86-839-15804 9/87

FILMED

41

GEOLOGICAL BRANCH

ASSESSMENT REPORT

REPORT

. • .

. • -

. . .

ON

GEOLOGY AND GEOCHEMISTRY

OF THE

C 1, CONCH 1 CLAIM GROUP

CARIBOO MINING DIVISION

NTS 93 A/11

Lat.: 52° 42' N. Long.: 121° 26' W.

for

CASAMIRO RESOURCE CORP.

NORTHWEST GEOLOGICAL CONSULTING LTD.

Uwe Schmidt, B.Sc. F.G.A.C.

By:

December 22, 1986

TABLE OF CONTENTS

Page

1.	SUMMARY AND RECOMMENDATIONS	1
2.	INTRODUCTION	2
3.	PROPERTY, LOCATION AND ACCESS	3
4.	PHYSIOGRAPHY	4
5.	HISTORY	5
6.	REGIONAL GEOLOGY	6
7.	LOCAL GEOLOGY	6
8.	PROPERTY GEOLOGY	7
9.	GEOCHEMISTRY	8
10.	CONCLUSIONS	11
11.	STATEMENT OF COST	12
12.	REFERENCES	14

Appendices

Appendix

. . . .

A Statement	of	Qualifications
-------------	----	----------------

- B Certificates of Analyses
- C Corrected and Sorted Analyses
- D Elementary Statistics

List of Illustrations

<u>Fig.</u>		Scale	Following <u>Page</u>
1	Location	1:7,000,000) 3
2	Claim Map	1:50,000	4
3	Regional Geology	1:50,000	6
4	Cu Histogram & Probability Graph		9
5	Ni Histogram & Probability Graph		9
6	Co Histogram & Probability Graph		9
7	Pb Histogram & Probability Graph		9
8	Zn Histogram & Probability Graph		9
9	Ag Histogram & Probability Graph		9
10	Mn Histogram & Probability Graph		9
11	As Histogram & Probability Graph		9
12	Au Histogram & Probability Graph		9
13	Mo Histogram & Probability Graph		9
14	Fe Histogram & Probability Graph		9
15	C1, Conch 1 C.G., Geology	1:5,000	in pocket
16	Cu,Ni,Co,Pb,Zn,Ag Geochemistry	1:5,000	in pocket
17	Mn,As,Au Geochemistry	1:5,000	in pocket

......

.

. - -

1. SUMMARY AND RECOMMENDATIONS

The C1, Conch 1 and C3 mineral claims of Casamiro Resource Corp. are located 85 km northeast of Williams Lake, B.C. The property is underlain by highly deformed, metamorphosed sedimentary and igneous rocks of the Omineca Crystalline Belt.

In August 1986, Northwest Geological Consulting Ltd. carried out a soil sampling and mapping program on the properties. Three geochemical anomalies were outlined on the C1, Conch grids and one area of interest was defined on the C3 claim.

A reexamination of the geochemical anomalies, a northward extension of the C3 grid and a southward extension of the C1 grid are recommended.

ectfully submitted, OCRe IWF SCHMIDT Schmidt, B.Sc., F.G.A.C.

2. INTRODUCTION

The Cl, Conch 1 and C3 claim groups of Casamiro Resource Corp. are located 85 km northeast of Williams Lake British Columbia. The property consists of two groups of claims, totalling 56 units located on the western flank of Browntop Mountain. This area is located approximately 16 km northeast of the village of Likely.

In August of 1986, Northwest Geological Consulting Ltd. was commissioned by Casamiro Resource Corp. to carry out preliminary geochemical sampling and geological mapping surveys of the company's two properties. This work was carried out during the period of August 28 to September 4, 1986.

Field mapping was carried out by geologist Leo Lindinger. He was assisted by samplers, Delbert MacDonald and John Pascuzzo. The writer examined the property on August 29, 1986 and had previously examined the property on two occasions in 1984.

Work on the claims included grid soil sampling and geological mapping. A common grid coordinate system was established for the three claims, although it is not continuous nor are the claims all contiguous. The western group, C 1 and Conch 1 claims, had north-south trending flagged lines established on the western half of the Conch 1 claim and east-west trending lines on the northern half of the C 1 claim.

Grid lines on the C 3 claims also trend in an east-west direction, in the southern half of the claim. Line spacing on the

C 1 and C 3 grids is at 200 metre intervals and samples were taken at 100 metre intervals. The north-south lines on the Conch 1 claim has a 100 metre by 100 metre line and sample spacing.

Geological mapping was carried out along grid lines, roads and reconnaissance traverses.

3. PROPERTY, LOCATION AND ACCESS

The C1, Conch 1 and C3 mineral claim groups consists of three mineral claims totalling 56 units and having a total area of 1400 hectares. The property is located in the Cariboo Mining Division, 85 km northeast of Williams Lake and is accessible by motor vehicle from Williams Lake via the Likely road. The claims are located 16 km northeast of the village of Likely, a distance of approximately 94 km by road, from Williams Lake. From Likely, a gravel logging haulage road heads north, crossing to the north side of the Cariboo River, about half way to the claims. A short distance from Cariboo Lake, a secondary logging road heads south and crosses the Cariboo River again. From here, logging roads head south and north. These provide good access to the west flank of Browntop Mountain and the claims.

The geographic centres of the two claim groups are:

CLAIM	N. LATITUDE	W. LONGITUDE
C1,Conch 1	52°42'30"	121° 26'
С3	52°43'30"	121° 22'

The claims are wholly owned by Casamiro Resource Corp. The

CASAMIRO RESOURCE CORP.				
C1, C Northwes	LOCATION C1, CONCH 1 CLAIM GP. Northwest Geological Consulting Ltd.			
Scale	Date	NTS	Dwg. No.	
1:7000000	Dec. 86	93A/11	1	

Г

location posts and perimeter lines were examined. Lines and posts are well marked and appear to have been located in accordance with staking regulations.

Details of the claims are as follows:

CLAIM NAME	RECORD NO.	NO.OF UNITS	EXPIRY DATE
C1	5189	20	Sept.26,1986
C3 Conch 1	5190 6730	20 16	Sept.26,1986
	то	TAL 56 Units	

4. PHYSIOGRAPHY

The claims lie on the western edge of the Cariboo Mountains, an area of steep slopes and rugged relief. The Cl and Conch 1 claims cover the western flank of Browntop Mountain and extend westward across the Cariboo River. The area is partially logged and the topography slopes moderately steeply westward from an elevation of of 1,430 metres to 820 metres.

The C3 claim is located 1500 metres north-east of the C1 claim, with elevations ranging from 1,220 metres to 1,500 metres. The eastern half of the claim crosses a tributary of Frank Creek which drains the north side of Browntop Mountain. This partially logged area is locally more rugged than the C1 claim. The native tree species in uncut areas are spruce, cedar and fir.

The area within the claims is underlain by a pebbly to sandy glacial drift of irregular thickness. This cover does not appear to be a hindrance to geochemical or geophysical exploration methods.

CASAMIRO RESOURCE CORP.			
CLAIM MAP C1, CONCH 1 CLAIM GP. Northwest Geological Consulting Ltd.			
Scale Date NTS Dwg. No.			
1:50,000	Dec. 86	93A/11	2

An exploration season lasting from May to late October can be expected at these elevations.

5. HISTORY

The area was probably first prospected during the 1860 Cariboo gold rush. The earliest records of mining activity in the vicinity of the claims are found in the annual reports of the B.C. Department of Mines. In these reports work is reported in the the Rollie (Duck) Creek area to the north of the property in the early 1900's.

In 1926 and 1933 reports on a Peacock property suggest that this property lies with the western limit of the Cl claim. However no evidence of this occurrence has been found. Several veins, having a northerly strike are reported to occur on the Peacock property. An assay of 0.01 oz/ton Au, 24 oz/ton Ag, 40% Pb and 6% Zn is reported from one of these veins.

Several Crown granted claims occur west of the claims. Among these are the Tillicum Snow Bird, and Pay Boy. Quartz veins up to one metre in thickness occur on the claims. No evidence of these old occurrences were found during the examination.

Approximately 15 km north of the property, on Yanks Peak, old crown grants cover several veins which are hosted by similar lithologies. Their descriptions suggest fault and fracture controlled vein systems hosted by complexly folded metamorphic rocks.

There is no record of any previous work on the claims. Casamiro Resource Corp. carried out a limited program of road

improvement, trenching, line cutting and soil sampling in 1984. The soil samples were not analyzed.

6. REGIONAL GEOLOGY

The property lies within and near the western margin of the Omineca Crystalline Belt of the Canadian Cordillera. Rocks of this belt are characterized by complex deformation and moderate to high grade regional metamorphism.

Upper Triassic to Lower Jurassic volcanic and sedimentary rocks of Quesnel Trough, a subdivision of the Intermontane Belt, lie 9 km southwest of the property. The boundary between Omineca and Intermontane Belts is marked by a major shear zone. Large scale tectonic imbrication and mylonitization on both sides of the zone suggest an eastward thrusting of the Intermontane over the Omineca Belt (REES, 1981).

7. LOCAL GEOLOGY

The region in the vicinity of the property has recently been mapped by L.C. Struik on a scale of 1:50,000 (O.F. 920). Three lithologies dominate the area around the southwestern end of Cariboo Lake. These are from structurally lowest to highest: Black siliceous phyllite and argillite of unit PHp, pale grey to green schists of unit PH? olive and olive grey quartzite and phyllite of HKE and granitic feldspar quartz augen gneiss unit PQLg.

The lower two units on the east side of Cariboo River belong to the "Harvey Creek succession" of the Paleozoic? Snowshoe

0 1000 Licoo ٦

CASAMIRO RESOURCE CORP.				
REG (afte C1, C Northwes	REGIONAL GEOLOGY (after Struik, G.S.C. 0.F.920) C1, CONCH 1 CLAIM GP. Northwest Geological Consulting Ltd.			
Scale Date NTS Dwg. No.				
1:50,000	Dec. 86	93A/11	3	

LEGEND

(after Struik, G.S.C. O.F.920)

Upper Triassic

uT

undifferentiated uTp , black shale slate and argillite sillite, micritic limestone, limey sandstone; uTb , agglomeratic and pyroclastic andesite; uTo , pyroclastic rhyodacite and rhyolite

Devonian?

Pa

<u>Quesnel Lake Gneiss</u> leucocratic feldspar quartz phenocrystic quartzmonzontic orthogneiss

HADRYNIAN? AND PALEOZOIC?

SNOWSHOE GROUP

Paleozoic?

PB

Po

"Bralco succession": white and grey marble

"Downey succession": grey and olive-grey quartzite, phyllite and schist and undifferentiated Poe, grey limestone marble with lesser amounts of basic pyroclastic volcanic rocks and schist; Pow, basic pyroclastic volcanic and dioritic rocks with lesser amounts of marble and schist; Poe, amphibolite, marble and schist (metamorphic equivalents of Poe, and Pow); Poe, mainly staurolite - garnet - biotite - chlorite - quartzmuscovite. schist and lesser amounts of garnet, biotite, muscovite quartzite and amphibolite

<u>"Pine Creek conglomerate"</u>: quartzite pebble to cobble conglomerate with minor amounts of quartzite and black phyllite

"Goose Peak succession": coarse grained feldspathic quartzite and interbedded grey and olive phyllite and schist minor black phyllite and marble

"Harvey Creek succession": dark grey and grey micaceous quartzite and interbedded dark grey phyllite, schist and siltite and undifferentiated Phy, black quartzite, siltite, argillite and phyllite and minor amounts of dark micritic limestone; Phe, limestone and limestone conglomerate; Phe, purpley dark grey very micaceous quartzite and black phyllite

Hadrynian?

"Keithley succession": olive and olive grey fine-grained quartzite and phyllite and undifferentiated HKEq, white and grey medium coarse grained orthoquartzite; HKEp, grey phyllite Group. The "Harvey Creek" comprises dark grey to black micaceous quartzite, phyllite, argillite, minor limestone and limestone conglomerate.

Rocks of similar appearance on the west side of Cariboo River (Conch 1 claim), are assigned by Struik to the Hadrynian? "Keithley Succession." In mapping this area, L. Lindinger did not make this distinction.

Outcrops of quartzo-feldspathic granitic gneiss of the Quesnel Lake Gneiss occur at high elevations on the east side of Cariboo River. This unit (\mathbf{P} QLg) is believed to be of Devonian age.

8. PROPERTY GEOLOGY

The claims are underlain by two dominant mappable units. Unit 5, chloritic calc-silicate schist, a medium grey-green coloured schist underlies most of the property. These complexly deformed, meta-sedimentary rocks display a wide variety of foliation patterns over the property. Unit 4, calc-silicate schist and unit 2, spotted chloritic schist and gneiss are two mappable subdivisions of unit 5 which occur in the northeast corner of the property.

In the northwest corner of the property a thin dark brown weathering beige coloured meta-chert or quartzite is interbanded within unit 5. This is labelled unit 1 on fig. 15. It carries fine pyrite in veinlets and as a breccia matrix. There is no significant geochemical response from soils taken in the immediate area of the pyrite.

The second most common rock type (unit 6), is a white to grey-green weathering, feldspar-quartz augen gneiss. It occurs as a northwest trending lobe within unit 5 and is a metamorphosed intrusion of quartz-monzonitic composition and possible Devonian age. Contact relationships are unclear, however on a larger scale, these gneissic bodies appear to be flat-lying or gently dipping.

9. GEOCHEMISTRY

In total, 187 geochemical samples were taken on the three claims, along 3 separate grids. This total includes 1 silt and 105 soil samples collected on the c1, Conch 1 claim group, and 7 silts and 74 soil samples taken on the C3 claim. Soils were collected at 100 metre intervals along flagged, "hip-chain" and compass surveyed lines. Three lines, spaced 100 metres apart were run on the Conch 1 claim in a north-south direction. Lines on the C1 and C3 claims were spaced 200 metres apart and run in an east-west direction.

Soil samples were taken of B horizon material whenever possible. In a few locations soil samples could not be taken because of outcrop or swampy conditions. Silt samples were taken in a few selected areas where streams crossed grid lines.

Samples were analyzed by Acme Analytical Laboratories Ltd. of Vancouver. The analysis included Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As and Au. The first 10 elements were analyzed by Inductively Coupled Argon Plasma (ICP) methods and are reported in PPM. Gold

was analyzed by Atomic Absorption using a 10 gm sample. Gold results are reported in PPB and have a detection limit of 1 PPB.

Sample certificates are appended to this report. Theoretical grid coordinates are used as sample numbers. Actual sample sites are shown on the maps which accompany this report. A few sample number corrections are noted on the Analysis sheets. A second, corrected version of the analyses produced by the writer is also appended to this report. The analyses in the list are sorted according to grid coordinates and in the order that they were plotted.

A basic statistical analysis of the data was carried out. Basic statistics are reported in appendix D. Histograms and log-scale probability plots of the data are shown in fig. 4 to 14. These graphs were used in conjunction with basic statistics to determine background and anomalous populations. Six classes from 0 to 5 were chosen for each element.

The classes indicate an increasing probability of importance beginning with 0 which is considered to be background. The higher class boundaries were chosen to produce data which is easily contourable and can be compared to geology.

Contour maps of all the elements were made of the three grid areas, on rough copies of the data. Contour maps are not presented in final drafted form, however the areas of interest are outlined on figures 16 and 17.

CONCH GRID

One area of interest is indicated in the northwest corner of

Г

L

.

(CASAMIRO F	RESOURCE O	CORP.
Cu HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP.			
Scale	Date	NTS	Dwg. No.
	Dec. 86	93A/11	4

CASAMIRO RESOURCE CORP.			
Ni HISTOGRAM & PROBABILITY GRAPH Cl, CONCH 1 and C 3 CLAIM GP.			
Scale Date NTS Dwg. No.			
	Dec. 86	93A/11	5

L

Г

(CASAMIRO F	RESOURCE C	CORP.	
Co HI Co and Northwes	CO HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP. Northwest Geological Consulting Ltd.			
Scale Date NTS Dwg. No.			Dwg. No.	
	Dec. 86	93A/11	б	

L

(CASAMIRO F	RESOURCE (CORP.
Pb HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP.			
Northwe	st Geologi	ical Consu	ulting Ltd.
Scale Date NTS Dwg. No.			
	Dec. 86	93A/11	7

Г

L

CASAMIRO RESOURCE CORP.										
CASAMIRO RESOURCE CORP. Zn HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP. Northwest Geological Consulting Ltd. Scale Date NTS Dwg. No. Dec. 86 932/11 8										
Scale	Date	NTS	Dwg. No.							
	Dec. 86	93A/11	8							

Ag HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP.										
Scale	Date	NTS	Dwg. No.							
	Dec. 86	93A/11	9							

L

Г

C	CASAMIRO F	RESOURCE O	CORP.
Mn HI C and Northwes	ISTOGRAM & 21, CO L C 3 st Geologi	PROBABII ONCH CLAI	LITY GRAPH 1 MGP. Ilting Ltd.
Scale	Date	NTS	Dwg. No.
	Dec. 86	93A/11	10

L

CASAMIRO RESOURCE CORP.										
CASAMIRO RESOURCE CORP. As HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP. Northwest Geological Consulting Ltd. Scale Date NTS Dwg. No. Dec. 86 93A/11 11										
Scale	Date	NTS	Dwg. No.							
	Dec. 86	93A/11	11							

CASAMIRO RESOURCE CORP.										
CASAMIRO RESOURCE CORP. Au HISTOGRAM & PROBABILITY GRAPH C1, CONCH 1 and C 3 CLAIM GP. Northwest Geological Consulting Ltd. Scale Date NTS Dwg. No. Dec. 86 93A/11 12										
NOT CHWE:	SC GEOIOGI									
Scale	Date	NTS	Dwg. No.							
	Dec. 86	93A/11	12							

Г

and an

CASAMIRO RESOURCE CORP.									
CASAMIRO RESOURCE CORP. MO HISTOGRAM & PROBABILITY GRAPH Cl., CONCH 1 and C 3 CLAIM GP. Northwest Geological Consulting Ltd. Scale Date NTS Dwg. No. Dec. 86 93A/11 13									
Scale	Date	NTS	Dwg. No.						
	Dec. 86	93A/11	13						

/ · · ·

CASAMIRO RESOURCE CORP.									
Fe H C and	ISTOGRAM S Cl, CC L C 3	PROBABII ONCH CLAI	LITY GRAPH 1 IM GP.						
Northwe	st Geologi	Ical Consu	ilting Ltd.						
Scale	Date	NTS	Dwg. No.						
	Dec. 86	93A/11	14						

the Conch grid. Sample 70+00 N - 50+00 E is anomalous in most metals. The more significant values are 111 PPM Cu, 0.7 PPM Ag, and 65 PPM As. Gold returned a low 4 PPB but two nearby values of 11 and 18 PPB help to define the anomaly. This anomaly lies up hill and northwest of a small outcrop of pyritic chert or quartzite.

C1 GRID

The highest gold value, 33 PPB is located near the centre of the C1 grid (anomaly "B"). Although there is no evidence of gold in nearby samples, this site is located within a 600 metre long north-east trending silver anomaly. The anomaly is defined by four sample sites which range from 0.9 to 1.2 PPM Ag. The area is underlain by unit 6 augen gneiss.

Other elevated gold values on the C 1 grid include a 20 PPB Au silt sample located in the northeast corner of the grid. This sample is low in Ag but anomalous in other base metals. Nearby soil samples are significantly lower, suggesting a source east of the C1 claim boundary. The remaining elevated gold values occur in the southeast corner of the grid and along line 68+00N. There is no associated silver response in these areas.

Anomaly "C" in the southeast corner of the grid is a single sample site which is anomalous in base metals relative to adjacent sample sites. The area is underlain by unit 5 chloritic calc-silicate schist.

Most of the contoured data lacked clear patterns. Slightly elevated Cu, and Ni results are associated with the unit 5 and 6

contact on the east side of the grid. Zn, Pb and As lows also define this contact.

10. CONCLUSIONS

The aim of the program was to locate areas of precious metals mineralization. The history of exploration in the area suggests a vein setting of mineralization is the most likely to occur on the property. Mapping and sampling on the two properties did not locate clear evidence of this type of mineralization but did outline three geochemical anomalies on the C1, Conch 1 grids and one area of interest on the C3 grid.

Anomaly "A" on the Conch grid and anomaly "D" on the C3 grid are located close to the property boundaries and may indicate targets off the property. Similarly, an isolated silt sample in the northeast corner of the C1 grid suggests a source beyond the property boundary.

Anomaly "B" on the C1 grid and anomaly "D" on the C3 grid, appear to reflect lithological boundaries.

<u>11.</u>	STATEMENT OF COST * indicates pro rata division	of costs				
<u>C1</u>	CONCH 1					
I	FIELD COSTS					
1)	LABOUR					
	U. Schmidt: Aug.28(½),29(½) 1 day at \$250/da L. Lindinger: Aug.28(½),29(½),	Y Sept.2-4				\$ 250.00
	Travel Sept. 5 5 Days at \$200/d	ay				\$ 1000.00
	D. MacDonald: Sept. 2-4 3 days at \$145/d	ay				\$ 435.00
	J. Pascuzzo: Sept. 2-4 3 days at \$100/d	ay				\$ 300.00
						\$ 1985.00
2)	ROOM & BOARD 16 man days @ \$45/man day Motel Meals	=	\$	720.00 \$40.66 \$33.28		
		TOTAL	\$	793.94	*	\$ 476.36
3)	TRANSPORTATION					
	2 Wheel drive Van Rental 2 Wheel drive Truck Fuel	= = =	\$\$ \$ \$	456.03 25.00 90.00		
		TOTAL	\$	571.03	*	\$ 342.62
4)	CONSUMABLES & FIELD SUPPLIES	=	\$	127.00	*	\$ 76.20
5)	GEOCHEMICAL ANALYSIS					
	105 SOIL geochemical analyses @ \$ 9.75 1 SILT geochemical analyses	=	\$	1023.75		
	@ \$ 9.75	=	\$	9.75		
			\$	1033.50		\$ 1033.50

.

, ----.

.

- II OFFICE COSTS Plotting, interpretation and report 1) writing U. Schmidt: 5 days at \$ 250/day L. Lindinger: 1 day at \$200/day = \$ 1250.00 = \$ 200.00 \$ 1450.00 * \$ 750.00 2) DRAFTING = \$ 420.00 * \$ 252.00 3) REPRODUCTION, PHOTOCOPYING & COMMUNICATION = \$ 140.05 * \$ 84.03 \$4,999.71 TOTAL
- 13

ر ماسیر

12. REFERENCES

× -.

-

, **.** .

- Annual Reports of the B.C. Department of Mines 1925, 1926, 1928, 1929, 1930, 1933.
- CAMPBELL,R.B. AND TIPPER, H.W. (1970): Geology and Mineral Exploration Potential of Quesnel Trough, B.C. CIM Bulletin Vol 63 pp 785-790.
- ----- (1978) G.S.C. Open File 574 Geology , Quesnel Lake, 93A
- REES, C.J. (1981):Western Margin of the Omineca Belt at Quesnel Lake, B.C. in G.S.C. Paper 81-1A p.223-226.
- STRUIK, L.C. (1982): G.S.C. Open File 920 Spanish Lake and Adjoining Areas.
- -----(1981a):Snowshoe Formation ,Central B.C. G.S.C. Paper 81-1A p.213-216
 - -----(1981b): A re-examination of the type area of the Devono-Mississippian Cariboo Orogeny, central B.C., Can. Jour. Earth Sci. vol.18 no.12

TIPPER, H.W. et al(1979): Parsnip River, B.C. Map 1424A

APPENDIX A

۰.

.....

1+.

.

.

.

.

CERTIFICATE OF QUALIFICATIONS

I, Uwe Schmidt , of 656 Foresthill Place, Port Moody, B.C. do hereby declare:

- (1) I am a 1971 graduate of the University of British Columbia with a B.Sc. degree in Geology.
- (2) I have practiced my profession continuously since graduation.
- (3) I have managed various mineral exploration projects in the Yukon Territory and B.C. for the past 13 years.
- (4) This report is based on my field examination of the property, work carried out under my supervision and available government reports.

SOCIAT 0106/ UWE SCHMIDT F

December 22, 1986 Vancouver,B.C

140

APPENDIX B

~ ~

...

1 - -

.

JME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

.

. --

. --

516

. .

DATE RECEIVED: SEPT 18 1986

left 24/86.. DATE REPORT MAILED:

GEOCHEMICAL ICP ANALYSIS

.500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOILS -BO MESH _ AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: Nolly DEAN TOYE. CERTIFIED B.C. ASSAYER.

NORTHWEST GÉOLOGICAL

PROJECT - 114 FILE # 86-2712

PAGE 1

SAMPLE	Na PPN	Cu PPM	Pb PPN	Zn PPN	Ag PPN	Ni PPH	Co PPM	Na PPN	F e Z	As PPH	Au‡ PPB
126+60E2 X 78+00N126+00E	1	25	11	92	t	75	14	420	1 00	L	
× 78+00N 127+75E ?	i	45	19	82	.1	33	10	04V 774	4.9V 5 40	0 7	1
78+00N 104+00E V	i	75	10	02	• 2	םד זר	10	104	J. 42 7 D.	10	4
78+00N 107+00E ~	1	17	25	97		23	0 1	177	2.07	17	•
78+00N 111+00E	i	17	20	10	• 2	23	0 2	145	J.17 707	13	1
10.000 111.002 S	•	• ·	20	ův	• 4	41	9	149	7.87	•	I
78+00N 112+00E -	1	5	8	9	.2	3	1	31	1.74	4	1
78+00N 113+00E -	1	9	22	46	.2	10	- 4	107	4.13	7	1
78+00N 114+00E	1	14	24	39	.5	10	- 4	92	5.73	11	2
78+00N 115+00E	1	30	20	77	.3	26	10	262	5.95	14	1
78+00N 116+00E -	1	9	23	101	.1	18	7	528	5.02	10	1
78+00N 117+00E -	1	13	38	112	.6	15	7	203	3.31	11	1
78+00N 118+00E 🕗	1	16	24	71	.8	15	9	836	3.18	7	2
78+00N 119+00E ~	1	24	11	58	.5	29	11	243	4.62	3	2
τ × 78+00N 119+60€20E	E 1	38	19	124	.3	48	17	634	4.36	3	2
78+00N 120+00E -	1	33	17	54	.1	17	6	361	4.15	6	1
78+00N 121+00E -	2	40	21	78	.1	15	8	450	9.58	9	1
78+00N 122+00E -	1	13	7	30	.1	8	2	182	2.13	4	1
78+00N 123+00E 🗸	1	48	12	69	.1	37	13	248	4.60	5	1
78+00N 125+00E 🛩	1	36	27	88	.8	31	12	293	7.47	19	5
78+00N 126+00E -	1	19	22	89	•1	24	10	220	6.44	7	1
78+00N 127+00E -	1	32	18	140	.2	37	19	279	6.00	2	1
78+00N 128+00E 🛩	1	11	12	60	.2	12	6	139	3.36	2	1
78+00N 129+00E V	_ 1	13	19	50	.2	13	8	391	3.69	5	1
76+00N 107+00E	1	25	12	- 94	.2	20	14	690	3.83	28	1
76+00N 108+00E -	1	69	115	272	.3	57	26	1010	5.11	44	3
76+00N 109+00E~	1	5	21	65	.7	10	4	152	2,55	8	1
76+00N 110+00E ·	1	14	35	67	.4	18	6	146	4.53	6	1
76+00N 111+00E -	1	28	19	98	.2	23	9	242	4.78	9	ī
76+00N 112+00E -	1	12	21	46	.1	10	4	145	3.61	6	1
76+00N 113+00E -	2	55	51	114	1.8	27	20	3108	4.70	19	1
76+00N 116+00E -	1	24	36	135	.9	25	17	854	4.35	36	1
76+00N 117+00E -	1	16	22	59	.2	16	6	144	5.37	18	1
× 76+00N 11B+50E -	I	44	23	130	.3	52	20	659	4.80	6	1
76+00N 120+00E-	2	34	22	85	.3	14	6	280	5.57	3	1
76+00N 121+00E-	5	50	34	82	.1	21	7	151	10.73	24	3
¥ 76+00N 121+80E ₽	1	57	41	80	.5	48	14	905	4.30	15	5
STD C/AU-S	21	61	41	143	7.0	73	30	1072	4.00	36	50

NORTHWEST G	EOLO	GICA	¥L.	P'F	OJE	ст -	• 11	4 1	FILE	# 8	86-2712
SAMPLE®	Ha PPH	Cu PPN	Pb Ppn	Zn PPM	Ag PPH	Ni PPN	Co PPN	Hn PPN	Fe I	As PPN	Au‡ PPB
~76+00N 122+00E	3	161	46	108	1.1	73	32	6372	4.90	8	1
76+00N 123+00E	- 1	21	15	116	.2	23	11	626	5.32	2	1
76+00N 124+00E	· 1	31	15	62	.2	17	6	168	6.63	6	1
76+00N 125+00E	- 2	47	25	72	.1	19	8	199	12.42	12	1
76+00N 126+00E	- 3	20	21	129	.3	23	19	495	10.90	6	1
76+00N 127+00E	ь <u>1</u>	21	18	84	.1	24	12	644	6.90	2	1
76+00N 128+00E	- 1	39	24	108	.1	46	15	375	6.55	4	1
76+00N 129+00E	- 1	22	24	78	.4	21	9	254	7.78	3	1
73+50E 74+00N 106+00E	v 1	104	110	242	2.9	80	27	5460	7.79	48	2
74+00N 107+00E	- 1	16	29	76	.1	21	8	313	3.04	10	1
74+00N 108+00E	~ 1	4	11	24	.3	6	2	79	1.27	3	2
74+00N 109+00E	- 1	3	10	18	.1	3	2	102	.67	2	1
74+00N 110+00E	∽ <u>1</u>	2	8	22	.3	4	2	120	1.04	2	1
74+00N 111+00E	u 1	9	20	58	.1	- 14	5	144	3.06	10	2
74+00N 112+00E	. 1	4	17	34	.1	7	3	107	2.27	4	1
74+00N 114+00E	- 1	5	8	24	.1	5	2	106	1.08	3	2
74+00N 115+00E	- 1	3	7	22	.1	5	2	65	1.73	7	4
74+00N 116+00E	- 1	22	18	62	.2	21	6	126	5.34	16	1
74+00N 117+00E	- 1	20	30	67	.3	- 34	10	464	2.99	19	1
SILT X74+00N 117+85E	- 1	51	22	126	.4	50	19	619	4.64	2	1
74+00N 118+00E	· 1	20	17	64	.2	14	10	621	2.82	6	2
V 74+00N 120+00E	- 1	20	7	39	.1	13	4	104	2.11	3	1
3450 N 74+00N 122+00E	- 1	27	?	31	.1	12	3	72	1.99	4	1
74+00N 123+00E	· 1	18	7	44	.1	15	6	169	4.45	3	1
74+00N 124+00E	- 1	ę	6	35	.1	10	4	147	2.38	2	1
74+00N 125+00E	<u> </u>	30	13	54	.3	13	5	158	6.27	3	1
72+00N 105+00E	- 1	12	6	12	.9	5	1	45	.37	2	1
72+00N 106+00E	- 1	7	11	44	.2	12	4	144	1.81	2	2
72+00N 107+00E	- 1	1	4	7	.2	1	1	129	.12	2	1
72+00N 108+00E	- 1	14	29	92	.6	37	14	211	5.58	5	9
72+00N 109+00E	1	8	21	30	.2	8	3	148	3.73	9	1
72+00N 110+00E	- 1	7	16	48	. 6	10	- 4	109	4.08	9	1
72+00N 111+00E	· 1	21	32	89	1.2	21	12	465	3.11	6	1
72+00N 112+00E	1	16	32	78	.1	17	10	333	2.81	7	1
72+00N 113+00E	- 1	4	5	18	.2	5	1	34	.57	2	1
72+00N 115+00E	v 1	3	3	15	.3	3	1	51	. 83	2	ī
STD C/AU-S	22	59	42	139	7.2	70	29	1042	4.00	39	51

.....

. •

. • ..

PAGE 2

.

		NORTHWEST		GEOLOGICAL			PR0JECT-114 FILE # 86-2712							
		SAMPLE	Na PPN	Cu PPM	Pb PPN	Zn PPM	Aq PPM	Ni PPM	Co PPM	Hn PPN	Fe I	As PPN	Au t PPB	
		72+00N 117+00E	- 1	14	15	61	.1	13	5	144	5.88	27	1	
	SILT	72+00N 117+85E	× 2	49	22	130	.7	50	18	632	4.72	2	1	
		72+00N 118+00E	- 1	36	12	84	.4	24	7	153	2.82	4	1	
		72+00N 119+00E	- 1	22	25	102	- 4	16	6	149	4.58	11	1	
		72+00N 121+00E	- 1	13	7	41	.6	12	5	130	4.61	3	1	
		72+00N 122+00E	- 1	11	7	49	.1	13	5	222	4.07	7	2	
		72+00N 123+00E	r 1	27	10	- 44	.1	18	7	141	7.21	11	1	
		72+00N 124+00E	· 1	17	12	69	.1	17	8	224	7.05	6	1	
		72+00N 125+00E	1	16	16	48	.1	15	6	192	6.18	17	1	
1		68+00N 70+00E L	1	24	20	105	.1	29	10	321	3.21	11	3	
		68+00N 71+00E+	1	37	44	119	.1	30	10	491	3.32	17	2	
		68+00N 72+00E	1	16	28	- 94	.4	15	5	143	2.73	10	2	
		68+00N 73+00E	1	61	25	260	.2	31	9	262	4.39	17	2	
		68+00N 74+00E	1	49	41	148	.3	41	14	512	4.28	20	1	
		68+00N 75+00E	1	26	23	152	.3	32	11	317	4.07	15	11	
		68+00N 76+00E	1	23	24	130	.3	29	11	317	3.13	13	3	
		68+00N 77+00E /	1	50	36	129	.2	42	12	458	3.61	22	2	
		68+00N 78+00E	Ł	36	33	167	.5	37	13	421	3.69	16	6	
		68+00N 79+00E	1	43	43	184	.2	39	14	433	4.52	25	1	
		68+00N 80+00E	1	42	32	109	.5	30	9	301	3.30	19	1	
		68+00N 81+00E	1	105	54	130	.5	68	17	532	5.07	18	2	
		68+00N 82+00E~	1	47	34	116	.3	40	16	666	4.13	12	1	
		68+00N 83+00E -	1	54	78	193	.3	55	25	880	4.95	37	5	
		68+00N 84+00E	1	30	28	134	.2	32	9	327	4.09	12	1	
		68+00N 85+00E -	1	42	34	165	.2	33	10	296	3.74	19	1	
		68+00N 86+00E -	1	53	47	230	.8	50	20	405	6.67	22	1	
		68+00N 87+00E	1	73	57	159	.3	51	26	622	5.93	35	1	
SILT	Χ-	68+00N 87+70E	1	40	37	163	.3	48	23	2127	4.46	31	20	
		68+00N 88+00E	· 1	21	30	94	.6	19	6	162	2.53	26	1	
		68+00N 89+00E	1	48	40	131	.3	32	13	497	3.59	27	1	
		66+00N 70+00E -	- 1	49	57	153	.4	39	16	351	4.58	36	1	
		66+00N 71+00E -	1	62	64	393	.5	47	19	742	4.87	23	1	
		66+00N 72+00E	1	78	45	131	.8	43	13	716	3.19	19	1	
		66+00N 73+00E -	1	31	50	152	.4	29	9	228	3.13	18	1	
		66+00N 74+00E -	1	9	25	61	.1	8	3	163	1.35	2	1	
		66+00N 75+00E -	- 1	20	33	133	.5	22	9	247	3.30	9	1	
		STD C/AU-S	21	60	40	141	7.3	71	29	1057	3.99	38	51	

.

.

· • .

 $\subset 1$

• •

1-

AGE 3

.

													~
	SAMPLE	HG PPN	Cu PPM	Pb PPN	Zn PPH	Ag PP N	Ni Pom	Ca PPM	Мл ром	Fe	ÂS DDM	Au t	
				•••			1.13			-	rrn	FFD	
	66+00N 76+00	E (1	21	30	97	.4	24	8	300	2.94	16	1	
	66+00N 77+00	E - 1	25	26	114	.1	34	10	230	3.16	14	1	
	66+00N 78+00	E 1	46	50	124	.5	52	17	597	4.56	26	3	
	66+00N 79+00	E - 1	20	19	105	.1	24	8	285	3.38	- 14	1	
	66+00N 80+00	E. 1	12	17	66	.1	14	6	203	2.32	6	1	
	66+00N 81+00	E. 1	6	17	48	.2	9	3	102	2.60	6	1	
	66+00N 82+00	E 1	137	62	155	.9	138	25	1540	4.80	29	1	
	66+00N 83+00	E. 1	31	29	100	.1	37	10	314	5.00	18	2	
	66+00N 84+00	E 1	43	61	177	.5	54	17	455	5.09	27	- 1	
	66+00N 85+00	E 1	43	32	152	.7	34	11	361	4.80	16	1	
	//.AAN 0/.AA			70									
	66+VVR 86+VV		85	52	199	.4	34	- 24	222	3.00	18	1	
	00+00N 8/+00		17	15		.5	16	1	185	4.33	37	6	
	66+00N 88+00	E I	45	37	162	.5	41	10	328	4.84	22	4	
	66+00N_89+00	H _ 1	65	41	156	1	48	16	447	4.12	31	2	
	64+00N /0+00	HE - 1	11	28	52	.2	11	3	108	3.64	15	1	
n	64+00N 71+00	E - 1	47	34	314	.3	42	16	477	5.48	15	1	
	64+00N 72+00	E 1	81	50	289	.1	47	15	581	3.76	19	2	
	64+00N 73+00	£∽ 1	29	27	199	.3	24	7	239	4.01	17	1	
	64+00N 74+00	E 1	55	38	145	.7	39	13	587	3.95	21	1	
	64+00N 75+00	E - 1	72	47	156	1.1	53	15	863	4.60	25	1	
	64+00M 76+00	1 1	47		127	0	71	11	505	1 00	71	1	
	64+00N 78+00	істі І П	57	47	171	, , g	45	14	701	4 07	44	1	
	64+00N 79+00	ν⊑ν ⊥ νΕ: 1	50	45	177	1 0	42 1	15		T.V/	20	1	
	64+00N R0+00	F I	56	78	135	1.0	47	14	917	4 30	24	1 77	
	64+00N 81+00	E 1	34	55	117	.4	40	13	2142	3.57	12	1	
	14.000.00.00												
	64+VUN 82+VU		17	20	11	-2	22	6	314	3.07	10	1	
	64+VUR 83+VU		22	27	1/5	. ა	22	11	397	4.99	10	3	
	64+00N 64+00		21	29	113	•2	25		228	4.4/	16	1	
	64100 001100 (4100 0110		28	20	130	.1	22	11	256	4.20	12	I	
	5470VN 56700		18	28	80	•2	20	6	1/4	5.17	12	I	
	64+00N 87+00	E∕ 1	26	20	109	.8	23	11	402	4.04	11	1	
	64+00N 89+00	E 1	22	29	B4	.1	17	7	237	8.55	14	1	
	64+00N 90+00	E _ 2	28	25	109	.1	27	10	471	7.74	19	1	
	62+00N 70+00	E 1	61	11	31	.1	8	4	99	3.62	30	1	
	62+00N 71+00)E 1	12	31	129	.4	15	4	277	4.37	14	1	
•	62+00N 72+00	E 1	16	18	86	.1	19	5	163	2.41	10	1	
	STD C/AU-S	22	61	44	141	7.0	74	30	1061	4.01	41	49	
											7.4		

. .

. .

• • <

SHMPLE# Mo Cu PB Zn App Ni Co Ma Fe Aps Aut 62+00W 73+00E 1 42 75 262 6 28 10 527 4.67 22 4 62+00W 73+00E 1 54 42 38 2.2 29 11 344 427 17 1 62+00W 73+00E 1 56 55 115 .3 37 16 442 4.06 16 21 2 62+00W 73+00E 1 04 01 07 .5 28 10 276 3.16 31 1 62+00W 73+00E 1 25 33 143 .2 28 10 276 4.16 28 21 4 16 274 11 3 224 30 3.12 1 3 32 31 11 .3 23 10 246 3.99 11 3		NORTHWEST	T GEOLOGICAL			PRO	JEC.	T-11	.4 F	ILE	# 86-2712			
PPH PPH <th></th> <th>SAMPLE</th> <th>No</th> <th>Cu</th> <th>Pb</th> <th>Zn</th> <th>Aç</th> <th>Ni</th> <th>Ca</th> <th>No</th> <th>Fe</th> <th>As</th> <th>Au≢</th> <th></th>		SAMPLE	No	Cu	Pb	Zn	Aç	Ni	Ca	No	Fe	As	Au≢	
62+00W 73+00E 1 42 75 262 .8 28 10 527 4.67 72 4 62+00W 74+00E 1 48 42 138 .2 27 11 341 4.27 17 1 62+00W 75+00E 1 59 51 128 .3 45 16 441 1.2 12 62+00W 75+00E 1 40 40 107 .5 28 11 376 3.14 13 1 62+00W 75+00E 1 20 36 151 .2 22 8 213 4.22 12 1 62+00W 80+00E 1 22 33 1.72 .2 28 10 375 5.47 14 1 62+00W 80+00E 1 13 1 .5 277 .1 14 5 217 3.12 9 1 62+00W 80+00E 1 12 23 11 .5 247 .12 10 1 62+00W 80+00E 1 12 31			PPN	PPH	PPH	PPH	PPM	PPN	PPH	PPH	z	PPN	PPB	
62-001 74+00E 1 48 42 138 -2 29 11 341 4.27 17 1 62-001 75+00E 1 59 51 128 .3 45 18 481 4.12 21 2 62+001 75+00E 1 69 98 130 1.2 44 16 794 4.06 21 2 2 8 11 395 3.16 13 1 62+001 77+00E 1 20 36 151 .2 22 8 213 4.22 12 1 62+001 77+00E 1 22 33 172 .2 28 10 395 5.49 141 1 62+001 80+00E 1 21 31 1 .3 23 10 246 3.90 11 3 62+001 83+00E 1 12 25 72 .1 14 5 217 3.12 9 1 1 1 1 1 1 1 1 1 1 1 1		62+00N 73+00E >	1	42	75	262	.8	28	10	527	4.67	22	4	
62+00N 75+00E 1 59 51 128 .3 45 18 481 4.12 21 2 62+00N 76+00E 1 56 56 115 .3 37 16 442 4.06 41 6 62+00N 76+00E 1 69 98 130 1.2 44 16 794 4.06 25 2 62+00N 77+00E 1 20 36 151 .2 22 8 213 4.22 12 1 62+00N 78+00E 1 22 33 172 .2 28 10 278 4.16 10 2 62+00N 82+00E 1 21 31 1 .3 23 10 246 3.90 11 3 62+00N 83+00E 1 12 25 72 .1 14 5 217 3.12 9 1 62+00N 83+00E 1 12 25 74 .1 16 6 173 3.13 1 2 62+00N 84+00E 1		62+00N 74+00E 🛩	1	48	42	138	.2	29	11	341	4.27	17	1	
42+00N 72+00E 1 56 56 115 .3 37 16 442 4.06 41 6 62+00N 72+00E 1 40 40 107 .5 28 11 396 3.16 13 1 62+00N 72+00E 1 20 36 151 .2 22 8 203 4.22 12 1 62+00N 80+00E 1 22 33 172 .2 28 10 278 4.16 10 2 62+00N 80+00E 1 21 31 1 .3 23 10 276 4.16 10 2 62+00N 82+00E 1 21 31 1 .3 23 10 276 4.21 10 1 62+00N 83+00E 1 12 25 74 .1 16 6 193 3.81 13 1 62+00N 83+00E 1 27 32 168 21 75 5 22 3 3 11 12 23 3 11		62+00N 75+00E /	1	59	51	128	.3	45	18	481	4.12	21	2	
42+00M 77+00E 1 40 107 .5 28 11 396 3.16 13 1 62+00M 78+00E 1 20 36 151 .2 22 8 213 4.22 12 1 62+00M 78+00E 1 20 36 151 .2 22 8 213 4.22 12 1 62+00M 80+00E 1 22 33 143 .2 22 80 0278 4.16 10 2 62+00M 80+00E 1 21 31 1 .3 23 10 246 3.90 11 3 62+00M 83+00E 1 18 31 125 .5 24 9 24 10 1 31 14 5 217 3.12 9 1 62+00M 83+00E 1 82 14 9 1 10 3 184 2.75 5 2 2 3 62+00M 84+00E 1 21 49 1 10 3 5.13 11 2 <		62+00N 76+00E -	1	56	56	115	.3	37	16	442	4.06	41	6	
62+00M 78+00E / 1 69 98 130 1.2 44 16 794 4.06 26 2 62+00M 78+00E / 1 20 36 151 .2 22 8 213 4.22 12 1 62+00M 80+00E / 1 25 33 143 .2 22 8 10 276 416 10 2 62+00M 80+00E / 1 22 33 172 .2 26 10 395 5.49 14 1 62+00M 81+00E / 1 18 31 125 .5 24 9 269 4.21 10 1 62+00M 85+00E / 1 18 31 125 .5 24 9 269 4.21 10 1 31 12 5 5 235 45 624 7.94 22 3 5 5 235 45 624 7.94 22 3 5 5 5 5 235 45 624 7.94 22 3 5 <t< td=""><td></td><td>62+00N 77+00E v</td><td>1</td><td>40</td><td>40</td><td>107</td><td>.5</td><td>28</td><td>11</td><td>396</td><td>3.16</td><td>13</td><td>1</td><td></td></t<>		62+00N 77+00E v	1	40	40	107	.5	28	11	396	3.16	13	1	
62+00M 77+00E - 1 20 36 151 .2 22 8 213 4.22 12 1 62+00M 80+00E - 1 22 33 172 .2 26 10 279 4.16 10 2 62+00M 80+00E - 1 21 31 1 .3 23 10 246 3.90 11 3 62+00M 82+00E - 1 21 31 1 .3 23 10 246 3.90 11 3 62+00M 82+00E - 1 18 31 125 .5 24 9 269 4.21 10 1 42+00 10 3.81 13 1 62+00M 82+00E - 1 12 25 74 .1 16 61 92 3.81 13 1 22 3 24 7.1 10 3.5 1.1 2 22 3 24 3.81 13 1 2 1 3 16 2 13 14 20 3.0 3.1 12 <td< td=""><td></td><td>62+00N 78+00E ~</td><td>1</td><td>69</td><td>98</td><td>130</td><td>1.2</td><td>44</td><td>16</td><td>794</td><td>4.05</td><td>26</td><td>2</td><td></td></td<>		62+00N 78+00E ~	1	69	98	130	1.2	44	16	794	4.05	26	2	
62+00H 80+06E 1 25 33 143 .2 28 10 278 4.16 10 2 62+00H 81+00E 1 21 31 1 .3 23 10 246 3.99 11 3 62+00H 82+00E 1 21 31 1 .3 23 10 246 3.99 11 3 62+00H 82+00E 1 18 31 125 .2 24 4.2 10 1 6 13 3.81 13 1 62+00H 82+00E 1 18 31 125 .24 9 245 4.21 10 1 6 13 3.81 13 1 62+00H 82+00E 1 14 303 5.13 11 2 2 3 62+00H 82+00E 1 115 41 10 3.07 7 13 62+00H 90+00E 1 11 15 41 10 3.12 11 2 3 62+00H 90+00E 1 11 15 41 10 3.13 11		62+00N 79+00E 🗸	1	20	36	151	.2	22	8	213	4.22	12	1	
62+00N 81+00E - 1 22 33 172 .2 26 10 395 5.49 14 1 62+00N 82+00E - 1 21 31 1 .3 23 10 246 3.90 11 3 62+00N 83+00E - 1 12 25 72 .1 14 5 217 3.12 9 1 62+00N 85+00E - 1 12 25 74 .1 16 64 193 3.81 13 1 62+00N 85+00E - 1 8 21 49 .1 10 3 184 2.75 5 2 62+00N 85+00E - 1 8 21 49 .1 10 3 184 2.75 5 2 62+00N 89+00E - 1 27 32 168 .1 36 12 310 3.11 2 31 12 31 12 31 12 31 36 217 31 36 217 31 36 217 31 30 37		62+00N 80+00E ~	1	25	33	143	.2	28	10	278	4.16	10	2	
62+00M 82+00E* 1 21 31 1 .3 23 10 246 3.90 11 3 62+00M 83+00E* 1 14 25 72 .1 14 5 217 3.12 9 1 62+00M 83+00E* 1 18 31 125 .5 24 9 269 4.21 10 1 62+00M 83+00E* 1 82 21 49 .1 10 3 381 13 1 62+00M 83+00E* 1 82 14 49 .1 10 3 5.13 11 2 62+00M 83+00E* 1 28 31 142 .7 36 14 303 5.13 11 2 62+00M 83+00E* 1 11 15 41 .2 11 41 00 3.07 7 13 51+000E63+00E* 1 12 11 15 .2 .35 11 135 2.12 2 1 51+000E63+00E N 1 15 19		62+00N 81+00E v	1	22	33	172	.2	26	10	395	5.49	14	1	
62+00N 83+00E 1 14 25 72 .1 14 5 217 3.12 9 1 62+00N 85+00E 1 12 25 74 .1 16 6 193 3.81 13 1 62+00N 85+00E 1 8 21 49 .1 10 3 184 2.75 5 2 62+00N 87+00E 2 91 70 568 .5 255 45 624 7.94 22 3 62+00N 88+00E 1 28 31 142 .7 36 14 303 5.13 11 2 62+00N 89+00E 1 11 15 41 2 11 400 3.07 7 15 51+000E61+00E 1 15 12 115 .2 35 11 1135 2.21 2 1 51+00E64+00E 1 15 19 86 .2 5 1 84 .65 2 1 51+00E64+00E 1 15 12<		62+00N 82+00E	1	21	31	1	.3	23	10	246	3.90	11	2	
62+00N 8+006- 1 18 31 125 .5 24 9 269 4.21 10 1 62+00N 85+006 1 12 25 74 .1 16 6 173 3.81 13 1 62+00N 85+006 1 8 21 49 .1 10 3 184 2.75 5 2 62+00N 85+006 1 28 31 142 .7 36 14 303 5.13 11 2 62+00N 89+006 1 27 32 168 .1 36 12 310 5.32 14 6 62+00N 89+006 1 27 32 168 .1 303 5.13 11 2 51+001664+006 N 1 15 21 115 .1 18 8 233 2.90 2 1 51+001664+001 N 1 15 19 86 .1 45 15 528 4.00 7 3 51+001664+001 N <t< td=""><td></td><td>62+00N 83+00E -</td><td>1</td><td>14</td><td>25</td><td>72</td><td>.1</td><td>14</td><td>5</td><td>217</td><td>3.12</td><td>9</td><td>1</td><td></td></t<>		62+00N 83+00E -	1	14	25	72	.1	14	5	217	3.12	9	1	
62+00M B5+00E 1 12 25 74 .1 16 6 193 3.81 13 1 62+00M B6+00E 1 8 21 47 .1 10 3 184 2.75 5 2 62+00M B7+00E 2 91 70 568 .5 235 45 624 7.94 22 3 62+00M B7+00E 1 27 32 168 .1 36 12 310 5.32 14 6 62+00M 89+00E 1 27 32 168 .1 36 12 310 5.32 14 6 62+00M 89+00E 1 15 17 36 14 100 3.07 7 13 51+00M664+00F N 1 15 17 86 .2 5 1 84 .65 2 1 51+00M664+00F N 1 15 19 86 .2 5 1 84 .65 2 1 51+00M664+00F N 1 34 19 <		62+00N 84+00E	1	18	31	125	.5	24	9	269	4.21	10	1	
$\begin{array}{c} 62+00M \ 86+00E & 1 & 8 & 21 & 49 & .1 & 10 & 3 & 184 & 2.75 & 5 & 2 \\ 62+00M \ 87+00E & 2 & 91 & 70 & 568 & .5 & 235 & 45 & 624 & 7.94 & 22 & 3 \\ \hline 62+00M \ 89+00E & 1 & 27 & 32 & 168 & .1 & 36 & 12 & 310 & 5.32 & 14 & 6 \\ \hline 62+00M \ 89+00E & 1 & 11 & 15 & 41 & .2 & 11 & 4 & 100 & 3.07 & 7 & 13 \\ \hline 51+00E61+00E^{+1} & 1 & 25 & 43 & 122 & .1 & 34 & 8 & 266 & 2.60 & 15 & 3 \\ \hline 51+00E65+00E \ N & 1 & 16 & 21 & 115 & .2 & 35 & 11 & 1135 & 2.21 & 2 & 1 \\ \hline 51+00E65+00E \ N & 1 & 51 & 9 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline 51+00E665+00E \ N & 1 & 51 & 9 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline 51+00E665+00E \ N & 1 & 51 & 9 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline 51+00E667+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+00E667+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+00E667+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+00E667+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+00E667+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+00E667+00E \ N & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+00E \ 69+00M & 1 & 17 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline \hline 50+00E \ 69+00M & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+00E \ 63+00M & 1 & 67 & 39 & .1 & 111 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 63+00M & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline \hline 50+00E \ 63+00M & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E \ 64+00M & 1 & 6 & 7 & 39 & .$		62+00N 85+00E	1	12	25	74	.1	16	6	193	3.81	13	1	
$\frac{62+00N \ 87+00E}{62+00N \ 87+00E} 2 \ 91 \ 70 \ 568 \ .5 \ 235 \ 45 \ 624 \ 7.94 \ 22 \ 3$ $\frac{62+00N \ 88+00E}{62+00N \ 89+00E} 1 \ 27 \ 32 \ 168 \ .1 \ 36 \ 12 \ 310 \ 5.13 \ 11 \ 2 \ 62+00N \ 90+00E^{-} 1 \ 12 \ 7 \ 32 \ 168 \ .1 \ 36 \ 12 \ 310 \ 5.32 \ 14 \ 6 \ 62+00N \ 90+00E^{-} 1 \ 12 \ 7 \ 32 \ 168 \ .1 \ 36 \ 12 \ 310 \ 5.32 \ 14 \ 6 \ 62+00N \ 90+00E^{-} 1 \ 12 \ 7 \ 32 \ 168 \ .1 \ 36 \ 12 \ 310 \ 5.32 \ 14 \ 6 \ 62+00N \ 90+00E^{-} 1 \ 12 \ 5 \ 43 \ 122 \ .1 \ 34 \ 8 \ 266 \ 2.60 \ 15 \ 3 \ 5 \ 1400E \ 64+00E \ N \ 1 \ 15 \ 12 \ 115 \ .2 \ 35 \ 11 \ 1135 \ 2.21 \ 2 \ 1 \ 1135 \ 2.21 \ 2 \ 1 \ 115 \ 12 \ 8 \ 153 \ 1.65 \ 2 \ 1 \ 115 \ 12 \ 11 \ 135 \ 2.22 \ 1 \ 115 \ 12 \ 11 \ 135 \ 1.65 \ 2 \ 1 \ 115 \ 16 \ 91 \ .1 \ 25 \ 8 \ 510 \ 2.42 \ 4 \ 1 \ 15 \ 15 \ 528 \ 4.00 \ 7 \ 3 \ 1 \ 11 \ 11 \ 12 \ 11 \ 115 \ 12 \ 9 \ 7 \ 233 \ 3.63 \ 7 \ 1 \ 115 \ 51+00E \ 64+00E \ N \ 1 \ 13 \ 19 \ 72 \ .1 \ 29 \ 9 \ 233 \ 3.63 \ 7 \ 1 \ 115 \ 51+00E \ 64+00E \ N \ 1 \ 14 \ 11 \ 15 \ 15 \ 528 \ 4.00 \ 7 \ 3 \ 16 \ 11 \ 51+00E \ 64+00E \ N \ 1 \ 111 \ 58 \ 266 \ .7 \ 310 \ 27 \ 265 \ 4 \ 10 \ 11 \ 115 \ 16 \ 91 \ .1 \ 41 \ 15 \ 15 \ 528 \ 4.00 \ 7 \ 3 \ 3 \ 51+00E \ 64+00E \ N \ 1 \ 111 \ 58 \ 266 \ .7 \ 310 \ 27 \ 265 \ 4 \ 10 \ 11 \ 115 \ 16 \ 91 \ .1 \ 26 \ 17 \ 310 \ 27 \ 265 \ 4 \ 11 \ 115 \ 16 \ 91 \ .1 \ 11 \ 11 \ 12 \ 11 \ 115 \ 16 \ 91 \ .1 \ 12 \ 11 \ 12 \ 11 \ 115 \ 16 \ 91 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 12 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 11 \ 12 \ 11 \ 12 \ 11 \ 12 \ 12 \ 11 \ 12 \ 11 \ 12 \ 12 \ 11 \ 12 \ 12 \ 12 \ 11 \ 12 \$		62+00N 86+00E	1	6	21	49	.1	10	3	184	2.75	5	2	
$\begin{array}{c} 62+00N \ 88+00E^{-} & 1 & 28 & 31 & 142 & .7 & 36 & 14 & 303 & 5.13 & 11 & 2 \\ 62+00N \ 89+00E^{-} & 1 & 12 & 7 & 32 & 168 & .1 & 36 & 12 & 310 & 5.32 & 14 & 6 \\ 62+00N \ 90+00E^{-} & 1 & 11 & 15 & 41 & .2 & 11 & 4 & 100 & 3.07 & 7 & 13 \\ \hline 51+000E62+00E \ N & 1 & 15 & 21 & 115 & .2 & 35 & 11 & 1135 & 2.21 & 2 & 1 \\ \hline 51+000E62+00E \ N & 1 & 15 & 19 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline 51+000E65+00E \ N & 1 & 51 & 9 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline 51+000E65+00E \ N & 1 & 12 & 11 & 115 & .1 & 18 & 8 & 233 & 2.90 & 2 & 1 \\ \hline 51+000E65+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+000E65+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+000E66+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+000E66+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+000E66+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+000E66+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+000E66+00E \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 50+00E \ 60+00N & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+00E \ 60+00N & 1 & 127 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline 50+00E \ 60+00N & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+00E \ 60+00N & 1 & 62 & 40 & 194 & .1 & 50 & 22 & 614 & 4.11 & 11 & 2 \\ \hline 50+00E \ 60+00N & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+00E \ 60+00N & 1 & 7 & 4 & 18 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ \hline 50+00E \ 60+00N & 1 & 7 & 4 & 18 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E \ 60+00N & 1 & 7 & 4 & 18 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E \ 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E \ 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E \ 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E \ 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E \ 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 $		62+00N 87+00E	2	91	70	568	.5	235	45	624	7.94	22	2	
$\frac{62+00N}{62+00N} = \frac{99+00E^{\circ}}{1} = \frac{1}{27} = \frac{32}{32} = \frac{168}{14} = \frac{1}{36} = \frac{3}{12} = \frac{3}{10} = \frac{5}{3.22} = \frac{14}{1} = \frac{6}{62+00N} = \frac{90+00E^{\circ}}{1} = \frac{1}{11} = \frac{15}{12} = \frac{11}{11} = \frac{4}{100} = \frac{100}{10} = \frac{100}{11} $		62+00N 88+00E	i	28	31	142	.7	36	14	303	5.13	11	2	
$\frac{62+00N}{5} \frac{90+00E^{\vee}}{1} = 1 = 11 = 15 = 41 - 2 = 11 = 4 = 100 = 3.07 = 7 = 13 = 51+00E(62+00E_1) = 1 = 25 = 43 = 122 = 1 = 34 = 8 = 266 = 2.60 = 15 = 33 = 51+00E(62+00E_1) = 1 = 16 = 21 = 115 = 22 = 35 = 11 = 1135 = 2.21 = 2 = 1 = 115 = 115 = 22 = 35 = 11 = 1135 = 2.21 = 2 = 1 = 115 = $		62+00N 89+00E	1	27	32	168	.1	36	12	310	5.32	14	6	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 51+001661+006+1 & 1 & 25 & 43 & 122 & .1 & 34 & 8 & 266 & 2.60 & 15 & 3 \\ \hline \\ \begin{array}{c} 51+001662+001 & N & 1 & 16 & 21 & 115 & .2 & 35 & 11 & 1135 & 2.21 & 2 & 1 \\ \hline \\ \begin{array}{c} 51+001664+001 & N & 1 & 5 & 19 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline \\ \begin{array}{c} 51+001664+001 & N & 1 & 5 & 19 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline \\ \begin{array}{c} 51+001664+001 & N & 1 & 12 & 8 & 103 & .1 & 12 & 8 & 1153 & 1.63 & 2 & 2 \\ \hline \\ \begin{array}{c} 51+001664+001 & N & 1 & 12 & 11 & 115 & .1 & 18 & 8 & 233 & 2.90 & 2 & 1 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 51+001667+001 & N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ \hline \\ \begin{array}{c} 50+002 & 69+001 & N & 1 & 111 & 58 & 266 & .7 & 310 & 27 & 130 & 27 & 130 & 18 \\ \hline \\ \begin{array}{c} 50+002 & 67+00N & 1 & 127 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline \\ \begin{array}{c} 50+002 & 67+00N & 1 & 13 & 10 & 45 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 67 & 379 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 7 & 4 & 18 & .1 & 52 & 60 & .89 & 2 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 7 & 4 & 18 & .1 & 52 & 40 & .89 & 2 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 7 & 4 & 18 & .1 & 52 & .40 & .89 & 2 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 7 & 4 & 18 & .1 & 52 & .2 & .60 & .89 & 2 & 1 \\ \hline \\ \begin{array}{c} 50+002 & 64+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 $		62+00N 90+00E -	1	11	15	41	.2	11	4	100	3.07	7	13	
$ \begin{array}{c} 51+001662+001 \text{ N} & 1 & 16 & 21 & 115 & .2 & 35 & 11 & 1135 & 2.21 & 2 & 1 \\ \hline 51+001663+001 \text{ N} & 1 & 15 & 12 & 104 & .1 & 25 & 8 & 510 & 2.42 & 4 & 1 \\ \hline 51+001664+001 \text{ N} & 1 & 5 & 19 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ \hline 51+001665+001 \text{ N} & 1 & 12 & 8 & 103 & .1 & 12 & 8 & 1153 & 1.63 & 2 & 2 \\ \hline 51+001667+001 \text{ N} & 1 & 12 & 11 & 115 & .1 & 18 & 8 & 233 & 2.90 & 2 & 1 \\ \hline 51+001667+001 \text{ N} & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+001667+001 \text{ N} & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+001667+001 \text{ N} & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ \hline 51+00167+000 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+000 \text{ C}70+001 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+000 \text{ C}70+001 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+000 \text{ C}70+001 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+000 \text{ C}70+001 \text{ N} & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+000 \text{ C}6+0001 \text{ N} & 1 & 127 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline 50+000 \text{ C}6+0001 \text{ N} & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+000 \text{ C}6+0001 \text{ N} & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+000 \text{ C}6+0001 \text{ N} & 1 & 15 & 16 & 91 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ \hline 50+000 \text{ C}6+0001 \text{ N} & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+000 \text{ C}63+0001 \text{ N} & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+000 \text{ C}63+0001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \text{ C}61+0001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \text{ C}61+0001 \text{ 1} & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \text{ C}61+0001 \text{ 1} & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \text{ C}61+0001 \text{ 1} & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \text{ C}61+0001 \text{ 1} & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+$	·	51+004661+005 H	1	25	43	122	.1	34	8	266	2.60	15	3	
$C_{COD}(H) = \begin{bmatrix} 51+001 \ 1 & 1 & 5 & 22 & 104 & .1 & 25 & 8 & 510 & 2.42 & 4 & 1 \\ 51+001 \ 64+001 \ N & 1 & 5 & 19 & 86 & .2 & 5 & 1 & 84 & .65 & 2 & 1 \\ 51+001 \ 64+001 \ N & 1 & 12 & 8 & 103 & .1 & 12 & 8 & 1153 & 1.43 & 2 & 2 \\ 51+001 \ 64+001 \ N & 1 & 12 & 11 & 115 & .1 & 18 & 8 & 233 & 2.90 & 2 & 1 \\ 51+001 \ 64+001 \ N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.63 & 7 & 1 \\ \hline 51+001 \ 64+001 \ N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ 51+001 \ 64+001 \ N & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ \hline 51+001 \ 64+001 \ N & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ \hline 51+000 \ 64+001 \ N & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+001 \ 70+001 \ N & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+001 \ 70+001 \ N & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+001 \ 64+001 \ N & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline 50+001 \ 64+001 \ 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+001 \ 64+001 \ 1 & 13 & 10 & 45 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ \hline 50+001 \ 64+001 \ 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+001 \ 64+001 \ 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 73 & 9 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 73 & 9 & .1 & 12 & 8 & 259 & 2.58 & 4 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 73 & 9 & .1 & 12 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \ 64+0001 \ 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \ 64+0001 \ 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000 \ 64+001 \ 1 & 16 & 7 & 77 & 7 & 7 & 7 & 7 & 7 & 7 & 7 &$		> 51+00 E62+00E N	1	16	21	115	.2	35	11	1135	2.21	2	1	
S1+008664+000 N 1 5 19 86 .2 5 1 84 .65 2 1 S1+008665+001 N 1 12 8 103 .1 12 8 1153 1.63 2 2 S1+008665+001 N 1 12 11 115 .1 18 8 233 2.90 2 1 S1+008667+008 N 1 34 19 72 .1 29 9 233 3.63 7 1 S1+008667+008 N 1 56 45 86 .1 45 15 528 4.00 7 3 S1+008670+008 N 1 44 25 94 .2 44 15 847 3.95 8 3 S1+008670+008 N 2 64 23 151 .3 66 18 326 4.76 16 11 S0+00E 67+00N 1 62 40 194 .1 50 22 614 4.11 11 2 S0+00E <		- 51+00 E63+00 N	1	15	22	104	.1	25	8	510	2.42	4	1	
$\begin{array}{c} 51+000\ell65+001N & 1 & 12 & 8 & 103 & .1 & 12 & 8 & 1153 & 1.63 & 2 & 2 \\ 51+000\ell66+001N & 1 & 12 & 11 & 115 & .1 & 18 & 8 & 233 & 2.90 & 2 & 1 \\ 51+000\ell67+001N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+000\ell69+001N & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ \hline 51+000\ell69+001N & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+000\ell69+000N & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+000\ell69+000N & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+000\ell69+000N & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline 50+000\ell69+000N & 1 & 62 & 40 & 194 & .1 & 50 & 22 & 614 & 4.11 & 11 & 2 \\ \hline 50+000\ell69+000N & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+000\ell65+0001 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+000\ell65+0001 & 1 & 67 & 399 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+000\ell63+0001 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+000\ell63+0001 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+000\ell63+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+000\ell61+0001 & 1 & 16 & 34 & 69 & .1 &$		🗸 51+00#E64+00# N	1	5	19	86	.2	5	1	84	. 65	2	1	
$\begin{array}{c} 51+001 E66+001 N & 1 & 12 & 11 & 115 & .1 & 18 & 8 & 233 & 2.90 & 2 & 1 \\ 51+001 E67+001 N & 1 & 34 & 19 & 72 & .1 & 29 & 9 & 233 & 3.83 & 7 & 1 \\ \hline 51+001 E68+001 N & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ 51+001 E69+001 N & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ \hline 51+001 E70+001 N & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+00E 70+001 N & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+00E 69+001 N & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+00E 69+001 N & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline 50+00E 65+001 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+00E 65+001 1 & 13 & 10 & 45 & .1 & 21 & 8 & 257 & 2.58 & 4 & 1 \\ \hline 50+00E 64+001 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+00E 63+001 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+00E 63+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+00E 61+001 1 & 16 & 34 & 69 & .1 & 29 &$		51+00#E65+00# N	1	12	8	103	.1	12	8	1153	1.63	2	2	
$\begin{array}{c} 51+001 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		51+00#E66+00EN	. 1	12	11	115	.1	18	8	233	2.90	2	1	
$\begin{array}{c} 51+001668+001 \text{ N} & 1 & 56 & 45 & 86 & .1 & 45 & 15 & 528 & 4.00 & 7 & 3 \\ 51+001669+001 \text{ N} & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ 51+001670+001 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ 50+001670+001 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ 50+001670+001 \text{ N} & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ 50+001670+001 \text{ N} & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline & 50+001670+001 \text{ N} & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ 50+001670+001 \text{ N} & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ 50+001670+001 \text{ N} & 1 & 13 & 10 & 45 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ 50+001670+001 \text{ N} & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+001 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+0010 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+0010 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+00100 \text{ N} & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+001670+0010000000000000000000000000000$		- 51+00 E67+00EN	1	34	19	72	.1	29	9	233	3.83	7	1	
$ \begin{array}{c} 51+001669+001 \text{ IV} & 1 & 44 & 25 & 94 & .2 & 44 & 15 & 847 & 3.95 & 8 & 3 \\ \hline 51+001670+001 \text{ IV} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \hline 50+001670+001 & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \hline 50+0016 & 69+001 & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline 50+0016 & 67+001 & 1 & 62 & 40 & 194 & .1 & 50 & 22 & 614 & 4.11 & 11 & 2 \\ \hline 50+0016 & 67+001 & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+0016 & 65+001 & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline 50+0016 & 65+001 & 1 & 13 & 10 & 45 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ \hline 50+0016 & 65+001 & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline 50+0016 & 63+001 & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+0016 & 63+001 & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline 50+0016 & 63+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline 50+0016 & 61+001 & 1 & 61 & 139 & 7.2 & 70 & 29 & 1040 & 3.98 & 41 & 50 \\ \hline \end{array}$		51+001E68+00E M	1	56	45	86	.1	45	15	528	4.00	7	3	
$ \begin{array}{c} \sim 51+0011270+0011 \text{ N} & 2 & 64 & 23 & 151 & .3 & 66 & 18 & 326 & 4.76 & 16 & 11 \\ \sim 50+001270+0011 & 1111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ \sim 50+0012 & 69+0011 & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline & 50+0012 & 69+0011 & 1 & 62 & 40 & 194 & .1 & 50 & 22 & 614 & 4.11 & 11 & 2 \\ \sim 50+0012 & 66+0011 & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ \hline & 50+0012 & 65+0011 & 1 & 13 & 10 & 45 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ \hline & 50+0012 & 63+0011 & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ \hline & 50+0012 & 63+0011 & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline & 50+0012 & 63+0011 & 1 & 30 & 15 & 73 & .1 & 32 & 14 & 363 & 4.12 & 2 & 1 \\ \hline & 50+0012 & 62+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ \hline & 50+0012 & 61+0011 & 1 & 61+011 & 1011 & 1011 & 10111 & 1011 & 1011 & 1011 & 10111 & 10111 & 10111 & 10111 & 10111 & 101111 & 101111 & 10111 & 101111 & 101111111 &$		51+00 £69+001 N	1	44	25	94	.2	44	15	847	3.95	8	3	
$\begin{array}{c} -50+00E & 70+00N & 1 & 111 & 58 & 266 & .7 & 310 & 29 & 1306 & 5.72 & 65 & 4 \\ -50+00E & 69+00N & 1 & 27 & 11 & 74 & .2 & 44 & 11 & 239 & 3.46 & 13 & 18 \\ \hline & 50+00E & 67+00N & 1 & 62 & 40 & 194 & .1 & 50 & 22 & 614 & 4.11 & 11 & 2 \\ -50+00E & 66+00N & 1 & 15 & 16 & 91 & .1 & 26 & 9 & 357 & 3.45 & 4 & 1 \\ -50+00E & 65+00N & 1 & 13 & 10 & 45 & .1 & 21 & 8 & 259 & 2.58 & 4 & 1 \\ -50+00E & 64+00N & 1 & 6 & 7 & 39 & .1 & 11 & 4 & 279 & 2.10 & 2 & 1 \\ -50+00E & 63+00N & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline & 50+00E & 63+00N & 1 & 7 & 4 & 18 & .1 & 5 & 2 & 60 & .89 & 2 & 1 \\ \hline & 50+00E & 62+00N & 1 & 30 & 15 & 73 & .1 & 32 & 14 & 363 & 4.12 & 2 & 1 \\ -50+00E & 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ & 50+00E & 61+00N & 1 & 16 & 34 & 69 & .1 & 29 & 7 & 207 & 2.47 & 5 & 1 \\ & 5TD & C/AU-S & 22 & 59 & 41 & 139 & 7.2 & 70 & 29 & 1040 & 3.98 & 41 & 50 \\ \hline \end{array}$		~ 51+00 E70+005 N	2	64	23	151	.3	66	19	326	4.76	16	11	
> 50+00E 69+00N 1 27 11 74 .2 44 11 239 3.46 13 18 > 50+00E 67+00N 1 62 40 194 .1 50 22 614 4.11 11 2 > 50+00E 66+00N 1 15 16 91 .1 26 9 357 3.45 4 1 > 50+00E 65+00N 1 13 10 45 .1 21 8 259 2.58 4 1 - 50+00E 64+00N 1 6 7 39 .1 11 4 279 2.10 2 1 - 50+00E 63+00N 1 7 4 18 .1 5 2 60 .89 2 1 - 50+00E 62+00N 1 30 15 73 .1 32 14 363 4.12 2 1 - 50+00E 61+00N 1 16 34 69 .1 29 7 207 2.47 5 1 - 50+00E 61+00N 1	A HOLE I	- 50+00E 70+00N	1	111	58	266	.7	310	29	1306	5.72	65	4	
✓ 50+00E 67+00N 1 62 40 194 .1 50 22 614 4.11 11 2 50+00E 66+00N 1 15 16 91 .1 26 9 357 3.45 4 1 50+00E 65+00N 1 13 10 45 .1 21 8 259 2.58 4 1 50+00E 64+00N 1 6 7 39 .1 11 4 279 2.10 2 1 50+00E 63+00N 1 7 4 18 .1 5 2 60 .89 2 1 ✓ 50+00E 62+00N 1 7 4 18 .1 5 2 60 .89 2 1 ✓ 50+00E 62+00N 1 16 34 69 .1 29 7 207 2.47 5 1 STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		> 50+00E 69+00N '	1	27	11	74	.2	44	11	239	3.46	13	18	
		50+00E 67+00N	1	62	40	194	.1	50	22	614	4.11	11	2	
1 50+00E 65+00N 1 13 10 45 .1 21 8 257 2.58 4 1 - 50+00E 64+00N 1 6 7 39 .1 11 4 279 2.10 2 1 - 50+00E 63+00N 1 7 4 18 .1 5 2 60 .89 2 1 - 50+00E 62+00N 1 30 15 73 .1 32 14 363 4.12 2 1 - 50+00E 62+00N 1 16 34 69 .1 29 7 207 2.47 5 1 - 50+00E 61+00N 1 16 34 69 .1 29 7 207 2.47 5 1 - STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		- 50+00E 66+00N	1	15	16	91	.1	26	9	357	3.45	4	1	
- 50+00E 64+00N 1 6 7 39 .1 11 4 279 2.10 2 1 - 50+00E 63+00N 1 7 4 18 .1 5 2 60 .89 2 1 - 50+00E 62+00N 1 30 15 73 .1 32 14 363 4.12 2 1 - 50+00E 61+00N 1 16 34 69 .1 29 7 207 2.47 5 1 STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		L 50+00E 65+00N	1	13	10	45	.1	21	8	259	2.58	4	1	
50+00E 63+00N 1 7 4 18 .1 5 2 60 .89 2 1 50+00E 62+00N 1 30 15 73 .1 32 14 363 4.12 2 1 50+00E 62+00N 1 16 34 69 .1 29 7 207 2.47 5 1 50+00E 61+00N 1 16 34 69 .1 29 7 207 2.47 5 1 STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		- 50+00E 64+00N	1	6	7	39	.1	11	4	279	2.10	2	1	
50+00E 62+00N 1 30 15 73 .1 32 14 363 4.12 2 1 50+00E 61+00N 1 16 34 69 .1 29 7 207 2.47 5 1 STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		- 50+00E 63+00N	1	7	4	18	.1	5	2	60	.89	2	1	
50+00E 61+00N 1 16 34 69 .1 29 7 207 2.47 5 1 STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		50+00E 62+00N	1	30	15	73	.1	32	14	363	4.12	2	1	
STD C/AU-S 22 59 41 139 7.2 70 29 1040 3.98 41 50		50+00E 61+00N	1	16	34	69	.1	29	7	207	2.47	5	1	
		STD C/AU-S	22	59	41	139	7.2	70	29	1040	3.98	41	50	

PAGE 5

.

•

**.

. - .

1--

SAMPLE	No PPN	Cu PPM	Pb PPM	Zn PPH	Aọ PPN	Ni PPN	Ca PPM	lin PPN	Fe X	As PPN	Au‡ PPB	*
51+90E 65+00N	1	12	16	169	.1	22	9	303	2.94	(1	5	
U 52+00E 70+00N	1	12	16	92	.1	23	8	443	2.38	13	3	
v 52+00E 69+00N	1	5	30	41	.1	13	2	117	.85	5	9	
52+00E 68+00N	1	5	8	44	.3	12	4	647	1.04	3	5	
v 52+00E 67+00N	1	9	8	54	.1	13	4	154	1.59	3	5	·
✓ 52+00E 66+00N	1	9	7	76	.1	20	9	1266	3.06	9	4	

, .

/**~**-

/-·

APPENDIX C

.

.

24

--.

•

PROJECT 114 C1, C3, CONCH CLAIMS CORRECTED COORDINATE SORT

.

	LD NO	EASTING	NORTHINS	SILT?	Cu	Ni	Ca	Pb	Zn	Aq	Ħn	As	Ац	73	Fe
	3	10600	7800		23	23	6	19	94	0.5	194	17	4	. 1	2.34
•	4	10700	7800		17	23	5	25	82	0.2	132	13	1	1	Z.14
	5	11100	7800		17	21	6	20	60	0.2	145	£	1	1	3.83
	5	11200	7800		5	3	ĩ	3	9	0.2	31	4	1	1	1.74
•	7	11300	7200	•	9	10	4	22	46	0.2	107	7	1	1	4,12
	9	11400	7800		14	10	\$	24	39	0.5	92	11	2	1	5.73
	9	11500	7800		30	26	10	20	77	0.3	262	14	1	1	5.75
•	10	11600	7300		9	13	7	23	101	0.1	528	10	1	1	5.02
	11	11700	7800		13	15	7	38	112	0.4	203	11	1	1	3.31
	12	11800	7800		16	15	Ģ	24	71	0.3	836	7	2	1	3,19
•	13	11900	7800		24	29	11	11	58	0.5	243	3	2	1	4.52
	14	11920	7800	S	3B	48	17	19	124	0.3	534	3	2	i	4.36
	15	12000	7800		33	17	٤	17	54	0.1	361	6	1	1	4,15
•	15	12100	7900		40	15	3	21	78	0.1	450	ģ	1	2	9.58
	17	12200	7800		13	9	3	7	30	0.1	192	4	1	1	2.13
	18	12300	7300		48	37	13	12	59	0.1	248	5	1	1	4,5
•	19	12500	7300		36	31	12	27	88	0.9	293	19	5	1	7.47
	20	12500	7900		19	24	10	22	57	0.1	<u></u>	7	1	1	5. 14
	1	12550	7800	S	25	35	16	11	92	0.1	620	5	1	1	4.8
•	21	12700	7800		32	37	19	18	140	0.2	279	2	1	1	. 5
	2	12775	7800	5	45	46	13	19	82	0.2	374	?	2	1	5,42
	22	12800	7800		11	12	5	12	50	0.2	139	2	1	1	. 3.35
,	23	12900	7809		13	13	9	19	50	0.2	391	5	1	1	(3.59
	24	10700	7600		25	20	14	12	94	0.2	590	28	1	1	3.33
,	25	10800	7600		69	57	26	115	272	0.3	1010	44	3	1	1 5.11
	26	10900	7600		5	10	4	- 21	55	0.7	152	9	1	1	2.55
	27	11000	7600		14	18	6	35	67	0.4	146	5	1	1	4.53
3	29	11100	7500		29	23	9	19	78	0.2	242	Ģ	1	1	4.73
	29	11200	7600		12	10	4	21	46	0.1	145	5	1	1	1 3.61
	30	11500	7500		55	27	20	51	114	1.3	3108	19	1		4.7
•	31	11500	7600		24	25	17	· 36	135	0.9	854	36	1		1 4.35
	32	11700	7600		16	16	5	22	59	0.2	144	19	1		l 5.37
	33	11850	7600	S	44	52	20) 23	130	0.3	559	5	1		1 4.3
•	34	12000	7500		34	14	5	22	35	0.3	280		1	:	2 5.57
	35	12100	7600		50	21	7	7 34	83	0.1	151	24	3		i 10.72
	75	12190	7500	S	57	48	14) 1 1	90	0.5	705	15	5		1 4.3
,	37	12200	7600		161	73		46	108	1.1	5372	3	1		3 4.9
	.18	12300	7600		21	23	11	. 15	116	0.2	525	2	1		1 5.32
	39	12400	7600		31	17	6	5 15	62	0.2	158	5	1		1 5.53
·	40	12500	7500		\$7	19	9) 25	72	0.1	199	12	1		2 12,42
	41	12500	7500	;	20	23	19	21	129	0.3	495	6	1		3 19.9
	12	12790	7600)	21	24	12	2 19	34	0.1	54.4		: 1		5.9
	43	: 12300	7500	<u>}</u>	39	46	15	5 24	:03	0.1	375	4	1		: 6.55
	14	12900	7500	ł	22	21	q	7 24	78	0.4	254	. 3	1		1 7.79
	45	5 10400	7350)	104	30	27	7 119	243	2.9	5460	94 94	: :	2	4 7.79
	16	10700) 7350)	15	21	9	3 29	75	i 0.1	313	10	1		1 7.04
	47	/ 10900) 7350)	4	. 6	. :	2 11	24	0,3	75) 3		2	1 1.27
	16	10900) 7350)	3	3		2 10	15	0.1	102	: 2	1		1 0.57
	49	7 11000) 7350	>	2	4		2 8	22	2 0.2	: 129	1 3	: 1	l	1 1.04
	50	11100) 7350)	9	14		5 20	58	3 0.1	. 144	10			1 3.05

....

.

.

*-

,

,

.

1

•

1	ID NO	EASTING	NORTHING	SILT?	Cu	Ni.	Co	25 	Zn	Aa	in 	As 	Au	Xa 	Fe
	51	11200	7350		4	7	3	17	34	0.1	107	+	1	1	2.27
	52	11400	7350		5	5	2	8	24	0.1	105	3	2	1	1.09
	53	11500	7350		3	5	2	7	33	0.1	65	7	4	1	1.73
	54	11500	7350		22	21	5	19	52	0.2	125	15	1	1	5.04
	55	11700	7350		20	34	10	30	67	0.3	464	19	t	1	2.99
	55	11735	7350	S	51	50	19	22	125	0.4	519	2	1	1	4,54
	57	11300	7350		20	14	10	17	64	0.2	621	6	2	1	2.32
	58	12000	7350		20	13	1	?	39	0.1	104	3	1	1	2.11
	59	12200	7350		27	12	3	7		0.1	72	4	1	1	1.99
	50	12300	7400		19	15	5	7	44	0.1	159	3	1	1	4,45
	51	12400	7400		9	10	4	5	35	0.1	147	2	1	1	2,39
	52	12500	7400		30	13	5	13	54	0.3	158	3	1	1	5.27
	53	10500	7200		12	5	1	6	12	0.9	45	2	1	1	0.37
	54	10600	7200		7	12	4	11	\$4	0.2	144	2		1	1.31
	65	10700	7200		1	1	1	4	. 7	0.2	129	2	1	1	0.12
	56	10800	7290		!4	37	14	29	92	0.6	211	5	9	1	5.53
	67	10900	7200		8	9	3	21	37	0.2	. 148	ģ	1	1	3.73
	58	11000	7200		?	10	4	15	48	0.6	109	Ş	1	1	4.08
	69	11100	7200		21	21	12	32	39	1.2	465	6	1	1	3.11
	70	11200	7290		15	17	10	32	79	0.1	ಪತ	7	1	1	2.91
	71	11300	7200		4	5	1	5	19	0.2	34	2	1	1	0.57
	72	11500	7200		3	3	1	3	15	0.3	51	2	1	1	0.93
	73	11700	7200		14	13	5	15	51	9.1	144	27	1	1	5.88
	74	11795	7200	S	19	50	18	22	130	0.7	532	3	1	2	4.72
/ - -	75	11800	7200		36	24	7	12	84	0.4	153	4	1	1	2.32
	76	11900	7200		22	15	5	25	102	0.4	. 149	11	1	1	4.58
	77	12100	7200		13	12	5	7	41	0.5	130	3	1	1	4.61
	79	1 2200	7200		. 11	13	5	7	49	0.1	222	7	2	1	4.07
	79	12300	7200		27	18	7	10	44	0.1	141	11	1	1	7.21
	30	12400	7200		17	17	9	12	. 59	0.1	224	5	1	1	7.05
	91	12500	7200		16	15	5	14	48	0.1	. 192	17	1	l	5.18
	174	5000	7000		111	310	29	58	256	0.7	1306	55	4	1	5.72
	173	5100	7000		54	66	18	23	: 151	0.3	: 326	15	11		2 4.75
	:94	5290	7000		12	23	9	15	9	2 0.1	443	13	3	1	2.38
	175	5000	6900		27	44	11	11	74	0.2	2 239	13	18	1	3.46
	172	5100	5900		44	44	- 15	25	94	0.2	347	3	3	2	3.95
	185	5200	5900		5	13	; 2	. 30) 41	. 0.1	117	5	, y		1 0.95
	171	5100	5800		56	15	15	45	5 96	0.1	523	7	1		4
	136	5200	5800	1	5	1.	4		4	U) 34/		. 3		1 1.04
	32	7000	5800		24	29	10	20) 10	5 0.1	. 521	. 11			1 3.21 . 7.70
	93	7100	5800)	37	- 30) 10	44	111	e 0.1	493	. 17			1 3.55
	34	7200	5800	t i i i i i i i i i i i i i i i i i i i	16	15	; 5	28	3 91	• 0.4	143	10	_		1 2.72
	85	7300	5300)	á1	. 31	. 9		5 250	0.2	2 25.	1.			4.19
	36	7400	5800	1	49	41	. 14		148	a 0.3	5 513	20	1		1,13
	57	7500	5800)	26	. 5	11	. 23	5 15	z 0.:	3 317	15	5 11		1 4.07
	38	7500	5600)	23	29	2 11	24	F 13() ().	5 317	: 11	1		: 3.13
	39	7700) 590()	50) 42	1 12	: 38	5 12'	7 0.1	2 458	2 2	2	2	1 3.51
	70	7300	5300	1	35) J	' 13	: 33	5 15	7 0.5	5 421	1) ź	1	1 3.59
	91	7700	086 ()	43	: 3	? 14	4.	5 18	4 0.1	2 433	: 35	5		1 4,52
	72	3000	5500	1	42	: :() 9	9 33	2 10'	7 0.1	5 201	. 19	3 1		1 J.J
	93	8100	6800)	105	1 68	8 17	' 54	4 13	o e.:	5 533	2 18		2	1 5.07
	94	3200	5800	,	\$7	· 4() 15	n 31	F 11	s 0.:	3 566	n 13	1		1 4.13
*~															
~ •															

,

•

;

•

)

)

)

)

)

3

3

}

ì

ì

}

ż

ì

,

à

i.

.

)

3

.

•

ID NO	EASTING	NORTHING	SILT?	Cu	Ni	Ca	Pb	Zn	Aq	ăn 🛛	As	Au	Ma	Fe
	6706	1900	******	54	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		70	197	0.7	990	 77			1 34
70	8100	6800		70		2.5	10	175	0.0	000 रम्	17	1		1 09
70 70	5400	4800		50	्य द्व रह	10	74	145	0.2	704	10	•	;	7.74
77	0000	6500		74	50	10	47	100	0.8	104	13	. 1	;	5. 57
70	- 0700	4960			51	76	57	150	0.3	522	35			5 07
77	0700	1000	-	10	.19		77	143	0.3	2127	21		• 1	4, 46
100	G000	2000	5	70	10		70	94	0.5	157	25	1	1	7.57
107	9900	6000		19	<u>ک</u>	17	10	131	0.3	197	27	1	1	7.59
102	2700	3000		70	32	10						•	-	
176	5000	6700		52	50	22	40	194	0.1	614	11	2	1	4.11
170	5100	5700		34	27	9	19	12	0.1	200	/	1	1	5.35
197	5200	6700		9	13	4	2	34	0.1	104	3	3	1	1.34
177	5000	5500		15	25	9	16	91	0.1	357	\$	1	1	3, 15
169	5100	5600		12	18	8	11	115	0.1	233	2	. 1	1	2.9
198	5200	6600		9	20	9	7	76	0.1	1256	Ģ	4	1	3.05
103	7000	6600		49	- 39	16	57	153	0.4	351	36	. 1	1	4.58
104	7100	5600		52	47	19	54	393	0.5	742	23	1	1	4.97
105	7200	6600		78	43	13	45	131	0.3	716	19	1	1	3.19
106	7300	5600		31	29	9	50	152	0.4	3238	18	1	1	3.13
107	7400	6600		9	8	3	25	51	0.1	163	2	. 1	1	1.35
108	7500	5600		20	22	9	33	133	0.5	247	Ģ	1	1	3.3
109	7600	5600		21	24	8	20	97	0.4	200	16	1	1	2.34
110	7700	6600		25	54	10	26	114	0.1	200	14	1	1	5.15
111	7800	6600		46	ı 52	17	50	124	0.5	397	25		1	4.55
112	7900	5600		20	24	9	19	105	0.1	185	14	1		. 0.03
113	8000	5600		12	. 14	6	17	56	0.1	203				. ಬೆಂಬಿಸೆ
114	8100	5600		5	9		17	48	0.2	102		· 1	1	. ú.J
115	8200	6600		137	138	20	54	: Loo	0.7	2040				4.C
115	8000	5500		ال ټ جو	. 3/ F EA	10		י 190 דדו	0.5	455	- 10 77	·		. 509
11/	0040	6500		40	5 J1 71	11	35	. 177 2 157	0.0	741	14	. 1		4.3
118	9300	5000		1.) J1 L 50	1 74	77	. 102	, , , , , , , , , , , , , , , , , , ,	755	: 19	> 1		1
117	· 3000	1 GOVO		30	در. د ۱۸ ۲		11	ייי די א	0.3	185		, . 1 ±	. 1	4.33
120	0000	1 2200		11	r 10 7 A1	10	। रा	, 140 140	, 0.5	770	22	, ,		4.94
121	. 3000 1 3000				5 1F	. 15	41	156	0.1	447	31	. 7		4.12
***				-										_
179	5000	5500)	15	3 21	9	10) 45	5 0.1	. 259	, ,	i 1		1 2.53
158	5100) 5000	1	1.	2 i.		· ·	a 195 6 426		1100	r 1	 • •	-	1 7 94
193	5190	5200)	1.	2 4		r 10	5 107	· 0.1		. 1.		-	1 2017
175	5000	5400	1		5 11	. 4	•	7 39	0.1	279	, :	2 1		1 2.1
167	7 5100) 6400)		5 5	5 1	1	7 86	5 0.2	94		2 1	1	1 0.85
123	7000) 5400) .	1	1 11		: 21	9 52	2 0.1	105	3 13	5 1		1 3.64
124	7100	5400)	4	7 42	2 16	3	4 31	4 0.0	477	/ 1	5 I	1	5,43
	5 7200) 5400)	9	1 43		5 51	0 259	7 0.1	581	1	? I	-	1 3.75
124	5 730(5400)	2	9 24		2	7 19	70.	239	/ I.	/ 1 · ·	1	: 4 .01
127	71)(5400)	51	5 39	13	, , , , ,	8 145	5 0.7	587				1 2.93
:29	1	5400)	7	z 5		4	/ 158				ן נ י	i ,	: 1.ú (7.0
129	7 7500	J 5400)	4	2 3	a 11		3 12. 	. Q.S	200	J 🔟	1 I 9	•	1 J.S 1 A.O.7
130) 73%	5400)	5	/ 48 5 ••		: 5 : ()	/ 150 5 (**	L U.S	s /01 L 214	ເ 13 ເ າະ	ະ າ	1	1 4.07 1 1.00
131	1	J 5400) \	2	u ł. 	2 li 7 1	נ נ יר ו	U L⊍. 0 17:		, 314 9 970	r r n'	- i 	, ,	1 17
ان لا رسم ا	a 500 ti bio/	J 6400 D 6400	י ר	3	द ने द र	r 11	ા / દ વા	a 191 5 11	a 0.1 7 A.1	G/1 1 7141	- , 1	2	-	1 7 57
139	+ 3100 5 200	U 3401 N 2404	,	ت ۱	т 1) С 1-	· ·	ע ע גר ג	u ii. 0 7	. ዓ. ን ሱ'	, _, , , , , , , , , , , , , , , , , ,	4 1	- 0	- !	1 7.07
ښدل ۱۳۲۴	L 3101	u 3400 1012 - 1	, 1	2	, <u> </u>	- 		ייייייייייייייייייייייייייייייייייייי	5 0.1	5 393	7 1	0	-	1 4,99
ۇن.م	a 3200	U 340	-	-	• ·	- -	• •	• • • •			•	- `	-	

•

1-

٢

ì

,

•

)

)

)

):

)

)

)

۱

-	•

.

D	NO	EASTING	NORTHING	SILT?	Cu	Ni	Co	РЬ 	Zn	Ag 	Ma	As 	Au 	79 	+e
	137	8400	6400		21	25	9	29	113	0.2	228	16	1	1	4.47
	138	3500	6400		29	33	11	23	156	0.4	236	12	1	1	4.25
	139	8600	5400		18	20	6	28	80	0.2	174	12	1	1	5.19
	140	9700	5400		25	23	11	20	109	0.9	402	11	1	1	4.04
	141	8700	6400		22	17	7	29	84	0.1	237	14	1	1	8.55
	142	9000	5400		23	27	10	25	109	0.1	\$71	19	1	2	7.74
	180	5000	6300		7	5	2	4	18	0.1	60	2	1	1	0,89
	156	5100	5300		15	25	9	22	104	0.1	510	4	1	1	2.42
	181	5000	6200		30	32	14	15	73	0.1	343	2	1	1	4.12
	155	51.00	5200		15	35	11	21	115	0.2	1135	2	1	1	2.21
	143	7090	6200		61	8	4	11	- 31	0.1	7 9	20	1	1	3.52
	144	7100	5200		12	15	5	31	129	0.4	277	14	1	1	4.37
	145	7200	6200		16	19	5	18	36	0.1	163	10	1	1	2.41
	146	7300	6200		12	29	10	75	252	0.8	527	22	\$	1	4.57
	147	7400	6200		48	29	11	42	138	0.2	341	17	1	1	4.27
	148	7500	5200		59	45	18	51	128	0.3	481	21	2	1	4.12
	149	7600	6200		56	37	15	56	115	0.3	442	41	5	1	4.06
	150	7700	6200		40	28	11	40	107	0.5	376	13	1	1	3.15
	151	7300	6200		69	44	16	78	130	t.2	794	26	2	1	4.06
	152	7900	5200		20	22	9	36	151	0.2	213	12	1	1	4, 22
	153	8000	6200		25	29	10	53	143	0.2	278	10	2	1	4,15
	154	8100	5200		22	25	10	33	172	0.2	395	14	1	1	5.49
	155	8200	6200		21	23	: 10	31	1	0.3	246	11	3	1	3.7
	156	9300	6200		14	14	5	25	72	0.1	217	Ģ	1	1	3.12
•	157	3400	6200		18	24	9	31	125	0.5	269	10	1	1	4.21
	158	3500	6200		12	15	, 5	25	74	0.1	193	13	1	1	3.91
	159	8600	6200		8	10) 3	21	49	0.1	184	5	2	1	2.75
	150	3700	5200		91	235	5 45	70	558	0.5	524	22	3	:	7.94
	161	3800	6200		28	36	14	31	142	0.7	303	11	2	1	5.13
	152	3700	6200		27	35	12	32	158	0.1	310	14	. 5	1	5,32
	163	7000	6200		11	11	4	15	41	0.2	100	7	13	:	3.07
	192	5000	5100		15	29	, ;	7 34	59	0.1	207	5	i 1	1	2.47
	164	5100	6100		25	34	i 1	43	122	0,1	266	15	: 3		1 2.5

. . . . [.

APPENDIX D

.

ر ما معر

.

-

128 P114GC	Elementary Statistics	
Variable:Cu PH	M	
Number of Samp Number of Miss	oles Selected: sing or Null Values:	187 0
Minimum: Maximum: Range: Mean: Median:	•	$1.000 \\ 161.000 \\ 160.000 \\ 31.000 \\ 24.000$
Variance: Standard Devia Standard Errom	ation: r:	609.733 24.693 1.806
Coefficient of Coefficient of Coefficient of	f Variation (%): f Skewness: f Kurtosis:	79.654 1.889 8.366
Log 10 Transfo Log 10 Variano Log 10 Standar	ormed Mean: ce: rd Deviation:	22.702 3.787 1.946
Percentiles		
Minimum: 1	.000	

-

10	\mathbf{TH}	Percentile	at	7.000
20	\mathbf{TH}	Percentile	at	12.000
30	\mathbf{TH}	Percentile	at	16.000
40	\mathbf{TH}	Percentile	at	20.000
50	$\mathbf{T}\mathbf{H}$	Percentile	at	23.000
60	$\mathbf{T}\mathbf{H}$	Percentile	at	29.000
70	$\mathbf{T}\mathbf{H}$	Percentile	at	39.000
80	$\mathbf{T}\mathbf{H}$	Percentile	at	48.000
90	\mathbf{TH}	Percentile	at	59.000

Maximum: 161.000

.

i L

.

-..

-.

Sun Nov

1.000

310.000

309.000

29.877

24.000

948.717

30.801

103.094

5.841

48.086

22.575

3.138

1.771

2.252

P114GC

Variable:Ni PPM

Number	of	Samples	Selected:	187
Number	of	Missing	or Null Values:	0

Minimum: Maximum: Range: Mean: Median:

.

Variance: Standard Deviation: Standard Error:

Coefficient of Variation (%): Coefficient of Skewness: Coefficient of Kurtosis:

Log 10 Transformed Mean: Log 10 Variance: Log 10 Standard Deviation:

Percentiles

Minimum: 1.000

10	\mathbf{TH}	Percentile	at	9.000
20	\mathbf{TH}	Percentile	at	13.000
30	\mathbf{TH}	Percentile	at	16.000
40	\mathbf{TH}	Percentile	at	21.000
50	$\mathbf{T}\mathbf{H}$	Percentile	at	24.000
60	\mathbf{TH}	Percentile	at	29.000
70	$\mathbf{T}\mathbf{H}$	Percentile	at	34.000
80	\mathbf{TH}	Percentile	at	41.000
90	\mathbf{TH}	Percentile	at	48.000

Maximum: 310.000

, مصحرين

Sun Nov

P114GC

Variable:Co PPM

Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	1.000
Maximum:	45.000
Range:	44.000
Mean:	10.262
Median:	9.000
Variance:	43.017
Standard Deviation:	6.559
Standard Error:	0.480
Coefficient of Variation (%):	63.913
Coefficient of Skewness:	1.466
Coefficient of Kurtosis:	6.938
Log 10 Transformed Mean:	8.229
Log 10 Variance:	3.030
Log 10 Standard Deviation:	1.741

Percentiles

Minimum: 1.000

10	TH	Percentile	at	3.000
20	\mathbf{TH}	Percentile	at	5.000
30	\mathbf{TH}	Percentile	at	6.000
40	\mathbf{TH}	Percentile	at	8.000
50	\mathbf{TH}	Percentile	at	9.000
60	\mathbf{TH}	Percentile	at	10.000
70	\mathbf{TH}	Percentile	at	12.000
80	$\mathbf{T}\mathbf{H}$	Percentile	at	15.000
90	\mathbf{TH}	Percentile	at	18.000

Maximum: 45.000

187 0

3.000

115.000

112.000

28.316

24.000

349.531

18.696

1.367

66.027 1.700

7.226

2.821

1.680

23.024

P114GC

Variable:Pb PPM

Number	of	Samples	Se	lected	1:	
Number	of	Missing	or	Null	Values:	
Minimur	n:					

Maximum: Range: Mean: Median:

Variance: Standard Deviation: Standard Error:

Coefficient of Variation (%): Coefficient of Skewness: Coefficient of Kurtosis:

Log 10 Transformed Mean: Log 10 Variance: Log 10 Standard Deviation:

Percentiles

Minimum: 3.000

10	\mathbf{TH}	Percentile	at	8.000
20	\mathbf{TH}	Percentile	at	13.000
30	\mathbf{TH}	Percentile	at	18.000
40	\mathbf{TH}	Percentile	at	21.000
50	\mathbf{TH}	Percentile	at	24.000
60	$\mathbf{T}\mathbf{H}$	Percentile	at	28.000
70	\mathbf{TH}	Percentile	at	32.000
80	\mathbf{TH}	Percentile	at	40.000
90	$\mathbf{T}\mathbf{H}$	Percentile	at	51.000

Maximum: 115.000

P114GC	
Variable:Zn PPM	
Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	1.000
Maximum:	568.000
Range:	567.000
Mean:	105.305
Median:	94.000
Variance:	4786.811
Standard Deviation:	69.187
Standard Error:	5.059
Coefficient of Variation (%):	65.701
Coefficient of Skewness:	2.409
Coefficient of Kurtosis:	14.185
Log 10 Transformed Mean:	84.980
Log 10 Variance:	2.876
Log 10 Standard Deviation:	1.696
Percentiles	
Minimum: 1.000	
10 TH Percentile at39.00020 TH Percentile at50.00030 TH Percentile at69.00040 TH Percentile at80.00050 TH Percentile at92.000	

109.000

128.000 142.000

168.000

Elementary Statistics

128 P114GC

60 TH Percentile at

70 TH Percentile at 80 TH Percentile at

90 TH Percentile at

Maximum: 568.000

Sun Nov

128 P114GC Sun Nov

Variable:Ag PPM

Number of Samples Selected: 187 Number of Missing or Null Values: 0 Minimum: 0.100 Maximum: 2.900 Range: 2.800 Mean: 0.335 Median: 0.200 Variance: 0.111 Standard Deviation: 0.334 Standard Error: 0.024 Coefficient of Variation (%): 99.485 Coefficient of Skewness: Coefficient of Kurtosis: 3.407 22.052

Log 10 Transformed Mean:0.240Log 10 Variance:3.784Log 10 Standard Deviation:1.945

Percentiles

Minimum: 0.100

10	\mathbf{TH}	Percentile	at	0.100
20	\mathbf{TH}	Percentile	at	0.100
30	\mathbf{TH}	Percentile	at	0.100
40	\mathbf{TH}	Percentile	at	0.200
50	\mathbf{TH}	Percentile	at	0.200
60	\mathbf{TH}	Percentile	at	0.300
70	\mathbf{TH}	Percentile	at	0.400
80	\mathbf{TH}	Percentile	at	0.500
90	TH	Percentile	at	0.700

Maximum: 2.900

128 P114GC

Elementary Statistics

Variable:Mn PPM

Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	31.000
Maximum:	6372.000
Range:	6341.000
Mean:	454.037
Median:	300.000
Variance:	464129.875
Standard Deviation:	681.271
Standard Error:	49.819
Coefficient of Variation (%):	150.047
Coefficient of Skewness:	6.129
Coefficient of Kurtosis:	47.763
Log 10 Transformed Mean:	301.164
Log 10 Variance:	3.573
Log 10 Standard Deviation:	1.890
Percentiles	

Minimum: 31.000

$\mathbf{T}\mathbf{H}$	Percentile	at	107.000
\mathbf{TH}	Percentile	at	147.000
\mathbf{TH}	Percentile	at	193.000
\mathbf{TH}	Percentile	at	239.000
\mathbf{TH}	Percentile	at	296.000
\mathbf{TH}	Percentile	at	355.000
\mathbf{TH}	Percentile	at	450.000
\mathbf{TH}	Percentile	at	587.000
\mathbf{TH}	Percentile	at	742.000
	TH TH TH TH TH TH TH TH	TH Percentile TH Percentile TH Percentile TH Percentile TH Percentile TH Percentile TH Percentile TH Percentile TH Percentile TH Percentile	TH Percentile at TH Percentile at

Maximum: 6372.000

Sun Nov

128 P114GC	Elementary Statistics	
Variable:As PPM		
Number of Samples Sel Number of Missing or	ected: Null Values:	187 0
Minimum: Maximum: Range: Mean: Median:		2.000 65.000 63.000 12.882 11.000
Variance: Standard Deviation: Standard Error:		103.869 10.192 0.745
Coefficient of Variat Coefficient of Skewne Coefficient of Kurtos	cion (%): ess: sis:	79.113 1.559 6.658
Log 10 Transformed Me Log 10 Variance: Log 10 Standard Devia	ean: Ation:	9.275 4.219 2.054
Percentiles		
Minimum: 2.000		
10 TH Percentile at	2,000	

Sun Nov

ΤU	TH	Percentile	dL	2.000
20	\mathbf{TH}	Percentile	at	4.000
30	\mathbf{TH}	Percentile	at	6.000
40	\mathbf{TH}	Percentile	at	8.000
50	\mathbf{TH}	Percentile	at	11.000
60	\mathbf{TH}	Percentile	at	13.000
70	TH	Percentile	at	16.000
80	\mathbf{TH}	Percentile	at	19.000
90	\mathbf{TH}	Percentile	at	26.000

Maximum: 65.000

1-2-

Variable:Au PPB	
Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	1.000
Maximum:	33.000
Range:	32.000
Mean:	2.225
Median:	1.000
Variance:	11.714
Standard Deviation:	3.423
Standard Error:	0.250
Coefficient of Variation (%):	153.853
Coefficient of Skewness:	5.611
Coefficient of Kurtosis:	42.472
Log 10 Transformed Mean:	1.519
Log 10 Variance:	3.031
Log 10 Standard Deviation:	1.741
Percentiles	

.

Minimum: 1.000

10	TH	Percentile	at	1.000
20	\mathbf{TH}	Percentile	at	1.000
30	\mathbf{TH}	Percentile	at	1.000
40	\mathbf{TH}	Percentile	at	1.000
50	\mathbf{TH}	Percentile	at	1.000
60	\mathbf{TH}	Percentile	at	1.000
70	\mathbf{TH}	Percentile	at	2.000
80	\mathbf{TH}	Percentile	at	2.000
90	$\mathbf{T}\mathbf{H}$	Percentile	at	4.000

Maximum: 33.000

Elementary Statistics

128 P114GC Sun Nov

ي منطق الم

Elementary Statistics

P114GC

Variable:Mo PPM

Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	1.000
Maximum:	5.000
Range:	4.000
Mean:	1.102
Median:	1.000
Variance:	0.209
Standard Deviation:	0.457
Standard Error:	0.033
Coefficient of Variation (%):	41.493
Coefficient of Skewness:	5.762
Coefficient of Kurtosis:	40.764

Log 10 Transformed Mean: Log 10 Variance: 1.059 1.240 Log 10 Standard Deviation: 1.113

Percentiles

Minimum: 1.000

10	\mathbf{TH}	Percentile	at	1.000
20	\mathbf{TH}	Percentile	at	1.000
30	$\mathbf{T}\mathbf{H}$	Percentile	at	1.000
40	\mathbf{TH}	Percentile	at	1.000
50	$\mathbf{T}\mathbf{H}$	Percentile	at	1.000
60	\mathbf{TH}	Percentile	at	1.000
70	\mathbf{TH}	Percentile	at	1.000
80	\mathbf{TH}	Percentile	at	1.000
90	\mathbf{TH}	Percentile	at	1.000

Maximum: 5.000

;

, i. , . .

and the

Sun Nov

Elementary Statistics

128 P114GC

.

. معمر

Variable:Fe %

Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	0.120
Maximum:	12.420
Range:	12.300
Mean:	4.076
Median:	4.070
Variance:	3.466
Standard Deviation:	1.862
Standard Error:	0.136
Coefficient of Variation (%):	45.678
Coefficient of Skewness:	1.058
Coefficient of Kurtosis:	6.081
Log 10 Transformed Mean:	3.580
Log 10 Variance:	2.197
Log 10 Standard Deviation:	1.482

Percentiles

Minimum: 0.120

TO TH LETCENCITE OF T	• O T U
20 TH Percentile at 2	.750
30 TH Percentile at 3	.140
40 TH Percentile at 3	.620
50 TH Percentile at 4	.060
60 TH Percentile at 4	.280
70 TH Percentile at 4	.610
80 TH Percentile at 5	.070
90 TH Percentile at 6	.000

Maximum: 12.420

Sun Nov

.

		LEGEND
	n. <i>strois</i> tro.	(based on G.S.C. O.F.920, by L.C. Struik)
		Pleistocene and Recent Glacial deposits: mainly sandy and pebbly tills
		Devonian ? PQLg Quesnel Lake Gneiss
,		quartzmonzonitic orthogneiss <u>Augen Gneiss</u> white to grey-green weathering.
		leucocratic feldspar-quartz augen gneiss HADRYNIAN? and PALEOZOTC?
		PH? "Harvey Creek succession" 5 Chloritic Calc-Silicate Schist
		medium grey-green chloritic calc- silicate schist
		<u>4</u> <u>Calc-Silicate Schist</u> iron stained to buff weathering, light grey calc-silicate schist; hematitc sericite schist
		3 <u>Manganiferous Schist</u> black, well foliated, medium to fine grained schist
ANTONIO	State State State State State State	2 <u>Spotted Chloritic Schist / Gneiss</u> medium grey-green and white mottled schist and gneiss
		1 Chert dark brown weathering, beige coloured pyritic metamorphosed chert or guartzite
Marken	\wedge	SYMBOLS
3 88271		• x Soil, Silt sample site Limit of outcrop
		 Small outcrop Limit of sub-outcrop
A	Y have	Geological Boundary: defined, inferred, assumed
		<pre>/// Foliation, Joints: inclined, vertical </pre> LCP, ID Post
		Gravel Road
X	and a state of the	
		GEOLOGICAL BRANCH
\square	A STREET, STRE	ASSESSMENTREPORT
		15,804
	X	
		L.Lindinger, 1986 C1. CONCH 1 CLAIM GROUP
5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	with the second	GEOLOGY
1999 - 1990 - 19	\wedge	NORTHWEST GEOLOGICAL CONSULTING LTD. SCALE DATE NTS Nº DWG Nº
		1:5000 Dec.1986 93K/16W 15

-

•, •

.

· · .

-, ·