SUMMARY REPORT

49 p.

ON

1986 DIAMOND DRILL PROGRAM

SILVER BUTTE PROPERTY

SKEENA MINING DIVISION

56° 06'N 130° 02'W

NTS 104B/IE

FOR

TENAJON SILVER CORP.

by

FILMED

A.W. Dean, P. Eng.

November 25, 1986

GEOLOGICAL BRANCH ASSESSMENT REPORT 15,752

Province of Ministry of British Columbia Energy Mines and Petroleum Resources	ASSESSMENT REPORT TITLE PAGE AND SUMMORY
TYPE OF REPORT/SURVEY(S) DRILLING	138, 808.8Z
AUTHORISI A.W. Dean SIGNATI	JRE(S)
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILED .	Jan. 5/87 YEAR OF WORK 1986
PROPERTY NAME(S)	•••••
Consolidated Silver Butte	· · · · · · · · · · · · · · · · · · ·
COMMODITIES PRESENT Ag., Pb, ZN., AU.	2-0302?
B.C. MINERAL INVENTORY NUMBER'S IF KNOWN	104 B /15
MILLING DIVISION SKEENG LATITUDE 56°6′9″ LONGIT NAMES and NUMBERS of all mineral secures in good standing (when work wa	IBA°I'D/IE
LATITUDE	
ALAMES and NUMBERS of all mineral tenures in bood standing (when work wa (12 units): PHOENIX (Lot 1706); Minura : Lease M (23), Mining or Certified Mini	s dome ther form (no property - Francist - 7 aug. 144, FrAE 2 - ng Lable ML fillin ar⊓k asoliked
Kansas	
· · · · · · · · · · · · · ·	
QV, NER-3:	
Tenajon Silver Corp.	and the second
· · · · · · · · · · · · · · · · · · ·	
MAILING ADDRESS	
,	
OPERATOR(S) lithat is, Company paving for the works	
as above (2:	
· · · · · · · · · · · · · · · · · · ·	
MAILING ADDRESS	
· · · · · · · · · · · · · · · · · · ·	a ga an
· · · · · · · · · · · · · · · · · · ·	• •
······································	
SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization, size	
Re Lower Jurassic Hazelton Group is Black argillites and tuffaceous silt	intruded by Texas Creek granodi
Black argillites and tuttaceous silt	stones are overlain by andesitic
flow breccia, pillow lova and lopilli to strikes 340 degrees and dips stee	utts. H mineralized zone
strikes 340 degrees and dips stee	ply to the east.
·····	· · · · · · · · · · · · · · · · · · ·
·	····· · · · · · · · · · · · · · · ·

TYPE OF WORK IN THIS REPORT	4	ENT OF WORK METRIC UNITS)			Or	WHICH CLAIM	S	ć	COST APPORTIONED
GEOLOGICAL (scale, area)						The second secon		and the second	al that a far an a star an an an ann an Allah
Ground						· · · · · ·		· · · · · · · · · · · ·	
Photo		· · · ·			• • • •	• • •			
GEOPHYSICAL (Ilne-kilometres)									
Ground									
Magnetic		, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					••••••••••		• • • • • • • •
Electromagnetic					· · · ·				
Induced Polarization		· · · · · · · · · · · · · · · · · · ·	4 1 4						· · · · · · · · · · · · · · · · · · ·
Rediometric		•••••		• • • • • • • • • • •	• • • • • • • •	· · · · · · · · ·		••••	· · · · · · · · · ·
Seismic	· · · · · · · · · · ·					• · · • • • • • •		• • • • • • • • • • • •	a a construction a second a s
Other		a na sana na sana ana ang katalan sa		• • • • • • •	• • • • • • • • •				
Airborne	· · · · · · · · · · · · · ·			• • • • • • • • •		• • • • • • • • • • • •	· · · · · · · · · · · · · · ·		
GEOCHEMICAL (number of samp	les analysed for	. 1							
Soil			· · · · · · ·		••••	· · · · · · · · · · ·		· · · · · · · · · ·	
Silt		. 	· · · · ·		•••••			• • • • • • • • • • •	
Rock						• • • • • • • • • • • •			· · · ·
Other	in proper a constraint and developed and and							• • • • • • • • • • • • • •	
DRILLING (total metres; number	996.3 m	· 4 holos BQ		1					
Core DIAD		; 4 holes; BQ		Kange	29				
Non-core	• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		• • •					• • • • • • • •
RELATED TECHNICAL Sampling/assaying 5/1/	1P 235	; Au, Ag		Ð					
Petrographic									
Mineralogic		•••••••••••••••••••••••••••••••••••••••							
Metallurgic		· · · · · · · · · · · · · · · · · · ·							
PROSPECTING (scale, area)		· · · · ·				· · · · · · · · · · · ·			
PREPARATORY/PHYSICAL									
Legal surveys (scale, area)									
Topographic (scele, area)									
Photogrammetric (scale, area)			, , , ,						· · · · · · · · · · · · · · · · · · ·
Line/grid (kllometres)									
Road, local access (kilometres)		· · · · · · · · · · · · · · · · · · ·							
Trench (metrex)									
Underground (metres)								· · • • · · · · ·	· · · · · · · · · · · · · · · · · · ·
									138,808.87
1	······································		.	r	an an an an an an an		nya waana wini fakkaana madar waa akeesa akeeka dikada ii	TOTAL COST	[72]0
FOR MINISTRY USE ONLY	40 000 01	NAME OF PAC ACCO	UNT	DEBIT	CREDIT	REMARKS		menomen and the sector of the former of the sector of the	10. V - 10. 10 - 10. 10 - 10 - 10 - 10 - 10 -
Value work done (from report)	38,808.8Z	•••••		a ser a ser a	· · ·				
Value of work approved			• • •	· · · .					
Value claimed (from statement)		· · · · · · · · · · · · · · · · · · ·	· · · · ·	• • •					
Value credited to PAC account		*****	e				\frown		
Value debited to PAC account	March 1/88	Hept No. 15752	 		4 X	Information Class	(3)		
and a second	ren et rando avas e remeriar managadades a materia e	L	· · ····	1					

TABLE OF CONTENTS

Page
1
2
2
4
6
6
6
7
8
10
14
14
17

ILLUSTRATIONS

Figure 1	Plan of Claims	3
Figure 2	Location of Claims	5
Figure 3	Drill Hole Plan	9
Figure 4	Section J	11
Figure 5	Section I	12
Figure 6	Section H	13
Figure 7	Plan Layout of Proposed Drill Holes	15
Figure 8	Typical Section-Proposed Holes	16

APPENDICES

Appendix I	Reference List	18
Appendix II	Core Drill Logs	In Pocket

SUMMARY

Tenajon Silver Corp. has an option to earn a 50 percent interest in the Silver Butte property, located 17 km northwest of Stewart B.C.

During the period September 15 to October 8, 1986, Tenajon completed four angled diamond drill holes totalling 996.27 meters on two sections spaced 100 meters apart. The program was undertaken to test a zone projected south of an intersection in drill hole SB 83-35 assaying 0.79 oz Au/ton and 2.64 oz Ag/ton over an estimated true width of 4.5 meters.

The drilling on wide spaced sections failed to confirm the continuity of the high grade target zone, however, did extend the known strike length of a quartz-carbonate veined stockworks to 350 meters. The stockworks contains varing amounts of pyrite, galena and sphalerite mineralization with pervasive silicification in places. Eleven core sections with widths greater than 0.9 meters with gold values ranging from 0.11 oz/ton to 0.55 oz/ton were intersected in 1986.

Fill-in diamond drilling on sections 50 meters apart is warranted to determine the structure and grade continuity of (1) the better grade 1986 gold/silver intersections, (2) the high grade intersection in hole SB 83-35, and (3) the quartz-carbonate veined structure open to the south.

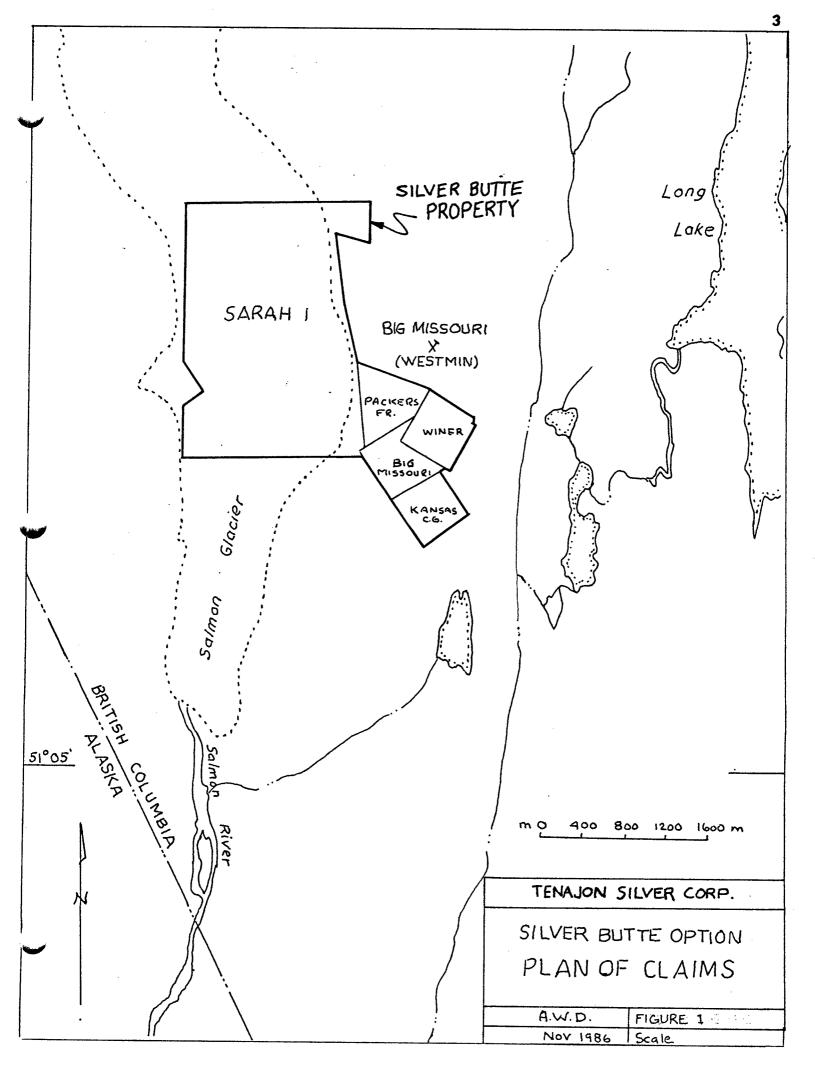
It is recommended a diamond drill program totalling 3,000 meters for an estimated cost of \$330,000 be undertaken during the summer 1987.

Without I

٠

The Silver Butte property, located 17 km northwest of Stewart B.C., is held under option by Tenajon Silver Corp. from Esso Resources Canada Limited.

During the period September 15 to October 8, 1986, Tenajon completed four diamond drill holes on the property totalling 996.27 meters. The program was undertaken to test a zone projected south of an intersection in drill hole SB 83-35 assaying 0.79 oz Au/ton and 2.64 oz Ag/ton over an estimated true width of 4.5 meters.


The following report contains the results of the program with conclusions and recommendations. Documents and maps used for reference are listed in Appendix I.

PROPERTY (Figure 1)

The property consists of the following staked claims, reverted crown grants and crown grants:

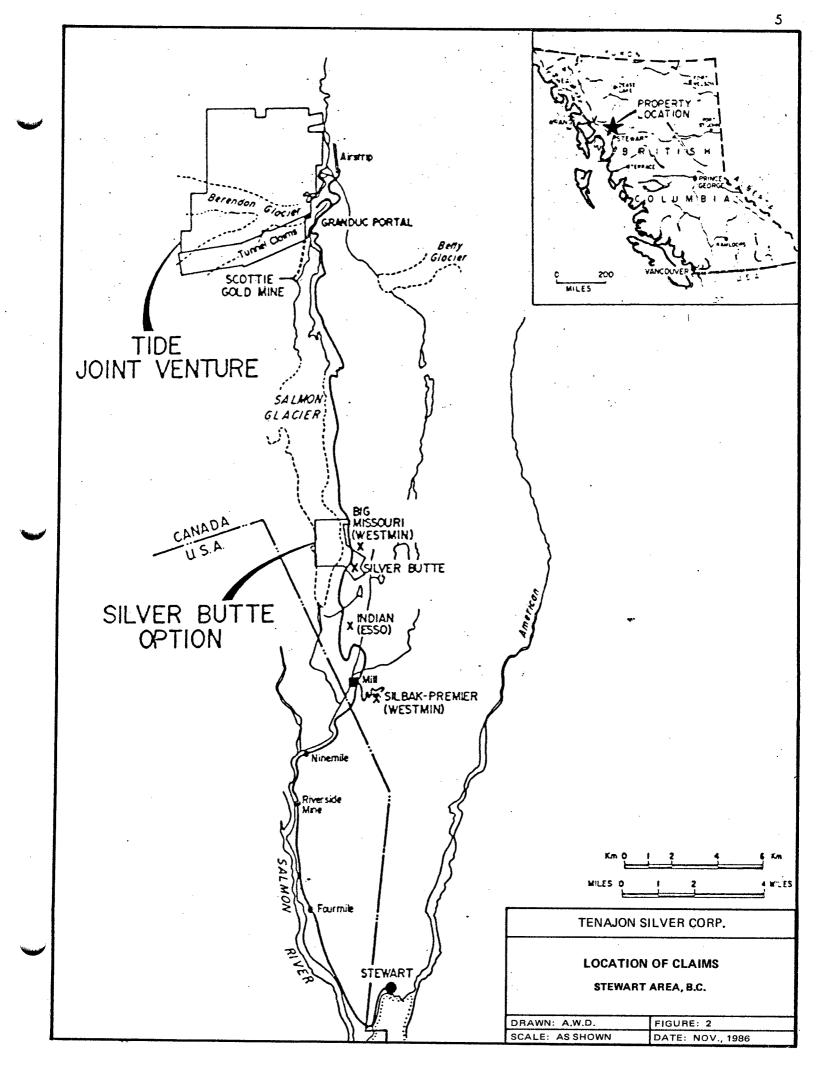
<u>Claim</u>	Units	Record No.	Expiry Date
Sarah I	12	785	October 2, 1993
Winer Fraction	1	2642	November 12, 1992
Packers Fraction	1	14	October 4, 1992
Winer	1	437	October 4, 1992
Big Missouri	1	438	October 4, 1992
Kansas C.G.	1	L3218	Crown Grant

2.

All claim titles are registered in the name of Esso Resources Canada Limited. Flowing from an 1980 option agreement, Esso is obligated to pay Silver Butte Mines Ltd. \$15,000 annually (prior to August 31st) and 20 percent of net profits of mineral production from the Sarah I, Winer Fraction, Packer Fraction, Winer and Big Missouri claims. Esso is the sole owner of the Kansas crown grant.

Tenajon Silver Corp. as per a 1985 option agreement has the right to earn 50 percent of Esso's interest by spending a total of \$1,200,000 at a minimum rate of \$300,000 annually including Esso's payment to Silver Butte. The option is currently in good standing.

LOCATION AND ACCESS (Figure 2)


1

The property is located in the Salmon River Valley some 17 km northwest of Stewart B.C.

Access is via the Granduc Mine gravel road which crosses the property 25 km from Stewart B.C. Vehicle access on the property is limited to Westmin's 4X4 road that traverses a portion of the Winer claim. Diamond Drill mobilization and moves for the most part requires the use of a helicopter.

The Silbak Premier Mine is located 6 km to the south and the Big Missouri property adjoins to the north and east. Both these properties are under active exploration by Westmin Resources.

4.

TOPOGRAPHY AND CLIMATE

The Sarah I claim is mostly underlain by the Salmon Glacier. The other claims lie on the west side of the Big Missouri Ridge with steep slopes 30° to 40° extending from 500 m to 1000 m elevation. The slopes are mostly covered with talus and land slide rubble.

Snowfall up to 30 m has been experienced at the higher elevations which can remain in the gulleys until July.

WORK HISTORY

The following summary highlights exploration work undertaken to date:

1936 to 1939 - Buena Vista Mining Co.: surface sampling and two short adits.

1971 - El Paso Mining: soil geochem survey.

1979 - Consolidated Silver Butte: I.P. survey.

1981 to 1983 - Esso Resources Canada: surface geological mapping, soil geochem survey, test I.P. survey, 26 rock cut trenches, 36 drill holes totalling 3,055 meters.

1985 & 1986 - Tenajon Silver Corp.: adit timbered 20 meters in talus, 4 drill holes totalling 996 meters.

PROPERTY GEOLOGY

The property is underlain by lower Jurassic Harelton Group rocks intruded by Texas Creek granodiorite.

Black argillites and tuffaceous siltstones are overlain by andesitic flows, flow breccia and lapilli tuffs. The rocks occur in three main fault blocks seperated by northwest striking faults. The central fault block, in which most of the known mineral showings occur, lies between the Anomally Creek fault to the north and east and Gully fault to the south and west. Both faults dip moderately to the west. The fault block consists mainly of andesite volcanic rocks, underlain by Texas Creek granodiorite associated with the footwall Anomaly Creek fault. The andesitic volcanics are generally massive, feldspar and/or hornblende porphyritic in places and often stockwork veined with occasional moderate to highly silicified zones.

MINERALIZATION

Euhedral disseminated pyrite (3 to 10%) occurs throughout the andesitic rocks. Pyrite stingers, generally minor galena and sphalerite together with gold and silver values are closely associated with quartz-carbonate stockwork veinlets and pervasive silicification. High grade gold values occur in heavy to massive sulphides as cored in drill holes, SB-83-15, 16 and 35.

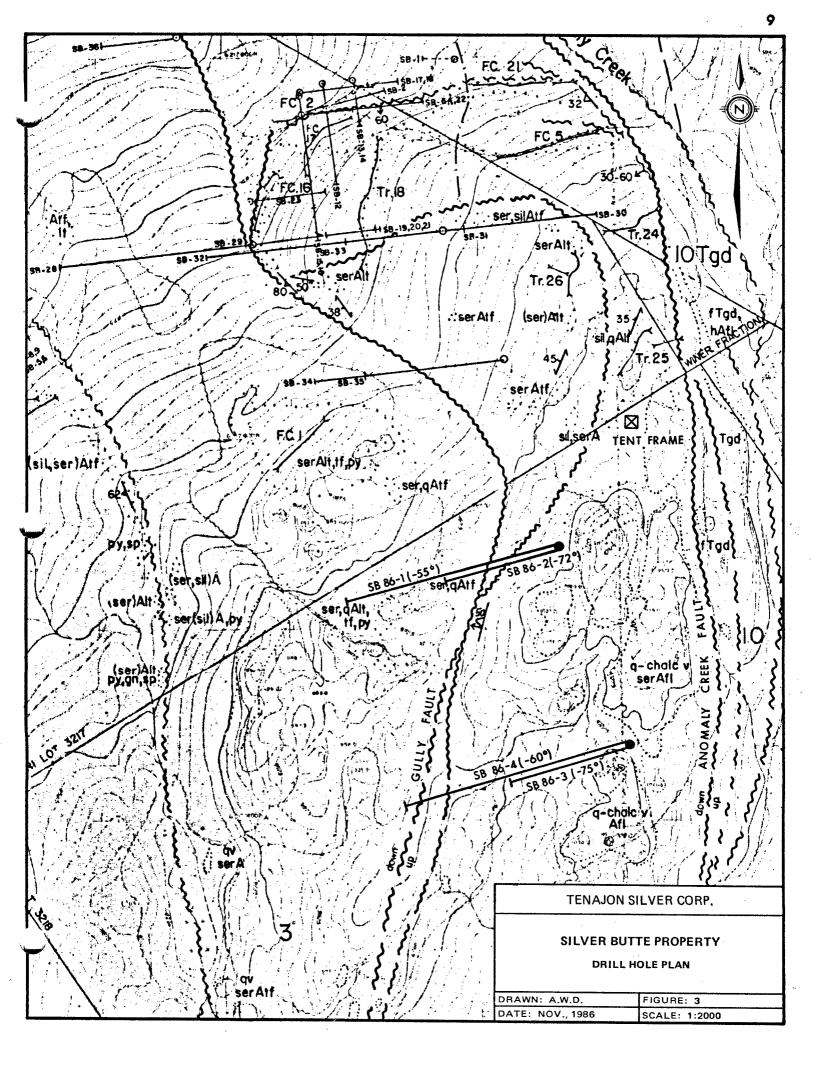
Stockwork zones with quartz-carbonate veins occur within the more compentent andesitic rocks. The zones with more than 15 percent quartzcarbonate veins and breccia have an apparent flat dip with a general north-south trend.

Silicified zones within the stockworks are poorly defined, however have been interpreted to dip generally steeply east.

The mineralization appears similar to that described at the old Big Missouri deposit 1,200 meters to the north.

1986 DRILL PROGRAM (Figure 3)

Four angled drill holes totalling 996.27 meters were drilled on two sections spaced 100 meters apart. The holes were located to test the projected strike south of the mineralization encountered in hole SB 83-35. (0.79 oz Au/ton and 2.64 oz Ag/ton over an estimated true width of 4.5 meters). Esso interpreted the mineralized zone to strike S 20° E and dip steeply east.


Holes SB 86-1 and SB 86-2 were drilled $S74^{\circ}W$ on Section I, 100 meters south of hole SB 83-35 on Section H. Holes SB 86-3 and SB 86-4 were drilled $S74^{\circ}W$ on Section J, 100 meters south of Section I. The drill holes are shown in sections presented in Figures 4,5, and 6. The core logs for the 1986 drill holes are contained in the pocket of this report.

Some 25 percent of the core was split and assayed for gold and silver only, at the Newcana Joint Venture Laboratory in Stewart B.C.

A summary of the better grade intersections is provided below:

SECTION I

<u>DDH</u>	FROM m.	$\frac{TO}{m.}$	WIDTH m.	<u>GOLD</u> oz/ton	$\frac{\text{SILVER}}{\text{oz/ton}}$
<u>SB 86-1</u> (-55°)	54.98 120.73	56.10 121.65	1.12 0.92	0.113 0.280	0.583 0.852
<u>SB 86-2</u> (-72 ⁰)	$78.96 \\90.24 \\78.96 \\112.19 \\144.21 \\147.87 \\202.74$	82.62 94.21 94.21 112.80 144.51 149.39 203.96	3.66 3.97 15.25 0.61 0.30 1.52 1.22	0.271 0.238 0.135 0.126 0.145 0.090 0.127	0.845 1.593 0.752 1.616 1.500 1.678 0.893

SECTION J

SB 86-3	102.20	103.20	1.00	0.549	1.158
(-75°)	146.40	147.40	1.00	0.357	0.911
	159.80	160.28	0.48	0.637	5.236
	199.20	203.30	.10	0.116	0.732
SB 86-4	112.50	113.30	0.80	0.112	0.498
(-60°)	136.30	141.70	5.40	0.127	1.664
	173.90	174.40	0.50	0.215	2.779
	196.20	198.40	2.20	0.159	0.458
	222.50	223.00	0.50	0.203	1.732

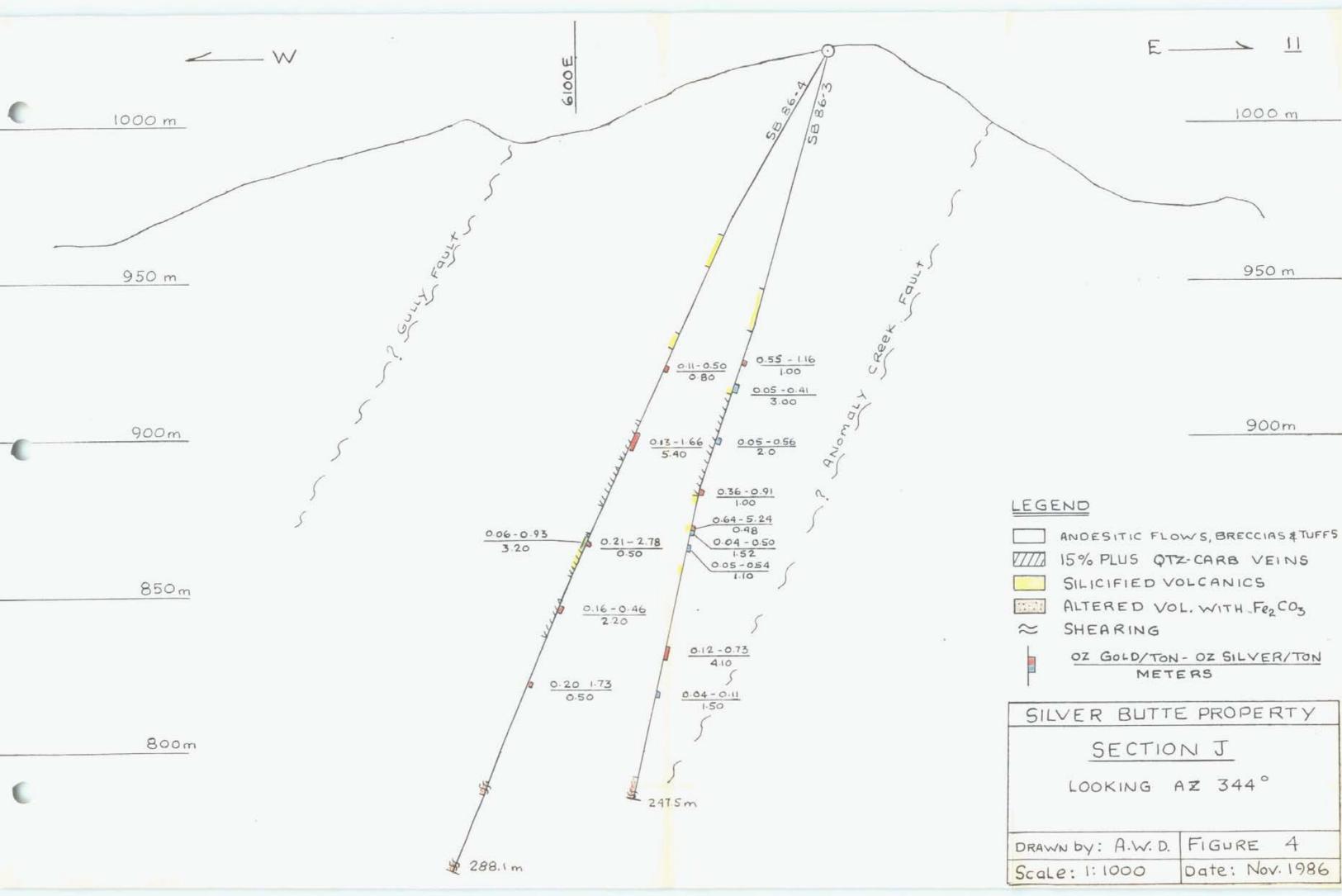
DISCUSSION OF RESULTS

The drilling on sections 100 meters apart failed to confirm the continuity of the projected high grade target zone.

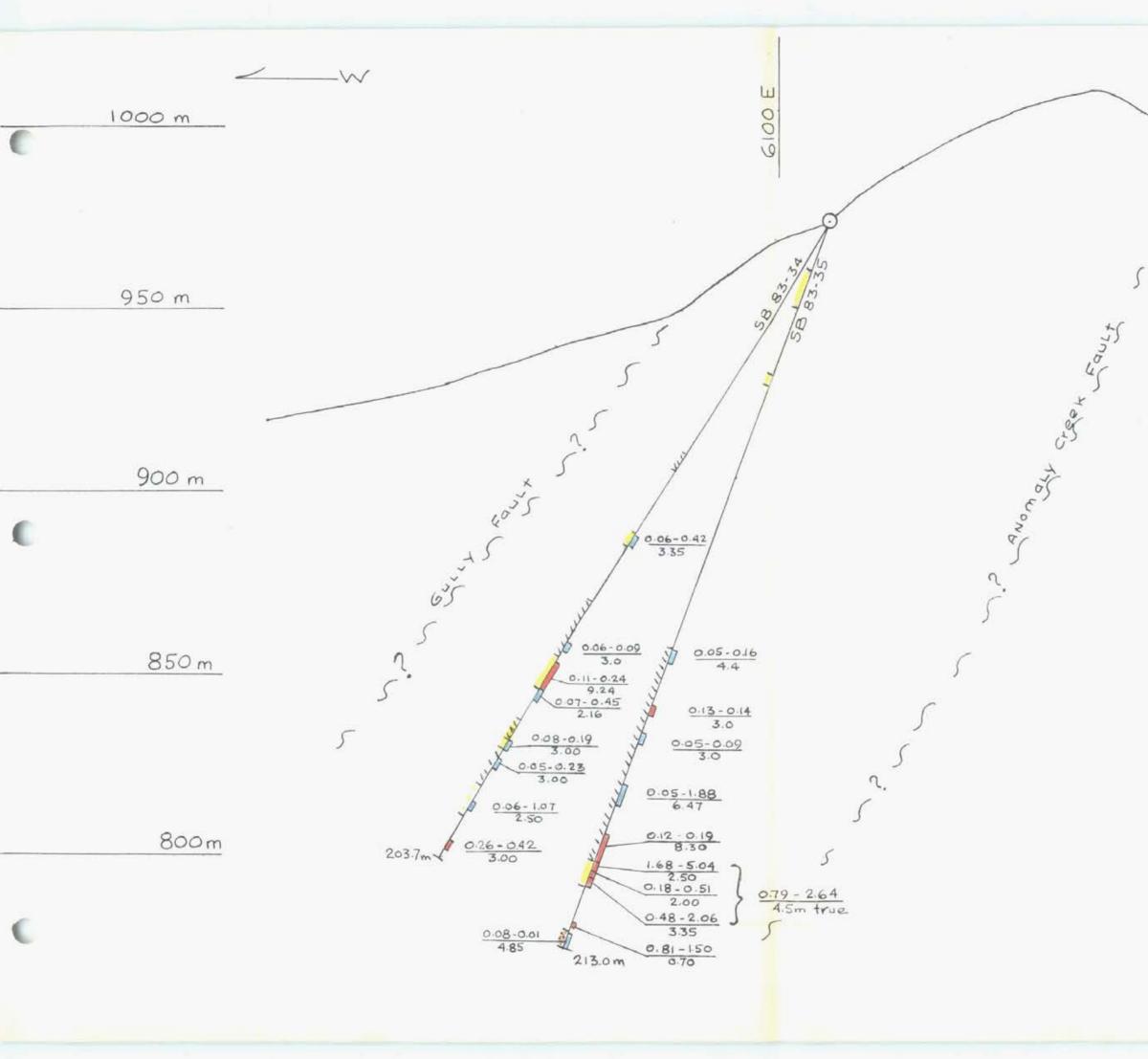
The quartz-carbonate veined stockworks with varing amounts of pyrite, galena and sphalerite mineralization was extended an additional 200 meters for a total length of some 350 meters. Eleven core sections with widths greater than 0.9 meters with gold values ranging from 0.11 oz Au/ton to 0.55 oz Au/ton were intersected. The spacing of holes drilled on sections 100 meters apart is considered too wide to fascilitate the correlation of the gold/silver intersections. The stockworks remains open and untested for 300 meters to the south within the Kansas crown grant.

Mineralization similar to the old Big Missouri deposit occuring 1,200 meters to the north, currently being explored by Westmin Resources Limited, is indicated. The potential for mineable tonnage in the 0.25 oz Au/ton range and or large tonnage potential in the 0.10 oz Au/ton range exists. Closer spaced holes are required to better test the continuity of the high grade intersection in drill hole SB 83-35.

	ANDESITIC FLO	OWS, BRECCIAS & TUFFS
[777]	15% PLUS QT	Z-CARB VEINS
	SILICIFIED V	OLCANICS
332	ALTERED VO	IL. WITH Fe2CO3
\approx	SHEARING	
	OZ GOLD/TON MET	ERS
SILV	ER BUTTE	E PROPERTY
	SECTIO	
DRAWN	ьy: А.Ш.Д.	FIGURE 5
	: 1:1000	Date : Nov. 1986


LEGEND

900 m


950 m

1000 m

E _____ 12

ANDESITIC FLOWS, BRECCIAS & TUFFS
15% PLUS QTZ-CARB VEINS
SILICIFIED VOLCANICS
ALTERED VOL. WITH Fe2 CO3
~ SHEARING
OZ GOLD/TON - OZ SILVER/TON METERS
SILVER BUTTE PROPERTY
SECTION J
LOOKING AZ 344°
DRAWN by: A.W. D. FIGURE 4
Scale: 1: 1000 Date: Nov. 1986

	E		13
3		1000	m
<pre></pre>			
5		950	m
25			

900m

LEGEND ANDESITIC FLOWS, BRECCIAS & TUFFS 15% PLUS QTZ-CARB VEINS SILICIFIED VOLCANICS ALTERED VOL. WITH Fe2 CO3 10.85 TEXAS CREEK GRAND DIORITE +++ SHEARING 2 OZ GOLD/TON -OZ SILVER/TON METERS NOTE GEOLOGY & ASSAYS by ESSO SILVER BUTTE PROPERTY SECTION H LOOKING AZ 353° DROWN by: A.W.D. FIGURE 6 Date: Nov. 1986 Scale: 1:1000

RECOMMENDATIONS

Fill-in diamond drilling on sections 50 meters apart is warranted to determine the structure and grade continuity of (1) the better grade 1986 gold/silver intersections, (2) the high grade intersection in hole SB 83-35, and (3) the quartz-carbonate veined structure open to the south.

It is recommended three angle holes be drilled for approximately 600 meters per section on five sections as shown in Figure 7. It is recommended the holes be drilled 263° Az(S83°W) at -45°, -60° and -75°. As shown in Figure 8.

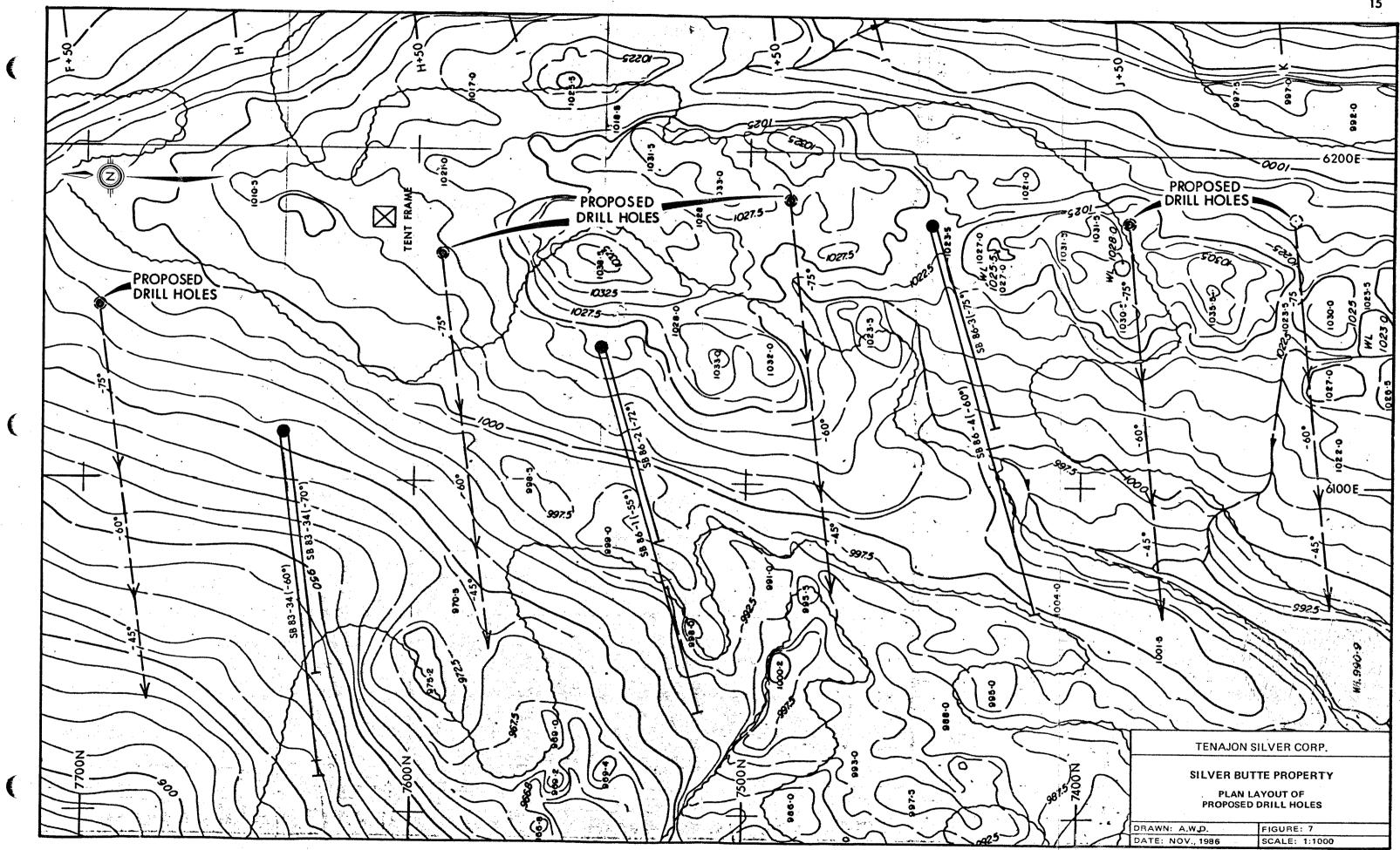
The program totalling 3000 meters is estimated to cost \$330,000 as outlined in the following budget.

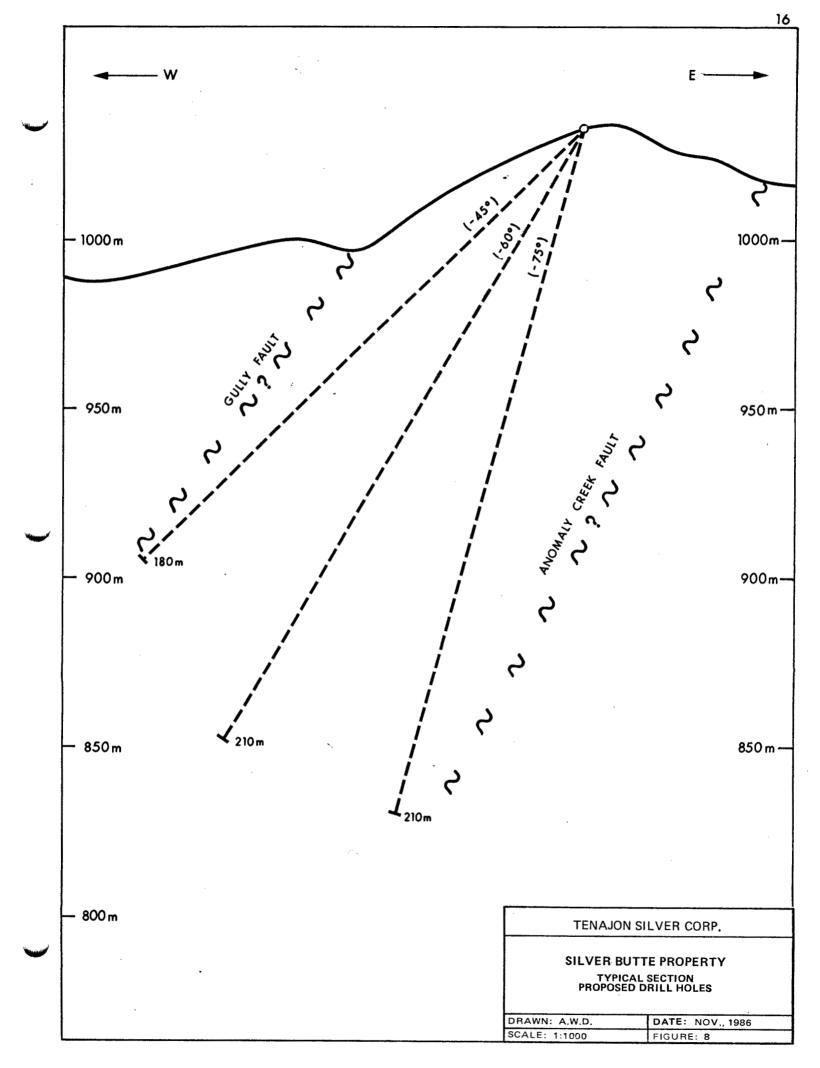
PROGRAM BUDGET

Drilling (3000 meters) Helicopter Road Maintenance Geological Supervision and Labour Room and Board Truck Rental Assaying Travel Report Prep and Other AMOUNT

\$246,000.
14,000.
10,000.
30,000.
9,000.
4,000.
10,000.
2,000.
5,000.

Total


\$330,000.


A.W. Dean, P. Eng.

14.

November 25, 1986

Respectfully Submitted

CERTIFICATE

- Alexander W. Dean of 1327 Lake Bonavista Drive S.E., Calgary, Alberta do hereby certify that:
- I am a graduate of the Michigan Technological University holding a B.Sc. in Geological Engineering, 1958.

.

- 2. I am registered as a Professional Geologist of the Province of Alberta and registered as a Professional Engineer of the Province of British Columbia.
- 3. I have practiced my profession for 28 years mainly in Canada and the U.S.A.
- 4. The accompanying report is based on my personal analysis of unpublished company reports provided by Tenajon Silver Corp., together with reports and maps available from government sources and my direct geological supervision of a diamond drill program on the property in September/October 1986.
- 5. I have not, nor do I expect to receive any interest directly or indirectly in the property or in the securities of Tenajon Silver Corp.

Dated at Calgary Alberta, this 25th day of November A.D., 1986.

A.W. Dean, P. Eng.

APPENDIX I

REFERENCE LIST

- Alldrick, D.J. (1984): Geological Settings of the Precious Metal Deposits in the Stewart Area (104 B/1), B.C. Ministry of Energy, Mines Pet. Res., p.p. 149-163.
- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area,
 B.C. Ministry of Energy, Mines Pet. Res., Bull. 58.
- MacLeod, J.W. (1986): Report on Silver Butte Property (104B/1E), Tenajon Silver Corp.
- McGuigan, P.J. and Davidson, G.L. (1982 and 1983): Silver Butte Project 1982 and Silver Butte Project 1983 (104B/1E), Esso Minerals Canada.
- 5. The Northern Miner (86): Vol. 72 No. 35, p.p. 1-2.

APPENDIX II

Diamond Drill Core Logs

Holes

SB 86-1 SB 86-2 SB 86-3 SB 86-4

	DIAN	OND DRILL	RECORD
	PROPERTY SILVE	RBUTTE	- HOLE NO. 5. 8. 86-1
SHEET NUMBER	ONE OF FOUR	SECTION FROM	TO 60.37 meters
LATITUDE 75	44.0N	ULTIMATE DEPTH 190	6.65m
DEPARTURE 61	41.5E	BEARING <u>574°</u> ω(354°)	12) STARTED Sept 16, 1986
ELEVATION 10	23 m	DIP55°	- COMPLETED Sept20, 1956
MIETIEI25	FO	RMATION	
6-12.201	CASING !		
12.20-30.49	HNDSSITE: GREY Cirebo	queens, massive f satisfied with occas	ine greatined, weakly
	FLOW	BRACCIA AND 95/0 to core, 3% par	Lareb Veins - bolh
30.49 - 35,46		MR PORPHYRY: qu queationed, Massing	Ley green, Feldspares
35.46-37.04		: andesitic, green m, branding @ 30° ie stringers.	
37.04-42.99	BLACK TUFF! V. 30° to	core 2% diss	weak branding@
42.99 - 47.26	ITNUSSITE: GREY OCCUSSIO	green, fine gran Nal 93/comb vero	C30° brone, 4% Pure
47.26 - 48.32	SILICIFIED ANDZO Shinge		anitic, 10% prizile
48.32 - 60.37	porphyr 95/cart 3to 5%g con Notz	ey green, Shlorit y, Massive (out > Veins MND q5/ca >géite with minor 2 in Assing SH22T qt3/careb@H5° to core	rains Deverdi rb breceia with 2 blebs of sp/an I and:
N.M.P., TORONTO-STO	CK FORM NO. SOI REV. 12/51 DRILLED BY CASEDRS DR	1	

.

.

• .

PROPERTY SILVER BUTTE HOLE NO. 58 86-1

SHEET NUMBER TWO OF FOUR SECTION FROM 48.32m TO 110.37

DEPTH	FORMATION			
48.32-60.37	ANDSSITE: CONTINUED			
	@54.0m-2cm q5/carbvein, Minor	- 52/q	2	
	55.0m-2cm a3/carb V, 4% pur, M	INOR C	о <u>,</u>	
	55 6m-2 cm q5 Karby, 490 pyr,			
	55.7 m - 8 cm q 5 / careb V, 6 % Dyr,		•	
	55.9m-2cm q3 karby, 4% pyr,	5% SF	>	
	56 om - Icm, atz/carbv, 1% qr			
1.17 1701	59.5m-30cm, 9t3/carb bruccia, m			
60:37 - 67.94	KTNDSSITIC TUFF: dark green ichloit	zed, c	pto	
	10% enhedern pyrite, others in	1-95/0	arb	
	Vein with trince SP/qN as	per J.	4281	<u> </u>
	@ 66.5m-2cm gz Karb, 10% pu	0 157	5.0	
	<u>C CO. 71. 2010 93/280, 10 10 pg</u>	<u>, 1 /0</u>	34	
67.94-71.65	SILICIFIED ANDSSITE: PALE GREEN, VE	4 Line	ORGIN	0)
	30% gtz/carb shingers, 4%			<u>```</u> ,
	MiNORQN.	5 - US		
71.65-73.17	ANDISITE FELDSPAR PORPHYRY ! GRE	GReen	, د	
	MASSIVE, OCCAS, ION AL TIME LIN	P 1 2		
73.17-92.07	SILICIFIED ANDESITE / FLOW BRSCCIA	mode	halely	
	Silicitized, practured in places wi			
	<pre> <hlorite 2="" 5%="" filling,="" of<="" pre="" purite="" to=""></hlorite></pre>	ningers	, THINOR	
	qN top as Noted in SHEET I.			
92.07-110.37	And the stand of the stand			
-12.0 [- 110.5]	Miderals with occasional FLOW B			
	Contrains q5/carb veins @ 15°2 to co			
	Ito 5% pur, Middre Sp/qa as water			\$ 11
	a w porte porte at the work of	*~ 51	66131	<u> </u>
	@ 102.1 m-lom at karb minuz hlebs	d SP\$	GN	
	@ 102.1 m - 1cm qtz/carb, minor blebs 105.0 m - 2cm qtz/carb, 10% euh pyr, M	ALD OR	Sp/an	
N.M.P., TORONTO-STOC	SK FORM NO. 501 REV. 12/51	ma.	Pilson	
	DRILLED BY	SIGN	ED	

PROPERTY SILVER BUTTE HOLE NO. 58 86-1

SHEET NUMBER THREE OF FOUR SECTION FROM 110.37m TO 192.07m

DEPTH METIERS	FORMATION			
10.37-122.56	ANDSSITE: GREEN, Khloritized Porphyrit	ne have	Nblend	e
	Gelles in al gtz/carb vein C	15° to	200	
	técore Silicifiéd Dreccia in	PLACES		
	3tos % PUR MINUR SP 2 9N			
1	IN SHIET TT.			
		_		
	@ 115.6m - 1cm q5/carb, @ 15°2 to	ore, mi	JORGN	
	116.5m -2cm q3/carb, Minor SF			
122.56-141.60	ANDESITE: GREEN fine grained, chlorit	250 00	CAS JO	- ne
	frow preceia band - q3/ca			
	OCCURING IN PLACES @ 40° +	core	with	
	Minor sp as Noted in SH	227 11		
	•			
	@ 129,0+0 130.5m - 3-30cm q3/car	O VRINS	4 % 24	2
				
141.60-173.27	ANDESITE ; Chloritized with occurs.100	nc qt	[/cavb	
	Vein, 2%, minor 5P/	gu as	Her SHEE	Γ <u>⊔</u>
	(~ 172.5m - 3cm q5/carb, 5% py		- 5 2/-	
	C 1100, 3 m - 3 cm q 3/ Careb, 5 /01941	E WILD	<u>r 5790</u>	
173.27 - 177.19	SILICIFIED FLOW BRECCIA: Aphanitic,	chara	reconix	
	blebs \$ phingers, 5% pyr, 1+			
·	MINUR QN \$ CP as Noted in		- <u>11</u>	
177.19-192.07	ANDSSITZ: GREEN, massive, chloritized	horn	blende	L
	PURPHYRY OCAAS INTE 93,	Carb	shinge	<u>h</u>
•	J's pyrite.			
·····			\bigcirc	
N.M.P., TORONTO-STO	CK FORM NO. 501 REV. 12/51	200	V.S.M.	•
	DRILLED BY	SIGN	ID	

DIA	MO	ND	DRILL	RECORD
	2	-		

PROPERTY SILVER BUTTE HOLE NO.58.86-1

SHEET NUMBER FOUR SECTION FROM 192.07m TO 196.65m

DEPTH		FORMATION				
192.07-196.65	SHEARED	ANDESITE: PAI	e green, she	Red \$	hacture	61
	· · · · · · · · · · · · · · · · · · ·	with CLAY go	uge in pinces	10%		
		With CLAY go TECO3 that I	Neathers yellow	5 brews	Son	
		exposure. JL	ip practure N	Plan	11	
t		to core from	196.0m to 1	96.650	<u>~ · </u>	
		<u> </u>				
	<u> </u>	ND OF HOLE				
	ACID	ETCH	Tilling			
	DIP TESTS	ANGLE	ANGLE			
	<u>DIP 12315</u>		HNGL			
······	60.98m	60°	52°			
	121.95m	61°	52.5°			
	182.93m	66°	58°			
			<u> </u>			ļ
		npls and Ase				
	ATTACHIZI	NS SHEETS	工生儿			
				· ·		
		<u>, , , , , , , , , , , , , , , , , , , </u>				
	——————————————————————————————————————					
		<u></u>	A			
N.M.F., CORONTO-STOC	K FORM NO. 501 REV. 12/51		Hele, Juan	- Kis	NTC1.	
	DRILLED BY			SIGN	ED	

•

CORE SAMPLE DATH HOLE NO: 58 86-1

	sa mp	LES								•	ASSA	
No.		TO	NIDTH	T	2501	RIF	> 110	2N			AU OZ/tow	oz/tas
and the second rest of the secon	20.05		0.81	FLOW	s bree	eice, c	5/car	5-	5%	pyre.	0,003	0.238
35202	29.73	30.49	0.76	1-10	w love	ceia,	50%	950	avebi	3% 24	0.003	0.319
35203	-47.26	48.32	1.06	Sil	carb	103	bene	2			0.025	0.460
35204	49.70	50.92	1.21	14xsd	, 3cm	93k	arb	mi	sor	8% py	0.023	0.353
35205 35206	53.45	53.45	2.54 1.53	BRec	, Ax	3/can	5,4	Zone	e, Main	or spg	0.003	0-223
35207 35208	54.98	56.10 57.6Z	1.12	5-9+	3/can - occur	b venso	4460	yr, g	N/SF	21%	0.003	0.583 0.265
35209	57.62	59.15	1.53	10%	93	karb	,4	100	yr		0.034	0.157
35210 35211	59.15 60.37	63.41	1.22 3.04	10	n 93	0% 0	iched	Ral	pyre		0.014	0-171
35212			3.05 1.46	Jem	+, 10 95/c	reb u	reinw	ith le	story.	e,1 /35	0.005	0.366
35222	67.94	69.46	2.19		- 30% Sove				t%P	hre	0.006	0.523
					A .)	(4.00)	124	0 2 %	PUR	0.005	0-295
35215	73.17 76.22	76.22		• •	ane	1,100					0.005	0.395
35217		82.32	3.05		ine							0.429
35230	85.3		1.52	si	Bree					1 1	0.004	0.320
35219			1.52		- Bre		1 1		· · ·		0:004	
35220	89.43	90.85	1,42	A	s abo	re	10%	5 py	eite		0.010	0.789
35221 35223			1.22 3.05		deste	1 1	1030	, ,			0.009	- 700
35224											0.004	0.409
35225		105.51		3cm	n 93	1cart	,102	opyr	Min	1 1	5 0.006	0.313
35226	105.18	106.71	1.53	Ans	desite	50%	o pr	va.te	- .		0.011	0.411
										- Anna - Alabama - La Maran		

CORE SAMIPLE DATA

•

ASSAY SHEET NO TT HOLE NO:5B 86-1

A										
	SA MT	NES							ASSA	15
No.	}	ETERS		D	scr	1PT	ION		AU	Ag
	FROM	TOU	HTCH						02/tow	02/tow
35227	109.30	110.37	1.07	20%0	13/car	6,5%	ophr, n	Aring SP	0.005	0.276
35228	115.24	116.77	1.53	1 = 20	em ats	leaves	vmin	or sp	0.008	0.354
35229		(18.29	1.52	atz ca	rb sh	sques	Misor	- SP.	0.012	0.417
35231	118.29	120.73	2.44	0105/T	3 <i>keccia</i>	, 6 %	> TYRIT	et ·	0.023	0.385
35232	120.73	121.65	0.92	SiL	Bresci	2,3%	pur, n	N. Dor Sp/g.	0.280	0.852
35233	121.65	122.56	0.41	30%	ft3/cart	, pyr	2 3 + 3 4	80	0.019	0.458
352 37	122.56		1.52	25%	95/0	1845 3	Jona,	misor sp	0.012	0.329
35234	128.96	130.49	1.53	3-30	cm q	3/car	5 , 4 5	BANK	0.004	0.267
35235	139.33	139.94	0.61	93/2	Areb b	reccia	12 20	mre	8.003	0:249
35286	149.08	149.54	0.46	50%	95/0	aes,	THINGR	50.	0.003	0.232
352 38								Misor		
35239			1.01	scm	93/ca	ebwit	h Stopy	RISP/QN	0.008	0.494
1 1 1		174.08	0.81					Min que	0.021	0.616
35240	1 1 1 1	175 30	1.22			125 Pu	e 1%sp	, min gas	0.016	0.392
35241		176.32	1.02	5 71			5/	Cer	i -	0.396
35242		1 1 1 1	0.87					Trunde SP/a		
35 2 43	177,19	178.35	1.16	Perty 1	erite	2%	34R		0.014	0.429

CORELOG BY A.W. DELAND, P.2NJ ASSAYS BY: R. WhAL DONNED, ASSAYER FOR NEWCONA JOINT VENTURE STEWART B.C.

••			MOND DRILL		_		
X	•	PROPERTY SILV	ER BUTTE	НО	LE NO.S	<u>B 86-</u>	-2
	SHEET NUMBER	ONE OF FIVE	SECTION FROM	то_4	2.68 m		
	LATITUDE 75	44.0 N	ULTIMATE DEPTH 26	4.02	m		
	DEPARTURE 614	41.5E	bearing <u>574°W(25</u>	H°A2 TAI	rted <u>Siz</u>	PT20,1	1986
	ELEVATION 10	23 m	DIP72°				
•	MILTZES	r	ORMATION				
·	<u> </u>		· 				
	0-5.18	CASING:					
	5.18-10.29		Ley to dately grees. Weak banding			1	105
			MCIZS, ACCASIONA				
		Strin	yer, 3% pyre, V	NINOR	50/		<u> </u>
		NOTST	Dio Assay St	1257	NOI		
	······································	Q.9.8m	- 46cm SiL Brecci	a.3%	pur, r	river Sp	(qu)
	10.29-35.06	ANDESITE: GRE	ey ciken massu	is ch	Loit13	وک	
		horist	blende porphypy	in pl	Adss	[_
		<u> </u>	SION AL 95/dareb	Stine	per 12	ZpyR	_
		@ 15.6 n	n - 5cm qts/careb	Vein	8 bh	ekse	<u>}</u>
	35.06 - 40.55	F-Low Brzeci	A: dweck green	apon	, bra	Dint	
	· · · · · · · · · · · · · · · · · · ·	of 40	to core ahlin	itizso	OCC4		4
		95/c	areb Vein, 5 to 8	2 pr	perte	-	
		@ 37.1m -	· 15cm q5/rach vein	5%p	R 1755	P, Miner	242
	·	37.3 m -	- 370 the grained) pyk.	Shino	ers.	<u> </u>
	40.55-42.68	ANDESITE FEU	DSPAR PORPHYRY	: are	ale	es	
			ius, feldsprie n				ļ
							
							+
	N.M.P., TORONTO-STO	CK FORM NO. 501 REV. 12/51		\sim		L	
		DRILLED BY UNNORS	DRILLING SIGNED	1 July	An	Pitor	ζ

PROPERTY SILVER BUTTE HOLE NO. 58-86-2

۰.

SHEET NUMBER TWO OF FIVE SECTION FROM 42.88m TO 65.55m

DEPTH M2T2RS	FORMATION			
42.68-65.55	FLOW BRECCIA; grey green moderatel	4 Silic	itize	
	with banding @ 40° tocore.	OCCAS.	ional	
	at /carb shinger 4+06% F	MR M	iNOR	
	OPZQN Notze HSIN ASSAY	SHISET	NO I	
1				
	(2 43.9 to 60.1 m - NINS 2ND STA	4293	VRINS	
	RANGing hom zom to ison			-
	@ 54.5m - 8cm at3/carbv. 5% pyr.	5%50	2%qN	
65.55-73.17	HNDSSITE FELDSPAR PORPHYRY : GREN	green	 ب ن	
	Generaly MASSINS, OCCAS ION			
	Shinger, 4 to 10% Pyr. Mino	RSPE	qN	
	as Notso in Aseny Streets	NOTA	<u> </u>	<u> </u>
· · · · · · · · · · · · · · · · · · ·	@ 69.0 m - 15 cm qtz/carb V, 10			<u>G</u> n
	71.0 m - 30cm SiL Brec, 10% pyre,	1%50	1% qN	
73,17-94.21	17NDESITE: GREY GREEN, Massive with	Lew's	par	
	porphysici in places, severe	LGJ	carb b	rece
	and veins 5% pyr, minor blebs	ofspa	92	
	as Notzà in Assay sheet	NO II	, and:	
		<u><u>k</u>:,</u>		
	-			<u>)</u>
			<u> </u>	
	79.0 m to 80.5 m - one 15cm, tour 10cm	x = 1	6 1/2.0	
	5% pyr,			<u> </u>
	81.9m - 15cm 40% pyre, 1%9		- 31	
	90.2 m - 122 cm with 40% g5/carb		And Ver	<u> </u>
		SPL		
	91.5m- 150 cm with 50% 95/carby	· · · · ·		Zar
			1%5	2
	93.0m-122 cm, 60% 93kaeby, 12%	PUR 3	Ran, 1%	52
	DRILLED BY		\frown	

PROPERTY SILVER BUTTE HOLE NO.5.8.86-2

SHEET NUMBER THREE OF FIVE SECTION FROM 94.21 m TO 112.80 m

DEPTH	FORMATION			
94.21-112.80	ANDESITE: GREY GREEN, Weally Dilie	itisd \$		
	Carebonatized in places with			
	Sevenal a5 leaved veins \$ bu			R
	Minde Spign as Noted in			TT
1				
	@ 101.8 m-152 cm 40% g5/carb 15	3 PUR	1%50	>
	111.3 m-91cm 30% 95/carb, 10			
	112.2m-61cm gt3/carb, 108			
112.80 - 125.00				,
	GRAINED GELDSPAR, OCCAPSIONIR	95/ca	rb	
·	Shinger, 4tos & pyr, mini	or an	Noted.	
125.00-146.65	FLOW Basecia: green, with praym			AR
	purphyry up to 6 cm, occas			
	occurrence st charcedony, 2 to		- *	
	Minionz qui as Noted in SHSS	TIN		
	@ 144.3 m - 3 cm of 9/3/carb, m.	vor an		
		L		· \
146.65-181.40	HND2SITE FELDSPAR PORPHYRY: GRAY C	preen,	Sililif	59
	breccia with charcedong in p	LACUS,	Severa	
	953/carb veiss@ 50° to core 4	105%	PYR.	
	MINOR QN/SP NOted as pu SHS	2+111.		
		×(- 51	
	(C. 148.m-24cm q5/carb V, 10% pyr,			
	148.6m-15cm q5/carbv, 5% pyr,			
	149.0m-30cm q5/carbv, 10% pur,		,	
	149.4m - 4-8 cm q5 karebv, 5% pyr			
	150.3m. fruz Scing 3korby 5% pyr	•	•	<u></u>
	165.4m-5cm qtz karbv, 5% pyr, 20			
	166.0m-10cm q5/corbv, 5% pyr, 2			
	175.4m. four long 5/carby 10% pur			
	177. m - 3cm Mass. 80% pyr, 5% q	N, S%	SP	
N.M.P., TORONTO-STOC	177.6m-3cm 80% Pyr, 5% qN,	57350		

N.M.P., TORONTO-STOCK FORM NO. 501 REV. 12/51

DRILLED BY

PROPERTY SILVER BUTTE HOLE NO. 513 86-2

SHEET NUMBER FOUR OF FIVE SECTION FROM 146.65m TO 242.38m

DEPTH 14272RS	FORMATION			Ĺ
	CONTINUED:			1
	Ce 178.8 M-5 cm 80% pyr, 5% 5	P.5%	gn:	1
181.40 - 185.67	FLOW BRECCIA: moderately silicitisd	with		
1	<halcedony 5%="" in="" places,="" pm<="" td=""><td></td><td>1012</td><td>Ī</td></halcedony>		1012	Ī
	GN as Noted in Assay sheet	F 111		I
	@ 182.8m-lem qu/sp shinger			Í
				í
185.67-193.90	ANDESITE: GRENGLEEN, feldspar DE	rephyr	e in	
	ANDESITE: GREY GREEN, feldspar por places, accus, ional 93/car	eb brei	taia_	
	@ 192.1 m two 15cm gt3/carbBx	52,04	RIVINO	GA
	·			
193.90-203.91	L SILICIFIED FRICTURE ZONE: Palear	EEN \$ TV	tw. fine	
	6 SILICIFIED FRICTURE 20NE: Pale qR Line chlorite, weak sleaving,	5% PL	IR !!	
			P	
	@ 203.8m - 3cm q3/careb 6%py	18.	E.	
			10-1	
203.96 - 208.8	4 ANDISITE FEUDSPAR/HORNBLINDE P	DRPHY	Ry:	[
	GREY GREEN, MASSIUZ, SILI PLACES WITH 8% PUR, MINON	hai.		[
		MN-1	F1	Ī
208.84-213.33	ANDESITE : grey green massive,	fineg	privod	<u> </u>
1		30011	Curver	
213:33-2121.65	5 SILICIFIED FLOW BRECCIA: Dale a	DOEN		1
			1=] tos	him
	at 50° to core charledon	13 VUIG	11.000	1
		7-1-11		Ì
JO115-242.3	8 SILICIFIED ANDESITE: tan/GREEN,	fracto	wei _	í —
	with five Live Chlorite, Rema	1 1 1	ALU	1
	BRECCIA in places.	f		1
		<u>├</u> ─── १	[]	1
	ст.	!	()	í
	1		[[
	,,	1		
N.M.P., TORONTO-STO	DCK FORM NO. 501 REV. 12/51	<u> </u>	\int_{c}	
	DRILLED BY	AN!	in	•
		310111		

PROPERTY SILVER BUTTE HOLE NO. 58,86-2

SHEET NUMBER Five of Five SECTION FROM 242.38m to 264.02m

METERS	FORMATION			
342.38-250.00	SILICIFIED FLOW BREECIA: TAN COLOURE	d, she	ured	
	with LC 50° to core, Cont		ata	
	ONO Fecus Shingers.		, 5	
250.00-251.8	B SHEAR: chang gouge with Fedoz	105	shear	ing
	a 50° × tocore.	, 137		
)			
251.83-256.10	SILICIFIED FLOW BRECCIA: TAN -	o are	4	
· ·	Aphonitic, 2% pyrite			
256.10-264.02	SILICIFIED ANDESITE: Practured \$ 1	Leaved	in	
	places with Fe Coz shin			
	50°2 to core			
	END OF HOLE			
ACID				
DIP TEST	ETCHANGLE TRUE AN	GLE_		
60.98m	78° 74°			
121.95	820 790			
182.93	800 765	0		
243.90	81° 78°			
	· · · · · · · · · · · · · · · · · · ·			
	CORE SAMIPLE ASSAY DATA A-	TACH	50	
	AS SHEETS NO I, II III & IV		-	
·		(
N.M.P., TORONTO-STOC	K FORM NO. 501 REV. 12/51	An !	me.	
I	DRILLED BY	SIGNE		·····
			•	

2			CORE	SAR	NPLE	DAT	4	SHE HOLE N	ETN 0:5B8	
		SA MT	PLES						ASSAN	15
	No.	M	ETERS		DE	SCRIT	> +10	2	AU	Ag
	100.	FROM	TOU	HTOIL					OZ/tow	02/tows
	35244		9.83	1.52	FLOW	precial u	-lecy ba	NOO)-35741	0019	0.315
	3\$245		10.29	0.46	Sin Fu	ow Breceia	, 3 % PY	e mittor sp/qw	0,030	
	35246	10-29	11.81	1.52	Wall R	le, FLOW	preceia	-	0-028	0.440
										1
:	35247	1				RK AU	1		0,009	0.276
	35248							- 75 blie Brow.		0.267
	35249	15.85	17.38	1. 53	Wall K	K-94/co	reb shu	squ, 2% py e	0.004	0.163
4 - L - 491	200		270.			· · · ·		Minor		
	35250	1 1 1 1						8 Beun Sp, q.		0-419
	35251	37.30		0.30	Brecci	~ 8% p	ire shi	ingus.	0.003	0.010
	35 252	37.60	39.12	1.52	Wall KI	x Andes	, s?	Spyr	0.003	0.259
		10 10	10.0		A			2		
	35253				1 1 1	4993	1 1 1		0.005	0.251
	35254			00,00	2.10%	ercin, pr	Spyre,	Mindegn	0.073	0.761
+	35255			1. 52	JIL DIU	A. Sem	ots vein	y Misor que Pure	0.012	0.253 0.139
	35256	46.65		0.61	SIL BR	, isem		Purc	0.003	0.139
	35257			0.6	2.01 00	4. 475	pyk		- i	0.092
	35259			0.91	20/0 73	30. 493	prove.	minor sp/g	0.006	0.034
	35260			1 1 -	1 1 1	tz/carb			0.005	0.082
1	35261	51.83						NR, MIDURSIP		0.362
,			• • • • • •					is a splan	0.012	0.174
	35262			1 1			1 1 1		0.007	0.576
	35265				< in A	3/carb 4	shth so	5P,2% AN	ŧ	0.370
	122207	סודט	J J0 TU	1 40		wd, 49	p pyr	~ 1	0.010	0.200
	35265	62 50	64.02	100	K. R	ere. 4		,		0.247
	35266					ec. 59				0.361
• ·• •.	35267					4% py		• • • • • • • • •	0.009	
a an in nu	35268	1 1 1						Sa Minon Sp/	0.004	0.294
۰ ۰ ۲	35269									0.254
	35270			0.00	302%	tB/Carp	010 94	Pyk, Min SP/A	N Q.020	
					1 2 0 10 9	Breakshis	, acc , p 13	Pyk, ma spig		
•										
1										
•	1 . 1			. ;		· · ·	1 1 -	· · · · ·	• • •	

CORE SAMPLE DATIA HOLE NO:58 86-2

	.																							
	1	3	sit r	NP	111	ΞS			1											:		AS	SAL	15
	No				ET				1	1	25	50	2	10	-+	14	ろ					AU		Ag
:	No)• [FROM	1	. Το		3	DTH							-							02/4	es I	02/tow
			-												1									
	3\$2	71	11	04	71	• 34	1 1	30	5	F	3 RU	L. 1	0%	Pu	R ,	1%	sp	,14	24	2		0.03		0.669
	352	12	71.	34	7	3,17		1.83	1.,	ψD.	1			m	:				,			0.00		0.236
	3527	3	i i	. 17	74	470		1.53	0		1		1	Rb	· 1	1			1	- 1		0.0		0.409
	3\$27	4	74.	70		.22		1.52														0.0		0.491
	3527			22		. 74		1.52		\$50	m	f7 5	/ca	x b	\checkmark_i	57	SP	ye	M	ùo	٩N	0.0		0.579
	3\$27		1	74		3 96		1.22	1					⊳ √								0.00	3	0.275
	3527	· .	1	96		250		1.54					1	axy					1			0.39		0.904
	3527	_	1	.50	1 (*	171	1	1.21	10	6	雪	Ic a	R 5	54	37	yR	1 17	いふ	nr 5	P/9	3	0.03		0.632
	352			71		2.6Z	1 ·	0.9						,15							د	0.38		1.027
	352	1	1	62		415	1	1.5						/ca								0.03		0.239
	3528		\$4			567	1	1.52	2 3	06	93	lcor	25	5	%	P	R	m	Ъd	RS	P	0.0		0.299
	3528		L .	67	1 1	372	1	3.05												• *		0.0		0.266
	35 28	- 1		72) 24	1	1.52	r					þ,						. 0		0.0		1.140
	3528			.24		1.46		1.22						5								0:3		
1	3528 352			46		2 99	1	1.5		0%	9		tret	, 1	5%	P4	R, 0	139	~,	1%	SP	0.2		1.248
	352		1	.99		4 21	1	1.2			43	1ca	RE	, i	- 75	Pu	42	209	₽,	%	5P	0.12		0.264
ł			1	21		6.04	ł	1.8	- 1					sh										0.298
:	3530	· 1		»·04	1	7,87	1	1.8	- P					ه , و								0.0		0.222
1	3530	2	· · · · · ·	7.87		9.39 1		1.5	23	0%	9 4	3/0	are 1	2, د ا ا	%	P41 	ه_،۱ 	 	OR	9-	່ວ 	0.0	23	0
	35 Z	99		1.83		3.35	1	15	24	17	15		b L	5	o;				57				. –,	0-348
	352			3.35		4.5	4	1.2		013	93				101	py	R		5			0.0		0.356
	3520		1.	4.51		5\$,40	1	0.9	z 2 2 4	10%	79		ares		57		14"			d	6	0.0		0.290
	3520		1	549		6.71	1	1.2	2	dm	1	Þ/ ∮ch	Cav		5. 65	10 1	124				5	0.0		0.541
1	3520			71	11	82																1		0.528
	352			8.23		9.76	1	1.5	210 35		A	P/		19	<u>،</u> ا	jo ji	2 min	- 1 ¹⁷	1.0			0.0		0.243
	352			1.76		1. 28		1. 5	52 =	5.50	ma	15	100	kb	5	5/2	6	k				0.0		0.271
1	3\$20		1	. 28		2 19		0.9				· · · ·	• 4	a ,10				1	1.	1		0.0		0.426
	3520		1	. 19		2.80		1 1	1 0													0.12		1.616
	3520		1	.80		4,3		1.5				1		6.0	21				1	0		0.0		0.301
	352	, i	114	4.33	l	6.1		1.2		- E			1	25				•		soe	42	0.0	74	0.415
:						į			6				•				(''	. , `						
!																								
į											1													
÷										1	ł			1			:			1		ł .		1 2• 1 4

											t i						1			•	-	
	3532 3532	3532	353	3531	3531 3531	3531	353	353 3531	353	35310	3530	3530	35306	3530	35303		3529		No			
			20	8	- 1		14	- 1	1	1	1		5						• -			
			18	170	1	1	16	- 1		15:		1	149				•		=Ro	5A		
an da anna a stàrainn an taine anna an taine	1.22 2.74	2.07	1. 40 2. 93 4. 45	7.88	, 83 3.35	5.30	5 24	5.37	7.01 3.54	5 79	. 44 1. 27	30	. 39	.78	87			11				
			12	15			14			15		f f			1 1							201
	02.74 3.96	1360	32,9 3 34,45 35,67	31.40	18.35 79.22	76.83	,6.16	»3. II	58.54 0.37	57.01	4,27 55.79	2 44	030	9.39	7.87 8.78				<u> 定 2</u> 9	ΞS		25
						(C	1		1		2	0						5			\sim
			1.53 1.52 1.22	1.52		.53	D.92	7.74	,53 ,83	.72	,33	.14	.91		.22		91		<u></u>			Ar Ar
	S		S	A		4-	-5	I _		A	A	+1	4-					0				15
			129	19-		10	cm	1 1		9,	no cu nd	re	80						Ū			とで
and a second	fr		Bru	93		m	\$1			in	^ 9] 	Se	n q						25			Ξ
	RAC		e.,	/ca		95	<u>م</u> د			ig q	3/4	MA	+3/0						5Cv			D
	170		5	aЬ		/ca	n a			15/	ant	5/	Lark						RI			A-
	red	2 I.	ろち	she		eЬ,	5/	1		coph	s, 5	careb	- Y,						P			1.7
er de ener a production de la companya de la compa	, (n	ing		10%	capt	1		e ۲	13 5	oV,	5%			1			11			
	.Sp		<u> </u>	5%		Phi	5,5	1		\$0	Phre 75%	5%p	Phr						ON			
	ne,r			Pur			80	1		re	mi	uR,	1%									i. 1
						10 SP	1.e	1 !		MUNU	NIN	2%56	>9+	, 1%								1
	Rqu	r qu		ing q.		,2%9	P/GN 2 %			nsp ₄	SP/GL	,1%9	>		- Jours		be qn					
	0.127	0.008	0.032 0.031 0.025	0.025	0.054 0.055	0.023	0.030	0.004	0.004	0.040	0.035	0.021	0-015	0.038	0.018	_			NU OZ/tow	ASSAV		ET NO 2:53 8
· ·	0.245 0.893	0.277	0.479	0.449	0.711	0.314	1.426	0.341	0.356	0.334	0.330 0.337	0.479	0.810	0.657	0.271		0.163		(79) 02/100			

								$\langle \rangle$	512	E		51	41	415	D L		J	DA	τ,	<u>}.</u>			Hc	525		{		T SB	1		
•			No				27	E	τe	= e	5				1	DS	sc	R	1.5		114	5~	-				Y	15 5 Y		Ag	
: : :		-	32				n 08	-				5.4	<u></u>	5	2	A.	۵.1	5%	95	./co	rb	81	Sp	a, 1	Y11~	en Src		011		.40	
					1		26 76						1															000 0008		-177 ~29	
			32 32				.13 .72																	+r	• *			016		. 42 . 43	
		35 35	4:	27	2 2	53 56	83 35 10	22	56 59	10 15		2.5 3.0	75 55	5	-	91	eec eeg esc	B	1	} .	1	1	1.	1			0	.004 .00	5 0	·26 .35 .22	4
		35	33	51	2	59	.15	2	60	98			83			H	5 1	43	٥V-	z							0.	009	20	.35	57
								2	PR F					D		1	Y: R	1	1	1	1		1	·	1	1	1	54Y2	R		
	annen and annen a sub-					ang a second and a second and a second and and a second and							-			₩ ₩	86		N-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ar	A		50	171		54YZ 12N		25_	
			-		· · ·			· · · ·								V		C		K /	Je	10	0			.					
	a a da a como de constante a serencia e		n						and a subject of the				an example of the second s													ang an ang managan na sa sa na gang mang mang mang mang mang mang			هدار بالمالية المحمومية معراب المحمومية المحمومية والمحموم المحمولية المحمو		
	•		and an and a second	and some value of the second statement of the second			angen de la faite anne anne anne anne anne		an ar an				a phonon from the second second second		and a second	a marajar subola ana agam		and a second	anders and drawn a manager an orange at to		presente familier aufor für	- marana - a malan -				and the state of t			an and a second second second		

	DIAMOND DRILL RECORD
× ,	PROPERTY SILVER BUTTE HOLE NO.58-86-3
SHEET NUMBER ≤	SNE OF FOUR SECTION FROM D TO
latitude <u>74</u>	142.5 N ULTIMATE DEPTH 247.5m
DEPARTURE 6	77.5 E BEARING 574°W (254°A2) TARTED Sept 27, 1986
ELEVATION	
DEPTH METERS	FORMATION
<u>rieiers</u>	
6- 1.22	CASING:
1.22 - 20.2	FLOW BRECCIA: GREY GREEN, INCLUCES FELDSPARE PORPHY
122 - 20:05	fragments from 1 tozen, from 14.5m
*************************************	to 20.8 m moderately siticitized with
	upto 8% pyrite, minor blebs of
	sphaleite galera & cHaloopyreite as.
<u>et.</u>	Notized in ASSAY SHEET NO I. WEak
	browding @ 25° × to corre
<u></u>	HNDESITE FELDSPAR PORPHYRY: grey green, massive
208-503	OUCASIONAL QE/CARD Shinger @ 30°
	@ 41.7m - 31 cm ata/carb vein 4% 2418, 5PK1% Mine
	@ 41.7m - 31 cm qt3/carb Vein, 4874r, 5PK18, Mine 42.8m - 3 cm qt3/carb Vein, 20% PUR, × 30%
50.3-54.3	FLOW BRECCIA: GREY GREEN, programents less throw icr
	2% pyreite
54.3-62.7	HNDSSITZ: grey green, massive, fine grainoù
	occusional q5/caeb vein with chalcedone,
	@ 62.4-30cm q5/careb/chalcedory Vein, 15% prieite
62.7-65.5	KANDESITE FELDSPAR PORPHYRY: GREAD,
	MASSIUS
1.5.5 70 2	(1) = + T = 3 + (1) + (1) + (1)
65.5 - 78.2	HADSSITS & FLOW BRSCHA: ALTERNATING BANKS
	moderately silie itisd in places with 4+08% privitez minor Sp AS Notzd in SHSETI.
	PUNICE VII NOW SU HO NOTZO UN STIZLI ZI
N.M.P., TORONTO-STO	DRILLED BY CONNORS DRILLING LTD SIGNED DUD DEAD P. SUG.

PROPERTY SILVER BUTTE HOLE NO. 53 86-3

SHEET NUMBER Two of Four SECTION FROM 78.2 M TO 149.0 M

DEPTH METERS	FORMATION			
78.2-92.0	SILICIFIED FLOW BRECCIA: Paleque	en, or	CAS 10	nd
	93/carb shingh with cho			
	pypite its mateix in places, m			m
	FROM 85.3m to 89.8m NINE			
1	barren qtz verus 2cm to 5cm	~ @ 50°	4060°	
	to core. @ 90.3 to 92.0, barres	4		
	·	13		
92.0 - 102.2	ANDSSITIE: CHARK GREEN, MASSIUE for	MOSTA	varet.	
	acasional at /durb shin	ger, 3	2 pir	
		•		
	@98.5m-2cm q5/carb @25° to con	e. 4%	IR MININ	50
102.2 - 111.7	MODERATELY SILICIFIED ANDESITE: QK	ees to	JARL	
	green, twe practure Lines with	h zhloi	ite, Aph	Awit.
	4% pyr			ļ
	@ 102.5 m - 2cm qt3/creb V,	minior	9N	
	103.0m - 2cm q5/carbu,	Minoir	SP/GN	
111.7-114.7	SILICIFISD FLOW BRSCEIA: Palegree			
	bhack five live practices, oce			
	Shinger @ 35° to core, minor 9	2/5p@	112.4m	
114.7-149.0		Carbo	watized	
	Anchloritized, occus ional to			
•	95/careb veins (050° to care			
	in shingers, minur sp/gn	as wole) in	
	<u>SHISTS I # II., and</u>			
	@ 116.8m two zem q3/carby 5% p			22
	130.4 m - 2cm q5/carbv @40°, 3%			
	130.7m - 2cm 95/carby, 2% 9N	, MINOR	SP	
				.
N.M.P., TORONTO-STOC	K FORM NO. 501 REV. 12/51		Ŋ	
	The she	to	7.202	
I	DRILLED BY	SIGN	D	

PROPERTY SILVER BUTTE HOLE NO.53 86-3

SHEET NUMBER THRIEF OF FOR SECTION FROM 149.0MTO 198.5M

DEPTH MISTSUS	FORMATION	4		
149.0-151.6	SILICIFIED FLOW BREECIA: grey, AP	nanitio		
	Minor blebs of qN & SP			•
	5% pur shingers.			
151.6-158.7	FLOW BIZZOCIA: GREEN, chloritize	J. ha	gmer 5	
1	up to 2 cm, 5 % PUR,	occus	ional	<u> </u>
	95/carb shinger with	miso	an/s	<u>,</u>
1587-160.28	SILICIFIED FLOW BRECCIA: gray/gree	2,50	20	
	pyieite, 95/coreb with c	haiced	my	
	in places.			
	Quite Alex of the delater in 2	51 - 0	- 57	
	@ 159.8- ABen a5/corb/cHAL VRIN, 3	0/JOYR		·
		· · · ·	2892	
160.28-169.7	ANDESITIC TUFFS: BAndled pale green	Ima	1	
100.20 101.1	twell green, Aphanitic, f	ine (;	re s.d.	2
	enhedral pyrite 5% occise	IONAL	a5/ca	25
	Vein with minor sp/qn cop			
169.7-171.2	SILICIFISD FLOW BREECONT : grey, ch	Accedor	by in	
	places. 5% pyr, miner 5	p/qp		
171.2 - 178.3	ANDZSITIC TUFFS: DAnded green /que Aphanitic @ 40° × to core	ey/b	Lack	
		1.3%	PUR	
	euhedral 11 to bornding			
178.3-198.5	ANDZSITZ: GREY GREEN, Generally for	ine ar	ainod	
	OCCASIONAL DAND OF BOC	n Tei	SDAR	
	Parphyrey			
	1 · · · · · · · · · · · · · · · · · · ·			
N.M.P., TORONTO-STOC	K FORM NO. 501 REV. 12/51	<u> </u>		Ц
	Alu	-15-1A		Elig
I		SIGN	ED	

PROPERTY SILVER BUTTE HOLE NO. 58 86-3

SHEET NUMBER FOUR OF FOUR SECTION FROM 198.5 m TO 247.5m

MET225	FORMATION			
198.5-206.1	ANDSSITZ: GREY GREEN, Moderately	SiliciF	٤D,	
······	OCCAS IONAL 93/carb VEN	is to bre	acia Q	50
	5% pur and missor QN	nots d a	s í	
••••••••••••••••••••••••••••••••••••••	per Assim SHSET II.			
	@ 198.5m - To cm 30% 9t3/carbbx, 9	2% PUR	1263%	gN
· · · · · · · · · · · · · · · · · · ·	199.7m - 200 cm 25% qtz carbbx	52 pyr	, qNK	1%
Job.1-225.0	ANDISITE: GREEN, 2hloritized, tin	e qra,	ived	
	OCCMS IONAL 95/corb			L
	309 to core, Minson SF	Van A	snoted	
	IN 5H52T III,			
225.0-240.5	ANDS SITIC TUFFS :, banded green	todal	green	
	zhloritized, L45° to co	ke, 5	cons:1	62
	g B/carb shinger, 5%p	LR MI	ron /g	N
340.5-246.0	ALTSRED TUFFS: pole green to for	1 ureal	c bansd	
	@ 30°2 to core, FeCoz	SHIN	gers	
246.0-247.5	SHIZAR : TAN coloured, shearing	6 + 75°	tacare	
	with FeCoz stringers \$ 1	come cl	-py gou	se.
	END OF HOLE			
	ACID DIP ETCH TRUS	-		
	TESTS ANGLE DAGLE	-		
	60.98m 78.5° - 74°			
	121.95m 76.0° -72°			<u>_</u>
	173.78m 81.0° - 78°	-		
NOTS:	LORE SAMPLE DATA & ASSAUS		· · · · · ·	
	COMPRESD IN SHS STS I, II & III			
N.M.P., TORONTO-STO	CK FORM NO. 501 REV. 12/51		125	·
	DRILLED BY	SIGNI		<u>j</u>
				•

	: 1								ł	İ											•	I	5	H¢	ĒĘ	:T	K	50		÷
						Ę	$\frac{1}{2}$	sR.	E		51	7 F	γ_{Γ}		Ξ	Ţ)A	τ,	1 .		Ì	-10	1-2	- +	29	: <	B	86	-3	
•											į																	į		
•						17	21								1									•		Δ	55	44	<	+
						Mi								Ţ	25	50	rz	1	>-{	10	5				.	· · ·	<u>د ج</u> ل-		Ag	
		Vc),	[=n	-ON	1	. 7	0		3	101	Н		ľ					-							0Z	to	2	2/40	4
																										_	_		_	_
	1 1	33			14.		1 1	16.0	· [cia D										004 003	°	0.01 2.14	•
, 1		33 53	1		16 17.1	•		17. 18.	F			0		•	ł	1	ľ, k					1	1	1			011	1	5.26	
1 1 1		533		1	1	57		19.			1.2	1	I		}	1	8		1		~ /	-,-,	-(-			0.	004	4	ن.38	33
	35	533	6	-	19.	80	6	20.	80		1.0	0			1	1 .	112				nco	بده	-P.			0.	012	- 4	5.26	9
														-								_		Mi	JOR					
	135	3	> /	ľ	<u>4</u> 1.	68		<u>+</u> 1.	99	•••	0	Þ!	9	3/	ra.	RE	ve	12	14.2	r:)	hR,	Sb	21%	6, 4	22	0.	021		0.77	6
:	35	33	8	ł	42.	80		43	10		6	30	30	m	q5		Pein	4	K2	0	%	24	è.U			0.	010	.	0.31	0
																Ī.						[-	
	35	33	9		62.	4 :0		62.	10		0.	30	Ka	pb/	省马	1c	hal	(مع	pre		59	bP	yr	+		٥.	000	7	0.40	53
	50	2/1			15	90		lat-	92		 		2				251										006		0.74	2
1	۲	34 34				90 90			90 40		4	•		4	1	11	3%	1 1 1	4 x			1	PP]		1	004 004	-	2.00	
	1	34				40			90								dia						1. No	ns	P	0	00	6	0.30	5
																								m	e Lini					
	35					20			70		1.5		5		1	,	k., (kai	15/	¢ 11 A	5,1	1%	pyr	[~]	0.	019		0.2	
	35	34	4		79.	70		81,	20		1.5	\$0			45	Ar	sor	4									00	3	0.Z	5/
	35	34	5		86	30		86	60		0.	30	F	ou	B	Lec	·	44	m	2	ha	te	SP	63	6.4	0	00	9	0.24	12
	1.							Ċ.											ſ											
	35	34	6		F18.	.10		99.	10		1.0	90	20	m	9	3/0	arl	, 4	1%	P	R	mi	20	r s	0	0	02		0.2	07
	20	+ 24	+7		~~	2.		1.2	20				+-	P	6	- ,	del						1-				54	a	1.15	5.2
	122		1.	`	02	20		03	20		1.	ψ0 	a	cm	f1 2	sic	gre		ς, π	4	٩ ا	PP	191	P)			م -ر.	-1	10 10	- 0
	3:	34	18		11.	70	1	14	70		3.	00	S		3r	ic	5	.23	P	R		1 in	6.1	15.	þ	0	05	2	6.4	14
	3-	34	19		16	80		117	10		þ.	30	2	+2	<u>e</u> m	9	Ski	apt	V, :	5%	Py	2	135	e ,1;	bq.	0.	016	6	0-6	14
• •	20	120	50		72	1.5		10]	1		2			Ē	1		0	5					\lfloor ,		.02	~	0.5	67
		כי			r U	. 50	[]	12	00	1	1.		D	ן וּצ 		13	/Car	2101	1.0	13	141	ν ι Γ 	1630	525	P/4.		·U2	.0	<u>د</u> . ن	، س
					1																					-				
•														1							-									
•		1			1							1			1					1	!	1		1		ł				
	1	i		ł	-	1	11	ļ		1	!	ļ		-		!	ļ		ļ	!	1	i I	ł	1	ļ	t		i		

, _ 1										EETN	
			ORE	SAR	NPLE	DAT	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	He	<u>>22 P</u>	0:5B-8	6-3
: 		5A MP								ASSA	
			ETERS		Ds	SCRI	P-+	ION		AU	Ag
	No.	FROM	TOW	DTH						02/tow	oz/tow
	35351	124. 2	124.6	0.40	Qt3/car	eb vers	108	10 pure	- stein	9 0.014	0.413
	35352	126.9	127, 2	0,30	50%	qtz/can	16V	0%00	RStR	0 0 25	0.641
	35353	128.90	129.90							9- 0.031	0.353
	353554	129.90	130.90	1 1	15% gt		'	1. 1		0.058	0.770
	35358	138.20	141.20	3.00	Enso,	3% рук	isshi	se, tre	ace 5P/e	N 0.022	1.479
	35356	146.40	147.40	1.00	25%	ats/corl	ov,sy	Spyre, v	a wasa	4.0.357	0.911
	35357	149.00	151.60	2.60	Brecci	a, Sill	carb	5BMA	missione	58 0.021	0.444
	35359	156.70	157.00	0.30	80%	at3/car	6,5	spur	MILDOR	GN 0.035	0.575
	35360	158.70		1.10	SIL B		-1 - 1		r 1 - 1		0.262
	35361 35362	159.80		0.48	GB Kar Carb/	eb, chall	,30%	pyr,so	SP,2%a	N 0.637	5.236 0.500
	53 26 2				areon-	10-3	10 124				•
	35363	165.50	166.60	1.10	30%9	\$/care	,5%	mR, M	injor SP/	an 0.046	0.541
	35364	168.50		1.00	2-20	m 93/	ine's	1, 3%	12, MINON	50 8.032	0.567
	35366		1 1 1 1	0.20	JL B	eec !	5967	ye,t	nie frac	6 0.007	0,008
	35365	169.70	171,20		SiL/Ca		70 Pu	e itics	sor SPE	N, 0,001	0.4 19
	35367		19920		30% 91					0.003	0.386
· · · · ·	35368		199.70	1 1	SIL AL		T		1 1	0.150	0.836
	35369 35370		201.70	2.00		15/chr+	/ / /	· · · · ·	(N~ 17c	0.091	0.695
	35371	203.30		280	1 1	Sabo	1 7			0.011	0.121
:											

SHEET NO 11 SAMPLE DATA CORE HOLE NO: 58 86-3 SAMPLES ASSAYS DESCRIPTION METERS AU Ag Nó. FROM OZ/tow τ_0 WIDTH 02/tow 207.50 208 50 1.00 2- Zem q 3/carbv , 5% Aur, Mindesp 35372 0.010 0.420 35313 1.00 2 tink hise a 5/cors v Misson sp 310.20 211.20 0.296 0.031 35374 1.50 95/clarb shipgers, mindore sp/AN 212,90 214,40 0.040 0.105 34375 2 4.40 21500 060 at leaved week II, this so 0.003 0,010 1.40 10% 95/carb ,5% pyre, +1, 0.010 35401 223.60 225.00 0.417 1.00 40% 95/carb, 5% pur, Minn AN 0.004 3:5462 234.00 235.00 0.201 35403 240.00 240.50 0.50 7cm = 2 cm 93/carb V 5%pup ming 0.006 0.387

CORELOGIGED BY: A.W. DEAN P. SNG ASSAYS BY R. MACDONALD, AS SAYER FOR NEWCANA J. VENTURE 5-5-WART B.C.

	DIAMOND DRILL RECORD
•	PROPERTY SILVER BUTTE HOLE NO. SB 86-4
SHEET NUMBER	ONE OF THREE SECTION FROM _O_TO_106.2m
latitude <u>7</u> 4	142.5 N ULTIMATE DEPTH 288.1 M
	177.5 E BEARING 574 W (254° AZ) STARTED OCH2, 1986
ELEVATION	
METERS	CIASUNG
0-1.8m	CASING :
1.8 - 20.5	IANDESITIZ: grey greens, time grained, generally
	massius with gtz breccia in proces,
	8 to 10% pyr, Contracts & 25° to 30° to core.
Jo.S- 44.3	FLOW BRECCIA: GREEN, Chloritized, weally branded
	@ 30° × to corre, fragments up to 2 cm,
	OCCAS' IONAL 93/Carb Shinger 5% pro
·····	SP Noted as in ASSAY SHEET I
	@ 35.1m Celds porphyrey funcis up to locun
44.3 - 51.5	ANDESITE FELDSPAR PORPHYRY: GREY GREEN, Teus,
	massive occussional da /carb
	Shinger, 5% pyr. @ 45° K focar
••••••••••••••••••••••••••••••••••••••	@ 44.8m - 3 cm qt3/carby-mipor brun 5P.
a	45.2m-3cmq5karbv-misorbrussp.
51.5-67.0	FLOW BREZCLIA: GROON, REWS porphyrey fragmen
- 	up to 10cm, occass ion pl 93 kurb
	stringer @ 30° × to core, 3% pype
	Sura Exa Trans Paras a transmission
67.0-77.5	SILICIFIED FLOW BRECCIA: PALE GREEN, OCCAS', 1000
	Minor blebs of sp & GN as per Asson
	SHZET NOT
77.5-106.2	FLOW BRECCIA: priz green chloritized, Gelds
	poephypy program to up to locm in place
	occassional pilicitisal section, 3% pure,
	MINOR AN/SP AS NOTED in STISST I.
N.M.P., TORONTO-ST	DRILLED BY CONSORS DRILLING LTD SIGNED ALL DATE PSYC

PROPERTY SILVER BUTTE HOLE NO. 58 86-4

SHEET NUMBER TWO OF THREE SECTION FROM 106.2 M TO 257.0 M

DEPTH METERS	FORMATION			
106.2-161.5	ANDISITE: GREY GREEN, Churitized hi	senble	sile	
	Poephyrey in places, mod			
	Silicitized in perceswith a			INS
	at 30 4 to concard breccia, 5 to 8 %	pyre,	MISOR	
2	<p, \$="" 5<="" as="" in="" noted="" qn="" sp="" td=""><td>HZETS</td><td>T\$IT.</td><td></td></p,>	HZETS	T\$IT.	
	@ 112.5m- 80cm q3/carb Bx, 8%,	ye, 2%	SP. Min	gn_
	136.3m- 160 cm 20% 93/careb Vein	5.8%	DYR, 1%	sp
	(D		MINOR	CP
	137.9m= 130 cm 25% q5/carbv	with 5	cma20	m
	mass sure, 80%	Pur, 5.	6 q N, 5%	sp
161.5-172.3	FLOW BRECCIA: green, chloritized me	tic m	Servis	
	rews preptyry programments to			
172.3 - 186.9	SILICIFIED FLOW BREECIA: Palegree	2,00	hADITIC	
	BEVEN QE/Carb VEINS @	45°2	tocore,	
	840 10% pyr, minor 5p/qu			11
	and !			
	@ 173.2m - Tocm 50% 95/carb V, 10	BPyr	,1725P	
	173.9 m - 50cm Si-/carb, 20%	MR. 8%	5p.2%	gn_
	174.4m - 100cm 20895 Karby 8	BAUR,	2856	<u> </u>
	175.4m - 100cm 20%95/corb V,	82 P41	2,1%5	<u> </u>
186.9-257.0	MNDSSITE: GREEN, five grained chi			>
	OCCASIONAL 95/64RED VEIN			
	breecia, 3to 10% pur, Min		GN	
	NOTED AS PER ASSAY SHES	TU		
	@19.2141-100cm 80% at3/carb Bx	1080	c 24	
	SI I I I I I I I I I I I I I I I I I I	1010 00	2%92	
	197.2m-120cm 70% 95/carb Bx,	6% x		
	215.1m - 2cm q5/carb VC 3c°, 5°			
	222.6m - 7cm, 90% pyR, 10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- et
	*			·
			\bigcap	
N.M.P., TORONTO-STOC	SK FORM NO. 501 REV. 12/51	Mai	V. Soe	\langle
	DRILLED BY	SIGNI	ED	\

PROPERTY SILVER BUTTE HOLE NO. 53 86-4

SHEET NUMBER THREE OF THREE SECTION FROM 257.0 M TO 288.1 M

DEPTH MIZTERS	FORMATION			
357.0-261.7	ALTIERED ANDESITE: HAN COLORed	Aphi	snitic	·
<u></u>	moderately sheared with	35%	ats .	
	Fecoz stringers at 2	5°~to	CORE_	×
9/17 20/2		,		
261.7-286.3	MNDSSITS: PMS GREEN, APHANIT	re vn	<u>655105</u>	
	barresnig Veins @ 20°	k to c		
286.3-288.1	ALTERSD ANDESITE: TAN COLOU	rsd.du	nHius	
	10% q = Fedoz with ch	Ay go	vere	
	in Shearing @ 80°2 to	CORE	, ,	
			· · · · · · · · · · · · · · · · · · ·	
	END OF HOLE			
	ACID TETCH TRUE			
······································	DIPTESTS ANGLE ANGLE			
	121.95m 72.5° -66°			
	343.40 74.5° -68°			·
				. <u></u>
	· · · · · · · · · · · · · · · · · · ·			<u> </u>
NOTS :	CORTE SAMIPLE AND ASSAY DA	TА		ı .
	CONTAINED IN SHEETS I II \$ 11	T		
		(\mathcal{C}	
N.M.P., TORONTO-STO	CK FORM NO. 501 REV. 12/51	ml	itor	1
	DRILLED BY	SIGNE	D	••••••

. .

.

CORE SAMPLE DATA HOLE NO:58-86-4

	SA MP	NES						ASSAL	15
No.		ETEPS		DESC	RIP-	TION		AU	Ag
	FROM	. TO W	IDTH					OZ/tow	oz/tot
35405	13.90	15.60	1.70 5	Breccia,	70% 95	Jearb 8	50 pye	0.005	0.03
35406	19.50	20.50	1.00	zerc, so:	693/0	ario, 10%	OPUR	0.018	0.85
35404	41.50	42,50	1.00 1	Terds Poupl	, Icmq	5/carb v	ning sp.	0.005	1.40
35415	44.50	45.50	1.00	2-3cm q5	karb V,1	runiae blet	x of sp.	0.005	0,28
35407			1,50 2	SIL BREC	at /car	eb v & min	n sp/qp.	0.005	0.70
35 408	68.50		3.00 5	Sil Brenci	4, 5%	5 prive		0.003	0.31
35 409	71.50			Si- Bec	1 1 1			0.004	0.37
35 410	74.50	77.50		Sil Bree	3704	we minor	SPAN	0.011	6.0-
35411	84.00	85,50	1.50	Sil Berci	a, 5%	ave minion	q+	0.010	0.4
35412	92.50	93.00	0.50	Sil Bric	a. 10%	Pure !		0.018	0.6
35 41 3	10170	103 70	2.00	51-Beau	in 5%	PUR TAN	or qn/sp	0.014	0.0
35414	10370	106.20	1 I I	Sil Beec	1 1		1 1 1	0.004	0.0
35416	112.50	113.30	0.80	93 Karb	Beec , 8 %	67412,2%	sp, Auin 9.	\$ 6.112	0.4
35417	119.60	120 60	1.00	2 cm 95/0	arb/puri	te 11 to ru	re, ruñara	0.023	0.6
35418	132.90	136.30	340	30% 95/	carby, E	3% (19 10	rete	0.026	0.5
35419				20% 95/0	1 1 1		1 1	0.153	2.14
35 420			1 5 1	256 at3/ca		1 1 1 1	1 1 1	3	0.7
35421	139.20			Breccia	- i i r	1 1 1	1 1 1	0.110	1.8
35 422	14170	144.70	3.00	two licma	13/carb	5% P412	misorsp	0.005	0.3
· · ·									

CORE SAMPLE DATH HOLE NO:58 86-4

	SA MP	LES		7	DESC	1215			.	• .	ASSA	45
No.		ETERS					P-	100	د		AU	Ag
• •	FROM	TO W	HTOI								02/tow	0Z/40
35423	149.40	152.40	8.00	22	azk		V V		e		0.006	0.31
35424	152.40		B.10		ASAL			12 010	94	141	0.024	
35425	155.50			5.5%	IRReg.	i 1		50	Du	R	6.024	
35376	1 1 1				93/			% F			0.014	0.34
							1					
35377	170.80	172 30	1.50	WAL	ERI		Flou	BR	acid		0.016	0.25
35 378	172.30	173 20	0.90	SiL	BRICE	4,4	0% 4	13/ca	reb, B	2 Phr	2 0.004	0.0
35 379	173.20	17390	0.70		95/						0.041	0.6
35380	173.90	174.40	0.50	Sil 9	BACANB	ja	5% 24	R,88	3012	29-	0.215	2.77
35381	174.40	175.40	1.00		3/car			+ 1	1 1	1 1	0.007	0.4
35382	175.40	176.40	1.00	208	93 Con	25V, 5	まなら	yre	1 %	SP.	0.041	0.6
35383	176.40	178,30	1.90							mische	110.0 %	0.0
5384	178.30	181-10	1 1 1		93					21.	0.006	0.0
35385	131.10		3.10		Brecc						0.005	0.10
35336	184.20	186.90	2.70	SIL	Brec,	2	o pyr	e, m	Jok	- 9~	0.020	0.5
5387	189 50	190.00	0.50	40%	0 95	/ca	(R'DV	1 70121	SOR	30	0.024	0.4
35 388	190.00	192.20	2.20	ALi	5517		, tipe	prink.	13/4	1232p	40.006	0.0
35 389	192.20	195.20								learb V		0.0
35 390	195.20	196.20									\$ 00.00	0.4
35391	19620	197.20				1 1		1 1		1 1	9.0.091	0.4
35 392	197.20	198.40	1 1	1 1	1 1	1 1	1 '	1 I	1 1	1 1	0.216	0.4
35 39 3	198 40	200 00	1 1		Sil R		1 -		1 1		0.015	0.2
35 39 4	200.00	201.90	1.90	SIX	1 to 2 c	n a	t3/ca	Rb V	miso	e sp/an	0.016	0,3
35 395	201,90	2.04.70	2.80	Fourz	Icm	93/	carbo	V, 4	ndcel	SP.	0.006	0.0
35396	204.70	206.00	1.30	50%	- FLO	B	rec,	5%	pu.	R	0.008	6.0
						-						
35 397	20870	20920	0.50	300	-m 9	5/0	arb	veis	5%	Pur	0.019	0.20
35 3 9 8	211.90	212.40	0.50	A							0.018	0.1
		641 64TU	0.50	1740	with	Try	r fu	vr 5t	ingu	s, PMI Jack	0.010	
					-							
												Ī
											-	

SHEET NO 111 CORE SAMPLE DATA HOLE NO:58 86-4 SAMPLES ASSAYS METERS AU Ag DESCRIPTION No. 02/ton 02/tons FROM TO WIDTH 24.90 215 40 B.50 2 cm 95/carbo with 5% ph 5% 50 5% 92 0.004 0.189 35399 218.20 218.70 0.50 10% inneg gts/carby 5% pu, minor \$P 0.031 35400 0.105 219.80 220.30 0.50 Reequilde g5/carby, Misor sp/q. 35434 0.014 0.196 22250 223.00 0.50 7cm of 90% pur 10% AN 35428 1.732 0.203 22690 227.40 0.50 10% integ 95 Harb minor SP 35429 0.409 0.003 236.20 236.70 0.50 1cm 95/corb V, Minor sp 35430 0.012 0.121 0.50 +400 2 cm q 3/ carlo vs, tripo \$P/41 0.011 0.255 238.80 239.30 35431 35432 240.90 241.40 0.50 thre line 93 toub 52 me testes 0.010 0.096 35433 24540 24590 0.50 fine live 93/carb 5% pyre hapan 0.011 0.307

> CORE LOGGED BY: A.W. DEAN, P. ENG ASSAUS BY: R. MURCDONALD, ASSAYER NEW CANA JOINT VENTURE STEWART, B.C.