87-57-15797

DIAMOND DRILL REPORT

ON THE

GREEN GROUP

Cariboo Mining Division

93 B/8W (Latitude 52° 81', Longitude 122° 175) 28.4'

OWNER AND OPERATOR

GIBRALTAR MINES LIMITED

FILMEL

McLEESE LAKE, B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT

Submitted: February 25, 1987

Author: G. D. Bysouth

.

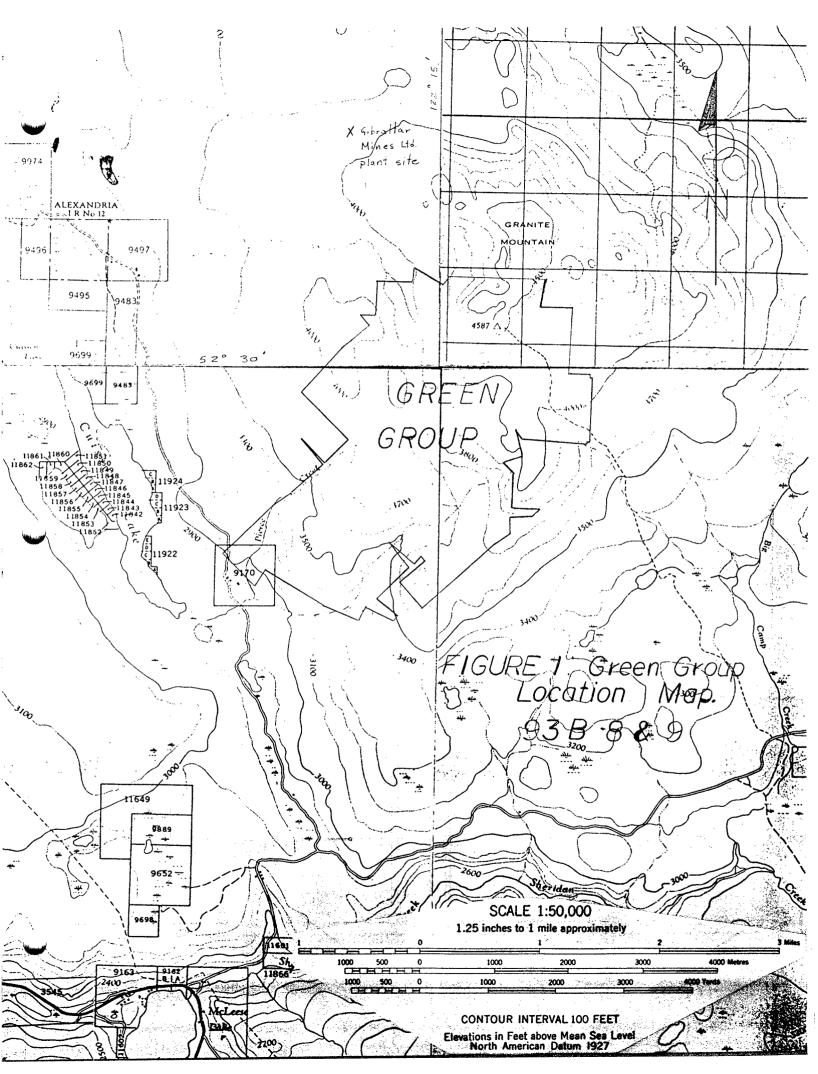
TABLE OF CONTENTS

1	INTRODUCTION	1
2	MINERAL CLAIMS	1
3	DRILL PROGRAM	3
	3.1 Objectives	3
	3.2 Results	3
	3.3 Interpretation and Conclusions	3
4	STATEMENT OF EXPENDITURES	4
FIC	GURES	
	Figure 1. Area Location Map(In Text))
	Figure 2. Green Group Claim Map(In Pocket))
	Figure 3. Drill Hole Location Map(In Pocket))
APF	PENDICES	
	APPENDIX I. Statement of Qualifications	
	APPENDIX II. List of Abbreviations	
	Drill Log: Hole 86-28	

.

€,

1 INTRODUCTION


The Green Group of mineral claims is part of the Gibraltar Mines Limited permanent property. It is accessed along a mine haul road from the north and from the south via 4-wheel drive roads from the Sawmill Group. It lies approximately 1.75 miles (2.8 km.) from the plant site. The general location is shown in Figure 1.

Drilling on this group occurred in conjunction with a drill program on the Sawmill Group of mineral claims. One vertical N.Q. wireline diamond drill hole totalling 503' (153.31 m.) was completed within the Green Group. Drilling was carried out by J. T. Thomas Diamond Drilling Ltd. of Smithers, B.C. during the period August 24 to August 25, 1986. Some of the core was not assayed and is stored at Gibraltar Mines plant site. The remainder of the core was not split. The whole core was sent to the assay lab for analysis. The ground core is stored at the Gibraltar Mines plant site for a period of one year.

2 MINERAL CLAIMS

The Green Claim Group has mineral leases grouped with mineral claims. Particulars of each claim are listed below. Some of the claims are owned by Cuisson Lake Mines Limited but Gibraltar Mines Limited has full administrative rights over all of these claims. Mineral claim locations are shown in Figure 2 (in pocket).

GREEN	ŝr	:0i	12	MIN	2.24	1	CL:	NI 43			
NAME	F	2 E C 2 C	.) २ 	C3G YY	२ N (EC (JM1) R C 3 E R	UNITS	MINERAL LEASE	CPTIONED FROM	
Image: Construction of the state of the				0077775536667777 756666664441124						COCC LAMMMMM COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	a and a second and a second
GJ ZÖFR		-9£	92	(4	1	152	23	1		<u>C</u> LM	

======= NAM≣ HA ≠1	FOUP (1) PECORDED DEMAY 161058 161058 161058 161058 161058 230574	9 800 80 80 83 58	1140 UNITS 1	MINERAL Lilij	CPTIONE FROM OLM OLM OLM OLM
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	00000000000000000000000000000000000000	+++++77+++++++++++++++++++++++++++++++			NAMA MAMAMAMAMA Secondococococococococococococococococococ
SAALL # # 9000227 ######0000227 SAALL # # 90002227 SAALL # NN00000 SAALL N221NF NN00000 SAALL N221NF SAALL N221NF SAALL N221NF SAALL N00000 SAALL N221NF SAALL N00000 SAALL N000000 SAALL N000000 SAALL N000000 SAALL N000000 SAALL N000000 SAALL N000000 SAALL N0000000 SAALL N0000000 SAALL N00000000 SAALL N0000000000 SAALL N0000000000000000000000000000000000				3634 M42 3634 M42	CLM CLM CLM
RUM #30 FR VE NO 2 VE NO 2 VE NO 3 VE NO 5 VE NO 5 VE NO 7 VE NO 7 VE NO 6 VE		\$ \$57.7775575579930574817-57891355555999455555999976866666662297 57.55663555559994555555999976666666666666662297 461111157555569930904445555555999455555599999999999999		20222222222222222222222222222222222222	CLM CLLM CLLM CLM CLM
LINDA #2 LINDA #3 SAP #4 FR VE N015 VE N016 VE N017 VE N018 VE N019 VE N020 HAS 4 HAS 6 SAP #1 FR	140266 140266 140266 161068 161068 030971	2449665 2449665 2549668 254968 2929 2929 2929 2929 2929 2929 2929 2		41422 M61 41422 M61 41422 M61 41422 M61 41433 M69 41443 M69 4146 M60	CLM CLM CLM

TOTAL UNITS 92

3 DRILL PROGRAM

3.1 Objectives

The purpose of this drill program was to test the westerly extension of an ore system intersected in the Sawmill Zone.

3.2 Results

The drill hole location is shown in Figure 3. The location were not surveyed, but located by chain and compass. The drill log is included in the pocket of this report. All copper values reported here are for total copper. All molybdenum reported is MoS2. Analysis, done in Mune job. by Mandovd AA Muthod.

Hole 86-28 was collared at 2896', cased to 125', and drilled to 503'. A section of Cache Creek rocks, including a 70' zone of Limestone, was sandwiched between a fault zone at surface and one at 390'. This core appeared barren and so was not assayed. The lower fault zone extends from 390 to 468' with an ore zone starting within it at 440' where quartz diorite fragments begin. A fine to medium grained quartz diorite extends below the fault to the bottom of the hole. The ore zone extends from 440' to the bottom of the hole for 63' of 0.28% copper, 0.010% molybdenite. Chalcopyrite and minor bornite are responsible for the copper grade.

3.3 Interpretation and Conclusions

The ore zone intersected in the Sawmill Zone does extend westerly into the Green Group but, it is cut off here by a major fault system running in a northerly direction up the Cuisson Valley. All ore in this hole was present below the fault which is believed to dip about 40-degrees to the west. If more ore exists west of this fault it will have been transported some distance to the north along the fault zone. More drilling could be done to attempt to locate the off-set portion of the ore.

Mote: 1 foot = 30.5 km

4 STATEMENT OF EXPENDITURES

August, 1986 Diamond Drilling, Green Group.

(a) Drilling Costs

	Direct Footage Charges: 86-28 503'@\$13.25/foot = \$ 6,664.75		
	Cat Hours: 1 hr. @ \$40.00 = 40.00		
	1 NQ Bit @ \$508.00 = <u>508.00</u> Total Drilling Costs	\$ 7,21	2.75
(b)	Assay Costs 12 Cu - MoS2 assays @ \$4.40/assay	\$ 5	2.80
(c)	Supplies Core boxes: 19 boxes @ \$6.00/box	\$ 11	4.00
(e)	Personnel Costs		
	Core Logging, Sample Preparation		

G. D. Bysouth Dec 1 - 2 16 hrs. @ \$31.00/hr. <u>\$ 496.00</u>

TOTAL COST \$ 7,875.55

Submitted by: <u>b.c.</u> B

G. D. Bysouth Senior Geologist

·· 6,

APPENDIX I. Statement of Qualifications

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- I am a graduate of the University of British Columbia, with a B.Sc. degree in Geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally logged the core and assessed the results of this drill program.

Garry D. Bysouth

APPENDIX II. List of Abbreviations

	bobornite
1	calcalcite
	carbcarbonate
ı	chlchlorite
	cpchalcopyrite
	dissemdisseminated
	epepidote
	folnfoliation
ę	addonde
ç	grngrained
j	limlimonite
1	malmalachite
ī	magmagnetite
r	pypyrite
¢	qtzquartz
r	rxrock
5	sersericite
5	strstrong
5	stkwkstockwork
Ţ,	ıkweak
6	lt. Q.D Diorite = Leucocratic Phase

		- 1 1)				N J)		
		GRID_		-			GIBR,	ALT	AR MINES	LTD.		ł	HOLE SHEET	No	-28 of .				
		SAWHILL ZONE			AAW0			-	~ 31,049 1		CORE SUZE N.				io	CCE0 17	G.D.T	в	
04 3	TE COLLA	10 <u>21 - Aug 86</u>				503' •			~ 47, 2531	<i></i>	SCALE OF LOG			<u>-</u>	0.4	n <u>De</u>	<u>c. l .</u>	1986	
04	n <u>e</u> cover.	10 25 - Aug - 86	2	⁰ *	- 10	•	(L	EVATION	~2.896	·····	REWARKS * Sec	rema	the col	umn.					
ock	TYPE	S & ALTERATION		GRAPH	1		:		FRACTURE	a "	BOTTOM DEPTHS	1	1	T	T	ASS	SAY RES	SULTS	
Т		T .	3		Velne Velne Auls				ANGLE TO CORE AXIS	PYRITE	LEACH CAP O	┥.	C+r+	ROD	Sample	1%	1%	1	T
•			L to Core Toliation	follerion Alteration Footoge	Steve:	width. Vola	Hhrre		-FREQUENCY-	41123 41 72	SUPEROENE O AEMARKS		Rocover, 7.		Number	Cu	Мо	1	- Estimate Grade
T		Casing To	ľ						0			1		1	1	1		1	<u> </u>
		125'				· ·			20										
		FAULT ZONE			4	,	1		10 			12.6						<u>├</u> ───	
		(125'- 149') most rx frags are	60 Mod	130	4	5'	broken a lost core	8	20 70 10	٥		129	40	0					. 01
		fine to aphonitic		11:00	•						this hole intersects a good section of Cache							· · · · ·	
		brown weathering rx. but changes within	55-		6	1.		121	0		Creek mxs, including	134	30						l
		140-140' to Tor	60			10	broken a lost core	5	0	0	extends through the West			7					.01
		underlying meta. anderte - this zone is also one of greatest core lost +	'str.					37	0		Enundary Fault and into the Mine Phase		50						
		199 development and		140		<u> </u>		9			Q.D another fault zone was intersected at the								ľ
		may be the some of mojor dislocation						99	5		Surface (125 - 149')-this surface (125 - 149')-this may surgest major foult systems are present west of the W. Boundary	141							1
			50?	4 10		[q	(ag)-be + - 7' lost		2	0	weat of the W. Boundary	145	5		1	1			
			str	6				50	<u>;</u>]	Ů	Fault - Considering The	147.	30	7					,01
				150				70 80			go'y is in this hold	149	20					1	
		DARK GREEN META ANDESITE		6				90 0 10			- other holes drilled to the		55						
		(149: 239') a typical rx. of the			45	Y2."	chert-mag	20			- note that two faults	152							
	1	lecal Cache Creek Gro.	45-		50	2 ¹	chert-mes	10		•	were also intersected	155	50	7					01
	1	- a fine an re showing bansing imported by	Str		40	51	chert-mog	20			in 36.27 , an upper		65	1				1	
+		alternating dk green		160 1			· · · · · · · · · · · · · · · · · · ·	80 \$0			Some while broken 1	53							
		chl. rich bands and chl. rich bands and dk grey feldspathic bonds, or bands of light						0222							T				
1	0.000	cors. Loninge	15-10			10'	highly broken core	200					20						
	1.1	/ луч /, (ПУСК) / /	514				influid acourt court	50 60		0	24	.7		0					сı
	13	in a few places, darly incy chert bands (12) were loted with dissent, mage	· .	170				60 70 80				1	45			.		1.	

)			ì)		
-		GRID_		-			GIBRAL	TAR MINES L	TD.		н(SH	DLE N HEET	No. <u>86-</u>	<u>28</u> of!	8			
ROCA	C TYPE	S & ALTERATION		GRAP	G I L		<u>.</u>	FRACTURE	0 v	BOTTOM DEPTHS LEACH CAP		[AY RES	ULTS	
:				Alleretten	311461416 81146 4116 4116	WIdth of Vola	la Li I I I I	ANGLE TO CORE AXIS -FREQUENCY-	E STIMATE D % PYRITE		.		RQD	Sample Number	% Cu	% Mo		Estimated Crade
		to be a metamorphic sequence of tuffs + volcanic seds. chiefly of andesitic comp.	ðo str,		4 0 4 5 6	5	brokan + lost core 93.6x	Q la 20 30 40 50 50 60 70 70	0	דן דו דו	74	30 50	3					.01
		- this unit is heavily faulted and difficult to log (see RGD) - it may be a series of fault wedges related to the West Boundary		180	20 	21	gg.bx.	80 90 0 10 20 30 30 40 50 50	0	182	3	45 40 30	0					. 01
		Fault zone - at 225 the rx. changes somewh becomes more inossine and in places contains clots of ep.	40-	190	4 5-80 5-20	3'-+'	chert-hem (sper.) chert-hem (spec) chert(caro)((py))	40 50 50 90 90 90 20 20 30 40 50 60 10 20		181	۹ <u> </u>	50 20						
		- the chert-mag-and chert-spee. bands are of interest - Could this be of exhalative origin?	str	200				90	<.5	113	-	40	3					.•1
			45- 50 244	210	(a)	4'	(gg)-bx-hem	10 20 30 40	D	206		80 50	7					اه.
			35. 45. 5tu		10	5	99-pr	0 10 10 10 10 10 10 10 10 10 1	0	215	10	0	υ					.01
			7	220	?	6 ¹	33-101	32 0 10 20 30 50 50 60 70 80		225	6	0	7					,01

Salar Albert

))) .)
GRID	GIBRALTAR MINE	ES LTD. HOLE SHEET	No. <u>86-28_</u> 1 No. <u>3</u> of <u>8</u>
ROCK TYPES & ALTERATION GRAPHIC	5 FRACTURI	BOTTOM DEPTHS	ASSAY RESULTS
And	ANGLE TO CORE AXI		ROD Sample % %
Z to Con relation Automica Structure L to Context L t	ANGLE TO CORE AXI	CY-	" Number Cu Mo Creie
		2.31	
90?	4 Nighly Droken Core + 20 minor gg 30	234 to	
NK I	50 broken-hem stained zone	80	3
239	80 90	240	
BANDED QIZ-CARE.	6' Srey cherty zone	243 90	
UNIT (239-315')	30 40 50	245 80	
- Typical Cache Creek str	1 at-carb-ser 10		
interest to represent	<u>90</u>	249	-
a sequence of meta. Sedimentary rx: schiefly of volconic origin and ranging from rhyolitic so. to andessic - the so	2 2 2 2 2 2 2 2 2 2	90	
ranging from rhyolitic 60. 60.80 to andesisic - The 80	7' at3-carb-ser 50		10, 01
A Ofer from the over- Cren		257	
hing unit in that they 260 = 00-TO	90		<u> </u>
the laminae in This 20?	3 gt3.carb.ser-cht 10	90	
VII to which the 70	4-3 40	< 0.5	3
ats-carb bands tending	30" chert.carbmag(py) band 60 4' atz-carb-chi 80	267	
	90		
The carbine usually light brown weathring go	12" 9t3.caris (cp) 0 10 20 30	4.2	
st+ Shern 80	1' q ¹ / ₃ -ch ¹ carb	•	10 .10
280	dk grey 70	Stroble	
	the usual Q		
80-90 90 80-90	10 9-3- chi-carb 100-00		
25~	break 50 Geoderica 60	287	0
	<u>80</u> 32		
	and the second		
a an		n en	

(

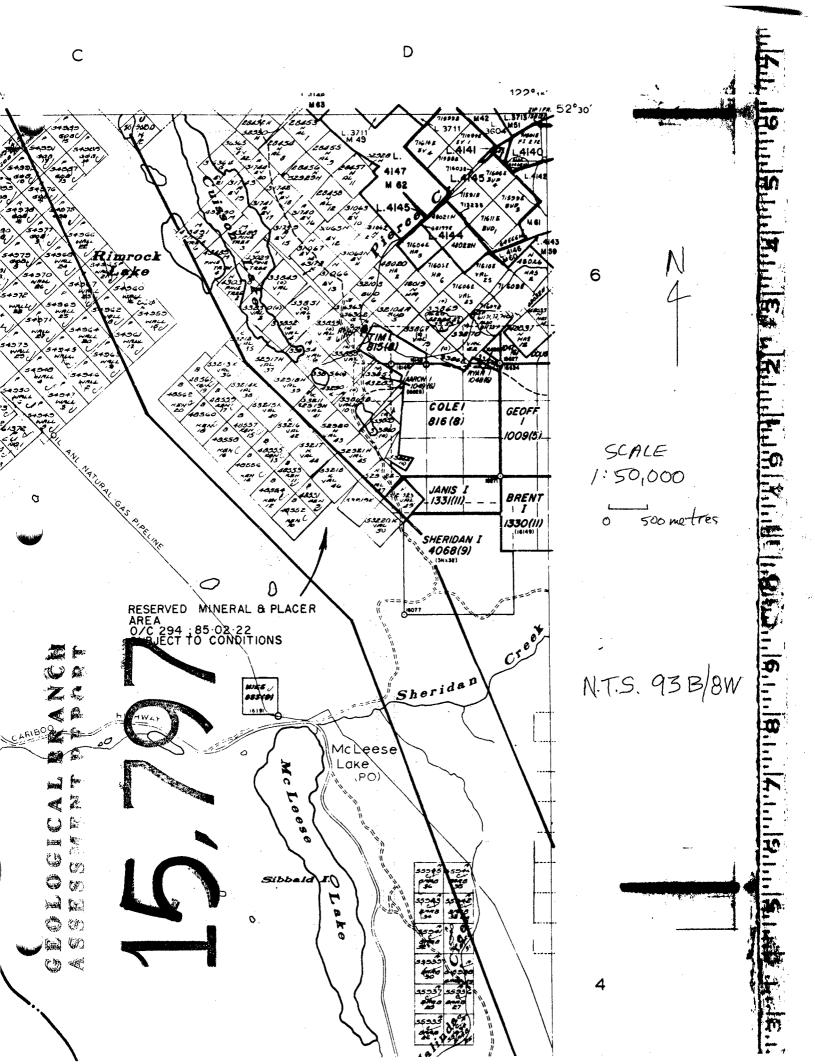
	·- ·) GRID_					GIB	RALT	AR MINES	LTD.	ł	ł	HOLE I SHEET	No. <u>86-</u>	2 <u>8</u> of	8)		
ROCK	TYPE	S & ALTERATION	1.	GRAPHI	1	width of Vota	calisallo.		FRACTURE ANGLE TO CORE AXIS	PYRITE D	BOTTOM DEPTHS LEACH CAP	f	Core Rocarry	RQD			AY RES	ULTS	Estimete
:			70- 80	Aller	7. 7. 70-80	1.0	its.chl-carb		- FREQUENCY-	c	SUPEROENE REMARKS	297	%. 85	o					, 01
			stv 60- 70 .str	300	60-70	10'	qtz-chl-carb	d.X grey chl. white carb.	70 80 90 0 10 20 30 40 40	•	frioble	397	85	0					.01
		315	10-60 5++	310	10-60]	\$\$\vee\$ \$\$\vee\$	o			48	17					. 01
		<u>GREY LUMESTONE</u> <u>UNIT (315-351')</u> <u>a pale to mod Arcy</u> Fine grn ra with the macazeous parting- lu color is due to a ak grey dust scattered	ди	320					0 10 20 20	Z 0.5		317	95	50					.01
		throughout the rs and in places defining a weak folg - also present is finally dissim py- -The rx. fizzer readily in wk HCI.	· 60-70 Ψικ	330					40 50 60 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90	< 0.5		327	15						01
		- this appears to be a limestone not marble + the mice parting prob- veprecent bedding prob- that in attributes in the folg column incy be	70- 80 Wk	<u>34c</u>	2				Ø	2 05		331	а. 17	53					•
		bedding angles.	80 wh	350						Z 0.5		343		7					,0 I

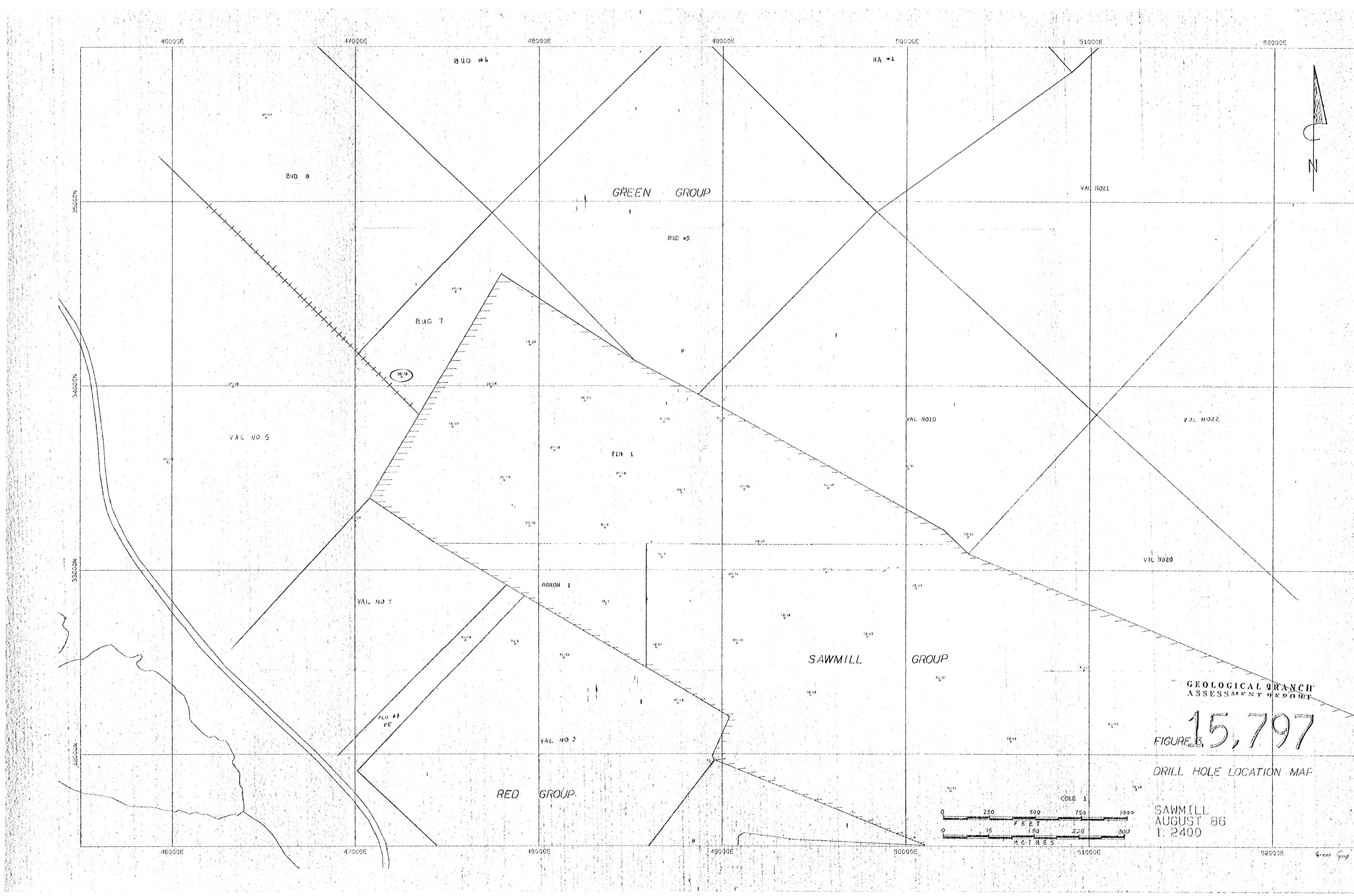
(

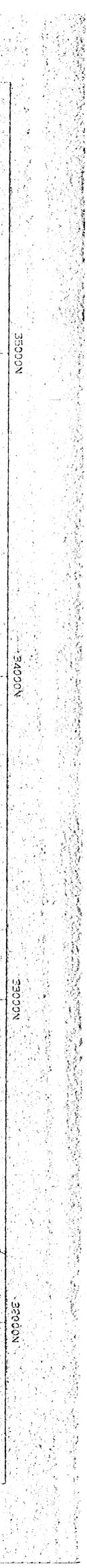
GIBRALTAR MINES LTD. MOLE NO. SECT NO	 ROCK	TYRE) GRIL)			-) GIBR	ALT	AR MINES))	م م ا	
Ane Olderh Endels Bit Teste Status Bit Bit			JINIT CALCAREOUS UNIT (351-370') a mixture of the overlyin imestore and other	51 ng 80	I LO	SILVER S	Valna Valna J. Le Cara	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Scarn - (pr) (Sphal) (C Association in Sca	p) ~ Pinel	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED " PYRITE	BOTTOM DEP LEACH CAP LIM. ZONE SUPERGENE		5	HEET Coro Recovery 7.	No	5 of Somple	A. %	%	ESULTS	
			2010 J various qt3-carb rein systems - qt3- carbon some white narbote - folo angles ire clarly bedding angle 200 WHITE MARBLE (370' - 390') a white pure re which adding for a some reaction	80- 90 ,WK	300	11.11.1		12" 3' 2'	chi-scarn ep-pied-chi scarn brown carb-chi. zone brown-carb-gtz zone	00000000000000000000000000000000000000				3	62	90						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- al aby chi. Tepr itere 	10 Structures ar bed. Johnes:	ND 3	* * * * * * * *		3'			70 90 90 90 10 30 30 50 60 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90				383	45							
		Sone Stron Short Host to be be un Hicarn Main. White	- which several g gg. Zones and sects of living but to fit the ris appear long to the childer not typical and typical and typical and child - a	410		?	£		rbs (dura	30 40 50 60 70 80 0 10 20 30		2		·								

.

• •																		
) .)				•)		
-		GRID_		-			GIBRALT	AR MINES	LTD.		F	ULE N HEET	10. <u>- 86-</u> No. <u>-</u> 6	<u></u> of	8			
RC	CK TYP	ES & ALTERATION		GRAPHIC	1 -		4 0 1	FRACTURE	E O	BOTTOM DEPTHS	-	E			A5:	SAY RES	ULTS	
			L lo core rollation		V 111	width ef		ANGLE TO CORE AXIS	MATI	LIM. ZONE			RQD	Sample	%	%		Estimated
	:		1	Alleretten Feetege		× 19	110.0	-FREQUENCY-	ESTIMATED % PYRITE	SUPERGENE REMARKS	F col e	~		Number	Cu	Mo		Grode
		-the main dislocation appears to be nt		101-101				0 10 20			113	60						
-		447' with the abrupt change to med-grn. gtz-diorite frag.s	?	1	?	10'	gg-bx + -4' of lost core	30 40 50	1.0?			65	0	96553	10,	4.002		.05 ?
		also have taken place		420				60 70 80 90			418					·		
		at 437' with the	·					0			+23	60			1			
		19tz-porp. depending	?			10	bx (gg) - strong dissem py in scare frags	20 30 40 50	2.5 ?		1.0		0	76554	,01	4.002		०ऽ
		belongs to the Carhe Crk ris or to the gts-diorite - assay values may resolve this					in scare +raas	60 70 80				90						
		values may resolve this		430 1				901	••••		431							
				1-1-1		10		0 10 20 30 40	3.0			80	0		05	002		,05
			:	5-1-		10	39-0×	50			437			96555	. 05			
				440				70 20 90								 		
							¢.3.	10 20 30				60				i	1	
			?			10	Ux-39 - ~ 5 "ost core	40 50 60	3,07		447		0	94556	,20	.010		.08
				450			2	70 80 90				50						
	·			Ţ				0 10 20		-	15.]		
			7	1-1-	1	10'	bx-gg + 5-4" lost oure (first op seen 1 - Frage)	30 40 50	2.0			40	3	16557	125	.014		.18
							(first op soon in trage)	60 70 80			57							
 				1460 17								-			†		Ť	
			7			7		0 0	1.0				0 5	12 22 3	.39	.0.4		.25
											67	e						
L	1	l		170 E 10	** /1	013	ata-chi-cpx2 ata-carb-cp			2 1/2" solid cp						L	<u>l</u> `	


1 1 A. 18


)))		
-		GRID		•	• •• • • • <u>• • • • •</u>			GIBRALT	AR MINES	LTD.		}	HOLE I SHEET	No. <u>86</u> No. <u> </u>	<u>-28</u> [of .	8			
ROCH	TYPE	S & ALTERATION		GRAP	Gł.				FRACTURE	e	BOTTOM DEPTHS		e	1	1		SAY RE	SULTS	
			L to Core Follottos		Vilne Vilne Aile	width of Vota			ANGLE TO CORE AXIS	ESTIMATEO ", PYRITE	LIM. ZONE			ROD	Sample	%	%	I	Estimited
:			1.	Alliveller	<u> </u>				-FREQUENCY-	1. X.	SUPERGENE REMARKS	Foolog.	7.		Number	Cu	Mo		crose
		FINE MED GRH.			· · · · ·	Y2 Ye	qt3 qt3.chl-cp		0 10 20		~1/4" solid cp	473	80						
· ·		(QUARTZ DIORITE (468-503)	60- 70 WH		A ? 45	12"	99-bx	fire dissern, cp(bo)	30 40 50	< 0.5	~/+ solid cp	477	30	υ	96229	.34	.014		,25
	• •	-typical Q.D. as intesected in nearby holes (ie 86-23) but sl. finer grad.		180		1/4	qts-sng(cp) qts-chi-cp		70 80 90		. بو		25						
		~ 25 0/0 ~ 20 0/0 chi ~ 10 0/0 piza (wak saus)	•			2			0 10 20			483							
		- 13 % ep. as clots + stringers	6а- 70 ШК				99-px		20 30 40 50 60 70	≺0.5		487	20	0	96560	.33	,010		.15 ?
		it this rx is within or close to the gyp-gts may-ba-cp. zone gyp-gts intersected in 86-23.		490	5 ?	2" X4 12."	qts-mag(ep) qts(cp) qq-ba		90			1	85		ete sta	· · · ·			
		intersected in 86-23.			1	Y052 /4 /10×3	972 + 973-mag 979 973(cp)		0 10 20			493							
			70 WK		40+79 70 45+70	1/0×3 1/8×2 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	94 p x 3 4: 3 = 2 4: 3 - 1005 (200)	cp(bo)	30 40 50	< 0.5	~ 14" solid ep.			20	96561	.21	.004		. 25
				500	80 73 80×2	×1 ×3 2"+14	979 (19) 979 (19) 979 (19) 979 (19) 979 - 100 (10) 979 - 100 (10) 979 - 100 (10) 979 - 100 (10) 979 - 100 (10) 973 - 20 973 - 20 973 - 20 973 - 20 973 - 20 973 - 20 973 - 20 974 (10) 975 - 20 975 -						૧૪			·			
		EOH 503'			45 17) 40 12	Yzo-hlexs Yioxz	chi-cp+3 gyp-hem+2	/ E	0 10 20			503			96561	. 2.1	.004		,30
									0 0 0 0 0 0 0					T					
		\$. O. B.	[]					19											
								2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0				Γ						
								16	0										
								7.667								·			
								0 10 20 30											
								40	1								Ì		
								64 70 80 50										<u> </u> .	


e al construction de la construcción de la construc

n. N

×.,

