		minor pyrite is located					 								66.0	ł
		<u> </u>		ļ												60.0	ł
	21.1	22.8	Andesitic Tuff		-+		┨────									09.5	ł
		 	- similar to 5.9-16.7			+	_							<u> </u>	<u> </u>	71.9	ł
			- upper contact @ 30°			\perp	<u> </u>	ļ							ļ	/3.5	ł
			- barren				ļ	ļ								74.7	1
			- lower contact somewhat gradational					<u> </u>						ļ	ļ	76.2	ļ
											-			ļ	_		ļ
	22.8	29.3	Andesite Flow											_	1	ļ	ļ
			- fine grained, reddish-green matrix in which					L							ļ		ļ
			phenocrysts upto 1 cm occur					ļ									ļ
			- the phenocrysts are greyish-black colored and	l		\bot		ļ						ļ			ļ
j			are generally somewhat blurred in definition														l
]			- minor calcite veining occurs sporadically														l

.

		PR	OJECI	NEW MOON (336) HOLE N.M. 86-17 NEWM	ON ⁻	T EXPLORAT	ГЮ	N	OF	CAN	ADA L	IMITE	D					PAC	SE 2 o	ef 6
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT						ASS	SAYS				RECOV	ERY
meters		FROM	то		%				S	AMP	FROM	TO	LENG.	Cu	РЬ	Zn	Ag	Au	RUN	%
		16.7	21.1	Porphyrytic Andesite Flow															37.2	
-				- fine grained, purple matrix in which feldspar															38.7	
-				phenocrysts that are upto .5 cm occur					11	1685	17.7	19.9	2.2				<.01	<.002	40.2	
-				- the phenocrysts are sausseritized moderately															43.9	
-				- calcite fragments occur t/o		·			11	1686	19.9	21.0	1.1				<.01	<.002	45.4	
-				- calcite veining is sporadic occurring															46.9	
-				generally at 10-20° to ca															48.5	
_				16.7: 1 cm @ 40° tr pyr															50.3	
<u> </u>				16.9: 3 cm @ 80° tr pyr															51.8	
-				17.7: 1 cm @ 2° for 50 cm tr PbS															54.9	
-				18.5: 1 cm @ 40° 2% pyr															56.4	
E				19.9: 2 cm @ 40° greenish colored															57.8	
E				- from 19.9-20.8: a 20% veining of which only															61.6	
E		_		minor pyrite is located															64.3	
-					Į														66.0	
F		21.1	22.8	Andesitic Tuff															69.5	
F				- similar to 5.9-16.7															71.9	
F				- upper contact @ 30°															73.5	
F				- barren															74.7	
F				- lower contact somewhat gradational															76.2	
F																				
E		22.8	29.3	Andesite Flow																
F				- fine grained, reddish-green matrix in which																
E				phenocrysts upto 1 cm occur																
<u> </u>				- the phenocrysts are greyish-black colored and																
-				are generally somewhat blurred in definition																
E				- minor calcite veining occurs sporadically																
-				t/o																
			[1				T								T			

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-17 NEWN	ION.	T EXPLORA	TIC	N	OF	CAN	ADA L	IMITE	D					PA	GE 3	of 6
PTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	4	LT						ASS	SAYS				RECOV	ERY
eters		FROM	то		%				S	SAMP	FROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
-		22.8	29.3	Andesite Flow Cont'd																
				- mottled appearance																
.				- homogeneous																
.				- in the last 50 cm the unit is an andesitic																
				tuff that is dark grey-black colored																
.				- lower contact is @ 80°																
				· · · · · · · · · · · · · · · · · · ·																
		29.3	30.9	Feldspar Porphyry Dacite Dyke																
				- fine grained, grey-green in which frags and																
				feldspar phenocrysts upto .2 cm occur	Γ				Т											
-				- the unit is homogeneous and is non-mineralize	đ				Т											
•				- lower contact is at 70°	Г				Т											
				- barren																
					Τ				Т											
		30.9	36.7	Andesite Flow	Ι															
•				- similar to 22.8-29.3					h	1687	31.9	34.3	2.4				<.01	<.002		
				- minor qtz-calcite veining																
·				- 31.9: .5 cm qtz-cal vein // to ca for 30 cm	Г															
			1	tr gal					1											
•				- @ 33.9: 1 cm qtz-cal veins @ 5° for 25 cm	Τ															1
.				tr pyr				\square					-							
														·····						
•		36.7	38.7	Andesitic Tuff																
				- similar to 22.8-29.3	T															
				- upper contact broken					1	11688	38.0	39.6	1.6		.07	.12	<.01	<.002		
·				- 38.1: 10 cm qtz cal stkwk with 2% pyr tr PbS	Τ				T											
				38.4: 15 cm qtz-cal epidote vein with tr PbS	\uparrow				+										······	
									+											t —
· 1			t		+	·····			-+-						— ——		<u> </u>	 	ļ	

•		

.

TO 39.5 48.5 61.9	AL OCCONTRACTOR CONTRACTOR CONTRACTOR FO 9.5 9.5 Porphyry Andesite Flow - similar to 22.8-29.3 - - minor veining - - barren - 8.5 Andesite Flow/Tuff - similar to 5.9-16.7 - - calcite amygdule occ developed - minor epidote associated with qtz-cal veins and with fracture zones	%				SAMP	FROM	<u>то</u>	LENG	Cu	Pb	Zn	Ag	Au	RUN
39.5 48.5 61.9	9.5 Porphyry Andesite Flow - similar to 22.8-29.3 - minor veining - barren 8.5 Andesite Flow/Tuff - similar to 5.9-16.7 - calcite amygdule occ developed - minor epidote associated with qtz-cal veins and with fracture zones 														
48.5	 similar to 22.8-29.3 minor veining barren 8.5 Andesite Flow/Tuff similar to 5.9-16.7 calcite amygdule occ developed minor epidote associated with qtz-cal veins and with fracture zones 														
48.5	 minor veining barren 8.5 Andesite Flow/Tuff similar to 5.9-16.7 calcite amygdule occ developed minor epidote associated with qtz-cal veins and with fracture zones and with fracture zones 														
48.5 61.9	- barren 8.5 Andesite Flow/Tuff - similar to 5.9-16.7 - calcite amygdule occ developed - minor epidote associated with qtz-cal veins and with fracture zones														
48.5 61.9	 8.5 Andesite Flow/Tuff similar to 5.9-16.7 calcite amygdule occ developed minor epidote associated with qtz-cal veins and with fracture zones 														
48.5 61.9	 8.5 Andesite Flow/Tuff similar to 5.9-16.7 calcite amygdule occ developed minor epidote associated with qtz-cal veins and with fracture zones 				+				1 1						
61.9	 similar to 5.9-16.7 calcite amygdule occ developed minor epidote associated with qtz-cal veins and with fracture zones 			1	+				1 1						
61.9	 calcite amygdule occ developed minor epidote associated with qtz-cal veins and with fracture zones 					1									
61.9	- minor epidote associated with qtz-cal veins and with fracture zones		t		\top										
61.9	and with fracture zones														
61.9															
61.9															
	1.9 Maroon Tuff					1									
	- maroon colored, fine grained tuffaceous														
	unit			Τ											
	- in first 1 m has several calcitic blebs	Γ		Τ	Τ										
	- barren				Τ										
	- veining is minor														
	- fractures are commonly developed @ 40° and														
	@ 70°				Τ	1									
	- lower contact is gradational				Τ										
64.1	4.1 Andesitic Tuff														
	- similar in part 22.8-29.3														
	- minor limonite alt along fractures at 63.1														
	- veining is generally barren	\bot													
		4.1 Andesitic full - similar in part 22.8-29.3 - minor limonite alt along fractures at 63.1 - veining is generally barren	4.1 Andesific full - similar in part 22.8-29.3 - minor limonite alt along fractures at 63.1 - veining is generally barren	4.1 Andesitic full - similar in part 22.8-29.3 - minor limonite alt along fractures at 63.1 - veining is generally barren	4.1 Andesitic full - similar in part 22.8-29.3 - minor limonite alt along fractures at 63.1 - veining is generally barren	4.1 Andesitic full - similar in part 22.8-29.3 - minor limonite alt along fractures at 63.1 - veining is generally barren	4.1 Andesitic full - similar in part 22.8-29.3	4.1 Andesitic full - similar in part 22.8-29.3 - minor limonite alt along fractures at 63.1 - veining is generally barren	4.1 Andesific full - similar in part 22.8-29.3	4.1 Andesific full - similar in part 22.8-29.3	4.1 Andesitic full - similar in part 22.8-29.3	4.1 Andesific full Image: Constraint of the second se	4.1 Andesitic full - similar in part 22.8-29.3	4.1 Andesitic full Image: Constraint of the second se	4.1 Andesific full Image: Constraint of the second se

(

-

		PR	OJECT	NEW MOON (336) HOLE N.M. 86-17 NEWN	IONT	EXPLORA	ГЮ	N (OF CA	NADA	LIMITE	D					PA	GE 5 c	of 6
EPTH	GEOL.	INTE	RVAL.	GEOLOGICAL DESCRIPTION	Min	ERALIZATION	A	LT					ASS	SAYS				RECOV	ERY
n eters		FROM	то		%				SAMP	FROM	TO	LENG	Cu	РЬ	Zn	Ag	Au	RUN	%
		64.1	65.8	Feldspar Porphyry Dacite															
				- similar to previous															
-				- lower contact broken															
				······································													_		
·		65.8	72.8	Andesite Porphyry Flow															
-				- similar to 16.7-21.1					1	ļ									
				- minor qtz-calcite veining				_		 									ļ
-				- phenocrysts range from fresh weakly	\downarrow		_		11689	66.5	68.0	1.5		.01	.04	<.01	<.002		
-				sausseritized					11690	68.0	69.5	1.5		.05	.23	<.01	<.002		
-				- veining totals <10% and is erratically					11691	69.5	71.9	2.4		.07	. 32	<.01	<.002		
-				developed						_									
				66.6: 2 cm @ 80° x cutting veins barren															
-				67.5: 4 cm @ 40° 5% pyr															
_				. 68.0: 10 cm erratic qv 20% pyr Tr PbS. 1% Zn	a				<u> </u>								ļ		
				68.25: 1 cm @ 70° 30% pyr, 10% honey brow						_									
_				ZnS													L	ļ	
-				68.9: 1 cm erratic tr ZnS					_										
-				69.6: 2 cm qv @ 70° 20% ZnS													ļ		
-				69.9: .1 cm erratic seams of massive															
-				PbS/ZnS															
-				70.3: .5 cm @ 20° 10% pyr, 5% ZnS															
		·		70.6: 1 cm @ 80° 5% ZnS			_												
-				70.7: 2 cm qtz-calcite barren	\square											I	ļ		
				70.8: .1 cm ZnS stringers @ 5° to core for	\downarrow				_	 						L			
				10 cm				_		 							ļ		
<u> </u>			╂	71.1: 3 cm zone @ 40* 20% pyr, 2% PbS						ļ									
-			┟───		\downarrow			\rightarrow		 									
-			 																
• l		I	1		1 1			- I	1	1	I					1	1 7		

(

(

:

	PROJECT NEW MOON (336) HOLE N.M. 86-17					EXPLORAT	10	N (0F	CANA	DA L	IMITE	D					PAC	GE 6 0	f 6
DEPTH	GEOL.	INTE	RVAL	GEOLOGICAL DESCRIPTION	MI	NERALIZATION	A	LT						ASS	SAYS				RECOV	ERY
meters		FROM	TO		%			Т	s		ROM	то	LENG	Cu	РЪ	Zn	Ag	Au	RUN	%
E		65.8	72.8	Andesite Porphyry Flow Cont'd																
-				71.5: 5 cm @ 80° 10% pyr																
E				- from 67.0-71.5: unit has 5% dissem pyr																
E				71.9: 1 cm @ 70° 10% ZnS																
<u>-</u>				- unit is calcareous																:
E																				
E		72.8	76.2	Andesite Tuff																
E				- fine grained, green with small 1 mm blebs																
E				of calcite																
-				- unit is calcareous																
F				- within first 2 m minor limonite alt occurs																
F				along the fracture faces					Т											
F				- the section is barren and has only minor																
F				calcite veins																
F																				
F																				
F				76.2 Е.О.Н.	Γ															
F								Т	Τ							_				
7								Τ												
F					Т															
F										- 1										
F					Τ															
F			1																	
F			1						T											
F								Т	Т											
F																				
F					1			+	+									·		
F								-												
E			1		+-			-+	-†-											

(

•

189

Þ

- 190 -

APPENDIX 2

NORTH ZONE SAMPLE RESULTS

Trench							
Sample #	From(m)	<u>To (m)</u>	Int(m)	Pb%	Znt	Ag opt	Au opt
1				~ ~ ~			
11188	0	1.0E	1.0	.04	.12	0.16	.002
11189	1.0	2.0	1.0	.06	.16	0.15	.002
11190	2.0	2.5	0.5	.10	.15	0.32	.002
11191	2.5	3.0	0.5	.17	.40	3.91	.034
11192	3.0	3.5	0.5	.08	.19	0.16	.002
11193	3.5	4.0	0.5	.06	.15	0.17	.002
11194	4.0	4.5	0.5	.05	.16	0.28	.002
11195	4.5	5.0	0.5	.12	.22	0.83	.012
11196	5.0	6.0	1.0	.15	.32	1.78	.012
2							
11197	0.1	0 5 5	0.5	53	95	2 36	032
11198	0.5	1.0	0.5	.17	.44	2.20	.020
11199	1 0	1.5	0.5	.14	.41	1.40	.020
11200	1.5	2.0	0.5	.25	.24	1.25	.012
11201	2.0	2.5	0.5	.45	2.02	2.74	.028
11202	2.5	3.0	0.5	.53	2.53	3.56	.036
11202	3.0	3.5	0.5	.03	.13	1.31	.014
11203	3.5	4.0	0.5	.65	.05	0.16	.002
11205	4.0	4.5	0.5	.13	-	0.98	.004
11206	4.5	5.0	0.5	.25	.03	2,53	.002
	•••	••••					
3							
11207	0	1.0E	1.0	.03	.05	0.27	.002
11208	1.0	1.5	0.5	•02	.03	0.35	.002
11209	1.5	2.0	0.5	.01	.03	0.33	.002
11210	2.0	2.5	0.5	.01	.03	0.96	.002
11211	2.5	3.0	0.5	.02	.05	0.12	.002
11212	3.0	4.0	1.0	.01	.04	0.20	.002
٨							
11013	0	1 05	10	05	13	1 69	002
11213	i o	2.0	1.0	.05	.15	0.85	.002
11214	1.0	2.0	1.0	•02	.13	0.60	.002
11215	2.0	3.0	1.0	•01	.04	1 15	.002
*****	3.0		T•0	•05	.05	T•T3	.002
5							
11528	0	1.0E	1.0	.03	.15	1.55	.002
11529	1.0	2.0	1.0	.03	.04	0.26	.002
11530	2.0	3.0	1.0	.02	.03	0.53	.002

Trench Sample #	From(m)	<u>To (m)</u>	<pre>Int(m)</pre>	Pb&	Znt	Ag opt	Au opt
6 11531 11532 11533 11534 11535 11536 11537	0 1.0 2.0 3.0 4.0 5.0 6.0	1.0E 2.0 3.0 4.0 5.0 6.0 7.0	1.0 1.0 1.0 1.0 1.0 1.0	.03 .02 .01 .05 .03 .08 .04	.04 .05 .05 .09 .07 .07	1.02 0.89 1.62 2.83 2.51 5.16 6.33	.002 .002 .002 .008 .008 .006 .014
7 12095 12096 12097 12098 12099 12100	0 2.0 4.0 6.0 8.0 10.0	2.0W 4.0 6.0 8.0 10.0 12.0	2.0 2.0 2.0 2.0 2.0 2.0	.01 .01 .01 .11 .11	.10 .08 .08 .08 .16 .22	2.70 2.10 1.18 1.03 13.90 8.31	.005 .004 .001 .001 .001 .018
8 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11601 11602 11603 11604 11605 11606 11607	$\begin{array}{c} 0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 11.0\\ 12.0\\ 13.0\\ 14.0\\ 15.0\\ 14.0\\ 15.0\\ 16.0\\ 17.0\\ 18.0\\ 19.0\\ 20.0 \end{array}$	2.0S 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0E 19.0 20.0 21.0	2.0 1.0	.32 .06 .04 .03 .02 .01 .08 .02 .02 .02 .02 .02 .02 .02 .02 .03 .06 .03 .01 .02 .02	.31 .12 .13 .07 .05 .03 .04 .09 .04 .15 .02 .03 .06 .03 .08 .04 .03 .02 .03	4.08 0.21 0.86 0.39 0.19 0.16 0.10 0.14 0.13 0.26 0.05 0.09 0.03 0.25 0.10 0.41 0.64 0.16 0.17	.022 .002 .006 .004 .002 .002 .002 .002 .002 .002 .002
9 11609 11610 11611 11612 11613 11614 11615 11616 11617	21.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	22.0 1.0E 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.01 .01 .01 .01 .01 .01 .01 .01 .01	.03 .01 .01 .01 .01 .01 .01 .01 .01	$\begin{array}{c} 0.44 \\ 0.17 \\ 0.10 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.04 \\ 0.01 \\ 0.01 \end{array}$.006 .002 .002 .002 .002 .002 .002 .002
10 12086 12087	0 3.0	3.0E 6.0	3.0 3.0	.01 .01	.01 .01	0.95 0.03	.002

- 191 -

- 192 -

.

the second second second second second second second second second second second second second second second s

Trench							
Sample #	<pre>From(m)</pre>	<u>To (m)</u>	<u>Int(m)</u>	Pb&	Znt	Ag opt	<u>Au opt</u>
11		• • -	• •		0.0		
12088	0	2.0E	2.0	.44	.80	8.75	.044
12089	2.0	4.0	2.0	.09	.14	1.49	.007
12090	4.0	0.U 4 5W	2.0	.05	•07	0.43	.007
12091	3.0	4.5W	1.5	•15	• 3 3	1.00	.007
12	0	2 0	2 0	1.2	0.4	0.00	010
12153	0	2.0	2.0	.13	.24	2.36	.018
13			• •		• •	<i>c</i>	
12152	0	3.0	3.0	.48	.98	6.49	.010
14							
8859	0	1.0E	1.0	.01	.06	1.98	.006
8860	5.5	6.5	1.0	.47	.24	1.43	.052
8861	7.0	8.0	1.0	8.84	9.54	15.20	.054
8862	8.0	10.0	2.0	.06	•14	0.11	.004
15	•	1 25		00	•	0.00	0.00
8863	0	1.3E	1.3	.09	•20	2.60	.006
16							
8864	0	1.4E	1.4	3.68	2.53	5.98	.024
17							
8865	0	1.0E	1.0	.17	.71	2.54	.024
8866	1.0	2.0	1.0	.34	.60	12.70	.062
8867	2.0	3.0	1.0	.65	.88	6.49	.026
8868	3.0	4.0	1.0	.10	•31	0.51	.018
8869	4.0	5.0	1.0	.05	•20	0.09	.014
18			1.0	0.1	~ ~	0.11	
8870	0	1.05	1.0	.01	.03	0.11	.002
8871	1.0	2.0	1.0	1.07	.40	1.20	.010
19	0			05		0.00	0.00
8872	0	1.55	1.5	.05	.15	0.66	.006
8873	1.5	3.0	1.5	.04	.09	0.09	.002
20	0	A AH		00	2.2	o Fo	0.07
12092	0	2.06	2.0	.06	.33	0.52	.007
12093	2.0	4.0	2.0	.04	•16	0.21	.001
12094	4.0	0.0	2.0	.00	•15	0.73	.004
21	•					70 40	610
8951	0	1.0E	1.0	2.78	5.54	/8.40	.610
8952	1.0	3.0	2.0	1.08	2.06	35.00	.190
0703 8951	3.0		2.0	.08 70	0C T • T T	21.1U 15 50	•002 070
8955	18.0	21.0	3.0	.70	. 49	28.30	.076
8956	21.0	24.0	3.0	.29	.41	1.92	.022
	-		-				

	(<u>.,</u>							• •						(·									[
K				. An	C	he	e m	1e	X I	La	bs	S L	td	a søyers	;	21: No Ca Ph	2 B orth V nada one:	irooks /ancoi (60	bank uver, V7J)4) 984-	Ave. B.C. 2C1 0221		Semi	qui	anti	tati	ve	mult	i el	leme	nt]	[CP .	anal	ysis	
10 :	NEWM 900 Vanco Vgc 3	DNT E - SOE DUVER 34-1	EXPLO 8 W. 1, B.	DRAT Has .C.		OF SS S	<u>CERT</u> Cana T.	IF I DA	CATE LTD.	10	ANGL	.YS13	[]	CERT INVO DATE P.O. 336	ice t	Te : : :	A8 18(12 N0)	6173 6173 -SEF NE	043-5 397-0 397 2-86	2597	4	Nitr mate dige valu Go. only COMM CC:	ic- ria stic les La. be ENTS C.	Aqua l fo on i repo Mg, con S : VIS	-Reg llow s in rted K, side AGIE	ia ved com fo Na. vred	dige by I plet r Al Sr. as	stic CP = e fc . St T1. semi	on o anal or m o, B , Ti i-qu	f G. ysis any a. B . W anti	.5 gi mine 3e, (and ∶tat:	n of ince eral: Ca, V c: ive.	thi s. Cr, an	-
Sample descrip	tion	Au ppb EA+AA	A1 2	Ag ppn	As ppa	Ba ppe	Be ppa	Bi ppn	Ca Z	Cd 999	Co ppa	Cr p pa	Cu ppm	Ee Z	Ga ppa	K Z	La ppe	Ng 1	Nn ppe	No ppe	Na Z	Ni ppn	P ppn	Pb ppm	SD ppa	Sr ppe	Ti 2	T1 ppn	U ppe	y ppa	¥ ppe	Zn ppa		
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1520 1522 1522 1524 1525 1526 1527 1529 1520 1529 1520 1521 1522 1529 1520 1531 1522 1524 1525 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1528 1536 1537 1529 1520 1521 1522 1524 1522 1526 1527 1528 1528 1526 1527 1528 1529 1520 1521 1526 1527 1528 1529 1520 1522 1524 1525 1526 1527 1528 1528 1529 1529 1520 1521 1526 1527 1528 1526 1527 1528 1526 1527 1528 1526 1527 1528 1526 1527 1528 1536 1537 1526 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1536 1537 1540 1541 1541 1541 1541 1541 1541 1541		0 ⁴⁶ 00 60 40 40 66 68 40 66 68 60 60 66 60 66 60 60 60 60 60 60 60 60	1.64 1.11 2.09 2.04 1.81 1.47 0.95 1.68 1.30 1.37 1.64 1.43 2.47 1.44 1.43 1.43 2.47 1.46 1.41 1.41 1.50 1.36 1.41 1.50 1.35 1.65 1.50 1.42 1.35 1.65 1.42 1.35 1.50 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	10 20 20 20 20 20 20 20 20 20 2	220 390 400 576 410 350 230 230 230 230 230 230 230 230 230 23	(0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	00×00000000000000000000000000000000000	1.08 0.45 0.60 0.80 0.37 0.93 1.85 0.72 0.62 1.13 0.93 1.85 0.72 0.62 1.13 0.88 0.58 0.60 0.55 0.58 0.42 0.58 0.60 0.55 0.59 0.42 0.93 1.85 0.72 0.62 1.06 1.02 0.88 0.55 0.58 0.42 0.58 0.42 0.58 0.42 0.58 0.42 0.58 0.42 0.58 0.42 0.55 0.55 0.55 0.79 0.55 0.79 0.55 0.79 0.55 0.79 0.55 0.79 0.55 0.62 0.79 0.55 0.79 0.55 0.79 0.55 0.65 0.66 0.55 0.79 0.55 0.68 0.66 0.55 0.79 0.55 0.79 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	(0.5 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	14 10 19 18 10 12 28 13 12 9 11 7 11 14 10 11 13 14 12 9 11 13 14 12 13 14 12 5 19 15 16 12 10 11 12 10 11 12 13	25 6 17 15 22 18 79 71 34 22 122 67 32 142 34 267 32 142 34 267 32 142 34 267 32 142 34 26 19 31 23 51 72 60 28 10 14 112 49 169 16 102 51 9 60 199 142	22 25 34 73 23 34 40 23 19 14 19 22 39 31 36 98 44 30 31 36 98 45 37 39 32 39 32 36 36 39 34 36 39 31 37 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 32 39 33 31 31 31 31 31 31 31	4.18 3.50 6.97 6.34 3.43 3.43 3.43 2.98 4.23 2.98 4.23 2.98 4.23 2.98 4.23 3.30 4.23 3.42 3.30 4.23 3.42 3.30 4.23 3.42 3.30 4.23 3.42 3.30 4.23 3.42 3.45 2.98 4.23 3.45 2.98 4.23 3.45 2.97 4.72 2.71 3.25 3.35 3.35 3.35 3.35 3.44 4.27 4.72 4.72 2.71 3.25 3.35 3.35 3.44 4.27 4.72 4.72 4.72 4.72 4.72 4.72 4.72 4.72 3.55 3.35 3.44 4.23 4.15 2.71 3.25 3.35 3.35 3.45 2.15 4.72 4.72 4.72 3.55 3.25 3.35 3.44 4.77 4.72 4.72 3.55 3.45 3.45 4.72 4.72 4.72 3.55 3.63 3.44 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 3.45 3.45 4.72 4.72 4.72 3.55 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45	C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C	0.09 0.14 0.07 0.08 0.10 0.12 0.06 0.04 0.12 0.06 0.04 0.12 0.06 0.04 0.12 0.08 0.29 0.02 0.10 0.11 0.09 0.02 0.10 0.11 0.09 0.02 0.12 0.09 0.02 0.12 0.09 0.02 0.10 0.12 0.04 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.04 0.11 0.09 0.02 0.10 0.11 0.09 0.02 0.10 0.11 0.05 0.03 0.03 0.03 0.03 0.03 0.05 0.04 0.05 0.03 0.03 0.05 0.02 0.05 0.02 0.03 0.05 0.04 0.05 0.03 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.05 0.04 0.05 0.04 0.05 0.03 0.03 0.05 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.02 0.05 0.02 0.02 0.02 0.03 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.22 0.22 0.22 0.22	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	9.85 9.30 9.48 9.48 9.48 9.48 9.48 0.93 0.70 0.83 0.90 1.00 0.83 0.90 1.00 0.83 0.90 1.00 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.97 1.20 0.00 1.39 0.22 1.00 0.20 0.20 0.00 0.00 0.00 0.00	1227 4352 2534 2947 2280 2769 1690 828 840 917 906 1839 864 1243 917 979 911 1207 1399 1338 1043 107 1399 1338 1043 221 1088 3952 816 1235 1088 3952 816 1229 1140 1144 1349 1255 927 1374 1101 1215 983 1165	a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a <td>0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.05 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.04 0.05 0.01 0.02 0.04 0.05 0.02 0.04 0.05 0.01 0.05 0.01 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02</td> <td>13 7 9 8 15 11 65 9 14 11 12 15 12 16 17 13 26 43 9 13 15 12 16 17 13 26 43 9 12 9 12 9 9 12 9 9 12 9 9 12 9 13 13 15 11 13 15 12 16 15 13 15 15 11 15 15 11 16 15 11 12 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 17 13 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 12 16 17 13 15 12 16 17 13 16 17 13 16 17 13 17 17 13 15 12 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 17 13 16 17 13 16 17 13 17 17 13 16 17 13 17 17 13 17 17 13 17 17 13 16 17 11 19 17 11 19 17 11 19 17 11 19 17 11 19 11 19 12 19 19 11 19 11 19 12 19 19 11 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 11</td> <td>710 1100 920 920 920 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 735 735 735 735 735 735 735 735</td> <td>$\begin{array}{c} 10\\ 42\\ 36\\ 90\\ 26\\ 168\\ 8\\ 16\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$</td> <td>C10 C10 C10 C10</td> <td>42 16 34 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37</td> <td>0.11 0.05 0.04 0.02 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.12 0.06 0.05 0.09 0.10 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.12 0.09 0.12 0.09 0.12 0.09 0.12 0.09 0.12 0.14 0.14 0.14 0.12</td> <td></td> <td></td> <td>87 50 121 94 57 55 51 104 64 58 63 51 104 64 58 63 51 105 57 91 108 65 57 1 104 105 57 78 108 106 65 57 78 109 100 84 100 77 57 70 61 67 81 98 89 92</td> <td></td> <td>90 144 292 370 100 162 112 106 86 86 92 92 86 126 92 92 86 126 104 104 104 104 104 105 126 104 104 104 106 86 150 170 106 142 118 126 92 84 94 94 94 94 94 94 94 94 94 94 94 94 96 86 100 100 100 100 100 100 100 100 100 10</td> <td></td> <td>APPENDIX 3 - List of I.C.P. Results - 193 .</td>	0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.05 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.04 0.05 0.01 0.02 0.04 0.05 0.02 0.04 0.05 0.01 0.05 0.01 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	13 7 9 8 15 11 65 9 14 11 12 15 12 16 17 13 26 43 9 13 15 12 16 17 13 26 43 9 12 9 12 9 9 12 9 9 12 9 9 12 9 13 13 15 11 13 15 12 16 15 13 15 15 11 15 15 11 16 15 11 12 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 17 13 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 16 17 13 15 12 12 16 17 13 15 12 16 17 13 16 17 13 16 17 13 17 17 13 15 12 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 16 17 13 17 13 16 17 13 16 17 13 17 17 13 16 17 13 17 17 13 17 17 13 17 17 13 16 17 11 19 17 11 19 17 11 19 17 11 19 17 11 19 11 19 12 19 19 11 19 11 19 12 19 19 11 11 19 11 19 11 19 11 19 11 19 11 19 11 19 11 11	710 1100 920 920 920 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 720 940 735 735 735 735 735 735 735 735	$\begin{array}{c} 10\\ 42\\ 36\\ 90\\ 26\\ 168\\ 8\\ 16\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	42 16 34 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37	0.11 0.05 0.04 0.02 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.12 0.06 0.05 0.09 0.10 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.12 0.09 0.12 0.09 0.12 0.09 0.12 0.09 0.12 0.14 0.14 0.14 0.12			87 50 121 94 57 55 51 104 64 58 63 51 104 64 58 63 51 105 57 91 108 65 57 1 104 105 57 78 108 106 65 57 78 109 100 84 100 77 57 70 61 67 81 98 89 92		90 144 292 370 100 162 112 106 86 86 92 92 86 126 92 92 86 126 104 104 104 104 104 105 126 104 104 104 106 86 150 170 106 142 118 126 92 84 94 94 94 94 94 94 94 94 94 94 94 94 96 86 100 100 100 100 100 100 100 100 100 10		APPENDIX 3 - List of I.C.P. Results - 193 .

July 18, 1986

PRELIMINARY METALLURGICAL INVESTIGATION OF SAMPLES FROM THE NEW MOON PROSPECT BRITISH COLUMBIA, CANADA

Newmont Exploration Limited Metallurgical Department Danbury, Connecticut

SWN/JWA/AG:pk

Distribution:

T.N.Macauley (3)/ J.C.Yannopoulos L.Harris D.C.Ridinger W.C.Hellyer G.A.Meyer

Submitted by:

S. W. Nabbs Swa. J. W. Ahlrichs

Farlier Gorken

TELEPHONE 203-743-6784 TELEX 969653

NEWMONT EXPLORATION LIMITED

P O BOX 310 44 BRIAR RIDGE ROAD DANBURY, CONNECTICUT 06810

METALLURGICAL DEPARTMENT

July 18, 1986

Mr. T. N. Macauley Exploration Manager Newmont Exploration of Canada Ltd. 900 - 808 West Hastings Street Vancouver, B.C., Canada V6C 3A4

Dear Terry:

Attached please find three copies of a report by Messrs. Nabbs, Ahlrichs and Gorken on a preliminary investigation on trench samples from the New Moon prospect.

The results show that adequate liberation of the lead, zinc and iron sulfides can be obtained with a primary grind of about 75% minus 200 mesh. The ore is very hard and this grind is somewhat finer than normally required for such ores, so grinding power requirements will be high, possibly in line with those at Similkameen.

The metallurgical results of the flotation tests are adversely affected by the severe oxidation of the lead sulfide, with almost 25% reporting as the oxide. Such oxidation will also adversely affect the flotation response of the zinc and iron sulfides and the precious metals. Geologic activation of the sphalerite could account for the relatively high assays of zinc in the lead flotation products.

Oxidation and surface tarnishing of the galena accounts for the low lead recoveries obtained. The low lead recovery, in turn, probably contributes to the low overall gold and silver recoveries.

The excellent grades of zinc concentrate produced indicates the sphalerite contains little or no iron in solid solution. Apart from the loss of zinc in the lead products, zinc metallurgy is satisfactory.

The gold concentrates to some extent in the lead products and the silver in the zinc products. Gold is present as electrum, and silver as electrum, acanthite and an unidentified silver sulfo-salt. We would expect higher recoveries of the gold and silver with less oxidized flotation feed.

NEWMONT EXPLORATION LIMITED

-2-

T. N. Macauley

The flotation results obtained on the composite trench sample can undoubtedly be improved to some extent by optimization of the flotation conditions. If this composite is typical, or representative of any significant tonnage, such additional study may be warranted. However, if oxidation is largely a surface phenomena, additional flotation studies could wait until less oxidized, more representative, samples are available.

When you and your staff have completed your study of this report, we will be pleased to discuss any further testing of this interesting deposit.

Sincerely yours,

NEWMONT EXPLORATION LIMITED

161Ally W. C. Hellyer

WCH:pk

Enclosures (3)

TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
SUMMARY OF RESULTS	2
Head Assay of Master Composite	2
Petrography for Seven Specimens	3
Precious Metals	3
Recommendations	4
SAMPLES EMPLOYED IN THE TEST WORK	5
RESULTS OF FLOTATION TEST WORK	7
Test NM-1	7
Test NM-2	8
Test NM-3	11
Size Analyses of Zn Scavenger Tails from NM-1, NM-2 and NM-3	14
Test NM-4	15
Microscopic Examination of Flotation Products from Test NM-4	18
Test NM-5	19
PETROGRAPHIC EXAMINATION OF SEVEN ROCK SPECIMENS	22
Compositions	22
Petrographic Descriptions	24
Veins (Specimen No. 1, Specimen No. 3, Trench No. 1)	24
Breccias (Specimen No. 2, Trench No. 9, Trench No. 10)	24
Pyroxene Tactite (Trench 5)	25
Opaque Mineralogy	25
Metallurgical Implications	26
REFERENCES	27

APPENDIX

Mineralogic Evaluation of Products from Flotation Test NM-4 for the Blue Moon Project

LIST OF TABLES

and the second second second second second second second second second second second second second second second

				Page No.
Table	I	-	Estimated Metallurgical Balance	3
Table	II		Analysis of Master Composite	6
Table	III	-	Sulfide Minerals - Grain Size	7
Table	IV		Test NM-2 - Metallurgical Balance	10
Table	v	-	Test NM-3 - Metallurgical Balance	13
Table	VI	-	Size Analyses of Tailings	14
Table	VII	-	Test NM-4 - Metallurgical Balance	17
Table	VIII	-	Test NM-4 - Metallurgical Balance	21
Table	IX	-	Semiquantitative Elemental and Mineralogical Analyses for Seven Rock Specimens	23

LIST OF FIGURES

,

				Page No.
Figure	1	-	Test NM-2 - Flowshee	et 9
Figure	2	-	Test NM-3 - Flowshee	et 12
Figure	3		Test NM-4 - Flowshee	et 16
Figure	4	-	Test NM-5 - Flowshee	et 20

INTRODUCTION

Exploration of the New Moon prospect (Au, Ag, Pb, Zn), located in west central British Columbia, Canada, was carried out during August/September 1985, and a diamond drilling program is planned for July/August 1986.

At the request¹ of T. N. Macauley, a proposal was prepared by NEL Danbury² for examination of seven specimens and a limited amount of benchscale flotation test work and microscopic studies on a shipment of New Moon samples received at Danbury on January 7, 1986. This report provides the results of these investigations.

SUMMARY OF RESULTS

A limited metallurgical investigation has been completed on a composite prepared from eight trench samples from the New Moon prospect.

Head Assay of Master Composite

Gold 0.102 oz/ton1.05 oz/ton Silver Total Lead 4.23% =Oxide Lead = 1.00% 8.95% Zinc = 0.207% Copper Cadmium 0.034% = Iron 3.98%

The composite was very hard and grinding power requirements are expected to be high, possibly as much as 20 to 25 net kwh/ton for grinding from 3/4 inch to 75% minus 200 mesh. A fine primary grind may be required for the New Moon deposit. Batch flotation tests showed that 55-60% of the gold, 35 to 40% of the silver, and 55-60% of the lead can be recovered in a lead rougher/scavenger concentrate assaying of the order of 0.8 oz Au/ton, 4.5 oz Ag/ton, and 35% lead. Sphalerite was the major diluent, with approximately 20% of the zinc in the heads reporting in the combined lead concentrates.

Attempts to upgrade the lead rougher/scavenger concentrate by a single stage of cleaning were only moderately successful. The best lead cleaner concentrate (Test NH-3) assayed 1.65 oz Au/ton, 5.03 oz Ag/ton, and 52.96% Pb, and was obtained in a test that included a fine primary grind of 81.9% minus 200 mesh and regrinding of the lead rougher concentrate.

Close to 45% of the lead and 52% of the silver in the lead rougher concentrate reported in the lead cleaner tailing. By contrast, less than 20% of the gold in the lead rougher concentrate reported in the cleaner tailing.

The use of zinc cyanide (a recognized depressant for sphalerite) in Test NM-5 resulted in a significant loss of gold into the Pb cleaner tails, while having only a minor effect as a sphalerite depressant.

High-grade zinc cleaner concentrates assaying of the order of 55% zinc, 0.15 oz Au/ton, and 2.5 oz Ag/ton were obtained in all tests.

Microscopic examination of the flotation products from NM-4, a test in which the primary grind was 74% minus 200 mesh, showed that 90% of the galena and close to 80% of the sphalerite in the lead products were liberated. Liberation of galena and sphalerite in the zinc flotation products was approximately 53% and 90%, respectively.

Based on the results obtained in this limited investigation, an estimated metallurgical balance is provided in Table I.

TABLE I

Estimated Metallurgical Balance

		Assays									
		opt Au	opt Ag	% Pb	% Zn	% Cu	% Distribution				
Product	% Wt						Au	Ag	РЪ	Zn	Cu
Heads	100.0	0.102	1.05	4.23	8.95	0.207	100	100	100	100	100
Lead Concentrate	4.6	1.15	6.8	48	19.5	1.71	51	30	52	10	38
Zinc Concentrate	13.0	0.14	2.42	3.90	55	0.40	18	30	12	80	25
Zinc Scav. Tails	82.4	0.037	0.51	1.84	1.08	0.093	30	40	36	10	37
Lead & Zinc Concs.	17.6	0.41	3.58	15.4	40.7	0.74	70	60	64	9 0	63

Typical cadmium and iron assays of the zinc concentrates were 0.22% and 1.4%, respectively.

The lead metallurgy was adversely affected by almost 25% of the total lead occurring as oxide. With this degree of oxidation of the lead, it must be expected that the zinc and silver metallurgy could also be affected adversely.

Petrography for Seven Specimens

Seven specimens, submitted in addition to the eight metallurgical samples, were examined microscopically in thin section. Six of the specimens were veins and breccias, composed largely of a hard matrix of coarse-grained and microcrystalline quartz. The seventh was a pyroxene tactite with lower grade base metals.

Precious Metals

The lead cleaner concentrate (1.29 oz Au/t, 5.85 oz Ag/t) and lead cleaner tailing (0.64 oz Au/t, 4.80 oz Ag/t) from Test NM-4 were examined for gold and silver occurrences by microscopic and electron microprobe techniques. All observed gold occurs as electrum (60-70% Au, 30-40% Ag), but additional silver also occurs as acanthite (Ag₂S) and a silver sulfosalt.

Approximately half of the observed electrum was liberated, but all detectable acanthite and the silver sulfosalt were finely locked (<10 μ m) to various sulfides. This suggested that it could be difficult to obtain a single product of high concentrations of gold, and especially silver.

Recommendations

Any future work on the New Moon prospect should include:

- (a) Provision of fresh, underground samples for testing. Surface outcrop samples can be partially oxidized or tarnished, with adverse effects on flotation.
- (b) A more detailed investigation to determine the grind/ recovery relationship in rougher flotation and the effect of regrinding on final concentrate grade.
- (c) A program to determine if reagents for alkalinity control such as soda ash, sodium hydroxide or ammonium hydroxide are more effective than lime in the differential flotation of galena from sphalerite.
- (d) An investigation of other reagents for depressing sphalerite in lead flotation.
- (e) A limited investigation of other promoters to selectively float galena from sphalerite.

SAMPLES EMPLOYED IN THE TEST WORK

A drum containing eight trench samples and seven rock specimens was received at Danbury on January 7, 1986, and allocated the Lot No. 3136. The trench samples were fist-size pieces of rock, each trench sample individually bagged.

Thin sections of the seven rock specimens were examined microscopically and the results are discussed in a separate section of this report.

According to T. N. Macauley¹ of Newmont Exploration of Canada Limited, five of the New Moon trench samples came from the northern half of the Main Zone within the Plateau Grid, and the other three from the southern half. Individual weights of the trench samples ranged from 2.3 to 5.3 kilograms. The only significant oxidation was in one sample from the northern section.

For the purposes of this preliminary investigation of the New Moon prospect, it was suggested that the test work be limited to a composite prepared from all eight trench samples.

Each of the eight trench samples was crushed to all passing four mesh. One quarter was split from each sample and combined to give a Master Composite. The Master Composite was mixed thoroughly, and a portion crushed to all passing 10 mesh and made up into 500-gram charges for the test work.

Assays and semiquantitative mineralogic data are given in Table II.

TABLE II

ALCONTRACTOR

Analysis of Master Composite

Elements	Assay	Procedure for Analysis					
Au $(\alpha \pi/t)$	0.102	Fire Accev					
Au $(0Z/L)$	1 05	Fire Assay Atomic Absorption					
Ag (OZ/L)	4 33						
Total PD (%)	4.23	Atomic Absorption					
Oxide Pb (%)	1.0	ALOMIC ADSorption					
Total Zn (%)	8.95	Atomic Absorption					
Oxide Zn (%)	0.005	Atomic Absorption					
Total Cu (%)	0.207	Atomic Absorption					
Cd (%)	0.034	Atomic Absorption					
S (%)	5.25	Leco					
\$10 ₂	Principal Constituent	Emission Spec.					
$A1_{2}\tilde{O}_{2}$ (%)	1.3	Emission Spec.					
MnŐ (%) MgO (%)	0.4	Emission Spec. Emission Spec.					
	0.4						
$C_{a0}(7)$	0.1	Emission Spec.					
$T_{10_{2}}(z)$	0.02	Emission Spec.					
$BaO(\mathbf{Z})$	0.009	Emission Spec.					
Cr	0.003	Emission Spec.					
v	<0.002	Emission Spec.					
Co	<0.001	Emission Spec.					
Semiquantitative							
Mineralogy (Wt %							
Quartz	71	XRD					
K-Feldspar	Tr	XRD					

Quartz	/1	XRD
K-Feldspar	Tr	XRD
Chlorite	6	XRD
Cerussite	1-2	XRD
Ferruginous Oxides	1-2	Microscopic
Sphalerite	14	Assay
Galena	4	Assay
Chalcopyrite	<1	Assay
Covellite	Tr	Microscopic
Pyrite	1	Microscopic

RESULTS OF FLOTATION TEST WORK

An examination³ of polished thin sections from the seven ore specimens from the New Moon project showed sulfides to occur as vein fillings, massive replacements, and fine disseminations in a variably silicified matrix. A siliceous microcrystalline quartz matrix is the predominant gangue mineral.

Maximum ranges and estimated predominant ranges in grain size of the four major sulfide minerals are provided in Table III.

TABLE III

Sulfide Minerals - Grain Size

Mineral	Maximum Size Range (mm)	Predominant Size Range (mm)
Sphalerite	\sim 0.01 to 10 (1 cm)	0.1 to 0.5
Chalcopyrite	~0.01 to 1	0.04 to 0.15
Galena	~0.01 to 0.15	0.03 to 0.10
Pyrite	0.01 to 0.3	0.06 to 0.12

Test NM-1

This was a preliminary test in which a 500-gram (minus 10 mesh) charge was ground in the laboratory rod mill and floated with the objective of producing a lead rougher concentrate containing only minor zinc, and a zinc rougher concentrate with only a minor lead content.

This test was abandoned and no assays were run on the products for the following reasons:

- (a) The overall grind was very coarse at 39% minus 200 mesh, as compared to the 65% that was the objective.
- (b) XRF assays of the products showed the lead rougher concentrate to have a high zinc content (±40%), and the zinc rougher concentrate to contain approximately 11% lead.

Test NM-2

To obtain a finer grind, the rod mill grinding time was increased from the 7 1/2 minutes in NM-1 to 13 1/2 minutes. Panning the Pb rougher concentrate indicated a reasonably high galena content, so this product was reground and cleaned once. By contrast, panning the Pb scavenger concentrate showed significantly lower galena. Copper sulfate was added to the Pb scavenger tails to activate the sphalerite, which floated readily with 0.05 ppt of potassium amyl xanthate. The zinc rougher and scavenger concentrates had a pale straw color, suggesting it was a high-grade specie of sphalerite. The combined zinc concentrates were reground and cleaned once.

A flowsheet of NM-2 that includes the flotation conditions is provided in Figure 1, and a metallurgical balance in Table IV.

Sizing of the zinc scavenger tails showed the grind to be 58.9% minus 200 mesh.

Although the Pb rougher concentrate was a reasonably good grade product assaying 27.81% Pb, only a minor amount of upgrading was obtained by regrinding followed by a single-stage of cleaning. In spite of adding collector to the Pb cleaner, a significant amount of gold, silver and lead reported in the Pb cleaner tails.

The high zinc assay of the Pb scavenger concentrate of 45.92% suggests that this product should be included with zinc rougher flotation in future tests.

The sphalerite floated rapidly following activation with copper sulfate. A single stage of cleaning following regrinding of the combined zinc concentrates produced a high-grade zinc cleaner concentrate assaying 57.92% Zn, 0.20 oz Au/ton and 2.5 oz Ag/ton.

Test NM-2 - Flowsheet

TABLE IV

1.

.

Test NM-2

Metallurgical Balance

			As	says					
	Z Wt	opt Au	opt Ag	% Pb	X Zn	% Distribution			
Product						Au	Ag	РЪ	Zn
Assay Heads		0.102	1.05	4.23	8.95				
Calculated Heads	100.00	0.101	0.99	3.86	9.21	100.0	100.0	100.0	100.0
Pb Cleaner Concentrate	3.14	0.88	4.33	37.00	22.96	27.2	13.7	30.1	7.8
Pb Cleaner Tails	5.40	0.37	3.87	22.46	28.80	19.7	21.1	31.4	16.9
Pb Scavenger Concentrate	4.19	0.19	2.96	6.40	45.92	7.9	12.5	6.9	20.9
Zn Cleaner Concentrate	3.94	0.20	2.50	1.49	57.92	7.8	9.9	1.5	24.8
Zn Cleaner Tails	5.26	0.13	2.28	3.56	40.64	6.7	12.1	4.8	23.2
Zn Scavenger Tails	78.07	0.040	0.39	1.25	0.76	30.7	30.7	25.3	6.4
Pb Rougher Concentrate	8,54	0.56	4.04	27.81	26.65	46.9	34.8	61.5	24.7
Pb Rougher + Scavenger Conc.	12.73	0.44	3.68	20.76	32.99	54.8	47.3	68.4	45.6
Zn Rougher Concentrate	9.20	0.16	2.37	2.67	48.04	14.5	22.0	6.3	48.0

.

Test NM-3

N See States

This test was run along similar lines to that of NM-2, with the exception that the grinding time was increased to 18 minutes to produce an even finer grind, and the flotation of a Pb scavenger concentrate was eliminated. The lead rougher concentrate and the combined zinc rougher/scavenger concentrates were cleaned once after regrinding.

The flowsheet and flotation conditions for Test NM-3 are shown in Figure 2, and a metallurgical balance is provided in Table V.

Sizing of the zinc scavenger tails showed the grind to be 81.9% minus 200 mesh.

The finer primary grind used in this test was effective in producing a relatively high-grade Pb rougher concentrate assaying 41.96% Pb, 0.88 oz Au/ton, and 4.63 oz Ag/ton. Approximately 53% of the gold, 25% of the silver, and 55% of the lead were recovered in the Pb rougher concentrate. Although less zinc reported in the Pb rougher concentrate at the finer grind, it still assayed 17.40% zinc.

Regrinding of the Pb rougher concentrate followed by a single stage of cleaning produced a reasonably good grade Pb cleaner concentrate assaying 52.96% Pb, 1.65 oz Au/ton, and 5.03 oz Ag/ton. As with Test NM-2, the loss of lead and silver into the Pb cleaner tails was relatively high. Approximately 18% of the gold in the Pb rougher concentrate reported in the cleaner tails.

Regrinding of the combined zinc rougher/scavenger concentrates (containing 80.7% of the zinc in the heads), followed by a single stage of cleaning produced a high-grade zinc cleaner concentrate assaying 58.21% Zn, 0.16 oz Au/ton, and 2.45 oz Ag/ton.

Test NM-3 - Flowsheet

TABLE V

19 1

Test NM-3

Metallurgical Balance

				Assays									
		opt	opt	%	%	%	% Distribution						
Product	% Wt	Au	Ag	РЪ	Zn	Cu	Au	Au Ag		Zn	Cu		
Assay Heads		0.102	1.05	4.23	8.95	0.207							
Calculated Heads	100.00	0.095	1.04	4.37	8.97	0.224	100.0	100.0	100.0	100.0	100.(
Pb Cleaner Concentrate	2.49	1.65	5.03	52.96	17.56	1.15	43.4	12.0	30.2	4.9	12.		
Pb Cleaner Tails	3.23	0.29	4.33	33.48	17.32	1.37	9.9	13.4	24.8	6.2	19.		
Zn Cleaner Concentrate	6.25	0.16	2.45	1.60	58.21	0.48	10.6	14.7	2.3	40.6	13.		
Zn Cleaner Tails	8.97	0.15	2.91	8.28	40.06	0.53	14.3	25.0	17.0	40.1	21.2		
Zn Scavenger Tails	79.06	0.026	0.46	1.42	0.94	0.093	21.8	34.9	25.7	8.2	32.8		
Pb Rougher Concentrate	5.72	0.88	4,63	41.96	17.40	1.27	53.3	25.4	55.0	11.1	32.6		
Zn Rougher/Scavenger Conc.	15.22	0.15	2.72	5.54	47.51	0.51	24.9	39.7	19.3	80.7	34.6		

Size Analyses of Zn Scavenger Tails from NM-1, NM-2 and NM-3

The grinding times required for the New Moon composite are substantially longer than those normally encountered in the flotation test work carried out at Danbury. While a definitive value for grinding power requirements was not determined in this investigation, it is estimated that 20-25kwh/per ton will be required to grind from 3/4" to 75% minus 200 mesh, as compared to a more typical range of 8-12 net kwh/ton.

The size analyses of the zinc scavenger tailings from these tests are provided in Table VI.

TABLE VI

Size Analyses of Tailings

	NM-	1	NM-	2	NM-3			
		7	7	7.	7.	%		
Fraction	Fraction	Cum	Fraction	Cum	Fraction	Cum		
+ 48 mesh	1.1							
+ 65 mesh	11.8	12.9						
+100 mesh	21.7	34.6	1.2					
+150 mesh	15.1	49.7	17.1	18.3	1.3			
+200 mesh	11.1	60.8	22.8	41.1	16.8	18.1		
-200 mesh	39.2	100.0	58.9	100.0	81.9	100.0		

For purposes of comparison, a typical grind of approximately 60% minus 200 mesh on ore of average hardness would contain approximately 13% of the plus 100 mesh fraction, as compared to the 1.2% that reported in the tailings of NM-2.

To provide a grind with a size distribution more consistent with actual plant operations, grinding for the rest of the test work was carried out in the Danbury 16-inch mill using a 24.8 kg charge of 2-inch balls. Test NM-4

For this test, a charge of 2000 grams of minus 4 mesh material was used. Grinding was done in the 16-inch mill, as described above.

The purpose of the test was to follow a flowsheet similar to that of NM-3, and have the products examined microscopically to determine liberation characteristics. However, as panning the Pb rougher tails showed a substantial amount of galena still remaining, a scavenger float was added. As panning the Pb scavenger concentrate showed it to contain a significant amount of both sphalerite and galena, it was not combined with the Pb rougher concentrate, but kept as a separate product for microscopic examination.

Zinc flotation included regrinding of the plus 325 mesh fraction of the combined rougher/scavenger concentrates, followed by one stage of cleaning.

The flowsheet and flotation conditions for Test NM-4 are shown in Figure 3, and a metallurgical balance is provided in Table VII.

Sizing of the zinc scavenger tails showed the grind to be 74.1% minus 200 mesh with 5.1% plus 100 mesh material.

The Pb rougher concentrate contained 42.4% of the gold, 18.4% of the silver, and 29.8% of the lead. Approximately 6.4% of the zinc in the heads reported in the Pb rougher concentrate. The Pb assay of 34.54% was reasonable for a rougher concentrate; however, only a very minor amount of upgrading was achieved with one stage of cleaning. No regrinding of the Pb rougher concentrate was carried out as it was already 100% minus 325 mesh. The results of this test would suggest that regrinding of the Pb rougher concentrate might be necessary to condition the mineral surfaces, rather than for purposes of liberation.

The Pb scavenger concentrate was an "in-between" type of product assaying 26.45% Pb and 30.32% Zn, and containing 28.6% of the lead and 14.9% of the zinc in the heads.

Combining the Pb rougher and Pb scavenger concentrates results in a recovery of 58.7% of the gold, 34.8% of the silver, and 58.4% of the lead.

Over 63% of the zinc in the heads reported in a combined zinc rougher/scavenger concentrate that assayed 54.05% zinc, 0.125 oz Au/ton, 2.68 oz Ag/ton, and 3.02% lead. Regrinding of the combined zinc concentrates followed by one stage of cleaning resulted in a zinc cleaner concentrate assaying 58.8% zinc. A significant amount of zinc reported in the zinc cleaner tails, indicating that copper sulfate and collector are probably required in the cleaning stage.

Test	NM-4 -	Ploy	sheet

TABLE VII

Test NM-4

Metallurgical Balance

				Азваув										
		opt	opt	X	X	X	% Distribution							
Product	X Wt	Au	Ag	РЪ	Zn	Cu	Au	Ag	Pb	Zn	Cu			
Assay Heads		0.102	1.05	4.23	8.95	0.207								
Calculated Heads	100.00	0.093	1.05	4.02	8.86	0.208	100.0	100.0	100.0	100.0	100.0			
Pb Cleaner Concentrate	2.67	1.29	5.85	36.03	17.02	1.81	36.9	14.8	23.9	5.1	23.3			
Pb Cleaner Tails	0.80	0.64	4.80	29.57	14.28	1.18	5.5	3.6	5.9	1.3	4.5			
Pb Scavenger Concentrate	4.35	0.35	3.98	26.45	30.32	0.64	16.3	16.4	28.6	14.9	13.4			
Zn Cleaner Concentrate*	2.80	0.11	2.64	2.13	58.80	0.36	3.3	7.0	1.5	18.6	4.9			
Zn Cleaner Tails	7.59	0.13	2.69	3.35	52.30	0.43	10.6	19.4	6.3	44.8	15.7			
Zn Scavenger Tails**	81.79	0.031	0.50	1.66	1.66	0.097	27.4	38.8	33.8	15.3	38.2			
Pb Rougher Concentrate	3.47	1.14	5.59	34.54	16.37	1.66	42.4	18.4	29.8	6.4	27.8			
Pb Rougher/Scavenger Conc.	7.82	0.70	4.69	30.04	24.12	1.09	58.7	34.8	58.4	21.3	41.2			
Zn Rougher Concentrate	10.39	0.125	2.68	3.02	54.05	0.41	13.9	26.4	7.8	63.4	20.6			

* Zn Cleaner Concentrate Cd = 0.23%.

****** Zn Scavenger Tails

Pb0 = 1.4% Zn0 = <0.01%

As Cerussite

Microscopic Examination of Flotation Products from Test NM-4

All six products from NM-4 were examined microscopically by pointcounting techiques to determine mineral distributions and liberation characteristics. Complete details of these studies are provided in Appendix "A". In brief, the microscopic examinations showed that 90% of the galena and close to 80% of the sphalerite in the lead cleaner concentrate, lead cleaner tailing and lead scavenger concentrate were liberated. Associations of galena/ sphalerite account for the major portion of the balance of these minerals.

Although the gangue minerals account for only a minor amount of the combined Pb rougher/scavenger concentrates, most of it is locked with the various sulfide minerals.

The high degree of liberation shown in the microscopic examination of the lead products would suggest that a reasonable separation of the galena and sphalerite should be possible by the use of depressants such as zinc sulfate or zinc cyanide. Liberation of the sphalerite was high in the zinc cleaner concentrate (93%) and the zinc cleaner tailing (87%), as compared to that of galena at 58% and 48%, respectively. At these liberations, the recovery of a high-grade zinc concentrate should not present any major problems.

Approximately 52% of the zinc and 46% of the lead reporting in the zinc scavenger tailing were liberated, indicating that recovery of these values could probably be increased by optimizing flotation conditions and/or reagents.

Test NM-5

In view of the high degree of liberation shown in the microscopic examination of the flotation products from NM-4, this test was run with the objective of improving the Pb cleaner concentrate grade by depressing the sphalerite in both the Pb rougher and Pb cleaner stages. Zinc sulfate, a reagent commonly used in galena/sphalerite flotation circuits to depress sphalerite, was added to the primary grind and zinc cyanide was used as the depressant in the cleaner stage. Zinc cyanide was selected in preference to sodium cyanide, as it was recognized as having less effect on dissolving gold while still being an effective depressant for sphalerite.

The effect of adding zinc sulfate to the grind was to significantly reduce the rougher flotation rate of the galena. To correct for this, the reagent additions and flotation time were increased in the lead scavenging operation.

The addition of zinc cyanide to the Pb cleaner also had a distinct depressing effect on the galena, as a result of which a small amount of collector was added to float a Pb cleaner scavenger concentrate.

Modifications to zinc flotation included an increase in the zinc scavenger flotation time to increase overall zinc recovery, and the addition of copper sulfate to the zinc cleaners to activate the sphalerite.

The flowsheet and flotation conditions for Test NM-5 are shown in Figure 4, and a metallurgical balance in provided in Table VIII.

Sizing of the zinc scavenger tails gave 77.6% minus 200 mesh with 3.9\% plus 100 mesh, a slightly finer grind than NM-4.

The combined Pb rougher/scavenger concentrate assayed 32.47% Pb, 0.79 oz Au/ton, 5.14 oz Ag/ton, 23.23% Zn, and contained 55.8% of the lead, 63% of the gold, 36.3% of the silver, and 19.9% of the zinc in the heads. These results are reasonably similar to those of NM-4 and show that the addition of the zinc sulfate to the grind provided no obvious benefit. By contrast, the addition of zinc cyanide to the Pb cleaner resulted in 53% of the gold that was recovered in the combined Pb concentrates reporting in the Pb cleaner tails.

The addition of copper sulfate to the zinc cleaner allowed for a substantial increase in zinc recovery in the zinc cleaner concentrate. Approximately 69% of the zinc in the heads was recovered in a final concentrate assaying 53.6% Zn, 0.10 oz Au/ton, 2.62 oz Ag/ton, 2.93% Pb, 0.22% Cd, and 1.4% Fe.

÷

TABLE VIII

Test NM-5

Metallurgical Balance

				Assays										
		opt	opt	7	7	7	% Distribution							
Product	% Wt	Au	Ag	РЪ	<u>Zn</u> 8.95	Cu	<u>Cu</u> <u>Au</u> 0.207	Ag	Pb		Cu			
Assay Heads		0.102	1.05	4.23		0.207								
Calculated Heads	100.00	0.092	1.04	4.28	8.58	0 .229	100.0	100.0	100.0	100.0	100.0			
Pb Cleaner Concentrate	2.34	0.49	5.73	44.38	19.60	1.63	12.5	12.9	24.2	5.3	16.6			
Pb Cleaner Scavenger Conc.	2.58	0.61	4.80	42.96	25.25	1.39	17.1	11.9	25.9	7.6	15.7			
Pb Cleaner Scavenger Tails*	2.44	1.26	4.91	9.92	24.60	1.10	33.4	11.5	5.7	7.0	11.7			
Zn Cleaner Concentrate**	11.06	0.10	2.62	2.93	53.60	0.39	12.1	27.9	7.6	69.1	18.8			
Zn Cleaner Tails	2.07	0.18	2.16	5.51	18.19	0.84	4.0	4.3	2.7	4.4	7.6			
Zn Scavenger Tails***	79.51	0.024	0.41	1.83	0.71	0.085	20.9	31.5	33.9	6.6	29.6			
Pb Rougher/Scavenger Conc.	7.36	0 .79	5.14	32.47	23.23	1.37	63.0	36.3	55.8	19.9	44.0			
Zn Rougher/Scavenger Conc.	13.13	0.11	2.55	3.34	48.02	0.46	16.1	32.2	10.3	73.5	26.4			

* Sample was rerun to confirm the gold assay.

- ** Zn Cleaner Concentrate Cd = 0.22% Fe = 1.4%*** Zn Scavenger Tails Ox. Pb = 1.3% Ox. Zn = 0.003%

7

PETROGRAPHIC EXAMINATION OF SEVEN ROCK SPECIMENS

In addition to the eight metallurgical samples, seven rock specimens were submitted exclusively for petrographic studies. Three of the rock specimens were from the plateau grid (Specimen No. 1), the Misty Day grid (Specmen No. 2), and the Silver Cliff zone (Specimen No. 3), while the remaining four were collected from Trenches 1, 5, 9 and 10.

One-half of each specimen was crushed and finely pulverized for semiquantitative analyses by X-ray diffraction and X-ray fluorescence techniques. The remaining half was used for preparation of polished thin sections and general megascopic observations. Polished thick sections were prepared from Specimen No. 3 for supplemental microscopic and electron microprobe studies to evaluate silver occurrences.

Compositions

Semiquantitative Heavy element analyses by XRF and semiquantitative mineralogic determinations by XRD and microscopic estimates are given in Table IX.

According to XRF data, these select specimens are moderately to highly mineralized with zinc (2-40%) and lead (2-15%), with smaller amounts of copper (0.04-1%). Silver is usually below the XRF detection limits (approx. 5 oz Ag/t), except for Specimen No. 3 (>25 oz Ag/t), in which the major silver mineral was identified microscopically as acanthite (Ag_2S) , and confirmed by the electron microprobe. Textural features for the various sulfides are described in detail in a later portion of this section of the report.

Quartz is the major gangue mineral in six of the samples (40-65%). However, in the specimen from Trench 5 the major gangue mineral was identified as pyroxene (75-85%), and small amounts of iron (<2%). This specimen was also the least mineralized with lead (approx. 2\%) and zinc (approx. 2\%).

Semiquantitative iron contents (2-7%) are relatively low, considering the degree of mineralization. Most of the iron was attributed to pyrite and chlorite, and in some cases, chalcopyrite and ferruginous oxides. Very little of the iron appears to be in solid solution with the sphalerite, as evidenced by its ability to transmit light in polished thin sections. Consequently, it is indicated that most sphalerite is near pure ZnS.

TABLE IX

Semiquantitative Elemental and Mineralogical Analyses for Seven Rock Specimens

	Specimen	Specimen	Specimen	Trench	Trench	Trench	Trench
Semiguantitative YRF	<u>No. 1</u>	<u>No. 2</u>	<u>No. 3</u>	<u>No. I</u>	<u>No. 5</u>	<u>No. 9</u>	<u>No. 10</u>
Fe (%)	7.	3.	5.	6.	2.	3.	4.
Mn (%)	0.2	0.4	<0.01	0.9	>10.	0.04	0.2
РЬ (Х)	3.	3.	5-10	5-10	2.	0.6	10-15
Zn (%)	10-15	2-5	10-15	15-20	2.	30-40	20-30
Cu (X)	0.04	0.4	0.2	0.1	0.04	1.	0.5
Ag (oz/t)	<5.	<5.	>25.	<5.	<5.	<5.	<5.
Semiquantitative Mineralogy (Wt %)							
Quartz	65	65	65	55	13	40	50
K-Feldspar	-	Tr	Tr	Tr	-	Tr	Tr
Pyroxene	-	-	-	-	75-85	-	-
Chlorite	5	4	-	10	Tr	-	2
Clay	Tr	-	Tr	_	-	-	-
Calcite	Tr	15	-	-	-	-	-
Cerussite	-	-	1-2	1-2	-	-	-
Smithsonite	-	-	-	-	-	-	-
Galena	2-5	2-5	5-10	5-10	1-2	Tr	5-10
Sphalerite	15-25	5-10	15-25	20-30	2-5	55-65	30-40
Chalcopyrite	Tr ⁻	1-2	Tr	Tr	-	2-5	1-2
Covellite ^a	-	Tr	-	Tr	_	-	Tr
Pyrite ^a	2-5	1-2	1	1-2	Tr	Tr	1-2
Iron Oxides	2-5	-	2-5	-	-	-	1-2
Acanthite ^{a, b}	-	-	Tr	-	-	-	-

• Estimated microscopically.

\$.

÷

..

 Identified microscopically and by electron microprobe.

Petrographic Descriptions

As mentioned previously, six of the specimens are highly siliceous, with quartz as the major gangue component, whereas a manganese pyroxene is the major silicate in the specimen from Trench No. 5. In thin section it was noted that most of the quartz occurs in two forms, which possibly represent two stages of quartz deposition. One form of quartz occurs as interlocking coarse-grained (0.3-2mm) polycrystalline patches, usually displaying strain under crossed nicols. The second form of quartz is fine grained (0.01-0.05mm), occurring as microcrystalline patches. This microcrystalline form appears to have been deposited later than most of the coarser quartz, as evidenced by embayed replacements of the latter by microcrystalline chert of possible hydrothermal origin.

From a petrographic standoint, the siliceous varieties were classified as veins and breccias. Breccias were ascertained by the presence of various sizes of angular volcanic fragments. The specimen from Trench No. 5 was classified petrographically as a pyroxene tactite. Descriptions for these three petrographic classifications are provided below.

Veins (Specimen No. 1, Specimen No. 3, Trench No. 1)

These contain the two varieties of quartz described above, with the coarse-grained quartz predominating in Specimen No. 1, and the finer microcrystalline quartz predominating in Specimen No. 3 and the specimen from Trench No. 1. The variations in quartz, as well as space-filling chlorite (Specimen No. 1, Trench No. 1) and sulfides, display local banded and spotty textures.

Breccias (Specimen No. 2, Trench No. 9, Trench No. 10)

The two forms of quartz were also observed in these specimens. However, the "breccia" designation was given because of the presence of angular cryptocrystalline to glassy volcanic fragments. These fragments usually range from a centimeter down to approximately a millimeter, and were reddish-brown in hand specimen. On occasion, under crossed nicols, feldspar microphenocrysts were recognizable to occur in a nearly isotropic glassy matrix. Most fragments are characterized by rims of quartz, displaying subparallel growth into the matrix, resembling cockscomb structure.

Specimen No. 2 contained relatively abundant calcite (approx. 15%) as spacefillings with chlorite.

Pyroxene Tactite (Trench 5)

The exact identification of the manganese-rich, iron-poor pyroxene in this specimen was not attempted. In hand specimen the rock is dark gray in color, but along freshly cut surfaces the pyroxene imparts a light brown coloration. In thin section the pyroxene is prismatic to acicular and locally displays radiating or spherulitic structures. Relatively small percentages of quartz occur as recrystallized patches.

Opaque Mineralogy

The opaque minerals in these samples are largely sphalerite, galena, pyrite, chalcopyrite and covellite. Ferruginous oxides also occur as specular hematite and smaller amounts of goethite in Specimens No. 1 and No. 3 and the specimen from Trench No. 5. Platy and prismatic specular hematite was observed along tiny veinlets and open spaces, and locally as replacements of sulfides, largely sphalerite. Goethite was noted as veinlets and partial replacements of pyrite.

Prior to flotation testing, microscopic grain size determinations of the sulfides were obtained by D. M. Hausen³ from thin sections of the seven specimens, which are given in Table III. While these measurements were probably not completely indicative of grain sizes for sulfides in the metallurgical samples, the grain sizes and occurrences for the seven specimens provided a rough idea of the nature of the ores at the New Moon prospect.

Of the major sulfides sphalerite is the coarsest, with predominant sizes ranging from 0.1 to 0.5 mm, occurring largely as massive to semi-massive space and vein fillings. Only very minor amounts of the sphalerite occurred as fine-grained disseminations (<0.05 mm).

Galena is much finer grained, with predominant grain sizes ranging from 0.03 to 0.10 mm. Approximately 50% of the galena occurs separately from the other sulfides as space fillings and disseminations. Most of the remaining 50% is intergrown with sphalerite, but largely occurs as edged attachments along outer grain boundaries of the sphalerite. Very minor amounts occur as fine blebs (0.005-0.02 mm) within the sphalerite.

Predominant grain sizes for chalcopyrite (0.04-0.15 mm) are slightly coarser than for galena, but finer than sphalerite. Chalcopyrite is present largely as space-fillings and disseminations independent of the other sulfides, although small amounts occur as fine blebs in sphalerite, edged attachments with sphalerite and galena, and fracture fillings in pyrite.

Pyrite is predominantly in the 0.06 to 0.12 mm sizes, occurring as individual euhedral and sub-rounded grains, and occasionally as clusters. Rarely, were binary and ternary intergrowths of pyrite observed with the other sulfides.

Covellite occurs as partial supergene replacements of chalcopyrite, but was even observed on occasion as fine rims on sphalerite.

Acanthite (Ag_2S) was the only silver mineral positively identified microscopically, and was observed only in the specimen from Trench No. 3. It is gray in color, but is identified microscopically by its extremely soft nature and the light etch of the surfaces by light from the microscope. Where observed, acanthite is finely disseminated in sizes ranging from 0.01 to 0.06 mm. On occasion, it was noted as thin rims on other sulfides. It is suggested that this latter occurrence is probably more frequent than observed, but additional microscopic and electron probe studies are required for acanthite occurrences.

Gold occurrences were not identified in examination of polished thin sections for these seven specimens.

Metallurgical Implications

Due to the abundance of quartz, and especially the microcrystalline variety in some of the specimens, these will probably be considered hard ores, requiring considerable primary grinding.

The generally space-filling and relatively coarse-grained features of sphalerite suggest most would be liberated at conventional primary grinds (approx. 65%, -200 mesh). However, because of the finer-grained nature of the galena, finer primary grinds will probably be required.

Some of the lead is attributed to cerussite, which will probably be lost in the tailings.

REFERENCES

1. Macauley, T. N., "Re: New Moon Project, B.C.," Letter to W. C. Hellyer, December 16, 1985.

.

- 2. Hellyer, W. C., "Ref: New Moon Sample Testing," Letter to T. N. Macauley, January 9, 1986.
- 3. Hausen, D. M., "Preliminary Liberation Size Measurements of Major Sulfide Phases in Select Ore Samples from the New Moon Project, B.C.," Memorandum to S. W. Nabbs, January 31, 1986.

APPENDIX

MEMORANDUM

July 18, 1986

To: S. W. Nabbs and A. Gorken

From: J. W. Ahlrichs

Subject: <u>Mineralogic Evaluation of Products</u> from Flotation Test NM-4 for the Blue Moon Project

INTRODUCTION

Six flotation products from Test NM-4 for the flotation of a twokilogram sample of a composite of Blue Moon trench samples were subjitted for semiquantitative mineralogic evaluation. The microscopic point-counting technique was used to determine the following:

- 1. Major diluents in the lead and zinc cleaner concentrates,
- 2. Degree of liberation and locking of the various sulfides,
- 3. Occurrences of lead and zinc losses in the final tailing (zinc scavenger tailing).

Preliminary investigations were also conducted to evaluate occurrences of the precious metals. Epoxy mounts for the lead cleaner concentrate (1.29 oz Au/t, 5.85 oz Ag/t) and the lead cleaner tailing (0.64 oz Au/t, 4.80 oz Ag/t) were examined by microscopic and limited electron microprobe techniques.

SUMMARY

Microscopic counting analyses were conducted for six flotation products from Test NM-4. Results for these analyses showed the following:

1. While some locking occurs in the lead products, this is not the main reason for impure lead concentrates. In the lead cleaner concentrate, sphalerite (29.6%) and pyrite (14.6%) are the major diluents, but microscopic counting indicated 75% of the sphalerite and 68% of the pyrite were completely liberated.

- 3. A relatively pure zinc cleaner concentrate was achieved, consisting of approximately 95% sphalerite.
- 4. Greater than half of the lead losses in the final zinc scavenger tailing was attributed to oxide lead (1.25%), which was in the form of cerussite (PbCO₃). Of the galena (0.9%) present in the tailings, 46% appeared to be completely liberated from other sulfides and the gangue minerals.
- 5. Zinc losses in the zinc scavenger tailing were due entirely to sphalerite (3.5%), of which 52% was completely liberated from other sulfides and the gangue minerals.

All gold and some of the silver in the lead cleaner concentrate (1.29 oz Au/t, 5.85 oz Ag/t) and the lead cleaner tailing (0.64 oz Au/t, 4.80 oz Ag/t) were attributed to electrum. Silver is also present as acanthite (Ag_2S) , and at least one of the silver sulfosalts. When observed microscopically, the acanthite and the sulfosalt are fine grained (<10 µm) and locked to other minerals. This probably accounts for the relatively high concentrations of silver in all the flotation products for lead (3.98-5.85 oz/t), zinc (2.64-2.69 oz/t), and the losses in the zinc scavenger tailings (0.50 oz/t).

Additional microprobe studies are required to identify other possible silver phases and possibly solid solution occurrences in the major sulfides (galena, covellite, chalcopyrite, sphalerite, etc.).

LIBERATION AND LOCKING CHARACTERISTICS

The determination of liberation and locking characteristics for the major minerals in the six flotation products was accomplished by the microscopic point-counting technique. Weight percentages of free minerals and the various forms of lockings are given in Table III of this memorandum. The "free" and "locked" values are further classified as "estimated particle compositions," so that degrees of liberation were calculated for each mineral in the various products. Mineralogic data in that table and throughout this memorandum were calculated to the nearest 0.01%. This does not indicate the accuracy of the technique, but was done to characterize even those mineral associations which occur as small percentages. Pertinent data from the detailed information contained in Table III are summarized in Table I, which shows the amount of free minerals and summarizes the types of lockings. The liberation and locking characteristics for the products are described below.

Lead Cleaner Concentrate

According to data in Table I, the lead cleaner concentrate contains approximately 47% galena. The major minerals which serve to dilute this concentrate are largely sphalerite (29.6%) and pyrite (14.6%), and smaller percentages of copper sulfides (4.6%) and gangue minerals (4.1%).

Of the total sphalerite in the lead cleaner concentrate, 75% was completely liberated and 18% occurred as lockings with galena. For pyrite, it is shown that 68% is completely liberated, while 15% is locked with sphalerite and 14% with galena. The reasons for the completely liberated sphalerite and pyrite and most of the sphalerite-pyrite middling particles to float into the lead cleaner concentrate were not obvious microscopically.

Lead Cleaner Tailing

Upon cleaning of the lead concentrate, approximately 36% galena reported to the lead cleaner tailing. Of the total galena, about 90% was completely liberated.

Other minerals occurring in this product include gangue (23%), sphalerite (25.4%), pyrite (12.4%), and copper sulfides (3.2%), for which the respective degrees of liberation are 71\%, 80\%, 75\%, and 90\%.

Lead Scavenger Concentrate

Considerable amounts of sphalerite (51%) and galena (33%) reported to the lead scavenger concentrate. The degrees of liberation for these two sulfides were 80% and 89%, respectively. Of the total pyrite (8.1%), 78.4% was completely liberated. However, only 26% of the total gangue (6.6%) was liberated, with 30% occurring as lockings with sphalerite, 25% as lockings with galena, and 18% as lockings with other mineral phases, namely pyrite and copper sulfides.

Zinc Cleaner Concentrate

The zinc cleaner concentrate was relatively pure, consisting of approximately 95% sphalerite. Small amounts of galena (2.3%), copper sulfides (1.1%) and gangue (1.5%), and nearly negligible amounts of pyrite (0.06%) were also present.

111 Liberation and Locking Characteristics

	Pb Cl Conc		Pb Cl Tail		Pv Sc	av Conc	Zn Cl	Conc	Zn Cl	Tail	Zn Scav Tail		
		X of		X of		X of		1 of		X of		X of	
	<u>Wt X</u>	Total	Wt X	Total	Wt X	Total	WE X	Total	Wt X	Total	WE X	Total	
Sphalerite													
Free	22.25	75.2	20.21	79.8	40.93	80.3	88.55	93.2	75.19	86.7	1.84	52.2	
Locked with Galena	5.37	18.1	3.81	15.0	6.51	12.8	3.41	3.6	5.30	6.1	0.87	24.6	
Locked with Pyrite	0.57	1.9	0.29	1.1	0.36	0.7	0.04	<0.1	0.09	0.1	-	-	
Locked with Gangue	0.28	0.9	0.84	3.3	0.72	1.4	0.11	0.1	0.88	1.0	0.58	16.4	
Other Lockings	1.16	3.9	0.21	0.8	2.43	4.8	2.94	3.1	5.32	6.1	0.24	6.8	
Totale	29.63	100.0	25.36	100.0	50.95	100.0	95.05	100.0	86.78	100.0	3.53	100.0	
Galena													
Free	43.20	91.7	32.32	89.8	29.23	88.8	1.32	57.9	2.04	47.5	0.40	46.1	
Locked with Sphalerite	3.04	6.5	1.74	4.8	3.08	9.4	0.95	41.7	2.15	50.1	0.19	21.8	
Locked with Pyrite	0.37	0.8	0.18	0.5	0.18	0.5	-	0.0	-	0.0	0.01	1.1	
Locked with Gangue	0.32	0.7	1.78	4.9	0.44	1.3	-	0.0	0.05	1.2	0.24	27.6	
Other Lockings	0.16	0.3	0.02	<0.1	-	0.0	0.01	0.4	0.05	1.2	0.03	3.4	
Totals	47.09	100.0	36.04	100.0	32.93	100.0	2.28	100.0	4.29	100.0	0.87	100.0	
Copper Sulfides [®]													
Free	3.98	86.3	2.85	90.2	1.01	70.6	0.29	27.6	0.31	26.7	<0.01	0.0	
Locked with Sphalerite	0.27	5.9	0.13	4.1	0.19	13.3	0.76	72.4	0.83	71.6	0.06	31.6	
Locked with Galena	0.28	6.1	0.04	1.3	-	0.0	<0.01	0.0	<0.01	0.0	0.02	10.5	
Other Lockings	0.08	1.7	0.14	4.4	0.23	16.1	-	0.0	0.02	1.7	0.11	57.9	
Totals	4.61	100.0	3.16	100.0	1.43	100.0	1.05	100.0	1.16	100.0	0.19	100.0	
Pyrite													
Free	9.89	68.0	9.31	74.9	6.32	78.4	-	0.0	0.51	98.1	0.31	70.5	
Locked with Sphalerite	2.22	15.2	1.10	8.9	0.53	6.6	0.06	100.0	0.01	1.9	-	0.0	
Locked with Galena	2.07	14.2	1.13	9.1	0.81	10.0	-	0.0	-	-	0.10	22.7	
Other Lockings	0.38	2.6	0.88	7.1	0.40	5.0	-	0.0	-	-	0.03	6.8	
Totals	14.56	100.0	12.42	100.0	8.06	100.0	0.06	100.0	0.52	100.0	0.44	100.0	
Gangue ^b													
Pree	1.79	43.5	16.29	70.8	1.74	26.2	0.73	47.7	4.59	63.4			
Locked with Sphalerite	0.76	18.5	1.73	7.5	2.00	30.2	0.80	52.3	2.42	33.3			
Locked with Galena	1.12	27.3	4.00	17.4	1.67	25.2	-	0.0	0.07	1.0			
Other Lockings	0.04	10.7	1.00	4.3	1.22	18.4	-	0.0	0.17	2.3			
Totals	4.11	100.0	23.02	100.0	6.63	100.0	1.53	100.0	7.25	100.0			

. .

зr

Includes both chalcopyrite and covellite.
Includes largely non-opeque gangue and smaller amounts of ferruginous oxides.

.

يل

ſ

4

.

Zinc Cleaner Tailing

The zinc cleaner tailing also contained large amounts of sphalerite (86.8%), although larger amounts of gangue (7.3%) and galena (4.3%) were present than for the zinc cleaner concentrate. Only 48\% of the galena, but 63\% of the gangue were liberated in the zinc cleaner tailing.

Zinc Scavenger Tailing

Cerussite $(PbCO_3)$ was identified by XRD as a major lead mineral in the zinc scavenger tailing. Consequently, PbO and ZnO assays were obtained, resulting in values of 1.4% PbO and <0.01% ZnO. Based on these assays, cerussite accounts for greater than half of the lead losses, whereas nearly all zinc losses are attributed to sphalerite.

Of the total galena (0.9%) detected in this product, as much as 46% appeared to be completely liberated. Nearly 22% occurs as lockings with sphalerite, most of which were binary middling particles.

Of the total sphalerite (3.5%), 52% was liberated. The reasons for unusually large losses of completely liberated sphalerite were not ascertained by these studies.

PRECIOUS METAL OCCURRENCES

Assays and distributions for gold and silver in the flotation products from Test NM-4 are compared in Table II, below.

TABLE II

Gold and Silver Assays and Distributions for Flotation Products from Test NM-4

			Au	Ag			
Product	Wt Z		Dist(%)	oz/t	(Dist(%)		
Assay Head		0.102		1.05			
Calculated Head	100.00	0.093	100.0	1.05	100.0		
Pb Cleaner Concentrate	2.67	1.29	36.9	5.85	14.8		
Pb Cleaner Tails	0.80	0.64	5.5	4.80	3.6		
Pb Scavenger Concentrate	4.35	0.35	16.3	3.98	16.4		
Zn Cleaner Concentrate	2.80	0.11	3.3	2.64	7.0		
Zn Cleaner Tails	7.59	0.13	10.6	2.69	19.4		
Zn Scavenger Tails	81.79	0.031	27.4	0.50	38.8		

As shown in Table II, 36.9% of the gold was recovered in the lead cleaner concentrate, assaying 1.29 oz Au/t. Highest concentrations of silver (5.85 oz/t) also occur in the lead cleaner concentrate, but only 14.8% was recovered in this product. Overall gold and silver recoveries in the various lead and zinc flotation products were 72.6% and 61.2%, respectively, with 27.4% of the gold and 38.8% of the silver occurring in the zinc scavenger tailings.

Due to the relatively high concentrations of gold and silver in the lead cleaner concentrate and the lead cleaner tailing, epoxy mounts of these two products were examined in detail at magnifications near 600X. Preliminary qualitative electron microprobe studies were conducted on the two products at the Foote Mineral Laboratory at Exton, Pennsylvania.

Electrum and acanthite were observed microscopically, while a silverbearing sulfosalt was identified by the electron microprobe. Descriptions for these are given below.

Electrum

Electrum observed microscopically in the two flotation products was of relatively high reflectivity, displaying a creamy coloration which is indicative of the presence of gold as well as silver. Electron microprobe analyses of electrum indicated it to be composed of 60 to 70 percent gold, and 30 to 40 percent silver.

Approximately one-half of the electrum was present as essentially liberated grains (Fig. 1). The remaining observed electrum was locked with various sulfides (Figs. 2, 3). Measurements along maximum dimensions of the electrum ranged from about 5 to 65 μ m. Finer grained electrum (<5 μ m) could be present, but might have been overlooked microscopically.

Acanthite

Acanthite rather than argentite is used here, because argentite is unstable at temperatures below 179° C. Under reflected light, acanthite is a light gray coloration, but after about five minutes of light etching by the microscopic beam, it changes to a deep bluish coloration, then a dark gray, similar to non-opaque gangue.

Some acanthite was identified microscopically and by the electron microprobe in both products. All observed acanthite was fine grained (<10 μm) and locked to other sulfides.

vii Figure 1. Relatively coarse electrum (E) in lead cleaner tailing. The length is approximately 65 µm. It is essentially liberated, except for thin rim of hematite (H). (X666, incident light)

Figure 2. Lead cleaner concentrate with electrum (E) locked with sphalerite (Sp), which in turn is locked with pyrite (Py). (X666, incident light)

Figure 3. Lead cleaner tailing. Fine electrum (E) about 8 µm in length as inclusion in pyrite. (X666, incident light)

Silver Sulfosalt

A third discrete silver mineral was detected by the probe, but could not be identifed positively by microscopic techniques. The probe indicated it to be a silver sulfosalt, containing silver, sulfur and antimony, and smaller amounts of copper and zinc. This could be one of numerous minerals (tetrahedrite, pyrargyrite, polybasite, pyrostilpnite, etc.).

The silver sulfosalt identifed by the probe was also fine grained $(<10 \ \mu m)$ and locked to the various sulfides in the two products. Much more work is required for its identification, possibly quantitative probe studies.

METALLURGICAL IMPLICATIONS

Microscopic counts of the flotation products from Test NM-4 indicate an improved lead cleaner concentrate is possible if most of the liberated sphalerite and pyrite can be adequately depressed. Lead and especially zinc losses in the final zinc scavenger tailings might be decreased, because a considerable amount of galena and sphalerite appeared to be completely liberated. It is noted that these trench samples are near surface, but at depth, lower amounts of cerussite might occur.

All of the gold and some of the silver occurs as electrum, some of which is free (approx. 50%), but significant amounts are locked with sulfides. The other silver phases (acanthite, silver sulfosalt) are finely locked with various sulfides.

Microscopic Products from Test NM-4

	Lead Cleaner Concentrate							Lead Cleaner Tailing							Lead Scavenger Concentrate						
		Estim	ited Par	rticle	Compos	itions	(WE X)		Estim	ted Par	rticle	Compos	itions	(WtI)		Lotin	ted Par	ticle	Compos	itions(HE IN
.	Wt X	Sp		9	Co	Py	G	Wt X	8p	C1	Cy	Co	Py .	5	We X	Sp	G1	Cy	Co	Py	C
Free Minerals																					
Sphalerite (Sp)	22.25	22.25						20.21	20.21						40.93	40.93					
Galena (Cl)	43.20		43.20					32.32		32.32					29.23		29.23				
Chalcopyrite (Cy)	3.25			3,25				2.43			2.43				0.92			0.92			
Covellite (Co)	0.73				0.73			0.42				0.42			0.09				0.09		
Pyrite (Py)	9.89					9.89		9.31					9.31		6.32					6.32	
Gangue (G) ^a	1.79						1.79	16.29						16.29	1.74						1.74
Binary Lockings																				•	
Sp/G1	8.35	5.34	3.01					5.17	3.62	1.55					9.30	6 32	2				
Sp/Cy	1.06	0.83		0.23				0.25	0.16		0.09				2.30	2.12	4.70	0.14			
Sp/Co	0.14	0.13			0.01			-			,				0.25	0.10		0.10	0.04		
Sp/Pv	1.89	0.34				1.55		1.28	0.25				1 01		0.44	0.17			0.00	o 43	
Sp/G	0.91	0.23					0.68	2.41	0.82				1.05	1 60	1 74	0.14				0.43	
G1 /Cv	0.36		0.09	0.27				7-	0104	т.	.			1.37	1./4	0.40					1.25
G1 /Pv	2.34		0 11	••••		2 03		1 44		0.17	••		1 54		0.04		A 17				
G1 / G	1.36		0 11				1.05	5 4 5		1 74			1.30		0.70		0.17			0.79	
Cv/Pv	0.18		0.51	0.01		0.17	1.05	0.01		1.75				3.90	1./0		0.34				1.42
Cw/G	0.15			0.01		0.17	0.14	0.31			0.02		0.29		~ ~ ~						
Co/G	0.13			0.01	0.04		0.14	0.34			0.03			0.31	0.15			0.01			0.14
Br / C	0.12				0.03	0.04	0.07	0.12				0.07		0.05	0.49				0.08		0,41
23/0	0.23					0.00	0.1/	0.81					0.15	0.46	0.63					0.32	0.31
Ternary Lockings	• • •																				
Sp/G1/Cy	0.13	0.07	0.01	0.05				0.50	0.24	0.19	0.07				0.17	0.14	0.02	0.01			
Sp/G1/Py	1.09	0.27	0.05			0.77		0.16	0.02	0.01			0.12		0.31	0.16	0.03			0.12	
Sp/G1/G	0.19	0.07	0.02				0.10	0.29	0.03	0.02				0.24	1.04	0.24	0.15				0.65
Others	0.31	0.04	0.09	Tr		0.08	0.10	0.28	0.01	0.02	0.03		0.14	0.08	0.66	0.08	Tr	-	0.07	0.04	0.47
Quaternary Lockings	0.08	0.06	Tr			0.01	0.01	0.10	Tr	Tr	Tr			0.10	0.35	0.08	0.01	0.01	-	0.04	0.21
Microscopic Totals	100.00	29.63	47.09	3.82	0.79	14.56	4.11	100.00	25.36	36.04	2.67	0.49	12.42	23.02	100.00	50.95	32.93	1.13	0.30	8.06	6.63
Degree of Liber'n.(%)		75.	92.	85.	92.	68.	44.		80.	90.	91.	86.	75.	71.		80.	89.	61.	30.	78.	26.
		_																			-

1 · · ·

a. Includes some iron oxides as well as non-opaque gangue.

┫

1

4

1x