REPORT ON DIAMOND DRILLING PROGRAM

on the

ALLIES PROPERTY

Kamloops Mining Division, British Columbia

- Prepared for -

Operator: RELAY CREEK RESOURCES LTD.

Suite 711, 850 West Hastings Street,

Vancouver, British Columbia V6C 1E1

Owner: Laramide Resources Ltd.

lishe**s**

- Covering -

ALLIES CLAIM (20 Units) and ALLIES NO.2 CLAIM (4 Units)

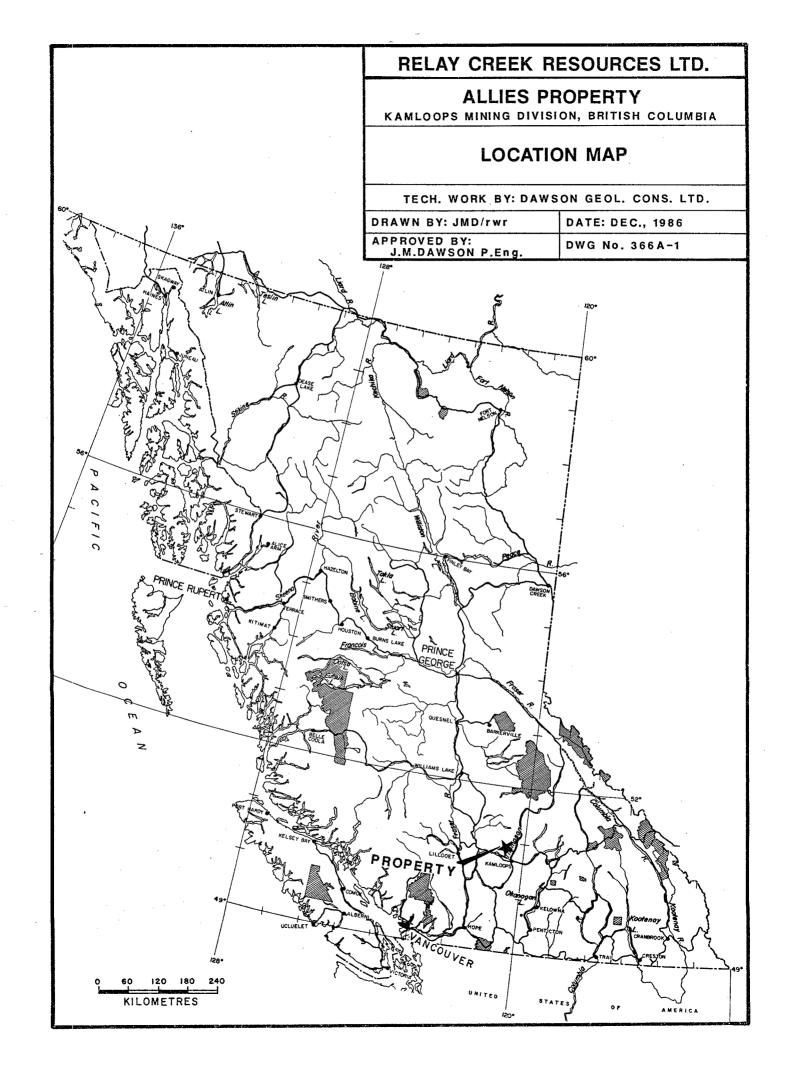
- Work performed -

JULY 1 to DECEMBER 31, 1986

- Located -

FILMED

25 Kilometers Northwest of Kamloops, British Columbia NTS Map Sheet No. 92I / 15E 50°525North / 120° 341 West


- Prepared by -

DAWSON GEOLOGICAL CONSULTANTS LTD.
Suite 203, 455 Granville Street,
Vancouver, British Columbia
V6C 1T1

James M. Dawson, P.Eng.

January 5, 1986

REPORT ON DIAMOND DRILLING PROGRAM ALLIES PROPERTY, Kamloops Mining Division, British Columbia

TABLE OF CONTENTS

	TABLE OF CONTENTS	
		Page
INTRODUCTIO	N	.1.
SUMMARY AN	D CONCLUSIONS	.2.
PROPERTY		.4.
LOCATION AN	D ACCESS	.5.
PHYSIOGRAPH	IY AND VEGETATION	.6.
HISTORY		.7.
CURRENT DRI	LLING PROGRAMME	.9.
GEOLOGY		.10.
MINERALIZATI	ION	.12.
DISCUSSION OF	F RESULTS	.13.
APPENDICES		
Appendix A	Personnel	
Appendix B	Cost Statement	
Appendix C	Drill Logs	
Appendix D	References	
Appendix E	Writer's Certificate	
LIST OF MAPS	IN TEXT	
Figure 366A-1	Location Map	
Figure 366A-2	Claim Map	
Figure 366A-3	Geology, Geochemistry and Drill Hole Locations	·
Figure 366A-4	Cross Section Drill Hole 86-A-1	
Figure 366A-5	Cross Section Drill Hole 86-A-2	
Figure 366A-6	Cross Section Drill Hole 86-A-3	
Figure 366A-7	Cross Section Drill Hole 86-A-4	
Figure 366A-8	Cross Section Drill Hole 86-A-5	

INTRODUCTION

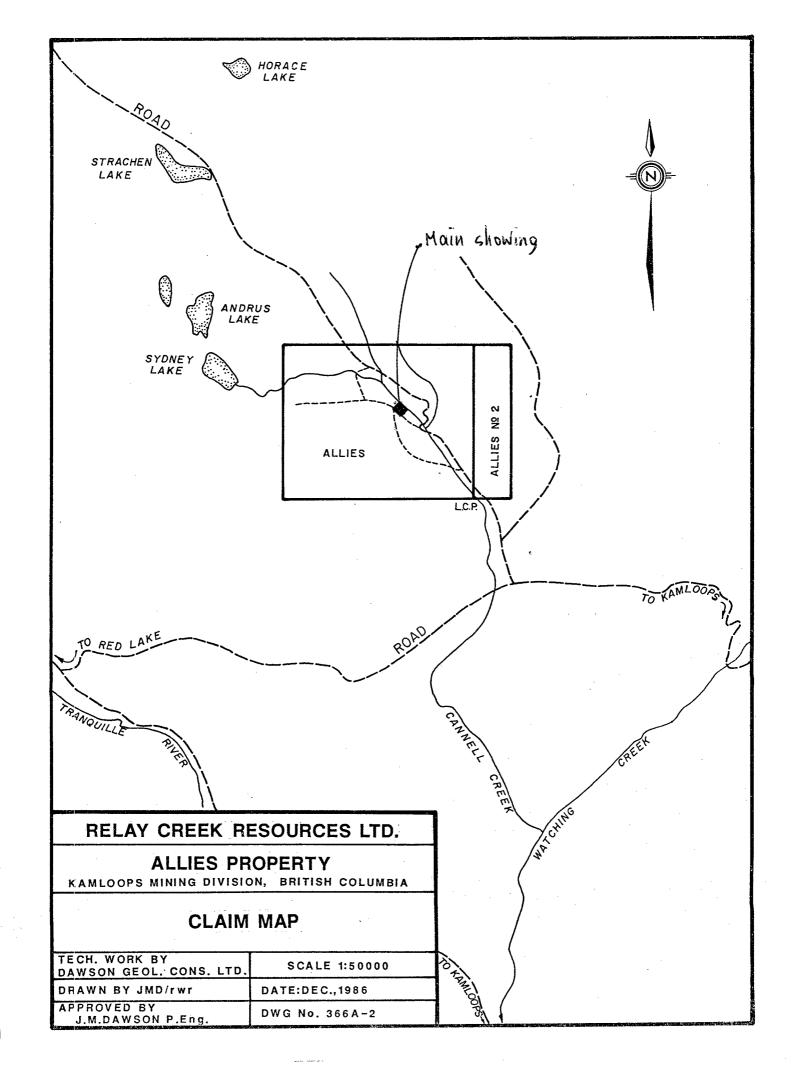
This report describes the results of a programme of core drilling on the Allies property, Kamloops Mining Division, British Columbia. This programme was part of an ongoing effort to evaluate a puzzling and potentially economically significant gold occurrence.

A series of written logs of each drill hole is appended to this report, as are maps showing significant geological features and locations of recent drill holes.

SUMMARY AND CONCLUSIONS

- 1. The Allies property consists of two contiguous MGS claims aggregating 24 units, located in relatively moderate terrain about 25 kilometers northwest of the city of Kamloops in south-central British Columbia, and is road accessible.
- 2. The property was probably discovered in the early 1900s, but no work was recorded until the period 1924-34. During this time, extensive trenching, prospecting and underground exploration was carried out in an attempt to discover the source of an accumulation of float boulders containing significant gold values. These efforts were unsuccessful. During 1972-78, geochemical and geophysical surveys, trenching and limited diamond drilling was performed; however, the source of the float was not located. In 1984-85, Laramide Resources Ltd. carried out geological mapping, geochemical soil and silt sampling as well as trenching and road construction. The property was optioned to Relay Creek Resources Ltd. in 1985 and further exploration, including an induced polarization survey and backhoe trenching, was performed. In 1986, Relay Creek carried out a diamond drilling programme consisting of 619.2 meters of NQ drilling in five holes.
- 3. The property is underlain by Miocene plateau basalt within which an erosional/tectonic window exposes older picrite and lesser Nicola 'greenstones'. The older rocks are cut locally by porphyritic felsic dykes. Outcrop of the older rocks is sparse; at two locations, however, clusters of felsic dykes are the loci for quartz veins and stockworks. A third occurrence of such mineralization consists of an accumulation of angular boulders for which a bedrock source has not been found.
- 4. Mineralization consists of sparse, disseminated pyrite, lesser blebs of chalcopyrite, and traces of galena in or adjacent to sub-parallel sets of glassy to milky, narrow, quartz stringers and veins. Gold values range up to 45.2 grams per tonne for selected samples at the main showing, but average about 3.0 grams per tonne for random grab samples. At

the two 'in place' showings, similar but weaker sulphide mineralization generally reports only weakly anomalous gold values - the best values being in the 1 gram per tonne range.


5. Weak gold mineralization is present in quartz stockwork over significant widths on the Allies property. The source of the higher grade boulders at the No. 1 or Discovery Showing, however, has not yet been located. It is suggested that the problem is one of complex faulting, intensified by lack of outcrop and the post mineralization plateau basalt cover. Additional drilling will be required to arrive at an understanding of the geometry of the mineralized zones at depth and along strike.

PROPERTY

The Allies property consists of two contiguous, MGS claims aggregating 24 units as follows:

 Claim Name	Record Number	Tag Number	Expiry Date
Allies	3617	68481	23 Jun '95
Allies No.2	6308	90852	19 Jul '88

The registered owner of these claims is Laramide Resources Ltd. The property is currently under option to Relay Creek Resources Ltd.

LOCATION AND ACCESS

The property is located in south-central British Columbia, about 25 kilometers northwest of the city of Kamloops, at the southern edge of the Bonaparte Plateau. The approximate geographic center of the property is at 50°52' north and 120°33' west.

The claims are accessible by road from Kamloops via approximately 30 kilometers of dirt road from the Batchelor Hills turn-off in North Kamloops and thence to McQueen Lake, Pass Lake and Cannell Creek. Recent construction of drill roads now provides easy access to the more important parts of the property.

PHYSIOGRAPHY AND VEGETATION

104

The property lies at the southern edge of the Bonaparte Plateau. A gently rolling upland area with elevations in the 4800 to 5000 foot range is bisected by the northwest-trending valley of Cannell Creek. Elevations in this valley vary from about 3900 feet above sea leval at the southeast corner of the claim block, to near 4800 feet at the north and west boundaries.

The area is heavily wooded, with mature spruce, fir and pine in the valley of Cannell Creek. Upland areas and southerly-facing slopes are generally more open and predominently forested by lodgepole pine with occasional meadows.

The area of the known showings is poorly drained and for the most part covered with a variable thickness (up to 20+ meters) of clay-rich glacial material. Even modest amounts of precipitation make the roads virtually impassible with mud.

HISTORY

111

116

The first recorded work on the property was in 1924. It had, however, presumably been discovered some years earlier by prospectors working up Tranquille River and Watching Creek searching for the source of the placer gold found in those creeks. Samples of material grading as high as 1.42 ounces gold per ton were obtained from quartz stringers in a number of large blocks of silicified feldspar porphyry thought at first to be outcrop.

Over the next few years, a considerable amount of prospecting and trenching had not established the dimensions of the showing, or even if the discovery material was in place.

In 1933-34, an extensive programme of underground exploration was carried out in an attempt to find and delineate the source of the gold-bearing porphyry. At least three shafts and five adits totalling approximatley 800 lineal feet were driven at several locations and although several occurrences of similar porphyry intrusions were located in place, the source of the high grade float at the main or No. 1 shaft was not found.

The property was dormant until 1968 when minor trenching was done near some of the original workings.

In 1972-73, the property was controlled by Bon-Val Mines Ltd., who carried out magnetic and VLF electromagnetic surveys as well as geochemical soil sampling. Bon-Val Mines was subsequently reorganized as Yamoto Industries Ltd.

In 1976, an extensive programme of geochemical soil sampling was undertaken with some 800 samples being analyzed for gold and copper. Results showed only a few gold 'highs', presumably because of the heavy, clay-rich overburden.

In 1978, three diamond drill holes totalling 162.5 meters were bored near the No. 1 shaft. Drill logs reported barren 'serpentine' in all holes, with no porphyry or quartz veins encountered. In 1984, title to the property was awarded to Laramide Resources Ltd. after a lengthy legal dispute over assessment work.

In 1985, a detailed exploration programme was initiated by Laramide. This work consisted of grid layout, geological mapping, road construction and trenching, as well as soil and silt sampling.

In 1985, the property was optioned by Relay Creek Resources Ltd., which company conducted an exploration programme consisting of induced polarization and excavator trenching. A diamond drilling programme was begun but had to be terminated because of excessively cold weather in November of 1985.

CURRENT DRILLING PROGRAMME

During September 1986, five NQ-sized core holes aggregating 619.2 meters were drilled on the Allies property. Location of drill collars is shown on Figure 366A-3 accompanying this report.

Considerable problems were encountered in drilling because of heavy, boulder-rich overburden as well as heavy clay content of the altered picrite. One of the critical holes (86-A-2) could not be completed because of excessive overburden and caving problems.

The was rassayed by Lamboops Lesserch

GEOLOGY (After Riccio (1985))

4

Lug

di M

The property is largely coverd by Miocene Plateau basalts. Older rocks consisting of picrite, Nicola 'greenstones' and felsic dykes are confined to a 600-meter by 400-meter, erosional-tectonic window. Exposures of pre-Miocene rocks are minimal and almost exclusively confined to areas of workings.

Plateau basalts are black, fine-grained, massive to olivine porphyritic, occasionally amygdaloidal, and columnar jointed. The basalts locally overlie a poorly stratified unit, up to 30 meters thick, composed of volcanic wacke and conglomerate (Kamloops Group?).

Picrite is usually a green to dark greenish-black rock composed of subrounded serpentinized olivine grains (two to five millimeters) set in a dark chloritic matrix. Outcrops of picrite are generally deeply weathered and decomposed. The 'greenstones' consists of light green, chloritized and carbonatized, feldspar porphyritic to aphanitic rocks which can be interpreted as either flows or tuffs. Age relationships between 'greenstones' and picrite cannot be established in the field; however, according to Monger (1984), the picritic rocks at the Allies property are probably coeval with or slightly younger than the 'greenstones'.

Felsic, porphyritic dykes are found cutting the older picrite and Nicola volcanics and have been noted in place at Dodd's Showing and the Southwest Showing. Identical dyke rocks as a series of large angular blocks have been found in the vicinity of the Main or Discovery Showing. These are usually grey to buff coloured rocks composed of 20% to 30%, small feldspar (two to five millimeters) and minor hornblende phenocrysts set in a grey, aphanitic groundmass. Data from surface and drilling indicate that these dykes strike easterly to northeasterly and dip steeply south. At both the Southeast and Dodd's Showings, the dykes occur as a cluster or swarm over a 20- to 30-meter width, with intervening screens of chloritized country rock.

Cockfield (1961) noted light and dark porphyries in his mapping. The writer has seen two other outcrop areas at No. 2 and No. 3 adits where 'light' porphyry cuts the surrounding, friable picrite. This dyke rock is paler and more siliceous than the previously described 'dark' porphyries and does not contain any quartz veining.

111

MINERALIZATION

1100

11.4

At the Main or Discovery Showing, boulders of quartz-veined, 'dark' porphyry are found over an area roughly 150 meters (east-west) by about 40 meters (north-south) adjacent to the contact with the overlying (or faultbounded) sediments and volcanics. Within this area at least 50 such boulders varying in size from two meters square down to fist-size have been found. These boulders are almost always angular, but seem to decrease in size towards the west. Typically, such boulders are cut by sub-parallel sets of milky and glassy quartz stringers and veins, one to twenty centimeters wide, carrying disseminated pyrite, blebs of chalcopyrite and minor galena. Vein density accounts for 10% to 30% of the rock volume. Country rock between quartz veins is strongly silicified and ankeritized. Samples of quartz stringers are reported to have assayed up to 45.2 grams/tonne (?) gold over 20 centimeters (Cockfield, 1961). A number of samples from mineralized boulders have been taken over the last several years by the writer and others. These samples varied from 0.44 ounces/ton to trace gold. The average of all grab samples from mineralized boulders (in this area) averaged about 0.1 ounces gold per ton.

The original Southwest Showing was developed by one main adit and several pits. Here, there are series of quartz-veined porphyry dykes in place cutting altered, friable picrite and silicified and opalized (locally) pyritic 'greenstone'. The porphyry dykes here are generally more pyritic, more chloritized and less silicified than the collection of float boulders near No. 1 (Discovery) Shaft. Here, low but anomalous (100 to 1000 ppb) gold values are found in similar quartz-veined, 'dark' feldspar porphyry dykes.

Narrow (±1 meter) quartz-veined and carbonatized, east-west trending, feldspar porphyry dykes containing minor disseminated pyrite and chalcopyrite are exposed in a new road cut on line 55 near Cannell Creek (Dodd's Showing). All porphyry samples collected in 1984 from this locality returned low but anomalous (35 to 1032 ppb) gold values. It should be noted that this showing as well as the Southwest Showing is located adjacent to the contact with the overlying plateau basalt.

DISCUSSION OF RESULTS

dall

Drilling beneath the Southwest and Dodd's Showings has demonstrated significant (10- to 20-meter) widths of quartz and quartz-carbonate stockwork mineralization which is quite similar to that found in the boulder accumulation at the Main Showing. Gold values at both these locations, however, are only in the anomalous range (up to 1300 ppb).

The minealized zone exposed at Dodd's Showing appears to be cut off to the east by a northwesterly-trending fault which probably closely follows the valley of Cannell Creek. Presumably, it continues some distance to the west beneath the plateau basalt cover.

Drilling beneath the area of the Main Showing was only partly completed. Heavy overburden and caving prevented the completion of drill hole 86-A-2. Hole 86-A-2 demonstrated that the younger plateau basalt is down-faulted against the picrite north of the mineralized boulder accumulation.

In summary, significant widths of stockwork mineralization are known to exist on the Allies property; however, the zone from which the higher grade boulders was derived has not yet been located. Further drilling will be necessary to attain an understanding of the geometry of the mineralized zones at depth and along strike.

Respectfully submitted,

DAWSON GEOLOGICAL CONSULTANTS LTD.

James M. Dawson, P.Eng.

January 5, 1987 Vancouver, British Columbia

M. DAWSON

APPENDIX "A"

PERSONNEL

PERSONNEL

J. M. Dawson, P.Eng.

Geologist

12 Days

111

抽

W.

F. L. Wynne, P. Eng.

Geologist

13 Days

D. Mehner, B.Sc.

Geologist

12 Days

L. Loranger

Prospector

3 Days

August 15, 16, 28, 29, 30, 31

September 1, 9

December 15, 28, 29, 30

September 1, 2, 3, 5, 6, 8, 10, 11,

12, 15, 18, 19, 20

September 19, 20, 21, 24, 25, 27, 30

October 1, 2, 3, 4, 5

August 31

September 1

October 7

APPENDIX "B"

PROJECT COSTS

自包

PROJECT COSTS

A.	PERSONNEL		
	J. M. Dawson, P.Eng. 12 days @ \$300/day	\$ 3,600.00	
	F. L. Wynne, P. Eng.		
	13 days @ \$300/day	3,900.00	
	D. Mehner, B.Sc.		
	12 days @ \$250/day	3,000.00	
	L. Loranger		
	3 days @ \$180/day	540.00	\$11,040.00
В. Е	XPENSES AND DISBURSEMENTS		
	Contract Drilling Costs	\$57,188.96	
	Truck Rental	2,874.40	
	Assays and Analyses	426.30	
	Travel	486.65	
•	Drafting	612.32	
	Miscellaneous Field Equipment	392.78	
	Photocopying, Blueprints, Secretarial, Office Supplies, Telephone, Freight, etc.	377.60	62,359.01
			\$73,399.01

APPENDIX "C"

DRILL LOGS

111

Suite 206 - 310 Nicola St. Kamloops, B.C. Phone 374-0544

PROPERTY	ALLIES	HOLE No.	86-A-1
	·		

DIP AND	AZIMUTH TI Corre		Core SizeNQ	Total Depth 154.6m	Sheet No of 6
Footage	Angle	Azimuth	Angle of Hole -48° Claim Section Bearing 155°T	% Recovery Elev. Collar Latitude	Logged by JMD/FLW/DTM Date Begun 26 Aug 86

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		
0-7.9		Casing.				
8-11		Red brown to dark brown, plateau basalt; vesicular				
		in part.			 	
			-		 	
11-15	3.00	Greenish grey to brown, fairly fresh "Plateau"				
		basalt; vesicular in part.			 	
			a PANAN N. Arabayasahan sasaarasahan Asanasabba daysaartee M		 	
15-19	0.30	From 15 to 15.55, similar fresh basalt; from				
		15.55 to 16.7, greenish, friable and broken picrite	,		 	
		from 16.7 to 19, typical picrite with rounded grains	5			
		of olivine and ? pyroxene (up to 5 mm) in paler				
		greenish, olivine rich matrix; much of section				
		is sheared and friable.			 	
19-23	0.20	Similar picrite with rounded orbicular grains of				
		olivine and pyroxene; frequent zones of chloritizat	on			
		and serpentinization.				
	•					
23-27	0.05	Similar to last section.				
						<u> </u>

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY ALLELES SHEET No. 2 of Shee	PROPERTY	ALLIES	HOLE No. 86-A-1	. SHEET No. 2 of _	6
--	----------	--------	-----------------	--------------------	---

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
27-31	0.05	Similar to last section; core is uniformly weakly magnetic; magnetite and ? chromite present.					
31-35	0.05	Similar to last section; light to dark green					
		depending upon degree of shearing and plae green					
		friable gouge.					
35-39	0	Similar to last section.					
39-43	0	Similar to last section; uniformly magnetic as				, , , , , , , , , , , , , , , , , , , ,	
		before.					
43-47	0.10	Similar to last section.					
47-51	0	Similar to last section.					
51-55	0	Similar to last section.					
		STATE OF THE SECTION.					
55-59	0	Similar picrite, friable and brecciated; cut by			 		
		minor white, narrow calcite ? stringers in places.					
59-63	0.35	Primarily brecciated and friable picrite.					
63-67	0.40	Similar soft, gougy picrite.					
67-71	0.30	Similar to last section; few minor 'fragments' of					
		less friable picrite.					

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
71-75	0.30	Dark green picrite with typical orbicular texture;			 		
		brecciated in part.					
75-79	0.05	Similar dark green partly serpentinized and chlorit	С				
		picrite - sheared and friable in places; rims of					
		magnetite surround some of the rounded olivine					
		grains; minor hematite on some slickensided					
		surfaces.		<u> </u>	 		
					<u> </u>		
79–83	0.10	Similar to last section; becoming more friable and			<u> </u>		
		broken towards end of section.		ļ			
83-87	0.15	Similar to last section.					
87-91	0.10	Picrite grades to a more homogeneous weakly					
	<u> </u>	serpentinized peridotite; less prominent orbicular				ļ <u>.</u>	
		texture; weakly magnetic, perhaps some chromite				ļ	ļ
		amoung the spinels; core is definitely harder.					
					<u> </u>		ļ
91- 95	0.20	Peridotite, as above, shattered and less competent.			 ļ		
							ļ
95-99.2	0.10	Intensely fractured, brecciated picrite; clay			 	ļ	ļ
		alteration throughout; locally serpentinized; minor			 ļ		
		calcite filled fractures (less than 1%); diss.				ļ	ļ
		pyrite cubes (less than 1%).					<u> </u>
	···						

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY______ ALLIES ______ HOLE No. _____86-A-1 _____ SHEET No. ___4 ___of ___6

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au	
99.2-					(ppb)	
100.4		Lost core.				
100.4-				101-102	190	
106.7	0.10	Brecciated, leached, strongly altered andesite	· · · · · · · · · · · · · · · · · · ·	102-103	20	
		feldspar porphyry; irregular brecciated quartz				
		veining (less than 1%); fine diss. pyrite cubes and		103-104	89	
		irregular pyrite veinlets to stockwork = 2-3% pyrite				
		fine grained green mica (mariposite) 8-12% - sericit	2	104-105	16	
		replacing feldspar, phenocrysts and occuring with				
		calcite fractures (less than 1% calcite) - grey				
		clay seams carry very finely diss. pyrite.	*******************************	105-106	4	
				106-107	92	
106.7-		Brecciated andesite porphyry similar to above but		107-108	170	
109.7		with very well developed quartz (15%), calcite (25%)		108-109	550	
		stockworks; 1% diss. and veinlet pyrite, 1% diss.				
		mariposite; silicified groundmass		109-110	850	
109.7-		Brecciated strongly altered picrite; quartz (3%),		110-111	2	
111		calcite (5%) stockwork; less than 1% diss. pyrite,		111-112	540	
		veinlet mariposite less than 1%; local serpentinite		112-113	250	
		alteration.		113-114	300	
				114-115	139	
111-				115-116	210	
119.05		As 106.7-109.7, but only 20% stockwork (15% quartz,		116-117	960	
		5% calcite); contact with picrite approx. 150 to		117-118	560	
		core axis. Minor (<< 1%) chalcopyrite veinlets		118-119	117	

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_______ ALLIES ______ HOLE No. ______ 86-A-1 _____ SHEET No. _____ 5 ____ of _____ 6

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au
		associated with quartz veins between 114.3-115.3.			(ppb)
		Diss. pyrite (less than or equal to 1%), pyrite		119-120	45
		veinlets rare.		120-121	190
				121-122	180
119.05-		As above but fault zone; brecciated, with numerous		122-123	133
128.8		clay seams, gouge and clay supported andesite porphyr	<i>'</i>	123-124	1320
		fragments complete with quartz/calcite stockwork.		124-125	162
		Faulting seems post stockwork alteration as noted by		125-126	149
		quartz vein fragments in gouge; approx. 5-10% stockwor	<u>`k</u>	126-127	250
		mariposite 3% - fine sericite after feldspar crystals.		127-128	260
	,			128-129	39
128.8-		Brecciated, fault zone with clay seams like above in		129-130	8
133.15		picrite; rounded picrite clasts in gouge up to 2cm;		130-131	1
		only 5-10% irregular quartz veining; less than		131-132	49
		1% diss. pyrite.		132-133	45
		·		133-134	3
133.15-		Grey andesite with very fine feldspar (10-15%) phenos		134-135	1
138.05		(less than 1mm) set in massive fine grained groundmass	;		
		weak irregular quartz veining = 3-5%, mariposite			
		locally diss., on fractures or in veinlets = less		137-138	3
		than 1%; pyrite rare.			
		·			
138.05-	0,05	Fault zone; gouge contains angular & rounded fragments		138-139	1
139.1		of above zone as well as some picrite.			

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTYALLIES	HOLE No	SHEET No6of	

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
139.1-	0	As 133.15 to 138.05; quartz veining only occurs as					
146.8		stockwork of less than or equal to 1mm veins over					
		10-20cm intervals; less than 1% quartz veining					
		overall; mariposite absent/rare.			.,,,		
		·					
146.8-	0	Andesite porphyry; different flow (?) from above;					
149.7		10-15% subhedral and euhedral plag. crystals to					
		2mm set in fine grained maroon-grey groundmass;					
		trace mariposite after feldspar & on fracture surface	•				
149.7-	0.15	Fault zone; gouge; andesite feldspar porphyry &				 	
152.0		picrite fragments set in green & clay gouge clay.					
152.0-	0.05	As 146.8 to 149.7; cut by clay - fault seams;					
154.6		local weak irregular quartz - calcite veining over					
	ļ	20cm intervals.					
154.6							
154.6		END OF HOLE					
] 				
							
	<u> </u>		<u> </u>			<u> </u>	

ALLIES

Suite 206 - 310 Nicola St. Kamloops, B.C. Phone 374-0544

86-A-2

	PR	OPERTY .	ALLILS	HOLE No	
DIP AND	AZIMUTH TE Corre		Core Size BQ	Total Depth 33.8m	Sheet No
Footage	Angle	Azimuth	Angle of Hole~45°Claim	% Recovery	Logged by FLW
			Section340°		Date Finished 08 Sep '86 Core Stored at Property

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
0-29m		Overburden.					
29.0-	1.40	Basalt, probably boulders on bedrock surface.					
30.6					:		
30.6-	1.00	Agglomerate, basal Kamloops group, brown weathering,					
33.8		andesitic pebbles 2-10mm across, tightly packed				 	
		in 15% white (zeolite?) matrix about 5% open					
		space in matrix.			·		
33.8		END OF HOLE - lost due to caving problems at					
		bedrock surface.					
				,			

DIP AND AZIMUTH TEST

Corrected

Suite 206 - 310 Nicola St. Kamloops, B.C. Phone 374-0544

PROPERTY	ALLIES	DDH 86-A-3
	***************************************	HOLE No

Footage	Angle	Azimuth	Claim Section	% Recovery		Logged by Date Begun Date Finished Core Stored at	OTM 09 Sep 16 Sep Proper	
DEPTH	CORE LOST		DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
0-37m		Overburden.						
37-37.4	0.30	Picrite.						
37.4-39		Lost core.						
39-39.8			ly brecciated; green clay (alter- ounded fragments; some serpentini					
		very friable; pip	e breccia (?); hydrothermal brecc	ia;				
39.8- 40.6		Lost core.						
40.6-45.0	0.60	supported in gree	ly brecciated; rounded fragments n clay; clay component approx 40% eces up to 15cm max; hydrothermal pe breccia.	- 1				
45-45.4		Lost core.						
45.4- 46.0		<u>-</u>	ated picrite; clay alteration (15 trace of fracture/clot calcite; c	1	ia.			

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

ALLIES

86-A-3

2

5

PROPERTY		HOLE No.			SHEET Noof			
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
46-46.4		Lost core.						
46.4-		As 45.4 to 46; clay alteration, more intense at						
47.3		20%.						
47.3-	0	Massive picrite; competent.						
48.6		·						
48.6-	0	Brecciated picrite with zones 10-50m wide of intense						
52.4	<u> </u>	brecciation containing up to 70% green clay						
54.4		supporting rounded picrite fragments (avg. less than						
		or equal to 2cm) separated by zones of 10-50cm of						
7.00		relatively competent picrite with less than 10%						
		green clay along fractures; trace of calcite on						
		fractures with clay.						
		Truccures with cray.						
52.4-	0.05	Fault gouge (?) 90% green-grey to purple clay						
56.1		supporting olivine + pyroxene (?) grains and picrite						
		fragments; trace pyrite cubes.						
56.1-	4.1	As 48.6 to 52.4. Missing core at: 57.15-57.6						
70.8		59.7 -60.3						
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	68.05-68.8						
		·						
70.8-	0.2	Strongly brecciated picrite with rounded fragments			<u> </u>	 		<u> </u>
80.5		supported by 40-60% green clay; core competent.						
					<u> </u>			

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_______ALLIES HOLE No. 86-A-3 SHEET No. 3 of 5

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		
80.5-		Crackle breccia with angular picrite fragments				
82.3		cemented by calcite stockwork (calcite approx. 8%);				
		minor green clay along fractures.				
82.3-		Lost core.				
82.7						
82.7-	1.20	Amygdaloidal, porphyritic basalt; 7-8%, 1-2mm				
85.1		pumpellyite (?) filled amygdales and 3%, less than				
:		1mm plag. phenocrysts; possible trace (less than				
		1%) analcite crystals; fine grained groundmass,				
		slight maroon tinge, Poor recovery, very broken				
		core; trace manganese on fractures.				
85.1-		As above, 82.7 to 85.1, but recovery very good;				
106.1		99-100%. Manganese on fractures; pumpellyite				
		amygdales to 1cm; some partly filled (or totally)				
		with calcite; calcite on fractures (less than 1%				
		calcite total). Number of different zones as noted b	у			
		variation in vesicle amount & filling; groundmass				
		varies slightly in grain size as well.				
106.1-	0.1	As above but peridotite/picrite xenoliths more	***************************************			
110.5		common; range to 5cm X 2cm; rounded, approx 1%;				
		amygdales less than or equal to 1mm, approx 10%.				
			·			

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE				
110.5-		Amygdaloidal basalt; 5-8%, 1.1.5mm amygdales					· · · · · · · · · · · · · · · · · · ·	
113.5		with pumpellyite.						
113.5-	0.1	As above but 5-10% amygdales to 7mm.						
118.5			·					
118.5-		Amygdaloidal basalt; 3-5%, 1-2mm pumpellyite and/or						
122.5		calcite amygdales.				<u> </u>		
122.5-	0.20	Volcaniclastic; rounded basalt fragments to 10cm,						
126.0		set in 2-4mm matrix of rounded volcanic rock						
		fragments including picrite (?); seems to be				ļ		
		hydrothermal in appearance with much of the 'matrix	·			ļ		
		material resembling altered picrite; hydrothermal						
		pipe crystal-cutting flows (?), feldspar porphyry						
		fragments common.						
126.0-		Amygdaloidal basalt with 15%, 1mm calcite amygdales						
128.0		and 1% pumpellyite amygdales; less than or equal						
		to 1% picrite xenoliths.				 		
128.0-		Amygdaloidal basalt; 5-8% amygdales to 1cm.						
128.9							<u> </u>	
100.0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
128.9-		Amygdaloidal basalt; 3-5% amygdales average 2mm;			-			
133.3		pumpellyite and calcite.				 	ļ	ļ ——

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY	ALLIES	HOLE No	SHEET No of

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
133.3-		As above but calcite filled fractures and weak					
136.7		calcite stockwork; amygdales leached out in part.					
136.7-		As 128.9 to 133.3; weak manganese on fractures.					
142.3							
142.3-	0.20	Breccia pipe; hydrothermal; rounded to subrounded		· · · · · · · · · · · · · · · · · · ·			,
152.1		fragments - mainly altered picrite - peridotite in	, ,				
102.1		altered, clay rich matrix; fragments to 3cm; looks					
		brecciated/shattered like upper part of hole; some					
		hematite (?) replacement in some fragments; calcite					
		on fractures; clay alteration less than 10%.					
152.1-		Picrite brecciated by calcite stockwork; crackle					
156.3		breccia; fragments angular to subangular, 5-8% calc	ite.				
156.3-		Relatively massive picrite; minor calcite fractures					
158.1		Refuelively mussive profites, miller earlier or raceares					
		·					
158.1-	0.30	Amygdaloidal basalt; 1-3%, 1-1.5mm pumpellyite					
159.7		amygdales; broken core.					
150.7		END OF HOLE				-	
159.7		END OF HOLE.					

Suite 206 - 310 Nicola St. Kamloops, B.C. Phone 374-0544

DDODEDTV	ALLIES	HOLE No.	86-A-4
PROPERTY		HOLE No.	

DIP AND AZIMUTH TEST		EST	NO .	121-/2075+	1 6
	Corr	ected	Core Size	Total Depth 121m/397ft	Sheet No of of
Footage	Angle	Azimuth	Angle of Hole45	% Recovery	Logged by DTM
			Claim	Elev. Collar Latitude 0+30SE	Date Begun
			Section340°	Latitude+3USE	Date Finished 25 Sep 86
			Bearing340	Departure 2+42SW	Core Stored at

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
0-5.6		Overburden					
5.6-5.7		Ground porphyritic gabbro.					
5.7-6.3		Missing.			 	,	
6.3-8.6	1.9	Strongly fractured and broken porphyritic gabbro (? recovery about 10-20%; 10%, 2mm, euhedral pyroxene crystals set in fine grained feldspar-bearing					
	W	groundmass.					
8.6-10		Missing.					
10-10.1		As 6.3 to 8.6.					
10.1-		Brecciated - fault gouge; contains fragments of					
10.5		above supported by clay.					
10.5-		Missing.					
10.9							
							<u> </u>

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTYALLIES HOLE No. 86-A-4 SHEET No. 2	of	б
--	----	---

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			
10.9-		As 10.1 to 10.5; fragments angular to subangular					
11.1		supported in green brown clay	<u> </u>				
11.1-		Missing.					
11.4							
11.4-	0.40	As 10.9 to 11.1; clay becomes most abundant and					
15.2		clasts decrease in number.					
15.2-	0.20	Broken gabbro; fractures; 1% dolomite-quartz			- 		
16.9	0.20	veining; poor recovery; trace of diss. pyrite.					
16.9-		Missing.		·			
17.2	: .	THISTING.					
17.2-20	0.40	As 15.2 to 16.9; less than 1% dolomite-quartz					
		veining; badly broken core; clay on fractures.					
20-21.3		Missing.					
21.3-		Clay and some sand; fault zone ?					
22.1							
22.1-	· · · · · · · · · · · · · · · · · · ·	As 17.2 to 20.					
22.3							
				<u> </u>	<u> </u>	<u></u>	

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY_____ALLIES

HOLE No. 86-A-4

SHEET No. 3 of 6

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			Au	
22.3-		As 21.3 to 22.1; dolomite vein fragments common		(m)			(ppb)	
23.9		(1%).						
23.9-	0.20	Broken porphyritic gabbro; 1% dolomite veining;	· · · · · · · · · · · · · · · · · · ·					
26.9		0.5cm irregular blebs of dolomite - replacement?						
		abundant clay seams; hematite rimming altered			<u> </u>			
		pyroxene crystals.						
26.9-	0.10	Relatively competent porphyritic gabbro; dolomite						
33.9		veining = 1%; hematite rimming altered pyroxenes;						
		groundmass altered to light green (chlorite?);						
	,	from 32.6, dolomite veining = 1-2%.		0.9	32.6	33.5	7	
			,	1.0	33.5	34.5	4	
33.9-	0.10	As above but highly broken; oxidized red; hematite		1.0	34.5	35.5	2	
35.5		replaces pyroxenes; rock broken down to clay.						
35.5-	0.05	Maroon coloured, fine grained trachyandesite (to		1.0	35.5	36.5	3	
36.8		latite) flow (?) with well developed quartz-dolomit	2					
		stockwork - 10% quartz veins; 5% dolomite veins;						
		core broken	· · · · · · · · · · · · · · · · · · ·					
	ì			1.0	36.5	37.5	5	
36.8-37		Missing core.						
37-38.7	0.15	As 35.5 to 36.8; quartz veins display crystalline		1.0	37.5	38.5	14	
		texture; minor variolitic cavities; plag. feldspar						
		(1-2%) in quartz veins						
				1.0	38.5	39.5	38	

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY______ALLIES HOLE No. 86-A-4 SHEET No. 4 of 6

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			Au	
				(m)			(ppb)	
38.7-		As above but green coloured						
39.5								
39.5-	0.1	Silicified, slightly maroon feldspar - hornblend		1.0	39.5	40.5	57	
44.3		andesite or trachyandesite sulphides start porphyry		1.0	40.5	41.5	36	
		with well developed quartz dolomite stockwork; 5%		1.0	41.5	42.5	810	
		dolomite and 8-10% quartz; 1-2% diss. pyrite and		1.0	42.5	43.5	615	
		0.5% diss. and fractured chalcopyrite; trace finely			<u>-</u>			
		diss. steely grey mineral - hematite? sulphides in						
		veins and volcanic; relatively competent core;						
		hornblendes chloritized and leached out; plagioclase	<u> </u>					
		laths gone to clay - kaolinite? chlorite and clay or)					
		fracture surfaces						
				1.0	43.5	44.5	1320	
44.3 -	0.1	Weakly maroon feldspar-hornblende andesite-		1.0	44.5	45.5	175	
48.0		trachyandesite porphyry; only 1% quartz - dolomite		1.0	45.5	46.5	76	
		veining and trace fract., veinlet and diss. pyrite;		1.0	46.5	47.5	93	
		plag. crystals to clay and hornblendes, chloritized						
		chlorite and clay and minor hematite, particularly						
		where slickensides occur on fractured surfaces.	***************************************					
				1.0	47.5	48.5	180	
48.0-		As above but quartz veining/stockwork = 3-5%;		1.0	48.5	49.5	385	
53.4		1% diss., fracture & veinlet pyrite; locally, 5-10c	n	1.0	49.5	50.5	87	
		wide zones contain 5-8% pyrite.		1.0	50.5	51.5	240	
				1.0	51.5	52.5	300	
				0.9	52.5	53.4	170	

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

PROPERTY______ALLIES ______ HOLE No. _____86-A-4 _____ SHEET No. _____ of ___6____

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			Au	
53.4-	0.10	Fractured picrite, calcite and green clay on 1-4mm		(m)			(ppb)	
56.7		fractures (approx 1% of rock); weak quartz - dolomit	e	1.0	53.4	54.4	8	
		stockwork within 0.5 m of contact.		1.0	54.4	55.4	3	
56.7-		Strongly brecciated picrite; hydrothermal breccia or						
59.1		pipe? rounded picirite clasts and/or olivine +						
		pyroxene crystals + lithic frags (foreign volcanic						
		fragments) supported by green to grey clay.						
59.1-		Picrite altered entirely to clay.						
60.15	,							
60.15-		Fractured picrite; green clay and calcite along						
65.6		fractures; minor dolomite veining (less than 1%);						
		minor clay rich seams - quartz crackle breccia at						
		64.7 to 65.3.						
65.6 -		Missing Core.						
65.8								
65.8-		Fractured picrite; 1-3% clay and calcite rich seams;						
68.6		minor dolomite veining (less than 1%) as 60.15 -						
		65.6; some zones with intense clay alteration.						
68.6-	0.20	Hydrothermal breccia (?); as 56.7-59.1.						
70.2								

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			Au	
70.2-	0.7	As 65.8 to 68.6.		(m)		· ·	(ppb)	
95.4	· · · · · · · · · · · · · · · · · · ·							
95.4-		Brecciated picrite; cut by dolomite stockwork with		1.0	93.4	94.4	3	
99.3		5-10% dolomite; fractures lined by green clay with		1.0	94.4	95.4	2	
		minor calcite; hematite (1%) after pyroxenes (?)		1.0	95.4	96.4	2	
99.3-								
101.4		As 70.2-95.6						
101.4-		Crackle breccia; 10-15% dolomite and calcite						
104.8		fracturing picrite; dolomite fills voids between						
		angular picrite fragments.						
104.8-		Picrite altered almost entirely to grey-green clay;						
106.5		fault gouge?						
106.5-		As 99.3 to 101.4.						
107.1		N3 77.3 to 101.1.						
107.1-	0.20	As 104.8 to 106.5; only minor relict pyrite.						
118.0	0.20	AS 104.8 to 100.5, only miller refree pyrree.						
110 101		Look sous						
118-121		Lost core.						
121.0		END OF HOLE						

Suite 206 - 310 Nicola St. Kamloops, B.C. Phone 374-0544

PROPERTY	ALLIES	HOLE No.	86-A-5
----------	--------	----------	--------

DIP AND	AZIMUTH T	EST]		1
	Corre	ected	Core SizeNQ	Total Depth	Sheet No of of
Footage	Angle	Azimuth	Angle of Hole45°	% Recovery	Logged byFLW
			Claim	Elev. Collar	
			Section	Latitude	Date Finished 04.0ct 186
	<u> </u>		Bearing337	Departure	Core Stored at Property
	<u> </u>				

			WIDTH of SAMPLE			Au	
	Overburden.		(m)	·		(ppb)	
4.7	Picrite, dark green, fine grained rock highly		0.7	41.3	42.0	2	
	fractured, blue-grey clay gouge on fractures and						
:	locally in zones up to 1m wide.21.3-21.5; 22.0-22.2;						
	22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3;						
	27.3-28.0; 34.0-35.4.						
	Picrite, bleached, minor carbonate (dolomite?)						
	veining, contacts top and bottom are clay gouge,						
	top at 45° CA.						
		·					
	Picrite, dark green as 20.0-41.3, minor carbonate						
	veining in local short sections. 5cm wide veins		0.6	117.2	117.8	3	
	occur at 2 samples sections. These are dolomitic,		1.1	128.9	130.0	7	
	white to pale green (some zeolite?)						
	Picrite, strongly sheared, 5cm of clay carbonate		1.0	134.0	135.0	34	
	at 134.0., 134.0-136.0 is probably a fault zone,		1.0	135.0	136.0	220	
	strong shearing with 10% fragments of white carbonat	e					
	on shear planes 70-90° to core axis, 2% pyrite.						
	4.7	fractured, blue-grey clay gouge on fractures and locally in zones up to 1m wide.21.3-21.5; 22.0-22.2; 22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3; 27.3-28.0; 34.0-35.4. Picrite, bleached, minor carbonate (dolomite?) veining, contacts top and bottom are clay gouge, top at 45° CA. Picrite, dark green as 20.0-41.3, minor carbonate veining in local short sections. 5cm wide veins occur at 2 samples sections. These are dolomitic, white to pale green (some zeolite?) Picrite, strongly sheared, 5cm of clay carbonate at 134.0., 134.0-136.0 is probably a fault zone, strong shearing with 10% fragments of white carbonat	fractured, blue-grey clay gouge on fractures and locally in zones up to lm wide.21.3-21.5; 22.0-22.2; 22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3; 27.3-28.0; 34.0-35.4. Picrite, bleached, minor carbonate (dolomite?) veining, contacts top and bottom are clay gouge, top at 45° CA. Picrite, dark green as 20.0-41.3, minor carbonate veining in local short sections. 5cm wide veins occur at 2 samples sections. These are dolomitic, white to pale green (some zeolite?) Picrite, strongly sheared, 5cm of clay carbonate at 134.0., 134.0-136.0 is probably a fault zone, strong shearing with 10% fragments of white carbonate	fractured, blue-grey clay gouge on fractures and locally in zones up to 1m wide.21.3-21.5; 22.0-22.2; 22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3; 27.3-28.0; 34.0-35.4. Picrite, bleached, minor carbonate (dolomite?) veining,contacts top and bottom are clay gouge, top at 45° CA. Picrite, dark green as 20.0-41.3, minor carbonate veining in local short sections. 5cm wide veins occur at 2 samples sections. These are dolomitic, white to pale green (some zeolite?) Picrite, strongly sheared, 5cm of clay carbonate at 134.0., 134.0-136.0 is probably a fault zone, strong shearing with 10% fragments of white carbonate	fractured, blue-grey clay gouge on fractures and locally in zones up to 1m wide.21.3-21.5; 22.0-22.2; 22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3; 27.3-28.0; 34.0-35.4. Picrite, bleached, minor carbonate (dolomite?) veining,contacts top and bottom are clay gouge, top at 45° CA. Picrite, dark green as 20.0-41.3, minor carbonate veining in local short sections. 5cm wide veins occur at 2 samples sections. These are dolomitic, white to pale green (some zeolite?) Picrite, strongly sheared, 5cm of clay carbonate at 134.0., 134.0-136.0 is probably a fault zone, strong shearing with 10% fragments of white carbonate	fractured, blue-grey clay gouge on fractures and locally in zones up to 1m wide.21.3-21.5; 22.0-22.2; 22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3; 27.3-28.0; 34.0-35.4. Picrite, bleached, minor carbonate (dolomite?) veining,contacts top and bottom are clay gouge, top at 45° CA. Picrite, dark green as 20.0-41.3, minor carbonate veining in local short sections. 5cm wide veins occur at 2 samples sections. These are dolomitic, white to pale green (some zeolite?) Picrite, strongly sheared, 5cm of clay carbonate at 134.0., 134.0-136.0 is probably a fault zone, strong shearing with 10% fragments of white carbonate	fractured, blue-grey clay gouge on fractures and locally in zones up to 1m wide.21.3-21.5; 22.0-22.2; 22.7-23.7; 24.2-24.8; 25.0-25.3; 26.0-26.3; 27.3-28.0; 34.0-35.4. Picrite, bleached, minor carbonate (dolomite?) veining,contacts top and bottom are clay gouge, top at 45° CA. Picrite, dark green as 20.0-41.3, minor carbonate veining in local short sections. 5cm wide veins occur at 2 samples sections. These are dolomitic, white to pale green (some zeolite?) Picrite, strongly sheared, 5cm of clay carbonate at 134.0., 134.0-136.0 is probably a fault zone, strong shearing with 10% fragments of white carbonate

Suite 1 - 219 Victoria St. Kamloops, B.C. Phone 374-0544

ALLIES	86-A-5	2
PROPERTY	HOLE No.	SHEET Noof
TITOT LITT .	110 to 110,	011661 1100

HOPERTY HOLE NO SHEET NOOT								
DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE			Au	
		136.0-150.1 similar to 134.0-136.0, but less strongl		(m)			(ppb)	
		sheared. 5-10% white dolomitic veinlets and fragmen	ts.					
		Sample 149.1 - 150.1 is higher carbonate with one		1.0	149.1	150.1	3	
		5cm vein.						
							·	
150.1		END OF HOLE						
	•							
		•						
								<u></u>
				,				
		·						

APPENDIX "D"

LIST OF REFERENCES

LIST OF REFERENCES

- Cockfield, W. E. (1961); Geology and Mineral Deposits of Nicola Map Area, British Columbia. GSC Memoir 249.
- Dawson, J. M. (1984); Geological Report on the Allies Claim, Kamloops Mining Division, British Columbia. BCDM Assessment Report.
- Hodgson, C. J. (1982); Gold Deposits of the Abitibi Belt, Ontario. pp 192 197 in Summary of Field Work, 1982, by the Ontario Geological Survey.
- Leishman, D. A. and Dawson, J. M. (1985); Geological and Geochemical Report on the Allies Claim, Kamloops Mining Division, British Columbia. BCDM Assessment Report.
- Mark, D. G. (1973); Geophysical Report on a Grond Magnetic and VLF-EM Survey and the Government Areomagnetic Survey Dog Claim Group, Kamloops M. D. BCDM Assessment Report 04212.
- Cannell Claim, Kamloops M. D. BCDM Asssessment Report 05950.
- Monger, J. W. H. (1984); Bedrock Geology of Ashcroft (921) Map Area. GSC Open File, Report 980.
- O'Grady, B. T. (1932); Lode Gold Deposits of British Columbia. BCDM Bulletin No 1.
- Riccio, L. (1985); Report on the Allies Property, Kamloops Mining Division. Private report to Relay Creek Resources Ltd.
- Scott, A. (1985); Report on Induced Polarization Survey on the Allies Property, BCDM Assessment Report 86-463.
- Sookochoff, L. (1973); Summary Report on the Cannell Creek Property for Bon-Val Mines Ltd. BCDM Assessment Report 04546.
- (1978); Diamond Drill Report on the Cannell Creek Property. BCDM Assessment Report 07085.

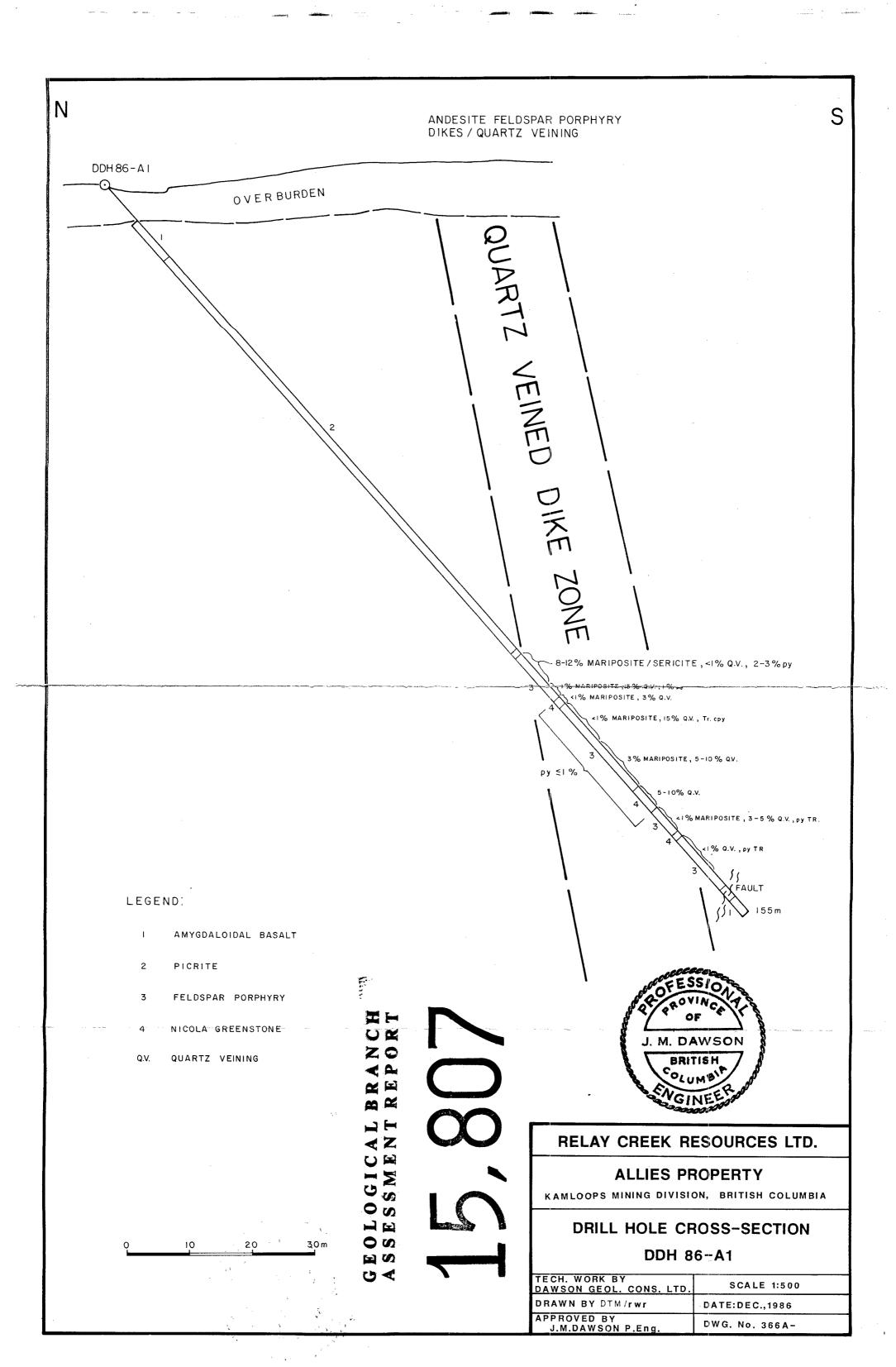
APPENDIX "E"

WRITER'S CERTIFICATE

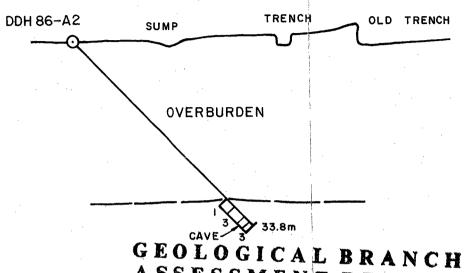
CERTIFICATE

I, JAMES M. DAWSON of Vancouver, British Columbia do hereby certify that:

- 1. I am a geologist employed by Dawson Geological Consultants Ltd. of Suite 203, 455 Granville Street, Vancouver, British Columbia.
- I am a graduate of the Memorial University of Newfoundland, B.Sc. (1960), M.Sc.(1963), a fellow of the Geological Association of Canada, and a member of the Association of Professional Engineers of British Columbia. I have practised my profession for twenty-three years.
- I am the author of this report, which is based on many personal examinations of the subject property during the period 1981 to 1986 as well as my familiarity with the Kamloops District.


J. M. DAWSON
BRITISH
COLUMBIT

DAWSON GEOLOGICAL CONSULTANTS LTD.


ames M. Dewson

James M. Dawson, P.Eng.

Vancouver, British Columbia January 5, 1987

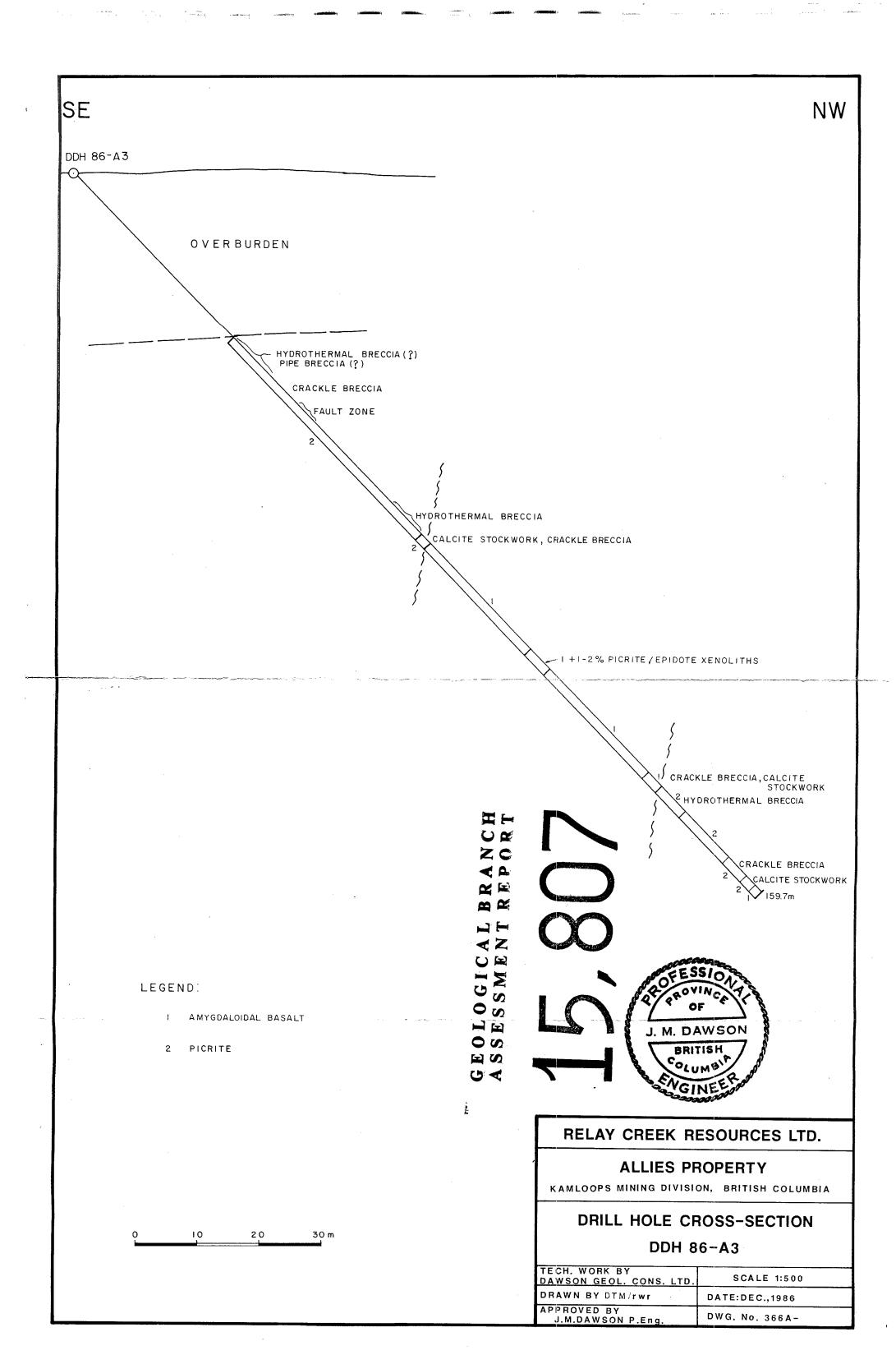
QUARTZ VEINING MINERALIZED BOULDERS?

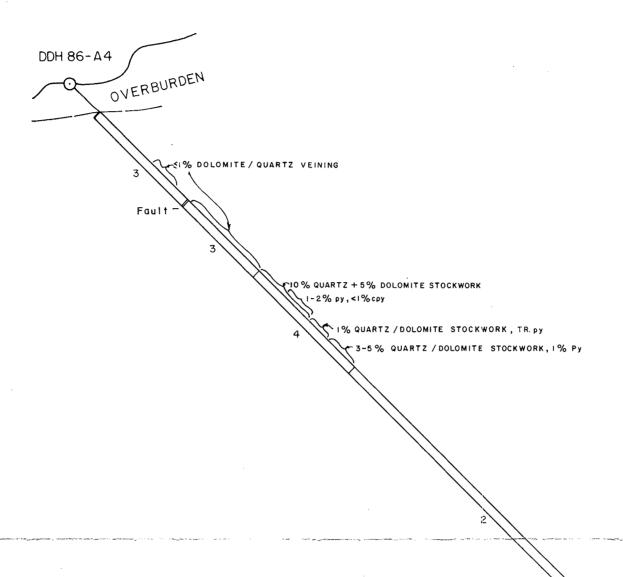
ASSESSMENT REPORT

LEGEND:

- BASALT
- CONGLOMERATE / BRECCIA (KAMLOOPS GROUP?)

RELAY CREEK RESOURCES LTD.


ALLIES PROPERTY


KAMLOOPS MINING DIVISION, BRITISH COLUMBIA

DRILL HOLE CROSS-SECTION **DDH 86-A2**

TECH. WORK BY Dawson Geol. Cons. Ltd.	SCALE 1:500
DRAWN BY JMD/rwr	DATE:DEC.,1986
APPROVED BY J.M.DAWSON P.Eng.	DWG. No. 366A-

30m 20

2 2 10-15% DOLOMITE + CALCITE STOCK

10% DOLOMITE STOCKWORK

GEOLOGICAL BRANCH ASSESSMENT REPORT

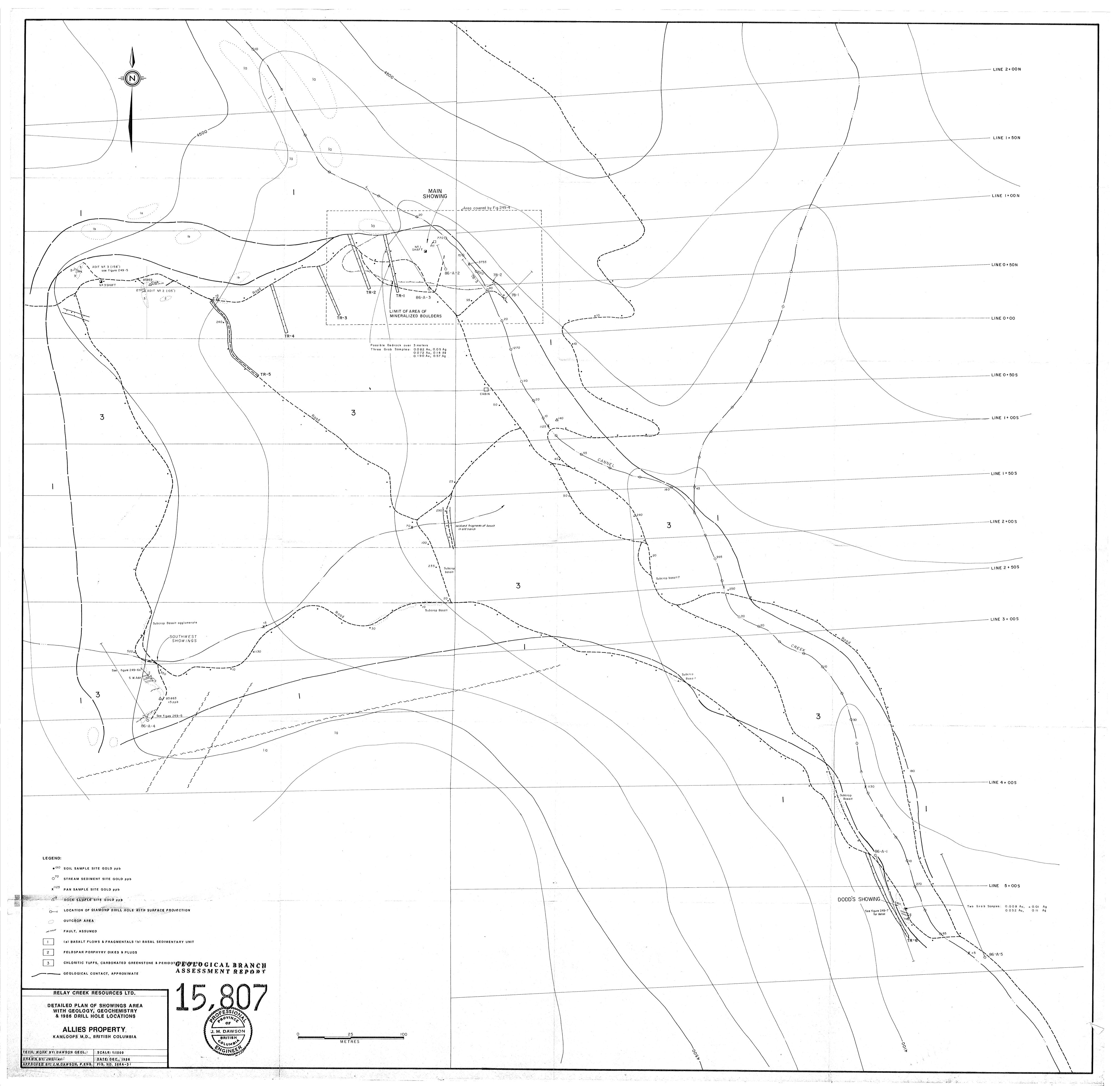
LEGEND:

- I AMYGDALOIDAL BASALT
- 2 PICRITE
- 3 PORPHYRITIC GABBRO
- 4 TRACHYANDESITE

15,807

RELAY CREEK RESOURCES LTD.

ALLIES PROPERTY


KAMLOOPS MINING DIVISION, BRITISH COLUMBIA

DRILL HOLE CROSS-SECTION DDH 86-A4

TECH. WORK BY DAWSON GEOL. CONS. LTD.	SCALE 1:500
DRAWN BY JMD/rwr	DATE: DEC., 1986
APPROVED BY J.M.DAWSON P.Eng.	DWG. No. 366A-

0 10 20 30 m

N OVERBURDEN DDH86-A5 2, HIGHLY FRACTURED 2, GREEN, PARTLY BLEACHED DOLOMITE VEINING DOLOMITE VEINING GEOLOGICAL BRANCH 10% CARB & QUARTZ FRAGMENTS?,2% PYRITE ASSESSMENT REPORT 150.5m Q QROVINCE J. M. DAWSON BRITISH <u>LEGEND.</u> 2 PICRITE RELAY CREEK RESOURCES LTD. **ALLIES PROPERTY** KAMLOOPS MINING DIVISION, BRITISH COLUMBIA DRILL HOLE CROSS-SECTION 30 m 20 DDH 86-A5 TECH. WORK BY DAWSON GEOL. CONS. LTD. SCALE 1:500 DRAWN BY JMD/rwr DATE: DEC., 1986 APPROVED BY J.M.DAWSON P.Eng. DWG. No. 366A-

