$$
\begin{gathered}
86-839-15804 \\
9 / 8.7
\end{gathered}
$$

REPORT
ON
GEOLOGY AND GEOCHEMISTRYOF THE
C 1, CONCH 1 CLAIM GROUP
CARIBOU MINING DIVISION
ATS 93 A/11
Lat.: $52^{\circ} 42^{\prime} \mathrm{N} . \quad$ Long.: $121^{\circ} 26^{\circ} \mathrm{W}$.for
CASAMIRO RESOURCE CORP.
By:
Use Schmidt, B.Sc. F.G.A.C.
NORTHWEST GEOLOGICAL CONSULTING LTD.
December 22, 1986
Page

1. SUMMARY AND RECOMMENDATIONS 1
2. INTRODUCTION 2
3. PROPERTY, LOCATION AND ACCESS 3
4. PHYSIOGRAPHY 4
5. HISTORY 5
6. REGIONAL GEOLOGY 6
7. LOCAL GEOLOGY 6
8. PROPERTY GEOLOGY 7
9. GEOCHEMISTRY 8
10. CONCLUSIONS 11
11. STATEMENT OF COST 12
12. REFERENCES 14

Appendices

Appendix

A Statement of Qualifications
B Certificates of Analyses
C Corrected and Sorted Analyses
D Elementary Statistics

List of Illustrations

Fig.		Scale	Following Page
1	Location	1:7,000,000	3
2	Claim Map	1:50,000	4
3	Regional Geology	1:50,000	6
4	Cu Histogram \& Probability Graph		9
5	Ni Histogram \& Probability Graph		9
6	Co Histogram \& Probability Graph		9
7	Pb Histogram \& Probability Graph		9
8	Zn Histogram \& Probability Graph		9
9	Ag Histogram \& Probability Graph		9
10	Mn Histogram \& Probability Graph		9
11	As Histogram \& Probability Graph		9
12	Au Histogram \& Probability Graph		9
13	Mo Histogram \& Probability Graph		9
14	Fe Histogram \& Probability Graph		9
15	C1, Conch 1 C.G., Geology	1:5,000	in pocket
16	$\mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$ Geochemistry	1:5,000	in pocket
17	Mn,As,Au Geochemistry	1:5,000	in pocket

1. SUMMARY AND RECOMMENDATIONS

The C1, Conch 1 and C3 mineral claims of Casamiro Resource Corp. are located 85 km northeast of Williams Lake, B.C. The property is underlain by highly deformed, metamorphosed sedimentary and igneous rocks of the Omineca Crystalline Belt.

In August 1986, Northwest Geological Consulting Ltd. carried out a soil sampling and mapping program on the properties. Three geochemical anomalies were outlined on the $C 1$, Conch grids and one area of interest was defined on the C3 claim.

A reexamination of the geochemical anomalies, a northward extension of the $C 3$ grid and a southward extension of the $C 1$ grid are recommended.

2. INTRODUCTION

The C1, Conch 1 and C3 claim groups of Casamiro Resource Corp. are located 85 km northeast of Williams Lake British Columbia. The property consists of two groups of claims, totalling 56 units located on the western flank of Browntop Mountain. This area is located approximately 16 km northeast of the village of Likely.

In August of 1986, Northwest Geological Consulting Ltd. was commissioned by Casamiro Resource Corp. to carry out preliminary geochemical sampling and geological mapping surveys of the company's two properties. This work was carried out during the period of August 28 to September 4, 1986.

Field mapping was carried out by geologist Leo Lindinger. He was assisted by samplers, Delbert MacDonald and John Pascuzzo. The writer examined the property on August 29, 1986 and had previously examined the property on two occasions in 1984.

Work on the claims included grid soil sampling and geological mapping. A common grid coordinate system was established for the three claims, although it is not continuous nor are the claims all contiguous. The western group, $C 1$ and Conch 1 claims, had north-south trending flagged lines established on the western half of the Conch 1 claim and east-west trending lines on the northern half of the C 1 claim.

Grid lines on the $C 3$ claims also trend in an east-west direction, in the southern half of the claim. Line spacing on the

C 1 and C 3 grids is at 200 metre intervals and samples were taken at 100 metre intervals. The north-south lines on the conch 1 claim has a 100 metre by 100 metre line and sample spacing.

Geological mapping was carried out along grid lines, roads and reconnaissance traverses.

3. PROPERTY, LOCATION AND ACCESS

The C1, Conch 1 and C3 mineral claim groups consists of three mineral claims totalling 56 units and having a total area of 1400 hectares. The property is located in the Cariboo Mining Division, 85 km northeast of Williams Lake and is accessible by motor vehicle from Williams Lake via the Likely road. The claims are located 16 km northeast of the village of Likely, a distance of approximately 94 km by road, from Williams Lake. From Likely, a gravel logging haulage road heads north, crossing to the north side of the Cariboo River, about half way to the claims. A short distance from Cariboo Lake, a secondary logging road heads south and crosses the Cariboo River again. From here, logging roads head south and north. These provide good access to the west flank of Browntop Mountain and the claims.

The geographic centres of the two claim groups are:

CLAIM	N. LATITUDE	W. LONGITUDE
C1, Conch 1	$52^{\circ} 42^{\prime} 30^{\prime \prime}$	
C3	$52^{\circ} 43^{\prime} 30^{\prime \prime}$	26^{\prime}
		$121^{\circ} 22^{\prime}$

The claims are wholly owned by Casamiro Resource Corp. The

location posts and perimeter lines were examined. Lines and posts are well marked and appear to have been located in accordance with staking regulations.

Details of the claims are as follows:

CLAIM NAME	RECORD NO.	NO.OF UNITS	EXPIRY DATE
C1	5189	20	Sept.26,1986
C3	5190	20	Sept.26,1986
Conch 1	6730	16	

4. PHYSIOGRAPHY

The claims lie on the western edge of the Cariboo Mountains, an area of steep slopes and rugged relief. The $C 1$ and conch 1 claims cover the western flank of Browntop Mountain and extend westward across the Cariboo River. The area is partially logged and the topography slopes moderately steeply westward from an elevation of of 1,430 metres to 820 metres.

The C3 claim is located 1500 metres north-east of the C1 claim, with elevations ranging from 1,220 metres to 1,500 metres. The eastern half of the claim crosses a tributary of Frank Creek which drains the north side of Browntop Mountain. This partially logged area is locally more rugged than the $C 1$ claim. The native tree species in uncut areas are spruce, cedar and fir.

The area within the claims is underlain by a pebbly to sandy glacial drift of irregular thickness. This cover does not appear to be a hindrance to geochemical or geophysical exploration methods.

CASAMIRO RESOURCE CORP.

C1, CIAIM MAP	CONCH
CIMAM GP.	

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
$1: 50,000$	Dec. 86	$93 \mathrm{~A} / 11$	2

An exploration season lasting from May to late October can be expected at these elevations.

5. HISTORY

The area was probably first prospected during the 1860 Cariboo gold rush. The earliest records of mining activity in the vicinity of the claims are found in the annual reports of the B.C. Department of Mines. In these reports work is reported in the the Rollie (Duck) Creek area to the north of the property in the early 1900's.

In 1926 and 1933 reports on a Peacock property suggest that this property lies with the western limit of the cl claim. However no evidence of this occurrence has been found. Several veins, having a northerly strike are reported to occur on the Peacock property. An assay of $0.01 \mathrm{oz} /$ ton $\mathrm{Au}, 24 \mathrm{oz} /$ ton $\mathrm{Ag}, 40 \%$ Pb and $6 \% \mathrm{Zn}$ is reported from one of these veins.

Several Crown granted claims occur west of the claims. Among these are the Tillicum Snow Bird, and Pay Boy. Quartz veins up to one metre in thickness occur on the claims. No evidence of these old occurrences were found during the examination.

Approximately 15 km north of the property, on Yanks Peak, old crown grants cover several veins which are hosted by similar lithologies. Their descriptions suggest fault and fracture controlled vein systems hosted by complexly folded metamorphic rocks.

There is no record of any previous work on the claims. Casamiro Resource Corp. carried out a limited program of road
improvement, trenching, line cutting and soil sampling in 1984. The soil samples were not analyzed.

6. REGIONAL GEOLOGY

The property lies within and near the western margin of the Omineca Crystalline Belt of the Canadian Cordillera. Rocks of this belt are characterized by complex deformation and moderate to high grade regional metamorphism.

Upper Triassic to Lower Jurassic volcanic and sedimentary rocks of Quesnel Trough, a subdivision of the Intermontane Belt, lie 9 km southwest of the property. The boundary between Omineca and Intermontane Belts is marked by a major shear zone. Large scale tectonic imbrication and mylonitization on both sides of the zone suggest an eastward thrusting of the Intermontane over the Omineca Belt (REES, 1981).

7. LOCAL GEOLOGY

The region in the vicinity of the property has recently been mapped by L.C. Struik on a scale of 1:50,000 (O.F. 920). Three lithologies dominate the area around the southwestern end of Cariboo Lake. These are from structurally lowest to highest: Black siliceous phyllite and argillite of unit PHp, pale grey to green schists of unit PH? olive and olive grey quartzite and phyllite of $H K E$ and granitic feldspar quartz augen gneiss unit PQLg.

The lower two units on the east side of Cariboo River belong to the "Harvey Creek succession" of the Paleozoic? Snowshoe

CASAMIRO RESOURCE CORP.

REGIONAI GEOIOGY
(after Struik, G.S.C. O.F.920)
C1. CONCH 1 CIAIM GP.
Northwest Geological Consulting Ltd.

CASAMIRO RESOURCE CORP.			
REGIONAI GEOIOGY (after Struik, G.S.C. O.F.920) CI. CONCH 1 CIAIM GP. Northwest Geological Consulting Ltd.			
Scale	Date	NTS	Dwg. No.
1:50,000	Dec. 86	93A/11	3

LEGEND
(after Struik, G.S.C. O.F.920)

Upper Triassic

undifferentiated $u \pi p$, black shale slate and argillite sillite, micritic limestone, limey sandstone; urb , agglomeratic and pyroclastic andesite;uka , pyroclastic rhyodacite and rhyolite

Devonian?

HADRYNIAN? AND PALEOZOIC?
SNOWSHOE GROUP
Paleozoic?

Group. The "Harvey Creek" comprises dark grey to black micaceous quartzite, phyllite, argillite, minor limestone and limestone conglomerate.

Rocks of similar appearance on the west side of Cariboo River (Conch 1 claim), are assigned by struik to the Hadrynian? "Keithley Succession." In mapping this area, L. Lindinger did not make this distinction.

Outcrops of quartzo-feldspathic granitic gneiss of the Quesnel Lake Gneiss occur at high elevations on the east side of Cariboo River. This unit (PQLg) is believed to be of Devonian age.

8. PROPERTY GEOLOGY

The claims are underlain by two dominant mappable units. Unit 5, chloritic calc-silicate schist, a medium grey-green coloured schist underlies most of the property. These complexly deformed, meta-sedimentary rocks display a wide variety of foliation patterns over the property. Unit 4 , calc-silicate schist and unit 2 , spotted chloritic schist and gneiss are two mappable subdivisions of unit 5 which occur in the northeast corner of the property.

In the northwest corner of the property a thin dark brown weathering beige coloured meta-chert or quartzite is interbanded within unit 5. This is labelled unit 1 on fig. 15. It carries fine pyrite in veinlets and as a breccia matrix. There is no significant geochemical response from soils taken in the immediate area of the pyrite.

The second most common rock type (unit 6), is a white to grey-green weathering, feldspar-quartz augen gneiss. It occurs as a northwest trending lobe within unit 5 and is a metamorphosed intrusion of quartz-monzonitic composition and possible Devonian age. Contact relationships are unclear, however on a larger scale, these gneissic bodies appear to be flat-lying or gently dipping.

9. GEOCHEMISTRY

In total, 187 geochemical samples were taken on the three claims, along 3 separate grids. This total includes 1 silt and 105 soil samples collected on the c1, Conch 1 claim group, and 7 silts and 74 soil samples taken on the C 3 claim. Soils were collected at 100 metre intervals along flagged, "hip-chain" and compass surveyed lines. Three lines, spaced 100 metres apart were run on the Conch 1 claim in a north-south direction. Lines on the C1 and C3 claims were spaced 200 metres apart and run in an east-west direction.

Soil samples were taken of B horizon material whenever possible. In a few locations soil samples could not be taken because of outcrop or swampy conditions. Silt samples were taken in a few selected areas where streams crossed grid lines.

Samples were analyzed by Acme Analytical Laboratories Ltd. of Vancouver. The analysis included $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}$, Fe, As and Au. The first 10 elements were analyzed by Inductively Coupled Argon Plasma (ICP) methods and are reported in PPM. Gold
was analyzed by Atomic Absorption using a 10 gm sample. Gold results are reported in $P P B$ and have a detection limit of 1 PPB.

Sample certificates are appended to this report. Theoretical grid coordinates are used as sample numbers. Actual sample sites are shown on the maps which accompany this report. A few sample number corrections are noted on the Analysis sheets. A second, corrected version of the analyses produced by the writer is also appended to this report. The analyses in the list are sorted according to grid coordinates and in the order that they were plotted.

A basic statistical analysis of the data was carried out. Basic statistics are reported in appendix D. Histograms and log-scale probability plots of the data are shown in fig. 4 to 14. These graphs were used in conjunction with basic statistics to determine background and anomalous populations. Six classes from 0 to 5 were chosen for each element.

The classes indicate an increasing probability of importance beginning with 0 which is considered to be background. The higher class boundaries were chosen to produce data which is easily contourable and can be compared to geology.

Contour maps of all the elements were made of the three grid areas, on rough copies of the data. Contour maps are not presented in final drafted form, however the areas of interest are outlined on figures 16 and 17.

CONCH GRID
One area of interest is indicated in the northwest corner of

CASAMIRO RESOURCE CORP.

Cu HISTOGRAM \& PROBABILITY GRAPH

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 \mathrm{~A} / 11$	4

CASAMIRO RESOURCE CORP.

Ni HISTOGRAM \& PROBABILITY GRAPH

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 \mathrm{~A} / 11$	5

CASAMIRO RESOURCE CORP.			
Scale	Date	NTS	Dwg. No.
	Dec. 86	93A/11	6

CASAMIRO RESOURCE CORP.

Pb HISTOGRAM \& PROBABILITY GRAPH

Northwest Geological Consulting Itd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 A / 11$	7

CASAMIRO RESOURCE CORP.

Zn HISTOGRAM \& PROBABILITY GRAPH $\underset{\text { and }}{ }{ }^{C} \underset{3}{C O N C H} \frac{1}{C I A I M}$ GP.

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 \mathrm{~A} / 11$	8

CASAMIRO RESOURCE CORP.

Ag HISTOGRAM \& PROBABILITY GRAPH

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 \mathrm{~A} / 11$	9

CASAMIRO RESOURCE CORP.

MII HISTOGRAM \& PROBABILITY GRAPH andi C 3 CONCFI I

Northwest Geological Consulting Ltd.

CASAMIRO RESOURCE CORP.			
MII HISTOGRAM \& PROBABILITY GRAPH Northwest Geological Consulting Ltd.			
Scale	Date	NTS	Dwg. No.
	Dec. 86	93A/11	10

CASAMIRO RESOURCE CORP.

As HISTOGRAM \& PROBABILITY GRAPF C1, CONCHI 1 and ${ }^{\circ} 3$ CIAIMI GP.

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 A / 11$	ユユ

CASAMIRO RESOURCE CORP.

Au HISTOGRAM \& PROBABILITY GRAPH CI. CONCHI and C 3 CIAIM GP.

Northwest Geological Consulting Ltd.

Scale	Date	NTS	Dwg. No.
	Dec. 86	$93 \mathrm{~A} / 11$	12

CASAMIRO RESOURCE CORP.			
MO HISTOGRAM \& PROBABILITY GRAPH Northwest Geological Consulting Ltd.			
Scale	Date	NTS	Dwg. No.
	Dec. 86	93A/11	ユ3

CASAMIRO RESOURCE CORP.

Fe HISTOGRAM \& PROBABILITY GRAPH CI. CONCFI and C 3 CIAIM GP.

Northwest Geological Consulting Ltd.

CASAMIRO RESOURCE CORP.			
Fe HISTOGRAM \& PROBABIIITY GRAPH $\underset{\sim}{C I} \text { and } \underset{3}{C O N C H} \frac{1}{C I A I M} G P$ Northwest Geological Consulting Ltd.			
Scale	Date	NTS	Dwg. No.
	Dec. 86	93A/11	ユ 4

the Conch grid. Sample $70+00 \mathrm{~N}-50+00 \mathrm{E}$ is anomalous in most metals. The more significant values are $111 \mathrm{PPM} \mathrm{Cu}, 0.7 \mathrm{PPM} \mathrm{Ag}$, and 65 PPM As. Gold returned a low 4 PPB but two nearby values of 11 and 18 PPB help to define the anomaly. This anomaly lies up hill and northwest of a small outcrop of pyritic chert or quartzite.

C1 GRID

The highest gold value, 33 PPB is located near the centre of the Cl grid (anomaly "B"). Although there is no evidence of gold in nearby samples, this site is located within a 600 metre long north-east trending silver anomaly. The anomaly is defined by four sample sites which range from 0.9 to 1.2 PPM Ag . The area is underlain by unit 6 augen gneiss.

Other elevated gold values on the C 1 grid include a 20 PPB Au silt sample located in the northeast corner of the grid. This sample is low in Ag but anomalous in other base metals. Nearby soil samples are significantly lower, suggesting a source east of the C1 claim boundary. The remaining elevated gold values occur in the southeast corner of the grid and along line $68+00 \mathrm{~N}$. There is no associated silver response in these areas.

Anomaly "C" in the southeast corner of the grid is a single sample site which is anomalous in base metals relative to adjacent sample sites. The area is underlain by unit 5 chloritic calc-silicate schist.

Most of the contoured data lacked clear patterns. Slightly elevated Cu , and Ni results are associated with the unit 5 and 6
contact on the east side of the grid. Zn, Pb and As lows also define this contact.

10. CONCLUSIONS

The aim of the program was to locate areas of precious metals mineralization. The history of exploration in the area suggests a vein setting of mineralization is the most likely to occur on the property. Mapping and sampling on the two properties did not locate clear evidence of this type of mineralization but did outline three geochemical anomalies on the C1, Conch 1 grids and one area of interest on the C3 grid.

Anomaly "A" on the Conch grid and anomaly "D" on the C3 grid are located close to the property boundaries and may indicate targets off the property. Similarly, an isolated silt sample in the northeast corner of the $C 1$ grid suggests a source beyond the property boundary.

Anomaly "B" on the C1 grid and anomaly "D" on the C3 grid, appear to reflect lithological boundaries.

11. STATEMENT OF COST

* indicates pro rata division of costs

C1 CONCH 1
I FIELD COSTS

1) LABOUR
U. Schmidt: Aug.28($\frac{1}{2}$), 29($\frac{1}{2}$)

1 day at $\$ 250 /$ day $\$ 250.00$
L. Lindinger: Aug. 28($\frac{1}{2}$),29($\frac{1}{2}$), Sept. $2-4$

Travel Sept. 5
5 Days at $\$ 200 /$ day $\$ 1000.00$
D. MacDonald: Sept. 2-4

3 days at $\$ 145 /$ day $\$ 435.00$
J. Pascuzzo: Sept. 2-4

3 days at $\$ 100 /$ day $\$ 300.00$
$\$ 1985.00$
2) ROOM \& BOARD

| 16 man days @ $\$ 45 /$ man day | $=\$ 20.00$ |
| :--- | :--- | :--- |
| Motel | $\$ 40.66$ |
| Meals | $\$ 33.28$ |

```
TOTAL $ 793.94 * $ 476.36
```

3) TRANSPORTATION

2 Wheel drive Van Rental
$=\$ 456.03$
2 Wheel drive Truck
$=\$ 25.00$ Fuel
4) CONSUMABLES \& FIELD SUPPLIES

TOTAL $\$ 571.03$ * $\$ 342.62$
$=\$ 127.00$ * \$ 76.20
5) GEOCHEMICAL ANALYSIS

```
105 SOIL geochemical analyses
            @ $ 9.75
    1 SILT geochemical analyses
    @ $ 9.75
```

$=\$ 1023.75$
$=\$ \quad 9.75$
$\$ \$ 1033.50 \quad \$ 1033.50$

II OFFICE COSTS

1) Plotting, interpretation and report writing
U. Schmidt: 5 days at $\$ 250 /$ day $=\$ 1250.00$
L. Lindinger: 1 day at $\$ 200 /$ day $=\$ 200.00$
$\overline{\$ 1450.00}$ * $\$ 750.00$
2) DRAFTING

$$
=\$ 420.00 * \$ 252.00
$$

3) REPRODUCTION, PHOTOCOPYIING \& COMMUNICATION

12. REFERENCES

Annual Reports of the B.C. Department of Mines 1925, 1926, 1928, 1929, 1930, 1933.

CAMPBELL,R.B. AND TIPPER, H.W. (1970): Geology and Mineral Exploration Potential of Quesnel Trough, B.C. CIM Bulletin Vol $63 \mathrm{pp} 785-790$.
(1978) G.S.C. Open File 574 Geology, Quesnel Lake, 93A

REES, C.J. (1981): Western Margin of the Omineca Belt at Quesnel Lake, B.C. in G.S.C. Paper 81-1A p.223-226.

STRUIK, L.C. (1982): G.S.C. Open File 920 Spanish Lake and Adjoining Areas.
-(1981a):Snowshoe Formation ,Central B.C. G.S.C. Paper 81-1A p.213-216
(1981b):A re-examination of the type area of the Devono-Mississippian Cariboo Orogeny, central B.C., Can. Jour. Earth Sci. vol. 18 no. 12

TIPPER,H.W. et al(1979):Parsnip River,B.C. Map 1424A

APPENDIX A

CERTIFICATE OF QUALIFICATIONS

I, Uwe Schmidt , of 656 Foresthill Place, Port Moody, B.C. do hereby declare:
(1) I am a 1971 graduate of the University of British Columbia with a B.Sc. degree in Geology.
(2) I have practiced my profession continuously since graduation.
(3) I have managed various mineral exploration projects in the Yukon Territory and B.C. for the past 13 years.
(4) This report is based on my field examination of the property, work carried out under my supervision and available government reports.

December 22, 1986
Vancouver,B.C

APPENDIX B

ME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOLVER B.C. VGA 1 RG PHONE 253-3158 DATA LINE 251-1011 GEDCHEMICAL ICP

DATE RECEIVED: SEPT 18 1986 DATE REPORT MAILED:
. 500 grah sample is digested with 3ml 3-1-2 hCL-hmo3-h20 at 95 deg. C for ome hour and is diluted io 10 hle with mater. THIS LEACH IS PARTIAL FOK MN.FE.CA.P.CR.MG. BA.TL. B.AL.NA.K. H.SI.IR.CE.SH.Y.MB AND TA. AU DETECTIOM LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOLLS -BO MESK AUI ANALYSIS BY AA FROM 10 6RAM SAMPLE.

ASSAYER: QQefIDEAN TOYE. CERTIFIED B.C. ASSAYER. NORTHWEST GEDLOGICAL PFOUECT - 114 FILE \# 86-2712 FAGE 1

	SAMPLE: Pi	$\begin{gathered} \text { Ao } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{Cu}_{4} \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \text { PPM } \end{gathered}$	$\begin{gathered} 2 n \\ P P M \end{gathered}$	$\begin{gathered} A_{0}^{0} \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathrm{Mi} \\ \hline P \mathrm{P} \end{array}$	$\begin{gathered} C_{0} \\ \text { PPM } \end{gathered}$	$\begin{gathered} n_{n}^{\prime} \\ P P M \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} A^{\text {PP }} \end{gathered}$	$\begin{aligned} & \text { Aut } \\ & \text { PPB } \end{aligned}$
	$126+60 E$ $\times 78+00 \mathrm{~N} 126+00 E$	1	25	11	92	. 1	35	16	620	4.80	6	
	$\times 78+00 \mathrm{~N} 127+75 E$?	1	45	19	82	. 2	46	18	374	5.42	7	
	$78+00 \mathrm{~N} 106+00 \mathrm{E}$	1	23	19	84	. 6	23	6	184	2.84	19	
	78+00H 107+00E -	1	17	25	82	. 2	23	6	132	3.14	13	
	78+00K 111+00E.	1	17	20	60	. 2	21	6	145	3.83	6	
	78+00N 112+00E	1	5	8	9	. 2	3	1	31	1.74	4	
	79+00N $113+00 \mathrm{E}$	1	9	22	46	. 2	10	4	107	4.13	7	
	78+00N 114+00E.	1	14	24	39	. 5	10	4	92	5.73	11	
	79+00N $115+00 E^{\text {c }}$	1	30	20	77	. 3	26	10	262	5.95	14	
	78+09N 116+00E -	1	9	23	101	. 1	18	7	528	5.02	10	
	78+00N 117+008 -	1	13	38	112	.6	15	7	203	3.31	11	
	78+00N 118+00E	1	16	24	71	. 8	15	9	836	3.18	7	
	78+00M 119+00E	1	24	11	58	. 5	29	11	243	4.62	3	
SILT	$\times 78+00 \mathrm{~N} 119+60 \mathrm{E} 20 \mathrm{E}$	1	38	19	124	. 3	48	17	634	4.36	3	
	78+00N 120+00E L	1	33	17	54	. 1	17	6	361	4.15		
	78+00N 121+00E -	2	40	21	78	. 1	15	8	450	9.58	9	
	78+00N 122+00E-	1	13	7	30	. 1	8	3	182	2.13	4	
	78+00N 123+00E	1	48	12	69	. 1	37	13	248	4.60	5	
	78+00N 125+00E	1	36	27	88	.8	31	12	293	7.47	19	
	78+00N 126+00E -	1	18	22	89	. 1	24	10	220	6.44	7	
	78+00N 127+00E	1	32	18	140	. 2	37	19	279	6.00	2	
	$78+00 \mathrm{~N} 128+00 \mathrm{E}$ -	1	11	12	60	. 2	12	6	139	3.36	2	
	$79+00 \mathrm{~N} 129+00 \mathrm{E}$ -	1	13	19	50	. 2	13	8	391	3.69	5	
	$76+00 \mathrm{~N} 107+00 \mathrm{E}_{2}$	1	25	12	94	. 2	20	14	690	3.83	28	
	76+00N 108+00E -	1	69	115	272	. 3	57	26	1010	5.11	44	
	76+00N 109+00E -	1	5	21	65	. 7	10	4	152	2.55	8	
	$76+00 \mathrm{~N} 110+00 \mathrm{E}$.	1	14	35	67	. 4	18	6	146	4.53	6	
	$76+00 \mathrm{~N} 111+00 \mathrm{E}$	1	28	19	98	. 2	23	9	242	4.78	9	
	$76+00 \mathrm{~N} 112+00 \mathrm{E}$.	$!$	12	21	46	. 1	10	4	145	3.61	6	
	76+00N 113+00E	2	55	51	114	1.8	27	20	3108	4.70	19	
	76+00N $116+00 E^{\text {- }}$	1	24	36	135	.9	25	17	854	4.35	36	
	76+00N 117+00E.	1	16	22	59	.2	16	6	144	5.37	18	
	$\times 76+00 \mathrm{~N} 118+50 \mathrm{E}$.	1	44	23	130	. 3	52	20	659	4.80	6	
	$76+00 \mathrm{~N}$ 120+00E-	2	34	22	85	. 3	14		290	5.57	3	
	$76+00 \mathrm{H} 121+00 \mathrm{E}$ -	5	50	34	83	. 1	21	7	151	10.73	24	
	$\times 76+00 \mathrm{~N} 121+80 \mathrm{E}$ - STD C/AU-S	$\frac{1}{21}$	$\begin{aligned} & 57 \\ & 61 \end{aligned}$	41	80 143	.5 7.0	48 73	$\begin{aligned} & 14 \\ & 30 \end{aligned}$	$\begin{array}{r} 905 \\ 1072 \end{array}$	$\begin{aligned} & 4.30 \end{aligned}$	$\begin{aligned} & 15 \\ & 36 \end{aligned}$	$\begin{array}{r} 5 \\ 50 \end{array}$

	SAMPLEE		GEOLOGICAL				FFiOJECT-114 FILE \# 86-271						
			Mo	Cu	Pb	In	Ag	Ni	Co	hn	Fe	As	Aut
			PPH	PPM	PPM	PPM	PPM	PPM	PPM	PPH	2	PPM	PP8
		72+00\% 117+00E	1	14	15	61	.1	13	5	144	5.88	27	1
	SルTT	72+00\% 117+85E \times	2	49	22	130	.7	50	18	632	4.72	3	1
		72+00以 118+00E -	1	36	12	84	.4	24	7	153	2.82	4	1
		72+00\% 119+00E -	1	22	25	102	.4	16	6	149	4.58	11	1
		72+00N 121+00E -	1	13	?	41	.6	12	5	130	4.61	3	1
		72+00\% 122+00E	1	11	7	49	. 1	13	5	222	4.07	7	2
		72+00K 123+00E	1	27	10	44	.1	18	7	141	7.21	11	1
		72+00N 124+00E	1	17	12	69	. 1	17	8	224	7.05	6	1
		72+00\% 125+00E	1	16	16	48	. 1	15	6	192	6.18	17	1
1		68+00N 70+00E L	1	24	20	105	. 1	29	10	321	3.21	11	3
		68+00N 71+00E	1	37	44	118	. 1	30	10	491	3.32	17	2
		68+00N 72+00E.	1	16	28	94	. 4	15	5	143	2.73	10	2
		68+00 ${ }^{\text {C }} 73+00 \mathrm{E}$	1	61	25	260	. 2	31	9	262	4.39	17	2
		68+00N 74+00E	1	49	41	148	. 3	41	14	512	4.28	20	1
		68+00N 75+00E	1	26	23	152	. 3	33	11	317	4.07	15	11
		68+00N 76+00E	1	23	24	130	. 3	29	11	317	3.13	13	3
		68+00N 77+00E	1	50	36	129	. 2	42	12	458	3.61	22	2
		68+00N 78+00E	1	36	33	167	. 5	37	13	421	3.69	16	6
		68+00 ${ }^{\text {C }} 79+00 \mathrm{E}$	1	43	43	184	. 2	39	14	433	4.52	25	1
		68+00N $80+00 \mathrm{E}$	1	42	32	109	. 5	30	9	301	3.30	18	1
		68+00N $81+005$	1	105	54	130	. 5	68	17	532	5.07	18	2
		68+00N 82+00E	1	47	34	116	. 3	40	16	666	4.13	12	1
		68+00N $83+005$.	1	54	78	193	. 3	55	25	880	4.95	37	5
		68+00N $84+00 \mathrm{E}$	1	30	28	134	. 2	32	9	327	4.09	12	1
		68+00M 85+00E	1	42	34	165	. 2	33	10	296	3.74	19	1
		68+00N $86+00 \mathrm{E}$	1	53	47	230	. 8	50	20	406	6.67	33	1
		68+00N $87+00 \mathrm{E}$	1	73	57	159	. 3	51	26	622	5.93	35	1
SILT	x -	68+00N 87+70E	1	40	37	163	. 3	48	23	2127	4.46	31	20
		68+00N 88+00E	1	21	30	94	. 6	19	6	162	2.53	26	1
		68+00\% 89+00E	1	48	40	131	. 3	32	13	497	3.59	27	1
		66+001 70+00E	1	49	57	153.	. 4	39	16	351	4.58	36	1
		$66+00 \mathrm{~N} 71+00 \mathrm{E}$	1	62	64	393	. 5	47	19	742	4.87	23	1
		66+00N 72+00E	1	78	45	131	. 8	43	13	716	3.19	19	1
		66+00N 73+00E	1	31	50	152	. 4	29	9	338	3.13	18	1
		$66+00174+005$ -	1	9	25	61	.1	8	3	163	1.35	2	1
		66+00n 75+00E	1	20	33	133	. 5	22	9	247	3.30	9	1
		STD C/AL-S	21	60	40	141	7.3	71	29	1057	3.99	38	51

APPENDIX C

10 Na	EASTING	NEPTHING	SILT?	Cu	Ni	Co	Pb	In	Ao	Mn	As	Al	V	Fo
$\underset{\sim}{3}$	10810	7800		$2 ?$	-	t	19	94	0.5	194	19	4	---	2.34
4	10700	7800		17	23	5	35	82	0.2	120	$: 7$	$!$	$!$	こ.!
5	11100	7800		17	21	t	20	60	0.2	145	5	1	$!$	3.65
5	11200	7900		5	3	1	9	9	0.2	$3!$	4	1	,	1.74
?	11700	7900		9	10	4	22	46	0.2	10.	$?$	1	:	4.15
9	$1: 400$	7800		14	10	4	24	39	2.5	02	$1!$	$\underline{2}$	$!$	5.73
9	11500	7800		70	35	10	20	77	0.5	2:2	14	1	$!$	5.35
10	11600	? 300		?	19	7	35	10:	0.1	59	10	1	:	5.in
11	11700	7900		13	15	7	30	112	0.6	205	:	1	1	3.0 is
12	:1800	? 800		16	15	0	24	71	0.3	935	?	\square	1	Z. 18
15	11800	7800		24	29	11	11	58	0.5	247	?	2	$!$	4.5
14	11920	7800	S	B	48	17	19	124	0.3	534	\pm	2	!	4.36
15	12000	7800		3	17	t	17	54	0.1	? 61	6	1	1	4.15
16	12:00	. 300		10	15	3	21	78	0.1	450	\bigcirc	$!$:	7.58
17	1200	7800		15	8	3	7	30	0.1	192	4	:	1	2.15
18	12500	7300		48	37	13	12	39	0.1	278	5	1	$!$	7.5
19	12500	7900		$3 t$	31	12	27	88	0.9	293	19	5	$!$	7.47
20	12500	. 900		18	24	10	32	99	0.1	20	?	1	$!$	5.14
1	12560	7900	§	25	35	16	11	72	0.1	820	6	1	1	4.3
11	12700	7800		32	37	19	18	140	0.2	779	2	:	!	5
2	12775	7800	E	45	46	19	19	82	0.2	774	?	2	1	5.4
22	17800	7800		11	12	6	12	50	0.2	179	:	1	!	T. 3
25	12900	7800		13	17	8	19	50	0.2	39.	5	:	1	5.65
34	10700	7600		25	20	14	12	94	0.2	590	28	1	$!$	3.35
25	10800	7600		69	57	26	115	272	0.2	1010	44	7	!	S.1:
36	10900	7600		5	10	7	21	55	0.7	152	日	1	$!$	2.55
27	11500	7500		14	18	t	35	67	0.4	146	6	1	,	4.55
38	11100	7500		29	23	9	19	78	0.2	272	$?$	1	:	4.73
29	11200	7600		12	10	1	21	46	0.1	145	t	!	1	S. 5 !
30	11300	7500		55	27	20	51	114	1.3	3108	$!9$	$!$	-	4.7
31	11500	7600		24	25	17	36	175	0.9	854	3	1	1	4.8
32	11700	7500		16	16	3	22	59	0.2	:44	13	1	1	5.77
3	11850	7600	\because	44	52	20	27	1.30	0.7	659	t	1	,	4.3
34	12000	7500		54	14	5	22	35	0.3	280	:	1	2	5.37
35	12100	7600		50	21	7	34	88	0.1	151	24	$?$	j	10.7.
9	$12: 50$	7600	5	57	49	14	41	30	0.5	805	15	5	!	4.3
37	12200	7600		16.	7	3	46	108	1.1	6772	3	.	\checkmark	4.3
S	12500	7600		If	25	11	15	116	0.2	525	$\underline{2}$	1	.	5.
$3 ?$	12400	7600		31	17	6	15	62	0.2	! 5	t	!	1	6.t.
40	19500	7500		17	19	9	35	72	0.1	199	: 2	!	2	15.12
41	15300	7500		20	33	19	21	129	0.5	495	t	1	?	17.3
9	19700	7600		21	24	12	18	34	0.1	544	2	!	:	4.9
45	:3300	7500		37	46	15	24	:08	0.1	775	4	1	:	6.5s
14	18700	7600		22	31	?	24	78	0.4	$\underline{-5}$	\because	!	1	$\therefore 9$
45	10530	7750		104	30	27	$111)$	242	2.9	5450	42	2	4	7.79
16	:10700	7350		16	21	9	29	76	2.1	815	10	,	!	7. 34
47	18800	750		4	ε	2	$1:$	24	0.8	$7 ?$?	2	:	1.27
18	10900	7350		I	3	?	:0	19	0.1	102	:	1	-	2.67
49	1:1000	Teo		2	4	2	9	22	0.7	1.9	-	1	$!$	1.04
50	11100	7250		9	.4	5	30	59	0.1	1.44	:0	-	.	5.06

13:10	EASTING	NORTHING	SILT?	Cu	HL	Co	P	Ln	Ao	m	A_{5}	Als	\cdots	Fo
$5!$	11200	7300		4	$?$	3	17	34	0.1	10.7	t	-	1	2.27
52	11400	7350		5	5	2	8	24	0.1	106	z	-	:	1.05
5	11.500	750		*	5	2	7	T	0.1	65	?	4	,	1.75
54	11690	7350		22	$2!$	5	13	52	0.2	:25	16	1	1	5.54
55	11700	7950		20	34	10	30	47	0.7	464	19	$!$	1	2.89
5	11.35	750	§	51	50	19	22	125	2.4	419	$?$!	:	4. 54
57	11300	730		20	14	10	17	64	0.2	621	t	2		2.32
58	12000	7350		0	15	!	?	79	0.1	104	3	:	!	2. 11
59	12200	7350		27	12	$?$	7	31	0.1	72	4	$!$!	1.7\%
50	15300	7400		:9	15	5	!	44	0.1	169	Z	1	1	4,45
51	12400	7400		9	10	4	6	15	0.1	147	?	1	:	2.93
32	1200	7400		30	13	5	13	54	9.j	158	3	!	1	5.17
$5 \cdot$	10500	7200		12	5	1	6	12	0.7	45	2	1	!	0.87
34	10500	7300		7	12	4	11	44	0.2	144	2	:	1	¢. 31
ts	12700	7200		1	$!$	1	4	?	0.2	129	2	:	1	0.12
56	10000	7200		14	37	14	29	92	0.6	21:	5	$?$:	5.58
67	10900	7200		9	3	?	21	7	0.2	148	?	:	1	$3 \cdot 7$
58	$1: 1000$	7200		$?$	10	4	16	48	0.6	:09	?	1	!	4.08
69	1:100	7200		21	31	12	32	39	1.2	465	\pm	1	1	3.15
70	11200	1200		15	17	10	32	79	0.1	23	?	!	1	2.31
$7!$	11.300	7200		4	5	$!$	5	18	0.2	34	2	1	1	3.57
7	11500	7200		3	3	1	3	15	0.3	51	2	1	1	0.33
7	11700	7200		14	15	5	15	31	0.1	144	2	$!$	1	5.30
7	11795	7200	S	49	50	18	22	130	0.7	532	Σ	1	$=$	4.38
75	11800	7200		T	24	7	12	34	0.4	155	4	:	1	2.32
76	11900	7200		22	16	3	25	102	0.4	149	11	!	$!$	4.58
77	$12: 00$	7200		13	12	5	7	41	0.6	130	3	1	1	4.6:
98	12300	7300		11	13	5	7	49	0.1	22	$?$		$!$	4.07
7 \%	12×00	7200		27	18	7	10	44	0.1	141	$1!$!	:	7.11
30	12400	7200		17	17	9	12	69	0.1	24	b	1	$!$	7.25
31	1500	7200		16	15	6	16	49	0.1	192	17	!	1	5.12
174	5000	7000		$11!$	510	89	58	236	0.7	1006	55	4	1	5.9
175	$5: 00$	7000		64	te	18	2	151	0.7	?2t	is	11	$=$	4.75
:84	5800	7.000		12	33	9	: 5	92	0.1	143	13	3	1	2.38
175	5000	6900		27	44	11	11	74	0.2	379	17	9	:	$\therefore .46$
17	5.00	5900		44	74	15	25	94	0.2	347	3	\pm	1	5.95
185	500	6900		5	15	2	30	41	0.1	117	5	\bigcirc	:	0.35
171	5:00	5800		56	45	15	45	36	0.1	583	?	"	:	7
: 26	52.0	5800		5	12	4	8	44	0.3	347	?	5		1.04
32	7000	5800		37	29	10	30	:05	0.1	321	11	こ		E.2!
cs	7100	580\%		37	30	10	44	110	0.1	49:	17	-		$3 . .2$
34	790	5800		16	15	5	28	if	0.4	: 43	10	-		2. \because
35	720	5300		6.	3	9	-5	: 50	0.2	$25:$	$1 ?$	2		7.8
36	7100	5800		49	41	14	11	148	0.5	512	9	-		1. 33
97	30	:800		25	T	11	2	152	0.7	$7!7$	15	!		4×2
38	7600	3800		3	29	11	24	130	1. 5	517	:	\because		¢:
$3{ }^{\circ}$	7.00	:300)		50	12	13	35	129	0.2	458	A	?		こ.:
32	? 30	5000		-6	7	15	5	167	0.5	421	15	\%		7. 8
\%:	7700	5800		42	3	14	4.3	184	0.2	4.75	:5	!		4.E2
72	3000	± 500		12	0	9	32	109	0.5	O0	:3	!	1	5.
73	3100	5000		195	68	17	54	100	0.5	532	13	?	!	5.07
? 7	350	5800		17	40	15	31	115	0.2	S66	12	1	-	$4 .:$

10 NO	Easting	northing	SILT？	Cu	Ni	co	Pb	in	A9	mn	A5	Al	． 0	Fe
95	8700	6800		54	55	25	ァ	198	0.2	590	？	5	1	4． 5
9	$9+00$	5800		30	32	9	29	174	0.2	77	12	！	，	4．0\％
77	\％00	8900		42	32	10	34	155	0.2	298	！ 9	！	1	3.74
\％ 9	9600	S800		53	50	30	47	20	0.8	406	3	1	1	5.67
78	9700	5800		75	51	26	57	159	0.2	522	S 5	1	$!$	5.9
100	9770	5800	5	40	48	23	37	153	0.3	2127	31	3	1	4.45
101	3800	6800		21	19	6	30	84	0.6	！ 62	25	1	1	2.52
102	3900	5800		${ }^{48}$	32	15	40	131	0.5	497	27	！	1	5.59
176	5010	6700		52	50	22	4	174	0.1	614	11	2	！	4.11
170	5120	5700		34	29	9	19	72	0.1	23	$?$	：	！	2.35
197	5200	6700		9	15	4	8	54	0.1	154	？	5	！	1.59
177	5000	5600		15	23	9	16	91	0.1	357	4	1	1	2． 5
169	5100	3600		12	18	8	11	： 5	0.1	220	2	$!$	1	2.9
198	5200	5600		9	20	9	7	76	0.1	1256	：	4	1	3.05
105	7000	8600		49	39	16	57	153	0.4	51	36	！	1	4.50
104	7100	5600		52	47	19	34	393	0.5	742	23	1	1	4.97
105	7200	6600		78	43	15	45	131	0.3	716	19	1	：	3.13
106	7300	4600		31	29	？	50	！52	0.4	± 8	18	1	1	$\therefore 15$
107	7400	6600		9	8	3	25	$5!$	0.1	163	2	$!$	$!$	：．35
108	T：00	3600		20	22	9	3	135	0.5	247	\％	！	1	3.5
109	7600	3600		21	24	8	30	97	0.4	300	16	1	1	2.34
1：0	7700	6600		25	こ4	10	26	114	0.1	± 0	14	1	1	$\Sigma 15$
111	7800	6600		46	52	17	50	：24	0.5	59	2	\pm	$!$	4.5
112	7900	5600		20	24	9	！ 9	105	0.1	235	：4	1	：	2.3
115	8000	5600		12	14	6	17	46	0.1	203	6	！	$!$	2.2
114	8100	3600		5	9	3	17	49	0.2	102	5	！	1	2.5
115	92：0	6600		157	138	25	62	155	0.9	1540	29	！	1	4.0
116	9200	5600		31	37	10	29	100	0.1	514	19	$=$	，	5
117	2400	6600		43	54	17	61	177	0.5	455	7	1	$!$	5.07
118	9500	5600		43	34	11	32	152	0.7	361	16	1	1	4.3
119	3600	\＄600		35	59	24	32	199	0.4	355	19	！	，	\because
120	9700	5600		19	16	7	16	7	0.3	185	37	b	，	4.8
：11	8890	5600		45	41	10	7	162	0.5	59	22	－	：	4.34
122	3900	5600		55	＋ 8	16	11	156	0.1	447	31	2	$!$	4.12
179	5000	5500		13	21	－	10	45	0.1	259	4	1	1	2.53
158	5100	5500		12	12	9	9	103	0.1	1153	2	：	：	1．5\％
：98	5190	6500		12	22	－	15	169	0.1	300	11	5	1	2.94
$1: \%$	5000	5400		5	11	¢	7	39	0.1	279	2	！	$!$	2.1
： 6	5100	5400		5	5	1	19	36	0.2	94	2	1	：	2.58
128	7000	5400	．	11	11	？	29	52	0.2	109	15	：	！	2.64
：	7100	5480		47	42	16	34	514	0.3	477	15	1	：	5.43
： 5	Ta0	5400		91	47	15	50	239	0.1	SE1	：9	－	$!$	S．7．
：2	700	3400		29	24	？	27	199	0.2	239	$1:$	1	：	4．0：
：	$\because 0$	5400		55	－9	12	：	145	0.7	57	21	：	1	2.85
：9	\cdots	5409		72	23	：5	47	：56	1.1	$8:$	35	1	：	4.6
： 2	50	5400		42	$3{ }^{3}$	11	43	： 2	0.7	505	21	：	：	$\therefore .8$
130	O\％	5400		57	45	： 4	67	131	0.8	701	13	1	1	4.97
131	$\cdots 0$	5400		50	＋2	15	55	10	1	514	2	1	！	4.29
15	Eing	5400		5	47	！	79	135	0.9	275	2	2	1	4．：
134	$3: 50$	5490		34	40	13	55	15	0.4	3142	12	，	：	2.57
135	320	5400		19	32	！	20	7	0．2	$3: 4$	：	！	1	2． 07
：3s	3：00	5400		22	－ミ	11	27	175	0.3	397	10	：	！	4.79

10 NO	Eastivg	NORTHIMG	SILT?	Cu	Ni	Co	Pb	In	Ag	Ha	As	Als	Mo	Fe
137	8400	6400		21	25	9	29	113	0.2	228	16	1	!	4.47
13 B	3800	6400		29	π	11	23	!5	0.4	336	12	:	$!$	4.25
139	3600	5400		18	30	6	38	90	0.2	174	12	1	!	5.19
140	9700	5400		25	23	11	20	109	0.8	\$02	11	1	$!$	4.04
141	8990	6400		22	17	7	29	94	0.1	237	14	:	1	9.55
:42	.000	5400		33	37	10	25	109	0.1	471	19	1	2	7.74
100	5000	6300		7	5	2	4	18	0.1	60	2	1	1	1, 89
166	5100	6300		15	25	9	22	104	0.1	510	4	:	$!$	2.92
18:	5000	6200		30	22	14	15	73	0.1	353	2	1	1	4.12
155	5100	5200		15	3	11	21	115	0.2	1135	2	$!$	$!$	2.2!
145	7000	6200		d1	8	4	11	31	0.1	99	30	1	1	3.62
144	7100	3200		12	15	5	31	129	0.4	277	14	:	!	4.37
! 45	7200	6200		16	19	5	18	36	0.1	162	10	$!$	1	2.4!
:46	7200	6200		12	39	10	T	252	0.8	527	22	\ddagger	!	4.67
147	7400	6200		48	39	11	42	138	0.2	341	17	:	1	4.27
:48	T300	5200		59	45	18	51	128	1.3	481	21	$=$	$!$	4.12
149	7600	5290		56	37	16	53	115	0.3	442	41	4	1	4.06
150	7700	6200		40	98	11	40	107	0.5	386	13	$!$	$!$	Z. 5
$15!$	7300	6200		69	44	16	98	130	1.2	794	22	2	1	4.06
152	T900	5200		20	22	9	36	151	0.2	213	:2	1	1	4.22
153	8000	8200		25	20	10	j	145	0.2	279	10	2	1	4.16
!54	8100	3200		2	ab	10	3	172	0.2	375	: 4	$!$	$!$	5.79
155	8200	6200		21	23	10	$3!$	$!$	0.3	$24 t$	11	\#	1	3.3
:56	8800	6200		14	14	5	25	72	0.1	217	$?$	$!$	1	5.12
157	8400	6200		19	24	9	31	125	0.5	269	1)	$!$	1	4.21
158	3500	6200		12	16	5	25	74	0.1	193	15	$!$	1	3.81
159	3600	6200		8	10	3	21	49	0.1	194	5	2	1	2.75
150	3700	5200		91	375	45	70	558	0.5	524	22	\cdots	2	7.94
161	2600	6200		29	36	14	31	142	0.7	305	11	2	!	5.13
162	3900	6200		37	3	12	33	158	0.1	310	14	5	$!$	5.3 ?
: 3	3000	5200		11	11	4	15	41	0.2	100	?	13	1	3.97
132	5000	3100		16	39	7	34	39	0.1	207	5	1	!	$\therefore .77$
164	5100	6100		25	34	8	43	122	0.1	268	15	3	1	2.6

APPENDIX D

Variable:Cu PPM
$\begin{array}{lr}\text { Number of Samples Selected: } & 187 \\ \text { Number of Missing or Null Values: } & 0\end{array}$
Minimum: . . 1.000
Maximum: 161.000
Range: 160.000
Mean:
31.000

Median:
24.000
$\begin{array}{lr}\text { Variance: } & 609.733 \\ \text { Standard Deviation: } & 24.693 \\ \text { Standard Error: } & 1.806 \\ \text { Coefficient of Variation (\%): } & 79.654 \\ \text { Coefficient of Skewness: } & 1.889 \\ \text { Coefficient of Kurtosis: } & 8.366 \\ & \\ \text { Log 10 Transformed Mean: } & 22.702 \\ \text { Log lo Variance: } & 3.787 \\ \text { Log } 10 \text { Standard Deviation: } & 1.946\end{array}$
Percentiles
Minimum: $\quad 1.000$
10 TH Percentile at 7.000
20 TH Percentile at 12.000
30 TH Percentile at 16.000
40 TH Percentile at 20.000
50 TH Percentile at 23.000
60 TH Percentile at 29.000
70 TH Percentile at 39.000
80 TH Percentile at 48.000
90 TH Percentile at 59.000
Maximum: 161.000

Variable:Ni PPM

Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	
Maximum:	1.000
Range:	310.000
Mean:	309.000
Median:	29.877
Variance:	24.000
Standard Deviation:	948.717
Standard Error:	30.801
	2.252
Coefficient of Variation (\%):	
Coefficient of Skewness:	103.094
Coefficient of Kurtosis:	5.841
	48.086
Log 10 Transformed Mean:	
Log 10 Variance:	22.575
Log 10 Standard Deviation:	3.138

Percentiles
Minimum: $\quad 1.000$

| 10 TH Percentile at | 9.000 |
| :--- | :--- | ---: |
| 20 TH Percentile at | 13.000 |
| 30 TH Percentile at | 16.000 |
| 40 TH Percentile at | 21.000 |
| 50 TH Percentile at | 24.000 |
| 60 TH Percentile at | 29.000 |
| 70 TH Percentile at | 34.000 |
| 80 TH Percentile at | 41.000 |
| 90 TH Percentile at | 48.000 |

Maximum: 310.000

Variable:Co PPM
$\begin{array}{lr}\text { Number of Samples Selected: } & 187 \\ \text { Number of Missing or Null Values: } & 0\end{array}$

Minimum:	1.000
Maximum:	45.000
Range:	44.000
Mean:	10.262
Median:	9.000
Variance:	43.017
Standard Deviation:	6.559
Standard Error:	0.480
Coefficient of Variation (\%):	63.913
Coefficient of Skewness:	1.466
Coefficient of Kurtosis:	6.938
Log lo Transformed Mean:	8.229
Log lo Variance:	3.030
Log Standard Deviation:	1.741

Percentiles
Minimum: $\quad 1.000$

| 10 TH Percentile at | 3.000 |
| :--- | :--- | ---: |
| 20 TH Percentile at | 5.000 |
| 30 TH Percentile at | 6.000 |
| 40 TH Percentile at | 8.000 |
| 50 TH Percentile at | 9.000 |
| 60 TH Percentile at | 10.000 |
| 70 TH Percentile at | 12.000 |
| 80 TH Percentile at | 15.000 |
| 90 TH Percentile at | 18.000 |

Maximum: 45.000
Variable:Pb PPM
Number of Samples Selected: 187
Number of Missing or Null Values: 0
Minimum: 3.000
Maximum: 115.000
Range:112.000
Mean:28.316
Median: 24.000
Variance: 349.531
Standard Deviation: 18.696
Standard Error:1.367
Coefficient of Variation (\%): 66.027
Coefficient of Skewness: 1.700
Coefficient of Kurtosis: 7.226
Log 10 Transformed Mean: 23.024
Log 10 Variance: 2.821
Log 10 Standard Deviation: 1.680
Percentiles
Minimum: 3.000

10 TH Percentile at	8.000	
20	TH Percentile at	13.000
30 TH Percentile at	18.000	
40 TH Percentile at	21.000	
50 TH Percentile at	24.000	
60 TH Percentile at	28.000	
70 TH Percentile at	32.000	
80 TH Percentile at	40.000	
90 TH Percentile at	51.000	

Maximum: 115.000
128
P114GC
Variable: Zn PPM

Number of Samples Selected:	187
Number of Missing or Null Values:	0

Minimum: 1.000
Maximum: 568.000
Range:567.000Mean:105.305
Median: 94.000
Variance: 4786.811Standard Deviation:
69.187
Standard Error: 5.059
Coefficient of Variation (\%): 65.701
Coefficient of Skewness: 2.409
Coefficient of Kurtosis: 14.185
Log 10 Transformed Mean: 84.980
Log 10 Variance: 2.876
Log 10 Standard Deviation: 1.696
Percentiles
Minimum: 1.000

10	TH Percentile at	39.000
20	TH Percentile at	50.000
30 TH Percentile at	69.000	
40 TH Percentile at	80.000	
50 TH Percentile at	92.000	
60 TH Percentile at	109.000	
70 TH Percentile at	128.000	
$80 ~ \mathrm{TH}$ Percentile at	142.000	
90 TH Percentile at	168.000	

Maximum: 568.000
128Elementary Statistics
Variable:Ag PPM
Number of Samples Selected: 187
Number of Missing or Null Values: 0
Minimum: 0.100
Maximum: 2.900
Range: 2.800
Mean: 0.335
Median: 0.200
Variance: 0.111
Standard Deviation: 0.334
Standard Error: 0.024
Coefficient of Variation (\%): 99.485
Coefficient of Skewness: 3.407
Coefficient of Kurtosis: 22.052
Log 10 Transformed Mean: 0.240
Log 10 Variance: 3.784
Log 10 Standard Deviation: 1.945
Percentiles
Minimum: 0.100

| 10 TH Percentile at | 0.100 |
| :--- | :--- | :--- |
| 20 TH Percentile at | 0.100 |
| 30 TH Percentile at | 0.100 |
| 40 TH Percentile at | 0.200 |
| 50 TH Percentile at | 0.200 |
| 60 TH Percentile at | 0.300 |
| 70 TH Percentile at | 0.400 |
| 80 TH Percentile at | 0.500 |
| 90 TH Percentile at | 0.700 |

Maximum: 2.900

Variable:Mn PPM
Number of Samples Selected: 187
Number of Missing or Null Values: 0
Minimum: 31.000
Maximum: 6372.000
Range: 6341.000
Mean:
454.037

Median:
Variance: 300.000

Standard Deviation:
464129.875

Standard Error:
681.271
49.819

Coefficient of Variation (\%): 150.047
Coefficient of Skewness:
6.129

Coefficient of Kurtosis:
47.763

Log 10 Transformed Mean:
301.164

Log 10 Variance:
3.573

Log 10 Standard Deviation: 1.890

Percentiles

Minimum: 31.000

```
10 TH Percentile at
    107.000
20 TH Percentile at 147.000
30 TH Percentile at 193.000
40 TH Percentile at 239.000
50 TH Percentile at 296.000
60 TH Percentile at 355.000
70 TH Percentile at 450.000
80 TH Percentile at 587.000
90 TH Percentile at 742.000
```

Maximum: 6372.000

Variable:As PPM

Number of Samples Selected:	187
Number of Missing or Null Values:	0

Minimum: 2.000
Maximum: 65.000
Range: 63.000
Mean: 12.882
Median: 11.000
Variance: 103.869
Standard Deviation: 10.192
Standard Error: 0.745
Coefficient of Variation (\%): 79.113
Coefficient of Skewness: 1.559
Coefficient of Kurtosis: 6.658
Log 10 Transformed Mean: 9.275
Log 10 Variance: 4.219
Log 10 Standard Deviation: 2.054
Percentiles
Minimum: 2.000

| 10 TH Percentile at | 2.000 |
| :--- | :--- | ---: |
| 20 TH Percentile at | 4.000 |
| 30 TH Percentile at | 6.000 |
| 40 TH Percentile at | 8.000 |
| 50 TH Percentile at | 11.000 |
| 60 TH Percentile at | 13.000 |
| 70 TH Percentile at | 16.000 |
| 80 TH Percentile at | 19.000 |
| 90 TH Percentile at | 26.000 |

Maximum: $\quad 65.000$

Variable:Au PPB	
Number of Samples Selected:	187
Number of Missing or Null Values:	0
Minimum:	1.000
Maximum:	33.000
Range:	32.000
Mean:	2.225
Median:	1.000
Variance:	11.714
Standard Deviation:	3.423
Standard Error:	0.250
Coefficient of Variation (\%):	153.853
Coefficient of Skewness:	5.611
Coefficient of Kurtosis:	42.472
Log 10 Transformed Mean:	1.519
Log 10 Variance:	3.031
Log 10 Standard Deviation:	1.741

Percentiles
Minimum: 1.000
10 TH Percentile at $\quad 1.000$

20 TH Percentile at 1.000
30 TH Percentile at 1.000
40 TH Percentile at 1.000
50 TH Percentile at 1.000
60 TH Percentile at 1.000
70 TH Percentile at 2.000
80 TH Percentile at 2.000
90 TH Percentile at 4.000
Maximum: 33.000

Variable:Mo PPM
Number of Samples Selected: 187
Number of Missing or Null Values: 0
Minimum: 1.000
Maximum: 5.000
Range: 4.000
Mean:1.102
Median: 1.000
Variance: 0.209
Standard Deviation: 0.457
Standard Error: 0.033
Coefficient of Variation (\%): 41.493
Coefficient of Skewness: 5.762
Coefficient of Kurtosis: 40.764
Log 10 Transformed Mean: 1.059
Log 10 Variance: 1.240
Log 10 Standard Deviation: 1.113
Percentiles
Minimum: $\quad 1.000$
10 TH Percentile at 1.000
20 TH Percentile at

$$
1.000
$$

40 TH Percentile at 1.000
50 TH Percentile at

$$
1.000
$$

$$
60 \mathrm{TH} \text { Percentile at } \quad 1.000
$$

$$
70 \text { TH Percentile at } \quad 1.000
$$

$$
80 \mathrm{TH} \text { Percentile at } \quad 1.000
$$

$$
90 \mathrm{TH} \text { Percentile at } \quad 1.000
$$

Maximum: 5.000

```
128
```

Variable:Fe %

```
Number of Samples Selected: 187
Number of Missing or Null Values: 0
\(\begin{array}{lr}\text { Minimum: } & 0.120\end{array}\)
Maximum: 12.420
Range: 12.300
Mean:
    4.076
Median:
    4.070
Variance: 3.466
Standard Deviation: 1.862
\(\begin{array}{ll}\text { Standard Error: } & 0.136\end{array}\)
Coefficient of Variation (\%): 45.678
Coefficient of Skewness: 1.058
Coefficient of Kurtosis: 6.081
Log 10 Transformed Mean: 3.580
Log 10 Variance: 2.197
Log 10 Standard Deviation: 1.482
Percentiles
Minimum: 0.120
\begin{tabular}{lll}
10 TH Percentile at & 1.810 \\
20 TH Percentile at & 2.750 \\
30 TH Percentile at & 3.140 \\
40 TH Percentile at & 3.620 \\
50 TH Percentile at & 4.060 \\
60 TH Percentile at & 4.280 \\
70 TH Percentile at & 4.610 \\
80 TH Percentile at & 5.070 \\
90 TH Percentile at & 6.000
\end{tabular}

Maximum: 12.420


```

