REPORT 4

A GEOCHEMICAL REPORT

ON THE

OYSTER BRECCIA GRID

LAKEVIEW CLAIM GROUP

NANAIMO MINING DIVISION

Long 1250 18' W

Lat 49° 46' 30" N

N.T.S. 92F/11W AND 92F/14W

FILMED

BETTER RESOURCES LIMITED

FOR

BY

JAMES F. BRISTOW, P.Eng.

GEOLOGICAL BRANCH ASSESSMENT REPORT

L5,765 PART 4 OFC

JANUARY 1987

James F. Bristow P. Eng.

TABLE OF CONTENTS

	PAGE
INDEX MAP	1
SUMMARY AND CONCLUSIONS	2
RECOMMENDATION	2
INTRODUCTION	3
Location, Access and Facilities	2-3
Physiography and Climate	3
Location Map	4
Property Description	5
Claim Map	6
Summary of Work Done	7
DETAILED TECHNICAL DATA AND INTERPRETATION	
GEOCHEMICAL SETTING	7
PURPOSE OF SURVEY	8
GRID PREPARATION	8
GEOCHEMICAL RESULTS	9
INTERPRETATION OF RESULTS	9
COST STATEMENT	10
AUTHOR'S QUALIFICATIONS AND CERTIFICATION.	11
APPENDIX	
1) INVOICES	
2) TABULATION OF ASSAY RESULTS	
MAPS (IN POCKET)	
SAMPLE LOCATIONS	
GOLD GEOCHEMISTRY CONTOURED	
ARSENIC GEOCHEMISTRY CONTOURED	

, *

- 1

SUMMARY AND CONCLUSIONS

A geochemical soil survey was conducted over a portion of the Lakeview Claim Group situated on Mt. Washington approximately 22.5 kilometres northwest of Courtenay, Vancouver Island, British Columbia. This contiguous claim group consists of 91 units covering approximately 1840 hectares and is owned by Better Resources Limited of Vancouver, British Columbia.

Three hundred and fifty three soil samples were collected from a 10.5 kilometre grid established by chain and compass. Spotty gold values were located in and adjacent to a partially outlined arsenic anomalous zone. It is suspected that the higher anomalous values occur in or adjacent to the southern contact of the Oyster Ridge Breccia body. More detailed soil geochemical coverage in conjunction with Geological Mapping and trenching is required to assess the potential of this area.

RECOMMENDATION

Detailed work in this area should commence as soon as spring weather conditions permit.

INTRODUCTION

This report contains the results obtained from 353 geochemical soil samples located on a 10.5 kilometre grid. The grid establishment and sampling program was conducted on the Lakeview Claim group between October 4th and November 20th, 1986.

Location, Access and Facilities

This claim group is centred on Latitude 49° 46' 30" North, Longitude 125° 19' West within map sheets N.T.S. 92F/11W, 92F/14W and the Nanaimo Mining Division. The claims are located approximately 22.5 kilometres northwest of Courtenay, British Columbia (see Figure 2). They straddle the north spur of Mt. Washington and a portion of the area to the North and West.

- 2 -

F. BRISTOW

Access to the claims is by a network of well maintained paved and gravel mining and logging roads. Depending on snowfall and runoff conditions, access to within 1.0 kilometre of any point on the property is usually possible by four wheel drive vehicle between July and November.

The 0 + 00 point on the Bare Line of the Oyster Grid is located 420 metres north of the junction of C.F.P. Logging road Br 126 and Pyrrhotite Creek. Electric power has been extended to the top of Mt. Washington well within the claim boundaries. Well-appointed accommodations are available at the Mt. Washington Ski Resort during the summer months. Year-round accommodations are available in Courtenay. Construction supplies, services and labour are readily available in the Campbell River-Courtenay area.

Physiography and Climate

Mt. Washington is located along the eastern margin of the northwest trending Vancouver Island Ranges in the Insular Belt. The landscape is characterized by moderate to precipitous topography covered generally, by a thick mixed coniferous forest of hemlock, red and yellow cedar, douglas fir and balsam fir. Locally this forest has been extensively logged and is currently covered by thick impenetrable second growth. A subalpine forest of heather and krumholtz is developed above 1500 metres. Property elevations range from 1590 metres to 670 metres. Evidence of recent glaciation is noted by cirque development, glacial striae and thin to moderate but pervasive glacial till development.

October to May is characterized by cold and wet weather with considerable snow accumulations. Depth may exceed 5 metres at higher levels where patches of snow may persist in sheltered areas well into the summer months. June through September are drier with temperatures ranging from near freezing to greater than 25°C.

- 3 -

Property Description

The Lakeview Claim Group owned by Better Resources Limited of Vancouver, British Columbia is comprised of the following contiguous two post and modified grid mineral claims as shown in Figure 3.

			Month
Nome of Claim	No. of	Decord No.	Of Becord
Name of Claim	<u>Units</u>	Record No.	Record
В&Т	9	2447	7
Lager	16	2441	7
Stout	16	2443	7
Pil	6	2444	7
Ale	16	2442	7
Mouse 1	1	1553	9
Mouse 2	1	1554	9
Bill 1	1	1566	9
Bill 2	1	1567	9
Bill 3	1	1568	9
Bill 4	1	1569	9
Bill 5	1	1570	9
DJV 1	1	1261	10
DJV 2	1	1262	10
DJV 3	1	1263	10
DJV 4	1	1264	10
DJV 5	1	1265	10
MWC 201	1	37257	9
MWC 202	1	37258	9
MWC 203	1	37259	9
MWC 204	1	37260	9
MWC 206	1	37262	9
MWC 211	1	37267	9
MWC 212	1	37268	9
MWC 222Fr	1	37278	9
MWC 223	1	37279	9
MWC 224	1	37280	9
MWC 225	1	37281	9
MWC 226	1	37282	9
MWC 227	1	37283	9
MWC 228	1	37284	9
MWC 229	1	37285	9
MWC 230	_1	37286	9
	<u>91</u>		

The current group totals 91 units and fractional claims.

- 5 -

Summary of Work Done

The survey was conducted immediately west of Pyrrhotite Lake in the central eastern section of the Lakeview Claim Group. All or portions of Mineral Claims MWC 225, 226, 228 and STOVT were covered by the survey (See Figure 4). The grid is centered approximately 2 kilometres north of the old Mt. Washington Copper Open Pit. Approximate locations of the claims surveyed relative to the grid lines has been established from McElhanney Associates Drawings File 03741-1 DWG C & D. No claim post were noted during the soil geochemical survey work.

The present programme consisted of:

- 1)Grid Established10.5 Km(flagged compass line)
- 2) Samples Collected 353
- Sample sites found to be unsuitable for sampling

DETAILED TECHNICAL DATA AND INTERPRETATION GEOCHEMICAL SETTING

Soils found on the Lakeview Claim Group have been derived in a harsh postglacial environment from a combination of mechanical and chemical breakdown of Cretaceous Nanaimo Group sedimentary rocks, Tertiary felsic intrusives, and volcanoclastics of unknown age. Soil and soil parent materials have been transported by erosion, mass wastage, and glacial action. Chemical transport of metal ions downslope by groundwater has further complicated the soil geochemistry regime.

- 7 -

6

Soils encountered on the claims belong to the Podzol, Gleysol and Regosol Orders. Ferro-Humic Podzols up to 1 metre thick are developed over glacial till, but commonly thin to several centimetres over bedrock. A dark blackish to brown A horizon typically overlies a medium to orange brown B horizon. Soils are wet to moist most of the year. Humic Gleysols up to 1 metre thick are associated with unforested, saturated grassy areas of shallow slope (eg. Pyrrhotite Lake Drainage).

Past geological work conducted in the vicinity of Pyrrhotite Lake and the Oyster Breccia Grid outlined what was interpreted as a roughly circular collapse breccia about 1200 feet in diameter. The breccia is surrounded by basalts which are chloritized, fractured and locally recrystallized. Surface samples containing both precious and base metals were reportedly collected in and adjacent to this structure.

PURPOSE OF SURVEY

The purpose of this survey was to delineate zones anomalous in gold and arsenic that might reflect underlying economic mineralization associated with the Oyster Breccia Pipe. Samples were analyzed for arsenic because in some geological environments arsenic is a mobile pathfinder for gold mineralization. Anomalous soils would provide the focus for subsequent exploration activity.

GRID PREPARATION

Grid lines were established by chain and compass, and slope corrected. The base line is flagged, blazed and stations are picketed. Cross lines flagged in red ribbon, all stations are double flagged. Grid line average approximately 690 metres long, 60 metres apart and trend east/west. Sample site locations average 30 metres apart along lines.

- 8 -

GEOCHEMICAL RESULTS

The -80 mesh fraction of the soil samples was analyzed for gold and arsenic content by Kamloops Research and Assay Laboratory Ltd. Gold was analyzed by atomic absorption and fire assay; arsenic by aqua regia digestion followed by colorimetric and atomic absorption with background corrections.

Sample locations, numbers and contoured values are plotted on 1:1500 scale plans and enclosed in the pocket at the back of this report (Figures 4 to 6).

Gold values encountered range from less than 5 ppb to 825 ppb, with a mean value of 9.5 ppb. Arsenic values range from 15 ppm to 1,000 ppm.

INTERPRETATION OF RESULTS

The soil sampling survey conducted immediately west of Pyrrhotite Lake within the Lakeview Claim Group has outlined areas anomalous in both gold and arsenic. The gold results are spotty. It has been suggested that they may be vaguely aligned along fractures in and immediately adjacent to the Oyster Ridge Breccia body. The most prominent arsenic anomaly is located south of Pyrrhotite Lake. Unfortunately the present survey grid did not extend beyond the boundaries of this anomaly making a meaningful interpretation of results impractical.

<u>COST STATEMENT</u> LAKEVIEW CLAIM GROUP OYSTER BRECCIA GRID

Grid Establishment and Soil Sampling

Supervisor James F. Bristow P.Eng. Oct 4, 12(1/2), Nov 20(1/2) 1986 2 day @ \$250.00/day	\$ 500.00	D
Barry Needham Oct 4-14, 1986 11 days @ \$120.00/day	1,320.00)
Ron Biebrick Oct 4-14, Nov 17(1/2), Nov 20(1/2) 12 days @ \$110.00/day	1,320.00)
Transportation 12 days @ \$40.00/day	480.00)
Accommodation and Food 25 Mandays @ \$25.00/day	625.00	3
Field Supplies (Ribbon, string, sample bags, etc.)	75.00)
Assaying Costs (Soil samples analyzed for Gold and Arsenic) 353 samples @ \$9.95/sample	3,512.3	5
Report Preparation (including drafting & typing)	800.00	<u>)</u>
TOTAL	\$8,632.3	5

CERTIFIED CORRECT

James F. P.Eng. Bristow, - 10 -

QUALIFICATIONS AND CERTIFICATIONS

I, James Bristow, of 3431 Bowen Drive, in the municipality of Richmond, Province of British Columbia, hereby certify as follows:

- 1. I am a graduate of the University of British Columbia with a B.A. Degree (Geology and Physics).
- 2. I am a member of the Canadian Institute of Mining and Metallurgy, the Geological Society of South Africa and the Association of Exploration Geochemists.
- 3. I am a Professional Engineer registered in the Province of British Columbia.
- 4. I have actively practiced my profession in mineral exploration and mining since my graduation in 1957.
- 5. That this report is based on data collected by myself or by persons working directly under my supervision between October 4th, 1986 to November 20th, 1986.
- 6. That I am Director of Better Resources Limited and hold a direct interest in securities of this company.

Dated at Richmond, British Columbia this $\frac{30\pi}{100}$ day of January, 1987.

James F. Bristow, P.Eng. - 11 -

APPENDIX I

INVOICES

🛥 James F. Bristow P. Eng.,

Kamloops *Research & Assay* Laboratory Ltd.

Better Resources Ltd. 3431 Bowen Dr., Richmond, B.C. V7C 4C6 B.C. CERTIFIED ASSAYERS

> *INVOICE:* 86-0477 *DATE:* November 6, 1986 *FILE No.* G 1536

192 Sample preparation
192 Gold geochem
192 Arsenic geochem

0	\$.70
9	6.00
0	3.25

\$ 134.40
1,152.00
 624.00
1,910.40

Paid by liber # 223

A SERVICE CHARGE OF 2% (\$1.00 min.) PER MONTH, 24% PER ANNUM, WILL BE CHARGED ON STATEMENT BALANCES CARRIED FORWARD FROM PREVIOUS MONTH. THIS IS AN ACCOUNT FOR PROFESSIONAL SERVICES AND IS DUE ON PRESENTATION

Kamloops *Research & Assay* Laboratory LTD.

Better Resources Ltd. 3431 Bowen Dr., Richmond, B.C. V7C 4C6

B.C. CERTIFIED ASSAYERS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

> INVOICE: 86-0499 DATE: November 13, 1986 FILE No. G 1539

161 Sample preparation	@ \$.70	\$ 112.70
161 Gold geochem	0 6.00	966.00
161 Arsenic geochem	@ 3.25	523.25

1,601.95

Parce by tilicous H. 223

A SERVICE CHARGE OF 2% (\$1.00 min.) PER MONTH, 24% PER ANNUM, WILL BE CHARGED ON STATEMENT BALANCES CARRIED FORWARD FROM PREVIOUS MONTH. THIS IS AN ACCOUNT FOR PROFESSIONAL SERVICES AND IS DUE ON PRESENTATION.

APPENDIX II

ASSAY RESULTS

_____James F. Bristow P. Eng. ___

8 ASSAY LABORATORY LTD.

KAMLOOPS RESEARCH B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

GEOCHEMICAL LAB REPORT

tenen samat salar taka data data salar pater sang tenen tara tara taka taka taka sala salar salar salar salar a

BETTER RESOURCES LTD. 3431 BOWEN DR., RICHMOND, E.C. V7C 4C6

DATE OCT 27 1986 FILE NO. G 1536

PAGE 1 / 6

KRAL NO.	IDENTIFICATION	AU	AS
1.	01 DG	3.0	922.0
2	02	3.0	269.0
З	03	3.0	164.0
4	04	з.о	73.0
5	05	з.о	100.0
6	06	3.0	168.0
7	07	3.0	236.0
8	08	3.0	128.0
⁽ 3	09	3.0	280.0
10	10 OG	3.0	157.0
11	11	10.0	1000.0
12	12	3.0	319.0
13	13	10.0	221.0
14	14	з. О	260.0
15	15	3.0	116.0
16	16	3.0	103.0
17	17	з.О	234.0
18	18	3.0	115.0
19	19	3.0	148.0
20	20 OG	3.0	142.0
21	21	З.О	131.0
22	22	10.0	817.0
23	23	5.0	408.0
24	24	3.0	673.0
25	25	3.0	132.0
26	26	з. о	133.0
27	27	3.0	61.0
28	28	3.0	89.0
29	29	3.0	50.0
30	30 DG	3.0	132.0

KAMLOOPS RESEARCH &	C ASSF	AY LABORATORY	LTD.
GEOCHEMICAL	LAB	REPORT	

KRAL NO.	FILE NO. G 1536 IDENTIFICATION	AU	AS	
		3.0	127.0	
32	32	3.0	56.0	
33	33	3.0	37.0	
34	34	240.0	1000.0	
35	35	15.0	496.0	
36	36	20.0	1000.0	
37	38	3.0	980.O	
38	39	з.о	569.0	
39	40 OG	3.0	253.0	
40	41	з.О	535.0	
41	42	з.о	236.0	
42	43	з.о	292.0	
43	44	3.0	118.0	
44	45	з.о	109.0	
45	46	з.о	38.0	
46	47	з.о	132.0	
47	48	3.0	468.0	
48	49	3.0	152.0	
49	50 OG	25.0	1000.0	
50	51	3.0	337.0	
51	52	185.0	807.0	
52	53	15.0	1000.0	
53	54	5.0	546.0	
54	55	3.0	1000.0	
55	56	з.о	120.0	
56	57	3.0	65.O	
57	58	з. о	113.0	
58	59	з.о	116.0	
59	60 OG	з.0	116.0	
60	61	5.0	161.0	
61	62	з.о	46.0	
62	63	3.0	48.0	
63	64	3.0	36.0	
64	65	3.0	37.0	
65	66	з.0	120.0	
66	67 \	з.о	556.0	
67	68	з.о	355.0	
68	69	3.0	809.O	
69	70 OG	3.0	761.0	
70	71	15.0	808.0	

PAGE 2 / 6

.

· .

KAMLOOPS	RESEARCH 8	K ASSA	AY LABORATORY	LTD.
(SEOCHEMICAL	LAB	REPORT	

t

•

KRAL NO.	FILE NO. G 1536 IDENTIFICATION	AU	AS
71	72	3.0	782.0
72	73	з.0	124.0
73	74	3.0	311.0
74	75	3.0	932.0
75	76	3.0	258.0
76	77	з.о	67.0
77	78	3.0	250.0
78	79	5.0	256.0
79	80 OG	5.0	1000.0
80	81	3.0	207.0
81	82	3.0	1000.0
82	83	з.о	280.0
83	84	70.0	1000.0
84	85	3.0	1000.0
85	86	3.0	275.0
86	87	3.0	136.0
87	88	з.о	414.0
88	89	з.о	22.0
89	90 OG	3.0	40.0
90	91	3.0	1000.0
Э1	92	10.0	254.0
92	93	3.0	350.0
93	94	3.0	275.0
94	95	з.о	381.0
95	96	з.о	1000.0
96	97	3.0	792.0
97	98	З.О	219.0
98	99	5.0	1000.0
99	100 OG	з.о	216.0
100	101	3.0	63.0
101	102	з.о	54.0
102	103	з.О	133.0
103	104	3.0	37.0
104	105	35.0	18.0
105	106	з.о	34.0
106	108	З.О	13.0
107	109	з.О	18.0
108	110 OG	10.0	7.0
109	111	825.0	22. O
110	112	З.О	26.0

PAGE 3 / 6

•		LCHC LHC	REPURI	
KRAL NO.	IDENTIFICATION	AU	AS	
111	113	3.0	30.0	
112	114	З.О	81.0	
113	115	3.0	37.0	
114	116	З.О	106.0	
115	117	3.0	40.0	
116	118	3.0	18.0	
117	119	3.0	32.0	
118	120 OG	3.Ö	30.0	
119	121	з. О	32.0	
120	122	3.0	18.0	
121	123	3.0	37.0	
122	124	З.О	52.0	
123	125	3.0	34.0	
124	126	З.О	42.0	
125	127	5.0	20.0	
126	128	5.0	77.0	
127	129	з.О	42.0	
128	131 OG	3.0	33.0	
129	132	З.О	30.0	
130	133	3.0	30.0	
131	134	З.О	25.0	
132	135	25.0	29.0	
133	136	3.0	37.0	
134	137	3.0	69,0	
135	138	65.O	61.0	
136	139	400.0	141.0	
137	140 OG	35.0	52. O	
138	141	3.0	46.0	
139	142	3.0	124.0	
140	143	з.О	32.0	
141	144	з. о	63.0	
142	145	з.О	182.0	
143	146	5.0	29.O	
144	147	10.0	40.0	
145	148	3.0	18.0	
146	149	3.0	115.0	
147	150 OG	3.0	101.0	
148	151	3.0	37.0	
149	152	3.0	30.0	
150	153	3.0	133.0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

PAGE 4 / 6

•

`	KAMLOOPS RESEARC GEOCHEMI	H & ASSAY CAL LAB R	LABORATORY EPORT	′LTD.
KRAL ND.	IDENTIFICATION	AU	AS	
151	154	3.0	40.0	
152	155	з. о	28.0	
153	156	3.0	28.O	
154	157	3.0	26.0	
155	158	З.О	42.0	
156	160 DG	3.0	36.0	
157	161	3.0	48.0	
158	162	3.0	44.Ö	
159	163	3.0	15.0	
160	164	3.0	37.0	·
161	165	3.0	63.0	
162	166	5.0	146.0	
163	167	5.0	162.0	
164	168	5.0	170.0	
165	169	З.О	100.0	
166	170 OG	3.0	124.0	
167	171	з.о	144.0	
168	172	з.о	38.0	
169	173	120.0	56.0	
170	174	3.0	25.0	
171	175	205.0	38.°	
172	176	3.0	25.0	
173	177	3.0	87.0	
174	178	3.0	299.0	
175	179	3.0	57.0	
176	180 DG	3.0	48.0	
177	181	30.0	25.0	
178	182	3.0	56.0	
179	183	3.0	52.0	
180	184	5.0	44. Ö	
181	185	5.0	63.0	
182	186	3.0	235.0	
183	187	3.0	164.0	
184	188	10.0	185.0	
185	189	3.0	202.0	
186	190 OG	3.0	176.0	
187	191	3.0	141.0	
188	192	З.О	87.0	
189	193	З.О	80.O	
190	194	3.0	96.O	

• .

PAGE 5 / 6

.

\sim	KAMLOOPS	RESEARCH	& ASSA	Y LABORATO	DRY LTD.
	C	BEOCHEMIC	AL LAB	REPORT	
	FILE NO.	G 1536			
KRAL NO.	IDENTIFIC	CATION	AU	AS	
					-88 19999 84.000 1.000-0
191	190		0 C	206.0	
192	196 OG		30.0	80. O	

IN AU COLUMN 3 INDICATES (5 PPB

IN AS COLUMN 1000 INDICATES > 1000 PPM

PAGE 6 / 6

•

.

KAMLOOPS RESEARCH B.C. CERTIFIED ASSAYERS

8. ASSAY LABORATORY LTD.

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

GEOCHEMICAL LAB REPORT

BETTER RESOURCES LTD. 3431 BOWEN DR., RICHMOND, B.C. V6C 4C6

DATE NOV 4 1986

FILE NO. 6 1539

PAGE 1 / 5

KRAL NO.	IDENTIFICATION	AU	AS	
1	197 OG	3,0	43.0	* **** **** ****
æ	198	3.0	43.0	
3	199	3.0	40.0	
Lą.	20006	3.0	182.0	
5	201	3.0	170.0	
6	202	5.0	165.0	
7	203	3.0	254.0	
8	204	3.0	226.0	
9	205	3.0	368.0	
10	206	5.0	408.0	
11	207	3.0	456.O	
12	208	3.0	552. O	
13	209	з.о	388.0	
14	210 OG	з.о	324.0	
15	211	10.0	298.0	
16	212	3.0	208.0	
17	213	3.0	272.0	
18	214	3.0	254.0	
19	215	3.0	294.0	
20	216	20.0	320.0	
21	217	З.О	155.0	
22	218	3.0	328.0	
23	219	З.О	232. O	
24	220 00	3.0	276.0	
25	221	З.О	188.0	
26	222	3.0	326.0	
27	223	15.0	232.0	
28	224	5.0	274.O	
29	225	5.0	510.0	
ЗО	226	3.0	208.0	

	KAPLOOPS	RESEARCH &	ASSA	Y LABORATORY	LTD.
۰ به مع	. (BEOCHEMICAL	LAB	REPORT	
	FILE NO.	6 1539			
KRAL NO.	1DENTIFI	CATION P		AS	
31	227		3.0	814.0	
32	828		з.о	176.0	
33	229		з. о	150.0	
34	230 OG		3.0	148.0	
35	231		з. о	20.0	
36	232		з. о	31.0	
37	233	•	5. Ç	36.O	
38	234		з.о	31.0	
39	235		5.0	246.0	
4 ()	236		3.0	25.0	
41	237		з.о	30.0	
42	238		з.о	166.0	
43	239		3.0	53.0	
44 14	240 OG		з.О	144.O	
45	242	Э	0,0	180.0	
46	243	t	5.0	264.0	
47	244		3.0	980.0	
48	245		3.0	206.0	
49	246	1	0.0	182.0	
50	247	1	0.0	210.0	
51	248		з. О	230.0	
Se	249	1	5.0	284.0	
53	250 OG	ć	0.0	468.Q	
54	251		5.0	328.0	
55	252	1	0.0	312.0	
56	253		з.о	434.O	
57	254		3.0	150.0	
58	255		з.о	212.0	
59	256		3.0	308.0	
60	257		3.0	304.0	
61	258		3.0	266.0	
62	259		3.0	216.0	
Б З	260 06		3.0	132.0	
64	261	3	0.0	160.0	
65	ede -		3.O	264.0	
66	263		3.O	230.0	
67	204		3.O 7 A	dd 6. 0	
60 60	260		3.U 5.0	134.0	
60 70	200		3.U	134.0	
7 Q	267		3.O	140.0	

PAGE 2 / 5

н	GEOCHEM	ICAL LAB F	REPORT	
	FILE NO. 6 153	:9 	05	
KRAL NU	. IDENTIFICATION	H.U.	· · · · · · · · · · · · · · · · · · ·	
71	268	3.0	23.0	
72	269	3.0	156.0	
73	270 OG	3.0	170.0	
74	271	з. О	484.0	
75	272	з.о	260.0	
76	273	3.0	140.0	
77	274	3.0	186.0	
78	275	з. О	164.0	
79	276	3.0	29.0	
80	277	3.0	154.0	
81	278	з.о	222.0	
82	279	3.0	228.0	
83	280 OG	з.о	204.0	
84	281	з. О	176.0	
85	282	3.0	172.0	
86	283	з. о	736.0	
87	284	з.о	674.0	
88	285	3.0	402.0	
89	286	3.0	792.0	
90	287	3.0	160.0	
91	288	3.0	212.0	
92	289	10.0	42.0	
93	290 OG	з.о	140.0	
94	291	з.0	38.0	
95	292	з.о	398.0	
96	293	з.о	170.0	
97	294	з.0	180.0	
98	295	з.о	194.0	
33	296	5.0	178.0	
100) 297	3.Ö	43.C	
101	. 298	з.о	41.Ö	
108	299	3.0	906. O	
103	300 OG	3.0	23.0	
104	+ 30i	з.0	30.0	
105	5 302	3.0	27.0	
106	303	10.0	438.0	
107	7 304	10.0	40.0	
108	3 305	3.0	36.0	
105	306	10.0	140.0	
110) 307	10.0	40.O	

PAGE 3 / 5

• •

ł

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. Geochemical LAB Report File NO. G 1539

٠

KRAL NO.	IDENTIFICATION	AU	AS	
111	308	15.0	140.0	
112	309	3.0	25.0	
113	310 OG	3.0	21.0	
114	311	З.О	21.0	
115	312	3.0	45.0	
116	313	З.О	404.0	
117	314	3.0	43,0	
118	315	З. О	43.0	
119	316	3.0	158.0	
120	317	3.0	230.0	
121	318	3.0	59.O	
188	319	З.О	34.0	
123	320 06	3.0	43.O	
124	321	3.0	66.O	
125	322	10.0	170.0	
126	323	5.0	184.0	
127	324	3.0	168.0	
128	325	3.0	38.0	
129	326	3.0	27.0	
130	327	3.0	166.O	
131	328	3.0	40.0	
132	329	З.О	55.O	
133	330 06	З.О	59.0	
1.34	331	15.0	46.0	
135	332	3.0	212.0	
136	333	3.0	45.0	
137	334	3.0	166.0	
138	335	З.О	74.0	
139	336	З.О	128.0	
140	337	3.0	224.0	
141	338	3.0	690.0	
142	339	3.0	810.0	
143	340 UG	з.о	38.0	
1 4 5	341	З.О	31.0	
140	342	5.0	24.0	
1 4 77	343 577	3.0	57.0	
1 ~ 7	5 44 44 The American	3.0	378.0	
140	340	3.0	442.0	
140	345	3.0	212.0	
7.90	34/	65.0	40 " O	

PAGE 4 / 5

interest in the second second	KAMLOOPS G File NG.	RESEARCH & BEOCHEMICAL G 1539	ABSAY Lab R	LABORATORY EPORT	LTD.
KRAL NO.	IDENTIFIC	ATION	AU	AS	
151	348		3.0	41.0	-
152	349		3.0	36.0	
153	350 OG		З.О	34.0	
154	35 t		3.0	32.0	
155	352		З.О	78.0	
156	353		3.0	45.0	
157	354		З.О	47.0	
158	355		З.О	43.0	
159	356		10.0	27.0	
160	358		3.0	23.0	
161	359 OG		3.0	25.0	

IN AU COLUMN 3 INDICATES (5 PPB

AS REPORTED IN PPM

PAGE 5 / 5

	480 N.	3 Q 31 5°	235 5 0 36 5°	232 3 0 31 5°	231 3 0 20 5°	230 3 0 148 5°	229 3 0 150 10°	228 3 0 176 5°	227 3 0 214 5°	226 3 0 208 10° 1	225 5 0 510 20°	224 5 0 274 20°	223 15 0 232 10°	222 3 0 326 10°	221 3 0 188 10°	220 3 0 276 10°	219 3 0 232 5°	218 3 0 328 20°	217 3 0 155 20°	216 20 O 320 15°	215 3 0 294 15°	214 3 0 254 5°	213 3 0 272 5°	480 N	4.				· · ·				
	420 N.	197 3 0 43 5° →	198 3 0 43 5°	199 3 0 40 5°	200 3 0 182 10°	201 3 0 170 5°	202 5 0 165 5°	203 3 0 254 10°	204 3 0 226 15°	205 3 0 368 5°	206 5 0 408 5°	207 3 0 456 5° ۸ 	208 3 0 552 10°	209 3 0 388 10°	210 3 0 324 15°	211 10 0 298 10°	212 3 0 208 15° 9 3 0 280 20°	8 3 Q 128 30°	7 3 O 236 20°	6 3 0 168 25°	5 3 0 100 25°	4 3 0 73 10° 1	3 3 0 164 15°	2 3 0 269 15°	P 3 0 922 42 10°	YRRHOTI1 L AKE 20 N.	ΤΕ			»			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3600	181 30 0 25 10°	182 3 0 56 15°	183 30 52 5°	184 5 0 44 5°	185 5 0 63 5°	186 3 o 235 20°	187 3 0 164 20°	188 10 0 185 5° Å	189 3 0 202 10° •	190 3 0 176 5°	191 3 0 141 5°	192 3 o 87 20°	193 3 0 80 10°	194 3 0 96 10°	195 3 0 206 10° ≬	196 30 0 80 15°	15° 20 3 0 142 10° 	19 3 0 148 10°	18 3 0 115 10 ⁹	17 3 0 234 25°	16 3 0 103 25°	15 3 0 116 10°	14 3 0 260 15°	13 10 0 221 15°	12 3 0 319 25°		360 N.					į.	
	300 N.	166 5 0 146 10°	167 5 0 162 15°	68 5 0 70 0°	169 3 0 100 5° ▲	170 3 0 124 10°	171 3 0 144 10°	172 3 0 38 10°	173 120 o 56 10°	174 3 0 25 10°	175 2050 38 5°	176 3 0 25 5° ↑	177 3 0 87 10°	. 178 3 o 299 5° 4	179 3 0 57 10	180 3 • 48 25°	32 3 0 56 30° 4 33 3 0 37 25°	31 3 0 127 5°	30 3 0 132 10° 1	29 3 0 50 15°	28 3 0 89 20°	27 3 0 61 30°	26 3 0 133 10°	25 3 0 132 10°	24 3 0 673 5 -> -	23 22 0 0408 100 817 25° 25°		300 N.					
	240 N.	138 65 0 61 15°	139 400 0 141 0	140 35 0 52 10°	141 3 0 46 5°	142 3 0 124 10°	43 3 0 32 5°	144 3 0 63 15°	145 3 0 182 15°	146 5 o 29 10°	147 10 0 40 0	148 3 0 18 5°	149 3 0 115 20°	50 3 ⊙ 01 0°	151 3 0 37 59 -	152 3 0 30 10°	46 3 0 38 25° 	45 3 0 109 10°	44 3 0 118 5° /C 22	3 0 292 20°	42 3 0 236 15°	41 3 0 535 20°	40 3 0 253 5°	39 3 0 569 25°	38 3 @ 980 30°	37 o N.S. 200 5	36 34 0 1000 15 0 5° 2 1 1 1	5 34 96 2400 5° 10 WC 2	⁴ 1000 25	240 N.			
		.180	DN.	153 3 0 133 10°	154 3 0 40 15°	155 3 0 28 15°	156 3 0 28 20°	157_ 3 0 26 5°	158 3 0 42 0	ا59 o N.S. <u>مال</u>	160 3 0 36 5°	161 3 0 48 5°	162 3 0 44 5°	163 3 0 15 10°	164- 5 0 37 15°	165 3 0 63 5°	60 3 0 116 10° 61 5 0 161 10°	59 3 0 16 10°	58 3 0 113 20°	57 3 Ø 65 35°	56 3 0 120 20°	55 3 0 1000 20°	54 5 0 546 15°	53 15 0 1000 25°	52 180 0 807 30°	51 5 3 0 337 25 0 5°	50 44 0 1000 3 0 0 25	9 48 0 152 3 0 5° 20	8 0 468 0°	180 N.			
			120) N.	126 3 0 42 5°	27 5 0 20 5°	128 5 0 77 0	3 0 42 5° 1	اعم م N.S. <u>باد</u>	3 3 0 33 5° ¥	132 3 0 30 5°	133 3 0 30 10°	i34 3 0 25 i0°	25 0 29 15°	136 3 0 37 15°	137 3 0 69 ₩0°	62 3 0 46 10° 63 3 0 48 15°	78 3 0 250 10°	77 3 0 67 5°	3 0 258 20°	75 3 0 932 15°	3 0 311 15°	73 3 0 124 15°	72 3 o 732 10°	71 150 808 15°	70 65 5 0 761 3 0 40° 21	59 68 0 809 3 0 25° 10 	3 67 0 355 3 0 0° 25	7 9 556 59	120 N.			
			60	N.	114 3 0 81 20°	115 3 0 37 10°	116 3 0 106 5°	117 3 0 40 5°	118 3 0 18 5°	119 3 0 32 5°	20 3 0 30 10°	i2i 3 o 32 i5° ↓	122 3 0 18 15°	123 3 © 37 10°	124 3 0 52 10°	3 0 34 15°	64 3 Q 36 15° 	90 3 0 40 15°	89 3 0 22 15°	88 3 0 280 20°	87 3 0 136 15°	86 3 0 275 30°	85 3 0 1000 5°	84 700 1000 30°	83 3 0 280 20°	82 81 0 1000 3 0 5° 0	1 8 5 207 5 6 0 15 	0 79 0000 5 0 5° 10	9 3 256 0°	60 N.			

PYRR

LEGEND

GEOLOGICAL BRANCH ASSESSMENT REPORT

200 METRES BETTER RESOURCES LIMITED DRAWN BY: F.J.F. ARSENIC CONTOURS MT. WASHINGTON PROJECT Jamis F Broton DATE: Jan. 14, 1987), ". i OYSTER BRECCIA SOIL GEOCHEMICAL SURVEY 6 FIGURE SCALE: 1:1500