GEOLOGICAL BRANCH ASSESSMENT PEPORT

15,765 **PAR** DIAMOND DRILLING REPORT

ON

THE RAINBOW CLAIM GROUP

MWC 151 MINERAL CLAIM

NANAIMO MINING DIVISION

LAT. 49º 46' 30" N

LONG. 125º 15' W

N.T.S. 92F/11W & 92F/14W

į.,,	
I	FILMED
1.00	

FOR

BETTER RESOURCES LIMITED

BY

JAMES F. BRISTOW, P.ENG.

RICHMOND, B.C.

FEBRUARY, 1987

_ James F, Bristow P, Eng, _

DIAMOND DRILLING REPORT ON RAINBOW CLAIM GROUP

TABLE OF CONTENTS

1 INDEX MAP 2 SUMMARY 2 INTRODUCTION 2 LOCATION AND ACCESS 4 **TOPOGRAPHY AND CLIMATE** 4 HISTORY 5 PROPERTY DESCRIPTION 5 MINERAL CLAIM MAP 8 DISCUSSION 10 DRILL HOLE SUMMARY 11 DIAMOND DRILL HOLE LEGEND 14 COST STATEMENT AUTHOR'S QUALIFICATIONS & CERTIFICATION 16

APPENDIX I

1) Invoices

APPENDIX II (in pocket)

- 1) Diamond Drill Logs
- Diamond Drill Hole Plan (Figure 4) 2)

2

Page

SUMMARY AND CONCLUSIONS

A follow-up diamond drill program adjacent to DDH MX-86-1 (previous assessment report by J.F. Bristow, P.Eng., October 1986) was begun October 7, 1986 and was suspended November 24, 1986 when heavy snowfall made access too difficult.

MX-86-1, a vertical NQ core hole, encountered gold values ranging from .034 oz Au/T to 0.44 Au/T in the section 1.5 to 17.5 m (5 to 57.3 ft). The follow-up program of nine BQ diamond drill core holes totalling 521.9 m was designed to explore for continuity of this economic grade intersection. Although short sections of breccia were mineralized with interesting gold and silver mineralization, no continuous zone was established.

Considerable variation in host rock, in degree of brecciation and in sulphide mineralization were encountered. The drilling established the presence of gold and silver mineralization in one small portion of the Murex breccia body.

RECOMMENDATION

The results of this drill program must be correlated with the geochemical and EM-16 survey carried out in 1986 and with all previous operators data on the Murex breccia area in order to select targets for possible continuous economic gold mineralization. Additional drilling is justified to cross-cut the massive sulphide zone in MX-86-7 to determine its extent.

INTRODUCTION

This report contains the results of nine BQ diamond drill core holes numbered MX-86-2 to MX-86-10 and totalling 521.9 m. The drill core was split wherever mineralized and assayed for gold and silver. The drilling was carried out by Globe Drilling (1981) Ltd. of Vancouver. Core logging and sampling were carried out by contract geologist and crew. Assaying was done by Kamloops Research and Assay Laboratory in Kamloops.

LOCATION AND ACCESS

The Rainbow Group of mineral claims are centred on Latitude 49°46.5' North, Longitude 125°15' West within map sheets N.T.S. 92F/11W, 92F/14W and the Nanaimo Mining Division. The claims are located approximately 20 kilometres northwest of Courtenay, B.C. The western claim boundary is located approximately 0.5 kilometres east of the summit of Mt. Washington. The claim group encompasses the Murex Creek basin and immediately adjoining areas (see Figure 2).

Access to the claims is by a network of well maintained paved and gravel mining and logging roads. Depending on snowfall and runoff conditions, access to within 1.0 kilometres of any point on the property is usually possible by four wheel drive between July and November.

TOPOGRAPHY AND CLIMATE

Mt. Washington is located along the eastern margin of the northwest trending Vancouver Island Ranges in the Insular Belt. The landscape is characterized by moderate to precipitous topography covered generally, by a thick mixed coniferous forest of hemlock, red and yellow cedar, douglas fir and balsam fir. Locally this forest has been extensively logged and is currently covered by thick inpenetrable second growth. A subalpine forest of heather and krumholtz is developed above 1,500 metres. Property elevations range from 300 metres to 1,480 metres. Evidence of recent glaciation is noted by cirque development, glacial striae and thin to moderate but pervassive glacial till development.

October to May is characterized by cold and wet weather with considerable snow accumulations. Depth may exceed 5 metres at higher levels where patches of snow may persist in sheltered areas well into the summer months. June through September are drier with temperatures ranging from near freezing to greater than 25° C.

HISTORY

Since 1940 the Mt. Washington area has been the focus of sporadic intensive exploration activity.

The following chronological summary from K.E. Northcote's report dated May 1983, covers the time span from discovery of gold mineralization in 1940 to 1982.

"Gold mineralization was discovered in place on Mt. Washington in May 1940 by J.M. McKay, a young mining engineer and prospector who systematically panned creeks up from the Oyster River to find course colours in a creek draining into McKay Lake. The gold bearing structures were prospected, trenched and sampled under the direction of Dr. D.F. Kidd in 1940-41. In 1944-45, Karl Springer financed adits on the copper bearing veins north of the area sampled for gold. Mt. Washington Copper Co. Ltd. was formed in 1956 by Gordon C. Murray and various joint agreements and options with Noranda and Cominco explored the property until 1964. From 1964 to 1966 Mt. Washington under revised agreement with Cominco and a joint venture with Cumberland Mining Co. mined and milled 392,173 tons of 1.16% Cu, 0.01 oz. per ton Au and 0.5 oz. per ton Ag. Upon exhaustion of economic open pit copper mineralization the mill was dismantled.

The property was optioned by Marietta Resources Company Ltd. in 1969 further explored by Mt. Washington in 1970-71 and then optioned to Imperial Oil from 1973 to 1982. During this latter period the exploration emphasis appears to have been directed towards a search for more extensive copper mineralization with little exploration for gold."

In May, 1983, Better Resources Limited acquired via Veerman Botel Limited, an option on a block of claims previously controlled by Mt. Washington Copper Co. Ltd. By 1984, this land position was expanded to 130 units and a programme to assess the areas precious metal potential was initiated. By the spring of 1986 the land position was expanded to approximately 230 units.

During 1986 an active field program began with backhoe trenching of gold geochemical anomalies, followed by diamond drilling with one and then two diamond drills on various gold targets, all funded by Better Resources Limited. Additional geochemistry for gold and arsenic expanded previous targets and developed new ones. Diamond drill results permitted preliminary reserve calculations in the Lakeview - Domineer areas. Work was suspended in late November 1986 due to heavy snowfall.

PROPERTY DESCRIPTION

The Rainbow claim group owned by Better Resources Limited of Vancouver, British Columbia, is comprised of the following contiguous two post mineral claims as shown in Figure 2.

Claim Name	Record Number	No. of Units	Record Date	Due Date
MWC 101	37196	1	Sept. 13/73	Sept. 13/88
MWC 102	37197	1	11	11
MWC 103	37198	1	11	Sept. 13/87
MWC 104	37199	1	fi	Sept. 13/88
MWC 105	37200	1	11	Sept. 13/87
MWC 106	37201	1	11	"
MWC 115	37210	1	11	Sept. 13/88
MWC 116	37211	1	11	11
MWC 117	37212	1	11	Sept. 13/88
MWC 143	37078	1	Sept. 14/73	Sept. 14/87
MWC 144	37079	1	11	
MWC 147	37082	1	11	**
MWC 148	37083	$\overline{1}$	11	**
MWC 150	37085	1	11	11
MWC 151	37227	ï	Sept. 13/73	Sept. 13/88
MWC 152	37228	1	11	88
MWC 153	37229	1	11	**
MWC 175	37243	-	11	Sept. 13/87
MWC 175	37245	Î	**	Veccorran
	<i>JI L</i> TT	~		JAMES F. BRISTON

James F. Bristow P. Eng

Claim Name	Record Number	No. of Units	Record Date	Due Date
MWC 271	37108	1	Sept. 14/73	Sept. 14/87
MWC 272	37109	1		11
MWC 294	37131	-	11	н
Mink #1	1580	1	Sept. 27/83	Sept. 27/87
Mink #2	1581	1	n	1
Mink #3	1582	1	11	11
Mink #4	1583	1	**	11
Mink #5	1584	1	11	11
Mink #6	1585	1		11
Mink #7	1586	1	11	11
Mink #8	1587	1	PŤ	11
Stoat #1	1576	1	н	11
Stoat #2	1577	1	11	11
HKR #1	2404	1	June 11/86	June 11/88
HKR ∦2	2405	1	н	June 11/89
HKR # 3	2406	1	89	June 11/88
HKR #4	2407	1	11	June 11/89
HKR #5	2408	1	11	June 11/88
HKR # 6	2409	1	11	June 11/88
HKR # 7	2410	1	H	н
Mike #1	2394	1	11	¥1
Mike #2	2395	1	11	11
Mike #3	2396	1	**	11
Mike #4	2397	1	11	11
Mike #5	2398	1	11	11
Mike #6	2399	1	**	93
Mike #7	2400	1	11	11
Fox #1	2401	1	11	June 11/89
Fox #2	2402	1	11	n
Fox #3	2403	1	11	11
	TOTAL	49		. '

DISCUSSION

The general geology of the Mt. Washington area shows a thick sequence of Triassic Karmutsen volcanics overlain by sediments of the Cretaceous Comox Formation. Both sequences are cut by intrusive feldspar porphyry and diorite dykes and sills of Tertiary age. The formations are in turn pierced by breccia systems of various composition, size, shape and possibly of different ages.

The Rainbow group of claims cover the Murex basin which is partly underlain by a large body of Murex breccia. The Murex breccia is elongated east-west, and is intermittently exposed in outcrops, road cuts and creek beds for over 1,500 m long by 1,000 m wide.

The Murex breccia has been subdivided by McGuigan (1975) into three variants or types. The first two types consist of subrounded to subangular clasts 1 to 10 cm in diameter of the Comox and Karmutsen Formations respectively. Matrix is generally less than 25% consisting entirely of finely comminuted rock fragments. Contact relations between the two mimic the overall trend of the unconformity, suggesting collapse to be the dominant process. The third form of Murex breccia is much more variable. More specifically the clast composition is hetrolithic, with the size varying from 1 to 50 cm and the degree of roundness from subangular to spherical. The matrix content is also quite variable (20 to 80%) containing numerous matrix-rich channels. All of these features indicate a fair degree of movement has taken place, suggesting a mode of origin akin to a diatreme.

Mineralization in the Murex breccia generally occurs as disseminations and veins infilling voids between breccia clasts. Although subject to changes in abundance and habit, the mineralization consists of varying amounts of pyrrhotite, pyrite, chalcopyrite and magnetite infilling voids between breccia clasts. Quartz, often vuggy accompanies the sulphide mineralization generally enveloping the sulphides within the interstices. Epidote also occurs within the interstices, usually at the expense of the sulphides. Chlorite generally accompanies the epidote indicating a form of propylitic alteration has taken place. Also exerting an influence on the amount of sulphides is the percentage of comminuted rock flour within the matrix. In addition, where the rock flour content is low, the clasts tend to be angular and often elongate, suggesting little movement has taken place. In these areas the origin of the Murex breccia is interpreted to be the result of collapse. Within blocks of unbrecciated mafic volcanic adjacent to the breccia a minor amount of sulphide veining is present. However, within the breccia the degree of veining is minimal.

The origin of the mineralization wihin the Murex breccia is interpreted to be the result of hydrothermal solutions originating in the areas of prophylitic alteration entering the voids created by the collapse of the Murex breccia.

The purpose of the follow-up drill program of nine BQ diamond core holes was to define the extent of the gold mineralization intersected in drill hole MX-86-1, which was drilled in August, 1896.

Holes MX-86-2 to 4 were drilled from the same general set-up as MX-86-1. Hole MX-86-3 drilled into a porphyry sill but hole 2 and 4 encountered brecciated Karmutsen volcanics and fractured Karmutsen with patchy pyrrhotite mineralization but generally low gold values.

Holes MX-86-5 to 9 were drilled from a site 48 m southeast of MX-86-1, and encountered similar Murex breccia with variable sulphide mineralization but only low grade values except short section assaying up to .08 oz Ag/T (see logs). Hole MX-86-7 cut sections of nearly massive pyrrhotite with variable chalcopyrite from 30 m to 62.4 m hole depth but the highest gold assay was .04 oz. Au/T over one metre. Holes MX-86-8 and 9 probed for extensions of this massive mineralization but did not encounter any great quantity of sulphide in the breccia nor any gold values of economic importance.

Hole MX-86-10 was angled northeast through MX-86-1, aimed at the highest gold assay. While it encountered similar Murex breccia, the gold mineralization was generally low and higher assays were patchy, with the highest being 0.236 oz/T over 0.76 m.

Drilling in this small area of the Murex breccia has demonstrated that at least some portions of the Murex breccia are gold-bearing but higher values may be erratic. As yet no correlation of gold values can be made with pyrrhotite or chalcopyrite content.

The area drilled warrants further investigation together with the remainder of the Murex zone.

All mineralized core was split and assayed for gold and silver by Kamloops Research and Assay Laboratory. The drill core is currently stored within Franklin Electric's storage yard in Courtenay, B.C. The drill program and sampling was supervised by the writer and the drill core was logged by Brian V. Hall under the writer's supervision.

Drill Hole			Γ	Depth	Da	ite
<u>No.</u>	Azimuth	Inclination	Ft	(Metres)	Start	Finish
MX-86-2	1500	-50 ⁰	148	(45.1)	Oct 7/86	Oct 10/86
MX-86-3	2530	-50 ⁰	53	(16.2)	Oct 11/86	Oct 12/86
MX-86-4	3400	-50°	126	(38.4)	Oct 13/86	Oct 21/86
MX-86-5	0700	-85 ⁰	315	(96.0)	Oct 21/86	Oct 26/86
MX-86-6	3440	-60 ⁰	166	(50.6)	Oct 26/86	Oct 29/86
MX-86-7	2530	-50°	337	(102.7)	Nov 1/86	Nov 4/86
MX-86-8	240 ⁰	-62 ⁰	224	(68.3)	Nov 5/86	Nov 14/86
MX-86-9	164 ⁰	-50°	136	(41.5)	Nov 14/86	Nov 17/86
MX-86-10	055°	-58 ⁰	207	(63.1)	Nov 21/86	Nov 24/86
<u></u>		<u></u>	1712	(521.9)	· ·	

mes

F. Bristow

P. Eng

DRILL HOLE SUMMARY

DIAMOND DRILL CORE LOG LEGEND

MX-86-2 to MX-86-9

The drill core was logged on a 120 column coded format to allow recording of as much detail as possible. The following legend is the key to this format.

Column No.	Code	Description	
1 - 4	Depth	Depth as measured in feet	
5 - 6	Formation Bx I K C	Breccia Intrusive Karmutsen Formation Comox Formation	
7 - 8	Rock Types Mx My Wx Gx Mp Di Df Ma Mv Fs Ar Hf Di Dp St	Murex Breccia Murray Breccia Washington Breccia Glacier Breccia Porphyritic mafic volcanic Diorite Diorite, fine grained Aphanitic mafic volcanic Mafic volcanic Feldspathic sandstone Argillite Hornfels Diorite, leucocratic Diorite, porphyritic Siltstone	
1 - 10	Kaolinite	Content estimated in percent	
11	Habit I S V T P B D	Irregular Stockwork Vein Veinlet Pervassive Banded Disseminated	
12 - 13	<u>Chlorite</u>	Content estimated in percent	JAMES F. BRISTON

Column <u>No.</u>	Code	Description
14	Habit	(see Column #11)
15 - 16	Biotite	Content estimated in percent
17	Habit	(see Column #11)
18 - 19	Quartz	Content estimated in percent
20	Habit	(see Column #11)
21	<u>Miscellaneous</u> Ak C Ac Sr	Ankerite Calcite Actinolite Sericite
22 - 23		Content estimated in percent
24	Habit	(see Column #11)
25 - 54	Comments	Written descriptions or general comments
55 - 56	Bedding	Maximum angle bedding makes to the core axis
57 - 58	Faulting	Maximum angle measurable faults have to the core axis (shaded portions indicated extent of faulting)
	G B	Gouge zones Broken core zones
59 - 60	< to B	Angle between bedding and any vein, fault, banding or contact
61 - 62	Veining	Maximum angle at which a vein cuts the core axis
63 - 64	Pyrite	Content estimated in percent
65	Habit	(See Column #11)
66 - 67	Pyrrhotite	Content estimated in percent
68	Habit	(See Column #11)

Column No.	Code	Description
69 - 70	Arsenopyrite	Content estimated in percent
71	Habit	(See Column #11)
72 - 73	Chalcopyrite	Content estimated in percent
74	Habit	(See Column #11)
75 - 76	<u>Covellite</u>	Content estimated in percent
77	Habit	(See Column #11)
78	<u>Miscellaneous</u> Mg Mo R Sp Sb Gn	Magnetite Molybdenite Realgar Sphalerite Stibnite Galena
79 - 80		Content estimated in percent
81	Habit	(See Column #11)
82 - 86	Sample Number	Assay tag number
87 - 91	Depth	Depth in feet separating assay intervals
92 - 93	Interval	Interval of assay sample in feet
94 - 98	Au	Gold values in oz/ton
99 - 102	Ag	Silver values in oz/ton
103 - 106	Cu	Copper values in Wt percent
107 - 110	As	Arsenic values in Wt percent
111 - 114		Additional elements for assay
115 - 118		Additional elements for assay
119 - 120	Recovery	Recovery, intervals marked off by footage tags

COST STATEMENT

Rainbow Claim Group		
Diamond Drilling (MX-86-2 to MX-86-10)		
Supervision, Drillsite Preparation, Core Logging, Splitting and Stora	ge:	
James F. Bristow, P.Eng. Sept/86 – 22(½), 23(½); Oct 7(½), 16(½), 20(½); Nov 8–13(½), 16(½), 25(½) 7 days at \$250.00 per day	\$	1,750.00
Technical services and labour:		
Brian Hall, M.Sc. Oct/86 - 6(½), 8-19(½), 21-31(½); Nov 1-7(½), 14-25(½) 21 days at \$200.00 per day		4,300.00
Barry Needham Sept/86 - 22(½), 23, 25; Oct 2, 20, 28; Nov 25-26(½) 6½ days at \$120.00 per day		780.00
Ron Biebrich Sept/86 - 24, 26, 30; Oct 15, 16, 18(½), 19-20, 28; Nov 18, 25-26(½) 10½ days at \$110.00 per day		1,155.00
S. Jut Oct/86 - 8-14($\frac{1}{2}$), 19-23($\frac{1}{2}$), 25-31($\frac{1}{2}$); Nov 1-4($\frac{1}{2}$), 6($\frac{1}{2}$), 15-16($\frac{1}{2}$), 24-25($\frac{1}{2}$) 14 days at \$90.00 per day		1,260.00
Drillsite and access road construction Dennis Phye Bulldozing Ltd. as per invoice		2,845.00
Tractor rental Ward Contracting as per invoice		6,150.00
Diamond drilling Globe Drilling Ltd. as per invoices 521.9 metres at \$92.067 per metre		48,050.00
Transportation (4x4) 32 days at \$40.00 per day		1,280.00

COST STATEMENT CONT'D

Food and accommodation 59½ man days @ \$25.00 per day	\$ 1,487.50
Assaying Costs 274 samples at \$14.25 (gold/silver) 42 samples at \$22.25 (gold/silver, arsenic)	4,839.00
Sample freight to Kamloops, B.C. 1,900 lbs. at \$25.00 per 100 lbs.	475.00
Report preparation (including drafting and typing)	1,250.00
TOTAL	\$ 75,621.50

CERTIFIED CORRECT

James F. Bristow, P.Eng.

QUALIFICATIONS AND CERTIFICATIONS

I, James Bristow, of 3431 Bowen Drive, in the municipality of Richmond, Province of British Columbia, hereby certify as follows:

- 1. I am a graduate of the University of British Columbia with a B.A. Degree (Geology and Physics).
- 2. I am a member of the Canadian Institute of Mining and Metallurgy, the Geological Society of South Africa and the Association of Exploration Geochemists.
- 3. I am a Professional Engineer registered in the Province of British Columbia.
- 4. I have actively practiced my profession in mineral exploration and mining since my graduation in 1957.
- 5. That this report is based on data collected between September 22nd, 1986 and November 26, 1986 by myself or by other persons working under my direct supervision.
- 6. That I am a Director of Better Resources Limited and hold a direct interest in securities of this company.

Dated at Richmond, British Columbia this 10⁻⁷⁴ day of February 1987.

James F. Bristow, P.Eng.

APPENDIX I

INVOICES

			STATEMENT			
	\mathcal{D}	er	nnis Phye	DOUBL Land Clearing • A Complete Burnin	E TILT BLADE .pproved Subdivision Rd. g • Farm Land Clearing	
		BU	LLDOZING LTD.	Free 33	Estimates 4-2825	
	49	01 Ta Courte V9	pland Road enay, B.C. DATE <u>S</u> N 6N1	Sept. 27	19_86	
	Nam	e	Better Resources Ltd.			
	Addr	ess	Location: Mt. Washingto	on		
	City			elephone		
	(Mere X		********	
	Sept.	24	07 Hitachi			
		26	30.0 hrs. * \$78.00 @ h	n r.	\$2340.00	<u>)</u>
	· · · · · · · · · · · · · · · · · · ·					
	L		Alexand			
	L		115/86	,		
	(<u>'</u>		ard 19			
•	<u> </u>					
	\					
	<u>}</u>					
	:					
	TERMS: Net 2% 24%	30 day per m per a	ys from date of invoice. onth on overdue accounts. nnum.			

-2

.

	\mathcal{D}) er	nis Phye	Land Clearing Complete But	ed Subdivision arm Land Cleari	Kd ng			
		BU	LLDOZING LTD.	Free Estimates 334-2825					
	49 No	901 To Courte V9	pland Road nay, B.C. DATE <u>NOU</u> N 6NI Better Resources Ltd.	v. 29		. 19 <u>86</u>	_		
	Add	ress	3431 Bowen Drive Richmond, B.C. V7C-4C6 Te	lephone					
<u> </u>	Nov.	20	Lowbed move			210	. 00		
		20	D7 CAT plow snow north						
			side of mountain 9.0 h	r					
ŧ		21	pull D4 out of mer-x s	ide					
			5.0 hr.						
		25	pull John Deere and Dr	ill ou	t				
			4.5 hr.						
			All work done at Mt. W	ashing	ton				
			site.			1617			
			\$82.00 per nr.*18.5 nr	<u>s.</u>		<u>151/</u>	.00		
				TOT	АС	\$1727	.00		
	<u> </u>		Δ						
		-	Thank You						
			I may a						
			h V llenne	<u>۷</u>					
		ļ	Roid # 2 Wink						
reo	MS: Net	30 da	strom date of invoice.				}		

RAINBOW CLAIM GROUP (MUNCX) Lowbed move 5 hrs @ 82.00/hr. •4

105.00 410.00 \$ 51500

		OUR NURASE II	0	7665	54
SOLD TO	BETTER RES LED.			13 Shing	'50 Ton
SHIPPED TO	VIA	 F.O.B.		× _>	
	13 - 86 - 21 - 25 561 NG 6423.00/ from	12	903		
	20 5 Am G 23.0014007	 	460		
	142: 05 G25/fori	 	550	/	
	9- 13 W " 66	 	725	/	-
	Rai Btiller ar 10 A	 17	775	00	-
	Fleb- Drilling	 17	138		

G D32

BOIOWI

\$ 3775.00

Mx -86 - 2 = 3

-4

076656 DATE 30 1986 Nör CUSTOMER'S ORDER # 133 + #134 SOLD TO BETTER RESources ITA SALESMAN TERMS SHIPPED TO_ F.O.B. ADDRESS. VIA. 9410 MX 92'Ba 625.00/ Poot 2 22 800 00 \$ 22 800.00 B - 86-5, 36, 37, 38, + 39 893'INA G 23. oolfoot 034 22 00 NW + 0 24 s the Rannie 44 834 00 GLOBE Drilling (1981) G 032

4

Mx-86-7 to Mx-86-10 - \$22 800.00

INVOICE

076655 OUR NUMBER DATE 1986 Nov CUSTOMER'S ORDER #133 SOLD TO BETTER RESOUTCes ITA. 134 SALESMAN TERMS SHIPPED TO. F.O.B. VIA. ADDRESS. INVOICE 16 375 00 6 25 nel At 13 ... ガーちょー 27.00/97 37 237.00 89 Paro 1 53 612.00. D32 Mx-86-3 To Mx-86-6 3.75.00

SOLD TO	BETTER RESOURCES LTD.	OUR NUMBER DATE CUSTOM	NOV IER'S ORDER 133 AN	7665 30 /3 4 44	57 98 34
		TERMS			
SHIPPED TO	VIA	F.O.B.			
					1
		İ			1
	341 MAN houts 620 colhaut		6	820	.0
		<u> </u>			
			-		
	la de la				
	2 mild				
			_		
		<u> </u>		•	ļ

7

EXTRA CHARGES MX DRILLING 255 Hes @ 20.00/hL = 5100.00

Globe Drilling Ltd. EXTRA CONTRACT CHARGES

NAME OF COMPANY:

PLACE:

MT. WAShingloN

BETTER RESOURCES LTD

No. Hours and Material Dete DESCRIPTION (g)2 MENX4hts werting on Stezen water his Nev 7 Frezzing water line - looking for (16 Nov 9 WAITING fet cail stave + looking + tePara TBAKS 10 120 working on water (22 12 Thaning waterline wetkind on read havits wateling 5 houts kouling cate out + Trouble Theremith 77 $(1.6)^{\vee}$ SNowed under - haved cote To F.F. 18 (48)'19 48 11 20 66 POMINFER + Pulled FAT. OUT Plowed tone To Planing tord & digging out Ea 21 (47 22 8 RIGGING evi + Planing toods (5 23 Zhrs WPTet/ Louts MainTainen 25 confitions while Moving out fightica Portinget Atill: waterline Preezing in extrance NOV 17 20 Blizzard conditions 341 TOTAL MAN LOUTS No Machine Standby EXTRA CHARGES MX DRILLING 255 hrs @ \$ 20.00/hr \$5100.00 Jamies . F. Bris

WAR D CONTRACTINE BOY 1. SITE NLO NXPH, COURTENAY, BC. V9N-753 GLOBE DRILLING (1981/202 1943 GOULIEVARY CRESCENT NORTH VANCOUVIER, BC. V71 349. DEC. 12th. 1986 D. H. CAT. NENTAL MONTH DAY 10Th 5th To FA. TOTAL OF 49 DAYS 11Th 22 49 DAYS RATE 100 X AR. DAY 149 9000 4900 200 TRUCHING COSTS OCTOBER 425.22 \$25. 00 TRUCKING COSTS NOULEMBER Company Casts Picitup + LABOUR 500.00 ToTAL \$6.15000 6150.00 Lens Precion Regment Balance owing 1000.00 \$ 3150.00 Pouch 1/ 12/ 157 jule

APPENDIX II

(IN POCKET)

DRILL LOGS FOR MX-86-2 TO MX-86-9 INCLUSIVE DIAMOND DRILL HOLE PLAN

BETTER RESOURCES LTD.

PROPERT	х <u>Мт.</u>	WASHING	TON	AREA	M	LUREX			HOLE	NUMBER	Mx	-86-1	0
LOGGED	BY <u>B</u> .	V. HALL	<u> </u>	CLAIM					TOTA	L LENGTH	Ź	07	
STARTED	No	21 1986		COMPLETED	NOV	24 1	986		CORE	SIZE		NQ	
SECTION									INCL	INATION			
LATITUDI				DEPARTURE					ELEV	ATION			
PURPOSE		· · · · · · · · · · · · · · · · · · ·											
COMMENTS	s	·										·	
DEPTH	DIP	BEARING	METHOD			то	FROM	LENGTH	AU	AG	CU	AS	
0	- 58		BRUNTON			Ft.	rt.	Ft.	Oz/Ton	Oz/Ton	* 	*	
			, 										
								<u> </u>	·				
						·		*****					

Project <u>Mt. Washington</u> Hole Number <u>MX-86-10</u>

. يوريبهم ومراري

Page Lof b Logged by BXH

Date 23/11/86

1 - 4	5 4 7		N 12	14	15	7 18	2012		2.5		-	-	1243 6	-	-	1 22 1	175	7 2 0	1 82 M	87 1		77 10	99 2	3 4	7 10	4 14	14 1	1.9 20
DEPTH	Fm Ry	out Kao	1. CI	s I.	87.	Q+2	. [Misc	Comments	B	F	~	Py	P.	Asp	Cpy	, co	v Mise	Sample Number	Depth	Int	Au *=/+==	Ag •=/ten	Си 9.	As 7.			Rec
									casing	•																		
5	ID			D			M	1 D	Diorite, fine -> medium grained 50 % fine plagioclase grained non-magnetic. 10% Hb -> chl.		A11111111			† ‡	D													
15 20							Ju Ju	a 0	Epidote dissominated throughout evenly kenolithe of motic volconic subangulary plag altered to opidote in places remainder of plag une Hered.		A																	
25					•																							
30						•																		-	-			
35																												-

Project	Mt. Was	Linaton.
---------	---------	----------

Hole Number MX - 86 - 10

ارد المحج

•,••

بينجب

80

30 11 14 18 18 19 8 456784 # 12 14 15 17 18 2021 24/25 23 1 81 PL Asp Cpy Cov Mise Sample Depth Int As Y. ALL Ag DEPTH Em Type Kaol. Chi. Comments Cu % 8t. Qtz Misc Rec 21 6 F Py f. IDi 45 50 3 V Lunggy 55 EZD slickensides indicate dip slip EID movement. 60 Þf E3 d Diorite fine grained. 63.5 65 34 1.001 1.01 8575 67 3 Possible foult contact between diarite and travmatson marie valc. nate: epidate content increases towards footwall contact of Diarite. Bx Mx ß 3.0 1.001 1.01 8576 70 72 2.06.001 4.01 70 5 8577 crockle bx of Murie Bx clasts appear as though they could be dominately aphanetic motic volc of Karmuticn Fmi chlorite alteration intense, present in veins. 3.0 1.001 1.01 8574 75 75 KAP 8579 4.0 1.001 1.01 79

Page 2 of 6

Logged By BYH

Date 23/11/86

Project Ato washington

Hole Number <u>MX-86-10</u>

Page I of 6 Logged by BYH Date 23/11/86

45.47.89 14 15 1718 24 25 10 22 30 73 10 4 14 18 18 19 84 Fm Type Kaol. Chl. DEPTH 8t. Qtz B F & V Py Po Asp Cpy Cov Misc Sample Depth Int As Y. Comments Misc Au Ag Cu % Rea KNN 8580 50 84 85 Brinx Murex Bx, clasts ofdiorite included (~20%). 8581 87 8582 90 Dominately large clasts 91 . 1436 tr 8560 3.0 1.00 1 0.03 94 95 3 3.5 0.122 4.01 8561 ET 97.5 IDI 8562 4.0.00 2 0.03 100 Bx Hz I Di 101.5 BX HX I Di 7 8563 3.5 .002 L.01 105 Bx My I Di 105 tre 2 8564 1075 2.5 6.001 4.01 Bx nx of atz content low relative sulphides. 8565 1.0.036 1.01 110 111.5 k na Bx nx possibly a large clast 17 e 3 e 8566 5.0.001 (.0) 115 116.5 85.67 119 2.5 0.236 2.01

. منه : مرجوحه :

Project <u>Ht. Washington</u> Hole Number <u>MX-86-10</u>

w.1.5

سره مینجودین

Page 4 of <u>6</u> Logged By <u>BYH</u> Date <u>23/11/86</u>

1 -	45	4 7	•	9	*	12	14	5	17	18	20	21		2.5			811 5 1	477	-	61 62 63	66 4		71	73 39 7	\$ 77	* 1	1 BL 86	87 9) - •	74 4	1 10	3 6	7 H	4 1-	• I. I	
OEPTH	1 8.	-	ock IPC	Kac	, I .	Chi		81		Q+	2	M	lisc	Comp	nents		6	F		v	Py	•• •	A s p	Cpy	cov	Mise	Samele Number	Depth	Int	ALL	Rg •=/ton	Çu ¥	As Y.			Rec
	B	×H	1,1			7	P		Π	t	٤				•	<u></u>	1					2 C 4 C		+r c G			8568	122	3.0	.010	0.03					
125														F													89897	126	40	.004	2.01					
										2	c											t c		tr u			89898	12.8.5	2.5	.009	.06		•		· .	
130										,	c											3 C					30251	131.5	30	L.001	<u>,</u> 03					
-								3	P												+ 12	+ - - 		+++ 6			30252	125	3,5	L.001	.06					
																	- - -					5 4					30253		50	.0/3	0.11		·			
140											2			- qtz veins vagor	lly altered 1.	to bt.	4							<u>1 −</u> † † −				140	4a - 1	· · ·			- 			
								╡						Bt enveloping a alteration produ	qtz vei	n as an	4							2			30254	143,5	3.5	L.001	1.0/		~·· ·			
145														_ery in large el	ith gtz	ihaxein.											30255	146	2.5 3.0	D.002	.05				× .	
150									1	e k					- 	-				 	Z			++ e			JU & 3 Ø	149			02				- 14. <u>- 1</u> 9. - 19.	
														yeen vis vigy	·	• •		-			5	R					30157	152.5	3.5	4.001			· .			
155									1					-										2 6			30258		4 .5	1.001	.03					
									1	c											+						30259	157	6.0	•001	.03					

Project	Ht. Was	hington.
		

Hole Number <u>MY-86-10</u>

Page 5 of 6 Logged By <u>By H</u> Date <u>24/11/86</u>

ľ	TIP	1/ .	T N	12	4 15	-17	18 3	2021	24	28					 			5 84 87	A 51 4	61 62	63 66	4 4	67 71	72 8	75 7	7 78	81 82	-	-	-	-	12	417			1.4	1
DEPTH	1 Fm	Rock	Kaol	. Chi	8	† .	Q+z	ľ	lisc			C 0 #	men	ts				8 F	420	v	Py	Po	Asp	Сру	, Cov	Mi	c. Num	Dep	th a	t Au	Rg	C	- 4	7s	<u></u>		Rec
•	B×	Мх		7	pZ	F	1	c٤	5 e	EpaHem	+12-	• p•	tehy	•				ŀ				+r e trt															
						\parallel		Ħ		•							.					1.0						- 16 1	3	-	· ••						
165										•							4					+r c					3026	0	ľ	2006	4.01						
F					Ī	Ī				•							1					1 6		tr e				- 160	5								
170	,					Ħ.	2 c			-							4			ł	1 K	2 0		2 0			3024		4	3.006	2.07						
E										•							1			+		4 c		tre			30262		2.0	2.002	.05					477 A	
175 -					•	I				_							1					+, a		1 6				17	4	1							
	*	np								•																	3026		3.	5 L.UO	1 4.01						
•	Βχ	Mar 1				13	3 e]					4 6		+12				- 17:	7.5								
180	Ξ	Di						F 3									-										3026	18	3.	5 2.001	1.01						
	By	nx		7 0		Γ	c		T								1					4 6) e													Ŧ
185								ľ		-							-										3026		5.	.010	1.01						F
																	1											- 186	<u>,</u> s	-							
									IE								1										30266		30	.001	10.2						+
110							Ц]										3026	7 101	.> 3.:	.004	1.01						
					- # + P	++	- -]			þ	4	~	-	+				- 193									ł
195						1	c							<i></i>			-					5 4	+	-			3026	3	53	1.001	0.03						Ť
				1.	+ 0		$\left \right $									· .				+	4	3 6					ļ	198		ter same at a day							F
210												_			 		1										30269		3.0	4001	.05						F

Project Mt. Washington

Hole Number MX -86-10

÷.,

والمراجعة والمراجعة

1	15	670	1	# 11	k 14	1/5	17		*	1	14 25				4 M				4.			~ _				·	_							
DEPTH	F	Rod					Л	<u>.</u>	Т		Т				Ŧ		-	-			11/2		777			87	<u> </u>	99 9	H 99	2 3 4	7 1	4 1	4 18 H	40
[R	- 11-		+	.ni. 71			, T				Comments			8	F	5	VP	y P	• A	p C	ey C	ov 1	Misc	Number	Depth	I.t	Au.	Rg •=/ten	Çu Ye	As Y.			R
F	 ~				ľ			'			t							-	남	44	1	· e			 	201			+					Γ.
ŀ											ŀ			1			1	3	ť	Π	臣	村					2.5	1.001	1.01			1		
205											Ł			ł			ľ	T	Ž			4			 	203,5		میں دیر مردہ	+	<u> </u>				
							╟┝	$\overline{\mathbf{t}}$	V.		+			1											1		35	L.00/	1.01					
F		Π		T	T		Ħ	1	Ť		t	End of Hole.			╉	╉	╉	+		╂╂─	+++	٢	$\left\{ \right\}$	┞╌╂		207	┞╌┨		 	 				L
17.0											ł			1																				
-											ţ.			1														•						
t I											 .									.														
•											F			1		ľ																		
215											ŀ	• •				ĺ																		l
F 1												•		1																				l
FI														1																				
220											-			-																				į .
F											•			1																				
1 1											•	•		4		ŀ																		
225											-		••	4																· · [· -			
														4																		ł		•
													_ ·	1																				
230											-			1																				
t							•		l					7																				
											•			1																		1		-
235										lŁ				4																	•			-
										IF	-			1																				
										lt				4															· ·]					1
346														1																				-
							_	T	-															11				I.				1		

Logged By <u>BVH</u> Date <u>24/11/86</u>

Page 6 of 6

BETTER RESOURCES LTD.

PROPERTY LOGGED BY STARTED SECTION	Mt. Br 	Washingto ian V Hall V 14, 1986	<u></u>	AREA CLAIM COMPLETED	Мин	ε κ χ			HOLE TOTA CORE INCL	NUMBER L LENGTH SIZE INATION	17	- 86 -9 36 ft 30 50	L	- - -
LATITUDE	<u></u>			DEPARTURE		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ELEV	ATION			<u> </u>	
PURPOSE COMMENTS		termine	internal n	<u>nerphology</u>	əf	Митеж	<u> </u>	help	defin	e exte	<u>. + .</u>	<u>f po-</u>	<u>py mine-</u>	ulization.
DEPTH Ft	DIP	BEARING	METHOD		•	TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU %	AS S		
<u> </u>	50	164	Brunton.				<u></u>							
			**************************************				<u></u>							
							·			<u></u>				
<u> </u>								*****	·			<u></u>		
·			·······								÷			
<u> </u>	<u> </u>						<u> </u>				<u> </u>			
				•			<u></u>				<u></u>	<u></u>		

.
Project <u>It. Washington</u> Hole Number <u>MX-86-9</u>

و المحا

مرید یا . مریحی مدین

Page L of <u>4</u> Logged By <u>BVH</u> Date <u>ZO/11/86</u>

1 - 4	5 6	789	N 12 P	4 15	1718	20	LI 2	14	15 0		6 T7 B	-	12 43		-	11 72	-	77 3		1 BL BL	87 9		14 10	99 2	3 6	7 10	4 14	•	
DEPTH	Fm	Rock Type Kao	I. Chl.		Q+	•	Misc	٤	Comments	8	F	< 1 v	PY	•	· As	, c	py c	••	Misc	Sample Number	Depth	Int	Au ez/ten	Ag ex/ren	Си 7.	As 7.			Rec
		_			 		┥┙┫	ł	casing.					1				₽₽	╀╂	<u> </u>	7:5							 	<u> </u>
ł	15×								Moren precia, clasis include Kormutson matic volconic, romox Fm ciltatone, and Diorite.						Ŧ					8559	~	35	L.001	0.03					
5								ŀ					Ŧ	0		1	f			 	5							 	-
						H		ł												8690		5	1.001	0.03		•			
10					H	Ċ		ŀ	-					Ē						0,91	10	2.5	0.004	1.01					-
					1	4		ł						2		<u>+r</u>	4			8671	12.5		0.000						-
IS								Ł			B				M					8692		4	0.018	0.03					F .
								ŀ			18			3	E	+r					16.5								95
20					3			E						2	4	F	†1			8693		4.5	0.002	01					
								ŀ			E.			╞		+r	e			8694	21	2	0.005	L.01					-
				30	7			ŀ			18			5	d						23								
25					3 =			F	z"introval of oplite.							1	c			8695	27	4	0.01	2.01					
														4		++	e			8696	795	25	0.011	4.01					
30								╞	30 to 34 ft core has a bleached - chloritic appearance.					6	F					81.97	A 1.3	3	0.007	L.01					1.
					1 c								t+ c	2						0677	32.5			•					
35									last of aplite present.					Ĭ						8698		5	0.004	2.01					
·																				<u> </u>	37.5								
40L								-	1					Ĵ						8699	40	2.5	0.063	1.01					

Project Mt. Weshington Hole Number MX-86-9

ge 2 of 4

Logged By <u>BVH</u>

Date 20/11/86_

1. 4	15 6	7 8 4	"	2 14	15	110	2021	24	25	54 55 SK	57 \$	59 60	4 62 6	3 46	4 4	67 71	72 P	75 77	78 8	82 84	87 🖤	11. 18	74 14	99 2	3 4	7 10	4 14	15 15	19 24
DEPTH	Fm	Rock Type K	•o1.	chl.	B†.	Q+		Misc	Comments	8	F	410	v	Ργ	Po	Asp	Cpy	Cov	Misc	Sample Number	Depth	Int	Au •=/ton	Ag oz/ton	Cu %	As 7.			Rec
-	β×	Mx		4 F		1	C		vaggy gtzvein.	•			ļ	24	5 e					8700	40 43.5	3.5	0.034	0.01					
45									- small oplite dyte 3" widen				Ť		1 c					8583	46	25	.009	L.01	:	•		-	
•							_								5 C	+~ c				8584	49	3	0.001	L.01					
50							-			-					2 c					8585	51.5	3.5	.002	L.01					
55									Aplite dyke fine -> medium quained, reneveratie, successidal texture.					tr c	54	tr c				858%	E/a	4.5	0.013	2.01					
-	I	Aγρ							appears to be a sulphide zoning about]			ŀ	-++						8587	57.5	1.5	1.001	1.01					
60	B≻	мx		+ P		1			splite dy ke, py -> cpy over 2ft. gtz content is also low considering the sulphide content.					tr c	5 C	+ r c				8588	60	52	L.001	1.01			-		
-						z										×.				8 589	64.5	4.5	2.001	0.03					96
65											•	-			1 0					8590		4.	1.001	L.01					and a second
70	Ex 1	<u>пр</u> Г/				2 0			-sulphide reins xouthing oplitedyte.	•					4 0	tr c				8591	71.5	3	1.001	0.05					
75				5 F		2 c			from 73ft core becoming lighter incolour, possibly due to on increase - in the chl after content.						10 C 4 C	tr c				8592	75	3.5	1.001	0.03					
					:		Ð		magnétitie a La lighter in colour. Diorite closts present also.											8593		5	L. 001	L.01		-			
80 L																					100							L	

;

Project	Mt. Washington

Hole Number MX- 86-9

Page .3 of 4 Logged By ByH Date 20/11/86

4	5 6	7 8	•	11 12	14	15			2021	1	14 2	.5	M 45 S	K 87 1	-	4 62	63 6	4 4	1 67 T	72	75	77 78	81	81 8 6	87 🐈	-	74 9	199 Z	3 6	7 1	4 14	15 19	1.9 2
OEPTH	Fm	Rock Type	Kao	1. C	h1.	81	F.	Q+z	1	Misc		Comments	8	F	110	V	Py	Po	Asp	Cp	y co	M	sc.	Sample Number	Depth	1. +	Au.	Ag	Cu	As %			Rei
•	8×	мx		4	5 0			2 4	i Pu			Kormatsen closts becoming altered.						4	-	+1	e			859 1	80 83.5	3.5	6.00	0.01					
85																								8595	975	4	1.001	0.03	-				
90																								8596	91.5	4	1.001	1.01	-				
95				5	I	<u>.</u> 4	I					alteration more intense but potchy						5 3 2-		7				8597	96	4.5	0.016	0.05	, ,				
100						2												4 9 0 4		+r (8598	98.5	2.5	1.001	0.01		•			98
																		6 0		+7 0				8599	702.5	4	1.001	2.01				anti-analysis that the baseline	
105																				1 C				8600	105.5	3	1.001	2.01					annan terr annan annan y
110														6				2 +						8569	10	4.5	L.001	0.05					
115 B	HI × MI	10 X		10	ρ		1 5		2	. V		alcite-atz infilling between clasts		B		····		- C						8570	113.5 115	.5	1.001	0.05			-		-
							<u> </u>			╶┨╶╋ ┥┝ ┥┝	P	ervassive chi ovite alteration obsuring . lastic texture of breccia.						+						8571 2	119	4		0.05					

Project <u>Mt. Washington</u>. Hole Number <u>MX-86-9</u>

Sec. 1

. مينجيون...

Page 4 of 4

Logged By BUH

Date 20/11/86

F			-	12		5	17/18	~~~	21	24	25		5 46		-	-	16 H 1		172	-	77 78) ez a		-	14 4	99 2	3 6	7 14	4 14	1.6 18	19.4
DEPT		Type Ke	o1.	Ch	1. 10	8t.	P	↑z -	M	isc	Comments		8	F		Pÿ	P.	Asp	C.	, co	v Mise		Depth	1.1	Ru.	Rg	Cu	As Ye			Rec
ļ		× 1 02		10		5					•			P			7	Ε	*	•			123.5	T							
125				6							-	ļ	ľ	~			2					8573	125	1.5	1.001	0.03					-
F				•	ľ		3	Z			-						4		1			857	H i	3	L.001	1.01					
ţ.	ĸ	Ma					┢	\mathbf{H}			· · ·	1					┝┼		+r (<u> </u> '	128	$\left - \right $				·			
130						7 19			l	ļţ	•	ļ					╞╍╄														100
F	194				ſ	T						1					+7 †														
[135		Мр								╟																				ŀ	ļ
[T		T	Π		T	2		End of Hole:	ii	ŀ	╋	╞┤		** †		-+		┟┼╶╊							ć			
140			-									· •	and State States																		ł
										ļF		-																			
					l					F		. 4																			ł
145										F		· · · · · · · · · · · · · · · · · · ·																			ł
:										F]						.													+
150										Ł								·									ł				ŧ
						ŀ				ł]																			
						:				ŀ] [ŧ
155										F] [†
] [ŧ
60L							\prod			- -	·													ŀ							Ŧ

BETTER RESOURCES LTD.

PROPERTY	<u>_M±.</u>	Washingt	on	AREA	Mur	<u>د ×</u>			HOLE	NUMBER	MX	86-8	
LOGGED BY	Br	ian V Hal	L	CLAIM					TOTA	l length	2	24 ft	•
STARTED				COMPLETED	Nov	14/8	6		CORE	SIZE		3.9	
SECTION	<u></u>								INCL	INATION	-6	2,0	
LATITUDE				DEPARTURE	·				ELEV	ATION			
PURPOSE										·····			
COMMENTS			<u></u>										
DEPTH Ft	DIP	BEARING	METHOD			TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU %	AS ¥	-
<u> </u>	<u>62</u> °	240	Brunton.										
				-		<u></u>				. <u></u>	<u></u> ,		
			<u> </u>	-			<u> </u>						<u> </u>
				-					•				
											<u> </u>		
	<i>.</i>			-			<u></u>						
<u> </u>				-			<u></u>	<u> </u>					·
			- <u></u>									<u> </u>	
											•		

Project <u>Mt. Washington</u>.

(

Hole Number MX - 86 - 8

-

84 L N F

n di Territoria La constante

. .

Page Lof 6

Logged By <u>BYH</u>

Date 13/ 11/86

1 - 4	5 4 7		W 12	14	5 1	718	202	1 3 1	25	es 21	-	-	62 63	66 44	-	11 72	-	77		1 8c A	87 9		14 14	99 2	3 6	7 H	4 14	18 1	8 1 9 80
DEPTH	Fm R.	pe Kao	1. CF	. 1.	\$ †.	Q+	. 1	Misc	Comments	8	F	<	1 9	, P.	As	c	ey c	ov	Mise	Samele Number	Depth	Int	Au ez/ten	Ag •z/ten	ر» د ۲	As Y.			Rec
			_								П		T	Π			TT.	T		1									'
\mathbf{F}		<u>''</u>							Diouite, minor hb phonocryits, equigrandor								Ш												
ł	Bxr	1				10	P		marex Bx, closts ~ 70% rounded,		Π			3		ľ	Μ				3	\vdash							- -
5									- Cilicitized Sulphidas consists of	1			T	Ŧ						8517		3	1.001	2.01					
$\mathbf{F}_{\mathbf{r}}$									fine veinlets of po, and cpy					7	H 1	ŀ					6							 	┨╿┦
F									which xcut clasts.					11							· · ·								111
[Z	e						8518		5	. 00 3	.03					
10																													
t		-												3			H			 	11							 	
	K M	~	1-	H.	2 F				Possible appenetic matic volconic,					+1	+	F	F												111
				ľ					quite cilcified, closts not ac																			ĺ	
15									hand with Dt + 600 - and avis																				
-									al of al of al of al of all of																				
	-	-i	-	╢	+										-	 	H				18.4				·				
20	57 MX			M			11		shack By partiens contain in the sox						9	Hr.													1
									motrix.											8519		5	.002	L.01				ł	
								lt	1																				
-						-+			an act of the territory of the								Ц				23 4				{				╢┨
25									24-26 matrix Bominita for the												25.8] 9
.						4 c			1					4		+-												,	
·																	9			8520		52	.002	1.01			1		
- 20									· · ·					6		-	_				[·]						†
	•												\square	1.			4				31			•					
· .						20			4				-'+	4															
						\square			1											8521		4	.008	2.01		·			
35						3 4		ļ	-			ŀ		ŀ ∔	1						35								
-						ć			· 4			14	"																╽╽╉
					_			11	1					<u> </u>															1
									(· · ·													ŀ							
40 L					Ц_		<u> </u>	Ш.						Ļ							IL						1		

Project Mt. Washington.

Hole Number <u>MX -86-8</u>

:-----

د. مرد با

Page 2 of 6

Logged By BVH

Date 13/11/86

1 - 4	5 4 7 8	9 N	12 1	4 15	17 18	20	21 84	15	P1 ⁵⁵	K 77 1	A 14	41 62	43 46	46 8 6	M TI	72	-	7 78		12 86	8 7 %		14 16	99 2	3 6	7 10	4 14	14 19	19.20
ОЕРТН	Fm Rou	k Kaol	Chl.		. Q	+=	Misc	Comments	8	F	a‡^	۷	Py	Po	Asp	Cp.	, Cov	Mi	6c.	Sample Number	Depth	Int	Au +=/++	Ag •=/ten	Cu Y.	As Y.			Rec
-	Br Hr K No		<u>5</u> 2 4 2	e + - - 	H - 3 F	c		alteration may be observing original volcania texture.						1434						8522	41	<u> </u>	L.001	.05					
45						, <u></u>							2 C 2 V	1 + 2 + 10 +						8523	44.8 47.8	3	.001	.05					
50				8				-	•					6 +		۱ ۱ ۲۷ ۹			1	3524	52	4.2	.005	.03					
55								-						3 †					3	3525	55	3	6.001	.08					
60	ηų		7 P			141	20	15% plagicclose phonocrysts up to Yo" in diameter -						4 # 2 # 1 M						8526	60	5	L.001	.03		•			100
					3	- - - 	4 c	• • • •	• • •					4 M 1 V 3 V					8	3527	64.5	4.5	L.001	1.01					
65								•					→ → →						E	3528	68.6	4.1	(.001	L.01					
70								•											8	529	70.5	1.9	1.001	L.01					
75					1			-						2. +												-			
80				3 I										+								ŀ							

Project <u>Mt. Washington</u>. Hole Number <u>MX-86-8</u>

Sec. برياموليه الد

Page 3 of 6 Logged By BVH

Date 13/11/86

1 - +	5 4	6 7 8	•	-	2	4 15	17		20	1 1	84 1	\$	P 45 3	177 B	A 14	4 62	43 64	++	. 4	71 72	3 34 7	\$ 77		82 8 6	87 9	**	14 98	99 2	3 6	7 10	4 14	14 16	19.20
DEPTH	Em	Rod	Kao	, i .	Chl.		1+.	Qt	•	Mise	د	Comments	8	F	0 t >	v	Py	P.	As	p	Cpy (Cov	Mise.	Sam ele Number	Depth	Int	Au.	Rg •=/ton	Cu Y.	As 7.			Rea
 - - -	ĸ	MF	*		4	P.		1	+	5				1				-2-	Ŧ											-			
85					43			•				pyrite as disseminated rubic Xstals.		/			6 0																
90					4	P		73	₽ V				•			, J	4 D	21						8530	90 92	3	2.001	4.01					
95									+	20				/				† ~	+														
100												suckensides indicate dipslip movement		~			+r D																100
105									1111	<u>;</u> c		-						2	5														
110												·				-		+*.		Ŧ	¥ D					-							
115							4	<u>5</u> <u>T</u>	E	<u>8</u> c								10															

Project Mt. washington.

Hole Number <u>MX-86-8</u>

s., 19. s

Page Lof 6

Logged By BYH

Date 13/11/86

	1		+		16	14 13			~	11	24	25	-		F7 8	P1 44	62.63			4 11	72 1	173	77 74		82 BL	87 9	-	14 10	99 2	3 6	7 14	4 14	1.8 H	1.9 44
02971	F	Roc	e Ke	o1.	Chi		8 <i>†</i> .	94		Mia	ĸ	Comments		8	F	< 10	1 P.	, P	•	Asp	Cp)	C0.	M	sc.	Sample Number	Depth	Int	Au	Ag	Cu %	As Y.			Rec
125	K	[<i>Mp</i>	ρ		4	Ρ							•																					
												- • • •			/			V D ±	-		tr 1					-					•			
130								5	Y Y								E C	*																100
13,5																															-			
140								5 2	ŧ	1 0		py concentrated in gte-op veins.						+ +	1414						8552	140 . 14-3	3	4.001	0.03					
145								<u>5 v</u>	E	1 0							,18	5	7		<u></u> y													9 19
150				4						c				8												151.5								
155				4	H P	5		- P										2						Ę	553	155	3.5	4.001	L.01					100
160							5	P			- -		1				+70	++ +																

	Project	Mt. Weshington
--	---------	----------------

Hole Number <u>MX-86-8</u>

•

*4135 4 15

Page 5 of 6 Logged By <u>BYH</u> Date <u>19/11/86</u>

1	5 6	7 . 4	-	2 14	15	17 18	20	ti 🔋	vi 2.5	-	1 T7 8	57 LA	4 62	43 46		1 71	73 R	73 7	12	1 82 86	87 1	1. 10	17 10	99 2	3 6	7 H	4 14	18 18	19.84
DEPTH	Fm	Rock Type Ke	o1.	cnl.	8+	Q+	-	Misc	Comments	8	F	410 1	v	Py	Po	Asp	Cpy	Ċov	Mise	Sample Number	Depth	Int	Au.	Ag •=/ton	Cu %	As 7.			Rec
165	ĸ	Μρ		4 0					po in fine veinlets.	• • •				0 41	+r + 		1 1												
170				+ φ 3 Ε		7	iρ		chl-qtz alterntion associated with po-py-cpy						2 P					8551	170	5	L.001	0,03					
175				t p		10	75	2 0						+ ≁ b	¥.*	-	+* +			8555	75 77.5	25	L.001	0.03					100
180	-					7	P								2 1					8556	182.5	5	L.001	L.01					
185							Е	34						1 M	2 1					8557	187	4.5	L.001	0;01					
190											1				1 V +r +		tr V												
195						:					/			+10															
200																													-

Project <u>Mt. Washington</u> Hole Number <u>MY-86-8</u>

× •

*****)

n Series Series

Page & of 6 Logged By BVH

1 - 4	15 4	7 .	1 11	112																											4	-099	ed B	Y L	<u>} </u>
DEPTH	F-	Rock		Ē	<u> </u>		1		*		2.5										-										1	Date	19	Щ	81
		Type	1001.	Chi	l.	\$ †.	٩)†z	M	isc	Comments				۴٦	~ ~	1 62 A	- 46	* *	1	11 72	213	77 78		82 8	87	***	1+	-	- 12					-
ļ	ĸ	nφ					T	Τ	IT	T				8	F	è	×	°y	P.	Asp	, c,	y co	~~~~~	tise.	Sam pla Number	Dept	n gat	Au	R	9 C	u	As V	4 6		
					$\ $								1														Τ		1-0		•	~		+	
5										Η			1																						
								\prod					-																						
										lł			1						.		ŀ														
										[[1													×									
						\prod		ľ					1																1			•			
						lt				It			7																						
						IΓ	Τ	71		ł			1		1		+*	+		11													1		
						$\ $		\parallel		L	-		- 1				T	¢1	斠																
								\prod		ł																									
	1					L		\prod		t			1				[]		\prod																
						۲	ť			ŀ			4					Ŧ	F		-														
				$\ $	1					F	-		11			И	Ŧ	P	N N	1Þ	ΞV			8	558	218.5	1.5	001			<u></u>				
										F					·									Ĩ		220			0.03		 				
										-			11																						
	Π	T			T		Ħ	+	Ħ	_	End of Hula							+1							- [
					$\ $				lt	•	and an Hore		11			T		-1	\mathbf{T}		++-	++-	++												ļ
					\prod				ľ.									1	.		\prod							. [
					11				lĿ	_		- 1	11	1																					l
					[]				[-											\prod	$\left \right \right $													
						1			ŀ				11																						
						1	\prod		F																										
					ŀ				F				11						ſ																
									ļ				71																						
									ł.				11						.]]																
<u> </u>	1	Ц	Ш		L	Ш	L		Ĺ				111																						
• • •																		\prod									•		.						

BETTER RESOURCES LTD.

PROPERTY	MT. WASHINGTO	N	AREA	N	LUREX			HOLE	NUMBER	MX	86-7	
LOGGED BY	Brian Hall	/	CLAIM					TOTA	L LENGTH		337	
STARTED	Nov 1/86		COMPLETED	Nov	4 /86	·		CORE	SIZE	B <	2	
SECTION								INCL	INATION	- 5	°0°	
LATITUDE	·		DEPARTURE					ELEV	ATION			
PURPOSE												
COMMENTS												
DEPTH Ft	DIP BEARING	METHOD			TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU %	AS %	
0	50 253	Brunton.							· <u></u>			
· · · · ·			-		···							
<u> </u>												······································
					. <u> </u>			·		<u></u>		
					*/***					······		
	· · · · · · · · · · · · · · · · · · ·		-			÷						

Project Mt. Weshington

Hole Number <u>MX -86 - 7</u>

Page 1 of 9 Logged By <u>RVH</u> Date <u>6/11/86</u>

1 - 4	5 6	78	¶_H	12	14 15	17		-21	84	25	8 - SS 1	.	R A (61 62	43 4	F 44 6	4 7	72	n 73	77 74		82 BL	87	•]n 9	1+ 4	49 2	3 4	7 H	4 1.	
DEPTH	Em	Rock Type	Kaol	ch1		1 .	Q+z	٢	lisc	Comments	8	F	1 to	V	Py	Po	Asp	Cp	y C.	0 V I	Misc.	Sam ele Number	Depth	z .,1	Au •=/++	Ag •=/ten	Cu %	As Y.		Rec
5	Bx	Му		4	p S	P	5 P			milled Hurex Bx, some rounded clast matrix dominated. minor plagiaclase phenocrysts op is in the form of veinlete					1 0	4 #														
10										and discominations, matrix is pervasively silicified.												8737	7	3	.002	· D3				
•															+v +							87.38	13	3	.001	.05				
15	ĸı	1a								brecciaclests becoming less distinctive, possibly as a yearly						30		47 - 47 c	*			8739	17	4	Tr	тг				
								-		of a deriversion in the sulphide control		1				+r +						8740	19	2	. 001	TN				
20						111				• •						4 v 5 v 3 v		<u>, ,</u>				8741	24	5	T٢	. 05				100
25										•					-	+++						8742	-	4	Tr	Tr				
30												ß		/=	1 1								28							
35					7 P							в	-															-		
40					3 P									Ŧ	ŦĿ															

Project <u>Mt. Washington</u> Hole Number <u>MX 86-7</u>

Page 2 of 9

Logged By BYH

Date 6/11/86

	′ -	ť	<u>+</u> -	-+		14/15	- 17		ᄽ		1 25	·		P1 45 3			1243 6	F 44 6	10 71	12 .	75 7	1	a. la.	1	LJ	9 20 6 6	100	1		1		
DEPTH	F	m Ty	ipe Ka	o1.	chi.) †.	Qt	•	Misc		Comments		в	F	ξ, v	PY	Po	Aio	Cay	Car	Mie	Sample	Death		A	Pa		As		1.0 1	
45	ĸ	τ η			+	P 3	4	7 5	20	3 0	51	lickensides indicate obl	ique slip		MIN CON			5 1								92/mn	•2/fon	5%	%			
50														• • • • • •	14	Ŧ		3 v					8743	50 53	3	Tr	.03					
60						3	- - P	2 Y		2 4	-							<u> </u>														100
65							-	v	E T		•		-					2 1					8/744	63		Tn	Tr					
70		10						V.			pla	gioclase pouphyvitie canic, 20% Vo"plagph	matic ruccrysts						+					74								
80					4	P	3	VE	ج				- - - - -					V					8745 3746	78 78 82 4	Т	r 7 r ·	67 03					

1

Project	Tit. Washington
---------	-----------------

Hole Number 11 X - 86 - 7

Page = of _9 Logged By <u>EVH</u> Dats <u>6111/86</u>

1	15 (7	# 12	14	15 1	718 2	1 9 21	24	25	55 M	7	-	2 43 (e 44 mm 49	71	12 24 73	1 77	*	17 02 M	87 .		14 66	99 2	3 6	7 H	4 1	415	16 19 24
DEPTH	Fm	Rock Ke	•1. Ch	1.	87.	Qtz	٢	tisc	Comments	8	F	< . v	Py	Po As	P	Cpy	Cov	Misc	Sample Number	Depth	I.t	Au •=/+=	Ag	Çu	As Y.		1	Rec
ł	ĸ	Мр	4	P	4		()E	10 E				T	F	50	Π	1 6	Π		8746	82	4	Tr	.03				1	
35									note: po veins from 83 togq		3		 -	5 C , 10 V 5 V					8747	85	3	Tr	.05					
-			2		8 P							//				-			8748	0.0	3	Tr	· 03					
90						2 V	E Z	2 C	-		2	V,		3 V					8749	88	3	Tr	·03					
			4 7	V Ó	Ρ	5 I 10 P		╢											8750	91 935	25	Tr	· 03					
95				¥		-10 I			cpy within the massive pois			ľ		+10					870)	96.5	3	. 016	Tr					-
-			4	P 7	P	15 1			a de la company de			$\left \right $		90V 95V 23V		7 4			8702	98.5	2	.038 0.015	·67 0. 05		·			
100			10	v	╫	-+								10 V 15 V					8703 8704	101 102	1	2.001 Tr	. 29					
105									massive po,					95 V 80 V		3 V 5 V	2	1 V 2 V	8705	105	3	.003	.61					
			3											75 V 80 V 95 V	<u> </u> 3	s⊽ M			8707	106	3	.004	. 32					100
110			10		P :	30 V			at 35° to cove axis.					20 v 7 v	2				8708	10	/	Tr	Tr					
			5 1	7	P	70 V 3. V								<u> </u> 5					8717	1/3.5	3.5	Tr 0.004	.14 010					
115			~ P	2										2 M 5 M	7		m	2 C	8718		4	Tr 006	. 26					
120					40	V 0 V 2 V		ŀ	ruggy 2tz roin.				3 1	10 V 15 V 86 V	'				8719	17.5 19	5.	Tr .	14					

Project <u>Mt. Washington</u> Hole Number <u>Mx -86-7</u>

Page 4 of 9 Logged By <u>BYH</u> Date <u>6/11/86</u>

1	156	7 .	н	12	14 15	(7	18 3	21	4 25		55 M 87		-	-	10 14 m	11 TIT		77 3		Bz (M)	87 .		1	99 2	1 4	7 10	11 1-4	1.5 1.6	1.0.4
 ОЕРТН	Fm	Rock /	aol.	cn1		87.	Qtz	Mis	Comments		8	F	4 v	Py	Po	Asp	Cpyle	ov r	Misc.	Sample Number	Depth	I.t	Au	Ag	Cu	As Y			Rec
ł	ĸ	Мр		2	РЗ	P	10					T		\square	80 V		N	Th	2 E 5 V	8720	121.5	25	TT	.14					
125							15 V		massive magnetite vein with po, between magnetit contact of magnetite i core axis.	, cpy in contract te, s = 35° to				5	5 V 75 V 60 V		2 1	-	70 N 25 V	8721	126	4.5	TN .005	.23 6.05					· • · · · · · · · · •
F							Ŭ,		imagnetite vein subporalle	l to core oxis					75 V					8722	178	٦	. 004	. 40					
130							25 V			- - - -					7 V 12 V 4 V			1	70 V 30 V 80 V	8723	130 5	4.5	.008 .002	. 20 . 22					
 135							BO V 35 N 70 V			-	/				1 V 25 V	1	2 1	m	501	8709	136	3.5	.020 .001	.20					
140				4 0	9	P 2	2 1		- · ·	- - -				tr +	20 V 3 V	10	××		80 V 5 V 70 V	8710	139	3	. 001	.43					+
										-					1 V	1	M			8711	143.5	<i>4.5</i>	. 001	.03					+
145				5 1	2	34	5 V A 9 V	3 V	etz vein vuggy			ž	И		15 V	10	M			3712	147	35	.002	.24 .79					8
150				3 P	8	P 10	M		-	1					10 v +v + 5 v	4	ř H	m	504	8713	1485	1.5	.002	· 38					ŧ
						5	V	+ 4											¥	3714	154	†.5	.016	. 40					
155			8					10 C	•						3 V 	2			8	715	5	.5	.002 .	14					
160 L						5	V V			4					10 4	5		m 3	· • 8	716	159.5	ŀ	· 020].	25					F

Project <u>Ht. Weshington</u> Hole Number <u>MX -86-7</u> 0

Page 5 of 9

6

Logged By BY H

Date 6/11/86

+	56	7.0	•	1 12	14 /1	i (**	(8	28	B11 5	K 97 B	-	62 63	60 44		49 T.L	-			1	1			1	T		-1		-
EPTH	Fm	Rock	Keo	. ch		87.	Qtz		Misc	Comments	8	F	<	VF	y	P.0	Asp	Cpy	Cov	Misc	Samele Number	Depth		Au	Ag	Cu	As .	1	1	R
	ĸ	Mφ		ľ	p e	ľ	30	1			T		Π	\uparrow	T	20 4		s v		TT	8716	161.5	12	.020	1.25	7.		<u> </u>	1	\pm
				2	p	╉	2	/]					-		/ V / D			8730	163.2	1.7	·003	. 28					
5				10	μ		70 V			_gtz vermat 60 to core oxis	-			1 2	₩ ³	5 //		, , ,			8731		34	Tr	.03				†	
				5	V O		80 v			• • •	1		Í	<u>ال</u>	¥ 3	p					8732	1668	2.1	T٢	Tr					-
				20		Ĥ	30 V		7 6	-				_	7	' v					8733	171.5	3.3		τr				†	-
ع ح	3× +	**			8	P	15 c		7 c 5 c	qtz veins vuggy. rounded qtz clasts sitting in a biotitic matrix.					5			3 c 5 V			8734	176.7	5.2	. 001	.05			-		
,				3	1	P	3 P 2 V			clasts, matrix consists of gtz and rock flour, clasts angular. bedding 65° to rove aris					3	-	1	2			8735	100 5	3.8	Ŧr	32					
				ak		3	╞	╀	╫	petimed by claste.]		P		25 70	Į.	3				8736	182.2	1.7	Tr	.08					ţ
;				7: 0		7	2								95 70	ř.			2		8724		4.3	- <i>005</i> .008	. 30 . 67		ł			
				4 P	•	4	v			the for the most part is concentrated					7	V I	5	•				186.5	1.6	00#	. 72					
						4, 5	+			alteration.			P		3	Y	2				525	190								
				k		4				4	ł				40	7		۲ د			8726	1926	24	.002	· //]		
						ľ	9		ļF						95		4				3727	196	3.4	Tr -005	· 29 · 20					
						•									75		20	M		12	8728		3	. 043 2	2.10					
Щ			1.1.		11	3	ĽLL]					95			H I			2729	199		.0/1 .	43					

(

Sec. 25.

 8

Project <u>Mt. Washington</u> Hole Number <u>MX-B6-7</u>

Page 6 of 9 Logged By BYH

Date _7/11 | 86_

1	56	784	"	2 14	15	1718	20	21 3	25	-	-	1 644	62 63	6 H A	101 1	72 8	75 7	7 78 0	1 BL .	87 9		14 14	49 2	3 4	7 10	4 14	-	6 19 20
DEPTH	Fm	Rock Fype Ke	•1.	chi.	81	. 01	••	Misc	Comments	8	F	~ `	e Py	Po	Asp	Cpy	Cov	Mise	Sample Number	Depth	t.t	Au •=/ten	Ag	Çu %	As 7.			Rec
ŀ	₿¥	Π×		2 C 6 C 3 P	2	3 C P	N				Π			95 v 75 v 2 v		1 V 5 V			8729	202.6		.011	•43					
ŀ				3 e	2	e .						Ł	11	70		7 1			8638	204/	2	.016	.81					
205						50	7		contact of massive sulphides is 60° to core axis.					10 V		• •			8639	2075	29	. 003	-11					
210	ĸ	10	╏┝	3 P 5 P	7 1	P P			porphyritic matic volconic.					3 v		+* +			8640		26	тr	Tr					
													Ż	<u> </u>						210.1								
																			8641	214	4. 1	T۲	·03					
215									-					+					8642	212	3	Tr	Tr					100
	1				8 4	3	¥	30						2 D 3 V		3 V		# <u>5 v</u> # 25 v	8643	270	з	.002	. 14					
220													1 1	1 +					8644	222	2	Tr	. 01					
					0														0/44									
225					2 0									1 +					8645		4.9	Tr	Tr					
						70														2263								
230									• •				5 D	1 #														
]					1 D 2 D														
235						·																						
•														Í														
240									· 4																			

4 5 6 7 0 9 W 12 IN 15 17 18 2021

24 25

- × × DEPTH Fm Rock Kaol. Chl. St. Qtz Misc 71 72 m 73 41 84 # \$7 6 7 10 11 10 18 18 19 19 20 * * * 14 28 79 23 Comments B F & V Py Po Asp Cpy Cov Mise Sample Depth Int Cu As y. y. Au Rg K Mp 5 245 TPISVE 248 8 0 8 10 M 250 10 1 8646 4 Tr .12 252 255 256 8647 3.5 Tr .14 260 259.5 15 265 270 275 280

Page Z of 9

Logged By <u>RVH</u> Date <u>7/11/86</u>

Rec

Project <u>Ht. Washington</u> Hole Number <u>Mx - 86 - 7</u>

1 N.

*

Project <u>Htowashington</u> Hols Number <u>MX-86-7</u>

4 0

8t. Qtz

Misc

456789 # 12

KMp

Fm Type Kaol. Chl.

1

DEPTH

14 15 1718 3021 84 25 Date 7/11/86 BF V Py Po Asp Cpy Cov Misc Number Depth Int Comments 10 11 14 15 18 19 24 ALL Ag As Y. Cu % Rec 283.5 25 Tr 8648 .05 286 304 8649 5 Tr .03 309

Page B of 9_

Logged By BYH

.

300

285 290 295 2 3 305 310 315 3142 8650 48.001.08 320 319

Project	Ht. Was	hinaton
---------	---------	---------

Concernent the second second second

Hole Number <u>MX - 86 - 7</u>

 $\sim 10^{-1}$

454789 N 12 14 15 1718 2021 84 25 84 55 BL 87 80 54 1 DEPTH Fm Fyre Kaol Chi. St. Qtz Mise N 73 77 78 81 82 . 87 * * * 1+ 6 7 10 11 14 18 18 18 18 18 17 23 Comments B F V Py Po Asp Cpy Cov Mise. Sample Depth Int Au Ag Cu As K Mp 3 Rec 1 and 325 6 P 10 VE 3 324 .010 .26 6 2 8601 330 330 335 End of Hole. 340 345 330 355 36

Page 9 of 9

Logged By BYH

Date _7/11/86_

BETTER RESOURCES LTD.

PROPERTY	<u>M+.</u>	waching ton	- 	AREA	Murex			HOLE	NUMBER	MX f	36-6	
LOGGED BY	BV	Hell		CLAIM	MWC 15	1		TOTA	L LENGTH	16	6 + +	
STARTED	oct	26,1986		COMPLETED	oct 29,	1986		CORE	SIZE	B	<u> </u>	
SECTION								INCL	INATION	60	<i>o</i>	
LATITUDE		·····		DEPARTURE			<u></u>	ELEV	ATION			
PURPOSE	De	trumine	internal h	arpholog.	, of Mur	<u>ex Bx</u>	- · · · · · · · · · · · · · · · · · · ·					
COMMENTS					/		, 					
DEPTH Ft	DIP	BEARING	METHOD		TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU %	* AS %	
	60	344	Brunton					, 				
			•	· .		<u></u>						
					·		<u></u>		<u>,,,,,,,</u>			<u> </u>
<u></u>												
												
	• •					<u></u>						
	: 											

Project 11t. Washington

Hole Number <u>HX-B6-6</u>

Page 1 of 5

Logged By BVH

	ic .	7 .		fiz .			6 e - 1	يامد		24	24	Sec. 1		ه ديايين (263 (ie 44 (5 61 74	12 1	10 11	176 4								 	1
EPTH	Fm	Rock	Kael	Ch	1. 1) † .	Q+		Mie	~	Comments	8	F		Py	Po	Asp	Cpy	Cov	Mise	Sample Number	Depth	I.t	Au. •=/+=n	Ag	Cu %	As Y.		R
					T	Τ	[]			T	casing			T				Π				24							
-	₿ჯ	Пx		۲	P		3	Y			Murex Breccia, (shock Bx). 9tz veins interstial to clasts, vagay					3		+ r e			8933	5.9	35	. 003	L.01				
5											some diaritic clasts, 10% Gomes 40/ Fr angillite majority aphonatic mati Volconic.	•									8934	8	2.1	L. 001	·01				
											- very little rock flour matrix.					4					8935	10.6	24	.015	.01				
10											on firstures.							1 6			8936		34	· 054	· 03				
15											•				2						8937	14 15.8	18	L.001	. 01				
							3 V 3 V				16 Sto 17.5 Hurex Bx which has clasts					4		1 6			8938		36	L.001	.01				
20					2					ŀ	within a rock flour matrix (milled).					++		+++			2929	19.4		1 00	.03				-
							5			F	clasts generally less than 1" in diamon ate voins crosscutting.											23.5	4.1	2.00					_
5										ŀ	25.8 = 26.5 lorge diorite clast.					*					8940	26.5	3	L.001	L.01				-
						$\ $	6 v	1		ł	Py associated with vuggy gtz.	1			5 1	6		17 C			8941	29	35	L.001	L.01				_
0					-	ļ		E			dominately rock flour					++					8942	- ·	5	L.001	L.01				
						ľ					32.5 to 340ft. Diaritic clasts hosted by an intrusive matrix											34				1		 	
5								E.	4												8943	3		L.001	L.01				
										Ę.P	o associated with epidate clats.					-					894-	38.6	3.6	L.001	1.01			 	_

Project <u>Ht. Washington</u> Hole Number <u>HX 86-6</u>

.

Page 2 of 5

Logged By <u>EVti</u>

	•••		<u> </u>	1/5	17 18 2		- 24	25	-	-	-	263 6		1 11	72 80	73 77	* 1	84 BL	87 9		14		3 6	7 10	11 14	1
EPTN	Em F	Type Kaol	. chi.	0+	Qtz	r	1isc	Comments	8	F	5 V	Py	·P•	As p	Cpy	Cov	Mise.	Sample Number	Depth	t.t.	Au	Rg	çu	As Y.		
	D¥					P	' '	•	1	\square		tr e	tr c				TT	89 11	30.6	34	L.00	1 2.01	L·ol			
4.0							6 9		1			┝┼	<u>3</u> c					8945	42·2 44	1.8	1.00	1 2.01	L.01			
75								dioritie					1 4					8946		6	L.001	L-01	L .01			
50					1 4		lŧ			6		16	5 c 1 c					8947	50 51.7	1.7	6.001	. 06	. 09		}	
5								- -					3 c		2 6			89 1 8	550	4.1	L.001	.03	.14			·····
0				·	3 V								2 c 3 c 2 c		2 			8949	60.1	93	[.00]	.01	. 06			
							₩ 	60,5 to 53.0 intrusive matrix.				1 2						8950		3.9	L.00	L.01	.03			
5					11			-				чz	' ' ' '					8822	665	5	1.00'	6.01	04			
					2								5 c		ľ			823	68.8	.3	008	L.01	.09	,		
													c					829	4	.9	005	. 01 -	05	ľ		
			3	P - 2			F										6	825	73.7	6	001	.01	04			
				4			F								╢║		8	826	78·3	2.	063.	.03.	19			

Project <u>Mt. Washington</u>. Hole Number <u>MX **BK-6**</u>

1.

Page 3 of 5 Logged By BYH

1	- +	5 6 1	7 8 1	<u>t n</u>	12	14 1	\$ 11	18 2	2041	1 81	15					7 8 4	444 61	-	++ +	in 10	12 3	75 77	-	ec	87 9		14 16	99 2	3 6	7 10	4 14	18 16	19.20
OEI	ртн	F., F	lock Ype	Kael	Ch		8 †.'	Qtz		Misc	C	omments			8	F	v	Py	P.	Asp	Cpy	Cev	Mise	Sample Number	Depth	Int	Au.	Rg •=/ten	Cu Y.	As Y.			Rec
ŀ		Bx	m		5	P		12	۷			1		•		T	Τ		3 2	T	+ 6	Т	ITT	9826	78.3	32	. 063	·03	1				
в	5										present o	is longe	C + 0 T S 1	- - -				1 0			1 0			8827	85,1	36	· 002	.03					
											-			•				! e	5 C 3 c		tre			8828	89	1)	.070	·03					-
90	•										- 					E		1 4	30					8829		5	. 029	.03					
99	5										-		•	- - -				10			20			8980	94	5	·015	• .17	. <u>.</u>				100
100	>							3 V I V			•			•				10							99	• •							
														4					28		1 6			8981	104	5	. 013	.01					
10.5	5										•							3 -	36					898Z	106.9	24	.005	.01					
110	,					•									ľ									8983	,,,	2.7 	. 001	.01					•
115						म	<u>क</u> म ज	X						ہ ہ ا					2 4					000-	<i>1</i> /4	3 	. 005						
											tart of a majo	rfault s	licherside	۲» آ					76		' =			8985 8956	119	5	L.001	• 01	_				
· (20	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••			┶┶╇		.			<u> </u>	TOTELE OUP S	1,0 mive		I							Щ.	<u> </u>		, , , , , , , , , , , , , , , , , , , ,	122	<u> </u>	L. 00/	<u> </u>	L	L			لىبير

Project Mt. Wachington Hole Number MX 86-6

. ··· ··· ·· ·· ·· ··

Page 4 of 5

Logged By BVH

1 . 4	5 6	7.0		12	14 15	17		-	24	15		-	-	44 4	-	M T	74	-	-	81 84 86	87 🗣	7	14 16	99 2	3 6	7 10	16 24	18 19 1	-4
DEPTH	Fm	Rock	Keel.	chi		ŧ.	Q+z	Mi	*	Comments	8	F	• •	Py	P.	Asp	Cp	y Cov	Mis	Sample Number	Depth	t nt	Au •=/+==	Ag •=/fon	Си. %	As 7.		Þ	kee
-	в,	drix	Т	5	P	T	Τ	T	Π			E	Τ	T	1	T		•		8986	119	3	[.00]	.01					
125	ĸ	н _р						= 5		Fault bounded blocks of motic volcanic, foldspapporphyry no visible sulphides present.							-				÷								
130										•													• •						
	8.4	Ил					3 4		ļļ	• ·	1			2							134								ļ
-	~														3 <					8815		54	.001	.09					
140									lŀ	•				21							139.4						-		100
									lĒ											8816		46	.003	.03					
145								ŀ	lŀ	•					50					0817	/44	-	- 01	01					
																•				0017	140	9	. 001						
150		5								· · · · · · · · · · · · · · · · · · ·											1'77		, ,						
1	Barl	nx				2			Ē						2 4					8818		5	L-001	L · 01					
155															1 +					8819	154	5	L.001	L·01					
					3 P				ŀ.												.159	_		• •					

Project	Mt. Wachington.	
	HY CL	

Hole Number <u>MX 86-6</u>

.....

م...**.** Page 5 of 5

Logged By <u>BVH</u> Date <u>31/10/86</u>

1 - 1	15.0	6 7	•	N	12	14	15	17 18	24	21	34	16	K at				I									.				
DEPTH	Fm	R.		he f.	ch	<u>,</u>	81	9	† 2	м	*	Comments	8	F	Py	Po	Asp	Cpy	Co	Mise	Sample Number	Depth	un v	n n	Rg	3 4 Çu	As Y	<u> </u>	14 16	re.
	Вх	M>			5	P	3	2						AZ	1						8820	169	5	L.001	[.0]	70				101
165			╀	H		╢	_	-	$\left\{ \right\}$	╀	╢	End of date	 _										Π							1
170												End of Hole													-		•			
175					14														•						z					
180												3													-					•
185																													ŀ	
190								•••																-			-			

BETTER RESOURCES LTD.

ROPERTY OGGED BY TARTED	Mt. By f	Washing to tall 21, 1986	<u> </u>	AREA CLAIM COMPLETED	Murex Mu	1 <u>⊂15</u> -26,1	986		HOLE TOTA CORE	NUMBER L LENGTH SIZE	<u>Mx-8</u>	6- <u>5</u> 15 ft	
ECTION ATITUDE URPOSE	E	end mib	explization	DEPARTURE	trad	i	M X-86-	- <u>z</u> to	INCL ELEV	INATION ATION	<u>ðs</u>		
OMMENTS				·····									
SPTH ^S t	DIP	BEARING	METHOD			TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU *	às S	
<u> </u>	<u>ðş`</u>	70	Brunton	-									
			• <u> </u>					<u> </u>		· <u>······</u> ·····························			
				-					•				
		······································			•								
			.	-			<u></u>						

Project <u>Mt. Washington</u> Hole Number <u>MX-86-5</u>

Page Lof _8 Logged by BUH

1 . 4	5 6 7 1	• • •	12 1	1 15	17 11	1 30	21	24	15	-	F7 80 8	-	141 4	46 . 40	H 71	73 M	νs π		1 82 4	87 9		17 10	99 Z	3 4	7 10	u 14	18 19	1944
OEPTH	Fm Roc	e Kaol.	chl.	81		2+z	Mi	sc	Comments	8	F		Py	P.	As p	Cpy	Cov	Mise	Samele Number	Depth	Int	Au +=/ton	Ag •=/ton	Çu Yo	A s 7.			Rec
r F									Casing															-				
E	Bx Mx		3	1	Į];	2 4		T	Murex Breccia, rounded to subongula clasts of motic volcomic, intrasive,	ł		a		1 c						4.5	\square							
								.	claste ronciet of aphanetic motic]		0	tre	3 e 1 e					8877	6.q	24	.001	Tr					
10				3	H + 1 + 1 4	* * Z * 7 *	,		25% diorite flatts porphyny 25% limenitie staining from 3-11ft. note diorite rlasts are lorger and tend to be more roundal		ł	0 1010		1 C		TT C			8878		4.1	.017	Tr					
E									sulphides concertuated in matuic	1		0,7		3 с	•	+7 c			8879		21	001	.03					
15					4		ļ_	┢	gtz veins concentrated in matrix -			ن ٥	1 6	2 0		+1 c 2 c			8880	13.4	22	Ŧ٣	.03					
					4	ľ						0000	tre	20		1 0			8681		3.9	Tr	.03			-		
zo												0		Zc		tr c			8882	14.5	3.5	.006	.03					98
25					7	Y	,	2	present.			0 3 0		3 с		Tr c			8883	23	42	. 007	.03					
					7	Ħ			25 to no matuix material			X,				-			8884	281	0.9	Tr	Th					
30					io				2+2 Completely replaced by gtz 2+2 Construction to 2+2 Construction to			X0 O				1			8685	7	4	·007	. 05					
					•			F	32 to some q te veins vuggy			$\overset{()}{}$							8886	32.1	4	.008	.03					
35								F				ن د		5 €					8887	36	1.9	.035	.01					
					7	v		F.				, U	-	£ C					8888	40	4	.014	.01					-

Page 2 of 8

Logged By <u>BYH</u> Date <u>Z3/10/86</u>

Project <u>Mt. Wachington</u> Hole Number <u>MX - 86-5</u>

1	S ALT		112	14/15			L	214	15		-	-	143			72 M	73 77	* (1 8L 86	87 🖤		14 4	99 2	3 6	7 10	4 14	1.5 1.	1014
DEPTH	Fm Ro	re Kao	I. Ch		† .	Q+z	M	isc	Comments	8	F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P,	Po	Asp	Cpy	Cov	Misc	Sam ele Number	Depth	Int	Au **/ten	Rg ==/ton	Ç	As Y.			Rec
	BXM		3	P	П	5 v	İΤ	Т	Note; clast size dictates the percent			D ⁴	3	4	4	+- 0			8889	40	1.5	.001	Tr] `
-						10 /			tor ato-culphide replacement.			0		7					8890	113	3.5	.001	.05			-		
45									455 to 465 milled bx, clasts within			Ő							8891	45	1.9	.004	Tr]]
- -						4 v			clasts.			00		5		+r b			8892	499	35	.007	Tr					
50						10 4			-			0000	131	अ					8893	111	39	.006	Tr					
55				3	F	3 v						000		3					8894	53.8 55.4	21	.018	٣ŕ					
					╟	5 1						0000		7		ı c trc			8895	7.50	3.8	.019	- Tr					+ / ••
60						3 V + V													9001	59.2	4.1	.022	.01					
														5		· ·			0076	63.3		.020	Tr					
65						0 1	E +1		•					T		1 6			8898 8898	66	×.1 1.2	. 045	Tr					
						71					1			Ľ		++ E			8 <i>8 9</i> 9	693	2.1	.085	·01					
					4	r v			· ·]					2		1 e ++ 0			8900	72.8	35	.091	.03					
75					2	.:: V		IE	.]		,								8851	7/ 7	3.4	.001	:01					
					5	-							+, (3					8852		3	.001	. 01					
80 L									1											79.6			•					1

Project <u>Mt. Weshington</u> Hole Number <u>MX-86-5</u>

Page I of 8 Logged By <u>BYH</u> Date <u>Z3/10/86</u>

1 4	5 6 7		# 12	14 1	5 17	18 34	21 1	24 2	15	-5 M	-	-	41 4			73 R	7 7		81 M	87 9		14 10	99 2	3 4	7 10	4 14	15 18 19
OEPTH	F= R	out Ka	•1. Ch	1.	87.	Qta	Mis	•	Comments	8	F		Py	P.	Asp	Cpy	Cev	Misc.	Sample Number	Depth	t.t	Au.	Ag	Cu %	As Y.		R
	By n	1,4	3	Р	Τ	51		ŀ	Bl'to Diorite clasts begining to appar	Ī				1	-	++ Þ			8853	79.6	25	.002	. 03				
Ł						7 1		ŀ	larger, consequently intersities					7	ē				8854	02	23	.003	.01				
85						10 4		F	J montere lorger pociets.	1				Ħ					8855	85.5	<u>5</u>	.005	.01				
F						5 1		Ŧ					1.	Í		tre			8856	00	2.5	.021	.01				
F I								ţ					\vdash	┝─┤	-				8857	88.8	·2	.001	·01		_		
90				11	Ť	6 V		F	· · · · ·				1 6	25		2 6			8858	90.4	0.0	. 001	.01				
								F						6	1 ·	1 6			8859	93.5	3.1	TP	•01				
95				H				Ŀ	ay unggy atz vains. Minor vointets of po xent ing -							+10			8860		3.9	.002	.01				
[]			2	ľ				k	clasts, begining to develope														~				
	1					1		ŀ	prevasively chloritised.					+- (8861	97.4 99	1.6	Tr	.01				
100						TV		F	downwords					10 1					8862	101.8	2.8	.001	.01				
105				5		1 V 3 V	1 6							1			-		8863		4.7	Th	Tr		-		
E							ŀ	Ę	Evtremely large clots of po, upto 6"					304					8901	1065	2	.028	·oB				· · · · ·
110								-	eng.					1 6		tr e			8902	100 \$	2	· 00 8	.000				
																			8903	/15	4.5	·0[1	Tr				
115					3									z . I d					8951	119.(4.6	.002	τn				
120						Ш							11	рi						1176		<u> </u>					

Project <u>Mt. Wachington</u> Hole Number <u>Mx 86-5</u>

Page 4 of 8 Logged by <u>BYH</u> Date 25/10/06

1	5 6	7 0 9	* 12	14	15 (718 1	1021	24	25	** **	77 80	-	2 63 6		11 TI	73 8	75 7	7 74 4	1 BL AL	87 0	* *	14 . 14	99 2	3 4	7 H	4 1.	• 1.8 1	1 1 L
DEPTH	Fm	ive Kad	,ı. c	n1.	8†.	Qte	м	isc	Comments	8	F	< v	Py	P=	Asp	Cpy	Cev	Mise	Sample Number	Depth	I.t	Au.	Ag •=/ten	C 🗰	As 7.			Rec
\mathbf{F}	Bx	1x				10	4		a) Int clasts of comor Fm		T	Τ		3 1		+ <i>*</i> E	Т		8952	119.6	1.7	.003	Tr					
12.5	:								availite, rounded, portially blearhod rims. 127.0 to rock flowr matrix abundant.					+* *			•		8953	125	3.7	. 003	.03					
						3			Note clasts becoming bleached.			5		+* 0 †* 1					8954		5	.001	Tr					
130									-					! e						130					ļ	 	<u> </u>	
175						2 1					-			†* y † * p		<u>++ b</u>			8955	125	5	.006	.0)					-
.35						1 1	11										.			135	Н			•				11
									· · ·]					++					8956		5	.603	.01					
								11	4					1 1														
140								-	· -					+* + +* 0						140	\vdash							1
	•															+~ 9			8957		5	. 005	.01					
145								11-	· · · ·											145	┝─┥							417
							1 	6	Epidote present as clasts in matrix.					1 0					8958		4.9	.018	.01					
150								I L	1											149.9								111
						·		ŀ											<i>895</i> 9	1525	2.6	.033	.05					
			5	P	!	o v	$ \top$	Ł	of po and py > 2" long.				100	zoc					8960		2.2	.012	.05					
155								F											89/1	154.7	1.2	100 £	Ta					$\left\{ \right\}$
				1	IE	办		ŀ,	combustily a fine ground rach flour bx.			ΙĿ	1 e	<u>.</u> e		E			0 101	1563	1		<u> </u>					
					4	2 M		Ľ						3 1					8962	158.0	~3	010	.01					
rol						\mathbf{H}		ŀ	•					T		Π			8963	1170	4	.006	.08					

Project <u>Mt Washington</u> Hole Number <u>Mx 86-5</u>

200

10 4 1415 18 19 44 456789 11 12 14 15 17 18 2021 24 25 77 74 81 82 71 72 175 Asp Cpy Cov Misc Sample Number As Y. Rg Depth Int Au +=/++ Comments Cu % DEPTH Fm Type Kaol Chi. S V Rec 8t. Qtx Misc BF Py Po 1588 .006 4 .08 Bx W 8963 162.8 .01 8964 3.2.002 165 166 8 22 .012 .11 8965 168.2 170 49 8966 .020 .02 173 Z 175 .006 .05 8967 178 180 48.003 Tr 8968 182.8 Tr Tr 8969 185 186 4 Tr 8970 .04 190 190 Tr .04 8971 5 ++ 5 c rock flour matrix composed of Diorite Vo" average for claits. 195 195 Huver Breccia, consisting putinely of Diorite, angular clasts, possible crackle breccia, suggests only a minor amount of more ment. 5 Tr 8972 .04

Page <u>5</u> of <u>8</u> Logged By <u>BYH</u> Date <u>26/10/86</u>

Project .	Mt. Wachington.
Hole Number	Mx -86-5

OEPTH Fm Fyre Kaol Chl. St. Qtz Misc

BXTX

يعرب والرابية والمنافر التكتيب والمستر

45 6 7 8 9 M 12 14 15 1718 2021 24 25

E.4 E

Comments

																Pag Logg	e L ed B	of <u>e</u> y <u>bv#</u>
44 au		19.4	La	ka a	du a	10 10		In 17			a7 •	i ha w	1	99 2	13 4	Dati	• 2.Z	
8	F	< 20	v	Py	P.	Asp	Cpy	Cov	Mise	Sample Number	Depth	t.t	Au •=/+=n	Ag	CA .	As Y.		Rei
	-			tr	++0		-											

205	1 VEGE 211.5 End of Disrite Clasts in Maren Br romplete Claste of matic volconie replaced by spidate. E volc	8973 211 213 2 rr . 04
220		
225	slickensides indicate dipelip - movement - sulphides associated with peats - qui - sopposed to just at	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
230		230 8976 32 Tr Tr 2332
2 40		

1 . 9

Project <u>Mt. Wechington</u> Hole Number <u>MX-86-5</u>

Page Zof B

Logged By BYH

Date 26/10/86

1 - 4	5 6 7 8	1	12 14	15	7 18 34	21 21	25 27	-1 st =7 St		-	143 6		12 3	75 7	7 20 0	1 BL B	87 9		17 10	99 2	3 6	7 H	4 14	15 18 19	-
OEPTH	Fin Roa	Kaol	. Chi	87.	Qtz	Misc	Comments	8	F	< v	Py	Po Asp	Cpy	Cov	Misc	Sample Number	Depth	I.t	Au *=/ten	Rg	Cu %	As 7.		R	Łc
-	Bx Hy		5 P			ES C	matrix in places vermblys an intrastry			T	Ī			Π			242								
F												1 C				8977		3	Tr	Tr					-
245										·						000	245	3	Tr	Tr				·	
F					34											8970	248	μ							
250												tr F				8979		4 .5	Tr	τr					
																	2525	┨┥							
255				ſ																					-
																	256.7			•					
260	<u>7</u> <i>Pi</i>				1 1	E 3 E	intersities filled with roch flour.					F#				8925	260	ود	2.001	[.0]				h	б
	- 17				' M							1 E	+r 0			00 AL			Liol	.01					•
											1 E					01.70	21.5	5	2.001						
263						7	some closts completely real 11									00-7			1 001	101					
						ю _с Ze	clasts. 2185-270 0 intervive intendi				16	++ 0				812/	270	5	2.00	2.07					
270					.]]		Bx which bras disvite clasts.				1 6	+++ 0				00 0 0	10		1 001	1.01					
			5 P 1 V		;	10 c 3 c					26	26				8728		5	L.001	2 01		-			
275						46	"275.0 to pound py in part associated				20						275	┥							
							also clots of py within clasts, alternation and mineralization is									8929		5	L.001	L . 0]					-
280	·						becoming muchmore pervasives										280		· .				ļ		

Project <u>Mt. Washington</u> Hole Number <u>Mx 86-5</u>

..... وريد مرجد والم

Page & of B Logged By <u>RvH</u> Date 31/10/06

1	5 6	7 0 9	-	12	14	5 (it is solar and as an an an an an an an an an an an an an													87	1	14 14	49 2	3 4	7 10	4 14	18 16					
DEPTH	Fm	Road Ke	••1.	chi		87.	9	•	Mi	×	Comments	6	F	420	Ý	Py	Po	Asp	c	PYC	-•v	Misc	Sample Number	Depth	F .1	Au **//m	Rg	çu	As Y.			Rec
	B¥ 1	пу		5 1	₽ \	2		ľ	E 4 6	د د د			 1.1. The state of control of the state of th		-	2 e	**						8930	280	53	L.001	L.01					
285							19	F	+1		clasts of matic porphyritic volconic begining to appear. proportion of sulphides within the		The second second second second second second second second second second second second second second second se		-	t* 8	2 +r +r		3	2				2 <i>85</i> -3								
290				53	P						clasts is significantly greater than the sulphidecentrut between the clasts. amount of chi veining increasing.					1 c tr D	-	•												-		
295											alteration proceeding inword within the classes.																2					
300	-										•					1 2	1 c															00
305											-					۰Ŀ								305	-							
310											- -					 e	2 C 1 M					-	8931	310	5	L.001	L.01					
315														·			++ 0						8932	315	5	L .001	L.01					
320											End of Hole.														ŀ							
BETTER RESOURCES LTD.

AFS E BDIST

PROPERTY LOGGED BY STARTED SECTION LATITUDE	<u>M+</u> <u>B</u> <u>O</u> ct	Washing Hall 13, 1986	<u>ton</u> .	AREA CLAIM COMPLETED DEPARTURE	Mu 6ct	<u>Hur</u> wc15 21,	1 1 9 8 6		HOLE TOTA CORE INCL ELEV	NUMBER L LENGTH SIZE INATION ATION	<u> </u>	- 86 - 6 f + Q	4
PURPOSE	_ Fxt	end min	revolizatio	n encoun	tered	in	MX-	86-1 7	Lo 40	th.			
COMMENTS		<u></u>		<u> </u>							<u> </u>	<u></u>	
<u></u>			<u></u>	<u></u>									
DEPTH Ft	DIP	BEARING	METHOD			TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU S	* AS \$	
	50	<u>340° Miz</u>	Brunton.										
			<u></u>									<u></u>	
·													
								<u></u>	•		. <u></u>		· · · ·
											. <u></u>		
	<i>ر</i> 					مستعبنية البيني يي							
	· · · · · · · · · · · · · · · · · · ·												
	<u></u>		- <u></u>									. <u></u>	

Project	Mt. Washington.
---------	-----------------

Hole Number MX-86-4

Page Lot <u>4</u> Logged By <u>BVH</u> Date <u>17/10/86</u>

1 4	54	<u>, 1</u>		11	4 18	17 18	. 2012	1 24	18	-	6 77 3	34	£1 62	1 65	4 4	1 11 71	12	24 76 1	17 1		-	87 Y	-	74 18	49 2	3 6	7 10	4 14	15 18	
DEPTH	F.n	Rock K	aol.	Ch1	81	: Q+	╸	Misc	Comments	8	F	0\$A	v	Py	P.	Asp	c,	y cou	M	ise.	Samele Number	Depth	Int	ALL	Ag	Cu.	As %			Rec
\mathbf{F}						H	H	_+	casing										Π	Ι										
	15×	7 7		2			ř		Clasts of Karmutsen vulcanie, and diorite					1 ¥ 1 c	4	c	+ v				29414	1.5	25	Tr	Tr		.01			
5									-					1	tr			T			29415	T 6	2	Tr	Tr		Tr			
10						Z	121						F	2 4	5		++	c			29416	,,	5	.06	77		Tr			
						2	v							· c	30		+r	٥			29417	14	3	Tr	Tr		1.			
15													-	د د	tr c 4 c		++	0			29418	16	2	Tr	Tr		T-			00
															1 C						29419	10 0	38	Tr	Tn		Tr			
20						 									tre						29420	21.5	1.7	TA	Th		Tr			
25						1								P E							29421	26.2	<i>4.</i> 9	Tr	Tm		T-			
30						4 v 2 v 4 v		' '4 4 4			·				15 0		-	E.			29422	30	37	TA	Th		Tr		k	
							E	3 2							4 c 2 c		~				29423	3	4	Tr	TN		Tr			
35									: 												29424	336- 2 36	4	Tr	Tr		Tu			
40						4 V						X	1	5	• v					12	9425	407	7	Tr	T <i>P</i>		T-	3		

Project Mt. Washington

Hole Number MX - 86-4

Page 2 ot <u>4</u> Logged By <u>KVH</u> Date <u>19/14/86</u>

1.	1 .	7 8 9	12	14 13	17	8 20	21	24	18	-	e7 Se	9 4	4 62 4	3 46	16 60	47 71	70 7	N 75 7		81 ML	* 8	7 Y	-	74 18	99 : 2	3 6	7 10	1 14	18 11	119 20
OEPTH	Fm	Rock Kao	1. Ch	. 8	h .	Qtz	м	ise	Comments	8	F	~ } •	v	ργ.	P.	Asp	Cpy	, cov	Mis	5	Les l	Depth	Int	ALL +==	Ag	C u. %	As %			Ree
	<u>в</u> ,	H _X		2	H	1 7	2	+ <	41.0 to generally mossive Karnetsen Fm mafie Volcanie. Ata vein vugan					.	+~ 0					87	72	40.7	48	Tr	TP		•02			
45	Βx 	Mx.		5	Ŧ	3 V			contact zone between Hurer Bx, and porphyritic matic volcanic, abundant					State State State	+0 +7 +7			,		87	73	13 .3 49	35	Tr	Tr		.01			
50	ĸ	мр							bt and chl veins. Karmutsen Fm. large black of pouphyritic matic valconic, 25% ragged plagiaclase phenocrysts.				4	tr D						87	74		7	TP	TM	-	Т			
55										$\left \right $										87	15	56 57	7	Tr	Tr		Th			98
60								e	· · · · · · · · · · · ·						30		+ _F			87	76	1.5	4.5	Tn	TN		T-			
	Gr K	hx Ир																		87	77	61.5	4	T	Tr		Га			
65	BX K	и _х 11 р											-							87	55	68	25	Tr	Tr		.02			
70									minor clasts of karmutsen volcanic hosted by porphysitic matic volcanic, '70-71 ft.		B																			
75											4																			
1																														

Page 3 of 4

Logged By By H

Date 22/10/86

Project <u>Mt. Wachington</u>. Hole Number <u>MX-86-84</u>

1	5 6 7 0		1 12 14	15	17 18 2	-21	24	2\$	and st.	A 77 8	-		144	B 47 71	73 N	175	77 78	81 84 B	87 9		14 14	99 2	3 6	7 10	() (4	1.5 18 19
ОЕРТН	Fm Ron	the Kaol	. chi.	8+	Qtz	M	isc	Comments	8	F	410	V PY	Po	Asp	Cpy	c •1	Mis	Sam pla Number	Depth	Int	Au •=/ten	Ag •=/ren	Cu Yo	As 7.		R
	K H.	^						aphonetic motic volconic, relatively . . unaltered,	•	KB														•		
85					1			- - -				-														
90	Mp	,						•					++	P					91		-					
- -	Ma		20 Y		3 4			1% % brown clasts, not be as it is too hard.				+						8756		43	. Tr	TM		.02		R
9.5					20 I 10 P	E Z		•		Ø				<u>e</u>					95.2			-				
100	Мр		4 E	2 1	41			matic valcante in an inregular					*													
								Foshion. Mixed Lirrea ular zone of nonhite				+++	+√													
105								matic volcanic and ophanetic mati																		
116					:	E I		· · ·			ľ		+7 6													
					1			· · · · · · · · · · · · · · · · · · ·																		
115			4					· · · · · · · · · · · · · · · · · · ·																		
120							ŀ		1												:				,	

Project <u>Mt. Washington</u> Hole Number <u>Mx-86-44</u>

.

Page 4 of 4 Logged By EXH

Date 22/10/36

1	56	7.0	• •	12	14 15	17	18 2	-41	24	25		Jes in						1			- 1	1			······		-			
DEPTH	F_ (Loud ,	ka-1	1041		4				f	······	Ĩ	F T	T			• IN V	1-	-	77 78	a, jaz a		<u> </u>	<u> </u>	44 2	3 6	7 1	4 (4	18 18	1924
		Ype '							11.84	Comments		8	F		Py	P.	Asp	Cp	y Co	v Mis	- Numbe	Depth	I.t	Au •=/+~n	Ag	Cu Y.	As Y.			Rec
	ĸ	Πp		4	I 4	ľ	<u>4 7</u>															123								100
125				6			40 V 1 I						:		10	4	D				875	126	3	Tr	Tr		Th			
										End of Hole.													Π		·					
130										•	-													N.						
13.5											-																			
140																														
														44																
145											-																			
50																														
						;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			ł]																			
155									F																					
60									Ē		1												ŀ							
							· · · ·							-												, 1	* :			

BETTER RESOURCES LTD.

ES F' BRIST

PROPERTY LOGGED BY STARTED	Mt. BV	Washingto Hall 7, 1986	и	AREA CLAIM COMPLETED	Mw 6ct 1	Мих ic 15 6, 198	• * 1 36		HOLE TOTA CORE	NUMBER L LENGTH SIZE	hх '	- 86-2 t8ft,	
SECTION	<u> </u>								INCL	INATION	4	50°	
LATITUDE	<u></u>			DEPARTURE					ELEV	ATION	<u></u>		
PURPOSE	_EX	tend mi	nevalizat	ion ence	untere.	<u>l</u> in	MX	-86-1	toso	utheas	+		
COMMENTS								<u></u>			<u></u>		<u></u>
		<u> </u>											<u></u>
DEPTH Ft	DIP	BEARING	METHOD			TO Ft.	FROM Ft.	LENGTH Ft.	AU Oz/Ton	AG Oz/Ton	CU %	* AS %	
_0	50	1 <u>50°</u> Hiz	Brunton								<u></u>		<u></u>
<u> </u>				-				<u> </u>					
											<u></u>		
											<u></u>		
<u> </u>	<u>_</u>										<u></u>		
		·				<u></u>					<u></u>		
	· ·			-		·	<u>• </u>						
						·· ·						<u></u>	<u></u>

Project Mt. Weckington

Hole Number MX - 86 - 2

Page 2 4 Logged By <u>PMH</u> Date 13/10/86

1 4	5 4	7 . 4	M 12	14	is	17 18	.20	21	24	25	-	17 B	n 4	4 62 6	3 44	4 46	6 1 TI	72	N 78 7	7 38	BI BL I	1 87 1	1 1	14 18	49 2	3 6	7 10	11 14	15 19	1.2.44
DEPTH	Fm	tana Type Ka	sı. ci	hi.	8†.	Q	+=	Mi	sc	Comments	8	F	440	v	Pγ	Po	Asp	Cp	y Cov	Mis	. Sampl	Depth	Int	Au. •=/+==	Ag •=/ton	Cu %	As %			Rec
	Br	1×		Τ		1	۷	Ē 3	5 C	motic volconic closts becoming distinctly						++ 0					2842	40.6	24	71	,01		Tu			
45				3 P 3 V				F 2		-sunded, in portaltered to billite. -minor quortziveins containing percpy. -slichensides indicate oblique slip movement.		/			<u>4</u> Y	2 0					2842	475	4.5	Tr	F +	-	.02			00
- - -					2	P									1 C	5 V					2842	2 50	2.5	Tr	.01		.04			
-												(B)			tro	<u>z c</u>						50			-					
- 55										54-57' large block of Feldsper - porphyry matic volconic.		ł																		
60					4 1			E 2		· · · · · · · · · · · · · · · · · · ·		Ŧ		1		+* 0										-				98
46						1	Y			· · · · · · · · · · · · · · · · · · ·						+r +														
-																4, +			-											
70	K #	P	5					2		70-88' large black of feldspar porphyry matic volcanic, minor chl veins xcutting		/																		
75											4 4 4	8																		85
en l							·																					-		

Project <u>Mt. Weckington</u> Hole Number <u>MX-86-2</u>

Page 2 4 Logged By <u>Fili</u> Date 13/10/86

•••

•• .

	E 4 7 4		112	lis i	7	der	24	16	-		-	41 43	66	4 4	17 TI	72 P	1 11 7		1 OL 86	87 ¥		14 10	99 Z	3 4	7 10	1 14	18 18	19.1
DEPTH	Fin Ra	Kaol	. chi.	87.	Qte	٩	1isc	Comments	8	F	410	v	Py	P۰	Asp	Cpy	Cov	Mise	Sample Number	Depth	I.t	Au •=/+==	Ag •=/ton	Cu %	As %			Re
-	Brn,				1	1	3 (matic volconic clasts becoming distinctly	-					++ 0					28420	40.6	24	77	,01		TL			
45			31					Founded, in portaltored to bidtite. - minor quorts voins containing porepy. -slickensides indicate oblique slip movement.		//			¥ ¥	2 0					28421	475	4.5	Tr	T		.02)c
50				2	P								- C	5 V 2 C		-			2842:	50	25	Tr	.01		.04			
- - - -								54 - 57' large block of Feldeper - porphyry matic volconic		B		-																
60				4 9			2 0			11				4		-												9
65			4 1	.] V				- - -																				
70	K Mp		5 P			EZ		70-88' large block of feldspar porphyry" matic volcanic, minor chl veins Youtting		·				414														
- 75 -					·			- - -		B																		٤
									1		ŀ																	,

Project Mt. Washington

Hole Number MX - 86-2

Page <u>3</u> <u>4</u> Logged By <u>EV4</u> Date <u>13/10/86</u>

.

••

•.

1	456	70	4 N	12 (14 13	17 18	3-2	1 24	15	-		-		4	4 4	67 71	78	74 76	77 7		-	87 %	-	74 16	99 Z	3 6	7 10	4 14	15 18	19 20
DEPT	Fin	R.a.a TYP	Kaol.	chi.	8†.	Qt		Misc	Comments	8	F	120	•	Py	Po	Asp	C.	y co	, 1	Misc	Sample Number	Depth	Int	Au •=/++	Ag	Cu %	As %			Rec
•	k	۳p					E C	34			8		", and the second second second second second second second second second second second second second second s		+ 1 1 + + + + + + + + + + + + + + + + +									•						0 85
85	Bx	Mr		5					-	- - -			a service and the		-							88-1								90
90						1			-Murex Breecia intermixed with large . blocks of feldspor porphyry matic Vulcanic.					5 C	5 4		1	c			28423	93	4.9	.059	. 11		•05			q 5
- 95 -				3 p	- - -		Ē	4 6	• •		8				2 v						28429	968.	3. 9	.001	TA		TL			90
100									· · · · · · · · · · · · · · · · · · ·			,			1 6						28425		62	Tr	Tr	*	T-			
- 105							E	2 c	-		E I		3		1 +			•				103								95
116	ĸh	10					╟		- Porphyritic matic volcanic placetor															. •						
115									phenocrysts, 5% matic phenocrysts.												х. 									95
120																														100

Project <u>flt. Meningter</u>

Hole Number 174 - 86-2

••

· · ·		7.0 7	 12	4 /3	174	,	e e i	24	15	-							<u> </u>	- 1	_		t									
DEPTH	Em	Reed K	 Ch1		+	Q+=	м	isc	Comments	T	ť-	~			• •	47 71	73	7170	77 76		er er	87	***	14 14	99 Z	3 6	7 1	• 11 1.	1.	
	F	Ma		+	╉	-	+			8	F	ē	×	Ργ	Po	Asp	Cp	y Co		tise.	Number	Depth	Int.	Au.	Ag	Cu	As Y			Ree
125	Br	пр Hx					4 4	F C							2 2							123								
-	ĸ	Мр					E 5	ŧ							3 1						28420	126	3	.007	//		.02			
130							E 3		slickensides indicate strike slip movement.						7 0															
- 135 -							EI	H						-	D															
140	F	6							aphonetic matic volconic.					. ,	•											•				i6 0
145	X H				3	I V	5	c_ r _ ,	nuvex Breccia angular clasts of matic volconir, diorite Itz in matrix towords bottom of hole.					1	B						28427	144	4	.002	TR		T			1
150									End of Hole .									-				1 1 8								
155							· · ·																							
60 L				\prod		Ш		-																						

. (

BETTER RESOURCES LTD.

JAMES F. EKISTOV

Page 1 2

Logged By PM

:

Date 13/10/86

Project 111. Washington

Hole Number MX . 86-3

			• •		in lie			J.			Jac al		-		in the second	4 4	107 74	73	-	7.	81	84 A6	17 W		79 18	99 Z	3 6	7 10	ų 14	15 1	<u>••••</u>
) Depth	s a Fm		Kaol.	chi	. 8	,	Q+2	Mi	sc	Comments	8	F	<		ey	Po	Asp	C,	y Co.	M	ise.	Sample Number	Depth	Int	Au •=/+m	Ag •=/ton	Cu %	As %			Rec
· · · · · · · · · · · · · · · · · · ·		-		†	T T	╈	Τ	╢	Т				Ť	╋		T				T	Τ										
	8x	Ηχ		3	P		3 v	╂╂╌		Muvex Brercia, angular clusts of		-1		1												·		·			
- 5							-	E4	E		╡╽				1.100000 1								5,0								-
				1				┢╋╌	╈	•					0	1						28428	75	20	77	.01		7			
							2 V	 -								7 0		1	0			28429	9.1	1.6	Tr	.01		.02			
10	H RX	oi Ny						┢╊╾	┼╊	-	1					- 1						28430		39	Tr	Tr		To			
								.								1							13.0		-					 	- 98
- 15	I	D		i.						_5% hb phenocrystic oltered to chl.		$\langle $				++						28431		5	Tr	Tr		.02			
•										medium grained, porphyritic. Slightly magnetic		1												ľ							
•											1												18.0	-			I				
24																						•									
•									╞																						
75								E																							
?																															
												·																			
30										-	$\frac{1}{2}$																				
रत										-																					
										- -																					
										· · · · · · · · · · · · · · · · · · ·	1																			- the state	
40 I							Ш		11													L		L	L	ـــــــــــــــــــــــــــــــــــــ	L	L	:	<u> </u>	

Project HT. Wasnington.

Hole Number HX- EE-3

.

Page 2 2 Logged By <u>BVH</u> Date <u>Inform</u>

· ·

1 4	5 4	1 6 7 8 9 H 12 14 18 17 18 3021 24 25							y 25 sy									N 78 77	75 77 18 81 OL 1			6 87 W TE 10 79 46			99 2 3 6 7 1				
DEPTH	Fm	fyn	taol.	Chi.	8+	Qt	. 1	1isc	Comments	6	F	< 10	V	Py	Po	Asp	Cp	, Cov	Mis		Depth	Int	Au •=/tem	Ag	۶° ۳	As %			Rec
- - - - -	I	D; Dt		2	P	z +r z	μ φ + φ	1 C	minor rounded xenoliths of Karnatsen Fin. Intrusive is distinctly finer grained, greenish rolour, porphysitic texture not as distinct, possibly due to silicification possibly a border phase of the dioxite.		198				tr D														98
50				710											10								-				-		
- 									End of Hole.				Transmittan in the second											-		-		-	
60 -																									I				
65						•												•										-	
70																													-
75 50													-																

A DATE OF THE REAL PROPERTY OF

