87-119-15819

3/88

FILMED

뿹

ASSE

200

3-

E O

ZÞ

1

REPO

RT

1986 GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE BLACK II MINERAL CLAIM

Toodoggone River Area OMINECA M.D. NTS 94E

Latitude 57⁰15' N Longitude 127⁰05' W

FOR

First Allied Resources Ltd. P.O. Box 49284 1984 - 1055 Dunsmuir Street Vancouver, B.C. V7X 1L3

James S. Steel, B.Sc. and J. Paul Sorbara, M.Sc., F.G.A.C. Hi-Tec Resource Management Ltd. 1590 - 609 Granville Street Vancouver, B.C. V7Y 1C6

October 23, 1986

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
Location and Access Property and Ownership History and Previous Work	1 2 2
REGIONAL GEOLOGY AND MINERALIZATION	3
PROPERTY GEOLOGY & MINERALIZATION	4
GEOCHEMISTRY	5
Sampling and Analytical Procedure Presentation and Discussion of Results	5 6
CONCLUSIONS	7
RECOMMENDATIONS	7
BIBLIOGRAPHY	9
APPENDIX I Statement of Costs APPENDIX II Statement of Qualifications APPENDIX III Analytical Results	
ILLUSTRATIONS:	<u>After Page</u>
Figure 1: Location Map, Black II Mineral Clair	n,
Figure 2: Claim Map, Black II Mineral Claim,	
Figure 3: Geology, Black II Mineral Claim,	
Figure 4a: Sample Location Map, Black II Minera	al
Figure 4b: Gold and Silver Geochemistry, Black Mineral Claim, 1:10,000	II
Figure Act Argenic and Barite Coochemictry Pl	ack

- Figure 4c: Arsenic and Barite Geochemistry, Black II Mineral Claim, 1:10,000 Figure 4d: Copper, Lead and Zinc Geochemistry, Black II Mineral Claim, 1:10,000

SUMMARY

The Black II mineral claim is located in the Toodoggone River area, some 250 kilometers north of Smithers, B.C. The Toodoggone gold belt extends from the Stikine River to Thutade Lake and hosts numerous precious metal prospects.

Based on the areas of anomalous gold, silver, arsenic and copper delineated as a result of the 1985 exploration program (Bell, 1985), a detailed soil and silt geochemical sampling program as well as geological mapping was carried out. The eastern part of the claim shows a gold, silver and arsenic anomaly in close proximity to a postulated north trending fault. The center of the claim shows highly anomalous gold values in silts and the western part of the claim exhibits large faults and fault zones with attendant splays truncating major lithologic units.

INTRODUCTION

Location and Access

The Black II claim is situated in the Toodoggone River area, 250 kilometers north of Smithers, B.C. and is approximately four kilometers southeast of the Baker gold-silver mine of Dupont of Canada Exploration Ltd. Approximate geographic coordinates are $57^{\circ}15'$ North and $127^{\circ}05'$ West. Access to the Black claims is by fixed-wing aircraft to the Sturdee River airstrip, and then by gravel road for 7 kilometers to the north.

While conducting the work herein reported, the crew stayed at a base camp at the Sturdee airstrip and accessed the property by helicopter.

Property and Ownership

The Black II claim, owned by First Allied Resources Ltd., comprises 15 claim units (Figure 2) and was recorded on March 25, 1985. The pertinent claim data are as follows:

<u>Claim</u>	Record No.	<u>Units</u>	<u>Record Date</u>					
Black II	6923	15	March 25, 1985					

History and Previous Work

The earliest record of exploration and mining in the area relates to placer mining activities on McClair Creek and Toodoggone River in 1930. There was sporadic exploration for gold, copper, lead and zinc between 1934 and 1960. The area was actively explored by Sumitomo, Umex and Texas Gold Sulphur between 1963 and 1967, and in 1968 for porphyry copper and molybdenum deposits by Kennco Exploration (Western) Ltd., Cominco Ltd., and Cordilleran Engineering Ltd.

Kennco Exploration (Western) Ltd. recognized the precious metal potential of the area, staked the Lawyers and Chappelle claims and explored them until 1975. The Chappelle property was eventually optioned to Conwest Explorations Ltd. and then to DuPont of Canada Exploration Ltd. This led to the discovery of the Baker deposit. The Baker mine was placed into production with indicated reserves of 70,000 tons with grades of 0.9 oz/T gold and 19.0 oz/T silver in the A vein. This deposit was mined out in 1983. The Lawyers property is presently held under Surface and underground drilling has option to Serem Inc. deposit containing 1,000,000 tons grading 0.21 oz/T defined a gold and 7.1 oz/T silver (Schroeter, 1985).

فرالتعنا

Energex Minerals Ltd., Cassidy Resources Ltd., Golden Rule Resources Ltd. and Lacana Mining Corporation all had active exploration programs in the Toodoggone map-area during the 1986 field season.

There was no previous record of work done on the Black II claim until 1985 when a reconnaissance silt and contour soil geochemical sampling program was undertaken by Hi-Tec Resource Management Ltd., who held title to the claim at that time. Soil anomalies in gold and silver in soils were delineated in the eastern part of the claim and in silts from a creek draining that area. Structures favourable to the occurrence of mineralization were also noted in the west part of the claim.

REGIONAL GEOLOGY AND MINERALIZATION

The Toodoggone gold camp is a 15 to 20 kilometer wide belt of volcanic, sedimentary and intrusive rocks extending northwesterly from Thutade Lake to the Stikine River, a distance of more than 100 kilometers. The oldest rocks in the area belong to the Asitka Group of Permian age. This group consists of cherts, argillites, limestone and greenstones. These rocks are overlain by the Takla Group, which consists of intermediate flows and pyroclastics of Upper Triassic age. The Takla Group is characterized by abundant flows of augite andesite, basalt, feldspar porphyry and their volcaniclastic sedimentary equivalents.

The volcanic rocks lying stratigraphically above the Takla Group have been classified under two headings: 1) the Toodoggone Group and ii) the Hazelton Group. The Toodoggone Group is of Lower Jurassic age and is equivalent to the base of the Hazelton Group (Panteleyev, 1984). The Toodoggone volcanics consist predominantly of subaerial dacite, latite, trachyte and rhyolite pyroclastic rocks more than 500 metres in thickness, which unconformably overlie the Takla Group. The majority of

epithermal precious metal occurrences in the area are associated with the Toodoggone volcanic rocks. However, the Baker deposit occurs in Takla volcanic rocks.

The Toodoggone volcanics are bordered on the east by, and are in fault contact with, the Hazelton Group rocks consisting of intermediate volcanic conglomerate, breccia, lahar and abundant pink feldspar porphyry dikes and sills. These rocks range in age from Lower Jurassic to Upper Jurassic.

In addition to the abundant intrusive dikes and sills noted within the Toodoggone and Hazelton Groups, acid to intermediate and alkaline stocks and plugs also occur in the Toodoggone area.

Toodoggone camp exhibits at least four types of precious The metal mineralization, the most common of which is epithermal in The epithermal deposits occur as massive quartz veins origin. the Baker mine, or as silicified zones and such as at amethystine breccia zones such as at the Lawyers deposit. They generally proximal to major northwest faults and are are associated with siliceous volcanic centres, exhalative vents and zones of alteration within the Toodoggone volcanics. Quartz, barite and carbonate are the chief gangue minerals. Vein minerals are acanthite, pyrite, electrum, chalcopyrite, native gold, sphalerite and galena. Grades range from 0.1 to 1.0 oz/T Au and 1.0 to 20.0 oz/T Ag.

PROPERTY GEOLOGY AND MINERALIZATION

A northwest trending fault with small scale west trending splays crosscuts the Black II claim, separating the upper Triassic Takla Group augite porphyry basalt from the Black Lake quartz monzonite stock. The Takla Group rocks are in turn separated from the Lower to Middle Jurassic Toodoggone Group quartzose plagioclase crystal tuff, lapilli tuff and breccia by a northwest trending sinuous fault zone on the north boundary of the

claim and by a north trending fault in the centre of the claim (Fig. 3). The eastern part of the claim is underlain by the latter lithologies intermixed with andesitic quartzose biotite hornblende plagioclase ashflows (Diakow et al., 1985). A northwest trending fault has been postulated to cut these units in this area as well.

There are no known mineral occurrences on the Black claims. The presence of favourable Toodoggone Group volcanic rocks, however, as well as major faults on the property and the location between two precious metal deposits make it a target worth pursuing. The results of the geochemical survey reported herein support this belief.

GEOCHEMISTRY

dii

11

al ili

Sampling and Analytical Procedures

A total of 341 soil samples, 30 silt samples and 6 rock samples were collected in 1986 for geochemical analysis from the Black group. This work was conducted by T. Archibald and G. Paeseler under the supervision of J. Steel of Hi-Tec Resource Management Ltd. during the period of July 4 to 9, 1986. Soil samples were collected from the "B" horizon at 50 metre intervals along grid lines spaced at 200 m and on a bearing of 067° . Samples were taken with a mattock from depths of 15 - 25 cm, placed in numbered kraft paper bags and shipped to Min-En Laboratories Ltd. in North Vancouver for analysis.

Soil and silt samples were dried at approximately 90°C and then sieved to minus 80 mesh. A 0.5 gram portion of each sample was extracted by digestion with nitric acid and aqua regia followed by six element ICP analysis. Rock samples were crushed before extraction and ICP analysis. Gold was extracted by aqua regia solution and measured by atomic absorption.

Presentation and Discussion of Results

Williak

The analytical results are presented in Appendix II. Significant anomalous values are plotted separately for each element on Figures 4a, 4b and 4c. It can be seen from these maps that a number of soils are highly anomalous for gold, silver, and arsenic while base metals are present as local anomalies.

Anomalies of all elements appear to follow a north to northwest trend. Arsenic and barite seem to parallel the creek in the center of the claim but do not appear to be associated elsewhere. Indeed, there does not appear to be an overlap of the anomalies of separate elements anywhere on the claim, with the exception of the strong gold, silver and arsenic anomaly in the eastern section.

Copper, lead and zinc are not strongly represented and generally occur as spot highs extending across two or three grid lines. There is also no apparent change in relative concentrations of elements across the faults as mapped on the western half of the Since a strong geochemical response in copper is property. absent in the area of the Takla Group rocks which are known to carry a higher than background copper concentration (D. Visagi, comm.), it may be that the geochemical results obtained pers. for this do not accurately reflect bedrock lithologies.

Correlation of values across a 200m distance may also tend to presuppose a set trend to anomalies unless the values on adjacent lines are highly anomalous and/or anomalies as plotted follow topographic variations or structural factors from line to line. As an example of these latter constraints, in the eastcentral part of the claim, coinciding roughly with a northtrending fault, a strong gold anomaly with two downslope extensions exists, with assay values reaching 490 ppb and 205 Silver and arsenic also have spot highs anomalous in this ppb.

area with values of 1.7 ppm and 16 ppm respectively being recorded. Values over 25 ppb gold, 1.0 ppm silver and 10 ppm arsenic are considered anomalous. Anomalous versus background concentrations of elements were determined using the log normal method of calculating geochemical contour intervals.

The silt samples assayed presented predominantly background values with one area returning very anomalous values in gold, reaching up to 1400 ppb. This area also showed a value of 2580 ppb gold in a panned concentrate sample taken during the 1985 field season and may be worthy of future consideration.

CONCLUSIONS

The geochemical sampling program conducted in 1986 has shown two areas of anomalous metal concentrations. The most attractive area lies in the east-central part of the claim and shows a combined qold, silver and arsenic anomaly with downslope extensions on adjacent grid lines. The second area is at the junction of the two creeks draining the central and east parts of the claim and consists of one anomalous and one verv anomalous sample. The major fault and associated splays on the western portion of the property may still be a target for continued exploration. The results obtained warrant further work on the property.

RECOMMENDATIONS

air

The author recommends a program of close-spaced grid geochemical soil sampling and VLF-EM and magnetometer surveys over the two areas of gold anomalies and the northwest trending faults in the western part of the claim. A follow-up program of hand trenching should also be included should the results from the geophysical and geochemical surveys warrant it.

> RESOURCE MANAGEMENT

IMITED

. 7

Respectfully submitted,

10

1

J-Paul Sontrag

HI-TEC RESOURCE MANAGEMENT LTD.

BIBLIOGRAPHY

- Bell, J.M. 1985. 1985 Soil Geochemistry Report on the Black I, II, III, IV Mineral Claims. Toodoggone Syndicate. Private Report.
- Carter, N.C. 1972. Toodoggone River Area and Chappelle, Geology, Exploration and Mining in British Columbia 1971, pp. 63-70.
 - . 1974. Lawyers, Geology Exploration and Mining in British Columbia 1973, pp. 458-461.
- Diakow, L.J. 1984. Geology between Toodoggone and Chukachida Rivers (94E), BCMEMPR Geological Fieldwork 1983, Paper 1984-1, pp. 139-145.
- Diakow, L.J., Panteleyev, A. and Schroeter, T.G. 1985. Geology of the Toodoggone River Area, NTS 94E, British Columbia Department of Mines Preliminary Map 61.
- Gabrielse, H., Dodds, C.J. and Mansy, J.L. 1976. Geology of the Toodoggone River (94E) Map-Area, GCS Open File 306.
- Harron, G.A. 1981. Geological and Geochemical Report on the Air 1 and 2 Claims, Omineca Mining Division, BCMEMPR Assessment Report 9282.
- Panteleyev, A. 1983. Geology between Toodoggone and Sturdee Rivers, BCMEMPR Geological Fieldwork 1982, Paper 1983-1, pp. 142-148.
 - . 1984. Stratigraphic Position of Toodoggone volcanics, BCMEMPR, Geological Fieldwork 1983, Paper 1984-1, pp. 136-138.
- Schroeter, T.G. 1981. Toodoggone River, BCMEMPR, Geological Fieldwork 1980, Paper 1982-1, pp. 124-131.
 - _____. 1982. Toodoggone River, BCMEMPR Geological Fieldwork, 1980, Paper 1981-1, pp. 124-131.
 - _____. 1983. Toodoggone River, BCMEMPR Geological Fieldwork, 1982, Paper 1983-1, pp. 125-133.
 - . 1984. Toodoggone River, BCMEMPR Geological Fieldwork, 1983, Paper 1984-1 pp. 134-135.
 - _____. 1985. Toodoggone River, BCMEMPR Geological Fieldwork, 1984, Paper 1985-1, pp. 291-297.

APPENDIX I

i i i i i i

Statement of Costs

COST STATEMENT

Wilk

ii.

1

() Interest

į.

kausi

Black 2 Claim First Allied Resources Ltd.

Salaries (July 4-9)	
J. Steel 5.5 days @ \$250. T. Archibald 5.5 days @ \$210. O. Paeseler 5.5 days @ \$210.	00/day\$ 1,375.0000/day1,365.0000/day1,365.00
Mobilization/Demobilization	2,591.09
Geochemistry 371 soil-silt samples 6 rock samples	3,839.05 72.00
Freight	198.45
Domicile	430.94
Camp Equipment & Fuel	130.00
Communications	162.50
Field Equipment	162.50
Fixed Wing	467.47
Helicopter Support	1,461.60
Compilation of Field Data 1 day @ \$250.00/day	250.00
Supervision - J.P. Sorbara	526.50
Project Management	628.60
Report	500.00
	TOTAL: \$15,000.00

APPENDIX II

ind

W

1

1

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, JAMES S. STEEL of #1608-1005 Jervis Street, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc. degree in geology.
- I am presently employed as a project geologist with Hi-Tec Resource Management Ltd. of #1509 - 609 Granville Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies for the past two years.
- 4. The information contained in this report was obtained from an onsite property examination and supervision of the field work program conducted by Hi-Tec Resource Management Ltd. in 1986.

amo Q Atul

James S. Steel, Project Geologist

DATED at Vancouver, British Columbia this 23rd day of October, 1986.

STATEMENT OF QUALIFICATIONS

I, J. PAUL SORBARA, of the Municipality of Delta, in the Province of British Columbia, hereby certify:

- 1. THAT I am a geologist residing at 6703 Nicholson Road, in the Municipality of Delta, in the Province of British Columbia.
- 2. THAT I graduated with a B.Sc. in geology from the University of Toronto, in the City of Toronto, in the Province of Ontario, in 1976, and with a M.Sc. in geology from the University of Toronto in 1979.
- 3. THAT I have practiced geology professionally from 1979 to 1986, including 5 years as an exploration geologist for Cominco Ltd.
- 4. THAT I am a registered Fellow of the Geological Association of Canada.
- 5. THAT I do not have, nor do I expect to receive any material interest in Armor Development Corporation claims in the Toodoggone gold belt, or any other claims in that area.
- 6. THAT I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

g. Punt Sortany

Signed:

J. Paul Sorbara, M.Sc., F.G.A.C.

October 23, 1986

APPENDIX III

龖

1

.

a lif

Analytical Results

COMPANY:	HI	TEC	RESOURCE	MANAGEMENT
----------	----	-----	----------	------------

ЪЙ

V

Mark

20.1501	1 H1 NO-	TEC RESOL BAA	IRCE MANA	GEMENT	705 BEGT	MIN-EN	LABS ICF	P REPORT	8.C. U7N	(172	(AL	FILE NR: 4-1756/
NUUELI TTENTI	nu: Ny: 1	P.SUDBY	A/3 CTCC	1	7V0 #C01	(604)990-5	нын пр (4 814 Пр (4	10009CR;	2502 978 2572	+ TYPE GATE	SEACHEM .	DATE 111 V 21
TUALITE	C IN	PPM }	AG	<u>د</u> ۵۹		- 10047700 L	PR	7N	411-PPR			
TANCO	2 11		 5	<u></u>	197		71	1n	5			
41000 20018	3700W 3150W		ن. ج	.∔ 1	270	20	31 70	07 07	5 15			
41000	21000		• J 7 A	1	200	27	27 75	74 11	10 15			
41000	LTUVN 1150U		1.9 L	1	100	17 71	20 80	00 (0	2	. •		
4+005	1+308		.8	14	120	36	48	68	5			
4+005	1+00#			. <u> </u>	297	31		11				
44005	0+308		.2	2	111	21	31 77	84	5			
4+005	04506		.1	1	515	145	50	105	2	•		
4+005	1+00E		.2	6.	211	16	31	59	5			
4+005	1+50E		.2	1	140	22	28	48	10			
4+005	2+00E			7	217	21	43	45	5			
4+005	2+50E		.5	1	85	24	32	60	5			
4+005	3+00E		.7	11	286	98	\$7	85	5			
4+005	3+50E		2.0	21	35	227	71	49	15			
4+00S	4+00E		.2	12	508	13	46	37	5			
4+00S	4+50E		.4	10	164	19	39	59	5			
4+00S	5+00E		.2	4	207	14	49	46	5			
4+005	5+508		.1	4	162	17	38	48	5			
4+005	6+00E		.2	9	139	15	31	49	10			
4+005	6+508		.6	- 3	120	29	35	52	5			•
4+005	7+00E		.5	3	107	17	27	49	5			
4+00S	7+50E		.3	2	134	19	29	55	5			ست بلغة هية هذه الله بلغة الله عنه الإله عنه، الله عنه الله عنه الله عنه الله عنه الله الله الله ال
4+008	8+00E		.6	12	93	16	37	49	10			
4+005	8+30F		.9	1	114	16	23	46	5			
4+005	94005	•	-8	2	122	19	30	63	5			
1+000	9+50F	•	.8	1	360	19	27	49	5			
4+005	10+00	F		3	185	18	37		5			
21000	10+56	F	, D A	1	100	2.00 #6	77	59	5			
######	11+00	с. С	.0	•	354	1997 19	28	54	5			
41000	1115/		* 7	7	251	10	77	77	10			
1	19100	.c	1 1	14	150	20	45	77	15			
AAAAC	17490	L 	1 0		150		77	!/ &5	<u>}</u>			
1 AAAAC	12100	s. C	210	2	100	00 00	70	00	5		1	
4 TWO		r r	• 4		107	27	37	107	ن. ۱۸			
91000	20100	E I	1 n F A	7	100	10	20 8 8	120	30			
27003	31300	1	- 1 ⁴		140	44	99 70	141	3 E			
24005	34008				100		-94	68				
24005	4+508		*2	1	151	37	50	61	3			
2+005	4+00		.8	1	120	92	35 70	63 07	3			
24005	3+50%		.5	6	106	56	39	82	<u>১</u>			
24005	54001		.2	1	100	40	ა ე	_	3			
24005	2+50	2011			269	126			10	*		
2+00S	2+00		.3	1	176	28	27	52	5			
2+005	1+50	Ē	.7	1	167	18	22	59	· 5			
2+005	1+00	l	.4	1	237	24	29	70	5			
2+005	0+501	i .	.5	2	109	26	36	68	5			
2+005	0+508		.3	1		<u>***27</u>	29	45	10			
2+005	1+00	Ē	.5	3	123	14	28	44	5			
2+005	1+50		.6	1	Ì.14	٤Ĩ	24	47	5			
2+005	2+008		.5	i	119	4	32	60	5			
2+005	2+50	20M	.3	1	164	47	36	66	15			
2+005	3+001		.5	1	129	. 9	28	32	5	*********		
2+005	3+501		.6	1	190	_11	22	26	5			
2+005	4+00		.4	1	135	10	29	-33	3			
2+005	4+50		.3	13	186	14	42	31	5		(
2+005	5+00		.3	5	72	13	32	39	10			
2+005	5+50	E	.7	1	152	32	27	41	5			
2+005	6+00		.6		131	15	28	54	5	ى ھە يەپ بىرى بىرى بىرى بىرى بىرى بىرى بىرى بىر		
2+005	6+50	Ē	.7	1	88	13	25	38	5			
2+000	7+00	-	.6		88	. 24	22	47	5			
		-	4 50	•	**				-			
2+000	7450	5	2	\$	A1	11	781	43	10			

COMPANY: HI TEC RESOURCE MANAGEMENT MIN-EN LABS ICP REPORT

(ACT:GE027) PAGE 1 OF 1

1	PROJECT NO: 886			705 WEST	15TH ST.,	NORTH VA	NCOUVER,	B.C. V7M	1172 FILE ND: 6-4755/P3+4
	ATTENTION: J.P.SORBA	RA/J.STEEL			(604)980-	5814 OR (604)988-4	524	* TYPE SOIL GEOCHEM * DATE: JULY 21, 1986
	(VALUES IN PPM)	AG	AS	BA	CU	PB	<u>ZN</u>	AU-PP8	
	2+005 8+50E	.1	1	146	. 10	_27	71	5	
	2+005 9+00E	.2	1	127	11	27	47	5	
	2+005 9+50E	.3	1	110	- 9	24	53	10	
	2+005 10+00E	.1	1	123	9	22	53	5	
تعذلن	2+005 10+50E	.1	1 -	136	9	21	35	5	
ali n	2+005 11+00E	.2	1	123	7	21	44	5	
	2+005 11+50E	.3	1	100	9	29	52	5	
	2+005 12+00E	.9	1	121	15	30	60	205	
	2+005 12+50E 20M	1.0	1	108	.21	4	7	5	
	2+005 13+00E	.2	1	69	6	26	44	5	
	2+005 13+50E	.8	10	113	13	41	83	5	
أستعما	2+005 14+00E	1.1	1	105	9	8	16	5	
	0+00 11+00W N/S		-		-	-		-	
	0+00 10+50W	.7	20 ·	103	53	59	104	60	
i.	0+00 10+00%	.4		165	23	 77	56	5	
	0+00 9+508		<u>-</u>	154		<u>-</u> 79	<u>85</u>	5	
	0+00 9+008	.3	1	166	19	28	47	10	
	0+00 8+50%	.6	1	116	43	29	51	5	
	0+00 8+00H	.8	Q	127	54	38	53	5	
- Clanel	0+00 7+58		, k	110	19	34	73	ں 15	
	0400 74008	5		111	31	37	 147		
naá	0+00 6+504	. 4	т 11	00	51	02 75	71	ט ד	
	0100 L100W	7	1 1	105	70	33 72	17	5 10	
	0100 01008	*1 5	1	103	100	<u>.</u> 20	97 77	10	
:	0400 51000 0400 51000	ل. ر	1 7	 00	307	20	21 77	ಕ	
	0100 JTVVN	5		77					*********
	0100 4100W	.J 5	10	113	40	00 71	J) (5	ل ج	
	0100 7150H	نۍ و. د	1 10	110	ንት ግቦ	21	93 10	3	
à dese	0100 31J0#	. 0	10	117	17	07 05	10	3 E	
	0100 3100W	.4	1	117	0/ (00	23	48 50	ם ד	
	0100 2130#		·	100	120	2!	J <u>7</u>	. <u> </u>	*****
	ALAA LIEAH JAH	**	1	199 457	10	39 150	<pre>\CC /</pre>	ວ =	
	0100 1100H	• •	48,	432	102		283	3	
		-1	1	221	.40	20	68	ى د	
	VTUU UTDUH 0.00 0.505	•1 E	1	133	44	20	52	3.	
	V+VV V+3VE		<u> </u>	148		91			
	0+00 1+00E	.4	1	165	19	28	5/	3	
	0+00 1+30E	•/	2	86	3Z +D	2/	54 40	10	
	VTVV ZTVVE	-1	1	107	18	24	48	Э Е	
- Constant	9+00 2+30E	.1	1	174	44	51	82	3	
	0+00 3+00E		<u>}</u>	221	110		/1		
	0+00 3+30E	.7	2	105	70 14	29	12	10	
	VTVV 44VVE	*3 *	12	148	44 1 E	30 21	74 EA	3	
	V+VV 4+3VE	• 7	1	205	13	24	30	5 7	
	0+00 3+00E	.4	1	115	14	26	44	5 F	
Lanal	0+00 3+30E		<u>i</u>	194	18	41.	<u>77</u>	<u>5</u>	
	0+00 6+00E	1.0	1	154	14	27	60 57	10	
	V+VV 6+DUE	#J	10	1/2	<u>7</u> 4	<u>, 57</u>	22	5	
,	0+00 /+00E	.9	1	150	16	S S 	42	5	
	0+00 /+50E	.5	1	124	20	33	68	3	
	0+00 8+00E	1.0		160	16		/5	10	
	0+00 8+50E	.5	i	139	17	28	69	5	
	0+00 9+00E	.5	1	103	13	34	63	5	
	0+00 9+50E	.2	1	148	14	29	72	5	
	0+00 10+00E	.5	1	151	15	25	65	5	
. 1	0+00 10+50E	.6	<u>i</u>	123	13	36	70		
	0+00 11+00E	.5	i	139	13	33	53	10	
	0+00 11+50E 40M	1.5	1	113	15	41	70	15	
	0+00 12+ 00E	1.4	1	95	12	35	60	15	
line i	0+00 12+50E	1.7	16	86	25	55	71	490	
	0+00 13+00E	1.5	13	97	22	42	63	90	

COMPANY: HI TEC RESOURCE MANAGEMENT MIN-EN LABS ICP REPORT

(ACT:GEO27) PAGE 1 OF 1

5. A	PROJECT NO: 886			705 WEST	15TH ST.	, NORTH \	ANCOUVER,	, B.C. V7	7M 1T2 FILE NO: 6-4755/P	3+6
	ATTENTION: J.P.SORI	BARA/J.STEEL			(604)980	-5814 OR	(604)988-	4524	* TYPE SOIL GEOCHEM * DATE: JULY 21, 1	986
	(VALUES IN PPM)	AG	AS	BA	CU	PB	ZN	AU-PPB		
	0+00 13+50E	1.9	10	89	24	36	58	50		
	0+00 14+00E	1.3	2	88	19	32	58	15		
	0+00 14+50E	2.2	6	123	29	34	70	20	·	
	2+00N 10+00W	.4	i	257	23	22	58	5		
أفسحنا	2+00N 9+50W	.1	1	187	25	.26	51	5		
	2+00N 9+00W	.4	1	133	20	32	48	5	***************************************	
	- 2+00N 8+50W	.7	1	115	40	32	58	10		
:	2+00N 8+00W	.9	8	116	26	33	71	5		
	2+00N 7+50W	.5	1	156	34	28	121	5		
	2+00N 7+00W	.2	1	114	.57	29	63	10		
	2+00N 6+50W	.3		130	55	27	51	5	******	
كالدرر	2+00N 6+00W	.6	1	127	120	29	46	5		
1000	2+00N 5+50H	.7	· •	210	46	25	44	3	Υ.	
	2+00N 5+00W	.5	1	195	75	76	۰. ۸۱	5		
	7+00N 4+50H	3	1	170	10	15	24	5	•	
	2+000 4+000	·····		105 01			<u>27</u> A7	10		
	2100N 7150W	.0	1 7	117	71 70	20	72 A A	10		
	21000 31300 71000 71000	•0 L	2 1	117 20 -	19 03	10	77	ວ 5		
i ai a	21000 21000	• 0 •	10	97	02 77	17	40 20	J E		
110028	27008 27308 31000 31000	•"	10	110	<u>(</u>)	42	4/ 77	5	·	
	2700N 2700W	·····		70	40	20	<u>3</u> 1	10		
	ZTUUN ITJUN	•4	1	72	40	28	37 40	ວ =		
	ZTUUN ITUUN	.4	1	80	40	21	49	3		
	Z+VUN V+DVW	.4	24	101	26	39	33	5		
	2+00N 0+50E		1	11/	19	27	51	10		
	2+00N 1+00E		_19_	75	28	48	52	5		
	2+00N 1+50E	.3	2	117	41	38	69	- 5		
	2+00N 2+00E	. 4	3	138	46	38	83	5		
mak	2+00N 2+50E	.7	21	86	32	42	44	10		
	2+00N 3+00E	.4	4	170	20	28	40	5		
	2+00N 3+50E	.2		110	· 15	23	30	5		
	2+00N 4+00E	.2	i	239	28	23	55	5	· · · · · · · · · · · · · · · · · · ·	
ainai	2+00N 4+50E	.3	8	101	21	, 34	42	5	•	
	2+00N 5+00E	.6	1	175	12	13	53	5		
	2+00N 5+50E	4	1	194	18	16	46	5	-	
aad	2+00N 6+00E	1.0	1	192	20	37	59	5	1	
	2+00N 6+50E	1.3	1	191	34	33	65	5		
	2+00N 7+00E	.8	1	143	12	23	56	5		
	2+00N 7+50E	.7	11-	83	13	38	41	5		
linud	2+00N 8+00E	.3	1	94	5	21	46	10		
	2+00N 8+50E 20N	.1	1	.119	8	19	56	5		
-	2+00N 9+00E	.4	1	95	14	26	46	5		
Ma llasi	2+00N 9+50E	.5	1	120	111	20	44	35		
101	2+00N 10+00E	.6	1	137	14	28	40	5		
	2+00N 10+50E	.9	1	116	18	27	44	45		
	2+00N 11+00E	.3	1	56	9	16	32	10		
and .	4+00N 9+50W	.5	<u>ī</u>	106	10	22	41	5		
	4+00N 9+00W	.7	7	119	24	34	76	5		
	4+00N 8+50W	i.0	36	91	16	52	48	. 5		
أدارهم	4+00N 8+00W	.4	6	171	30	30	121	10		
	4+00N 7+50W	.9	1	131	58	- 30	63	5		
	4+00N 7+00W	.8	1	137	58	31	83	5	****	
1. P	4+00N 6+50H	.8	t	115	17	19	37	5		
	4+00N 6+00H	-1	1	178	6	11 -	28	5		
	4+00N 5+50M	.7	i	157	11	27	42	3		
	4+00N 5+00W	.9	•	98	21	46	69	5		
أحنورا	4+00N 4+50M	.9		93	20	25		5		
	4+00N 4+00M	-8	1	61	14	11	19	3	·	
	4+00M 7+50H	10	1	51 61	19	20	44	5		
	41000 31000	7	1	40	71	20 7A	· A L	5		
(111)	9TV08 0TV08	نۍ د م	1	, פו י יח	10	17 12	טר זו	5 1		
	4+00N 2+30W	. 7	- 1	70	13	13		<u>-</u>	********	

COMPANY: HI TEC RESOURCE MANAGEMENT

PROJECT NO: BRA

MIN-EN LABS ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, R.C. V7M 1T2 (ACT:GE027) PAGE 1 OF 1

	PROJECT NO: 886		705 WEST	15TH ST.	, NORTH VA	NCOUVER,	B.C. V7M	172	FILE NO: 6-4755/P7+8
	ATTENTION: J.P.SOF	BARA/J.STEEL		(604)980	-5814 OR	(604) 988-	4524	* TYPE SOIL GEDCHEN *	DATE: JULY 21, 1986
	(VALUES IN PPN)	AG	AS BA	CU	PB	ZN	AU-PPB		
	4+00N 2+00W	.2	1 60	58	23	<u>30</u>	5	************************	
i maisi	4+00N 1+50W	.1	1 50	25	29	215	3		
	4+00N 1+00W	.1	8 73	21	36	37	5		
	4+00N 0+50W	.3	1 97	37	31	50	5		
	4+00N 0+50E	.7	12 70	29	46	45	25		
	4+00N 1+00E	.8	30 79	22	46	44	5		
	4+00N 1+50E	.3	1 82	26	32	52	5		
	4+00N 2+00E	.2	1 64	85	19	40	10		
	4+00N 2+50E	.4	12 95	24	32	37	5	· ·	
	4+00N 3+00E	.9	1 121	27	18	37	5	1. · · · · · · · · · · · · · · · · · · ·	
	4400N 3450F		17 178	40	51	91	5		*==******
i. ul	4+00N 4+00F	.6	1 83	15	19	30	7		
	4+00N 4+50F	, 0 र	7 99	19	27	70	5	· .	
	4100N 5100E	20	1 210	10 70	20 7A	54	10		
	4100N 5150C	*1	3 107	14	ריי סם	50	10	~	
i i i i i i i i i i i i i i i i i i i	4100W JIJVL	••••••••••••••••••••••••••••••••••••••		10		<u>J</u> J EA			
	41000 DTUVE	+ L 3	7 117	15	00 20	UU 8.6	10		
	ATVUN OTOVE	• *	i 140	13	.11	94 . 50	а г	· · ·	
, dad	4+00N /+0VE	••	1 272	1 27	28	27	3	· ·	
2111년 -	ATUM TOUE	4.0	1 101	11	20	36	5		
	4+UUN 8+UVE	1,4	1 122	20	42	4/	13	* * * * * * * * * * * * * * * * * * * *	
	4+00N 8+50E	•ð	1 141	10	, 22	51	10		
	6+00N 8+50H	.4	1 121	27	. 55	57	5	· · · ·	
	6+00N 8+00W	.3	1 131	13	25	47	5		
-	6+00N 7+50W	. 4	1 130	11	18	33	10		
فالأهدأ	6+00N 7+00W	.7	1 127	28	28	63	5		
2.000 UP	6+00N 6+50E	.7	1 133	26	34	66	5		
	6+00N 6+00W	.5	1 109	12	23	37	3	· · · ·	
. 1	6+00N 5+50W	.4	1 87	16	26	45	10	· ,	
	6+00N 5+00W	. 4 .	1 104	17	25	44	5		
	6+00N 4+50W	.6	1 127	36	25	45	5	*	
	6+00N 4+00W	.2	1 113	22	28	45	5		
	6+00N 3+50W	1.8	1 51	174	52	237	10	i	·
	6+00N 3+00W	.1	1 60	29	29	54	5		
	6+00N 2+50N	.1	1 82	.11	23	40	5		
sa d	6+00N 2+00W	.4	1 107	31	30	.53	5		
	6+00N 1+50W	.1	1 50	51	25	40 ·	3		
	6+00N 1+00W	.4	1 100	12	23	61	5		
	6+00N 0+50W	.9	1 155	32	23	71	5	,	
	6+00N 0+50E	.3	4 85	104	34	59	5	`	
	6+00N 1+00E	.1	1 165	59	21	33	5	· .	
	6+00N 1+50E	.1	3 100	36	35	59	10		
استغان.	6+00N 2+00E	.3	17 128	65	42	65	5		
1000	6+00N 2+50E	.2	26 99	28	46	59	5		
	6+00N 3+00E	-1	1 118	37	27	55	3	x .	
	6+00N 3+50E	.4	2 77	34	- 35	34	5		
	6+00N 4+00E	.8	14 147	57	48	57	10		
	6+00N 4+50E	.5	5 101	.33	35	56	5		
	5+00N 5+00E	.4	27 10 108	38	56	55	30		
أيسي	6+00N 5+50E	.2	1 70	26	27	55	5	ſ	
	6+00N 6+00E	.3	1 163	39	36	85	5		
	6+00N 6+50E	,3	1 111	17	24	63	10		
L_1	5+00N 7+00E	.4	1 132	31	26	71	5	. '	
	6+00N 7+50E	.1	3 210	26	43	75	5		
	6+00N 8+00E	.1	1 130	28	27	68	5		
	6+00N 8+50E	.3	1 141	13	23	46	3		
أستبد	6+00N 9+00E	.7	5 119	18	37	50	5		یک میں جی ہوتا ہوتا ہوتا ہوتا ہوتا ہوتا ہوتا ہوتا
	6+00N 9+50E	.5	1 110	14	30	59	5		
	8+00N 7+50M	.2	1 95	9	18	27	10		
	8+00N 7+00H	.4	1 110	25	33	51	5		
	01000 TICUA 5.000 L.000	•7	1 90	20 79	30	51	5		
	01000 01000	19		L /	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	77 	~~~~~~~~~~		

COMPANY: HI TEC RESOURCE MANAGEMENT NIN-EN LABS ICP REPORT PROJECT NO: 886 705 WEST 15TH ST NORTH UNACOULED

.

	COMPANY: HI TE	C RESOURCE	MANAGEMENT		MIN-E	EN LABS I	CP REPORT			(ACT:	GE027) PAGE 1 OF 1
	PROJECT NO: B8	6		705 WEST	15TH ST.,	NORTH V	ANCOUVER,	B.C. V7M	172	FI	LE NO: 6-4755/P9+10
	ATTENTION: J.P	.SORBARA/J.	STEEL		(604) 980-	-5814 OR	(604)988-	4524	+ TYPE SOIL	GEOCHEM +	DATE: JULY 21, 1986
	IVALUES IN PP	M } AG	AS	BA	CU	PB	ZN	AU-PPB			
	8+00N 6+00W		1	127	15	18	41	5			
	BTOON STOON	.1	1	129	26	32	64	10			
	0100N 3100N 0100N 4150W	- - 1 .o	1	140	29	52	- 60 - 60	5	•		
	8+00N 4+00W	0, 7		102	10	34 77	98 50	3	-		
	8+00N 3+50W			110			U	<u>j</u>			
	8+00N 3+00W	.3	. 7	130	20 72	30	61	5			
	8+00N 2+50N	.5	1	121	20	29	57	5			
	8+00N 2+00W	.6	1	100	17	25	40	5			
	8+00N 1+50W	.2	i	136	31	28	52	3			
	8+00N 1+00W	.2	11	91	59	44	57	5		********	********
	8+00N 0+50W	.4	13	186	28	35	49	5			
	8+00N 0+50E	.1	5	131	22	36	61	5			
	8+00N 1+00E	.5	- 6	136	49	35	51	5			
	8+00N 1+50E	1.1	1	140	43	32	47	10			
	8+00N 2+00E	.4	10	101	74	35	126	5			
	8+00N 2+50E	.5	22	42	339	50	61	5			
أستحر	BTVVN STVVE	ت ،	1 7	115	40 74	52	64	10			
1	DTOON ALOOC	0, ;	1	123	ა 1 ი ·	28	00	ວ ົ			
	8+00N 4+50F		<u>i</u> - 5	17/		24 17	47	<u>-</u>		***********	**************
iumi	8+00N 5+00F	- 1	16	1/)	20	77 48	00 - 170	3 75			
	8+00N 5+50E 2	0M .8	5	130	72	34	55	10			
	8+00N 6+00E 4	01 .5	5	215	40	41	78	5			
	8+00N 6+50E	.6	15	135	34	38	67	3			
	8+00N 7+00E	.1	7	130	24	38	58	25			یون بند اور می من من من جو بی کر می اور می می می می می می می می اور ا
	8+00N 7+50E	-6	7	131	23	33	.74	5			
. 1	8+00N 8+00E	.2	2	267	30	37	68	5		۰.	
	8+00N 8+50E	.5	1	153	12	22	42	10			
	8+00N 9+00E			130	22	40	57	5	****		***
	8+00N 9+50E	. 9	5	138	17	37	65	5			
	BTUUN INTONE	-0 - 0	3	523	. 20	39	64	5			
	10+00N 2+50W	1.0	5	160	28	3/	19	ک ج	`		
	WOLTO ROUTOL	۴۳ ج	3 1 L	11/ QA	32 33	<i>11</i> 70	_ 33 #7	3			
	10+00N 5+50N	.7	15	<u>07</u> 99					** ** ** ** ** ** ** ** ** ** **	*********	****
	10+00N 5+00W	.3	5	128	36	41	100	10			
ŧ	10+00N 4+50W	.5	1	127	34	28	72	5			
	10+00N 4+00W	.6	10	88	30	40	62	5			
	10+00N 3+50W	.5	10	105	25	39	60	5			
	10+00N 3+00W	.2	2	161	19	34	48	10			
tailaat	10+00N 2+50W	.8	8	114	30	36	60	5			
	10+00N 2+00W	.7	7	118	22	33	42	5			
	10+00N 1+30M	<u>د</u> ، ک	1	15/	15	18	37	5			
1.00.00	10+00N 1+00N	ð. 7 7		124	17 75	21	23	·			
-	10400N 0430W	4.0	15	130	_ JJ 77	23 40	აა 51	10			
	10+00N 1+00F	. h	10	140	39	41	54	ມ 5			
أستنبرا	10+00N 1+50E	.4	9	176	33	34	51	10			
-	10+00N 2+00E	.5		112	73	37	52	5			
	10+00N 2+50E	.7	13	158	57	40	57	5			
1. Control	10+00N 3+00E	.4	7	179	21	32	43	3			
	10+00N 3+50E	.3	5	96	20	36	53	5			
	10+00N 4+00E	.2	3	95	12	41	62	10			
	10+00N 4+50E		2	134	11	33	51	5			
	10+00N 5+00E	.5	5	234	24	53	90	5			
	10+00N 5+50E	.5	13	121	17	45	46	5			
	10+00N 6+00E	.1	19	107	31	53	63	10			
	12+00N 0+50W	.3	3	199	22	54	04 50 (ີ 5			
	12+00N 1+00W	.4	8	135	16	51	<u>57</u>				

COMPANY: HI TEC RESOURCE MANAGEMENT

MIN-EN LABS ICP REPORT

(ACT:GE027) PAGE 1 OF 1

r

• • •	PROJECT NO: 886			705 WEST	15TH ST.	NORTH V	ANCOUVER,	B.C. V7M	172	FI	LE NO: 6-4755/	P11+12
	ATTENTION: J.P.SORB	ARA/J.STEEL			(604)980	-5814 OR	(604)988-	4524	* TYPE SOIL	GEDCHEM *	DATE: JULY 21	, 1986
	(VALUES IN PPM)	AG	AS	BA	CU	PB	ZN	AU-PPB				
	12+00N 1+50W	.3	2	193	26	32	55	5				
	12+00N 2+00W	.2	5	285	59	39	59	5				
	12+00N 2+50W	1.2	10	221	92	58 70	61	5		-		
	12+00N 3+00H	*/	15	114	33 80	78	33	10				
	121VU 3130W	 2 0	0	104	4 7 71	4V 70		<u>3</u>		********		
	12700N 4700W	7.0	4	170	73	45	74	J 5				
	12+00N 5+00W	.1	4	136	19	47	113	5	:			
	12+00N 5+50N	.3	6	100	25	51	85	10	,			
	12+00N 6+00N	1.3	20	208	30	60	78	15				
	BL 4+00S		1	232	145	42	140	5				*****
أتسما	BL 3+505	.6	3	119	47	33	60	5				
	BL 3+00S	.6	3	124	27	36	84	10				
	BL 2+505	.7	2	117	27	30	61	5				
أستندا	BL 2+005	.7	6	124	19	37	55	5				
	BL 1+505 N/5											
•	BL 1+00S	.8	1	126	12	21	50	10				
.i.uis	BL 0+50S	.3	1	145	22	30	65	5				
	BL (+00)	.4	1	216	<u>54</u>	55 74	68	3				
	BL VTOVN			152	67 50	<u>-</u> 34		<u>5</u>				
1	DL 1+VVN DL 1+5AN	• i 5	1	77	37 10	· 42 70	52 10	ა 10				
	BL 2+AAN		1	75 75	17	28	30 29	10				
	RL 2+50N	.5	1	98	34	38	31	3				
	BL 3+00N	.6	3	117	19	30	29	5				
	BL 3+50N	.8	13	101	30	41	59	5				
	BL 4+00N	.4	1	74	16	29	31	10				
	BL 4+50N	.2	3	113	30	35	69	5	\$			
ji maj	BL 5+00N	.4	6	125	35	33	106	5				
	BL 5+50N		1	155	24	30	59	5				
	BL 6+00N	1.2	1	85	141	29	52	5				
	BL 6+50N	.6	1	49	38	30	52	5				
	BL /+OUN DI 7:EAN	1.1	41	50 	108	45	58	10				
	BL / TOVN	0.V Q 7	1	80 40	43/ 777	28	40 90	13				
	DL DTVVA DL 9450N	7+2		00 93	16	<u></u>		70 5				
	BL 9+00N	-1	2	115	10	28	50	5		\		
	BL 9+50N	.1	1	103	13	27	38	5				
	BL 10+00N	.6	1	114	40	28	51	15				
	BL 10+50N	.3	i	141	17	24	48	5				
	BL 11+00N	.5	2	134	24	29	47	5				
	BL 11+50N	.4	1	144	8	23	46	3				
	BL 12+00N	.3	1	105	9	24	46	5		1		
	BB6L1	.3	1	82	4	26	/1	. ວ		-		
instal	B86L2			70	3	<u></u> 70	/3 75					
	DODLA ANM	۴. ج	1	00 67	8	30 78	- 73 49	5 5				
	88615 40M	.0	, 6	53	6	30	69	5				
أستعمرا	RRALA	.?	11	53	4	33	<u>50</u>	5				
	B86L7 40M	.6	9	43	6	30	58	5				
	B86L8 40M	.5	6	54	5	32	55	10				
أستدرز	BB6L9 40M	.5	3	57	3	29	57	5				
	B86L10 40M	.5	1	54	ó	29	59	5				
20 20	B86L11 40M	.4	1	74	8	26	56	5				
. 1	B86L12 40M		1	68	6	26	48	5				
	B86L13 40M	1.1	66	1.41 62	14	74	6Y	5				
	B86L14 40M	· .1	16	11	11	১ ৪ ১৫	10	3				
	B86L13	۲ .	1	72	11	20	47 2 1	5 1100	,			
	550L10	1.0	10	71 10L	19 " 1A	00 00	51 L7	1400		۰. ۱		
	B00L17 4VN	• /	D	100	10	10	60 	ي 	*****			

, .	'CONPANY: HI TEC RESO	IURCE MANA	GEMENT		MIN-EI	N LABS	ICP REPORT				(ACT	:GEO27) PAGE 1 DF	1
	PROJECT NO: B86			705 WEST	15TH ST.,	NORTH \	ANCOUVER,	B.C. V7M	172			FILE NO: 6-4755/P1	3
	ATTENTION: J.P.SORBA	RA/J.STEE	1		(604)980-	5814 OR	(604)988-	4524	* TYP	SOIL	GEOCHEM +	DATE: JULY 21, 19	36
	(VALUES IN PPH)	AG	AS	BA	CU	PB	ZN	AU-PPB					
	B86L17A	.2	1	118	-19	27-	62	5					
	BB6L18 40M	.2	4	125	21	38	60	35					
	B86L19 40N	.2	1	131	19	30	54	5			•		
	BB6L20	.3	8	121	-20	37	52	5					
	B86L21 40M	.5	7	111	21	31	61	10					
	B86L22	.8	1	186	27	32	58	5					
	886L23	1.2	2	149	19	24	-51	5					
	B86124 40M	1.3	1	75	.15	28-	51	5					
	B86L25	1.5	10	143	,23	A1	63	5					
	B86126	.6	2	142	23	30	62	5				•	
	B86L27 40M	.4	1	125	22	28	,59	10					
	B86128 40M	.7	2	111	20	27		5					
	B86L29 40M	.7	9	100	(18	31	50	5					

•

(**i)**

الناليا

COMPANY: HI	TEC RES	DURCES			MIN-	EN LABS	(ACT:GE027) PAGE 1 OF 1							
PROJECT NO:	B-86			705 WEST	15TH ST.	, NORTH	VANCOUVER	, B.C. V7M	172			F	ILE NO:	6-475
ATTENTION:	J.P.SORB	ARA/J.STI	EL		(604)980	-5814 OR	(604)988	-4524	* TYPE	ROCK	GEOCHEM	* DATE:	JULY 21.	1986
IVALUES IN	PPN }	AG	AS	BA	CB	PB	ZN	AU-PPB						
86JSBR002		1.0	10	24	80	25	39	5						
B6JSBR003	×	.8	2	86	14	20	49	5						
86JSBR004		.5	15	63	17	32	59	5						
86JSBR005		1.6	1	42	86	10	29	5						
86JSBR006		.4	1	72	12	32	52	5						
86158R001		.8	1	117	9	22	47	5	*******					

BLIS A F	
1, 7 F	
	LEGEND
XP	8 LOWER TO MIDDLE JURASSIC - DARK TO PALE GREY QUARTZ BIOTITE HORNBLENDE ASHFLOWS GREY OR PURPLE QUARTZOSE PLAGIOCLASE
	CRYSTAL TUFF TRIASSIC- TAKLA GROUP: AUGITE PORPHYRY BASALT FLOWS
	E LOWER TO MIDDLE JURASSIC - QUARTZ MONZONITE, GRANODIORITE
	J586 BROOK SAMPLE LOCATION
	FAULT, OBSERVED FAULT, INFERRED OUTCROP () FLOAT, TALUS
	0 100 200 3 00m
GEOLO	FIRST ALLIED RESOURCES LTD.
ASSES	SMENT REPORTBLACK II CLAIM OMINECA M.D. B.C.NTS 94E 6/3
15	PROPERTY GEOLOGY
<u></u>	HE TEC RESOURCE MANAGEMENT MITED SCALE 1: 10,000 3

90			N N	
2.005			LEGEND	
La Our			SOIL SAMPLE LOCATION	1
OOF				
	·	- <u>-</u> -	0 100 200 300m	
	GEOLOGICAL BRANCH ASSESSMENT REPORT	1- 3 1	FIRST ALLIED RESOURCES LTD. BLACK II CLAIM OMINECA M.D. B.C. NTS 94E 6/3	
	15,819		GEOCHEMICAL SAMPLE LOCATION MAP	

0**0*0

LEGEND

N

us, Lo Au (ppb), Ag (ppm)

AREA OF ANOMALOUS (>IOppb) GOLD ---- AREA OF VERY ANOMALOUS (>6Oppb) GOLD ---- AREA OF ANOMALOUS (>I.Oppm) SILVER ---- AREA OF VERY ANOMALOUS (>I.5ppm) SILVER

0 100 200 300m

4*0CS

**00E

LEGEND

As(ppm), Ba(ppm)

ø

------ AREA OF ANOMALOUS (> 10 ppm) ARSENIC ------ AREA OF VERY ANOMALOUS (> 20 ppm) ARSENIC ------ AREA OF ANOMALOUS (> 160 ppm) BARITE

0 100 200 **30**0m

LEGEND

N

-^{80,63,1∞} Cu(ppm), Pb(ppm), Zn (ppm)

0

AREA OF ANOMALOUS (>80ppm) COPPER -----AREA OF ANOMALOUS (>63ppm) LEAD ----AREA OF ANOMALOUS (>100ppm) ZINC

GEOLOGICAL BRANCH ASSESSMENT REPORT 15, 819

BLACK II CLAIM OMINECA M.D. B.C. NTS 94E 6/3 GEOCHEMISTRY COPPER, LEAD AND ZINC

100 200 300 m

FIRST ALLIED RESOURCES LTD.